xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 66cdbb47d2f83c41f774d3063bb0112b75d86277)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ProfileSummary.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 #include "llvm/Support/TimeProfiler.h"
62 
63 using namespace clang;
64 using namespace CodeGen;
65 
66 static llvm::cl::opt<bool> LimitedCoverage(
67     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
68     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
69     llvm::cl::init(false));
70 
71 static const char AnnotationSection[] = "llvm.metadata";
72 
73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
74   switch (CGM.getTarget().getCXXABI().getKind()) {
75   case TargetCXXABI::GenericAArch64:
76   case TargetCXXABI::GenericARM:
77   case TargetCXXABI::iOS:
78   case TargetCXXABI::iOS64:
79   case TargetCXXABI::WatchOS:
80   case TargetCXXABI::GenericMIPS:
81   case TargetCXXABI::GenericItanium:
82   case TargetCXXABI::WebAssembly:
83     return CreateItaniumCXXABI(CGM);
84   case TargetCXXABI::Microsoft:
85     return CreateMicrosoftCXXABI(CGM);
86   }
87 
88   llvm_unreachable("invalid C++ ABI kind");
89 }
90 
91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
92                              const PreprocessorOptions &PPO,
93                              const CodeGenOptions &CGO, llvm::Module &M,
94                              DiagnosticsEngine &diags,
95                              CoverageSourceInfo *CoverageInfo)
96     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
97       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
98       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
99       VMContext(M.getContext()), Types(*this), VTables(*this),
100       SanitizerMD(new SanitizerMetadata(*this)) {
101 
102   // Initialize the type cache.
103   llvm::LLVMContext &LLVMContext = M.getContext();
104   VoidTy = llvm::Type::getVoidTy(LLVMContext);
105   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
107   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
108   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
109   HalfTy = llvm::Type::getHalfTy(LLVMContext);
110   FloatTy = llvm::Type::getFloatTy(LLVMContext);
111   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
112   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
113   PointerAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
115   SizeSizeInBytes =
116     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
117   IntAlignInBytes =
118     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
119   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
120   IntPtrTy = llvm::IntegerType::get(LLVMContext,
121     C.getTargetInfo().getMaxPointerWidth());
122   Int8PtrTy = Int8Ty->getPointerTo(0);
123   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
124   AllocaInt8PtrTy = Int8Ty->getPointerTo(
125       M.getDataLayout().getAllocaAddrSpace());
126   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
127 
128   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
129 
130   if (LangOpts.ObjC)
131     createObjCRuntime();
132   if (LangOpts.OpenCL)
133     createOpenCLRuntime();
134   if (LangOpts.OpenMP)
135     createOpenMPRuntime();
136   if (LangOpts.CUDA)
137     createCUDARuntime();
138 
139   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
140   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
141       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
142     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
143                                getCXXABI().getMangleContext()));
144 
145   // If debug info or coverage generation is enabled, create the CGDebugInfo
146   // object.
147   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
148       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
149     DebugInfo.reset(new CGDebugInfo(*this));
150 
151   Block.GlobalUniqueCount = 0;
152 
153   if (C.getLangOpts().ObjC)
154     ObjCData.reset(new ObjCEntrypoints());
155 
156   if (CodeGenOpts.hasProfileClangUse()) {
157     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
158         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
159     if (auto E = ReaderOrErr.takeError()) {
160       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
161                                               "Could not read profile %0: %1");
162       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
163         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
164                                   << EI.message();
165       });
166     } else
167       PGOReader = std::move(ReaderOrErr.get());
168   }
169 
170   // If coverage mapping generation is enabled, create the
171   // CoverageMappingModuleGen object.
172   if (CodeGenOpts.CoverageMapping)
173     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
174 }
175 
176 CodeGenModule::~CodeGenModule() {}
177 
178 void CodeGenModule::createObjCRuntime() {
179   // This is just isGNUFamily(), but we want to force implementors of
180   // new ABIs to decide how best to do this.
181   switch (LangOpts.ObjCRuntime.getKind()) {
182   case ObjCRuntime::GNUstep:
183   case ObjCRuntime::GCC:
184   case ObjCRuntime::ObjFW:
185     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
186     return;
187 
188   case ObjCRuntime::FragileMacOSX:
189   case ObjCRuntime::MacOSX:
190   case ObjCRuntime::iOS:
191   case ObjCRuntime::WatchOS:
192     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
193     return;
194   }
195   llvm_unreachable("bad runtime kind");
196 }
197 
198 void CodeGenModule::createOpenCLRuntime() {
199   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
200 }
201 
202 void CodeGenModule::createOpenMPRuntime() {
203   // Select a specialized code generation class based on the target, if any.
204   // If it does not exist use the default implementation.
205   switch (getTriple().getArch()) {
206   case llvm::Triple::nvptx:
207   case llvm::Triple::nvptx64:
208     assert(getLangOpts().OpenMPIsDevice &&
209            "OpenMP NVPTX is only prepared to deal with device code.");
210     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
211     break;
212   default:
213     if (LangOpts.OpenMPSimd)
214       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
215     else
216       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
217     break;
218   }
219 }
220 
221 void CodeGenModule::createCUDARuntime() {
222   CUDARuntime.reset(CreateNVCUDARuntime(*this));
223 }
224 
225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
226   Replacements[Name] = C;
227 }
228 
229 void CodeGenModule::applyReplacements() {
230   for (auto &I : Replacements) {
231     StringRef MangledName = I.first();
232     llvm::Constant *Replacement = I.second;
233     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
234     if (!Entry)
235       continue;
236     auto *OldF = cast<llvm::Function>(Entry);
237     auto *NewF = dyn_cast<llvm::Function>(Replacement);
238     if (!NewF) {
239       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
240         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
241       } else {
242         auto *CE = cast<llvm::ConstantExpr>(Replacement);
243         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
244                CE->getOpcode() == llvm::Instruction::GetElementPtr);
245         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
246       }
247     }
248 
249     // Replace old with new, but keep the old order.
250     OldF->replaceAllUsesWith(Replacement);
251     if (NewF) {
252       NewF->removeFromParent();
253       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
254                                                        NewF);
255     }
256     OldF->eraseFromParent();
257   }
258 }
259 
260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
261   GlobalValReplacements.push_back(std::make_pair(GV, C));
262 }
263 
264 void CodeGenModule::applyGlobalValReplacements() {
265   for (auto &I : GlobalValReplacements) {
266     llvm::GlobalValue *GV = I.first;
267     llvm::Constant *C = I.second;
268 
269     GV->replaceAllUsesWith(C);
270     GV->eraseFromParent();
271   }
272 }
273 
274 // This is only used in aliases that we created and we know they have a
275 // linear structure.
276 static const llvm::GlobalObject *getAliasedGlobal(
277     const llvm::GlobalIndirectSymbol &GIS) {
278   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
279   const llvm::Constant *C = &GIS;
280   for (;;) {
281     C = C->stripPointerCasts();
282     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
283       return GO;
284     // stripPointerCasts will not walk over weak aliases.
285     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
286     if (!GIS2)
287       return nullptr;
288     if (!Visited.insert(GIS2).second)
289       return nullptr;
290     C = GIS2->getIndirectSymbol();
291   }
292 }
293 
294 void CodeGenModule::checkAliases() {
295   // Check if the constructed aliases are well formed. It is really unfortunate
296   // that we have to do this in CodeGen, but we only construct mangled names
297   // and aliases during codegen.
298   bool Error = false;
299   DiagnosticsEngine &Diags = getDiags();
300   for (const GlobalDecl &GD : Aliases) {
301     const auto *D = cast<ValueDecl>(GD.getDecl());
302     SourceLocation Location;
303     bool IsIFunc = D->hasAttr<IFuncAttr>();
304     if (const Attr *A = D->getDefiningAttr())
305       Location = A->getLocation();
306     else
307       llvm_unreachable("Not an alias or ifunc?");
308     StringRef MangledName = getMangledName(GD);
309     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
310     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
311     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
312     if (!GV) {
313       Error = true;
314       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
315     } else if (GV->isDeclaration()) {
316       Error = true;
317       Diags.Report(Location, diag::err_alias_to_undefined)
318           << IsIFunc << IsIFunc;
319     } else if (IsIFunc) {
320       // Check resolver function type.
321       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
322           GV->getType()->getPointerElementType());
323       assert(FTy);
324       if (!FTy->getReturnType()->isPointerTy())
325         Diags.Report(Location, diag::err_ifunc_resolver_return);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   registerGlobalDtorsWithAtExit();
402   EmitCXXThreadLocalInitFunc();
403   if (ObjCRuntime)
404     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
405       AddGlobalCtor(ObjCInitFunction);
406   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
407       CUDARuntime) {
408     if (llvm::Function *CudaCtorFunction =
409             CUDARuntime->makeModuleCtorFunction())
410       AddGlobalCtor(CudaCtorFunction);
411   }
412   if (OpenMPRuntime) {
413     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
414             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
415       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
416     }
417     if (llvm::Function *OpenMPRegistrationFunction =
418             OpenMPRuntime->emitRegistrationFunction()) {
419       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
420         OpenMPRegistrationFunction : nullptr;
421       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
422     }
423     OpenMPRuntime->clear();
424   }
425   if (PGOReader) {
426     getModule().setProfileSummary(
427         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
428         llvm::ProfileSummary::PSK_Instr);
429     if (PGOStats.hasDiagnostics())
430       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
431   }
432   EmitCtorList(GlobalCtors, "llvm.global_ctors");
433   EmitCtorList(GlobalDtors, "llvm.global_dtors");
434   EmitGlobalAnnotations();
435   EmitStaticExternCAliases();
436   EmitDeferredUnusedCoverageMappings();
437   if (CoverageMapping)
438     CoverageMapping->emit();
439   if (CodeGenOpts.SanitizeCfiCrossDso) {
440     CodeGenFunction(*this).EmitCfiCheckFail();
441     CodeGenFunction(*this).EmitCfiCheckStub();
442   }
443   emitAtAvailableLinkGuard();
444   emitLLVMUsed();
445   if (SanStats)
446     SanStats->finish();
447 
448   if (CodeGenOpts.Autolink &&
449       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
450     EmitModuleLinkOptions();
451   }
452 
453   // On ELF we pass the dependent library specifiers directly to the linker
454   // without manipulating them. This is in contrast to other platforms where
455   // they are mapped to a specific linker option by the compiler. This
456   // difference is a result of the greater variety of ELF linkers and the fact
457   // that ELF linkers tend to handle libraries in a more complicated fashion
458   // than on other platforms. This forces us to defer handling the dependent
459   // libs to the linker.
460   if (!ELFDependentLibraries.empty()) {
461     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
462     for (auto *MD : ELFDependentLibraries)
463       NMD->addOperand(MD);
464   }
465 
466   // Record mregparm value now so it is visible through rest of codegen.
467   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
468     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
469                               CodeGenOpts.NumRegisterParameters);
470 
471   if (CodeGenOpts.DwarfVersion) {
472     // We actually want the latest version when there are conflicts.
473     // We can change from Warning to Latest if such mode is supported.
474     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
475                               CodeGenOpts.DwarfVersion);
476   }
477   if (CodeGenOpts.EmitCodeView) {
478     // Indicate that we want CodeView in the metadata.
479     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
480   }
481   if (CodeGenOpts.CodeViewGHash) {
482     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
483   }
484   if (CodeGenOpts.ControlFlowGuard) {
485     // We want function ID tables for Control Flow Guard.
486     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
487   }
488   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
489     // We don't support LTO with 2 with different StrictVTablePointers
490     // FIXME: we could support it by stripping all the information introduced
491     // by StrictVTablePointers.
492 
493     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
494 
495     llvm::Metadata *Ops[2] = {
496               llvm::MDString::get(VMContext, "StrictVTablePointers"),
497               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
498                   llvm::Type::getInt32Ty(VMContext), 1))};
499 
500     getModule().addModuleFlag(llvm::Module::Require,
501                               "StrictVTablePointersRequirement",
502                               llvm::MDNode::get(VMContext, Ops));
503   }
504   if (DebugInfo)
505     // We support a single version in the linked module. The LLVM
506     // parser will drop debug info with a different version number
507     // (and warn about it, too).
508     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
509                               llvm::DEBUG_METADATA_VERSION);
510 
511   // We need to record the widths of enums and wchar_t, so that we can generate
512   // the correct build attributes in the ARM backend. wchar_size is also used by
513   // TargetLibraryInfo.
514   uint64_t WCharWidth =
515       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
516   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
517 
518   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
519   if (   Arch == llvm::Triple::arm
520       || Arch == llvm::Triple::armeb
521       || Arch == llvm::Triple::thumb
522       || Arch == llvm::Triple::thumbeb) {
523     // The minimum width of an enum in bytes
524     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
525     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
526   }
527 
528   if (CodeGenOpts.SanitizeCfiCrossDso) {
529     // Indicate that we want cross-DSO control flow integrity checks.
530     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
531   }
532 
533   if (CodeGenOpts.CFProtectionReturn &&
534       Target.checkCFProtectionReturnSupported(getDiags())) {
535     // Indicate that we want to instrument return control flow protection.
536     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
537                               1);
538   }
539 
540   if (CodeGenOpts.CFProtectionBranch &&
541       Target.checkCFProtectionBranchSupported(getDiags())) {
542     // Indicate that we want to instrument branch control flow protection.
543     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
544                               1);
545   }
546 
547   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
548     // Indicate whether __nvvm_reflect should be configured to flush denormal
549     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
550     // property.)
551     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
552                               CodeGenOpts.FlushDenorm ? 1 : 0);
553   }
554 
555   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
556   if (LangOpts.OpenCL) {
557     EmitOpenCLMetadata();
558     // Emit SPIR version.
559     if (getTriple().isSPIR()) {
560       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
561       // opencl.spir.version named metadata.
562       llvm::Metadata *SPIRVerElts[] = {
563           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
564               Int32Ty, LangOpts.OpenCLVersion / 100)),
565           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
566               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
567       llvm::NamedMDNode *SPIRVerMD =
568           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
569       llvm::LLVMContext &Ctx = TheModule.getContext();
570       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
571     }
572   }
573 
574   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
575     assert(PLevel < 3 && "Invalid PIC Level");
576     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
577     if (Context.getLangOpts().PIE)
578       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
579   }
580 
581   if (getCodeGenOpts().CodeModel.size() > 0) {
582     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
583                   .Case("tiny", llvm::CodeModel::Tiny)
584                   .Case("small", llvm::CodeModel::Small)
585                   .Case("kernel", llvm::CodeModel::Kernel)
586                   .Case("medium", llvm::CodeModel::Medium)
587                   .Case("large", llvm::CodeModel::Large)
588                   .Default(~0u);
589     if (CM != ~0u) {
590       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
591       getModule().setCodeModel(codeModel);
592     }
593   }
594 
595   if (CodeGenOpts.NoPLT)
596     getModule().setRtLibUseGOT();
597 
598   SimplifyPersonality();
599 
600   if (getCodeGenOpts().EmitDeclMetadata)
601     EmitDeclMetadata();
602 
603   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
604     EmitCoverageFile();
605 
606   if (DebugInfo)
607     DebugInfo->finalize();
608 
609   if (getCodeGenOpts().EmitVersionIdentMetadata)
610     EmitVersionIdentMetadata();
611 
612   if (!getCodeGenOpts().RecordCommandLine.empty())
613     EmitCommandLineMetadata();
614 
615   EmitTargetMetadata();
616 }
617 
618 void CodeGenModule::EmitOpenCLMetadata() {
619   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
620   // opencl.ocl.version named metadata node.
621   llvm::Metadata *OCLVerElts[] = {
622       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
623           Int32Ty, LangOpts.OpenCLVersion / 100)),
624       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
625           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
626   llvm::NamedMDNode *OCLVerMD =
627       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
628   llvm::LLVMContext &Ctx = TheModule.getContext();
629   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
630 }
631 
632 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
633   // Make sure that this type is translated.
634   Types.UpdateCompletedType(TD);
635 }
636 
637 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
638   // Make sure that this type is translated.
639   Types.RefreshTypeCacheForClass(RD);
640 }
641 
642 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
643   if (!TBAA)
644     return nullptr;
645   return TBAA->getTypeInfo(QTy);
646 }
647 
648 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
649   if (!TBAA)
650     return TBAAAccessInfo();
651   return TBAA->getAccessInfo(AccessType);
652 }
653 
654 TBAAAccessInfo
655 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
656   if (!TBAA)
657     return TBAAAccessInfo();
658   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
659 }
660 
661 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
662   if (!TBAA)
663     return nullptr;
664   return TBAA->getTBAAStructInfo(QTy);
665 }
666 
667 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
668   if (!TBAA)
669     return nullptr;
670   return TBAA->getBaseTypeInfo(QTy);
671 }
672 
673 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
674   if (!TBAA)
675     return nullptr;
676   return TBAA->getAccessTagInfo(Info);
677 }
678 
679 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
680                                                    TBAAAccessInfo TargetInfo) {
681   if (!TBAA)
682     return TBAAAccessInfo();
683   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
684 }
685 
686 TBAAAccessInfo
687 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
688                                                    TBAAAccessInfo InfoB) {
689   if (!TBAA)
690     return TBAAAccessInfo();
691   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
692 }
693 
694 TBAAAccessInfo
695 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
696                                               TBAAAccessInfo SrcInfo) {
697   if (!TBAA)
698     return TBAAAccessInfo();
699   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
700 }
701 
702 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
703                                                 TBAAAccessInfo TBAAInfo) {
704   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
705     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
706 }
707 
708 void CodeGenModule::DecorateInstructionWithInvariantGroup(
709     llvm::Instruction *I, const CXXRecordDecl *RD) {
710   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
711                  llvm::MDNode::get(getLLVMContext(), {}));
712 }
713 
714 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
715   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
716   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
717 }
718 
719 /// ErrorUnsupported - Print out an error that codegen doesn't support the
720 /// specified stmt yet.
721 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
722   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
723                                                "cannot compile this %0 yet");
724   std::string Msg = Type;
725   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
726       << Msg << S->getSourceRange();
727 }
728 
729 /// ErrorUnsupported - Print out an error that codegen doesn't support the
730 /// specified decl yet.
731 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
732   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
733                                                "cannot compile this %0 yet");
734   std::string Msg = Type;
735   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
736 }
737 
738 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
739   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
740 }
741 
742 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
743                                         const NamedDecl *D) const {
744   if (GV->hasDLLImportStorageClass())
745     return;
746   // Internal definitions always have default visibility.
747   if (GV->hasLocalLinkage()) {
748     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
749     return;
750   }
751   if (!D)
752     return;
753   // Set visibility for definitions, and for declarations if requested globally
754   // or set explicitly.
755   LinkageInfo LV = D->getLinkageAndVisibility();
756   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
757       !GV->isDeclarationForLinker())
758     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
759 }
760 
761 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
762                                  llvm::GlobalValue *GV) {
763   if (GV->hasLocalLinkage())
764     return true;
765 
766   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
767     return true;
768 
769   // DLLImport explicitly marks the GV as external.
770   if (GV->hasDLLImportStorageClass())
771     return false;
772 
773   const llvm::Triple &TT = CGM.getTriple();
774   if (TT.isWindowsGNUEnvironment()) {
775     // In MinGW, variables without DLLImport can still be automatically
776     // imported from a DLL by the linker; don't mark variables that
777     // potentially could come from another DLL as DSO local.
778     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
779         !GV->isThreadLocal())
780       return false;
781   }
782 
783   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
784   // remain unresolved in the link, they can be resolved to zero, which is
785   // outside the current DSO.
786   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
787     return false;
788 
789   // Every other GV is local on COFF.
790   // Make an exception for windows OS in the triple: Some firmware builds use
791   // *-win32-macho triples. This (accidentally?) produced windows relocations
792   // without GOT tables in older clang versions; Keep this behaviour.
793   // FIXME: even thread local variables?
794   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
795     return true;
796 
797   // Only handle COFF and ELF for now.
798   if (!TT.isOSBinFormatELF())
799     return false;
800 
801   // If this is not an executable, don't assume anything is local.
802   const auto &CGOpts = CGM.getCodeGenOpts();
803   llvm::Reloc::Model RM = CGOpts.RelocationModel;
804   const auto &LOpts = CGM.getLangOpts();
805   if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice)
806     return false;
807 
808   // A definition cannot be preempted from an executable.
809   if (!GV->isDeclarationForLinker())
810     return true;
811 
812   // Most PIC code sequences that assume that a symbol is local cannot produce a
813   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
814   // depended, it seems worth it to handle it here.
815   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
816     return false;
817 
818   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
819   llvm::Triple::ArchType Arch = TT.getArch();
820   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
821       Arch == llvm::Triple::ppc64le)
822     return false;
823 
824   // If we can use copy relocations we can assume it is local.
825   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
826     if (!Var->isThreadLocal() &&
827         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
828       return true;
829 
830   // If we can use a plt entry as the symbol address we can assume it
831   // is local.
832   // FIXME: This should work for PIE, but the gold linker doesn't support it.
833   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
834     return true;
835 
836   // Otherwise don't assue it is local.
837   return false;
838 }
839 
840 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
841   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
842 }
843 
844 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
845                                           GlobalDecl GD) const {
846   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
847   // C++ destructors have a few C++ ABI specific special cases.
