1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ProfileSummary.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 #include "llvm/Support/TimeProfiler.h" 62 63 using namespace clang; 64 using namespace CodeGen; 65 66 static llvm::cl::opt<bool> LimitedCoverage( 67 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 68 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 69 llvm::cl::init(false)); 70 71 static const char AnnotationSection[] = "llvm.metadata"; 72 73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 74 switch (CGM.getTarget().getCXXABI().getKind()) { 75 case TargetCXXABI::GenericAArch64: 76 case TargetCXXABI::GenericARM: 77 case TargetCXXABI::iOS: 78 case TargetCXXABI::iOS64: 79 case TargetCXXABI::WatchOS: 80 case TargetCXXABI::GenericMIPS: 81 case TargetCXXABI::GenericItanium: 82 case TargetCXXABI::WebAssembly: 83 return CreateItaniumCXXABI(CGM); 84 case TargetCXXABI::Microsoft: 85 return CreateMicrosoftCXXABI(CGM); 86 } 87 88 llvm_unreachable("invalid C++ ABI kind"); 89 } 90 91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 92 const PreprocessorOptions &PPO, 93 const CodeGenOptions &CGO, llvm::Module &M, 94 DiagnosticsEngine &diags, 95 CoverageSourceInfo *CoverageInfo) 96 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 97 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 98 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 99 VMContext(M.getContext()), Types(*this), VTables(*this), 100 SanitizerMD(new SanitizerMetadata(*this)) { 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 109 HalfTy = llvm::Type::getHalfTy(LLVMContext); 110 FloatTy = llvm::Type::getFloatTy(LLVMContext); 111 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 112 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 113 PointerAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 115 SizeSizeInBytes = 116 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 117 IntAlignInBytes = 118 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 119 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 120 IntPtrTy = llvm::IntegerType::get(LLVMContext, 121 C.getTargetInfo().getMaxPointerWidth()); 122 Int8PtrTy = Int8Ty->getPointerTo(0); 123 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 124 AllocaInt8PtrTy = Int8Ty->getPointerTo( 125 M.getDataLayout().getAllocaAddrSpace()); 126 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 127 128 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 129 130 if (LangOpts.ObjC) 131 createObjCRuntime(); 132 if (LangOpts.OpenCL) 133 createOpenCLRuntime(); 134 if (LangOpts.OpenMP) 135 createOpenMPRuntime(); 136 if (LangOpts.CUDA) 137 createCUDARuntime(); 138 139 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 140 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 141 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 143 getCXXABI().getMangleContext())); 144 145 // If debug info or coverage generation is enabled, create the CGDebugInfo 146 // object. 147 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 148 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 149 DebugInfo.reset(new CGDebugInfo(*this)); 150 151 Block.GlobalUniqueCount = 0; 152 153 if (C.getLangOpts().ObjC) 154 ObjCData.reset(new ObjCEntrypoints()); 155 156 if (CodeGenOpts.hasProfileClangUse()) { 157 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 158 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 159 if (auto E = ReaderOrErr.takeError()) { 160 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 161 "Could not read profile %0: %1"); 162 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 163 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 164 << EI.message(); 165 }); 166 } else 167 PGOReader = std::move(ReaderOrErr.get()); 168 } 169 170 // If coverage mapping generation is enabled, create the 171 // CoverageMappingModuleGen object. 172 if (CodeGenOpts.CoverageMapping) 173 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 174 } 175 176 CodeGenModule::~CodeGenModule() {} 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 // Select a specialized code generation class based on the target, if any. 204 // If it does not exist use the default implementation. 205 switch (getTriple().getArch()) { 206 case llvm::Triple::nvptx: 207 case llvm::Triple::nvptx64: 208 assert(getLangOpts().OpenMPIsDevice && 209 "OpenMP NVPTX is only prepared to deal with device code."); 210 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 211 break; 212 default: 213 if (LangOpts.OpenMPSimd) 214 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 215 else 216 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 217 break; 218 } 219 } 220 221 void CodeGenModule::createCUDARuntime() { 222 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 223 } 224 225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 226 Replacements[Name] = C; 227 } 228 229 void CodeGenModule::applyReplacements() { 230 for (auto &I : Replacements) { 231 StringRef MangledName = I.first(); 232 llvm::Constant *Replacement = I.second; 233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 234 if (!Entry) 235 continue; 236 auto *OldF = cast<llvm::Function>(Entry); 237 auto *NewF = dyn_cast<llvm::Function>(Replacement); 238 if (!NewF) { 239 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 240 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 241 } else { 242 auto *CE = cast<llvm::ConstantExpr>(Replacement); 243 assert(CE->getOpcode() == llvm::Instruction::BitCast || 244 CE->getOpcode() == llvm::Instruction::GetElementPtr); 245 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 246 } 247 } 248 249 // Replace old with new, but keep the old order. 250 OldF->replaceAllUsesWith(Replacement); 251 if (NewF) { 252 NewF->removeFromParent(); 253 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 254 NewF); 255 } 256 OldF->eraseFromParent(); 257 } 258 } 259 260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 261 GlobalValReplacements.push_back(std::make_pair(GV, C)); 262 } 263 264 void CodeGenModule::applyGlobalValReplacements() { 265 for (auto &I : GlobalValReplacements) { 266 llvm::GlobalValue *GV = I.first; 267 llvm::Constant *C = I.second; 268 269 GV->replaceAllUsesWith(C); 270 GV->eraseFromParent(); 271 } 272 } 273 274 // This is only used in aliases that we created and we know they have a 275 // linear structure. 276 static const llvm::GlobalObject *getAliasedGlobal( 277 const llvm::GlobalIndirectSymbol &GIS) { 278 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 279 const llvm::Constant *C = &GIS; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 286 if (!GIS2) 287 return nullptr; 288 if (!Visited.insert(GIS2).second) 289 return nullptr; 290 C = GIS2->getIndirectSymbol(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 SourceLocation Location; 303 bool IsIFunc = D->hasAttr<IFuncAttr>(); 304 if (const Attr *A = D->getDefiningAttr()) 305 Location = A->getLocation(); 306 else 307 llvm_unreachable("Not an alias or ifunc?"); 308 StringRef MangledName = getMangledName(GD); 309 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 310 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 311 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 312 if (!GV) { 313 Error = true; 314 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 315 } else if (GV->isDeclaration()) { 316 Error = true; 317 Diags.Report(Location, diag::err_alias_to_undefined) 318 << IsIFunc << IsIFunc; 319 } else if (IsIFunc) { 320 // Check resolver function type. 321 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 322 GV->getType()->getPointerElementType()); 323 assert(FTy); 324 if (!FTy->getReturnType()->isPointerTy()) 325 Diags.Report(Location, diag::err_ifunc_resolver_return); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 registerGlobalDtorsWithAtExit(); 402 EmitCXXThreadLocalInitFunc(); 403 if (ObjCRuntime) 404 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 405 AddGlobalCtor(ObjCInitFunction); 406 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 407 CUDARuntime) { 408 if (llvm::Function *CudaCtorFunction = 409 CUDARuntime->makeModuleCtorFunction()) 410 AddGlobalCtor(CudaCtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 414 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 415 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 416 } 417 if (llvm::Function *OpenMPRegistrationFunction = 418 OpenMPRuntime->emitRegistrationFunction()) { 419 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 420 OpenMPRegistrationFunction : nullptr; 421 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 422 } 423 OpenMPRuntime->clear(); 424 } 425 if (PGOReader) { 426 getModule().setProfileSummary( 427 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 428 llvm::ProfileSummary::PSK_Instr); 429 if (PGOStats.hasDiagnostics()) 430 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 431 } 432 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 433 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 434 EmitGlobalAnnotations(); 435 EmitStaticExternCAliases(); 436 EmitDeferredUnusedCoverageMappings(); 437 if (CoverageMapping) 438 CoverageMapping->emit(); 439 if (CodeGenOpts.SanitizeCfiCrossDso) { 440 CodeGenFunction(*this).EmitCfiCheckFail(); 441 CodeGenFunction(*this).EmitCfiCheckStub(); 442 } 443 emitAtAvailableLinkGuard(); 444 emitLLVMUsed(); 445 if (SanStats) 446 SanStats->finish(); 447 448 if (CodeGenOpts.Autolink && 449 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 450 EmitModuleLinkOptions(); 451 } 452 453 // On ELF we pass the dependent library specifiers directly to the linker 454 // without manipulating them. This is in contrast to other platforms where 455 // they are mapped to a specific linker option by the compiler. This 456 // difference is a result of the greater variety of ELF linkers and the fact 457 // that ELF linkers tend to handle libraries in a more complicated fashion 458 // than on other platforms. This forces us to defer handling the dependent 459 // libs to the linker. 460 if (!ELFDependentLibraries.empty()) { 461 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 462 for (auto *MD : ELFDependentLibraries) 463 NMD->addOperand(MD); 464 } 465 466 // Record mregparm value now so it is visible through rest of codegen. 467 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 468 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 469 CodeGenOpts.NumRegisterParameters); 470 471 if (CodeGenOpts.DwarfVersion) { 472 // We actually want the latest version when there are conflicts. 473 // We can change from Warning to Latest if such mode is supported. 474 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 475 CodeGenOpts.DwarfVersion); 476 } 477 if (CodeGenOpts.EmitCodeView) { 478 // Indicate that we want CodeView in the metadata. 479 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 480 } 481 if (CodeGenOpts.CodeViewGHash) { 482 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 483 } 484 if (CodeGenOpts.ControlFlowGuard) { 485 // We want function ID tables for Control Flow Guard. 486 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 487 } 488 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 489 // We don't support LTO with 2 with different StrictVTablePointers 490 // FIXME: we could support it by stripping all the information introduced 491 // by StrictVTablePointers. 492 493 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 494 495 llvm::Metadata *Ops[2] = { 496 llvm::MDString::get(VMContext, "StrictVTablePointers"), 497 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 498 llvm::Type::getInt32Ty(VMContext), 1))}; 499 500 getModule().addModuleFlag(llvm::Module::Require, 501 "StrictVTablePointersRequirement", 502 llvm::MDNode::get(VMContext, Ops)); 503 } 504 if (DebugInfo) 505 // We support a single version in the linked module. The LLVM 506 // parser will drop debug info with a different version number 507 // (and warn about it, too). 508 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 509 llvm::DEBUG_METADATA_VERSION); 510 511 // We need to record the widths of enums and wchar_t, so that we can generate 512 // the correct build attributes in the ARM backend. wchar_size is also used by 513 // TargetLibraryInfo. 514 uint64_t WCharWidth = 515 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 516 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 517 518 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 519 if ( Arch == llvm::Triple::arm 520 || Arch == llvm::Triple::armeb 521 || Arch == llvm::Triple::thumb 522 || Arch == llvm::Triple::thumbeb) { 523 // The minimum width of an enum in bytes 524 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 525 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 526 } 527 528 if (CodeGenOpts.SanitizeCfiCrossDso) { 529 // Indicate that we want cross-DSO control flow integrity checks. 530 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 531 } 532 533 if (CodeGenOpts.CFProtectionReturn && 534 Target.checkCFProtectionReturnSupported(getDiags())) { 535 // Indicate that we want to instrument return control flow protection. 536 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 537 1); 538 } 539 540 if (CodeGenOpts.CFProtectionBranch && 541 Target.checkCFProtectionBranchSupported(getDiags())) { 542 // Indicate that we want to instrument branch control flow protection. 543 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 544 1); 545 } 546 547 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 548 // Indicate whether __nvvm_reflect should be configured to flush denormal 549 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 550 // property.) 551 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 552 CodeGenOpts.FlushDenorm ? 1 : 0); 553 } 554 555 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 556 if (LangOpts.OpenCL) { 557 EmitOpenCLMetadata(); 558 // Emit SPIR version. 559 if (getTriple().isSPIR()) { 560 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 561 // opencl.spir.version named metadata. 562 llvm::Metadata *SPIRVerElts[] = { 563 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 564 Int32Ty, LangOpts.OpenCLVersion / 100)), 565 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 566 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 567 llvm::NamedMDNode *SPIRVerMD = 568 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 569 llvm::LLVMContext &Ctx = TheModule.getContext(); 570 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 571 } 572 } 573 574 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 575 assert(PLevel < 3 && "Invalid PIC Level"); 576 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 577 if (Context.getLangOpts().PIE) 578 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 579 } 580 581 if (getCodeGenOpts().CodeModel.size() > 0) { 582 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 583 .Case("tiny", llvm::CodeModel::Tiny) 584 .Case("small", llvm::CodeModel::Small) 585 .Case("kernel", llvm::CodeModel::Kernel) 586 .Case("medium", llvm::CodeModel::Medium) 587 .Case("large", llvm::CodeModel::Large) 588 .Default(~0u); 589 if (CM != ~0u) { 590 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 591 getModule().setCodeModel(codeModel); 592 } 593 } 594 595 if (CodeGenOpts.NoPLT) 596 getModule().setRtLibUseGOT(); 597 598 SimplifyPersonality(); 599 600 if (getCodeGenOpts().EmitDeclMetadata) 601 EmitDeclMetadata(); 602 603 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 604 EmitCoverageFile(); 605 606 if (DebugInfo) 607 DebugInfo->finalize(); 608 609 if (getCodeGenOpts().EmitVersionIdentMetadata) 610 EmitVersionIdentMetadata(); 611 612 if (!getCodeGenOpts().RecordCommandLine.empty()) 613 EmitCommandLineMetadata(); 614 615 EmitTargetMetadata(); 616 } 617 618 void CodeGenModule::EmitOpenCLMetadata() { 619 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 620 // opencl.ocl.version named metadata node. 621 llvm::Metadata *OCLVerElts[] = { 622 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 623 Int32Ty, LangOpts.OpenCLVersion / 100)), 624 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 625 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 626 llvm::NamedMDNode *OCLVerMD = 627 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 628 llvm::LLVMContext &Ctx = TheModule.getContext(); 629 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 630 } 631 632 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 633 // Make sure that this type is translated. 634 Types.UpdateCompletedType(TD); 635 } 636 637 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 638 // Make sure that this type is translated. 