848   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
849     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
850     return;
851   }
852   setDLLImportDLLExport(GV, D);
853 }
854 
855 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
856                                           const NamedDecl *D) const {
857   if (D && D->isExternallyVisible()) {
858     if (D->hasAttr<DLLImportAttr>())
859       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
860     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
861       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
862   }
863 }
864 
865 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
866                                     GlobalDecl GD) const {
867   setDLLImportDLLExport(GV, GD);
868   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
869 }
870 
871 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
872                                     const NamedDecl *D) const {
873   setDLLImportDLLExport(GV, D);
874   setGlobalVisibilityAndLocal(GV, D);
875 }
876 
877 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
878                                                 const NamedDecl *D) const {
879   setGlobalVisibility(GV, D);
880   setDSOLocal(GV);
881 }
882 
883 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
884   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
885       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
886       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
887       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
888       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
889 }
890 
891 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
892     CodeGenOptions::TLSModel M) {
893   switch (M) {
894   case CodeGenOptions::GeneralDynamicTLSModel:
895     return llvm::GlobalVariable::GeneralDynamicTLSModel;
896   case CodeGenOptions::LocalDynamicTLSModel:
897     return llvm::GlobalVariable::LocalDynamicTLSModel;
898   case CodeGenOptions::InitialExecTLSModel:
899     return llvm::GlobalVariable::InitialExecTLSModel;
900   case CodeGenOptions::LocalExecTLSModel:
901     return llvm::GlobalVariable::LocalExecTLSModel;
902   }
903   llvm_unreachable("Invalid TLS model!");
904 }
905 
906 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
907   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
908 
909   llvm::GlobalValue::ThreadLocalMode TLM;
910   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
911 
912   // Override the TLS model if it is explicitly specified.
913   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
914     TLM = GetLLVMTLSModel(Attr->getModel());
915   }
916 
917   GV->setThreadLocalMode(TLM);
918 }
919 
920 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
921                                           StringRef Name) {
922   const TargetInfo &Target = CGM.getTarget();
923   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
924 }
925 
926 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
927                                                  const CPUSpecificAttr *Attr,
928                                                  unsigned CPUIndex,
929                                                  raw_ostream &Out) {
930   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
931   // supported.
932   if (Attr)
933     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
934   else if (CGM.getTarget().supportsIFunc())
935     Out << ".resolver";
936 }
937 
938 static void AppendTargetMangling(const CodeGenModule &CGM,
939                                  const TargetAttr *Attr, raw_ostream &Out) {
940   if (Attr->isDefaultVersion())
941     return;
942 
943   Out << '.';
944   const TargetInfo &Target = CGM.getTarget();
945   TargetAttr::ParsedTargetAttr Info =
946       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
947         // Multiversioning doesn't allow "no-${feature}", so we can
948         // only have "+" prefixes here.
949         assert(LHS.startswith("+") && RHS.startswith("+") &&
950                "Features should always have a prefix.");
951         return Target.multiVersionSortPriority(LHS.substr(1)) >
952                Target.multiVersionSortPriority(RHS.substr(1));
953       });
954 
955   bool IsFirst = true;
956 
957   if (!Info.Architecture.empty()) {
958     IsFirst = false;
959     Out << "arch_" << Info.Architecture;
960   }
961 
962   for (StringRef Feat : Info.Features) {
963     if (!IsFirst)
964       Out << '_';
965     IsFirst = false;
966     Out << Feat.substr(1);
967   }
968 }
969 
970 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
971                                       const NamedDecl *ND,
972                                       bool OmitMultiVersionMangling = false) {
973   SmallString<256> Buffer;
974   llvm::raw_svector_ostream Out(Buffer);
975   MangleContext &MC = CGM.getCXXABI().getMangleContext();
976   if (MC.shouldMangleDeclName(ND)) {
977     llvm::raw_svector_ostream Out(Buffer);
978     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
979       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
980     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
981       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
982     else
983       MC.mangleName(ND, Out);
984   } else {
985     IdentifierInfo *II = ND->getIdentifier();
986     assert(II && "Attempt to mangle unnamed decl.");
987     const auto *FD = dyn_cast<FunctionDecl>(ND);
988 
989     if (FD &&
990         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
991       llvm::raw_svector_ostream Out(Buffer);
992       Out << "__regcall3__" << II->getName();
993     } else {
994       Out << II->getName();
995     }
996   }
997 
998   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
999     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1000       switch (FD->getMultiVersionKind()) {
1001       case MultiVersionKind::CPUDispatch:
1002       case MultiVersionKind::CPUSpecific:
1003         AppendCPUSpecificCPUDispatchMangling(CGM,
1004                                              FD->getAttr<CPUSpecificAttr>(),
1005                                              GD.getMultiVersionIndex(), Out);
1006         break;
1007       case MultiVersionKind::Target:
1008         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1009         break;
1010       case MultiVersionKind::None:
1011         llvm_unreachable("None multiversion type isn't valid here");
1012       }
1013     }
1014 
1015   return Out.str();
1016 }
1017 
1018 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1019                                             const FunctionDecl *FD) {
1020   if (!FD->isMultiVersion())
1021     return;
1022 
1023   // Get the name of what this would be without the 'target' attribute.  This
1024   // allows us to lookup the version that was emitted when this wasn't a
1025   // multiversion function.
1026   std::string NonTargetName =
1027       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1028   GlobalDecl OtherGD;
1029   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1030     assert(OtherGD.getCanonicalDecl()
1031                .getDecl()
1032                ->getAsFunction()
1033                ->isMultiVersion() &&
1034            "Other GD should now be a multiversioned function");
1035     // OtherFD is the version of this function that was mangled BEFORE
1036     // becoming a MultiVersion function.  It potentially needs to be updated.
1037     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1038                                       .getDecl()
1039                                       ->getAsFunction()
1040                                       ->getMostRecentDecl();
1041     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1042     // This is so that if the initial version was already the 'default'
1043     // version, we don't try to update it.
1044     if (OtherName != NonTargetName) {
1045       // Remove instead of erase, since others may have stored the StringRef
1046       // to this.
1047       const auto ExistingRecord = Manglings.find(NonTargetName);
1048       if (ExistingRecord != std::end(Manglings))
1049         Manglings.remove(&(*ExistingRecord));
1050       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1051       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1052       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1053         Entry->setName(OtherName);
1054     }
1055   }
1056 }
1057 
1058 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1059   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1060 
1061   // Some ABIs don't have constructor variants.  Make sure that base and
1062   // complete constructors get mangled the same.
1063   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1064     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1065       CXXCtorType OrigCtorType = GD.getCtorType();
1066       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1067       if (OrigCtorType == Ctor_Base)
1068         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1069     }
1070   }
1071 
1072   auto FoundName = MangledDeclNames.find(CanonicalGD);
1073   if (FoundName != MangledDeclNames.end())
1074     return FoundName->second;
1075 
1076   // Keep the first result in the case of a mangling collision.
1077   const auto *ND = cast<NamedDecl>(GD.getDecl());
1078   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1079 
1080   // Postfix kernel stub names with .stub to differentiate them from kernel
1081   // names in device binaries. This is to facilitate the debugger to find
1082   // the correct symbols for kernels in the device binary.
1083   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1084     if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice &&
1085         FD->hasAttr<CUDAGlobalAttr>())
1086       MangledName = MangledName + ".stub";
1087 
1088   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1089   return MangledDeclNames[CanonicalGD] = Result.first->first();
1090 }
1091 
1092 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1093                                              const BlockDecl *BD) {
1094   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1095   const Decl *D = GD.getDecl();
1096 
1097   SmallString<256> Buffer;
1098   llvm::raw_svector_ostream Out(Buffer);
1099   if (!D)
1100     MangleCtx.mangleGlobalBlock(BD,
1101       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1102   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1103     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1104   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1105     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1106   else
1107     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1108 
1109   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1110   return Result.first->first();
1111 }
1112 
1113 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1114   return getModule().getNamedValue(Name);
1115 }
1116 
1117 /// AddGlobalCtor - Add a function to the list that will be called before
1118 /// main() runs.
1119 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1120                                   llvm::Constant *AssociatedData) {
1121   // FIXME: Type coercion of void()* types.
1122   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1123 }
1124 
1125 /// AddGlobalDtor - Add a function to the list that will be called
1126 /// when the module is unloaded.
1127 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1128   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1129     DtorsUsingAtExit[Priority].push_back(Dtor);
1130     return;
1131   }
1132 
1133   // FIXME: Type coercion of void()* types.
1134   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1135 }
1136 
1137 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1138   if (Fns.empty()) return;
1139 
1140   // Ctor function type is void()*.
1141   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1142   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1143       TheModule.getDataLayout().getProgramAddressSpace());
1144 
1145   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1146   llvm::StructType *CtorStructTy = llvm::StructType::get(
1147       Int32Ty, CtorPFTy, VoidPtrTy);
1148 
1149   // Construct the constructor and destructor arrays.
1150   ConstantInitBuilder builder(*this);
1151   auto ctors = builder.beginArray(CtorStructTy);
1152   for (const auto &I : Fns) {
1153     auto ctor = ctors.beginStruct(CtorStructTy);
1154     ctor.addInt(Int32Ty, I.Priority);
1155     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1156     if (I.AssociatedData)
1157       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1158     else
1159       ctor.addNullPointer(VoidPtrTy);
1160     ctor.finishAndAddTo(ctors);
1161   }
1162 
1163   auto list =
1164     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1165                                 /*constant*/ false,
1166                                 llvm::GlobalValue::AppendingLinkage);
1167 
1168   // The LTO linker doesn't seem to like it when we set an alignment
1169   // on appending variables.  Take it off as a workaround.
1170   list->setAlignment(0);
1171 
1172   Fns.clear();
1173 }
1174 
1175 llvm::GlobalValue::LinkageTypes
1176 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1177   const auto *D = cast<FunctionDecl>(GD.getDecl());
1178 
1179   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1180 
1181   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1182     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1183 
1184   if (isa<CXXConstructorDecl>(D) &&
1185       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1186       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1187     // Our approach to inheriting constructors is fundamentally different from
1188     // that used by the MS ABI, so keep our inheriting constructor thunks
1189     // internal rather than trying to pick an unambiguous mangling for them.
1190     return llvm::GlobalValue::InternalLinkage;
1191   }
1192 
1193   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1194 }
1195 
1196 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1197   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1198   if (!MDS) return nullptr;
1199 
1200   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1201 }
1202 
1203 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1204                                               const CGFunctionInfo &Info,
1205                                               llvm::Function *F) {
1206   unsigned CallingConv;
1207   llvm::AttributeList PAL;
1208   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1209   F->setAttributes(PAL);
1210   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1211 }
1212 
1213 static void removeImageAccessQualifier(std::string& TyName) {
1214   std::string ReadOnlyQual("__read_only");
1215   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1216   if (ReadOnlyPos != std::string::npos)
1217     // "+ 1" for the space after access qualifier.
1218     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1219   else {
1220     std::string WriteOnlyQual("__write_only");
1221     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1222     if (WriteOnlyPos != std::string::npos)
1223       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1224     else {
1225       std::string ReadWriteQual("__read_write");
1226       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1227       if (ReadWritePos != std::string::npos)
1228         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1229     }
1230   }
1231 }
1232 
1233 // Returns the address space id that should be produced to the
1234 // kernel_arg_addr_space metadata. This is always fixed to the ids
1235 // as specified in the SPIR 2.0 specification in order to differentiate
1236 // for example in clGetKernelArgInfo() implementation between the address
1237 // spaces with targets without unique mapping to the OpenCL address spaces
1238 // (basically all single AS CPUs).
1239 static unsigned ArgInfoAddressSpace(LangAS AS) {
1240   switch (AS) {
1241   case LangAS::opencl_global:   return 1;
1242   case LangAS::opencl_constant: return 2;
1243   case LangAS::opencl_local:    return 3;
1244   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1245   default:
1246     return 0; // Assume private.
1247   }
1248 }
1249 
1250 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1251                                          const FunctionDecl *FD,
1252                                          CodeGenFunction *CGF) {
1253   assert(((FD && CGF) || (!FD && !CGF)) &&
1254          "Incorrect use - FD and CGF should either be both null or not!");
1255   // Create MDNodes that represent the kernel arg metadata.
1256   // Each MDNode is a list in the form of "key", N number of values which is
1257   // the same number of values as their are kernel arguments.
1258 
1259   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1260 
1261   // MDNode for the kernel argument address space qualifiers.
1262   SmallVector<llvm::Metadata *, 8> addressQuals;
1263 
1264   // MDNode for the kernel argument access qualifiers (images only).
1265   SmallVector<llvm::Metadata *, 8> accessQuals;
1266 
1267   // MDNode for the kernel argument type names.
1268   SmallVector<llvm::Metadata *, 8> argTypeNames;
1269 
1270   // MDNode for the kernel argument base type names.
1271   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1272 
1273   // MDNode for the kernel argument type qualifiers.
1274   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1275 
1276   // MDNode for the kernel argument names.
1277   SmallVector<llvm::Metadata *, 8> argNames;
1278 
1279   if (FD && CGF)
1280     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1281       const ParmVarDecl *parm = FD->getParamDecl(i);
1282       QualType ty = parm->getType();
1283       std::string typeQuals;
1284 
1285       if (ty->isPointerType()) {
1286         QualType pointeeTy = ty->getPointeeType();
1287 
1288         // Get address qualifier.
1289         addressQuals.push_back(
1290             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1291                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1292 
1293         // Get argument type name.
1294         std::string typeName =
1295             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1296 
1297         // Turn "unsigned type" to "utype"
1298         std::string::size_type pos = typeName.find("unsigned");
1299         if (pointeeTy.isCanonical() && pos != std::string::npos)
1300           typeName.erase(pos + 1, 8);
1301 
1302         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1303 
1304         std::string baseTypeName =
1305             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1306                 Policy) +
1307             "*";
1308 
1309         // Turn "unsigned type" to "utype"
1310         pos = baseTypeName.find("unsigned");
1311         if (pos != std::string::npos)
1312           baseTypeName.erase(pos + 1, 8);
1313 
1314         argBaseTypeNames.push_back(
1315             llvm::MDString::get(VMContext, baseTypeName));
1316 
1317         // Get argument type qualifiers:
1318         if (ty.isRestrictQualified())
1319           typeQuals = "restrict";
1320         if (pointeeTy.isConstQualified() ||
1321             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1322           typeQuals += typeQuals.empty() ? "const" : " const";
1323         if (pointeeTy.isVolatileQualified())
1324           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1325       } else {
1326         uint32_t AddrSpc = 0;
1327         bool isPipe = ty->isPipeType();
1328         if (ty->isImageType() || isPipe)
1329           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1330 
1331         addressQuals.push_back(
1332             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1333 
1334         // Get argument type name.
1335         std::string typeName;
1336         if (isPipe)
1337           typeName = ty.getCanonicalType()
1338                          ->getAs<PipeType>()
1339                          ->getElementType()
1340                          .getAsString(Policy);
1341         else
1342           typeName = ty.getUnqualifiedType().getAsString(Policy);
1343 
1344         // Turn "unsigned type" to "utype"
1345         std::string::size_type pos = typeName.find("unsigned");
1346         if (ty.isCanonical() && pos != std::string::npos)
1347           typeName.erase(pos + 1, 8);
1348 
1349         std::string baseTypeName;
1350         if (isPipe)
1351           baseTypeName = ty.getCanonicalType()
1352                              ->getAs<PipeType>()
1353                              ->getElementType()
1354                              .getCanonicalType()
1355                              .getAsString(Policy);
1356         else
1357           baseTypeName =
1358               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1359 
1360         // Remove access qualifiers on images
1361         // (as they are inseparable from type in clang implementation,
1362         // but OpenCL spec provides a special query to get access qualifier
1363         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1364         if (ty->isImageType()) {
1365           removeImageAccessQualifier(typeName);
1366           removeImageAccessQualifier(baseTypeName);
1367         }
1368 
1369         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1370 
1371         // Turn "unsigned type" to "utype"
1372         pos = baseTypeName.find("unsigned");
1373         if (pos != std::string::npos)
1374           baseTypeName.erase(pos + 1, 8);
1375 
1376         argBaseTypeNames.push_back(
1377             llvm::MDString::get(VMContext, baseTypeName));
1378 
1379         if (isPipe)
1380           typeQuals = "pipe";
1381       }
1382 
1383       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1384 
1385       // Get image and pipe access qualifier:
1386       if (ty->isImageType() || ty->isPipeType()) {
1387         const Decl *PDecl = parm;
1388         if (auto *TD = dyn_cast<TypedefType>(ty))
1389           PDecl = TD->getDecl();
1390         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1391         if (A && A->isWriteOnly())
1392           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1393         else if (A && A->isReadWrite())
1394           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1395         else
1396           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1397       } else
1398         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1399 
1400       // Get argument name.
1401       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1402     }
1403 
1404   Fn->setMetadata("kernel_arg_addr_space",
1405                   llvm::MDNode::get(VMContext, addressQuals));
1406   Fn->setMetadata("kernel_arg_access_qual",
1407                   llvm::MDNode::get(VMContext, accessQuals));
1408   Fn->setMetadata("kernel_arg_type",
1409                   llvm::MDNode::get(VMContext, argTypeNames));
1410   Fn->setMetadata("kernel_arg_base_type",
1411                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1412   Fn->setMetadata("kernel_arg_type_qual",
1413                   llvm::MDNode::get(VMContext, argTypeQuals));
1414   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1415     Fn->setMetadata("kernel_arg_name",
1416                     llvm::MDNode::get(VMContext, argNames));
1417 }
1418 
1419 /// Determines whether the language options require us to model
1420 /// unwind exceptions.  We treat -fexceptions as mandating this
1421 /// except under the fragile ObjC ABI with only ObjC exceptions
1422 /// enabled.  This means, for example, that C with -fexceptions
1423 /// enables this.
1424 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1425   // If exceptions are completely disabled, obviously this is false.
1426   if (!LangOpts.Exceptions) return false;
1427 
1428   // If C++ exceptions are enabled, this is true.
1429   if (LangOpts.CXXExceptions) return true;
1430 
1431   // If ObjC exceptions are enabled, this depends on the ABI.
1432   if (LangOpts.ObjCExceptions) {
1433     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1434   }
1435 
1436   return true;
1437 }
1438 
1439 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1440                                                       const CXXMethodDecl *MD) {
1441   // Check that the type metadata can ever actually be used by a call.
1442   if (!CGM.getCodeGenOpts().LTOUnit ||
1443       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1444     return false;
1445 
1446   // Only functions whose address can be taken with a member function pointer
1447   // need this sort of type metadata.
1448   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1449          !isa<CXXDestructorDecl>(MD);
1450 }
1451 
1452 std::vector<const CXXRecordDecl *>
1453 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1454   llvm::SetVector<const CXXRecordDecl *> MostBases;
1455 
1456   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1457   CollectMostBases = [&](const CXXRecordDecl *RD) {
1458     if (RD->getNumBases() == 0)
1459       MostBases.insert(RD);
1460     for (const CXXBaseSpecifier &B : RD->bases())
1461       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1462   };
1463   CollectMostBases(RD);
1464   return MostBases.takeVector();
1465 }
1466 
1467 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1468                                                            llvm::Function *F) {
1469   llvm::AttrBuilder B;
1470 
1471   if (CodeGenOpts.UnwindTables)
1472     B.addAttribute(llvm::Attribute::UWTable);
1473 
1474   if (!hasUnwindExceptions(LangOpts))
1475     B.addAttribute(llvm::Attribute::NoUnwind);
1476 
1477   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1478     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1479       B.addAttribute(llvm::Attribute::StackProtect);
1480     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1481       B.addAttribute(llvm::Attribute::StackProtectStrong);
1482     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1483       B.addAttribute(llvm::Attribute::StackProtectReq);
1484   }
1485 
1486   if (!D) {
1487     // If we don't have a declaration to control inlining, the function isn't
1488     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1489     // disabled, mark the function as noinline.
1490     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1491         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1492       B.addAttribute(llvm::Attribute::NoInline);
1493 
1494     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1495     return;
1496   }
1497 
1498   // Track whether we need to add the optnone LLVM attribute,
1499   // starting with the default for this optimization level.
1500   bool ShouldAddOptNone =
1501       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1502   // We can't add optnone in the following cases, it won't pass the verifier.
1503   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1504   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1505   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1506 
1507   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1508     B.addAttribute(llvm::Attribute::OptimizeNone);
1509 
1510     // OptimizeNone implies noinline; we should not be inlining such functions.
1511     B.addAttribute(llvm::Attribute::NoInline);
1512     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1513            "OptimizeNone and AlwaysInline on same function!");
1514 
1515     // We still need to handle naked functions even though optnone subsumes
1516     // much of their semantics.
1517     if (D->hasAttr<NakedAttr>())
1518       B.addAttribute(llvm::Attribute::Naked);
1519 
1520     // OptimizeNone wins over OptimizeForSize and MinSize.
1521     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1522     F->removeFnAttr(llvm::Attribute::MinSize);
1523   } else if (D->hasAttr<NakedAttr>()) {
1524     // Naked implies noinline: we should not be inlining such functions.
1525     B.addAttribute(llvm::Attribute::Naked);
1526     B.addAttribute(llvm::Attribute::NoInline);
1527   } else if (D->hasAttr<NoDuplicateAttr>()) {
1528     B.addAttribute(llvm::Attribute::NoDuplicate);
1529   } else if (D->hasAttr<NoInlineAttr>()) {
1530     B.addAttribute(llvm::Attribute::NoInline);
1531   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1532              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1533     // (noinline wins over always_inline, and we can't specify both in IR)
1534     B.addAttribute(llvm::Attribute::AlwaysInline);
1535   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1536     // If we're not inlining, then force everything that isn't always_inline to
1537     // carry an explicit noinline attribute.
1538     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1539       B.addAttribute(llvm::Attribute::NoInline);
1540   } else {
1541     // Otherwise, propagate the inline hint attribute and potentially use its
1542     // absence to mark things as noinline.
1543     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1544       // Search function and template pattern redeclarations for inline.
1545       auto CheckForInline = [](const FunctionDecl *FD) {
1546         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1547           return Redecl->isInlineSpecified();
1548         };
1549         if (any_of(FD->redecls(), CheckRedeclForInline))
1550           return true;
1551         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1552         if (!Pattern)
1553           return false;
1554         return any_of(Pattern->redecls(), CheckRedeclForInline);
1555       };
1556       if (CheckForInline(FD)) {
1557         B.addAttribute(llvm::Attribute::InlineHint);
1558       } else if (CodeGenOpts.getInlining() ==
1559                      CodeGenOptions::OnlyHintInlining &&
1560                  !FD->isInlined() &&
1561                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1562         B.addAttribute(llvm::Attribute::NoInline);
1563       }
1564     }
1565   }
1566 
1567   // Add other optimization related attributes if we are optimizing this
1568   // function.
1569   if (!D->hasAttr<OptimizeNoneAttr>()) {
1570     if (D->hasAttr<ColdAttr>()) {
1571       if (!ShouldAddOptNone)
1572         B.addAttribute(llvm::Attribute::OptimizeForSize);
1573       B.addAttribute(llvm::Attribute::Cold);
1574     }
1575 
1576     if (D->hasAttr<MinSizeAttr>())
1577       B.addAttribute(llvm::Attribute::MinSize);
1578   }
1579 
1580   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1581 
1582   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1583   if (alignment)
1584     F->setAlignment(alignment);
1585 
1586   if (!D->hasAttr<AlignedAttr>())
1587     if (LangOpts.FunctionAlignment)
1588       F->setAlignment(1 << LangOpts.FunctionAlignment);
1589 
1590   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1591   // reserve a bit for differentiating between virtual and non-virtual member
1592   // functions. If the current target's C++ ABI requires this and this is a
1593   // member function, set its alignment accordingly.
1594   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1595     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1596       F->setAlignment(2);
1597   }
1598 
1599   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1600   if (CodeGenOpts.SanitizeCfiCrossDso)
1601     if (auto *FD = dyn_cast<FunctionDecl>(D))
1602       CreateFunctionTypeMetadataForIcall(FD, F);
1603 
1604   // Emit type metadata on member functions for member function pointer checks.
1605   // These are only ever necessary on definitions; we're guaranteed that the
1606   // definition will be present in the LTO unit as a result of LTO visibility.
1607   auto *MD = dyn_cast<CXXMethodDecl>(D);
1608   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1609     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1610       llvm::Metadata *Id =
1611           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1612               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1613       F->addTypeMetadata(0, Id);
1614     }
1615   }
1616 }
1617 
1618 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1619   const Decl *D = GD.getDecl();
1620   if (dyn_cast_or_null<NamedDecl>(D))
1621     setGVProperties(GV, GD);
1622   else
1623     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1624 
1625   if (D && D->hasAttr<UsedAttr>())
1626     addUsedGlobal(GV);
1627 
1628   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1629     const auto *VD = cast<VarDecl>(D);
1630     if (VD->getType().isConstQualified() &&
1631         VD->getStorageDuration() == SD_Static)
1632       addUsedGlobal(GV);
1633   }
1634 }
1635 
1636 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1637                                                 llvm::AttrBuilder &Attrs) {
1638   // Add target-cpu and target-features attributes to functions. If
1639   // we have a decl for the function and it has a target attribute then
1640   // parse that and add it to the feature set.
1641   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1642   std::vector<std::string> Features;
1643   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1644   FD = FD ? FD->getMostRecentDecl() : FD;
1645   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1646   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1647   bool AddedAttr = false;
1648   if (TD || SD) {
1649     llvm::StringMap<bool> FeatureMap;
1650     getFunctionFeatureMap(FeatureMap, GD);
1651 
1652     // Produce the canonical string for this set of features.
1653     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1654       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1655 
1656     // Now add the target-cpu and target-features to the function.
1657     // While we populated the feature map above, we still need to
1658     // get and parse the target attribute so we can get the cpu for
1659     // the function.
1660     if (TD) {
1661       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1662       if (ParsedAttr.Architecture != "" &&
1663           getTarget().isValidCPUName(ParsedAttr.Architecture))
1664         TargetCPU = ParsedAttr.Architecture;
1665     }
1666   } else {
1667     // Otherwise just add the existing target cpu and target features to the
1668     // function.
1669     Features = getTarget().getTargetOpts().Features;
1670   }
1671 
1672   if (TargetCPU != "") {
1673     Attrs.addAttribute("target-cpu", TargetCPU);
1674     AddedAttr = true;
1675   }
1676   if (!Features.empty()) {
1677     llvm::sort(Features);
1678     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1679     AddedAttr = true;
1680   }
1681 
1682   return AddedAttr;
1683 }
1684 
1685 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1686                                           llvm::GlobalObject *GO) {
1687   const Decl *D = GD.getDecl();
1688   SetCommonAttributes(GD, GO);
1689 
1690   if (D) {
1691     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1692       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1693         GV->addAttribute("bss-section", SA->getName());
1694       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1695         GV->addAttribute("data-section", SA->getName());
1696       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1697         GV->addAttribute("rodata-section", SA->getName());
1698     }
1699 
1700     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1701       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1702         if (!D->getAttr<SectionAttr>())
1703           F->addFnAttr("implicit-section-name", SA->getName());
1704 
1705       llvm::AttrBuilder Attrs;
1706       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1707         // We know that GetCPUAndFeaturesAttributes will always have the
1708         // newest set, since it has the newest possible FunctionDecl, so the
1709         // new ones should replace the old.
1710         F->removeFnAttr("target-cpu");
1711         F->removeFnAttr("target-features");
1712         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1713       }
1714     }
1715 
1716     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1717       GO->setSection(CSA->getName());
1718     else if (const auto *SA = D->getAttr<SectionAttr>())
1719       GO->setSection(SA->getName());
1720   }
1721 
1722   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1723 }
1724 
1725 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1726                                                   llvm::Function *F,
1727                                                   const CGFunctionInfo &FI) {
1728   const Decl *D = GD.getDecl();
1729   SetLLVMFunctionAttributes(GD, FI, F);
1730   SetLLVMFunctionAttributesForDefinition(D, F);
1731 
1732   F->setLinkage(llvm::Function::InternalLinkage);
1733 
1734   setNonAliasAttributes(GD, F);
1735 }
1736 
1737 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1738   // Set linkage and visibility in case we never see a definition.
1739   LinkageInfo LV = ND->getLinkageAndVisibility();
1740   // Don't set internal linkage on declarations.
1741   // "extern_weak" is overloaded in LLVM; we probably should have
1742   // separate linkage types for this.
1743   if (isExternallyVisible(LV.getLinkage()) &&
1744       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1745     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1746 }
1747 
1748 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1749                                                        llvm::Function *F) {
1750   // Only if we are checking indirect calls.
1751   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1752     return;
1753 
1754   // Non-static class methods are handled via vtable or member function pointer
1755   // checks elsewhere.
1756   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1757     return;
1758 
1759   // Additionally, if building with cross-DSO support...
1760   if (CodeGenOpts.SanitizeCfiCrossDso) {
1761     // Skip available_externally functions. They won't be codegen'ed in the
1762     // current module anyway.
1763     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1764       return;
1765   }
1766 
1767   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1768   F->addTypeMetadata(0, MD);
1769   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1770 
1771   // Emit a hash-based bit set entry for cross-DSO calls.
1772   if (CodeGenOpts.SanitizeCfiCrossDso)
1773     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1774       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1775 }
1776 
1777 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1778                                           bool IsIncompleteFunction,
1779                                           bool IsThunk) {
1780 
1781   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1782     // If this is an intrinsic function, set the function's attributes
1783     // to the intrinsic's attributes.
1784     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1785     return;
1786   }
1787 
1788   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1789 
1790   if (!IsIncompleteFunction)
1791     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1792 
1793   // Add the Returned attribute for "this", except for iOS 5 and earlier
1794   // where substantial code, including the libstdc++ dylib, was compiled with
1795   // GCC and does not actually return "this".
1796   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1797       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1798     assert(!F->arg_empty() &&
1799            F->arg_begin()->getType()
1800              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1801            "unexpected this return");
1802     F->addAttribute(1, llvm::Attribute::Returned);
1803   }
1804 
1805   // Only a few attributes are set on declarations; these may later be
1806   // overridden by a definition.
1807 
1808   setLinkageForGV(F, FD);
1809   setGVProperties(F, FD);
1810 
1811   // Setup target-specific attributes.
1812   if (!IsIncompleteFunction && F->isDeclaration())
1813     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1814 
1815   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1816     F->setSection(CSA->getName());
1817   else if (const auto *SA = FD->getAttr<SectionAttr>())
1818      F->setSection(SA->getName());
1819 
1820   if (FD->isReplaceableGlobalAllocationFunction()) {
1821     // A replaceable global allocation function does not act like a builtin by
1822     // default, only if it is invoked by a new-expression or delete-expression.
1823     F->addAttribute(llvm::AttributeList::FunctionIndex,
1824                     llvm::Attribute::NoBuiltin);
1825 
1826     // A sane operator new returns a non-aliasing pointer.
1827     // FIXME: Also add NonNull attribute to the return value
1828     // for the non-nothrow forms?
1829     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1830     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1831         (Kind == OO_New || Kind == OO_Array_New))
1832       F->addAttribute(llvm::AttributeList::ReturnIndex,
1833                       llvm::Attribute::NoAlias);
1834   }
1835 
1836   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1837     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1838   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1839     if (MD->isVirtual())
1840       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1841 
1842   // Don't emit entries for function declarations in the cross-DSO mode. This
1843   // is handled with better precision by the receiving DSO.
1844   if (!CodeGenOpts.SanitizeCfiCrossDso)
1845     CreateFunctionTypeMetadataForIcall(FD, F);
1846 
1847   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1848     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1849 
1850   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1851     // Annotate the callback behavior as metadata:
1852     //  - The callback callee (as argument number).
1853     //  - The callback payloads (as argument numbers).
1854     llvm::LLVMContext &Ctx = F->getContext();
1855     llvm::MDBuilder MDB(Ctx);
1856 
1857     // The payload indices are all but the first one in the encoding. The first
1858     // identifies the callback callee.
1859     int CalleeIdx = *CB->encoding_begin();
1860     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1861     F->addMetadata(llvm::LLVMContext::MD_callback,
1862                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1863                                                CalleeIdx, PayloadIndices,
1864                                                /* VarArgsArePassed */ false)}));
1865   }
1866 }
1867 
1868 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1869   assert(!GV->isDeclaration() &&
1870          "Only globals with definition can force usage.");
1871   LLVMUsed.emplace_back(GV);
1872 }
1873 
1874 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1875   assert(!GV->isDeclaration() &&
1876          "Only globals with definition can force usage.");
1877   LLVMCompilerUsed.emplace_back(GV);
1878 }
1879 
1880 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1881                      std::vector<llvm::WeakTrackingVH> &List) {
1882   // Don't create llvm.used if there is no need.
1883   if (List.empty())
1884     return;
1885 
1886   // Convert List to what ConstantArray needs.
1887   SmallVector<llvm::Constant*, 8> UsedArray;
1888   UsedArray.resize(List.size());
1889   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1890     UsedArray[i] =
1891         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1892             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1893   }
1894 
1895   if (UsedArray.empty())
1896     return;
1897   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1898 
1899   auto *GV = new llvm::GlobalVariable(
1900       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1901       llvm::ConstantArray::get(ATy, UsedArray), Name);
1902 
1903   GV->setSection("llvm.metadata");
1904 }
1905 
1906 void CodeGenModule::emitLLVMUsed() {
1907   emitUsed(*this, "llvm.used", LLVMUsed);
1908   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1909 }
1910 
1911 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1912   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1913   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1914 }
1915 
1916 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1917   llvm::SmallString<32> Opt;
1918   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1919   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1920   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1921 }
1922 
1923 void CodeGenModule::AddDependentLib(StringRef Lib) {
1924   auto &C = getLLVMContext();
1925   if (getTarget().getTriple().isOSBinFormatELF()) {
1926       ELFDependentLibraries.push_back(
1927         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1928     return;
1929   }
1930 
1931   llvm::SmallString<24> Opt;
1932   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1933   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1934   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1935 }
1936 
1937 /// Add link options implied by the given module, including modules
1938 /// it depends on, using a postorder walk.
1939 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1940                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1941                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1942   // Import this module's parent.
1943   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1944     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1945   }
1946 
1947   // Import this module's dependencies.
1948   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1949     if (Visited.insert(Mod->Imports[I - 1]).second)
1950       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1951   }
1952 
1953   // Add linker options to link against the libraries/frameworks
1954   // described by this module.
1955   llvm::LLVMContext &Context = CGM.getLLVMContext();
1956   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1957 
1958   // For modules that use export_as for linking, use that module
1959   // name instead.
1960   if (Mod->UseExportAsModuleLinkName)
1961     return;
1962 
1963   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1964     // Link against a framework.  Frameworks are currently Darwin only, so we
1965     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1966     if (Mod->LinkLibraries[I-1].IsFramework) {
1967       llvm::Metadata *Args[2] = {
1968           llvm::MDString::get(Context, "-framework"),
1969           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1970 
1971       Metadata.push_back(llvm::MDNode::get(Context, Args));
1972       continue;
1973     }
1974 
1975     // Link against a library.
1976     if (IsELF) {
1977       llvm::Metadata *Args[2] = {
1978           llvm::MDString::get(Context, "lib"),
1979           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1980       };
1981       Metadata.push_back(llvm::MDNode::get(Context, Args));
1982     } else {
1983       llvm::SmallString<24> Opt;
1984       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1985           Mod->LinkLibraries[I - 1].Library, Opt);
1986       auto *OptString = llvm::MDString::get(Context, Opt);
1987       Metadata.push_back(llvm::MDNode::get(Context, OptString));
1988     }
1989   }
1990 }
1991 
1992 void CodeGenModule::EmitModuleLinkOptions() {
1993   // Collect the set of all of the modules we want to visit to emit link
1994   // options, which is essentially the imported modules and all of their
1995   // non-explicit child modules.
1996   llvm::SetVector<clang::Module *> LinkModules;
1997   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1998   SmallVector<clang::Module *, 16> Stack;
1999 
2000   // Seed the stack with imported modules.
2001   for (Module *M : ImportedModules) {
2002     // Do not add any link flags when an implementation TU of a module imports
2003     // a header of that same module.
2004     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2005         !getLangOpts().isCompilingModule())
2006       continue;
2007     if (Visited.insert(M).second)
2008       Stack.push_back(M);
2009   }
2010 
2011   // Find all of the modules to import, making a little effort to prune
2012   // non-leaf modules.
2013   while (!Stack.empty()) {
2014     clang::Module *Mod = Stack.pop_back_val();
2015 
2016     bool AnyChildren = false;
2017 
2018     // Visit the submodules of this module.
2019     for (const auto &SM : Mod->submodules()) {
2020       // Skip explicit children; they need to be explicitly imported to be
2021       // linked against.
2022       if (SM->IsExplicit)
2023         continue;
2024 
2025       if (Visited.insert(SM).second) {
2026         Stack.push_back(SM);
2027         AnyChildren = true;
2028       }
2029     }
2030 
2031     // We didn't find any children, so add this module to the list of
2032     // modules to link against.
2033     if (!AnyChildren) {
2034       LinkModules.insert(Mod);
2035     }
2036   }
2037 
2038   // Add link options for all of the imported modules in reverse topological
2039   // order.  We don't do anything to try to order import link flags with respect
2040   // to linker options inserted by things like #pragma comment().
2041   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2042   Visited.clear();
2043   for (Module *M : LinkModules)
2044     if (Visited.insert(M).second)
2045       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2046   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2047   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2048 
2049   // Add the linker options metadata flag.
2050   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2051   for (auto *MD : LinkerOptionsMetadata)
2052     NMD->addOperand(MD);
2053 }
2054 
2055 void CodeGenModule::EmitDeferred() {
2056   // Emit deferred declare target declarations.
2057   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2058     getOpenMPRuntime().emitDeferredTargetDecls();
2059 
2060   // Emit code for any potentially referenced deferred decls.  Since a
2061   // previously unused static decl may become used during the generation of code
2062   // for a static function, iterate until no changes are made.
2063 
2064   if (!DeferredVTables.empty()) {
2065     EmitDeferredVTables();
2066 
2067     // Emitting a vtable doesn't directly cause more vtables to
2068     // become deferred, although it can cause functions to be
2069     // emitted that then need those vtables.
2070     assert(DeferredVTables.empty());
2071   }
2072 
2073   // Stop if we're out of both deferred vtables and deferred declarations.
2074   if (DeferredDeclsToEmit.empty())
2075     return;
2076 
2077   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2078   // work, it will not interfere with this.
2079   std::vector<GlobalDecl> CurDeclsToEmit;
2080   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2081 
2082   for (GlobalDecl &D : CurDeclsToEmit) {
2083     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2084     // to get GlobalValue with exactly the type we need, not something that
2085     // might had been created for another decl with the same mangled name but
2086     // different type.
2087     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2088         GetAddrOfGlobal(D, ForDefinition));
2089 
2090     // In case of different address spaces, we may still get a cast, even with
2091     // IsForDefinition equal to true. Query mangled names table to get
2092     // GlobalValue.
2093     if (!GV)
2094       GV = GetGlobalValue(getMangledName(D));
2095 
2096     // Make sure GetGlobalValue returned non-null.
2097     assert(GV);
2098 
2099     // Check to see if we've already emitted this.  This is necessary
2100     // for a couple of reasons: first, decls can end up in the
2101     // deferred-decls queue multiple times, and second, decls can end
2102     // up with definitions in unusual ways (e.g. by an extern inline
2103     // function acquiring a strong function redefinition).  Just
2104     // ignore these cases.
2105     if (!GV->isDeclaration())
2106       continue;
2107 
2108     // Otherwise, emit the definition and move on to the next one.
2109     EmitGlobalDefinition(D, GV);
2110 
2111     // If we found out that we need to emit more decls, do that recursively.
2112     // This has the advantage that the decls are emitted in a DFS and related
2113     // ones are close together, which is convenient for testing.
2114     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2115       EmitDeferred();
2116       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2117     }
2118   }
2119 }
2120 
2121 void CodeGenModule::EmitVTablesOpportunistically() {
2122   // Try to emit external vtables as available_externally if they have emitted
2123   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2124   // is not allowed to create new references to things that need to be emitted
2125   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2126 
2127   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2128          && "Only emit opportunistic vtables with optimizations");
2129 
2130   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2131     assert(getVTables().isVTableExternal(RD) &&
2132            "This queue should only contain external vtables");
2133     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2134       VTables.GenerateClassData(RD);
2135   }
2136   OpportunisticVTables.clear();
2137 }
2138 
2139 void CodeGenModule::EmitGlobalAnnotations() {
2140   if (Annotations.empty())
2141     return;
2142 
2143   // Create a new global variable for the ConstantStruct in the Module.
2144   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2145     Annotations[0]->getType(), Annotations.size()), Annotations);
2146   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2147                                       llvm::GlobalValue::AppendingLinkage,
2148                                       Array, "llvm.global.annotations");
2149   gv->setSection(AnnotationSection);
2150 }
2151 
2152 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2153   llvm::Constant *&AStr = AnnotationStrings[Str];
2154   if (AStr)
2155     return AStr;
2156 
2157   // Not found yet, create a new global.
2158   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2159   auto *gv =
2160       new llvm::GlobalVariable(getModule(), s->getType(), true,
2161                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2162   gv->setSection(AnnotationSection);
2163   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2164   AStr = gv;
2165   return gv;
2166 }
2167 
2168 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2169   SourceManager &SM = getContext().getSourceManager();
2170   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2171   if (PLoc.isValid())
2172     return EmitAnnotationString(PLoc.getFilename());
2173   return EmitAnnotationString(SM.getBufferName(Loc));
2174 }
2175 
2176 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2177   SourceManager &SM = getContext().getSourceManager();
2178   PresumedLoc PLoc = SM.getPresumedLoc(L);
2179   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2180     SM.getExpansionLineNumber(L);
2181   return llvm::ConstantInt::get(Int32Ty, LineNo);
2182 }
2183 
2184 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2185                                                 const AnnotateAttr *AA,
2186                                                 SourceLocation L) {
2187   // Get the globals for file name, annotation, and the line number.
2188   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2189                  *UnitGV = EmitAnnotationUnit(L),
2190                  *LineNoCst = EmitAnnotationLineNo(L);
2191 
2192   // Create the ConstantStruct for the global annotation.
2193   llvm::Constant *Fields[4] = {
2194     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
2195     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2196     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2197     LineNoCst
2198   };
2199   return llvm::ConstantStruct::getAnon(Fields);
2200 }
2201 
2202 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2203                                          llvm::GlobalValue *GV) {
2204   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2205   // Get the struct elements for these annotations.
2206   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2207     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2208 }
2209 
2210 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2211                                            llvm::Function *Fn,
2212                                            SourceLocation Loc) const {
2213   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2214   // Blacklist by function name.
2215   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2216     return true;
2217   // Blacklist by location.
2218   if (Loc.isValid())
2219     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2220   // If location is unknown, this may be a compiler-generated function. Assume
2221   // it's located in the main file.
2222   auto &SM = Context.getSourceManager();
2223   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2224     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2225   }
2226   return false;
2227 }
2228 
2229 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2230                                            SourceLocation Loc, QualType Ty,
2231                                            StringRef Category) const {
2232   // For now globals can be blacklisted only in ASan and KASan.
2233   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
2234       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2235        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
2236   if (!EnabledAsanMask)
2237     return false;
2238   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2239   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2240     return true;
2241   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2242     return true;
2243   // Check global type.
2244   if (!Ty.isNull()) {
2245     // Drill down the array types: if global variable of a fixed type is
2246     // blacklisted, we also don't instrument arrays of them.
2247     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2248       Ty = AT->getElementType();
2249     Ty = Ty.getCanonicalType().getUnqualifiedType();
2250     // We allow to blacklist only record types (classes, structs etc.)