639 Types.RefreshTypeCacheForClass(RD); 640 } 641 642 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 643 if (!TBAA) 644 return nullptr; 645 return TBAA->getTypeInfo(QTy); 646 } 647 648 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 649 if (!TBAA) 650 return TBAAAccessInfo(); 651 return TBAA->getAccessInfo(AccessType); 652 } 653 654 TBAAAccessInfo 655 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 656 if (!TBAA) 657 return TBAAAccessInfo(); 658 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 659 } 660 661 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 662 if (!TBAA) 663 return nullptr; 664 return TBAA->getTBAAStructInfo(QTy); 665 } 666 667 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 668 if (!TBAA) 669 return nullptr; 670 return TBAA->getBaseTypeInfo(QTy); 671 } 672 673 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 674 if (!TBAA) 675 return nullptr; 676 return TBAA->getAccessTagInfo(Info); 677 } 678 679 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 680 TBAAAccessInfo TargetInfo) { 681 if (!TBAA) 682 return TBAAAccessInfo(); 683 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 684 } 685 686 TBAAAccessInfo 687 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 688 TBAAAccessInfo InfoB) { 689 if (!TBAA) 690 return TBAAAccessInfo(); 691 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 692 } 693 694 TBAAAccessInfo 695 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 696 TBAAAccessInfo SrcInfo) { 697 if (!TBAA) 698 return TBAAAccessInfo(); 699 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 700 } 701 702 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 703 TBAAAccessInfo TBAAInfo) { 704 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 705 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 706 } 707 708 void CodeGenModule::DecorateInstructionWithInvariantGroup( 709 llvm::Instruction *I, const CXXRecordDecl *RD) { 710 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 711 llvm::MDNode::get(getLLVMContext(), {})); 712 } 713 714 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 715 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 716 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 717 } 718 719 /// ErrorUnsupported - Print out an error that codegen doesn't support the 720 /// specified stmt yet. 721 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 722 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 723 "cannot compile this %0 yet"); 724 std::string Msg = Type; 725 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 726 << Msg << S->getSourceRange(); 727 } 728 729 /// ErrorUnsupported - Print out an error that codegen doesn't support the 730 /// specified decl yet. 731 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 732 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 733 "cannot compile this %0 yet"); 734 std::string Msg = Type; 735 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 736 } 737 738 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 739 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 740 } 741 742 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 743 const NamedDecl *D) const { 744 if (GV->hasDLLImportStorageClass()) 745 return; 746 // Internal definitions always have default visibility. 747 if (GV->hasLocalLinkage()) { 748 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 749 return; 750 } 751 if (!D) 752 return; 753 // Set visibility for definitions, and for declarations if requested globally 754 // or set explicitly. 755 LinkageInfo LV = D->getLinkageAndVisibility(); 756 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 757 !GV->isDeclarationForLinker()) 758 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 759 } 760 761 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 762 llvm::GlobalValue *GV) { 763 if (GV->hasLocalLinkage()) 764 return true; 765 766 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 767 return true; 768 769 // DLLImport explicitly marks the GV as external. 770 if (GV->hasDLLImportStorageClass()) 771 return false; 772 773 const llvm::Triple &TT = CGM.getTriple(); 774 if (TT.isWindowsGNUEnvironment()) { 775 // In MinGW, variables without DLLImport can still be automatically 776 // imported from a DLL by the linker; don't mark variables that 777 // potentially could come from another DLL as DSO local. 778 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 779 !GV->isThreadLocal()) 780 return false; 781 } 782 783 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 784 // remain unresolved in the link, they can be resolved to zero, which is 785 // outside the current DSO. 786 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 787 return false; 788 789 // Every other GV is local on COFF. 790 // Make an exception for windows OS in the triple: Some firmware builds use 791 // *-win32-macho triples. This (accidentally?) produced windows relocations 792 // without GOT tables in older clang versions; Keep this behaviour. 793 // FIXME: even thread local variables? 794 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 795 return true; 796 797 // Only handle COFF and ELF for now. 798 if (!TT.isOSBinFormatELF()) 799 return false; 800 801 // If this is not an executable, don't assume anything is local. 802 const auto &CGOpts = CGM.getCodeGenOpts(); 803 llvm::Reloc::Model RM = CGOpts.RelocationModel; 804 const auto &LOpts = CGM.getLangOpts(); 805 if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice) 806 return false; 807 808 // A definition cannot be preempted from an executable. 809 if (!GV->isDeclarationForLinker()) 810 return true; 811 812 // Most PIC code sequences that assume that a symbol is local cannot produce a 813 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 814 // depended, it seems worth it to handle it here. 815 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 816 return false; 817 818 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 819 llvm::Triple::ArchType Arch = TT.getArch(); 820 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 821 Arch == llvm::Triple::ppc64le) 822 return false; 823 824 // If we can use copy relocations we can assume it is local. 825 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 826 if (!Var->isThreadLocal() && 827 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 828 return true; 829 830 // If we can use a plt entry as the symbol address we can assume it 831 // is local. 832 // FIXME: This should work for PIE, but the gold linker doesn't support it. 833 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 834 return true; 835 836 // Otherwise don't assue it is local. 837 return false; 838 } 839 840 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 841 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 842 } 843 844 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 845 GlobalDecl GD) const { 846 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 847 // C++ destructors have a few C++ ABI specific special cases. 848 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 849 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 850 return; 851 } 852 setDLLImportDLLExport(GV, D); 853 } 854 855 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 856 const NamedDecl *D) const { 857 if (D && D->isExternallyVisible()) { 858 if (D->hasAttr<DLLImportAttr>()) 859 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 860 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 861 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 862 } 863 } 864 865 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 866 GlobalDecl GD) const { 867 setDLLImportDLLExport(GV, GD); 868 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 869 } 870 871 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 872 const NamedDecl *D) const { 873 setDLLImportDLLExport(GV, D); 874 setGlobalVisibilityAndLocal(GV, D); 875 } 876 877 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 878 const NamedDecl *D) const { 879 setGlobalVisibility(GV, D); 880 setDSOLocal(GV); 881 } 882 883 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 884 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 885 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 886 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 887 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 888 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 889 } 890 891 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 892 CodeGenOptions::TLSModel M) { 893 switch (M) { 894 case CodeGenOptions::GeneralDynamicTLSModel: 895 return llvm::GlobalVariable::GeneralDynamicTLSModel; 896 case CodeGenOptions::LocalDynamicTLSModel: 897 return llvm::GlobalVariable::LocalDynamicTLSModel; 898 case CodeGenOptions::InitialExecTLSModel: 899 return llvm::GlobalVariable::InitialExecTLSModel; 900 case CodeGenOptions::LocalExecTLSModel: 901 return llvm::GlobalVariable::LocalExecTLSModel; 902 } 903 llvm_unreachable("Invalid TLS model!"); 904 } 905 906 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 907 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 908 909 llvm::GlobalValue::ThreadLocalMode TLM; 910 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 911 912 // Override the TLS model if it is explicitly specified. 913 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 914 TLM = GetLLVMTLSModel(Attr->getModel()); 915 } 916 917 GV->setThreadLocalMode(TLM); 918 } 919 920 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 921 StringRef Name) { 922 const TargetInfo &Target = CGM.getTarget(); 923 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 924 } 925 926 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 927 const CPUSpecificAttr *Attr, 928 unsigned CPUIndex, 929 raw_ostream &Out) { 930 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 931 // supported. 932 if (Attr) 933 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 934 else if (CGM.getTarget().supportsIFunc()) 935 Out << ".resolver"; 936 } 937 938 static void AppendTargetMangling(const CodeGenModule &CGM, 939 const TargetAttr *Attr, raw_ostream &Out) { 940 if (Attr->isDefaultVersion()) 941 return; 942 943 Out << '.'; 944 const TargetInfo &Target = CGM.getTarget(); 945 TargetAttr::ParsedTargetAttr Info = 946 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 947 // Multiversioning doesn't allow "no-${feature}", so we can 948 // only have "+" prefixes here. 949 assert(LHS.startswith("+") && RHS.startswith("+") && 950 "Features should always have a prefix."); 951 return Target.multiVersionSortPriority(LHS.substr(1)) > 952 Target.multiVersionSortPriority(RHS.substr(1)); 953 }); 954 955 bool IsFirst = true; 956 957 if (!Info.Architecture.empty()) { 958 IsFirst = false; 959 Out << "arch_" << Info.Architecture; 960 } 961 962 for (StringRef Feat : Info.Features) { 963 if (!IsFirst) 964 Out << '_'; 965 IsFirst = false; 966 Out << Feat.substr(1); 967 } 968 } 969 970 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 971 const NamedDecl *ND, 972 bool OmitMultiVersionMangling = false) { 973 SmallString<256> Buffer; 974 llvm::raw_svector_ostream Out(Buffer); 975 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 976 if (MC.shouldMangleDeclName(ND)) { 977 llvm::raw_svector_ostream Out(Buffer); 978 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 979 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 980 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 981 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 982 else 983 MC.mangleName(ND, Out); 984 } else { 985 IdentifierInfo *II = ND->getIdentifier(); 986 assert(II && "Attempt to mangle unnamed decl."); 987 const auto *FD = dyn_cast<FunctionDecl>(ND); 988 989 if (FD && 990 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 991 llvm::raw_svector_ostream Out(Buffer); 992 Out << "__regcall3__" << II->getName(); 993 } else { 994 Out << II->getName(); 995 } 996 } 997 998 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 999 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1000 switch (FD->getMultiVersionKind()) { 1001 case MultiVersionKind::CPUDispatch: 1002 case MultiVersionKind::CPUSpecific: 1003 AppendCPUSpecificCPUDispatchMangling(CGM, 1004 FD->getAttr<CPUSpecificAttr>(), 1005 GD.getMultiVersionIndex(), Out); 1006 break; 1007 case MultiVersionKind::Target: 1008 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1009 break; 1010 case MultiVersionKind::None: 1011 llvm_unreachable("None multiversion type isn't valid here"); 1012 } 1013 } 1014 1015 return Out.str(); 1016 } 1017 1018 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1019 const FunctionDecl *FD) { 1020 if (!FD->isMultiVersion()) 1021 return; 1022 1023 // Get the name of what this would be without the 'target' attribute. This 1024 // allows us to lookup the version that was emitted when this wasn't a 1025 // multiversion function. 1026 std::string NonTargetName = 1027 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1028 GlobalDecl OtherGD; 1029 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1030 assert(OtherGD.getCanonicalDecl() 1031 .getDecl() 1032 ->getAsFunction() 1033 ->isMultiVersion() && 1034 "Other GD should now be a multiversioned function"); 1035 // OtherFD is the version of this function that was mangled BEFORE 1036 // becoming a MultiVersion function. It potentially needs to be updated. 1037 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1038 .getDecl() 1039 ->getAsFunction() 1040 ->getMostRecentDecl(); 1041 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1042 // This is so that if the initial version was already the 'default' 1043 // version, we don't try to update it. 1044 if (OtherName != NonTargetName) { 1045 // Remove instead of erase, since others may have stored the StringRef 1046 // to this. 1047 const auto ExistingRecord = Manglings.find(NonTargetName); 1048 if (ExistingRecord != std::end(Manglings)) 1049 Manglings.remove(&(*ExistingRecord)); 1050 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1051 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1052 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1053 Entry->setName(OtherName); 1054 } 1055 } 1056 } 1057 1058 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1059 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1060 1061 // Some ABIs don't have constructor variants. Make sure that base and 1062 // complete constructors get mangled the same. 1063 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1064 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1065 CXXCtorType OrigCtorType = GD.getCtorType(); 1066 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1067 if (OrigCtorType == Ctor_Base) 1068 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1069 } 1070 } 1071 1072 auto FoundName = MangledDeclNames.find(CanonicalGD); 1073 if (FoundName != MangledDeclNames.end()) 1074 return FoundName->second; 1075 1076 // Keep the first result in the case of a mangling collision. 1077 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1078 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1079 1080 // Postfix kernel stub names with .stub to differentiate them from kernel 1081 // names in device binaries. This is to facilitate the debugger to find 1082 // the correct symbols for kernels in the device binary. 1083 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1084 if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice && 1085 FD->hasAttr<CUDAGlobalAttr>()) 1086 MangledName = MangledName + ".stub"; 1087 1088 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1089 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1090 } 1091 1092 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1093 const BlockDecl *BD) { 1094 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1095 const Decl *D = GD.getDecl(); 1096 1097 SmallString<256> Buffer; 1098 llvm::raw_svector_ostream Out(Buffer); 1099 if (!D) 1100 MangleCtx.mangleGlobalBlock(BD, 1101 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1102 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1103 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1104 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1105 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1106 else 1107 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1108 1109 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1110 return Result.first->first(); 1111 } 1112 1113 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1114 return getModule().getNamedValue(Name); 1115 } 1116 1117 /// AddGlobalCtor - Add a function to the list that will be called before 1118 /// main() runs. 1119 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1120 llvm::Constant *AssociatedData) { 1121 // FIXME: Type coercion of void()* types. 1122 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1123 } 1124 1125 /// AddGlobalDtor - Add a function to the list that will be called 1126 /// when the module is unloaded. 1127 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1128 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1129 DtorsUsingAtExit[Priority].push_back(Dtor); 1130 return; 1131 } 1132 1133 // FIXME: Type coercion of void()* types. 1134 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1135 } 1136 1137 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1138 if (Fns.empty()) return; 1139 1140 // Ctor function type is void()*. 