2251     if (Ty->isRecordType()) {
2252       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2253       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2254         return true;
2255     }
2256   }
2257   return false;
2258 }
2259 
2260 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2261                                    StringRef Category) const {
2262   const auto &XRayFilter = getContext().getXRayFilter();
2263   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2264   auto Attr = ImbueAttr::NONE;
2265   if (Loc.isValid())
2266     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2267   if (Attr == ImbueAttr::NONE)
2268     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2269   switch (Attr) {
2270   case ImbueAttr::NONE:
2271     return false;
2272   case ImbueAttr::ALWAYS:
2273     Fn->addFnAttr("function-instrument", "xray-always");
2274     break;
2275   case ImbueAttr::ALWAYS_ARG1:
2276     Fn->addFnAttr("function-instrument", "xray-always");
2277     Fn->addFnAttr("xray-log-args", "1");
2278     break;
2279   case ImbueAttr::NEVER:
2280     Fn->addFnAttr("function-instrument", "xray-never");
2281     break;
2282   }
2283   return true;
2284 }
2285 
2286 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2287   // Never defer when EmitAllDecls is specified.
2288   if (LangOpts.EmitAllDecls)
2289     return true;
2290 
2291   if (CodeGenOpts.KeepStaticConsts) {
2292     const auto *VD = dyn_cast<VarDecl>(Global);
2293     if (VD && VD->getType().isConstQualified() &&
2294         VD->getStorageDuration() == SD_Static)
2295       return true;
2296   }
2297 
2298   return getContext().DeclMustBeEmitted(Global);
2299 }
2300 
2301 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2302   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2303     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2304       // Implicit template instantiations may change linkage if they are later
2305       // explicitly instantiated, so they should not be emitted eagerly.
2306       return false;
2307   if (const auto *VD = dyn_cast<VarDecl>(Global))
2308     if (Context.getInlineVariableDefinitionKind(VD) ==
2309         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2310       // A definition of an inline constexpr static data member may change
2311       // linkage later if it's redeclared outside the class.
2312       return false;
2313   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2314   // codegen for global variables, because they may be marked as threadprivate.
2315   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2316       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2317       !isTypeConstant(Global->getType(), false) &&
2318       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2319     return false;
2320 
2321   return true;
2322 }
2323 
2324 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2325     const CXXUuidofExpr* E) {
2326   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2327   // well-formed.
2328   StringRef Uuid = E->getUuidStr();
2329   std::string Name = "_GUID_" + Uuid.lower();
2330   std::replace(Name.begin(), Name.end(), '-', '_');
2331 
2332   // The UUID descriptor should be pointer aligned.
2333   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2334 
2335   // Look for an existing global.
2336   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2337     return ConstantAddress(GV, Alignment);
2338 
2339   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2340   assert(Init && "failed to initialize as constant");
2341 
2342   auto *GV = new llvm::GlobalVariable(
2343       getModule(), Init->getType(),
2344       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2345   if (supportsCOMDAT())
2346     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2347   setDSOLocal(GV);
2348   return ConstantAddress(GV, Alignment);
2349 }
2350 
2351 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2352   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2353   assert(AA && "No alias?");
2354 
2355   CharUnits Alignment = getContext().getDeclAlign(VD);
2356   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2357 
2358   // See if there is already something with the target's name in the module.
2359   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2360   if (Entry) {
2361     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2362     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2363     return ConstantAddress(Ptr, Alignment);
2364   }
2365 
2366   llvm::Constant *Aliasee;
2367   if (isa<llvm::FunctionType>(DeclTy))
2368     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2369                                       GlobalDecl(cast<FunctionDecl>(VD)),
2370                                       /*ForVTable=*/false);
2371   else
2372     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2373                                     llvm::PointerType::getUnqual(DeclTy),
2374                                     nullptr);
2375 
2376   auto *F = cast<llvm::GlobalValue>(Aliasee);
2377   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2378   WeakRefReferences.insert(F);
2379 
2380   return ConstantAddress(Aliasee, Alignment);
2381 }
2382 
2383 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2384   const auto *Global = cast<ValueDecl>(GD.getDecl());
2385 
2386   // Weak references don't produce any output by themselves.
2387   if (Global->hasAttr<WeakRefAttr>())
2388     return;
2389 
2390   // If this is an alias definition (which otherwise looks like a declaration)
2391   // emit it now.
2392   if (Global->hasAttr<AliasAttr>())
2393     return EmitAliasDefinition(GD);
2394 
2395   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2396   if (Global->hasAttr<IFuncAttr>())
2397     return emitIFuncDefinition(GD);
2398 
2399   // If this is a cpu_dispatch multiversion function, emit the resolver.
2400   if (Global->hasAttr<CPUDispatchAttr>())
2401     return emitCPUDispatchDefinition(GD);
2402 
2403   // If this is CUDA, be selective about which declarations we emit.
2404   if (LangOpts.CUDA) {
2405     if (LangOpts.CUDAIsDevice) {
2406       if (!Global->hasAttr<CUDADeviceAttr>() &&
2407           !Global->hasAttr<CUDAGlobalAttr>() &&
2408           !Global->hasAttr<CUDAConstantAttr>() &&
2409           !Global->hasAttr<CUDASharedAttr>())
2410         return;
2411     } else {
2412       // We need to emit host-side 'shadows' for all global
2413       // device-side variables because the CUDA runtime needs their
2414       // size and host-side address in order to provide access to
2415       // their device-side incarnations.
2416 
2417       // So device-only functions are the only things we skip.
2418       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2419           Global->hasAttr<CUDADeviceAttr>())
2420         return;
2421 
2422       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2423              "Expected Variable or Function");
2424     }
2425   }
2426 
2427   if (LangOpts.OpenMP) {
2428     // If this is OpenMP device, check if it is legal to emit this global
2429     // normally.
2430     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2431       return;
2432     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2433       if (MustBeEmitted(Global))
2434         EmitOMPDeclareReduction(DRD);
2435       return;
2436     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2437       if (MustBeEmitted(Global))
2438         EmitOMPDeclareMapper(DMD);
2439       return;
2440     }
2441   }
2442 
2443   // Ignore declarations, they will be emitted on their first use.
2444   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2445     // Forward declarations are emitted lazily on first use.
2446     if (!FD->doesThisDeclarationHaveABody()) {
2447       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2448         return;
2449 
2450       StringRef MangledName = getMangledName(GD);
2451 
2452       // Compute the function info and LLVM type.
2453       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2454       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2455 
2456       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2457                               /*DontDefer=*/false);
2458       return;
2459     }
2460   } else {
2461     const auto *VD = cast<VarDecl>(Global);
2462     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2463     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2464         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2465       if (LangOpts.OpenMP) {
2466         // Emit declaration of the must-be-emitted declare target variable.
2467         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2468                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2469           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2470             (void)GetAddrOfGlobalVar(VD);
2471           } else {
2472             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2473                    "link claue expected.");
2474             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2475           }
2476           return;
2477         }
2478       }
2479       // If this declaration may have caused an inline variable definition to
2480       // change linkage, make sure that it's emitted.
2481       if (Context.getInlineVariableDefinitionKind(VD) ==
2482           ASTContext::InlineVariableDefinitionKind::Strong)
2483         GetAddrOfGlobalVar(VD);
2484       return;
2485     }
2486   }
2487 
2488   // Defer code generation to first use when possible, e.g. if this is an inline
2489   // function. If the global must always be emitted, do it eagerly if possible
2490   // to benefit from cache locality.
2491   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2492     // Emit the definition if it can't be deferred.
2493     EmitGlobalDefinition(GD);
2494     return;
2495   }
2496 
2497   // If we're deferring emission of a C++ variable with an
2498   // initializer, remember the order in which it appeared in the file.
2499   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2500       cast<VarDecl>(Global)->hasInit()) {
2501     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2502     CXXGlobalInits.push_back(nullptr);
2503   }
2504 
2505   StringRef MangledName = getMangledName(GD);
2506   if (GetGlobalValue(MangledName) != nullptr) {
2507     // The value has already been used and should therefore be emitted.
2508     addDeferredDeclToEmit(GD);
2509   } else if (MustBeEmitted(Global)) {
2510     // The value must be emitted, but cannot be emitted eagerly.
2511     assert(!MayBeEmittedEagerly(Global));
2512     addDeferredDeclToEmit(GD);
2513   } else {
2514     // Otherwise, remember that we saw a deferred decl with this name.  The
2515     // first use of the mangled name will cause it to move into
2516     // DeferredDeclsToEmit.
2517     DeferredDecls[MangledName] = GD;
2518   }
2519 }
2520 
2521 // Check if T is a class type with a destructor that's not dllimport.
2522 static bool HasNonDllImportDtor(QualType T) {
2523   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2524     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2525       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2526         return true;
2527 
2528   return false;
2529 }
2530 
2531 namespace {
2532   struct FunctionIsDirectlyRecursive
2533       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2534     const StringRef Name;
2535     const Builtin::Context &BI;
2536     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2537         : Name(N), BI(C) {}
2538 
2539     bool VisitCallExpr(const CallExpr *E) {
2540       const FunctionDecl *FD = E->getDirectCallee();
2541       if (!FD)
2542         return false;
2543       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2544       if (Attr && Name == Attr->getLabel())
2545         return true;
2546       unsigned BuiltinID = FD->getBuiltinID();
2547       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2548         return false;
2549       StringRef BuiltinName = BI.getName(BuiltinID);
2550       if (BuiltinName.startswith("__builtin_") &&
2551           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2552         return true;
2553       }
2554       return false;
2555     }
2556 
2557     bool VisitStmt(const Stmt *S) {
2558       for (const Stmt *Child : S->children())
2559         if (Child && this->Visit(Child))
2560           return true;
2561       return false;
2562     }
2563   };
2564 
2565   // Make sure we're not referencing non-imported vars or functions.
2566   struct DLLImportFunctionVisitor
2567       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2568     bool SafeToInline = true;
2569 
2570     bool shouldVisitImplicitCode() const { return true; }
2571 
2572     bool VisitVarDecl(VarDecl *VD) {
2573       if (VD->getTLSKind()) {
2574         // A thread-local variable cannot be imported.
2575         SafeToInline = false;
2576         return SafeToInline;
2577       }
2578 
2579       // A variable definition might imply a destructor call.
2580       if (VD->isThisDeclarationADefinition())
2581         SafeToInline = !HasNonDllImportDtor(VD->getType());
2582 
2583       return SafeToInline;
2584     }
2585 
2586     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2587       if (const auto *D = E->getTemporary()->getDestructor())
2588         SafeToInline = D->hasAttr<DLLImportAttr>();
2589       return SafeToInline;
2590     }
2591 
2592     bool VisitDeclRefExpr(DeclRefExpr *E) {
2593       ValueDecl *VD = E->getDecl();
2594       if (isa<FunctionDecl>(VD))
2595         SafeToInline = VD->hasAttr<DLLImportAttr>();
2596       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2597         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2598       return SafeToInline;
2599     }
2600 
2601     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2602       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2603       return SafeToInline;
2604     }
2605 
2606     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2607       CXXMethodDecl *M = E->getMethodDecl();
2608       if (!M) {
2609         // Call through a pointer to member function. This is safe to inline.
2610         SafeToInline = true;
2611       } else {
2612         SafeToInline = M->hasAttr<DLLImportAttr>();
2613       }
2614       return SafeToInline;
2615     }
2616 
2617     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2618       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2619       return SafeToInline;
2620     }
2621 
2622     bool VisitCXXNewExpr(CXXNewExpr *E) {
2623       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2624       return SafeToInline;
2625     }
2626   };
2627 }
2628 
2629 // isTriviallyRecursive - Check if this function calls another
2630 // decl that, because of the asm attribute or the other decl being a builtin,
2631 // ends up pointing to itself.
2632 bool
2633 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2634   StringRef Name;
2635   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2636     // asm labels are a special kind of mangling we have to support.
2637     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2638     if (!Attr)
2639       return false;
2640     Name = Attr->getLabel();
2641   } else {
2642     Name = FD->getName();
2643   }
2644 
2645   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2646   const Stmt *Body = FD->getBody();
2647   return Body ? Walker.Visit(Body) : false;
2648 }
2649 
2650 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2651   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2652     return true;
2653   const auto *F = cast<FunctionDecl>(GD.getDecl());
2654   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2655     return false;
2656 
2657   if (F->hasAttr<DLLImportAttr>()) {
2658     // Check whether it would be safe to inline this dllimport function.
2659     DLLImportFunctionVisitor Visitor;
2660     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2661     if (!Visitor.SafeToInline)
2662       return false;
2663 
2664     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2665       // Implicit destructor invocations aren't captured in the AST, so the
2666       // check above can't see them. Check for them manually here.
2667       for (const Decl *Member : Dtor->getParent()->decls())
2668         if (isa<FieldDecl>(Member))
2669           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2670             return false;
2671       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2672         if (HasNonDllImportDtor(B.getType()))
2673           return false;
2674     }
2675   }
2676 
2677   // PR9614. Avoid cases where the source code is lying to us. An available
2678   // externally function should have an equivalent function somewhere else,
2679   // but a function that calls itself is clearly not equivalent to the real
2680   // implementation.
2681   // This happens in glibc's btowc and in some configure checks.
2682   return !isTriviallyRecursive(F);
2683 }
2684 
2685 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2686   return CodeGenOpts.OptimizationLevel > 0;
2687 }
2688 
2689 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2690                                                        llvm::GlobalValue *GV) {
2691   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2692 
2693   if (FD->isCPUSpecificMultiVersion()) {
2694     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2695     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2696       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2697     // Requires multiple emits.
2698   } else
2699     EmitGlobalFunctionDefinition(GD, GV);
2700 }
2701 
2702 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2703   const auto *D = cast<ValueDecl>(GD.getDecl());
2704 
2705   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2706                                  Context.getSourceManager(),
2707                                  "Generating code for declaration");
2708 
2709   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2710     // At -O0, don't generate IR for functions with available_externally
2711     // linkage.
2712     if (!shouldEmitFunction(GD))
2713       return;
2714 
2715     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2716       std::string Name;
2717       llvm::raw_string_ostream OS(Name);
2718       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2719                                /*Qualified=*/true);
2720       return Name;
2721     });
2722 
2723     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2724       // Make sure to emit the definition(s) before we emit the thunks.
2725       // This is necessary for the generation of certain thunks.
2726       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2727         ABI->emitCXXStructor(GD);
2728       else if (FD->isMultiVersion())
2729         EmitMultiVersionFunctionDefinition(GD, GV);
2730       else
2731         EmitGlobalFunctionDefinition(GD, GV);
2732 
2733       if (Method->isVirtual())
2734         getVTables().EmitThunks(GD);
2735 
2736       return;
2737     }
2738 
2739     if (FD->isMultiVersion())
2740       return EmitMultiVersionFunctionDefinition(GD, GV);
2741     return EmitGlobalFunctionDefinition(GD, GV);
2742   }
2743 
2744   if (const auto *VD = dyn_cast<VarDecl>(D))
2745     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2746 
2747   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2748 }
2749 
2750 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2751                                                       llvm::Function *NewFn);
2752 
2753 static unsigned
2754 TargetMVPriority(const TargetInfo &TI,
2755                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2756   unsigned Priority = 0;
2757   for (StringRef Feat : RO.Conditions.Features)
2758     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2759 
2760   if (!RO.Conditions.Architecture.empty())
2761     Priority = std::max(
2762         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2763   return Priority;
2764 }
2765 
2766 void CodeGenModule::emitMultiVersionFunctions() {
2767   for (GlobalDecl GD : MultiVersionFuncs) {
2768     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2769     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2770     getContext().forEachMultiversionedFunctionVersion(
2771         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2772           GlobalDecl CurGD{
2773               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2774           StringRef MangledName = getMangledName(CurGD);
2775           llvm::Constant *Func = GetGlobalValue(MangledName);
2776           if (!Func) {
2777             if (CurFD->isDefined()) {
2778               EmitGlobalFunctionDefinition(CurGD, nullptr);
2779               Func = GetGlobalValue(MangledName);
2780             } else {
2781               const CGFunctionInfo &FI =
2782                   getTypes().arrangeGlobalDeclaration(GD);
2783               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2784               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2785                                        /*DontDefer=*/false, ForDefinition);
2786             }
2787             assert(Func && "This should have just been created");
2788           }
2789 
2790           const auto *TA = CurFD->getAttr<TargetAttr>();
2791           llvm::SmallVector<StringRef, 8> Feats;
2792           TA->getAddedFeatures(Feats);
2793 
2794           Options.emplace_back(cast<llvm::Function>(Func),
2795                                TA->getArchitecture(), Feats);
2796         });
2797 
2798     llvm::Function *ResolverFunc;
2799     const TargetInfo &TI = getTarget();
2800 
2801     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2802       ResolverFunc = cast<llvm::Function>(
2803           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2804     else
2805       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2806 
2807     if (supportsCOMDAT())
2808       ResolverFunc->setComdat(
2809           getModule().getOrInsertComdat(ResolverFunc->getName()));
2810 
2811     llvm::stable_sort(
2812         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2813                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2814           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2815         });
2816     CodeGenFunction CGF(*this);
2817     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2818   }
2819 }
2820 
2821 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2822   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2823   assert(FD && "Not a FunctionDecl?");
2824   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2825   assert(DD && "Not a cpu_dispatch Function?");
2826   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2827 
2828   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2829     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2830     DeclTy = getTypes().GetFunctionType(FInfo);
2831   }
2832 
2833   StringRef ResolverName = getMangledName(GD);
2834 
2835   llvm::Type *ResolverType;
2836   GlobalDecl ResolverGD;
2837   if (getTarget().supportsIFunc())
2838     ResolverType = llvm::FunctionType::get(
2839         llvm::PointerType::get(DeclTy,
2840                                Context.getTargetAddressSpace(FD->getType())),
2841         false);
2842   else {
2843     ResolverType = DeclTy;
2844     ResolverGD = GD;
2845   }
2846 
2847   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2848       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2849 
2850   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2851   const TargetInfo &Target = getTarget();
2852   unsigned Index = 0;
2853   for (const IdentifierInfo *II : DD->cpus()) {
2854     // Get the name of the target function so we can look it up/create it.
2855     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2856                               getCPUSpecificMangling(*this, II->getName());
2857 
2858     llvm::Constant *Func = GetGlobalValue(MangledName);
2859 
2860     if (!Func) {
2861       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2862       if (ExistingDecl.getDecl() &&
2863           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2864         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2865         Func = GetGlobalValue(MangledName);
2866       } else {
2867         if (!ExistingDecl.getDecl())
2868           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2869 
2870       Func = GetOrCreateLLVMFunction(
2871           MangledName, DeclTy, ExistingDecl,
2872           /*ForVTable=*/false, /*DontDefer=*/true,
2873           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2874       }
2875     }
2876 
2877     llvm::SmallVector<StringRef, 32> Features;
2878     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2879     llvm::transform(Features, Features.begin(),
2880                     [](StringRef Str) { return Str.substr(1); });
2881     Features.erase(std::remove_if(
2882         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2883           return !Target.validateCpuSupports(Feat);
2884         }), Features.end());
2885     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2886     ++Index;
2887   }
2888 
2889   llvm::sort(
2890       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2891                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2892         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2893                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2894       });
2895 
2896   // If the list contains multiple 'default' versions, such as when it contains
2897   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2898   // always run on at least a 'pentium'). We do this by deleting the 'least
2899   // advanced' (read, lowest mangling letter).
2900   while (Options.size() > 1 &&
2901          CodeGenFunction::GetX86CpuSupportsMask(
2902              (Options.end() - 2)->Conditions.Features) == 0) {
2903     StringRef LHSName = (Options.end() - 2)->Function->getName();
2904     StringRef RHSName = (Options.end() - 1)->Function->getName();
2905     if (LHSName.compare(RHSName) < 0)
2906       Options.erase(Options.end() - 2);
2907     else
2908       Options.erase(Options.end() - 1);
2909   }
2910 
2911   CodeGenFunction CGF(*this);
2912   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2913 }
2914 
2915 /// If a dispatcher for the specified mangled name is not in the module, create
2916 /// and return an llvm Function with the specified type.
2917 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2918     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2919   std::string MangledName =
2920       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2921 
2922   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2923   // a separate resolver).
2924   std::string ResolverName = MangledName;
2925   if (getTarget().supportsIFunc())
2926     ResolverName += ".ifunc";
2927   else if (FD->isTargetMultiVersion())
2928     ResolverName += ".resolver";
2929 
2930   // If this already exists, just return that one.
2931   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2932     return ResolverGV;
2933 
2934   // Since this is the first time we've created this IFunc, make sure
2935   // that we put this multiversioned function into the list to be
2936   // replaced later if necessary (target multiversioning only).
2937   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2938     MultiVersionFuncs.push_back(GD);
2939 
2940   if (getTarget().supportsIFunc()) {
2941     llvm::Type *ResolverType = llvm::FunctionType::get(
2942         llvm::PointerType::get(
2943             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2944         false);
2945     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2946         MangledName + ".resolver", ResolverType, GlobalDecl{},
2947         /*ForVTable=*/false);
2948     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2949         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2950     GIF->setName(ResolverName);
2951     SetCommonAttributes(FD, GIF);
2952 
2953     return GIF;
2954   }
2955 
2956   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2957       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2958   assert(isa<llvm::GlobalValue>(Resolver) &&
2959          "Resolver should be created for the first time");
2960   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2961   return Resolver;
2962 }
2963 
2964 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2965 /// module, create and return an llvm Function with the specified type. If there
2966 /// is something in the module with the specified name, return it potentially
2967 /// bitcasted to the right type.
2968 ///
2969 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2970 /// to set the attributes on the function when it is first created.
2971 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2972     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2973     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2974     ForDefinition_t IsForDefinition) {
2975   const Decl *D = GD.getDecl();
2976 
2977   // Any attempts to use a MultiVersion function should result in retrieving
2978   // the iFunc instead. Name Mangling will handle the rest of the changes.
2979   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2980     // For the device mark the function as one that should be emitted.