1141 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1142 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1143 TheModule.getDataLayout().getProgramAddressSpace()); 1144 1145 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1146 llvm::StructType *CtorStructTy = llvm::StructType::get( 1147 Int32Ty, CtorPFTy, VoidPtrTy); 1148 1149 // Construct the constructor and destructor arrays. 1150 ConstantInitBuilder builder(*this); 1151 auto ctors = builder.beginArray(CtorStructTy); 1152 for (const auto &I : Fns) { 1153 auto ctor = ctors.beginStruct(CtorStructTy); 1154 ctor.addInt(Int32Ty, I.Priority); 1155 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1156 if (I.AssociatedData) 1157 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1158 else 1159 ctor.addNullPointer(VoidPtrTy); 1160 ctor.finishAndAddTo(ctors); 1161 } 1162 1163 auto list = 1164 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1165 /*constant*/ false, 1166 llvm::GlobalValue::AppendingLinkage); 1167 1168 // The LTO linker doesn't seem to like it when we set an alignment 1169 // on appending variables. Take it off as a workaround. 1170 list->setAlignment(0); 1171 1172 Fns.clear(); 1173 } 1174 1175 llvm::GlobalValue::LinkageTypes 1176 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1177 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1178 1179 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1180 1181 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1182 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1183 1184 if (isa<CXXConstructorDecl>(D) && 1185 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1186 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1187 // Our approach to inheriting constructors is fundamentally different from 1188 // that used by the MS ABI, so keep our inheriting constructor thunks 1189 // internal rather than trying to pick an unambiguous mangling for them. 1190 return llvm::GlobalValue::InternalLinkage; 1191 } 1192 1193 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1194 } 1195 1196 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1197 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1198 if (!MDS) return nullptr; 1199 1200 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1201 } 1202 1203 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1204 const CGFunctionInfo &Info, 1205 llvm::Function *F) { 1206 unsigned CallingConv; 1207 llvm::AttributeList PAL; 1208 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1209 F->setAttributes(PAL); 1210 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1211 } 1212 1213 static void removeImageAccessQualifier(std::string& TyName) { 1214 std::string ReadOnlyQual("__read_only"); 1215 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1216 if (ReadOnlyPos != std::string::npos) 1217 // "+ 1" for the space after access qualifier. 1218 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1219 else { 1220 std::string WriteOnlyQual("__write_only"); 1221 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1222 if (WriteOnlyPos != std::string::npos) 1223 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1224 else { 1225 std::string ReadWriteQual("__read_write"); 1226 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1227 if (ReadWritePos != std::string::npos) 1228 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1229 } 1230 } 1231 } 1232 1233 // Returns the address space id that should be produced to the 1234 // kernel_arg_addr_space metadata. This is always fixed to the ids 1235 // as specified in the SPIR 2.0 specification in order to differentiate 1236 // for example in clGetKernelArgInfo() implementation between the address 1237 // spaces with targets without unique mapping to the OpenCL address spaces 1238 // (basically all single AS CPUs). 1239 static unsigned ArgInfoAddressSpace(LangAS AS) { 1240 switch (AS) { 1241 case LangAS::opencl_global: return 1; 1242 case LangAS::opencl_constant: return 2; 1243 case LangAS::opencl_local: return 3; 1244 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1245 default: 1246 return 0; // Assume private. 1247 } 1248 } 1249 1250 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1251 const FunctionDecl *FD, 1252 CodeGenFunction *CGF) { 1253 assert(((FD && CGF) || (!FD && !CGF)) && 1254 "Incorrect use - FD and CGF should either be both null or not!"); 1255 // Create MDNodes that represent the kernel arg metadata. 1256 // Each MDNode is a list in the form of "key", N number of values which is 1257 // the same number of values as their are kernel arguments. 1258 1259 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1260 1261 // MDNode for the kernel argument address space qualifiers. 1262 SmallVector<llvm::Metadata *, 8> addressQuals; 1263 1264 // MDNode for the kernel argument access qualifiers (images only). 1265 SmallVector<llvm::Metadata *, 8> accessQuals; 1266 1267 // MDNode for the kernel argument type names. 1268 SmallVector<llvm::Metadata *, 8> argTypeNames; 1269 1270 // MDNode for the kernel argument base type names. 1271 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1272 1273 // MDNode for the kernel argument type qualifiers. 1274 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1275 1276 // MDNode for the kernel argument names. 1277 SmallVector<llvm::Metadata *, 8> argNames; 1278 1279 if (FD && CGF) 1280 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1281 const ParmVarDecl *parm = FD->getParamDecl(i); 1282 QualType ty = parm->getType(); 1283 std::string typeQuals; 1284 1285 if (ty->isPointerType()) { 1286 QualType pointeeTy = ty->getPointeeType(); 1287 1288 // Get address qualifier. 1289 addressQuals.push_back( 1290 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1291 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1292 1293 // Get argument type name. 1294 std::string typeName = 1295 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1296 1297 // Turn "unsigned type" to "utype" 1298 std::string::size_type pos = typeName.find("unsigned"); 1299 if (pointeeTy.isCanonical() && pos != std::string::npos) 1300 typeName.erase(pos + 1, 8); 1301 1302 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1303 1304 std::string baseTypeName = 1305 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1306 Policy) + 1307 "*"; 1308 1309 // Turn "unsigned type" to "utype" 1310 pos = baseTypeName.find("unsigned"); 1311 if (pos != std::string::npos) 1312 baseTypeName.erase(pos + 1, 8); 1313 1314 argBaseTypeNames.push_back( 1315 llvm::MDString::get(VMContext, baseTypeName)); 1316 1317 // Get argument type qualifiers: 1318 if (ty.isRestrictQualified()) 1319 typeQuals = "restrict"; 1320 if (pointeeTy.isConstQualified() || 1321 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1322 typeQuals += typeQuals.empty() ? "const" : " const"; 1323 if (pointeeTy.isVolatileQualified()) 1324 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1325 } else { 1326 uint32_t AddrSpc = 0; 1327 bool isPipe = ty->isPipeType(); 1328 if (ty->isImageType() || isPipe) 1329 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1330 1331 addressQuals.push_back( 1332 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1333 1334 // Get argument type name. 1335 std::string typeName; 1336 if (isPipe) 1337 typeName = ty.getCanonicalType() 1338 ->getAs<PipeType>() 1339 ->getElementType() 1340 .getAsString(Policy); 1341 else 1342 typeName = ty.getUnqualifiedType().getAsString(Policy); 1343 1344 // Turn "unsigned type" to "utype" 1345 std::string::size_type pos = typeName.find("unsigned"); 1346 if (ty.isCanonical() && pos != std::string::npos) 1347 typeName.erase(pos + 1, 8); 1348 1349 std::string baseTypeName; 1350 if (isPipe) 1351 baseTypeName = ty.getCanonicalType() 1352 ->getAs<PipeType>() 1353 ->getElementType() 1354 .getCanonicalType() 1355 .getAsString(Policy); 1356 else 1357 baseTypeName = 1358 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1359 1360 // Remove access qualifiers on images 1361 // (as they are inseparable from type in clang implementation, 1362 // but OpenCL spec provides a special query to get access qualifier 1363 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1364 if (ty->isImageType()) { 1365 removeImageAccessQualifier(typeName); 1366 removeImageAccessQualifier(baseTypeName); 1367 } 1368 1369 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1370 1371 // Turn "unsigned type" to "utype" 1372 pos = baseTypeName.find("unsigned"); 1373 if (pos != std::string::npos) 1374 baseTypeName.erase(pos + 1, 8); 1375 1376 argBaseTypeNames.push_back( 1377 llvm::MDString::get(VMContext, baseTypeName)); 1378 1379 if (isPipe) 1380 typeQuals = "pipe"; 1381 } 1382 1383 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1384 1385 // Get image and pipe access qualifier: 1386 if (ty->isImageType() || ty->isPipeType()) { 1387 const Decl *PDecl = parm; 1388 if (auto *TD = dyn_cast<TypedefType>(ty)) 1389 PDecl = TD->getDecl(); 1390 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1391 if (A && A->isWriteOnly()) 1392 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1393 else if (A && A->isReadWrite()) 1394 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1395 else 1396 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1397 } else 1398 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1399 1400 // Get argument name. 1401 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1402 } 1403 1404 Fn->setMetadata("kernel_arg_addr_space", 1405 llvm::MDNode::get(VMContext, addressQuals)); 1406 Fn->setMetadata("kernel_arg_access_qual", 1407 llvm::MDNode::get(VMContext, accessQuals)); 1408 Fn->setMetadata("kernel_arg_type", 1409 llvm::MDNode::get(VMContext, argTypeNames)); 1410 Fn->setMetadata("kernel_arg_base_type", 1411 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1412 Fn->setMetadata("kernel_arg_type_qual", 1413 llvm::MDNode::get(VMContext, argTypeQuals)); 1414 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1415 Fn->setMetadata("kernel_arg_name", 1416 llvm::MDNode::get(VMContext, argNames)); 1417 } 1418 1419 /// Determines whether the language options require us to model 1420 /// unwind exceptions. We treat -fexceptions as mandating this 1421 /// except under the fragile ObjC ABI with only ObjC exceptions 1422 /// enabled. This means, for example, that C with -fexceptions 1423 /// enables this. 1424 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1425 // If exceptions are completely disabled, obviously this is false. 1426 if (!LangOpts.Exceptions) return false; 1427 1428 // If C++ exceptions are enabled, this is true. 1429 if (LangOpts.CXXExceptions) return true; 1430 1431 // If ObjC exceptions are enabled, this depends on the ABI. 1432 if (LangOpts.ObjCExceptions) { 1433 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1434 } 1435 1436 return true; 1437 } 1438 1439 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1440 const CXXMethodDecl *MD) { 1441 // Check that the type metadata can ever actually be used by a call. 1442 if (!CGM.getCodeGenOpts().LTOUnit || 1443 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1444 return false; 1445 1446 // Only functions whose address can be taken with a member function pointer 1447 // need this sort of type metadata. 1448 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1449 !isa<CXXDestructorDecl>(MD); 1450 } 1451 1452 std::vector<const CXXRecordDecl *> 1453 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1454 llvm::SetVector<const CXXRecordDecl *> MostBases; 1455 1456 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1457 CollectMostBases = [&](const CXXRecordDecl *RD) { 1458 if (RD->getNumBases() == 0) 1459 MostBases.insert(RD); 1460 for (const CXXBaseSpecifier &B : RD->bases()) 1461 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1462 }; 1463 CollectMostBases(RD); 1464 return MostBases.takeVector(); 1465 } 1466 1467 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1468 llvm::Function *F) { 1469 llvm::AttrBuilder B; 1470 1471 if (CodeGenOpts.UnwindTables) 1472 B.addAttribute(llvm::Attribute::UWTable); 1473 1474 if (!hasUnwindExceptions(LangOpts)) 1475 B.addAttribute(llvm::Attribute::NoUnwind); 1476 1477 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1478 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1479 B.addAttribute(llvm::Attribute::StackProtect); 1480 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1481 B.addAttribute(llvm::Attribute::StackProtectStrong); 1482 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1483 B.addAttribute(llvm::Attribute::StackProtectReq); 1484 } 1485 1486 if (!D) { 1487 // If we don't have a declaration to control inlining, the function isn't 1488 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1489 // disabled, mark the function as noinline. 1490 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1491 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1492 B.addAttribute(llvm::Attribute::NoInline); 1493 1494 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1495 return; 1496 } 1497 1498 // Track whether we need to add the optnone LLVM attribute, 1499 // starting with the default for this optimization level. 1500 bool ShouldAddOptNone = 1501 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1502 // We can't add optnone in the following cases, it won't pass the verifier. 1503 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1504 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1505 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1506 1507 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1508 B.addAttribute(llvm::Attribute::OptimizeNone); 1509 1510 // OptimizeNone implies noinline; we should not be inlining such functions. 1511 B.addAttribute(llvm::Attribute::NoInline); 1512 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1513 "OptimizeNone and AlwaysInline on same function!"); 1514 1515 // We still need to handle naked functions even though optnone subsumes 1516 // much of their semantics. 1517 if (D->hasAttr<NakedAttr>()) 1518 B.addAttribute(llvm::Attribute::Naked); 1519 1520 // OptimizeNone wins over OptimizeForSize and MinSize. 1521 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1522 F->removeFnAttr(llvm::Attribute::MinSize); 1523 } else if (D->hasAttr<NakedAttr>()) { 1524 // Naked implies noinline: we should not be inlining such functions. 1525 B.addAttribute(llvm::Attribute::Naked); 1526 B.addAttribute(llvm::Attribute::NoInline); 1527 } else if (D->hasAttr<NoDuplicateAttr>()) { 1528 B.addAttribute(llvm::Attribute::NoDuplicate); 1529 } else if (D->hasAttr<NoInlineAttr>()) { 1530 B.addAttribute(llvm::Attribute::NoInline); 1531 } else if (D->hasAttr<AlwaysInlineAttr>() && 1532 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1533 // (noinline wins over always_inline, and we can't specify both in IR) 1534 B.addAttribute(llvm::Attribute::AlwaysInline); 1535 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1536 // If we're not inlining, then force everything that isn't always_inline to 1537 // carry an explicit noinline attribute. 1538 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1539 B.addAttribute(llvm::Attribute::NoInline); 1540 } else { 1541 // Otherwise, propagate the inline hint attribute and potentially use its 1542 // absence to mark things as noinline. 1543 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1544 // Search function and template pattern redeclarations for inline. 1545 auto CheckForInline = [](const FunctionDecl *FD) { 1546 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1547 return Redecl->isInlineSpecified(); 1548 }; 1549 if (any_of(FD->redecls(), CheckRedeclForInline)) 1550 return true; 1551 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1552 if (!Pattern) 1553 return false; 1554 return any_of(Pattern->redecls(), CheckRedeclForInline); 1555 }; 1556 if (CheckForInline(FD)) { 1557 B.addAttribute(llvm::Attribute::InlineHint); 1558 } else if (CodeGenOpts.getInlining() == 1559 CodeGenOptions::OnlyHintInlining && 1560 !FD->isInlined() && 1561 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1562 B.addAttribute(llvm::Attribute::NoInline); 1563 } 1564 } 1565 } 1566 1567 // Add other optimization related attributes if we are optimizing this 1568 // function. 1569 if (!D->hasAttr<OptimizeNoneAttr>()) { 1570 if (D->hasAttr<ColdAttr>()) { 1571 if (!ShouldAddOptNone) 1572 B.addAttribute(llvm::Attribute::OptimizeForSize); 1573 B.addAttribute(llvm::Attribute::Cold); 1574 } 1575 1576 if (D->hasAttr<MinSizeAttr>()) 1577 B.addAttribute(llvm::Attribute::MinSize); 1578 } 1579 1580 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1581 1582 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1583 if (alignment) 1584 F->setAlignment(alignment); 1585 1586 if (!D->hasAttr<AlignedAttr>()) 1587 if (LangOpts.FunctionAlignment) 1588 F->setAlignment(1 << LangOpts.FunctionAlignment); 1589 1590 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1591 // reserve a bit for differentiating between virtual and non-virtual member 1592 // functions. If the current target's C++ ABI requires this and this is a 1593 // member function, set its alignment accordingly. 1594 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1595 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1596 F->setAlignment(2); 1597 } 1598 1599 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1600 if (CodeGenOpts.SanitizeCfiCrossDso) 1601 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1602 CreateFunctionTypeMetadataForIcall(FD, F); 1603 1604 // Emit type metadata on member functions for member function pointer checks. 1605 // These are only ever necessary on definitions; we're guaranteed that the 1606 // definition will be present in the LTO unit as a result of LTO visibility. 1607 auto *MD = dyn_cast<CXXMethodDecl>(D); 1608 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1609 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1610 llvm::Metadata *Id = 1611 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1612 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1613 F->addTypeMetadata(0, Id); 1614 } 1615 } 1616 } 1617 1618 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1619 const Decl *D = GD.getDecl(); 1620 if (dyn_cast_or_null<NamedDecl>(D)) 1621 setGVProperties(GV, GD); 1622 else 1623 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1624 1625 if (D && D->hasAttr<UsedAttr>()) 1626 addUsedGlobal(GV); 1627 1628 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1629 const auto *VD = cast<VarDecl>(D); 1630 if (VD->getType().isConstQualified() && 1631 VD->getStorageDuration() == SD_Static) 1632 addUsedGlobal(GV); 1633 } 1634 } 1635 1636 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1637 llvm::AttrBuilder &Attrs) { 1638 // Add target-cpu and target-features attributes to functions. If 1639 // we have a decl for the function and it has a target attribute then 1640 // parse that and add it to the feature set. 1641 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1642 std::vector<std::string> Features; 1643 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1644 FD = FD ? FD->getMostRecentDecl() : FD; 1645 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1646 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1647 bool AddedAttr = false; 1648 if (TD || SD) { 1649 llvm::StringMap<bool> FeatureMap; 1650 getFunctionFeatureMap(FeatureMap, GD); 1651 1652 // Produce the canonical string for this set of features. 1653 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1654 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1655 1656 // Now add the target-cpu and target-features to the function. 1657 // While we populated the feature map above, we still need to 1658 // get and parse the target attribute so we can get the cpu for 1659 // the function. 1660 if (TD) { 1661 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1662 if (ParsedAttr.Architecture != "" && 1663 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1664 TargetCPU = ParsedAttr.Architecture; 1665 } 1666 } else { 1667 // Otherwise just add the existing target cpu and target features to the 1668 // function. 1669 Features = getTarget().getTargetOpts().Features; 1670 } 1671 1672 if (TargetCPU != "") { 1673 Attrs.addAttribute("target-cpu", TargetCPU); 1674 AddedAttr = true; 1675 } 1676 if (!Features.empty()) { 1677 llvm::sort(Features); 1678 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1679 AddedAttr = true; 1680 } 1681 1682 return AddedAttr; 1683 } 1684 1685 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1686 llvm::GlobalObject *GO) { 1687 const Decl *D = GD.getDecl(); 1688 SetCommonAttributes(GD, GO); 1689 1690 if (D) { 1691 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1692 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1693 GV->addAttribute("bss-section", SA->getName()); 1694 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1695 GV->addAttribute("data-section", SA->getName()); 1696 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1697 GV->addAttribute("rodata-section", SA->getName()); 1698 } 1699 1700 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1701 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1702 if (!D->getAttr<SectionAttr>()) 1703 F->addFnAttr("implicit-section-name", SA->getName()); 1704 1705 llvm::AttrBuilder Attrs; 1706 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1707 // We know that GetCPUAndFeaturesAttributes will always have the 1708 // newest set, since it has the newest possible FunctionDecl, so the 1709 // new ones should replace the old. 1710 F->removeFnAttr("target-cpu"); 1711 F->removeFnAttr("target-features"); 1712 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1713 } 1714 } 1715 1716 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1717 GO->setSection(CSA->getName()); 1718 else if (const auto *SA = D->getAttr<SectionAttr>()) 1719 GO->setSection(SA->getName()); 1720 } 1721 1722 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1723 } 1724 1725 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1726 llvm::Function *F, 1727 const CGFunctionInfo &FI) { 1728 const Decl *D = GD.getDecl(); 1729 SetLLVMFunctionAttributes(GD, FI, F); 1730 SetLLVMFunctionAttributesForDefinition(D, F); 1731 1732 F->setLinkage(llvm::Function::InternalLinkage); 1733 1734 setNonAliasAttributes(GD, F); 1735 } 1736 1737 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1738 // Set linkage and visibility in case we never see a definition. 1739 LinkageInfo LV = ND->getLinkageAndVisibility(); 1740 // Don't set internal linkage on declarations. 1741 // "extern_weak" is overloaded in LLVM; we probably should have 1742 // separate linkage types for this. 1743 if (isExternallyVisible(LV.getLinkage()) && 1744 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1745 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1746 } 1747 1748 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1749 llvm::Function *F) { 1750 // Only if we are checking indirect calls. 1751 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1752 return; 1753 1754 // Non-static class methods are handled via vtable or member function pointer 1755 // checks elsewhere. 1756 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1757 return; 1758 1759 // Additionally, if building with cross-DSO support... 1760 if (CodeGenOpts.SanitizeCfiCrossDso) { 1761 // Skip available_externally functions. They won't be codegen'ed in the 1762 // current module anyway. 1763 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1764 return; 1765 } 1766 1767 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1768 F->addTypeMetadata(0, MD); 1769 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1770 1771 // Emit a hash-based bit set entry for cross-DSO calls. 1772 if (CodeGenOpts.SanitizeCfiCrossDso) 1773 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1774 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1775 } 1776 1777 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1778 bool IsIncompleteFunction, 1779 bool IsThunk) { 1780 1781 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1782 // If this is an intrinsic function, set the function's attributes 1783 // to the intrinsic's attributes. 1784 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1785 return; 1786 } 1787 1788 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1789 1790 if (!IsIncompleteFunction) 1791 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1792 1793 // Add the Returned attribute for "this", except for iOS 5 and earlier 1794 // where substantial code, including the libstdc++ dylib, was compiled with 1795 // GCC and does not actually return "this". 1796 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1797 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1798 assert(!F->arg_empty() && 1799 F->arg_begin()->getType() 1800 ->canLosslesslyBitCastTo(F->getReturnType()) && 1801 "unexpected this return"); 1802 F->addAttribute(1, llvm::Attribute::Returned); 1803 } 1804 1805 // Only a few attributes are set on declarations; these may later be 1806 // overridden by a definition. 1807 1808 setLinkageForGV(F, FD); 1809 setGVProperties(F, FD); 1810 1811 // Setup target-specific attributes. 1812 if (!IsIncompleteFunction && F->isDeclaration()) 1813 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1814 1815 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1816 F->setSection(CSA->getName()); 1817 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1818 F->setSection(SA->getName()); 1819 1820 if (FD->isReplaceableGlobalAllocationFunction()) { 1821 // A replaceable global allocation function does not act like a builtin by 1822 // default, only if it is invoked by a new-expression or delete-expression. 1823 F->addAttribute(llvm::AttributeList::FunctionIndex, 1824 llvm::Attribute::NoBuiltin); 1825 1826 // A sane operator new returns a non-aliasing pointer. 1827 // FIXME: Also add NonNull attribute to the return value 1828 // for the non-nothrow forms? 1829 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1830 if (getCodeGenOpts().AssumeSaneOperatorNew && 1831 (Kind == OO_New || Kind == OO_Array_New)) 1832 F->addAttribute(llvm::AttributeList::ReturnIndex, 1833 llvm::Attribute::NoAlias); 1834 } 1835 1836 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1837 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1838 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1839 if (MD->isVirtual()) 1840 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1841 1842 // Don't emit entries for function declarations in the cross-DSO mode. This 1843 // is handled with better precision by the receiving DSO. 1844 if (!CodeGenOpts.SanitizeCfiCrossDso) 1845 CreateFunctionTypeMetadataForIcall(FD, F); 1846 1847 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1848 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1849 1850 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1851 // Annotate the callback behavior as metadata: 1852 // - The callback callee (as argument number). 1853 // - The callback payloads (as argument numbers). 1854 llvm::LLVMContext &Ctx = F->getContext(); 1855 llvm::MDBuilder MDB(Ctx); 1856 1857 // The payload indices are all but the first one in the encoding. The first 1858 // identifies the callback callee. 1859 int CalleeIdx = *CB->encoding_begin(); 1860 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1861 F->addMetadata(llvm::LLVMContext::MD_callback, 1862 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1863 CalleeIdx, PayloadIndices, 1864 /* VarArgsArePassed */ false)})); 1865 } 1866 } 1867 1868 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1869 assert(!GV->isDeclaration() && 1870 "Only globals with definition can force usage."); 1871 LLVMUsed.emplace_back(GV); 1872 } 1873 1874 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1875 assert(!GV->isDeclaration() && 1876 "Only globals with definition can force usage."); 1877 LLVMCompilerUsed.emplace_back(GV); 1878 } 1879 1880 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1881 std::vector<llvm::WeakTrackingVH> &List) { 1882 // Don't create llvm.used if there is no need. 1883 if (List.empty()) 1884 return; 1885 1886 // Convert List to what ConstantArray needs. 1887 SmallVector<llvm::Constant*, 8> UsedArray; 1888 UsedArray.resize(List.size()); 1889 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1890 UsedArray[i] = 1891 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1892 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1893 } 1894 1895 if (UsedArray.empty()) 1896 return; 1897 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1898 1899 auto *GV = new llvm::GlobalVariable( 1900 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1901 llvm::ConstantArray::get(ATy, UsedArray), Name); 1902 1903 GV->setSection("llvm.metadata"); 1904 } 1905 1906 void CodeGenModule::emitLLVMUsed() { 1907 emitUsed(*this, "llvm.used", LLVMUsed); 1908 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1909 } 1910 1911 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1912 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1913 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1914 } 1915 1916 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1917 llvm::SmallString<32> Opt; 1918 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1919 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1920 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1921 } 1922 1923 void CodeGenModule::AddDependentLib(StringRef Lib) { 1924 auto &C = getLLVMContext(); 1925 if (getTarget().getTriple().isOSBinFormatELF()) { 1926 ELFDependentLibraries.push_back( 1927 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 1928 return; 1929 } 1930 1931 llvm::SmallString<24> Opt; 1932 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1933 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1934 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 1935 } 1936 1937 /// Add link options implied by the given module, including modules 1938 /// it depends on, using a postorder walk. 1939 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1940 SmallVectorImpl<llvm::MDNode *> &Metadata, 1941 llvm::SmallPtrSet<Module *, 16> &Visited) { 1942 // Import this module's parent. 1943 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1944 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1945 } 1946 1947 // Import this module's dependencies. 1948 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1949 if (Visited.insert(Mod->Imports[I - 1]).second) 1950 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1951 } 1952 1953 // Add linker options to link against the libraries/frameworks 1954 // described by this module. 1955 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1956 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1957 1958 // For modules that use export_as for linking, use that module 1959 // name instead. 1960 if (Mod->UseExportAsModuleLinkName) 1961 return; 1962 1963 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1964 // Link against a framework. Frameworks are currently Darwin only, so we 1965 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1966 if (Mod->LinkLibraries[I-1].IsFramework) { 1967 llvm::Metadata *Args[2] = { 1968 llvm::MDString::get(Context, "-framework"), 1969 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1970 1971 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1972 continue; 1973 } 1974 1975 // Link against a library. 1976 if (IsELF) { 1977 llvm::Metadata *Args[2] = { 1978 llvm::MDString::get(Context, "lib"), 1979 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1980 }; 1981 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1982 } else { 1983 llvm::SmallString<24> Opt; 1984 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1985 Mod->LinkLibraries[I - 1].Library, Opt); 1986 auto *OptString = llvm::MDString::get(Context, Opt); 1987 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1988 } 1989 } 1990 } 1991 1992 void CodeGenModule::EmitModuleLinkOptions() { 1993 // Collect the set of all of the modules we want to visit to emit link 1994 // options, which is essentially the imported modules and all of their 1995 // non-explicit child modules. 1996 llvm::SetVector<clang::Module *> LinkModules; 1997 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1998 SmallVector<clang::Module *, 16> Stack; 1999 2000 // Seed the stack with imported modules. 2001 for (Module *M : ImportedModules) { 2002 // Do not add any link flags when an implementation TU of a module imports 2003 // a header of that same module. 2004 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2005 !getLangOpts().isCompilingModule()) 2006 continue; 2007 if (Visited.insert(M).second) 2008 Stack.push_back(M); 2009 } 2010 2011 // Find all of the modules to import, making a little effort to prune 2012 // non-leaf modules. 2013 while (!Stack.empty()) { 2014 clang::Module *Mod = Stack.pop_back_val(); 2015 2016 bool AnyChildren = false; 2017 2018 // Visit the submodules of this module. 2019 for (const auto &SM : Mod->submodules()) { 2020 // Skip explicit children; they need to be explicitly imported to be 2021 // linked against. 2022 if (SM->IsExplicit) 2023 continue; 2024 2025 if (Visited.insert(SM).second) { 2026 Stack.push_back(SM); 2027 AnyChildren = true; 2028 } 2029 } 2030 2031 // We didn't find any children, so add this module to the list of 2032 // modules to link against. 2033 if (!AnyChildren) { 2034 LinkModules.insert(Mod); 2035 } 2036 } 2037 2038 // Add link options for all of the imported modules in reverse topological 2039 // order. We don't do anything to try to order import link flags with respect 2040 // to linker options inserted by things like #pragma comment(). 2041 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2042 Visited.clear(); 2043 for (Module *M : LinkModules) 2044 if (Visited.insert(M).second) 2045 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2046 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2047 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2048 2049 // Add the linker options metadata flag. 2050 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2051 for (auto *MD : LinkerOptionsMetadata) 2052 NMD->addOperand(MD); 2053 } 2054 2055 void CodeGenModule::EmitDeferred() { 2056 // Emit deferred declare target declarations. 