2981     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2982         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2983         !DontDefer && !IsForDefinition) {
2984       if (const FunctionDecl *FDDef = FD->getDefinition()) {
2985         GlobalDecl GDDef;
2986         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2987           GDDef = GlobalDecl(CD, GD.getCtorType());
2988         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2989           GDDef = GlobalDecl(DD, GD.getDtorType());
2990         else
2991           GDDef = GlobalDecl(FDDef);
2992         EmitGlobal(GDDef);
2993       }
2994     }
2995 
2996     if (FD->isMultiVersion()) {
2997       const auto *TA = FD->getAttr<TargetAttr>();
2998       if (TA && TA->isDefaultVersion())
2999         UpdateMultiVersionNames(GD, FD);
3000       if (!IsForDefinition)
3001         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3002     }
3003   }
3004 
3005   // Lookup the entry, lazily creating it if necessary.
3006   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3007   if (Entry) {
3008     if (WeakRefReferences.erase(Entry)) {
3009       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3010       if (FD && !FD->hasAttr<WeakAttr>())
3011         Entry->setLinkage(llvm::Function::ExternalLinkage);
3012     }
3013 
3014     // Handle dropped DLL attributes.
3015     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3016       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3017       setDSOLocal(Entry);
3018     }
3019 
3020     // If there are two attempts to define the same mangled name, issue an
3021     // error.
3022     if (IsForDefinition && !Entry->isDeclaration()) {
3023       GlobalDecl OtherGD;
3024       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3025       // to make sure that we issue an error only once.
3026       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3027           (GD.getCanonicalDecl().getDecl() !=
3028            OtherGD.getCanonicalDecl().getDecl()) &&
3029           DiagnosedConflictingDefinitions.insert(GD).second) {
3030         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3031             << MangledName;
3032         getDiags().Report(OtherGD.getDecl()->getLocation(),
3033                           diag::note_previous_definition);
3034       }
3035     }
3036 
3037     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3038         (Entry->getType()->getElementType() == Ty)) {
3039       return Entry;
3040     }
3041 
3042     // Make sure the result is of the correct type.
3043     // (If function is requested for a definition, we always need to create a new
3044     // function, not just return a bitcast.)
3045     if (!IsForDefinition)
3046       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3047   }
3048 
3049   // This function doesn't have a complete type (for example, the return
3050   // type is an incomplete struct). Use a fake type instead, and make
3051   // sure not to try to set attributes.
3052   bool IsIncompleteFunction = false;
3053 
3054   llvm::FunctionType *FTy;
3055   if (isa<llvm::FunctionType>(Ty)) {
3056     FTy = cast<llvm::FunctionType>(Ty);
3057   } else {
3058     FTy = llvm::FunctionType::get(VoidTy, false);
3059     IsIncompleteFunction = true;
3060   }
3061 
3062   llvm::Function *F =
3063       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3064                              Entry ? StringRef() : MangledName, &getModule());
3065 
3066   // If we already created a function with the same mangled name (but different
3067   // type) before, take its name and add it to the list of functions to be
3068   // replaced with F at the end of CodeGen.
3069   //
3070   // This happens if there is a prototype for a function (e.g. "int f()") and
3071   // then a definition of a different type (e.g. "int f(int x)").
3072   if (Entry) {
3073     F->takeName(Entry);
3074 
3075     // This might be an implementation of a function without a prototype, in
3076     // which case, try to do special replacement of calls which match the new
3077     // prototype.  The really key thing here is that we also potentially drop
3078     // arguments from the call site so as to make a direct call, which makes the
3079     // inliner happier and suppresses a number of optimizer warnings (!) about
3080     // dropping arguments.
3081     if (!Entry->use_empty()) {
3082       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3083       Entry->removeDeadConstantUsers();
3084     }
3085 
3086     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3087         F, Entry->getType()->getElementType()->getPointerTo());
3088     addGlobalValReplacement(Entry, BC);
3089   }
3090 
3091   assert(F->getName() == MangledName && "name was uniqued!");
3092   if (D)
3093     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3094   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3095     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3096     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3097   }
3098 
3099   if (!DontDefer) {
3100     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3101     // each other bottoming out with the base dtor.  Therefore we emit non-base
3102     // dtors on usage, even if there is no dtor definition in the TU.
3103     if (D && isa<CXXDestructorDecl>(D) &&
3104         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3105                                            GD.getDtorType()))
3106       addDeferredDeclToEmit(GD);
3107 
3108     // This is the first use or definition of a mangled name.  If there is a
3109     // deferred decl with this name, remember that we need to emit it at the end
3110     // of the file.
3111     auto DDI = DeferredDecls.find(MangledName);
3112     if (DDI != DeferredDecls.end()) {
3113       // Move the potentially referenced deferred decl to the
3114       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3115       // don't need it anymore).
3116       addDeferredDeclToEmit(DDI->second);
3117       DeferredDecls.erase(DDI);
3118 
3119       // Otherwise, there are cases we have to worry about where we're
3120       // using a declaration for which we must emit a definition but where
3121       // we might not find a top-level definition:
3122       //   - member functions defined inline in their classes
3123       //   - friend functions defined inline in some class
3124       //   - special member functions with implicit definitions
3125       // If we ever change our AST traversal to walk into class methods,
3126       // this will be unnecessary.
3127       //
3128       // We also don't emit a definition for a function if it's going to be an
3129       // entry in a vtable, unless it's already marked as used.
3130     } else if (getLangOpts().CPlusPlus && D) {
3131       // Look for a declaration that's lexically in a record.
3132       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3133            FD = FD->getPreviousDecl()) {
3134         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3135           if (FD->doesThisDeclarationHaveABody()) {
3136             addDeferredDeclToEmit(GD.getWithDecl(FD));
3137             break;
3138           }
3139         }
3140       }
3141     }
3142   }
3143 
3144   // Make sure the result is of the requested type.
3145   if (!IsIncompleteFunction) {
3146     assert(F->getType()->getElementType() == Ty);
3147     return F;
3148   }
3149 
3150   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3151   return llvm::ConstantExpr::getBitCast(F, PTy);
3152 }
3153 
3154 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3155 /// non-null, then this function will use the specified type if it has to
3156 /// create it (this occurs when we see a definition of the function).
3157 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3158                                                  llvm::Type *Ty,
3159                                                  bool ForVTable,
3160                                                  bool DontDefer,
3161                                               ForDefinition_t IsForDefinition) {
3162   // If there was no specific requested type, just convert it now.
3163   if (!Ty) {
3164     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3165     Ty = getTypes().ConvertType(FD->getType());
3166   }
3167 
3168   // Devirtualized destructor calls may come through here instead of via
3169   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3170   // of the complete destructor when necessary.
3171   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3172     if (getTarget().getCXXABI().isMicrosoft() &&
3173         GD.getDtorType() == Dtor_Complete &&
3174         DD->getParent()->getNumVBases() == 0)
3175       GD = GlobalDecl(DD, Dtor_Base);
3176   }
3177 
3178   StringRef MangledName = getMangledName(GD);
3179   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3180                                  /*IsThunk=*/false, llvm::AttributeList(),
3181                                  IsForDefinition);
3182 }
3183 
3184 static const FunctionDecl *
3185 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3186   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3187   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3188 
3189   IdentifierInfo &CII = C.Idents.get(Name);
3190   for (const auto &Result : DC->lookup(&CII))
3191     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3192       return FD;
3193 
3194   if (!C.getLangOpts().CPlusPlus)
3195     return nullptr;
3196 
3197   // Demangle the premangled name from getTerminateFn()
3198   IdentifierInfo &CXXII =
3199       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3200           ? C.Idents.get("terminate")
3201           : C.Idents.get(Name);
3202 
3203   for (const auto &N : {"__cxxabiv1", "std"}) {
3204     IdentifierInfo &NS = C.Idents.get(N);
3205     for (const auto &Result : DC->lookup(&NS)) {
3206       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3207       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3208         for (const auto &Result : LSD->lookup(&NS))
3209           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3210             break;
3211 
3212       if (ND)
3213         for (const auto &Result : ND->lookup(&CXXII))
3214           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3215             return FD;
3216     }
3217   }
3218 
3219   return nullptr;
3220 }
3221 
3222 /// CreateRuntimeFunction - Create a new runtime function with the specified
3223 /// type and name.
3224 llvm::FunctionCallee
3225 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3226                                      llvm::AttributeList ExtraAttrs,
3227                                      bool Local) {
3228   llvm::Constant *C =
3229       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3230                               /*DontDefer=*/false, /*IsThunk=*/false,
3231                               ExtraAttrs);
3232 
3233   if (auto *F = dyn_cast<llvm::Function>(C)) {
3234     if (F->empty()) {
3235       F->setCallingConv(getRuntimeCC());
3236 
3237       // In Windows Itanium environments, try to mark runtime functions
3238       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3239       // will link their standard library statically or dynamically. Marking
3240       // functions imported when they are not imported can cause linker errors
3241       // and warnings.
3242       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3243           !getCodeGenOpts().LTOVisibilityPublicStd) {
3244         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3245         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3246           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3247           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3248         }
3249       }
3250       setDSOLocal(F);
3251     }
3252   }
3253 
3254   return {FTy, C};
3255 }
3256 
3257 /// isTypeConstant - Determine whether an object of this type can be emitted
3258 /// as a constant.
3259 ///
3260 /// If ExcludeCtor is true, the duration when the object's constructor runs
3261 /// will not be considered. The caller will need to verify that the object is
3262 /// not written to during its construction.
3263 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3264   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3265     return false;
3266 
3267   if (Context.getLangOpts().CPlusPlus) {
3268     if (const CXXRecordDecl *Record
3269           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3270       return ExcludeCtor && !Record->hasMutableFields() &&
3271              Record->hasTrivialDestructor();
3272   }
3273 
3274   return true;
3275 }
3276 
3277 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3278 /// create and return an llvm GlobalVariable with the specified type.  If there
3279 /// is something in the module with the specified name, return it potentially
3280 /// bitcasted to the right type.
3281 ///
3282 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3283 /// to set the attributes on the global when it is first created.
3284 ///
3285 /// If IsForDefinition is true, it is guaranteed that an actual global with
3286 /// type Ty will be returned, not conversion of a variable with the same
3287 /// mangled name but some other type.
3288 llvm::Constant *
3289 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3290                                      llvm::PointerType *Ty,
3291                                      const VarDecl *D,
3292                                      ForDefinition_t IsForDefinition) {
3293   // Lookup the entry, lazily creating it if necessary.
3294   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3295   if (Entry) {
3296     if (WeakRefReferences.erase(Entry)) {
3297       if (D && !D->hasAttr<WeakAttr>())
3298         Entry->setLinkage(llvm::Function::ExternalLinkage);
3299     }
3300 
3301     // Handle dropped DLL attributes.
3302     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3303       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3304 
3305     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3306       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3307 
3308     if (Entry->getType() == Ty)
3309       return Entry;
3310 
3311     // If there are two attempts to define the same mangled name, issue an
3312     // error.
3313     if (IsForDefinition && !Entry->isDeclaration()) {
3314       GlobalDecl OtherGD;
3315       const VarDecl *OtherD;
3316 
3317       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3318       // to make sure that we issue an error only once.
3319       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3320           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3321           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3322           OtherD->hasInit() &&
3323           DiagnosedConflictingDefinitions.insert(D).second) {
3324         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3325             << MangledName;
3326         getDiags().Report(OtherGD.getDecl()->getLocation(),
3327                           diag::note_previous_definition);
3328       }
3329     }
3330 
3331     // Make sure the result is of the correct type.
3332     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3333       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3334 
3335     // (If global is requested for a definition, we always need to create a new
3336     // global, not just return a bitcast.)
3337     if (!IsForDefinition)
3338       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3339   }
3340 
3341   auto AddrSpace = GetGlobalVarAddressSpace(D);
3342   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3343 
3344   auto *GV = new llvm::GlobalVariable(
3345       getModule(), Ty->getElementType(), false,
3346       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3347       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3348 
3349   // If we already created a global with the same mangled name (but different
3350   // type) before, take its name and remove it from its parent.
3351   if (Entry) {
3352     GV->takeName(Entry);
3353 
3354     if (!Entry->use_empty()) {
3355       llvm::Constant *NewPtrForOldDecl =
3356           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3357       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3358     }
3359 
3360     Entry->eraseFromParent();
3361   }
3362 
3363   // This is the first use or definition of a mangled name.  If there is a
3364   // deferred decl with this name, remember that we need to emit it at the end
3365   // of the file.
3366   auto DDI = DeferredDecls.find(MangledName);
3367   if (DDI != DeferredDecls.end()) {
3368     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3369     // list, and remove it from DeferredDecls (since we don't need it anymore).
3370     addDeferredDeclToEmit(DDI->second);
3371     DeferredDecls.erase(DDI);
3372   }
3373 
3374   // Handle things which are present even on external declarations.
3375   if (D) {
3376     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3377       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3378 
3379     // FIXME: This code is overly simple and should be merged with other global
3380     // handling.
3381     GV->setConstant(isTypeConstant(D->getType(), false));
3382 
3383     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3384 
3385     setLinkageForGV(GV, D);
3386 
3387     if (D->getTLSKind()) {
3388       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3389         CXXThreadLocals.push_back(D);
3390       setTLSMode(GV, *D);
3391     }
3392 
3393     setGVProperties(GV, D);
3394 
3395     // If required by the ABI, treat declarations of static data members with
3396     // inline initializers as definitions.
3397     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3398       EmitGlobalVarDefinition(D);
3399     }
3400 
3401     // Emit section information for extern variables.
3402     if (D->hasExternalStorage()) {
3403       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3404         GV->setSection(SA->getName());
3405     }
3406 
3407     // Handle XCore specific ABI requirements.
3408     if (getTriple().getArch() == llvm::Triple::xcore &&
3409         D->getLanguageLinkage() == CLanguageLinkage &&
3410         D->getType().isConstant(Context) &&
3411         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3412       GV->setSection(".cp.rodata");
3413 
3414     // Check if we a have a const declaration with an initializer, we may be
3415     // able to emit it as available_externally to expose it's value to the
3416     // optimizer.
3417     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3418         D->getType().isConstQualified() && !GV->hasInitializer() &&
3419         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3420       const auto *Record =
3421           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3422       bool HasMutableFields = Record && Record->hasMutableFields();
3423       if (!HasMutableFields) {
3424         const VarDecl *InitDecl;
3425         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3426         if (InitExpr) {
3427           ConstantEmitter emitter(*this);
3428           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3429           if (Init) {
3430             auto *InitType = Init->getType();
3431             if (GV->getType()->getElementType() != InitType) {
3432               // The type of the initializer does not match the definition.
3433               // This happens when an initializer has a different type from
3434               // the type of the global (because of padding at the end of a
3435               // structure for instance).
3436               GV->setName(StringRef());
3437               // Make a new global with the correct type, this is now guaranteed
3438               // to work.
3439               auto *NewGV = cast<llvm::GlobalVariable>(
3440                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3441 
3442               // Erase the old global, since it is no longer used.
3443               GV->eraseFromParent();
3444               GV = NewGV;
3445             } else {
3446               GV->setInitializer(Init);
3447               GV->setConstant(true);
3448               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3449             }
3450             emitter.finalize(GV);
3451           }
3452         }
3453       }
3454     }
3455   }
3456 
3457   LangAS ExpectedAS =
3458       D ? D->getType().getAddressSpace()
3459         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3460   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3461          Ty->getPointerAddressSpace());
3462   if (AddrSpace != ExpectedAS)
3463     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3464                                                        ExpectedAS, Ty);
3465 
3466   if (GV->isDeclaration())
3467     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3468 
3469   return GV;
3470 }
3471 
3472 llvm::Constant *
3473 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3474                                ForDefinition_t IsForDefinition) {
3475   const Decl *D = GD.getDecl();
3476   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3477     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3478                                 /*DontDefer=*/false, IsForDefinition);
3479   else if (isa<CXXMethodDecl>(D)) {
3480     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3481         cast<CXXMethodDecl>(D));
3482     auto Ty = getTypes().GetFunctionType(*FInfo);
3483     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3484                              IsForDefinition);
3485   } else if (isa<FunctionDecl>(D)) {
3486     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3487     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3488     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3489                              IsForDefinition);
3490   } else
3491     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3492                               IsForDefinition);
3493 }
3494 
3495 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3496     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3497     unsigned Alignment) {
3498   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3499   llvm::GlobalVariable *OldGV = nullptr;
3500 
3501   if (GV) {
3502     // Check if the variable has the right type.
3503     if (GV->getType()->getElementType() == Ty)
3504       return GV;
3505 
3506     // Because C++ name mangling, the only way we can end up with an already
3507     // existing global with the same name is if it has been declared extern "C".
3508     assert(GV->isDeclaration() && "Declaration has wrong type!");
3509     OldGV = GV;
3510   }
3511 
3512   // Create a new variable.
3513   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3514                                 Linkage, nullptr, Name);
3515 
3516   if (OldGV) {
3517     // Replace occurrences of the old variable if needed.
3518     GV->takeName(OldGV);
3519 
3520     if (!OldGV->use_empty()) {
3521       llvm::Constant *NewPtrForOldDecl =
3522       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3523       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3524     }
3525 
3526     OldGV->eraseFromParent();
3527   }
3528 
3529   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3530       !GV->hasAvailableExternallyLinkage())
3531     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3532 
3533   GV->setAlignment(Alignment);
3534 
3535   return GV;
3536 }
3537 
3538 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3539 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3540 /// then it will be created with the specified type instead of whatever the
3541 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3542 /// that an actual global with type Ty will be returned, not conversion of a
3543 /// variable with the same mangled name but some other type.
3544 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3545                                                   llvm::Type *Ty,
3546                                            ForDefinition_t IsForDefinition) {
3547   assert(D->hasGlobalStorage() && "Not a global variable");
3548   QualType ASTTy = D->getType();
3549   if (!Ty)
3550     Ty = getTypes().ConvertTypeForMem(ASTTy);
3551 
3552   llvm::PointerType *PTy =
3553     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3554 
3555   StringRef MangledName = getMangledName(D);
3556   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3557 }
3558 
3559 /// CreateRuntimeVariable - Create a new runtime global variable with the
3560 /// specified type and name.
3561 llvm::Constant *
3562 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3563                                      StringRef Name) {
3564   auto *Ret =
3565       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3566   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3567   return Ret;
3568 }
3569 
3570 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3571   assert(!D->getInit() && "Cannot emit definite definitions here!");
3572 
3573   StringRef MangledName = getMangledName(D);
3574   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3575 
3576   // We already have a definition, not declaration, with the same mangled name.
3577   // Emitting of declaration is not required (and actually overwrites emitted
3578   // definition).
3579   if (GV && !GV->isDeclaration())
3580     return;
3581 
3582   // If we have not seen a reference to this variable yet, place it into the
3583   // deferred declarations table to be emitted if needed later.
3584   if (!MustBeEmitted(D) && !GV) {
3585       DeferredDecls[MangledName] = D;
3586       return;
3587   }
3588 
3589   // The tentative definition is the only definition.
3590   EmitGlobalVarDefinition(D);
3591 }
3592 
3593 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3594   return Context.toCharUnitsFromBits(
3595       getDataLayout().getTypeStoreSizeInBits(Ty));
3596 }
3597 
3598 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3599   LangAS AddrSpace = LangAS::Default;
3600   if (LangOpts.OpenCL) {
3601     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3602     assert(AddrSpace == LangAS::opencl_global ||
3603            AddrSpace == LangAS::opencl_constant ||
3604            AddrSpace == LangAS::opencl_local ||
3605            AddrSpace >= LangAS::FirstTargetAddressSpace);
3606     return AddrSpace;
3607   }
3608 
3609   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3610     if (D && D->hasAttr<CUDAConstantAttr>())
3611       return LangAS::cuda_constant;
3612     else if (D && D->hasAttr<CUDASharedAttr>())
3613       return LangAS::cuda_shared;
3614     else if (D && D->hasAttr<CUDADeviceAttr>())
3615       return LangAS::cuda_device;
3616     else if (D && D->getType().isConstQualified())
3617       return LangAS::cuda_constant;
3618     else
3619       return LangAS::cuda_device;
3620   }
3621 
3622   if (LangOpts.OpenMP) {
3623     LangAS AS;
3624     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3625       return AS;
3626   }
3627   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3628 }
3629 
3630 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3631   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3632   if (LangOpts.OpenCL)
3633     return LangAS::opencl_constant;
3634   if (auto AS = getTarget().getConstantAddressSpace())
3635     return AS.getValue();
3636   return LangAS::Default;
3637 }
3638 
3639 // In address space agnostic languages, string literals are in default address
3640 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3641 // emitted in constant address space in LLVM IR. To be consistent with other
3642 // parts of AST, string literal global variables in constant address space
3643 // need to be casted to default address space before being put into address
3644 // map and referenced by other part of CodeGen.
3645 // In OpenCL, string literals are in constant address space in AST, therefore
3646 // they should not be casted to default address space.
3647 static llvm::Constant *
3648 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3649                                        llvm::GlobalVariable *GV) {
3650   llvm::Constant *Cast = GV;
3651   if (!CGM.getLangOpts().OpenCL) {
3652     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3653       if (AS != LangAS::Default)
3654         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3655             CGM, GV, AS.getValue(), LangAS::Default,
3656             GV->getValueType()->getPointerTo(
3657                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3658     }
3659   }
3660   return Cast;
3661 }
3662 
3663 template<typename SomeDecl>
3664 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3665                                                llvm::GlobalValue *GV) {
3666   if (!getLangOpts().CPlusPlus)
3667     return;
3668 
3669   // Must have 'used' attribute, or else inline assembly can't rely on
3670   // the name existing.
3671   if (!D->template hasAttr<UsedAttr>())
3672     return;
3673 
3674   // Must have internal linkage and an ordinary name.
3675   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3676     return;
3677 
3678   // Must be in an extern "C" context. Entities declared directly within
3679   // a record are not extern "C" even if the record is in such a context.