2057 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2058 getOpenMPRuntime().emitDeferredTargetDecls(); 2059 2060 // Emit code for any potentially referenced deferred decls. Since a 2061 // previously unused static decl may become used during the generation of code 2062 // for a static function, iterate until no changes are made. 2063 2064 if (!DeferredVTables.empty()) { 2065 EmitDeferredVTables(); 2066 2067 // Emitting a vtable doesn't directly cause more vtables to 2068 // become deferred, although it can cause functions to be 2069 // emitted that then need those vtables. 2070 assert(DeferredVTables.empty()); 2071 } 2072 2073 // Stop if we're out of both deferred vtables and deferred declarations. 2074 if (DeferredDeclsToEmit.empty()) 2075 return; 2076 2077 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2078 // work, it will not interfere with this. 2079 std::vector<GlobalDecl> CurDeclsToEmit; 2080 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2081 2082 for (GlobalDecl &D : CurDeclsToEmit) { 2083 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2084 // to get GlobalValue with exactly the type we need, not something that 2085 // might had been created for another decl with the same mangled name but 2086 // different type. 2087 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2088 GetAddrOfGlobal(D, ForDefinition)); 2089 2090 // In case of different address spaces, we may still get a cast, even with 2091 // IsForDefinition equal to true. Query mangled names table to get 2092 // GlobalValue. 2093 if (!GV) 2094 GV = GetGlobalValue(getMangledName(D)); 2095 2096 // Make sure GetGlobalValue returned non-null. 2097 assert(GV); 2098 2099 // Check to see if we've already emitted this. This is necessary 2100 // for a couple of reasons: first, decls can end up in the 2101 // deferred-decls queue multiple times, and second, decls can end 2102 // up with definitions in unusual ways (e.g. by an extern inline 2103 // function acquiring a strong function redefinition). Just 2104 // ignore these cases. 2105 if (!GV->isDeclaration()) 2106 continue; 2107 2108 // Otherwise, emit the definition and move on to the next one. 2109 EmitGlobalDefinition(D, GV); 2110 2111 // If we found out that we need to emit more decls, do that recursively. 2112 // This has the advantage that the decls are emitted in a DFS and related 2113 // ones are close together, which is convenient for testing. 2114 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2115 EmitDeferred(); 2116 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2117 } 2118 } 2119 } 2120 2121 void CodeGenModule::EmitVTablesOpportunistically() { 2122 // Try to emit external vtables as available_externally if they have emitted 2123 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2124 // is not allowed to create new references to things that need to be emitted 2125 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2126 2127 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2128 && "Only emit opportunistic vtables with optimizations"); 2129 2130 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2131 assert(getVTables().isVTableExternal(RD) && 2132 "This queue should only contain external vtables"); 2133 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2134 VTables.GenerateClassData(RD); 2135 } 2136 OpportunisticVTables.clear(); 2137 } 2138 2139 void CodeGenModule::EmitGlobalAnnotations() { 2140 if (Annotations.empty()) 2141 return; 2142 2143 // Create a new global variable for the ConstantStruct in the Module. 2144 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2145 Annotations[0]->getType(), Annotations.size()), Annotations); 2146 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2147 llvm::GlobalValue::AppendingLinkage, 2148 Array, "llvm.global.annotations"); 2149 gv->setSection(AnnotationSection); 2150 } 2151 2152 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2153 llvm::Constant *&AStr = AnnotationStrings[Str]; 2154 if (AStr) 2155 return AStr; 2156 2157 // Not found yet, create a new global. 2158 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2159 auto *gv = 2160 new llvm::GlobalVariable(getModule(), s->getType(), true, 2161 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2162 gv->setSection(AnnotationSection); 2163 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2164 AStr = gv; 2165 return gv; 2166 } 2167 2168 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2169 SourceManager &SM = getContext().getSourceManager(); 2170 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2171 if (PLoc.isValid()) 2172 return EmitAnnotationString(PLoc.getFilename()); 2173 return EmitAnnotationString(SM.getBufferName(Loc)); 2174 } 2175 2176 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2177 SourceManager &SM = getContext().getSourceManager(); 2178 PresumedLoc PLoc = SM.getPresumedLoc(L); 2179 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2180 SM.getExpansionLineNumber(L); 2181 return llvm::ConstantInt::get(Int32Ty, LineNo); 2182 } 2183 2184 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2185 const AnnotateAttr *AA, 2186 SourceLocation L) { 2187 // Get the globals for file name, annotation, and the line number. 2188 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2189 *UnitGV = EmitAnnotationUnit(L), 2190 *LineNoCst = EmitAnnotationLineNo(L); 2191 2192 // Create the ConstantStruct for the global annotation. 2193 llvm::Constant *Fields[4] = { 2194 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 2195 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2196 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2197 LineNoCst 2198 }; 2199 return llvm::ConstantStruct::getAnon(Fields); 2200 } 2201 2202 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2203 llvm::GlobalValue *GV) { 2204 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2205 // Get the struct elements for these annotations. 2206 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2207 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2208 } 2209 2210 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2211 llvm::Function *Fn, 2212 SourceLocation Loc) const { 2213 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2214 // Blacklist by function name. 2215 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2216 return true; 2217 // Blacklist by location. 2218 if (Loc.isValid()) 2219 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2220 // If location is unknown, this may be a compiler-generated function. Assume 2221 // it's located in the main file. 2222 auto &SM = Context.getSourceManager(); 2223 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2224 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2225 } 2226 return false; 2227 } 2228 2229 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2230 SourceLocation Loc, QualType Ty, 2231 StringRef Category) const { 2232 // For now globals can be blacklisted only in ASan and KASan. 2233 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 2234 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2235 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 2236 if (!EnabledAsanMask) 2237 return false; 2238 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2239 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2240 return true; 2241 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2242 return true; 2243 // Check global type. 2244 if (!Ty.isNull()) { 2245 // Drill down the array types: if global variable of a fixed type is 2246 // blacklisted, we also don't instrument arrays of them. 2247 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2248 Ty = AT->getElementType(); 2249 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2250 // We allow to blacklist only record types (classes, structs etc.) 2251 if (Ty->isRecordType()) { 2252 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2253 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2254 return true; 2255 } 2256 } 2257 return false; 2258 } 2259 2260 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2261 StringRef Category) const { 2262 const auto &XRayFilter = getContext().getXRayFilter(); 2263 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2264 auto Attr = ImbueAttr::NONE; 2265 if (Loc.isValid()) 2266 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2267 if (Attr == ImbueAttr::NONE) 2268 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2269 switch (Attr) { 2270 case ImbueAttr::NONE: 2271 return false; 2272 case ImbueAttr::ALWAYS: 2273 Fn->addFnAttr("function-instrument", "xray-always"); 2274 break; 2275 case ImbueAttr::ALWAYS_ARG1: 2276 Fn->addFnAttr("function-instrument", "xray-always"); 2277 Fn->addFnAttr("xray-log-args", "1"); 2278 break; 2279 case ImbueAttr::NEVER: 2280 Fn->addFnAttr("function-instrument", "xray-never"); 2281 break; 2282 } 2283 return true; 2284 } 2285 2286 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2287 // Never defer when EmitAllDecls is specified. 2288 if (LangOpts.EmitAllDecls) 2289 return true; 2290 2291 if (CodeGenOpts.KeepStaticConsts) { 2292 const auto *VD = dyn_cast<VarDecl>(Global); 2293 if (VD && VD->getType().isConstQualified() && 2294 VD->getStorageDuration() == SD_Static) 2295 return true; 2296 } 2297 2298 return getContext().DeclMustBeEmitted(Global); 2299 } 2300 2301 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2302 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2303 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2304 // Implicit template instantiations may change linkage if they are later 2305 // explicitly instantiated, so they should not be emitted eagerly. 2306 return false; 2307 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2308 if (Context.getInlineVariableDefinitionKind(VD) == 2309 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2310 // A definition of an inline constexpr static data member may change 2311 // linkage later if it's redeclared outside the class. 2312 return false; 2313 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2314 // codegen for global variables, because they may be marked as threadprivate. 2315 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2316 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2317 !isTypeConstant(Global->getType(), false) && 2318 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2319 return false; 2320 2321 return true; 2322 } 2323 2324 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2325 const CXXUuidofExpr* E) { 2326 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2327 // well-formed. 2328 StringRef Uuid = E->getUuidStr(); 2329 std::string Name = "_GUID_" + Uuid.lower(); 2330 std::replace(Name.begin(), Name.end(), '-', '_'); 2331 2332 // The UUID descriptor should be pointer aligned. 2333 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2334 2335 // Look for an existing global. 2336 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2337 return ConstantAddress(GV, Alignment); 2338 2339 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2340 assert(Init && "failed to initialize as constant"); 2341 2342 auto *GV = new llvm::GlobalVariable( 2343 getModule(), Init->getType(), 2344 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2345 if (supportsCOMDAT()) 2346 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2347 setDSOLocal(GV); 2348 return ConstantAddress(GV, Alignment); 2349 } 2350 2351 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2352 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2353 assert(AA && "No alias?"); 2354 2355 CharUnits Alignment = getContext().getDeclAlign(VD); 2356 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2357 2358 // See if there is already something with the target's name in the module. 2359 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2360 if (Entry) { 2361 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2362 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2363 return ConstantAddress(Ptr, Alignment); 2364 } 2365 2366 llvm::Constant *Aliasee; 2367 if (isa<llvm::FunctionType>(DeclTy)) 2368 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2369 GlobalDecl(cast<FunctionDecl>(VD)), 2370 /*ForVTable=*/false); 2371 else 2372 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2373 llvm::PointerType::getUnqual(DeclTy), 2374 nullptr); 2375 2376 auto *F = cast<llvm::GlobalValue>(Aliasee); 2377 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2378 WeakRefReferences.insert(F); 2379 2380 return ConstantAddress(Aliasee, Alignment); 2381 } 2382 2383 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2384 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2385 2386 // Weak references don't produce any output by themselves. 2387 if (Global->hasAttr<WeakRefAttr>()) 2388 return; 2389 2390 // If this is an alias definition (which otherwise looks like a declaration) 2391 // emit it now. 2392 if (Global->hasAttr<AliasAttr>()) 2393 return EmitAliasDefinition(GD); 2394 2395 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2396 if (Global->hasAttr<IFuncAttr>()) 2397 return emitIFuncDefinition(GD); 2398 2399 // If this is a cpu_dispatch multiversion function, emit the resolver. 2400 if (Global->hasAttr<CPUDispatchAttr>()) 2401 return emitCPUDispatchDefinition(GD); 2402 2403 // If this is CUDA, be selective about which declarations we emit. 2404 if (LangOpts.CUDA) { 2405 if (LangOpts.CUDAIsDevice) { 2406 if (!Global->hasAttr<CUDADeviceAttr>() && 2407 !Global->hasAttr<CUDAGlobalAttr>() && 2408 !Global->hasAttr<CUDAConstantAttr>() && 2409 !Global->hasAttr<CUDASharedAttr>()) 2410 return; 2411 } else { 2412 // We need to emit host-side 'shadows' for all global 2413 // device-side variables because the CUDA runtime needs their 2414 // size and host-side address in order to provide access to 2415 // their device-side incarnations. 2416 2417 // So device-only functions are the only things we skip. 2418 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2419 Global->hasAttr<CUDADeviceAttr>()) 2420 return; 2421 2422 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2423 "Expected Variable or Function"); 2424 } 2425 } 2426 2427 if (LangOpts.OpenMP) { 2428 // If this is OpenMP device, check if it is legal to emit this global 2429 // normally. 2430 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2431 return; 2432 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2433 if (MustBeEmitted(Global)) 2434 EmitOMPDeclareReduction(DRD); 2435 return; 2436 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2437 if (MustBeEmitted(Global)) 2438 EmitOMPDeclareMapper(DMD); 2439 return; 2440 } 2441 } 2442 2443 // Ignore declarations, they will be emitted on their first use. 2444 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2445 // Forward declarations are emitted lazily on first use. 2446 if (!FD->doesThisDeclarationHaveABody()) { 2447 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2448 return; 2449 2450 StringRef MangledName = getMangledName(GD); 2451 2452 // Compute the function info and LLVM type. 2453 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2454 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2455 2456 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2457 /*DontDefer=*/false); 2458 return; 2459 } 2460 } else { 2461 const auto *VD = cast<VarDecl>(Global); 2462 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2463 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2464 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2465 if (LangOpts.OpenMP) { 2466 // Emit declaration of the must-be-emitted declare target variable. 2467 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2468 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2469 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2470 (void)GetAddrOfGlobalVar(VD); 2471 } else { 2472 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2473 "link claue expected."); 2474 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2475 } 2476 return; 2477 } 2478 } 2479 // If this declaration may have caused an inline variable definition to 2480 // change linkage, make sure that it's emitted. 2481 if (Context.getInlineVariableDefinitionKind(VD) == 2482 ASTContext::InlineVariableDefinitionKind::Strong) 2483 GetAddrOfGlobalVar(VD); 2484 return; 2485 } 2486 } 2487 2488 // Defer code generation to first use when possible, e.g. if this is an inline 2489 // function. If the global must always be emitted, do it eagerly if possible 2490 // to benefit from cache locality. 2491 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2492 // Emit the definition if it can't be deferred. 2493 EmitGlobalDefinition(GD); 2494 return; 2495 } 2496 2497 // If we're deferring emission of a C++ variable with an 2498 // initializer, remember the order in which it appeared in the file. 2499 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2500 cast<VarDecl>(Global)->hasInit()) { 2501 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2502 CXXGlobalInits.push_back(nullptr); 2503 } 2504 2505 StringRef MangledName = getMangledName(GD); 2506 if (GetGlobalValue(MangledName) != nullptr) { 2507 // The value has already been used and should therefore be emitted. 2508 addDeferredDeclToEmit(GD); 2509 } else if (MustBeEmitted(Global)) { 2510 // The value must be emitted, but cannot be emitted eagerly. 2511 assert(!MayBeEmittedEagerly(Global)); 2512 addDeferredDeclToEmit(GD); 2513 } else { 2514 // Otherwise, remember that we saw a deferred decl with this name. The 2515 // first use of the mangled name will cause it to move into 2516 // DeferredDeclsToEmit. 2517 DeferredDecls[MangledName] = GD; 2518 } 2519 } 2520 2521 // Check if T is a class type with a destructor that's not dllimport. 2522 static bool HasNonDllImportDtor(QualType T) { 2523 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2524 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2525 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2526 return true; 2527 2528 return false; 2529 } 2530 2531 namespace { 2532 struct FunctionIsDirectlyRecursive 2533 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2534 const StringRef Name; 2535 const Builtin::Context &BI; 2536 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2537 : Name(N), BI(C) {} 2538 2539 bool VisitCallExpr(const CallExpr *E) { 2540 const FunctionDecl *FD = E->getDirectCallee(); 2541 if (!FD) 2542 return false; 2543 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2544 if (Attr && Name == Attr->getLabel()) 2545 return true; 2546 unsigned BuiltinID = FD->getBuiltinID(); 2547 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2548 return false; 2549 StringRef BuiltinName = BI.getName(BuiltinID); 2550 if (BuiltinName.startswith("__builtin_") && 2551 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2552 return true; 2553 } 2554 return false; 2555 } 2556 2557 bool VisitStmt(const Stmt *S) { 2558 for (const Stmt *Child : S->children()) 2559 if (Child && this->Visit(Child)) 2560 return true; 2561 return false; 2562 } 2563 }; 2564 2565 // Make sure we're not referencing non-imported vars or functions. 2566 struct DLLImportFunctionVisitor 2567 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2568 bool SafeToInline = true; 2569 2570 bool shouldVisitImplicitCode() const { return true; } 2571 2572 bool VisitVarDecl(VarDecl *VD) { 2573 if (VD->getTLSKind()) { 2574 // A thread-local variable cannot be imported. 2575 SafeToInline = false; 2576 return SafeToInline; 2577 } 2578 2579 // A variable definition might imply a destructor call. 2580 if (VD->isThisDeclarationADefinition()) 2581 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2582 2583 return SafeToInline; 2584 } 2585 2586 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2587 if (const auto *D = E->getTemporary()->getDestructor()) 2588 SafeToInline = D->hasAttr<DLLImportAttr>(); 2589 return SafeToInline; 2590 } 2591 2592 bool VisitDeclRefExpr(DeclRefExpr *E) { 2593 ValueDecl *VD = E->getDecl(); 2594 if (isa<FunctionDecl>(VD)) 2595 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2596 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2597 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2598 return SafeToInline; 2599 } 2600 2601 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2602 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2603 return SafeToInline; 2604 } 2605 2606 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2607 CXXMethodDecl *M = E->getMethodDecl(); 2608 if (!M) { 2609 // Call through a pointer to member function. This is safe to inline. 2610 SafeToInline = true; 2611 } else { 2612 SafeToInline = M->hasAttr<DLLImportAttr>(); 2613 } 2614 return SafeToInline; 2615 } 2616 2617 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2618 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2619 return SafeToInline; 2620 } 2621 2622 bool VisitCXXNewExpr(CXXNewExpr *E) { 2623 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2624 return SafeToInline; 2625 } 2626 }; 2627 } 2628 2629 // isTriviallyRecursive - Check if this function calls another 2630 // decl that, because of the asm attribute or the other decl being a builtin, 2631 // ends up pointing to itself. 2632 bool 2633 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2634 StringRef Name; 2635 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2636 // asm labels are a special kind of mangling we have to support. 2637 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2638 if (!Attr) 2639 return false; 2640 Name = Attr->getLabel(); 2641 } else { 2642 Name = FD->getName(); 2643 } 2644 2645 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2646 const Stmt *Body = FD->getBody(); 2647 return Body ? Walker.Visit(Body) : false; 2648 } 2649 2650 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2651 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2652 return true; 2653 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2654 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2655 return false; 2656 2657 if (F->hasAttr<DLLImportAttr>()) { 2658 // Check whether it would be safe to inline this dllimport function. 2659 DLLImportFunctionVisitor Visitor; 2660 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2661 if (!Visitor.SafeToInline) 2662 return false; 2663 2664 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2665 // Implicit destructor invocations aren't captured in the AST, so the 2666 // check above can't see them. Check for them manually here. 2667 for (const Decl *Member : Dtor->getParent()->decls()) 2668 if (isa<FieldDecl>(Member)) 2669 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2670 return false; 2671 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2672 if (HasNonDllImportDtor(B.getType())) 2673 return false; 2674 } 2675 } 2676 2677 // PR9614. Avoid cases where the source code is lying to us. An available 2678 // externally function should have an equivalent function somewhere else, 2679 // but a function that calls itself is clearly not equivalent to the real 2680 // implementation. 2681 // This happens in glibc's btowc and in some configure checks. 2682 return !isTriviallyRecursive(F); 2683 } 2684 2685 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2686 return CodeGenOpts.OptimizationLevel > 0; 2687 } 2688 2689 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2690 llvm::GlobalValue *GV) { 2691 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2692 2693 if (FD->isCPUSpecificMultiVersion()) { 2694 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2695 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2696 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2697 // Requires multiple emits. 2698 } else 2699 EmitGlobalFunctionDefinition(GD, GV); 2700 } 2701 2702 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2703 const auto *D = cast<ValueDecl>(GD.getDecl()); 2704 2705 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2706 Context.getSourceManager(), 2707 "Generating code for declaration"); 2708 2709 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2710 // At -O0, don't generate IR for functions with available_externally 2711 // linkage. 2712 if (!shouldEmitFunction(GD)) 2713 return; 2714 2715 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2716 std::string Name; 2717 llvm::raw_string_ostream OS(Name); 2718 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2719 /*Qualified=*/true); 2720 return Name; 2721 }); 2722 2723 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2724 // Make sure to emit the definition(s) before we emit the thunks. 2725 // This is necessary for the generation of certain thunks. 2726 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2727 ABI->emitCXXStructor(GD); 2728 else if (FD->isMultiVersion()) 2729 EmitMultiVersionFunctionDefinition(GD, GV); 2730 else 2731 EmitGlobalFunctionDefinition(GD, GV); 2732 2733 if (Method->isVirtual()) 2734 getVTables().EmitThunks(GD); 2735 2736 return; 2737 } 2738 2739 if (FD->isMultiVersion()) 2740 return EmitMultiVersionFunctionDefinition(GD, GV); 2741 return EmitGlobalFunctionDefinition(GD, GV); 2742 } 2743 2744 if (const auto *VD = dyn_cast<VarDecl>(D)) 2745 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2746 2747 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2748 } 2749 2750 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2751 llvm::Function *NewFn); 2752 2753 static unsigned 2754 TargetMVPriority(const TargetInfo &TI, 2755 const CodeGenFunction::MultiVersionResolverOption &RO) { 2756 unsigned Priority = 0; 2757 for (StringRef Feat : RO.Conditions.Features) 2758 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2759 2760 if (!RO.Conditions.Architecture.empty()) 2761 Priority = std::max( 2762 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2763 return Priority; 2764 } 2765 2766 void CodeGenModule::emitMultiVersionFunctions() { 2767 for (GlobalDecl GD : MultiVersionFuncs) { 2768 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2769 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2770 getContext().forEachMultiversionedFunctionVersion( 2771 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2772 GlobalDecl CurGD{ 2773 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2774 StringRef MangledName = getMangledName(CurGD); 2775 llvm::Constant *Func = GetGlobalValue(MangledName); 2776 if (!Func) { 2777 if (CurFD->isDefined()) { 2778 EmitGlobalFunctionDefinition(CurGD, nullptr); 2779 Func = GetGlobalValue(MangledName); 2780 } else { 2781 const CGFunctionInfo &FI = 2782 getTypes().arrangeGlobalDeclaration(GD); 2783 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2784 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2785 /*DontDefer=*/false, ForDefinition); 2786 } 2787 assert(Func && "This should have just been created"); 2788 } 2789 2790 const auto *TA = CurFD->getAttr<TargetAttr>(); 2791 llvm::SmallVector<StringRef, 8> Feats; 2792 TA->getAddedFeatures(Feats); 2793 2794 Options.emplace_back(cast<llvm::Function>(Func), 2795 TA->getArchitecture(), Feats); 2796 }); 2797 2798 llvm::Function *ResolverFunc; 2799 const TargetInfo &TI = getTarget(); 2800 2801 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2802 ResolverFunc = cast<llvm::Function>( 2803 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2804 else 2805 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2806 2807 if (supportsCOMDAT()) 2808 ResolverFunc->setComdat( 2809 getModule().getOrInsertComdat(ResolverFunc->getName())); 2810 2811 llvm::stable_sort( 2812 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2813 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2814 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2815 }); 2816 CodeGenFunction CGF(*this); 2817 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2818 } 2819 } 2820 2821 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2822 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2823 assert(FD && "Not a FunctionDecl?"); 2824 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2825 assert(DD && "Not a cpu_dispatch Function?"); 2826 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2827 2828 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2829 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2830 DeclTy = getTypes().GetFunctionType(FInfo); 2831 } 2832 2833 StringRef ResolverName = getMangledName(GD); 2834 2835 llvm::Type *ResolverType; 2836 GlobalDecl ResolverGD; 2837 if (getTarget().supportsIFunc()) 2838 ResolverType = llvm::FunctionType::get( 2839 llvm::PointerType::get(DeclTy, 2840 Context.getTargetAddressSpace(FD->getType())), 2841 false); 2842 else { 2843 ResolverType = DeclTy; 2844 ResolverGD = GD; 2845 } 2846 2847 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2848 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2849 2850 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2851 const TargetInfo &Target = getTarget(); 2852 unsigned Index = 0; 2853 for (const IdentifierInfo *II : DD->cpus()) { 2854 // Get the name of the target function so we can look it up/create it. 2855 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2856 getCPUSpecificMangling(*this, II->getName()); 2857 2858 llvm::Constant *Func = GetGlobalValue(MangledName); 2859 2860 if (!Func) { 2861 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2862 if (ExistingDecl.getDecl() && 2863 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2864 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2865 Func = GetGlobalValue(MangledName); 2866 } else { 2867 if (!ExistingDecl.getDecl()) 2868 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2869 2870 Func = GetOrCreateLLVMFunction( 2871 MangledName, DeclTy, ExistingDecl, 2872 /*ForVTable=*/false, /*DontDefer=*/true, 2873 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2874 } 2875 } 2876 2877 llvm::SmallVector<StringRef, 32> Features; 2878 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2879 llvm::transform(Features, Features.begin(), 2880 [](StringRef Str) { return Str.substr(1); }); 2881 Features.erase(std::remove_if( 2882 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2883 return !Target.validateCpuSupports(Feat); 2884 }), Features.end()); 2885 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2886 ++Index; 2887 } 2888 2889 llvm::sort( 2890 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2891 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2892 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2893 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2894 }); 2895 2896 // If the list contains multiple 'default' versions, such as when it contains 2897 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2898 // always run on at least a 'pentium'). We do this by deleting the 'least 2899 // advanced' (read, lowest mangling letter). 2900 while (Options.size() > 1 && 2901 CodeGenFunction::GetX86CpuSupportsMask( 2902 (Options.end() - 2)->Conditions.Features) == 0) { 2903 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2904 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2905 if (LHSName.compare(RHSName) < 0) 2906 Options.erase(Options.end() - 2); 2907 else 2908 Options.erase(Options.end() - 1); 2909 } 2910 2911 CodeGenFunction CGF(*this); 2912 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2913 } 2914 2915 /// If a dispatcher for the specified mangled name is not in the module, create 2916 /// and return an llvm Function with the specified type. 2917 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2918 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2919 std::string MangledName = 2920 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2921 2922 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2923 // a separate resolver). 2924 std::string ResolverName = MangledName; 2925 if (getTarget().supportsIFunc()) 2926 ResolverName += ".ifunc"; 2927 else if (FD->isTargetMultiVersion()) 2928 ResolverName += ".resolver"; 2929 2930 // If this already exists, just return that one. 2931 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2932 return ResolverGV; 2933 2934 // Since this is the first time we've created this IFunc, make sure 2935 // that we put this multiversioned function into the list to be 2936 // replaced later if necessary (target multiversioning only). 2937 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2938 MultiVersionFuncs.push_back(GD); 2939 2940 if (getTarget().supportsIFunc()) { 2941 llvm::Type *ResolverType = llvm::FunctionType::get( 2942 llvm::PointerType::get( 2943 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2944 false); 2945 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2946 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2947 /*ForVTable=*/false); 2948 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2949 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2950 GIF->setName(ResolverName); 2951 SetCommonAttributes(FD, GIF); 2952 2953 return GIF; 2954 } 2955 2956 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2957 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2958 assert(isa<llvm::GlobalValue>(Resolver) && 2959 "Resolver should be created for the first time"); 2960 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2961 return Resolver; 2962 } 2963 2964 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2965 /// module, create and return an llvm Function with the specified type. If there 2966 /// is something in the module with the specified name, return it potentially 2967 /// bitcasted to the right type. 2968 /// 2969 /// If D is non-null, it specifies a decl that correspond to this. This is used 2970 /// to set the attributes on the function when it is first created. 2971 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2972 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2973 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2974 ForDefinition_t IsForDefinition) { 2975 const Decl *D = GD.getDecl(); 2976 2977 // Any attempts to use a MultiVersion function should result in retrieving 2978 // the iFunc instead. Name Mangling will handle the rest of the changes. 2979 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2980 // For the device mark the function as one that should be emitted. 