3680   const SomeDecl *First = D->getFirstDecl();
3681   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3682     return;
3683 
3684   // OK, this is an internal linkage entity inside an extern "C" linkage
3685   // specification. Make a note of that so we can give it the "expected"
3686   // mangled name if nothing else is using that name.
3687   std::pair<StaticExternCMap::iterator, bool> R =
3688       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3689 
3690   // If we have multiple internal linkage entities with the same name
3691   // in extern "C" regions, none of them gets that name.
3692   if (!R.second)
3693     R.first->second = nullptr;
3694 }
3695 
3696 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3697   if (!CGM.supportsCOMDAT())
3698     return false;
3699 
3700   if (D.hasAttr<SelectAnyAttr>())
3701     return true;
3702 
3703   GVALinkage Linkage;
3704   if (auto *VD = dyn_cast<VarDecl>(&D))
3705     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3706   else
3707     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3708 
3709   switch (Linkage) {
3710   case GVA_Internal:
3711   case GVA_AvailableExternally:
3712   case GVA_StrongExternal:
3713     return false;
3714   case GVA_DiscardableODR:
3715   case GVA_StrongODR:
3716     return true;
3717   }
3718   llvm_unreachable("No such linkage");
3719 }
3720 
3721 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3722                                           llvm::GlobalObject &GO) {
3723   if (!shouldBeInCOMDAT(*this, D))
3724     return;
3725   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3726 }
3727 
3728 /// Pass IsTentative as true if you want to create a tentative definition.
3729 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3730                                             bool IsTentative) {
3731   // OpenCL global variables of sampler type are translated to function calls,
3732   // therefore no need to be translated.
3733   QualType ASTTy = D->getType();
3734   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3735     return;
3736 
3737   // If this is OpenMP device, check if it is legal to emit this global
3738   // normally.
3739   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3740       OpenMPRuntime->emitTargetGlobalVariable(D))
3741     return;
3742 
3743   llvm::Constant *Init = nullptr;
3744   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3745   bool NeedsGlobalCtor = false;
3746   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3747 
3748   const VarDecl *InitDecl;
3749   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3750 
3751   Optional<ConstantEmitter> emitter;
3752 
3753   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3754   // as part of their declaration."  Sema has already checked for
3755   // error cases, so we just need to set Init to UndefValue.
3756   bool IsCUDASharedVar =
3757       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3758   // Shadows of initialized device-side global variables are also left
3759   // undefined.
3760   bool IsCUDAShadowVar =
3761       !getLangOpts().CUDAIsDevice &&
3762       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3763        D->hasAttr<CUDASharedAttr>());
3764   if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar))
3765     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3766   else if (!InitExpr) {
3767     // This is a tentative definition; tentative definitions are
3768     // implicitly initialized with { 0 }.
3769     //
3770     // Note that tentative definitions are only emitted at the end of
3771     // a translation unit, so they should never have incomplete
3772     // type. In addition, EmitTentativeDefinition makes sure that we
3773     // never attempt to emit a tentative definition if a real one
3774     // exists. A use may still exists, however, so we still may need
3775     // to do a RAUW.
3776     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3777     Init = EmitNullConstant(D->getType());
3778   } else {
3779     initializedGlobalDecl = GlobalDecl(D);
3780     emitter.emplace(*this);
3781     Init = emitter->tryEmitForInitializer(*InitDecl);
3782 
3783     if (!Init) {
3784       QualType T = InitExpr->getType();
3785       if (D->getType()->isReferenceType())
3786         T = D->getType();
3787 
3788       if (getLangOpts().CPlusPlus) {
3789         Init = EmitNullConstant(T);
3790         NeedsGlobalCtor = true;
3791       } else {
3792         ErrorUnsupported(D, "static initializer");
3793         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3794       }
3795     } else {
3796       // We don't need an initializer, so remove the entry for the delayed
3797       // initializer position (just in case this entry was delayed) if we
3798       // also don't need to register a destructor.
3799       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3800         DelayedCXXInitPosition.erase(D);
3801     }
3802   }
3803 
3804   llvm::Type* InitType = Init->getType();
3805   llvm::Constant *Entry =
3806       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3807 
3808   // Strip off a bitcast if we got one back.
3809   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3810     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3811            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3812            // All zero index gep.
3813            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3814     Entry = CE->getOperand(0);
3815   }
3816 
3817   // Entry is now either a Function or GlobalVariable.
3818   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3819 
3820   // We have a definition after a declaration with the wrong type.
3821   // We must make a new GlobalVariable* and update everything that used OldGV
3822   // (a declaration or tentative definition) with the new GlobalVariable*
3823   // (which will be a definition).
3824   //
3825   // This happens if there is a prototype for a global (e.g.
3826   // "extern int x[];") and then a definition of a different type (e.g.
3827   // "int x[10];"). This also happens when an initializer has a different type
3828   // from the type of the global (this happens with unions).
3829   if (!GV || GV->getType()->getElementType() != InitType ||
3830       GV->getType()->getAddressSpace() !=
3831           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3832 
3833     // Move the old entry aside so that we'll create a new one.
3834     Entry->setName(StringRef());
3835 
3836     // Make a new global with the correct type, this is now guaranteed to work.
3837     GV = cast<llvm::GlobalVariable>(
3838         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3839 
3840     // Replace all uses of the old global with the new global
3841     llvm::Constant *NewPtrForOldDecl =
3842         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3843     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3844 
3845     // Erase the old global, since it is no longer used.
3846     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3847   }
3848 
3849   MaybeHandleStaticInExternC(D, GV);
3850 
3851   if (D->hasAttr<AnnotateAttr>())
3852     AddGlobalAnnotations(D, GV);
3853 
3854   // Set the llvm linkage type as appropriate.
3855   llvm::GlobalValue::LinkageTypes Linkage =
3856       getLLVMLinkageVarDefinition(D, GV->isConstant());
3857 
3858   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3859   // the device. [...]"
3860   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3861   // __device__, declares a variable that: [...]
3862   // Is accessible from all the threads within the grid and from the host
3863   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3864   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3865   if (GV && LangOpts.CUDA) {
3866     if (LangOpts.CUDAIsDevice) {
3867       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3868         GV->setExternallyInitialized(true);
3869     } else {
3870       // Host-side shadows of external declarations of device-side
3871       // global variables become internal definitions. These have to
3872       // be internal in order to prevent name conflicts with global
3873       // host variables with the same name in a different TUs.
3874       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3875         Linkage = llvm::GlobalValue::InternalLinkage;
3876 
3877         // Shadow variables and their properties must be registered
3878         // with CUDA runtime.
3879         unsigned Flags = 0;
3880         if (!D->hasDefinition())
3881           Flags |= CGCUDARuntime::ExternDeviceVar;
3882         if (D->hasAttr<CUDAConstantAttr>())
3883           Flags |= CGCUDARuntime::ConstantDeviceVar;
3884         // Extern global variables will be registered in the TU where they are
3885         // defined.
3886         if (!D->hasExternalStorage())
3887           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
3888       } else if (D->hasAttr<CUDASharedAttr>())
3889         // __shared__ variables are odd. Shadows do get created, but
3890         // they are not registered with the CUDA runtime, so they
3891         // can't really be used to access their device-side
3892         // counterparts. It's not clear yet whether it's nvcc's bug or
3893         // a feature, but we've got to do the same for compatibility.
3894         Linkage = llvm::GlobalValue::InternalLinkage;
3895     }
3896   }
3897 
3898   GV->setInitializer(Init);
3899   if (emitter) emitter->finalize(GV);
3900 
3901   // If it is safe to mark the global 'constant', do so now.
3902   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3903                   isTypeConstant(D->getType(), true));
3904 
3905   // If it is in a read-only section, mark it 'constant'.
3906   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3907     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3908     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3909       GV->setConstant(true);
3910   }
3911 
3912   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3913 
3914 
3915   // On Darwin, if the normal linkage of a C++ thread_local variable is
3916   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3917   // copies within a linkage unit; otherwise, the backing variable has
3918   // internal linkage and all accesses should just be calls to the
3919   // Itanium-specified entry point, which has the normal linkage of the
3920   // variable. This is to preserve the ability to change the implementation
3921   // behind the scenes.
3922   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3923       Context.getTargetInfo().getTriple().isOSDarwin() &&
3924       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3925       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3926     Linkage = llvm::GlobalValue::InternalLinkage;
3927 
3928   GV->setLinkage(Linkage);
3929   if (D->hasAttr<DLLImportAttr>())
3930     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3931   else if (D->hasAttr<DLLExportAttr>())
3932     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3933   else
3934     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3935 
3936   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3937     // common vars aren't constant even if declared const.
3938     GV->setConstant(false);
3939     // Tentative definition of global variables may be initialized with
3940     // non-zero null pointers. In this case they should have weak linkage
3941     // since common linkage must have zero initializer and must not have
3942     // explicit section therefore cannot have non-zero initial value.
3943     if (!GV->getInitializer()->isNullValue())
3944       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3945   }
3946 
3947   setNonAliasAttributes(D, GV);
3948 
3949   if (D->getTLSKind() && !GV->isThreadLocal()) {
3950     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3951       CXXThreadLocals.push_back(D);
3952     setTLSMode(GV, *D);
3953   }
3954 
3955   maybeSetTrivialComdat(*D, *GV);
3956 
3957   // Emit the initializer function if necessary.
3958   if (NeedsGlobalCtor || NeedsGlobalDtor)
3959     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3960 
3961   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3962 
3963   // Emit global variable debug information.
3964   if (CGDebugInfo *DI = getModuleDebugInfo())
3965     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3966       DI->EmitGlobalVariable(GV, D);
3967 }
3968 
3969 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3970                                       CodeGenModule &CGM, const VarDecl *D,
3971                                       bool NoCommon) {
3972   // Don't give variables common linkage if -fno-common was specified unless it
3973   // was overridden by a NoCommon attribute.
3974   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3975     return true;
3976 
3977   // C11 6.9.2/2:
3978   //   A declaration of an identifier for an object that has file scope without
3979   //   an initializer, and without a storage-class specifier or with the
3980   //   storage-class specifier static, constitutes a tentative definition.
3981   if (D->getInit() || D->hasExternalStorage())
3982     return true;
3983 
3984   // A variable cannot be both common and exist in a section.
3985   if (D->hasAttr<SectionAttr>())
3986     return true;
3987 
3988   // A variable cannot be both common and exist in a section.
3989   // We don't try to determine which is the right section in the front-end.
3990   // If no specialized section name is applicable, it will resort to default.
3991   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3992       D->hasAttr<PragmaClangDataSectionAttr>() ||
3993       D->hasAttr<PragmaClangRodataSectionAttr>())
3994     return true;
3995 
3996   // Thread local vars aren't considered common linkage.
3997   if (D->getTLSKind())
3998     return true;
3999 
4000   // Tentative definitions marked with WeakImportAttr are true definitions.
4001   if (D->hasAttr<WeakImportAttr>())
4002     return true;
4003 
4004   // A variable cannot be both common and exist in a comdat.
4005   if (shouldBeInCOMDAT(CGM, *D))
4006     return true;
4007 
4008   // Declarations with a required alignment do not have common linkage in MSVC
4009   // mode.
4010   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4011     if (D->hasAttr<AlignedAttr>())
4012       return true;
4013     QualType VarType = D->getType();
4014     if (Context.isAlignmentRequired(VarType))
4015       return true;
4016 
4017     if (const auto *RT = VarType->getAs<RecordType>()) {
4018       const RecordDecl *RD = RT->getDecl();
4019       for (const FieldDecl *FD : RD->fields()) {
4020         if (FD->isBitField())
4021           continue;
4022         if (FD->hasAttr<AlignedAttr>())
4023           return true;
4024         if (Context.isAlignmentRequired(FD->getType()))
4025           return true;
4026       }
4027     }
4028   }
4029 
4030   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4031   // common symbols, so symbols with greater alignment requirements cannot be
4032   // common.
4033   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4034   // alignments for common symbols via the aligncomm directive, so this
4035   // restriction only applies to MSVC environments.
4036   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4037       Context.getTypeAlignIfKnown(D->getType()) >
4038           Context.toBits(CharUnits::fromQuantity(32)))
4039     return true;
4040 
4041   return false;
4042 }
4043 
4044 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4045     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4046   if (Linkage == GVA_Internal)
4047     return llvm::Function::InternalLinkage;
4048 
4049   if (D->hasAttr<WeakAttr>()) {
4050     if (IsConstantVariable)
4051       return llvm::GlobalVariable::WeakODRLinkage;
4052     else
4053       return llvm::GlobalVariable::WeakAnyLinkage;
4054   }
4055 
4056   if (const auto *FD = D->getAsFunction())
4057     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4058       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4059 
4060   // We are guaranteed to have a strong definition somewhere else,
4061   // so we can use available_externally linkage.
4062   if (Linkage == GVA_AvailableExternally)
4063     return llvm::GlobalValue::AvailableExternallyLinkage;
4064 
4065   // Note that Apple's kernel linker doesn't support symbol
4066   // coalescing, so we need to avoid linkonce and weak linkages there.
4067   // Normally, this means we just map to internal, but for explicit
4068   // instantiations we'll map to external.
4069 
4070   // In C++, the compiler has to emit a definition in every translation unit
4071   // that references the function.  We should use linkonce_odr because
4072   // a) if all references in this translation unit are optimized away, we
4073   // don't need to codegen it.  b) if the function persists, it needs to be
4074   // merged with other definitions. c) C++ has the ODR, so we know the
4075   // definition is dependable.
4076   if (Linkage == GVA_DiscardableODR)
4077     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4078                                             : llvm::Function::InternalLinkage;
4079 
4080   // An explicit instantiation of a template has weak linkage, since
4081   // explicit instantiations can occur in multiple translation units
4082   // and must all be equivalent. However, we are not allowed to
4083   // throw away these explicit instantiations.
4084   //
4085   // We don't currently support CUDA device code spread out across multiple TUs,
4086   // so say that CUDA templates are either external (for kernels) or internal.
4087   // This lets llvm perform aggressive inter-procedural optimizations.
4088   if (Linkage == GVA_StrongODR) {
4089     if (Context.getLangOpts().AppleKext)
4090       return llvm::Function::ExternalLinkage;
4091     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4092       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4093                                           : llvm::Function::InternalLinkage;
4094     return llvm::Function::WeakODRLinkage;
4095   }
4096 
4097   // C++ doesn't have tentative definitions and thus cannot have common
4098   // linkage.
4099   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4100       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4101                                  CodeGenOpts.NoCommon))
4102     return llvm::GlobalVariable::CommonLinkage;
4103 
4104   // selectany symbols are externally visible, so use weak instead of
4105   // linkonce.  MSVC optimizes away references to const selectany globals, so
4106   // all definitions should be the same and ODR linkage should be used.
4107   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4108   if (D->hasAttr<SelectAnyAttr>())
4109     return llvm::GlobalVariable::WeakODRLinkage;
4110 
4111   // Otherwise, we have strong external linkage.
4112   assert(Linkage == GVA_StrongExternal);
4113   return llvm::GlobalVariable::ExternalLinkage;
4114 }
4115 
4116 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4117     const VarDecl *VD, bool IsConstant) {
4118   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4119   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4120 }
4121 
4122 /// Replace the uses of a function that was declared with a non-proto type.
4123 /// We want to silently drop extra arguments from call sites
4124 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4125                                           llvm::Function *newFn) {
4126   // Fast path.
4127   if (old->use_empty()) return;
4128 
4129   llvm::Type *newRetTy = newFn->getReturnType();
4130   SmallVector<llvm::Value*, 4> newArgs;
4131   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4132 
4133   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4134          ui != ue; ) {
4135     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4136     llvm::User *user = use->getUser();
4137 
4138     // Recognize and replace uses of bitcasts.  Most calls to
4139     // unprototyped functions will use bitcasts.
4140     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4141       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4142         replaceUsesOfNonProtoConstant(bitcast, newFn);
4143       continue;
4144     }
4145 
4146     // Recognize calls to the function.
4147     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4148     if (!callSite) continue;
4149     if (!callSite->isCallee(&*use))
4150       continue;
4151 
4152     // If the return types don't match exactly, then we can't
4153     // transform this call unless it's dead.
4154     if (callSite->getType() != newRetTy && !callSite->use_empty())
4155       continue;
4156 
4157     // Get the call site's attribute list.
4158     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4159     llvm::AttributeList oldAttrs = callSite->getAttributes();
4160 
4161     // If the function was passed too few arguments, don't transform.
4162     unsigned newNumArgs = newFn->arg_size();
4163     if (callSite->arg_size() < newNumArgs)
4164       continue;
4165 
4166     // If extra arguments were passed, we silently drop them.
4167     // If any of the types mismatch, we don't transform.
4168     unsigned argNo = 0;
4169     bool dontTransform = false;
4170     for (llvm::Argument &A : newFn->args()) {
4171       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4172         dontTransform = true;
4173         break;
4174       }
4175 
4176       // Add any parameter attributes.
4177       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4178       argNo++;
4179     }
4180     if (dontTransform)
4181       continue;
4182 
4183     // Okay, we can transform this.  Create the new call instruction and copy
4184     // over the required information.
4185     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4186 
4187     // Copy over any operand bundles.
4188     callSite->getOperandBundlesAsDefs(newBundles);
4189 
4190     llvm::CallBase *newCall;
4191     if (dyn_cast<llvm::CallInst>(callSite)) {
4192       newCall =
4193           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4194     } else {
4195       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4196       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4197                                          oldInvoke->getUnwindDest(), newArgs,
4198                                          newBundles, "", callSite);
4199     }
4200     newArgs.clear(); // for the next iteration
4201 
4202     if (!newCall->getType()->isVoidTy())
4203       newCall->takeName(callSite);
4204     newCall->setAttributes(llvm::AttributeList::get(
4205         newFn->getContext(), oldAttrs.getFnAttributes(),
4206         oldAttrs.getRetAttributes(), newArgAttrs));
4207     newCall->setCallingConv(callSite->getCallingConv());
4208 
4209     // Finally, remove the old call, replacing any uses with the new one.
4210     if (!callSite->use_empty())
4211       callSite->replaceAllUsesWith(newCall);
4212 
4213     // Copy debug location attached to CI.
4214     if (callSite->getDebugLoc())
4215       newCall->setDebugLoc(callSite->getDebugLoc());
4216 
4217     callSite->eraseFromParent();
4218   }
4219 }
4220 
4221 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4222 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4223 /// existing call uses of the old function in the module, this adjusts them to
4224 /// call the new function directly.
4225 ///
4226 /// This is not just a cleanup: the always_inline pass requires direct calls to
4227 /// functions to be able to inline them.  If there is a bitcast in the way, it
4228 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4229 /// run at -O0.
4230 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4231                                                       llvm::Function *NewFn) {
4232   // If we're redefining a global as a function, don't transform it.
4233   if (!isa<llvm::Function>(Old)) return;
4234 
4235   replaceUsesOfNonProtoConstant(Old, NewFn);
4236 }
4237 
4238 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4239   auto DK = VD->isThisDeclarationADefinition();
4240   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4241     return;
4242 
4243   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4244   // If we have a definition, this might be a deferred decl. If the
4245   // instantiation is explicit, make sure we emit it at the end.
4246   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4247     GetAddrOfGlobalVar(VD);
4248 
4249   EmitTopLevelDecl(VD);
4250 }
4251 
4252 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4253                                                  llvm::GlobalValue *GV) {
4254   const auto *D = cast<FunctionDecl>(GD.getDecl());
4255 
4256   // Compute the function info and LLVM type.
4257   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4258   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4259 
4260   // Get or create the prototype for the function.
4261   if (!GV || (GV->getType()->getElementType() != Ty))
4262     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4263                                                    /*DontDefer=*/true,
4264                                                    ForDefinition));
4265 
4266   // Already emitted.
4267   if (!GV->isDeclaration())
4268     return;
4269 
4270   // We need to set linkage and visibility on the function before
4271   // generating code for it because various parts of IR generation
4272   // want to propagate this information down (e.g. to local static
4273   // declarations).
4274   auto *Fn = cast<llvm::Function>(GV);
4275   setFunctionLinkage(GD, Fn);
4276 
4277   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4278   setGVProperties(Fn, GD);
4279 
4280   MaybeHandleStaticInExternC(D, Fn);
4281 
4282 
4283   maybeSetTrivialComdat(*D, *Fn);
4284 
4285   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4286 
4287   setNonAliasAttributes(GD, Fn);
4288   SetLLVMFunctionAttributesForDefinition(D, Fn);
4289 
4290   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4291     AddGlobalCtor(Fn, CA->getPriority());
4292   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4293     AddGlobalDtor(Fn, DA->getPriority());
4294   if (D->hasAttr<AnnotateAttr>())
4295     AddGlobalAnnotations(D, Fn);
4296 }
4297 
4298 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4299   const auto *D = cast<ValueDecl>(GD.getDecl());
4300   const AliasAttr *AA = D->getAttr<AliasAttr>();
4301   assert(AA && "Not an alias?");
4302 
4303   StringRef MangledName = getMangledName(GD);
4304 
4305   if (AA->getAliasee() == MangledName) {
4306     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4307     return;
4308   }
4309 
4310   // If there is a definition in the module, then it wins over the alias.
4311   // This is dubious, but allow it to be safe.  Just ignore the alias.
4312   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4313   if (Entry && !Entry->isDeclaration())
4314     return;
4315 
4316   Aliases.push_back(GD);
4317 
4318   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4319 
4320   // Create a reference to the named value.  This ensures that it is emitted
4321   // if a deferred decl.
4322   llvm::Constant *Aliasee;
4323   if (isa<llvm::FunctionType>(DeclTy))
4324     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4325                                       /*ForVTable=*/false);
4326   else
4327     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4328                                     llvm::PointerType::getUnqual(DeclTy),
4329                                     /*D=*/nullptr);
4330 
4331   // Create the new alias itself, but don't set a name yet.
4332   auto *GA = llvm::GlobalAlias::create(
4333       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4334 
4335   if (Entry) {
4336     if (GA->getAliasee() == Entry) {
4337       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4338       return;
4339     }
4340 
4341     assert(Entry->isDeclaration());
4342 
4343     // If there is a declaration in the module, then we had an extern followed
4344     // by the alias, as in:
4345     //   extern int test6();
4346     //   ...
4347     //   int test6() __attribute__((alias("test7")));
4348     //
4349     // Remove it and replace uses of it with the alias.
4350     GA->takeName(Entry);
4351 
4352     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4353                                                           Entry->getType()));
4354     Entry->eraseFromParent();
4355   } else {
4356     GA->setName(MangledName);
4357   }
4358 
4359   // Set attributes which are particular to an alias; this is a
4360   // specialization of the attributes which may be set on a global
4361   // variable/function.
4362   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4363       D->isWeakImported()) {
4364     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4365   }
4366 
4367   if (const auto *VD = dyn_cast<VarDecl>(D))
4368     if (VD->getTLSKind())
4369       setTLSMode(GA, *VD);
4370 
4371   SetCommonAttributes(GD, GA);
4372 }
4373 
4374 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4375   const auto *D = cast<ValueDecl>(GD.getDecl());
4376   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4377   assert(IFA && "Not an ifunc?");
4378 
4379   StringRef MangledName = getMangledName(GD);
4380 
4381   if (IFA->getResolver() == MangledName) {
4382     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4383     return;
4384   }
4385 
4386   // Report an error if some definition overrides ifunc.
4387   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4388   if (Entry && !Entry->isDeclaration()) {
4389     GlobalDecl OtherGD;
4390     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4391         DiagnosedConflictingDefinitions.insert(GD).second) {
4392       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4393           << MangledName;
4394       Diags.Report(OtherGD.getDecl()->getLocation(),
4395                    diag::note_previous_definition);
4396     }
4397     return;
4398   }
4399 
4400   Aliases.push_back(GD);
4401 
4402   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4403   llvm::Constant *Resolver =
4404       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4405                               /*ForVTable=*/false);
4406   llvm::GlobalIFunc *GIF =
4407       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4408                                 "", Resolver, &getModule());
4409   if (Entry) {
4410     if (GIF->getResolver() == Entry) {
4411       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4412       return;
4413     }
4414     assert(Entry->isDeclaration());
4415 
4416     // If there is a declaration in the module, then we had an extern followed
4417     // by the ifunc, as in:
4418     //   extern int test();
4419     //   ...
4420     //   int test() __attribute__((ifunc("resolver")));
4421     //
4422     // Remove it and replace uses of it with the ifunc.
4423     GIF->takeName(Entry);
4424 
4425     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4426                                                           Entry->getType()));
4427     Entry->eraseFromParent();
4428   } else
4429     GIF->setName(MangledName);
4430 
4431   SetCommonAttributes(GD, GIF);
4432 }
4433 
4434 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4435                                             ArrayRef<llvm::Type*> Tys) {
4436   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4437                                          Tys);
4438 }
4439 
4440 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4441 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4442                          const StringLiteral *Literal, bool TargetIsLSB,
4443                          bool &IsUTF16, unsigned &StringLength) {
4444   StringRef String = Literal->getString();
4445   unsigned NumBytes = String.size();
4446 
4447   // Check for simple case.
4448   if (!Literal->containsNonAsciiOrNull()) {
4449     StringLength = NumBytes;
4450     return *Map.insert(std::make_pair(String, nullptr)).first;
4451   }
4452 
4453   // Otherwise, convert the UTF8 literals into a string of shorts.
4454   IsUTF16 = true;
4455 
4456   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4457   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4458   llvm::UTF16 *ToPtr = &ToBuf[0];
4459 
4460   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4461                                  ToPtr + NumBytes, llvm::strictConversion);
4462 
4463   // ConvertUTF8toUTF16 returns the length in ToPtr.
4464   StringLength = ToPtr - &ToBuf[0];
4465 
4466   // Add an explicit null.
4467   *ToPtr = 0;
4468   return *Map.insert(std::make_pair(
4469                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4470                                    (StringLength + 1) * 2),
4471                          nullptr)).first;
4472 }
4473 
4474 ConstantAddress
4475 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4476   unsigned StringLength = 0;
4477   bool isUTF16 = false;
4478   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4479       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4480                                getDataLayout().isLittleEndian(), isUTF16,
4481                                StringLength);
4482 
4483   if (auto *C = Entry.second)
4484     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4485 
4486   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4487   llvm::Constant *Zeros[] = { Zero, Zero };
4488 
4489   const ASTContext &Context = getContext();
4490   const llvm::Triple &Triple = getTriple();
4491 
4492   const auto CFRuntime = getLangOpts().CFRuntime;
4493   const bool IsSwiftABI =
4494       static_cast<unsigned>(CFRuntime) >=
4495       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4496   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4497 
4498   // If we don't already have it, get __CFConstantStringClassReference.
4499   if (!CFConstantStringClassRef) {
4500     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4501     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4502     Ty = llvm::ArrayType::get(Ty, 0);
4503 
4504     switch (CFRuntime) {
4505     default: break;
4506     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4507     case LangOptions::CoreFoundationABI::Swift5_0:
4508       CFConstantStringClassName =
4509           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4510                               : "$s10Foundation19_NSCFConstantStringCN";
4511       Ty = IntPtrTy;
4512       break;
4513     case LangOptions::CoreFoundationABI::Swift4_2:
4514       CFConstantStringClassName =
4515           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4516                               : "$S10Foundation19_NSCFConstantStringCN";
4517       Ty = IntPtrTy;
4518       break;
4519     case LangOptions::CoreFoundationABI::Swift4_1:
4520       CFConstantStringClassName =
4521           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4522                               : "__T010Foundation19_NSCFConstantStringCN";
4523       Ty = IntPtrTy;
4524       break;
4525     }
4526 
4527     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4528 
4529     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4530       llvm::GlobalValue *GV = nullptr;
4531 
4532       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4533         IdentifierInfo &II = Context.Idents.get(GV->getName());
4534         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4535         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4536 
4537         const VarDecl *VD = nullptr;
4538         for (const auto &Result : DC->lookup(&II))
4539           if ((VD = dyn_cast<VarDecl>(Result)))
4540             break;
4541 
4542         if (Triple.isOSBinFormatELF()) {
4543           if (!VD)
4544             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4545         } else {
4546           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4547           if (!VD || !VD->hasAttr<DLLExportAttr>())
4548             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4549           else
4550             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4551         }
4552 
4553         setDSOLocal(GV);
4554       }
4555     }
4556 
4557     // Decay array -> ptr
4558     CFConstantStringClassRef =
4559         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4560                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4561   }
4562 
4563   QualType CFTy = Context.getCFConstantStringType();
4564 
4565   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4566 
4567   ConstantInitBuilder Builder(*this);
4568   auto Fields = Builder.beginStruct(STy);
4569 
4570   // Class pointer.
4571   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4572 
4573   // Flags.
4574   if (IsSwiftABI) {
4575     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4576     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4577   } else {
4578     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4579   }
4580 
4581   // String pointer.
4582   llvm::Constant *C = nullptr;
4583   if (isUTF16) {
4584     auto Arr = llvm::makeArrayRef(
4585         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4586         Entry.first().size() / 2);
4587     C = llvm::ConstantDataArray::get(VMContext, Arr);
4588   } else {
4589     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4590   }
4591 
4592   // Note: -fwritable-strings doesn't make the backing store strings of
4593   // CFStrings writable. (See <rdar://problem/10657500>)
4594   auto *GV =
4595       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4596                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4597   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4598   // Don't enforce the target's minimum global alignment, since the only use
4599   // of the string is via this class initializer.
4600   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4601                             : Context.getTypeAlignInChars(Context.CharTy);
4602   GV->setAlignment(Align.getQuantity());
4603 
4604   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4605   // Without it LLVM can merge the string with a non unnamed_addr one during
4606   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4607   if (Triple.isOSBinFormatMachO())
4608     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4609                            : "__TEXT,__cstring,cstring_literals");
4610   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4611   // the static linker to adjust permissions to read-only later on.
4612   else if (Triple.isOSBinFormatELF())
4613     GV->setSection(".rodata");
4614 
4615   // String.
4616   llvm::Constant *Str =
4617       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4618 
4619   if (isUTF16)
4620     // Cast the UTF16 string to the correct type.
4621     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4622   Fields.add(Str);
4623 
4624   // String length.
4625   llvm::IntegerType *LengthTy =
4626       llvm::IntegerType::get(getModule().getContext(),
4627                              Context.getTargetInfo().getLongWidth());
4628   if (IsSwiftABI) {
4629     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4630         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4631       LengthTy = Int32Ty;
4632     else
4633       LengthTy = IntPtrTy;
4634   }
4635   Fields.addInt(LengthTy, StringLength);
4636 
4637   CharUnits Alignment = getPointerAlign();
4638 
4639   // The struct.
4640   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4641                                     /*isConstant=*/false,
4642                                     llvm::GlobalVariable::PrivateLinkage);
4643   switch (Triple.getObjectFormat()) {
4644   case llvm::Triple::UnknownObjectFormat:
4645     llvm_unreachable("unknown file format");
4646   case llvm::Triple::XCOFF:
4647     llvm_unreachable("XCOFF is not yet implemented");
4648   case llvm::Triple::COFF:
4649   case llvm::Triple::ELF:
4650   case llvm::Triple::Wasm:
4651     GV->setSection("cfstring");
4652     break;
4653   case llvm::Triple::MachO:
4654     GV->setSection("__DATA,__cfstring");
4655     break;
4656   }
4657   Entry.second = GV;
4658 
4659   return ConstantAddress(GV, Alignment);
4660 }
4661 
4662 bool CodeGenModule::getExpressionLocationsEnabled() const {
4663   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4664 }
4665 
4666 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4667   if (ObjCFastEnumerationStateType.isNull()) {
4668     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4669     D->startDefinition();
4670 
4671     QualType FieldTypes[] = {
4672       Context.UnsignedLongTy,
4673       Context.getPointerType(Context.getObjCIdType()),
4674       Context.getPointerType(Context.UnsignedLongTy),
4675       Context.getConstantArrayType(Context.UnsignedLongTy,
4676                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4677     };
4678 
4679     for (size_t i = 0; i < 4; ++i) {
4680       FieldDecl *Field = FieldDecl::Create(Context,
4681                                            D,
4682                                            SourceLocation(),
4683                                            SourceLocation(), nullptr,
4684                                            FieldTypes[i], /*TInfo=*/nullptr,
4685                                            /*BitWidth=*/nullptr,
4686                                            /*Mutable=*/false,
4687                                            ICIS_NoInit);
4688       Field->setAccess(AS_public);
4689       D->addDecl(Field);
4690     }
4691 
4692     D->completeDefinition();
4693     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4694   }
4695 
4696   return ObjCFastEnumerationStateType;
4697 }
4698 
4699 llvm::Constant *
4700 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4701   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4702 
4703   // Don't emit it as the address of the string, emit the string data itself
4704   // as an inline array.
4705   if (E->getCharByteWidth() == 1) {
4706     SmallString<64> Str(E->getString());
4707 
4708     // Resize the string to the right size, which is indicated by its type.
4709     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4710     Str.resize(CAT->getSize().getZExtValue());
4711     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4712   }
4713 
4714   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4715   llvm::Type *ElemTy = AType->getElementType();
4716   unsigned NumElements = AType->getNumElements();
4717 
4718   // Wide strings have either 2-byte or 4-byte elements.
4719   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4720     SmallVector<uint16_t, 32> Elements;
4721     Elements.reserve(NumElements);
4722 
4723     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4724       Elements.push_back(E->getCodeUnit(i));
4725     Elements.resize(NumElements);
4726     return llvm::ConstantDataArray::get(VMContext, Elements);
4727   }
4728 
4729   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4730   SmallVector<uint32_t, 32> Elements;
4731   Elements.reserve(NumElements);
4732 
4733   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4734     Elements.push_back(E->getCodeUnit(i));
4735   Elements.resize(NumElements);
4736   return llvm::ConstantDataArray::get(VMContext, Elements);
4737 }
4738 
4739 static llvm::GlobalVariable *
4740 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4741                       CodeGenModule &CGM, StringRef GlobalName,
4742                       CharUnits Alignment) {
4743   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4744       CGM.getStringLiteralAddressSpace());
4745 
4746   llvm::Module &M = CGM.getModule();
4747   // Create a global variable for this string
4748   auto *GV = new llvm::GlobalVariable(
4749       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4750       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4751   GV->setAlignment(Alignment.getQuantity());
4752   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4753   if (GV->isWeakForLinker()) {
4754     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4755     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4756   }
4757   CGM.setDSOLocal(GV);
4758 
4759   return GV;
4760 }
4761 
4762 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4763 /// constant array for the given string literal.
4764 ConstantAddress
4765 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4766                                                   StringRef Name) {
4767   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4768 
4769   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4770   llvm::GlobalVariable **Entry = nullptr;
4771   if (!LangOpts.WritableStrings) {
4772     Entry = &ConstantStringMap[C];
4773     if (auto GV = *Entry) {
4774       if (Alignment.getQuantity() > GV->getAlignment())
4775         GV->setAlignment(Alignment.getQuantity());
4776       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4777                              Alignment);
4778     }
4779   }
4780 
4781   SmallString<256> MangledNameBuffer;
4782   StringRef GlobalVariableName;
4783   llvm::GlobalValue::LinkageTypes LT;
4784 
4785   // Mangle the string literal if that's how the ABI merges duplicate strings.
4786   // Don't do it if they are writable, since we don't want writes in one TU to
4787   // affect strings in another.
4788   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4789       !LangOpts.WritableStrings) {
4790     llvm::raw_svector_ostream Out(MangledNameBuffer);
4791     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4792     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4793     GlobalVariableName = MangledNameBuffer;
4794   } else {
4795     LT = llvm::GlobalValue::PrivateLinkage;
4796     GlobalVariableName = Name;
4797   }
4798 
4799   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4800   if (Entry)
4801     *Entry = GV;
4802 
4803   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4804                                   QualType());
4805 
4806   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4807                          Alignment);
4808 }
4809 
4810 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4811 /// array for the given ObjCEncodeExpr node.
4812 ConstantAddress
4813 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4814   std::string Str;
4815   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4816 
4817   return GetAddrOfConstantCString(Str);
4818 }
4819 
4820 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4821 /// the literal and a terminating '\0' character.
4822 /// The result has pointer to array type.
4823 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4824     const std::string &Str, const char *GlobalName) {
4825   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4826   CharUnits Alignment =
4827     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4828 
4829   llvm::Constant *C =
4830       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4831 
4832   // Don't share any string literals if strings aren't constant.
4833   llvm::GlobalVariable **Entry = nullptr;
4834   if (!LangOpts.WritableStrings) {
4835     Entry = &ConstantStringMap[C];
4836     if (auto GV = *Entry) {
4837       if (Alignment.getQuantity() > GV->getAlignment())
4838         GV->setAlignment(Alignment.getQuantity());
4839       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4840                              Alignment);
4841     }
4842   }
4843 
4844   // Get the default prefix if a name wasn't specified.
4845   if (!GlobalName)
4846     GlobalName = ".str";
4847   // Create a global variable for this.
4848   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4849                                   GlobalName, Alignment);
4850   if (Entry)
4851     *Entry = GV;
4852 
4853   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4854                          Alignment);
4855 }
4856 
4857 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4858     const MaterializeTemporaryExpr *E, const Expr *Init) {
4859   assert((E->getStorageDuration() == SD_Static ||
4860           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4861   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4862 
4863   // If we're not materializing a subobject of the temporary, keep the
4864   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4865   QualType MaterializedType = Init->getType();
4866   if (Init == E->GetTemporaryExpr())
4867     MaterializedType = E->getType();
4868 
4869   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4870 
4871   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4872     return ConstantAddress(Slot, Align);
4873 
4874   // FIXME: If an externally-visible declaration extends multiple temporaries,
4875   // we need to give each temporary the same name in every translation unit (and
4876   // we also need to make the temporaries externally-visible).
4877   SmallString<256> Name;
4878   llvm::raw_svector_ostream Out(Name);
4879   getCXXABI().getMangleContext().mangleReferenceTemporary(
4880       VD, E->getManglingNumber(), Out);
4881 
4882   APValue *Value = nullptr;
4883   if (E->getStorageDuration() == SD_Static) {
4884     // We might have a cached constant initializer for this temporary. Note
4885     // that this might have a different value from the value computed by
4886     // evaluating the initializer if the surrounding constant expression
4887     // modifies the temporary.
4888     Value = getContext().getMaterializedTemporaryValue(E, false);
4889     if (Value && Value->isUninit())
4890       Value = nullptr;
4891   }
4892 
4893   // Try evaluating it now, it might have a constant initializer.
4894   Expr::EvalResult EvalResult;
4895   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4896       !EvalResult.hasSideEffects())
4897     Value = &EvalResult.Val;
4898 
4899   LangAS AddrSpace =
4900       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4901 
4902   Optional<ConstantEmitter> emitter;
4903   llvm::Constant *InitialValue = nullptr;
4904   bool Constant = false;
4905   llvm::Type *Type;
4906   if (Value) {
4907     // The temporary has a constant initializer, use it.
4908     emitter.emplace(*this);
4909     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4910                                                MaterializedType);
4911     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4912     Type = InitialValue->getType();
4913   } else {
4914     // No initializer, the initialization will be provided when we
4915     // initialize the declaration which performed lifetime extension.
4916     Type = getTypes().ConvertTypeForMem(MaterializedType);
4917   }
4918 
4919   // Create a global variable for this lifetime-extended temporary.
4920   llvm::GlobalValue::LinkageTypes Linkage =
4921       getLLVMLinkageVarDefinition(VD, Constant);
4922   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4923     const VarDecl *InitVD;
4924     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4925         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4926       // Temporaries defined inside a class get linkonce_odr linkage because the
4927       // class can be defined in multiple translation units.
4928       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4929     } else {
4930       // There is no need for this temporary to have external linkage if the
4931       // VarDecl has external linkage.
4932       Linkage = llvm::GlobalVariable::InternalLinkage;
4933     }
4934   }
4935   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4936   auto *GV = new llvm::GlobalVariable(
4937       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4938       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4939   if (emitter) emitter->finalize(GV);
4940   setGVProperties(GV, VD);
4941   GV->setAlignment(Align.getQuantity());
4942   if (supportsCOMDAT() && GV->isWeakForLinker())
4943     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4944   if (VD->getTLSKind())
4945     setTLSMode(GV, *VD);
4946   llvm::Constant *CV = GV;
4947   if (AddrSpace != LangAS::Default)
4948     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4949         *this, GV, AddrSpace, LangAS::Default,
4950         Type->getPointerTo(
4951             getContext().getTargetAddressSpace(LangAS::Default)));
4952   MaterializedGlobalTemporaryMap[E] = CV;
4953   return ConstantAddress(CV, Align);
4954 }
4955 
4956 /// EmitObjCPropertyImplementations - Emit information for synthesized
4957 /// properties for an implementation.
4958 void CodeGenModule::EmitObjCPropertyImplementations(const
4959                                                     ObjCImplementationDecl *D) {
4960   for (const auto *PID : D->property_impls()) {
4961     // Dynamic is just for type-checking.
4962     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4963       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4964 
4965       // Determine which methods need to be implemented, some may have
4966       // been overridden. Note that ::isPropertyAccessor is not the method
4967       // we want, that just indicates if the decl came from a
4968       // property. What we want to know is if the method is defined in
4969       // this implementation.
4970       if (!D->getInstanceMethod(PD->getGetterName()))
4971         CodeGenFunction(*this).GenerateObjCGetter(
4972                                  const_cast<ObjCImplementationDecl *>(D), PID);
4973       if (!PD->isReadOnly() &&
4974           !D->getInstanceMethod(PD->getSetterName()))
4975         CodeGenFunction(*this).GenerateObjCSetter(
4976                                  const_cast<ObjCImplementationDecl *>(D), PID);
4977     }
4978   }
4979 }
4980 
4981 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4982   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4983   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4984        ivar; ivar = ivar->getNextIvar())
4985     if (ivar->getType().isDestructedType())
4986       return true;
4987 
4988   return false;
4989 }
4990 
4991 static bool AllTrivialInitializers(CodeGenModule &CGM,
4992                                    ObjCImplementationDecl *D) {
4993   CodeGenFunction CGF(CGM);
4994   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4995        E = D->init_end(); B != E; ++B) {
4996     CXXCtorInitializer *CtorInitExp = *B;
4997     Expr *Init = CtorInitExp->getInit();
4998     if (!CGF.isTrivialInitializer(Init))
4999       return false;
5000   }
5001   return true;
5002 }
5003 
5004 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5005 /// for an implementation.
5006 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5007   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5008   if (needsDestructMethod(D)) {
5009     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5010     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5011     ObjCMethodDecl *DTORMethod =
5012       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
5013                              cxxSelector, getContext().VoidTy, nullptr, D,
5014                              /*isInstance=*/true, /*isVariadic=*/false,
5015                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
5016                              /*isDefined=*/false, ObjCMethodDecl::Required);
5017     D->addInstanceMethod(DTORMethod);
5018     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5019     D->setHasDestructors(true);
5020   }
5021 
5022   // If the implementation doesn't have any ivar initializers, we don't need
5023   // a .cxx_construct.
5024   if (D->getNumIvarInitializers() == 0 ||
5025       AllTrivialInitializers(*this, D))
5026     return;
5027 
5028   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5029   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5030   // The constructor returns 'self'.