2981 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2982 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2983 !DontDefer && !IsForDefinition) { 2984 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2985 GlobalDecl GDDef; 2986 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2987 GDDef = GlobalDecl(CD, GD.getCtorType()); 2988 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2989 GDDef = GlobalDecl(DD, GD.getDtorType()); 2990 else 2991 GDDef = GlobalDecl(FDDef); 2992 EmitGlobal(GDDef); 2993 } 2994 } 2995 2996 if (FD->isMultiVersion()) { 2997 const auto *TA = FD->getAttr<TargetAttr>(); 2998 if (TA && TA->isDefaultVersion()) 2999 UpdateMultiVersionNames(GD, FD); 3000 if (!IsForDefinition) 3001 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3002 } 3003 } 3004 3005 // Lookup the entry, lazily creating it if necessary. 3006 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3007 if (Entry) { 3008 if (WeakRefReferences.erase(Entry)) { 3009 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3010 if (FD && !FD->hasAttr<WeakAttr>()) 3011 Entry->setLinkage(llvm::Function::ExternalLinkage); 3012 } 3013 3014 // Handle dropped DLL attributes. 3015 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3016 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3017 setDSOLocal(Entry); 3018 } 3019 3020 // If there are two attempts to define the same mangled name, issue an 3021 // error. 3022 if (IsForDefinition && !Entry->isDeclaration()) { 3023 GlobalDecl OtherGD; 3024 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3025 // to make sure that we issue an error only once. 3026 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3027 (GD.getCanonicalDecl().getDecl() != 3028 OtherGD.getCanonicalDecl().getDecl()) && 3029 DiagnosedConflictingDefinitions.insert(GD).second) { 3030 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3031 << MangledName; 3032 getDiags().Report(OtherGD.getDecl()->getLocation(), 3033 diag::note_previous_definition); 3034 } 3035 } 3036 3037 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3038 (Entry->getType()->getElementType() == Ty)) { 3039 return Entry; 3040 } 3041 3042 // Make sure the result is of the correct type. 3043 // (If function is requested for a definition, we always need to create a new 3044 // function, not just return a bitcast.) 3045 if (!IsForDefinition) 3046 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3047 } 3048 3049 // This function doesn't have a complete type (for example, the return 3050 // type is an incomplete struct). Use a fake type instead, and make 3051 // sure not to try to set attributes. 3052 bool IsIncompleteFunction = false; 3053 3054 llvm::FunctionType *FTy; 3055 if (isa<llvm::FunctionType>(Ty)) { 3056 FTy = cast<llvm::FunctionType>(Ty); 3057 } else { 3058 FTy = llvm::FunctionType::get(VoidTy, false); 3059 IsIncompleteFunction = true; 3060 } 3061 3062 llvm::Function *F = 3063 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3064 Entry ? StringRef() : MangledName, &getModule()); 3065 3066 // If we already created a function with the same mangled name (but different 3067 // type) before, take its name and add it to the list of functions to be 3068 // replaced with F at the end of CodeGen. 3069 // 3070 // This happens if there is a prototype for a function (e.g. "int f()") and 3071 // then a definition of a different type (e.g. "int f(int x)"). 3072 if (Entry) { 3073 F->takeName(Entry); 3074 3075 // This might be an implementation of a function without a prototype, in 3076 // which case, try to do special replacement of calls which match the new 3077 // prototype. The really key thing here is that we also potentially drop 3078 // arguments from the call site so as to make a direct call, which makes the 3079 // inliner happier and suppresses a number of optimizer warnings (!) about 3080 // dropping arguments. 3081 if (!Entry->use_empty()) { 3082 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3083 Entry->removeDeadConstantUsers(); 3084 } 3085 3086 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3087 F, Entry->getType()->getElementType()->getPointerTo()); 3088 addGlobalValReplacement(Entry, BC); 3089 } 3090 3091 assert(F->getName() == MangledName && "name was uniqued!"); 3092 if (D) 3093 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3094 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3095 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3096 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3097 } 3098 3099 if (!DontDefer) { 3100 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3101 // each other bottoming out with the base dtor. Therefore we emit non-base 3102 // dtors on usage, even if there is no dtor definition in the TU. 3103 if (D && isa<CXXDestructorDecl>(D) && 3104 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3105 GD.getDtorType())) 3106 addDeferredDeclToEmit(GD); 3107 3108 // This is the first use or definition of a mangled name. If there is a 3109 // deferred decl with this name, remember that we need to emit it at the end 3110 // of the file. 3111 auto DDI = DeferredDecls.find(MangledName); 3112 if (DDI != DeferredDecls.end()) { 3113 // Move the potentially referenced deferred decl to the 3114 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3115 // don't need it anymore). 3116 addDeferredDeclToEmit(DDI->second); 3117 DeferredDecls.erase(DDI); 3118 3119 // Otherwise, there are cases we have to worry about where we're 3120 // using a declaration for which we must emit a definition but where 3121 // we might not find a top-level definition: 3122 // - member functions defined inline in their classes 3123 // - friend functions defined inline in some class 3124 // - special member functions with implicit definitions 3125 // If we ever change our AST traversal to walk into class methods, 3126 // this will be unnecessary. 3127 // 3128 // We also don't emit a definition for a function if it's going to be an 3129 // entry in a vtable, unless it's already marked as used. 3130 } else if (getLangOpts().CPlusPlus && D) { 3131 // Look for a declaration that's lexically in a record. 3132 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3133 FD = FD->getPreviousDecl()) { 3134 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3135 if (FD->doesThisDeclarationHaveABody()) { 3136 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3137 break; 3138 } 3139 } 3140 } 3141 } 3142 } 3143 3144 // Make sure the result is of the requested type. 3145 if (!IsIncompleteFunction) { 3146 assert(F->getType()->getElementType() == Ty); 3147 return F; 3148 } 3149 3150 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3151 return llvm::ConstantExpr::getBitCast(F, PTy); 3152 } 3153 3154 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3155 /// non-null, then this function will use the specified type if it has to 3156 /// create it (this occurs when we see a definition of the function). 3157 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3158 llvm::Type *Ty, 3159 bool ForVTable, 3160 bool DontDefer, 3161 ForDefinition_t IsForDefinition) { 3162 // If there was no specific requested type, just convert it now. 3163 if (!Ty) { 3164 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3165 Ty = getTypes().ConvertType(FD->getType()); 3166 } 3167 3168 // Devirtualized destructor calls may come through here instead of via 3169 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3170 // of the complete destructor when necessary. 3171 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3172 if (getTarget().getCXXABI().isMicrosoft() && 3173 GD.getDtorType() == Dtor_Complete && 3174 DD->getParent()->getNumVBases() == 0) 3175 GD = GlobalDecl(DD, Dtor_Base); 3176 } 3177 3178 StringRef MangledName = getMangledName(GD); 3179 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3180 /*IsThunk=*/false, llvm::AttributeList(), 3181 IsForDefinition); 3182 } 3183 3184 static const FunctionDecl * 3185 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3186 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3187 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3188 3189 IdentifierInfo &CII = C.Idents.get(Name); 3190 for (const auto &Result : DC->lookup(&CII)) 3191 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3192 return FD; 3193 3194 if (!C.getLangOpts().CPlusPlus) 3195 return nullptr; 3196 3197 // Demangle the premangled name from getTerminateFn() 3198 IdentifierInfo &CXXII = 3199 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3200 ? C.Idents.get("terminate") 3201 : C.Idents.get(Name); 3202 3203 for (const auto &N : {"__cxxabiv1", "std"}) { 3204 IdentifierInfo &NS = C.Idents.get(N); 3205 for (const auto &Result : DC->lookup(&NS)) { 3206 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3207 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3208 for (const auto &Result : LSD->lookup(&NS)) 3209 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3210 break; 3211 3212 if (ND) 3213 for (const auto &Result : ND->lookup(&CXXII)) 3214 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3215 return FD; 3216 } 3217 } 3218 3219 return nullptr; 3220 } 3221 3222 /// CreateRuntimeFunction - Create a new runtime function with the specified 3223 /// type and name. 3224 llvm::FunctionCallee 3225 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3226 llvm::AttributeList ExtraAttrs, 3227 bool Local) { 3228 llvm::Constant *C = 3229 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3230 /*DontDefer=*/false, /*IsThunk=*/false, 3231 ExtraAttrs); 3232 3233 if (auto *F = dyn_cast<llvm::Function>(C)) { 3234 if (F->empty()) { 3235 F->setCallingConv(getRuntimeCC()); 3236 3237 // In Windows Itanium environments, try to mark runtime functions 3238 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3239 // will link their standard library statically or dynamically. Marking 3240 // functions imported when they are not imported can cause linker errors 3241 // and warnings. 3242 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3243 !getCodeGenOpts().LTOVisibilityPublicStd) { 3244 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3245 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3246 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3247 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3248 } 3249 } 3250 setDSOLocal(F); 3251 } 3252 } 3253 3254 return {FTy, C}; 3255 } 3256 3257 /// isTypeConstant - Determine whether an object of this type can be emitted 3258 /// as a constant. 3259 /// 3260 /// If ExcludeCtor is true, the duration when the object's constructor runs 3261 /// will not be considered. The caller will need to verify that the object is 3262 /// not written to during its construction. 3263 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3264 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3265 return false; 3266 3267 if (Context.getLangOpts().CPlusPlus) { 3268 if (const CXXRecordDecl *Record 3269 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3270 return ExcludeCtor && !Record->hasMutableFields() && 3271 Record->hasTrivialDestructor(); 3272 } 3273 3274 return true; 3275 } 3276 3277 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3278 /// create and return an llvm GlobalVariable with the specified type. If there 3279 /// is something in the module with the specified name, return it potentially 3280 /// bitcasted to the right type. 3281 /// 3282 /// If D is non-null, it specifies a decl that correspond to this. This is used 3283 /// to set the attributes on the global when it is first created. 3284 /// 3285 /// If IsForDefinition is true, it is guaranteed that an actual global with 3286 /// type Ty will be returned, not conversion of a variable with the same 3287 /// mangled name but some other type. 3288 llvm::Constant * 3289 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3290 llvm::PointerType *Ty, 3291 const VarDecl *D, 3292 ForDefinition_t IsForDefinition) { 3293 // Lookup the entry, lazily creating it if necessary. 3294 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3295 if (Entry) { 3296 if (WeakRefReferences.erase(Entry)) { 3297 if (D && !D->hasAttr<WeakAttr>()) 3298 Entry->setLinkage(llvm::Function::ExternalLinkage); 3299 } 3300 3301 // Handle dropped DLL attributes. 3302 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3303 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3304 3305 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3306 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3307 3308 if (Entry->getType() == Ty) 3309 return Entry; 3310 3311 // If there are two attempts to define the same mangled name, issue an 3312 // error. 3313 if (IsForDefinition && !Entry->isDeclaration()) { 3314 GlobalDecl OtherGD; 3315 const VarDecl *OtherD; 3316 3317 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3318 // to make sure that we issue an error only once. 3319 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3320 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3321 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3322 OtherD->hasInit() && 3323 DiagnosedConflictingDefinitions.insert(D).second) { 3324 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3325 << MangledName; 3326 getDiags().Report(OtherGD.getDecl()->getLocation(), 3327 diag::note_previous_definition); 3328 } 3329 } 3330 3331 // Make sure the result is of the correct type. 3332 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3333 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3334 3335 // (If global is requested for a definition, we always need to create a new 3336 // global, not just return a bitcast.) 3337 if (!IsForDefinition) 3338 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3339 } 3340 3341 auto AddrSpace = GetGlobalVarAddressSpace(D); 3342 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3343 3344 auto *GV = new llvm::GlobalVariable( 3345 getModule(), Ty->getElementType(), false, 3346 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3347 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3348 3349 // If we already created a global with the same mangled name (but different 3350 // type) before, take its name and remove it from its parent. 3351 if (Entry) { 3352 GV->takeName(Entry); 3353 3354 if (!Entry->use_empty()) { 3355 llvm::Constant *NewPtrForOldDecl = 3356 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3357 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3358 } 3359 3360 Entry->eraseFromParent(); 3361 } 3362 3363 // This is the first use or definition of a mangled name. If there is a 3364 // deferred decl with this name, remember that we need to emit it at the end 3365 // of the file. 3366 auto DDI = DeferredDecls.find(MangledName); 3367 if (DDI != DeferredDecls.end()) { 3368 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3369 // list, and remove it from DeferredDecls (since we don't need it anymore). 3370 addDeferredDeclToEmit(DDI->second); 3371 DeferredDecls.erase(DDI); 3372 } 3373 3374 // Handle things which are present even on external declarations. 3375 if (D) { 3376 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3377 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3378 3379 // FIXME: This code is overly simple and should be merged with other global 3380 // handling. 3381 GV->setConstant(isTypeConstant(D->getType(), false)); 3382 3383 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3384 3385 setLinkageForGV(GV, D); 3386 3387 if (D->getTLSKind()) { 3388 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3389 CXXThreadLocals.push_back(D); 3390 setTLSMode(GV, *D); 3391 } 3392 3393 setGVProperties(GV, D); 3394 3395 // If required by the ABI, treat declarations of static data members with 3396 // inline initializers as definitions. 3397 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3398 EmitGlobalVarDefinition(D); 3399 } 3400 3401 // Emit section information for extern variables. 3402 if (D->hasExternalStorage()) { 3403 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3404 GV->setSection(SA->getName()); 3405 } 3406 3407 // Handle XCore specific ABI requirements. 3408 if (getTriple().getArch() == llvm::Triple::xcore && 3409 D->getLanguageLinkage() == CLanguageLinkage && 3410 D->getType().isConstant(Context) && 3411 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3412 GV->setSection(".cp.rodata"); 3413 3414 // Check if we a have a const declaration with an initializer, we may be 3415 // able to emit it as available_externally to expose it's value to the 3416 // optimizer. 3417 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3418 D->getType().isConstQualified() && !GV->hasInitializer() && 3419 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3420 const auto *Record = 3421 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3422 bool HasMutableFields = Record && Record->hasMutableFields(); 3423 if (!HasMutableFields) { 3424 const VarDecl *InitDecl; 3425 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3426 if (InitExpr) { 3427 ConstantEmitter emitter(*this); 3428 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3429 if (Init) { 3430 auto *InitType = Init->getType(); 3431 if (GV->getType()->getElementType() != InitType) { 3432 // The type of the initializer does not match the definition. 