5031   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
5032                                                 D->getLocation(),
5033                                                 D->getLocation(),
5034                                                 cxxSelector,
5035                                                 getContext().getObjCIdType(),
5036                                                 nullptr, D, /*isInstance=*/true,
5037                                                 /*isVariadic=*/false,
5038                                                 /*isPropertyAccessor=*/true,
5039                                                 /*isImplicitlyDeclared=*/true,
5040                                                 /*isDefined=*/false,
5041                                                 ObjCMethodDecl::Required);
5042   D->addInstanceMethod(CTORMethod);
5043   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5044   D->setHasNonZeroConstructors(true);
5045 }
5046 
5047 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5048 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5049   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5050       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5051     ErrorUnsupported(LSD, "linkage spec");
5052     return;
5053   }
5054 
5055   EmitDeclContext(LSD);
5056 }
5057 
5058 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5059   for (auto *I : DC->decls()) {
5060     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5061     // are themselves considered "top-level", so EmitTopLevelDecl on an
5062     // ObjCImplDecl does not recursively visit them. We need to do that in
5063     // case they're nested inside another construct (LinkageSpecDecl /
5064     // ExportDecl) that does stop them from being considered "top-level".
5065     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5066       for (auto *M : OID->methods())
5067         EmitTopLevelDecl(M);
5068     }
5069 
5070     EmitTopLevelDecl(I);
5071   }
5072 }
5073 
5074 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5075 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5076   // Ignore dependent declarations.
5077   if (D->isTemplated())
5078     return;
5079 
5080   switch (D->getKind()) {
5081   case Decl::CXXConversion:
5082   case Decl::CXXMethod:
5083   case Decl::Function:
5084     EmitGlobal(cast<FunctionDecl>(D));
5085     // Always provide some coverage mapping
5086     // even for the functions that aren't emitted.
5087     AddDeferredUnusedCoverageMapping(D);
5088     break;
5089 
5090   case Decl::CXXDeductionGuide:
5091     // Function-like, but does not result in code emission.
5092     break;
5093 
5094   case Decl::Var:
5095   case Decl::Decomposition:
5096   case Decl::VarTemplateSpecialization:
5097     EmitGlobal(cast<VarDecl>(D));
5098     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5099       for (auto *B : DD->bindings())
5100         if (auto *HD = B->getHoldingVar())
5101           EmitGlobal(HD);
5102     break;
5103 
5104   // Indirect fields from global anonymous structs and unions can be
5105   // ignored; only the actual variable requires IR gen support.
5106   case Decl::IndirectField:
5107     break;
5108 
5109   // C++ Decls
5110   case Decl::Namespace:
5111     EmitDeclContext(cast<NamespaceDecl>(D));
5112     break;
5113   case Decl::ClassTemplateSpecialization: {
5114     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5115     if (DebugInfo &&
5116         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5117         Spec->hasDefinition())
5118       DebugInfo->completeTemplateDefinition(*Spec);
5119   } LLVM_FALLTHROUGH;
5120   case Decl::CXXRecord:
5121     if (DebugInfo) {
5122       if (auto *ES = D->getASTContext().getExternalSource())
5123         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5124           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5125     }
5126     // Emit any static data members, they may be definitions.
5127     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5128       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5129         EmitTopLevelDecl(I);
5130     break;
5131     // No code generation needed.
5132   case Decl::UsingShadow:
5133   case Decl::ClassTemplate:
5134   case Decl::VarTemplate:
5135   case Decl::VarTemplatePartialSpecialization:
5136   case Decl::FunctionTemplate:
5137   case Decl::TypeAliasTemplate:
5138   case Decl::Block:
5139   case Decl::Empty:
5140   case Decl::Binding:
5141     break;
5142   case Decl::Using:          // using X; [C++]
5143     if (CGDebugInfo *DI = getModuleDebugInfo())
5144         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5145     return;
5146   case Decl::NamespaceAlias:
5147     if (CGDebugInfo *DI = getModuleDebugInfo())
5148         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5149     return;
5150   case Decl::UsingDirective: // using namespace X; [C++]
5151     if (CGDebugInfo *DI = getModuleDebugInfo())
5152       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5153     return;
5154   case Decl::CXXConstructor:
5155     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5156     break;
5157   case Decl::CXXDestructor:
5158     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5159     break;
5160 
5161   case Decl::StaticAssert:
5162     // Nothing to do.
5163     break;
5164 
5165   // Objective-C Decls
5166 
5167   // Forward declarations, no (immediate) code generation.
5168   case Decl::ObjCInterface:
5169   case Decl::ObjCCategory:
5170     break;
5171 
5172   case Decl::ObjCProtocol: {
5173     auto *Proto = cast<ObjCProtocolDecl>(D);
5174     if (Proto->isThisDeclarationADefinition())
5175       ObjCRuntime->GenerateProtocol(Proto);
5176     break;
5177   }
5178 
5179   case Decl::ObjCCategoryImpl:
5180     // Categories have properties but don't support synthesize so we
5181     // can ignore them here.
5182     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5183     break;
5184 
5185   case Decl::ObjCImplementation: {
5186     auto *OMD = cast<ObjCImplementationDecl>(D);
5187     EmitObjCPropertyImplementations(OMD);
5188     EmitObjCIvarInitializations(OMD);
5189     ObjCRuntime->GenerateClass(OMD);
5190     // Emit global variable debug information.
5191     if (CGDebugInfo *DI = getModuleDebugInfo())
5192       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5193         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5194             OMD->getClassInterface()), OMD->getLocation());
5195     break;
5196   }
5197   case Decl::ObjCMethod: {
5198     auto *OMD = cast<ObjCMethodDecl>(D);
5199     // If this is not a prototype, emit the body.
5200     if (OMD->getBody())
5201       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5202     break;
5203   }
5204   case Decl::ObjCCompatibleAlias:
5205     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5206     break;
5207 
5208   case Decl::PragmaComment: {
5209     const auto *PCD = cast<PragmaCommentDecl>(D);
5210     switch (PCD->getCommentKind()) {
5211     case PCK_Unknown:
5212       llvm_unreachable("unexpected pragma comment kind");
5213     case PCK_Linker:
5214       AppendLinkerOptions(PCD->getArg());
5215       break;
5216     case PCK_Lib:
5217         AddDependentLib(PCD->getArg());
5218       break;
5219     case PCK_Compiler:
5220     case PCK_ExeStr:
5221     case PCK_User:
5222       break; // We ignore all of these.
5223     }
5224     break;
5225   }
5226 
5227   case Decl::PragmaDetectMismatch: {
5228     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5229     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5230     break;
5231   }
5232 
5233   case Decl::LinkageSpec:
5234     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5235     break;
5236 
5237   case Decl::FileScopeAsm: {
5238     // File-scope asm is ignored during device-side CUDA compilation.
5239     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5240       break;
5241     // File-scope asm is ignored during device-side OpenMP compilation.
5242     if (LangOpts.OpenMPIsDevice)
5243       break;
5244     auto *AD = cast<FileScopeAsmDecl>(D);
5245     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5246     break;
5247   }
5248 
5249   case Decl::Import: {
5250     auto *Import = cast<ImportDecl>(D);
5251 
5252     // If we've already imported this module, we're done.
5253     if (!ImportedModules.insert(Import->getImportedModule()))
5254       break;
5255 
5256     // Emit debug information for direct imports.
5257     if (!Import->getImportedOwningModule()) {
5258       if (CGDebugInfo *DI = getModuleDebugInfo())
5259         DI->EmitImportDecl(*Import);
5260     }
5261 
5262     // Find all of the submodules and emit the module initializers.
5263     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5264     SmallVector<clang::Module *, 16> Stack;
5265     Visited.insert(Import->getImportedModule());
5266     Stack.push_back(Import->getImportedModule());
5267 
5268     while (!Stack.empty()) {
5269       clang::Module *Mod = Stack.pop_back_val();
5270       if (!EmittedModuleInitializers.insert(Mod).second)
5271         continue;
5272 
5273       for (auto *D : Context.getModuleInitializers(Mod))
5274         EmitTopLevelDecl(D);
5275 
5276       // Visit the submodules of this module.
5277       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5278                                              SubEnd = Mod->submodule_end();
5279            Sub != SubEnd; ++Sub) {
5280         // Skip explicit children; they need to be explicitly imported to emit
5281         // the initializers.
5282         if ((*Sub)->IsExplicit)
5283           continue;
5284 
5285         if (Visited.insert(*Sub).second)
5286           Stack.push_back(*Sub);
5287       }
5288     }
5289     break;
5290   }
5291 
5292   case Decl::Export:
5293     EmitDeclContext(cast<ExportDecl>(D));
5294     break;
5295 
5296   case Decl::OMPThreadPrivate:
5297     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5298     break;
5299 
5300   case Decl::OMPAllocate:
5301     break;
5302 
5303   case Decl::OMPDeclareReduction:
5304     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5305     break;
5306 
5307   case Decl::OMPDeclareMapper:
5308     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5309     break;
5310 
5311   case Decl::OMPRequires:
5312     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5313     break;
5314 
5315   default:
5316     // Make sure we handled everything we should, every other kind is a
5317     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5318     // function. Need to recode Decl::Kind to do that easily.
5319     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5320     break;
5321   }
5322 }
5323 
5324 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5325   // Do we need to generate coverage mapping?
5326   if (!CodeGenOpts.CoverageMapping)
5327     return;
5328   switch (D->getKind()) {
5329   case Decl::CXXConversion:
5330   case Decl::CXXMethod:
5331   case Decl::Function:
5332   case Decl::ObjCMethod:
5333   case Decl::CXXConstructor:
5334   case Decl::CXXDestructor: {
5335     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5336       return;
5337     SourceManager &SM = getContext().getSourceManager();
5338     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5339       return;
5340     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5341     if (I == DeferredEmptyCoverageMappingDecls.end())
5342       DeferredEmptyCoverageMappingDecls[D] = true;
5343     break;
5344   }
5345   default:
5346     break;
5347   };
5348 }
5349 
5350 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5351   // Do we need to generate coverage mapping?
5352   if (!CodeGenOpts.CoverageMapping)
5353     return;
5354   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5355     if (Fn->isTemplateInstantiation())
5356       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5357   }
5358   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5359   if (I == DeferredEmptyCoverageMappingDecls.end())
5360     DeferredEmptyCoverageMappingDecls[D] = false;
5361   else
5362     I->second = false;
5363 }
5364 
5365 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5366   // We call takeVector() here to avoid use-after-free.
5367   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5368   // we deserialize function bodies to emit coverage info for them, and that
5369   // deserializes more declarations. How should we handle that case?
5370   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5371     if (!Entry.second)
5372       continue;
5373     const Decl *D = Entry.first;
5374     switch (D->getKind()) {
5375     case Decl::CXXConversion:
5376     case Decl::CXXMethod:
5377     case Decl::Function:
5378     case Decl::ObjCMethod: {
5379       CodeGenPGO PGO(*this);
5380       GlobalDecl GD(cast<FunctionDecl>(D));
5381       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5382                                   getFunctionLinkage(GD));
5383       break;
5384     }
5385     case Decl::CXXConstructor: {
5386       CodeGenPGO PGO(*this);
5387       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5388       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5389                                   getFunctionLinkage(GD));
5390       break;
5391     }
5392     case Decl::CXXDestructor: {
5393       CodeGenPGO PGO(*this);
5394       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5395       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5396                                   getFunctionLinkage(GD));
5397       break;
5398     }
5399     default:
5400       break;
5401     };
5402   }
5403 }
5404 
5405 /// Turns the given pointer into a constant.
5406 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5407                                           const void *Ptr) {
5408   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5409   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5410   return llvm::ConstantInt::get(i64, PtrInt);
5411 }
5412 
5413 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5414                                    llvm::NamedMDNode *&GlobalMetadata,
5415                                    GlobalDecl D,
5416                                    llvm::GlobalValue *Addr) {
5417   if (!GlobalMetadata)
5418     GlobalMetadata =
5419       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5420 
5421   // TODO: should we report variant information for ctors/dtors?
5422   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5423                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5424                                CGM.getLLVMContext(), D.getDecl()))};
5425   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5426 }
5427 
5428 /// For each function which is declared within an extern "C" region and marked
5429 /// as 'used', but has internal linkage, create an alias from the unmangled
5430 /// name to the mangled name if possible. People expect to be able to refer
5431 /// to such functions with an unmangled name from inline assembly within the
5432 /// same translation unit.
5433 void CodeGenModule::EmitStaticExternCAliases() {
5434   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5435     return;
5436   for (auto &I : StaticExternCValues) {
5437     IdentifierInfo *Name = I.first;
5438     llvm::GlobalValue *Val = I.second;
5439     if (Val && !getModule().getNamedValue(Name->getName()))
5440       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5441   }
5442 }
5443 
5444 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5445                                              GlobalDecl &Result) const {
5446   auto Res = Manglings.find(MangledName);
5447   if (Res == Manglings.end())
5448     return false;
5449   Result = Res->getValue();
5450   return true;
5451 }
5452 
5453 /// Emits metadata nodes associating all the global values in the
5454 /// current module with the Decls they came from.  This is useful for
5455 /// projects using IR gen as a subroutine.
5456 ///
5457 /// Since there's currently no way to associate an MDNode directly
5458 /// with an llvm::GlobalValue, we create a global named metadata
5459 /// with the name 'clang.global.decl.ptrs'.
5460 void CodeGenModule::EmitDeclMetadata() {
5461   llvm::NamedMDNode *GlobalMetadata = nullptr;
5462 
5463   for (auto &I : MangledDeclNames) {
5464     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5465     // Some mangled names don't necessarily have an associated GlobalValue
5466     // in this module, e.g. if we mangled it for DebugInfo.
5467     if (Addr)
5468       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5469   }
5470 }
5471 
5472 /// Emits metadata nodes for all the local variables in the current
5473 /// function.
5474 void CodeGenFunction::EmitDeclMetadata() {
5475   if (LocalDeclMap.empty()) return;
5476 
5477   llvm::LLVMContext &Context = getLLVMContext();
5478 
5479   // Find the unique metadata ID for this name.
5480   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5481 
5482   llvm::NamedMDNode *GlobalMetadata = nullptr;
5483 
5484   for (auto &I : LocalDeclMap) {
5485     const Decl *D = I.first;
5486     llvm::Value *Addr = I.second.getPointer();
5487     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5488       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5489       Alloca->setMetadata(
5490           DeclPtrKind, llvm::MDNode::get(
5491                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5492     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5493       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5494       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5495     }
5496   }
5497 }
5498 
5499 void CodeGenModule::EmitVersionIdentMetadata() {
5500   llvm::NamedMDNode *IdentMetadata =
5501     TheModule.getOrInsertNamedMetadata("llvm.ident");
5502   std::string Version = getClangFullVersion();
5503   llvm::LLVMContext &Ctx = TheModule.getContext();
5504 
5505   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5506   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5507 }
5508 
5509 void CodeGenModule::EmitCommandLineMetadata() {
5510   llvm::NamedMDNode *CommandLineMetadata =
5511     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5512   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5513   llvm::LLVMContext &Ctx = TheModule.getContext();
5514 
5515   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5516   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5517 }
5518 
5519 void CodeGenModule::EmitTargetMetadata() {
5520   // Warning, new MangledDeclNames may be appended within this loop.
5521   // We rely on MapVector insertions adding new elements to the end
5522   // of the container.
5523   // FIXME: Move this loop into the one target that needs it, and only
5524   // loop over those declarations for which we couldn't emit the target
5525   // metadata when we emitted the declaration.
5526   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5527     auto Val = *(MangledDeclNames.begin() + I);
5528     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5529     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5530     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5531   }
5532 }
5533 
5534 void CodeGenModule::EmitCoverageFile() {
5535   if (getCodeGenOpts().CoverageDataFile.empty() &&
5536       getCodeGenOpts().CoverageNotesFile.empty())
5537     return;
5538 
5539   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5540   if (!CUNode)
5541     return;
5542 
5543   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5544   llvm::LLVMContext &Ctx = TheModule.getContext();
5545   auto *CoverageDataFile =
5546       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5547   auto *CoverageNotesFile =
5548       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5549   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5550     llvm::MDNode *CU = CUNode->getOperand(i);
5551     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5552     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5553   }
5554 }
5555 
5556 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5557   // Sema has checked that all uuid strings are of the form
5558   // "12345678-1234-1234-1234-1234567890ab".
5559   assert(Uuid.size() == 36);
5560   for (unsigned i = 0; i < 36; ++i) {
5561     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5562     else                                         assert(isHexDigit(Uuid[i]));
5563   }
5564 
5565   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5566   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5567 
5568   llvm::Constant *Field3[8];
5569   for (unsigned Idx = 0; Idx < 8; ++Idx)
5570     Field3[Idx] = llvm::ConstantInt::get(
5571         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5572 
5573   llvm::Constant *Fields[4] = {
5574     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5575     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5576     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5577     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5578   };
5579 
5580   return llvm::ConstantStruct::getAnon(Fields);
5581 }
5582 
5583 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5584                                                        bool ForEH) {
5585   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5586   // FIXME: should we even be calling this method if RTTI is disabled
5587   // and it's not for EH?
5588   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5589     return llvm::Constant::getNullValue(Int8PtrTy);
5590 
5591   if (ForEH && Ty->isObjCObjectPointerType() &&
5592       LangOpts.ObjCRuntime.isGNUFamily())
5593     return ObjCRuntime->GetEHType(Ty);
5594 
5595   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5596 }
5597 
5598 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5599   // Do not emit threadprivates in simd-only mode.
5600   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5601     return;
5602   for (auto RefExpr : D->varlists()) {
5603     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5604     bool PerformInit =
5605         VD->getAnyInitializer() &&
5606         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5607                                                         /*ForRef=*/false);
5608 
5609     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5610     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5611             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5612       CXXGlobalInits.push_back(InitFunction);
5613   }
5614 }
5615 
5616 llvm::Metadata *
5617 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5618                                             StringRef Suffix) {
5619   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5620   if (InternalId)
5621     return InternalId;
5622 
5623   if (isExternallyVisible(T->getLinkage())) {
5624     std::string OutName;
5625     llvm::raw_string_ostream Out(OutName);
5626     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5627     Out << Suffix;
5628 
5629     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5630   } else {
5631     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5632                                            llvm::ArrayRef<llvm::Metadata *>());
5633   }
5634 
5635   return InternalId;
5636 }
5637 
5638 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5639   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5640 }
5641 
5642 llvm::Metadata *
5643 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5644   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5645 }
5646 
5647 // Generalize pointer types to a void pointer with the qualifiers of the
5648 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5649 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5650 // 'void *'.
5651 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5652   if (!Ty->isPointerType())
5653     return Ty;
5654 
5655   return Ctx.getPointerType(
5656       QualType(Ctx.VoidTy).withCVRQualifiers(
5657           Ty->getPointeeType().getCVRQualifiers()));
5658 }
5659 
5660 // Apply type generalization to a FunctionType's return and argument types
5661 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5662   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5663     SmallVector<QualType, 8> GeneralizedParams;
5664     for (auto &Param : FnType->param_types())
5665       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5666 
5667     return Ctx.getFunctionType(
5668         GeneralizeType(Ctx, FnType->getReturnType()),
5669         GeneralizedParams, FnType->getExtProtoInfo());
5670   }
5671 
5672   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5673     return Ctx.getFunctionNoProtoType(
5674         GeneralizeType(Ctx, FnType->getReturnType()));
5675 
5676   llvm_unreachable("Encountered unknown FunctionType");
5677 }
5678 
5679 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5680   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5681                                       GeneralizedMetadataIdMap, ".generalized");
5682 }
5683 
5684 /// Returns whether this module needs the "all-vtables" type identifier.
5685 bool CodeGenModule::NeedAllVtablesTypeId() const {
5686   // Returns true if at least one of vtable-based CFI checkers is enabled and
5687   // is not in the trapping mode.
5688   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5689            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5690           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5691            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5692           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5693            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5694           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5695            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5696 }
5697 
5698 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5699                                           CharUnits Offset,
5700                                           const CXXRecordDecl *RD) {
5701   llvm::Metadata *MD =
5702       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5703   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5704 
5705   if (CodeGenOpts.SanitizeCfiCrossDso)
5706     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5707       VTable->addTypeMetadata(Offset.getQuantity(),
5708                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5709 
5710   if (NeedAllVtablesTypeId()) {
5711     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5712     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5713   }
5714 }
5715 
5716 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5717   assert(TD != nullptr);
5718   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5719 
5720   ParsedAttr.Features.erase(
5721       llvm::remove_if(ParsedAttr.Features,
5722                       [&](const std::string &Feat) {
5723                         return !Target.isValidFeatureName(
5724                             StringRef{Feat}.substr(1));
5725                       }),
5726       ParsedAttr.Features.end());
5727   return ParsedAttr;
5728 }
5729 
5730 
5731 // Fills in the supplied string map with the set of target features for the
5732 // passed in function.
5733 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5734                                           GlobalDecl GD) {
5735   StringRef TargetCPU = Target.getTargetOpts().CPU;
5736   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5737   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5738     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5739 
5740     // Make a copy of the features as passed on the command line into the
5741     // beginning of the additional features from the function to override.
5742     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5743                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5744                             Target.getTargetOpts().FeaturesAsWritten.end());
5745 
5746     if (ParsedAttr.Architecture != "" &&
5747         Target.isValidCPUName(ParsedAttr.Architecture))
5748       TargetCPU = ParsedAttr.Architecture;
5749 
5750     // Now populate the feature map, first with the TargetCPU which is either
5751     // the default or a new one from the target attribute string. Then we'll use
5752     // the passed in features (FeaturesAsWritten) along with the new ones from
5753     // the attribute.
5754     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5755                           ParsedAttr.Features);
5756   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5757     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5758     Target.getCPUSpecificCPUDispatchFeatures(
5759         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5760     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5761     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5762   } else {
5763     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5764                           Target.getTargetOpts().Features);
5765   }
5766 }
5767 
5768 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5769   if (!SanStats)
5770     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5771 
5772   return *SanStats;
5773 }
5774 llvm::Value *
5775 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5776                                                   CodeGenFunction &CGF) {
5777   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5778   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5779   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5780   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5781                                 "__translate_sampler_initializer"),
5782                                 {C});
5783 }
5784