3433 // This happens when an initializer has a different type from 3434 // the type of the global (because of padding at the end of a 3435 // structure for instance). 3436 GV->setName(StringRef()); 3437 // Make a new global with the correct type, this is now guaranteed 3438 // to work. 3439 auto *NewGV = cast<llvm::GlobalVariable>( 3440 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3441 3442 // Erase the old global, since it is no longer used. 3443 GV->eraseFromParent(); 3444 GV = NewGV; 3445 } else { 3446 GV->setInitializer(Init); 3447 GV->setConstant(true); 3448 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3449 } 3450 emitter.finalize(GV); 3451 } 3452 } 3453 } 3454 } 3455 } 3456 3457 LangAS ExpectedAS = 3458 D ? D->getType().getAddressSpace() 3459 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3460 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3461 Ty->getPointerAddressSpace()); 3462 if (AddrSpace != ExpectedAS) 3463 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3464 ExpectedAS, Ty); 3465 3466 if (GV->isDeclaration()) 3467 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3468 3469 return GV; 3470 } 3471 3472 llvm::Constant * 3473 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3474 ForDefinition_t IsForDefinition) { 3475 const Decl *D = GD.getDecl(); 3476 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3477 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3478 /*DontDefer=*/false, IsForDefinition); 3479 else if (isa<CXXMethodDecl>(D)) { 3480 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3481 cast<CXXMethodDecl>(D)); 3482 auto Ty = getTypes().GetFunctionType(*FInfo); 3483 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3484 IsForDefinition); 3485 } else if (isa<FunctionDecl>(D)) { 3486 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3487 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3488 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3489 IsForDefinition); 3490 } else 3491 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3492 IsForDefinition); 3493 } 3494 3495 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3496 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3497 unsigned Alignment) { 3498 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3499 llvm::GlobalVariable *OldGV = nullptr; 3500 3501 if (GV) { 3502 // Check if the variable has the right type. 3503 if (GV->getType()->getElementType() == Ty) 3504 return GV; 3505 3506 // Because C++ name mangling, the only way we can end up with an already 3507 // existing global with the same name is if it has been declared extern "C". 3508 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3509 OldGV = GV; 3510 } 3511 3512 // Create a new variable. 3513 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3514 Linkage, nullptr, Name); 3515 3516 if (OldGV) { 3517 // Replace occurrences of the old variable if needed. 3518 GV->takeName(OldGV); 3519 3520 if (!OldGV->use_empty()) { 3521 llvm::Constant *NewPtrForOldDecl = 3522 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3523 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3524 } 3525 3526 OldGV->eraseFromParent(); 3527 } 3528 3529 if (supportsCOMDAT() && GV->isWeakForLinker() && 3530 !GV->hasAvailableExternallyLinkage()) 3531 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3532 3533 GV->setAlignment(Alignment); 3534 3535 return GV; 3536 } 3537 3538 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3539 /// given global variable. If Ty is non-null and if the global doesn't exist, 3540 /// then it will be created with the specified type instead of whatever the 3541 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3542 /// that an actual global with type Ty will be returned, not conversion of a 3543 /// variable with the same mangled name but some other type. 3544 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3545 llvm::Type *Ty, 3546 ForDefinition_t IsForDefinition) { 3547 assert(D->hasGlobalStorage() && "Not a global variable"); 3548 QualType ASTTy = D->getType(); 3549 if (!Ty) 3550 Ty = getTypes().ConvertTypeForMem(ASTTy); 3551 3552 llvm::PointerType *PTy = 3553 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3554 3555 StringRef MangledName = getMangledName(D); 3556 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3557 } 3558 3559 /// CreateRuntimeVariable - Create a new runtime global variable with the 3560 /// specified type and name. 3561 llvm::Constant * 3562 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3563 StringRef Name) { 3564 auto *Ret = 3565 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3566 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3567 return Ret; 3568 } 3569 3570 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3571 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3572 3573 StringRef MangledName = getMangledName(D); 3574 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3575 3576 // We already have a definition, not declaration, with the same mangled name. 3577 // Emitting of declaration is not required (and actually overwrites emitted 3578 // definition). 3579 if (GV && !GV->isDeclaration()) 3580 return; 3581 3582 // If we have not seen a reference to this variable yet, place it into the 3583 // deferred declarations table to be emitted if needed later. 3584 if (!MustBeEmitted(D) && !GV) { 3585 DeferredDecls[MangledName] = D; 3586 return; 3587 } 3588 3589 // The tentative definition is the only definition. 3590 EmitGlobalVarDefinition(D); 3591 } 3592 3593 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3594 return Context.toCharUnitsFromBits( 3595 getDataLayout().getTypeStoreSizeInBits(Ty)); 3596 } 3597 3598 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3599 LangAS AddrSpace = LangAS::Default; 3600 if (LangOpts.OpenCL) { 3601 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3602 assert(AddrSpace == LangAS::opencl_global || 3603 AddrSpace == LangAS::opencl_constant || 3604 AddrSpace == LangAS::opencl_local || 3605 AddrSpace >= LangAS::FirstTargetAddressSpace); 3606 return AddrSpace; 3607 } 3608 3609 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3610 if (D && D->hasAttr<CUDAConstantAttr>()) 3611 return LangAS::cuda_constant; 3612 else if (D && D->hasAttr<CUDASharedAttr>()) 3613 return LangAS::cuda_shared; 3614 else if (D && D->hasAttr<CUDADeviceAttr>()) 3615 return LangAS::cuda_device; 3616 else if (D && D->getType().isConstQualified()) 3617 return LangAS::cuda_constant; 3618 else 3619 return LangAS::cuda_device; 3620 } 3621 3622 if (LangOpts.OpenMP) { 3623 LangAS AS; 3624 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3625 return AS; 3626 } 3627 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3628 } 3629 3630 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3631 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3632 if (LangOpts.OpenCL) 3633 return LangAS::opencl_constant; 3634 if (auto AS = getTarget().getConstantAddressSpace()) 3635 return AS.getValue(); 3636 return LangAS::Default; 3637 } 3638 3639 // In address space agnostic languages, string literals are in default address 3640 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3641 // emitted in constant address space in LLVM IR. To be consistent with other 3642 // parts of AST, string literal global variables in constant address space 3643 // need to be casted to default address space before being put into address 3644 // map and referenced by other part of CodeGen. 3645 // In OpenCL, string literals are in constant address space in AST, therefore 3646 // they should not be casted to default address space. 3647 static llvm::Constant * 3648 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3649 llvm::GlobalVariable *GV) { 3650 llvm::Constant *Cast = GV; 3651 if (!CGM.getLangOpts().OpenCL) { 3652 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3653 if (AS != LangAS::Default) 3654 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3655 CGM, GV, AS.getValue(), LangAS::Default, 3656 GV->getValueType()->getPointerTo( 3657 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3658 } 3659 } 3660 return Cast; 3661 } 3662 3663 template<typename SomeDecl> 3664 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3665 llvm::GlobalValue *GV) { 3666 if (!getLangOpts().CPlusPlus) 3667 return; 3668 3669 // Must have 'used' attribute, or else inline assembly can't rely on 3670 // the name existing. 3671 if (!D->template hasAttr<UsedAttr>()) 3672 return; 3673 3674 // Must have internal linkage and an ordinary name. 3675 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3676 return; 3677 3678 // Must be in an extern "C" context. Entities declared directly within 3679 // a record are not extern "C" even if the record is in such a context. 3680 const SomeDecl *First = D->getFirstDecl(); 3681 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3682 return; 3683 3684 // OK, this is an internal linkage entity inside an extern "C" linkage 3685 // specification. Make a note of that so we can give it the "expected" 3686 // mangled name if nothing else is using that name. 3687 std::pair<StaticExternCMap::iterator, bool> R = 3688 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3689 3690 // If we have multiple internal linkage entities with the same name 3691 // in extern "C" regions, none of them gets that name. 3692 if (!R.second) 3693 R.first->second = nullptr; 3694 } 3695 3696 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3697 if (!CGM.supportsCOMDAT()) 3698 return false; 3699 3700 if (D.hasAttr<SelectAnyAttr>()) 3701 return true; 3702 3703 GVALinkage Linkage; 3704 if (auto *VD = dyn_cast<VarDecl>(&D)) 3705 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3706 else 3707 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3708 3709 switch (Linkage) { 3710 case GVA_Internal: 3711 case GVA_AvailableExternally: 3712 case GVA_StrongExternal: 3713 return false; 3714 case GVA_DiscardableODR: 3715 case GVA_StrongODR: 3716 return true; 3717 } 3718 llvm_unreachable("No such linkage"); 3719 } 3720 3721 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3722 llvm::GlobalObject &GO) { 3723 if (!shouldBeInCOMDAT(*this, D)) 3724 return; 3725 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3726 } 3727 3728 /// Pass IsTentative as true if you want to create a tentative definition. 3729 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3730 bool IsTentative) { 3731 // OpenCL global variables of sampler type are translated to function calls, 3732 // therefore no need to be translated. 3733 QualType ASTTy = D->getType(); 3734 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3735 return; 3736 3737 // If this is OpenMP device, check if it is legal to emit this global 3738 // normally. 3739 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3740 OpenMPRuntime->emitTargetGlobalVariable(D)) 3741 return; 3742 3743 llvm::Constant *Init = nullptr; 3744 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3745 bool NeedsGlobalCtor = false; 3746 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3747 3748 const VarDecl *InitDecl; 3749 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3750 3751 Optional<ConstantEmitter> emitter; 3752 3753 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3754 // as part of their declaration." Sema has already checked for 3755 // error cases, so we just need to set Init to UndefValue. 3756 bool IsCUDASharedVar = 3757 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3758 // Shadows of initialized device-side global variables are also left 3759 // undefined. 3760 bool IsCUDAShadowVar = 3761 !getLangOpts().CUDAIsDevice && 3762 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3763 D->hasAttr<CUDASharedAttr>()); 3764 if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar)) 3765 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3766 else if (!InitExpr) { 3767 // This is a tentative definition; tentative definitions are 3768 // implicitly initialized with { 0 }. 3769 // 3770 // Note that tentative definitions are only emitted at the end of 3771 // a translation unit, so they should never have incomplete 3772 // type. In addition, EmitTentativeDefinition makes sure that we 3773 // never attempt to emit a tentative definition if a real one 3774 // exists. A use may still exists, however, so we still may need 3775 // to do a RAUW. 3776 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3777 Init = EmitNullConstant(D->getType()); 3778 } else { 3779 initializedGlobalDecl = GlobalDecl(D); 3780 emitter.emplace(*this); 3781 Init = emitter->tryEmitForInitializer(*InitDecl); 3782 3783 if (!Init) { 3784 QualType T = InitExpr->getType(); 3785 if (D->getType()->isReferenceType()) 3786 T = D->getType(); 3787 3788 if (getLangOpts().CPlusPlus) { 3789 Init = EmitNullConstant(T); 3790 NeedsGlobalCtor = true; 3791 } else { 3792 ErrorUnsupported(D, "static initializer"); 3793 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3794 } 3795 } else { 3796 // We don't need an initializer, so remove the entry for the delayed 3797 // initializer position (just in case this entry was delayed) if we 3798 // also don't need to register a destructor. 3799 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3800 DelayedCXXInitPosition.erase(D); 3801 } 3802 } 3803 3804 llvm::Type* InitType = Init->getType(); 3805 llvm::Constant *Entry = 3806 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3807 3808 // Strip off a bitcast if we got one back. 3809 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3810 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3811 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3812 // All zero index gep. 3813 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3814 Entry = CE->getOperand(0); 3815 } 3816 3817 // Entry is now either a Function or GlobalVariable. 3818 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3819 3820 // We have a definition after a declaration with the wrong type. 3821 // We must make a new GlobalVariable* and update everything that used OldGV 3822 // (a declaration or tentative definition) with the new GlobalVariable* 3823 // (which will be a definition). 3824 // 3825 // This happens if there is a prototype for a global (e.g. 3826 // "extern int x[];") and then a definition of a different type (e.g. 3827 // "int x[10];"). This also happens when an initializer has a different type 3828 // from the type of the global (this happens with unions). 3829 if (!GV || GV->getType()->getElementType() != InitType || 3830 GV->getType()->getAddressSpace() != 3831 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3832 3833 // Move the old entry aside so that we'll create a new one. 3834 Entry->setName(StringRef()); 3835 3836 // Make a new global with the correct type, this is now guaranteed to work. 3837 GV = cast<llvm::GlobalVariable>( 3838 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3839 3840 // Replace all uses of the old global with the new global 3841 llvm::Constant *NewPtrForOldDecl = 3842 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3843 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3844 3845 // Erase the old global, since it is no longer used. 3846 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3847 } 3848 3849 MaybeHandleStaticInExternC(D, GV); 3850 3851 if (D->hasAttr<AnnotateAttr>()) 3852 AddGlobalAnnotations(D, GV); 3853 3854 // Set the llvm linkage type as appropriate. 3855 llvm::GlobalValue::LinkageTypes Linkage = 3856 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3857 3858 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3859 // the device. [...]" 3860 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3861 // __device__, declares a variable that: [...] 3862 // Is accessible from all the threads within the grid and from the host 3863 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3864 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3865 if (GV && LangOpts.CUDA) { 3866 if (LangOpts.CUDAIsDevice) { 3867 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3868 GV->setExternallyInitialized(true); 3869 } else { 3870 // Host-side shadows of external declarations of device-side 3871 // global variables become internal definitions. These have to 3872 // be internal in order to prevent name conflicts with global 3873 // host variables with the same name in a different TUs. 3874 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3875 Linkage = llvm::GlobalValue::InternalLinkage; 3876 3877 // Shadow variables and their properties must be registered 3878 // with CUDA runtime. 3879 unsigned Flags = 0; 3880 if (!D->hasDefinition()) 3881 Flags |= CGCUDARuntime::ExternDeviceVar; 3882 if (D->hasAttr<CUDAConstantAttr>()) 3883 Flags |= CGCUDARuntime::ConstantDeviceVar; 3884 // Extern global variables will be registered in the TU where they are 3885 // defined. 3886 if (!D->hasExternalStorage()) 3887 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 3888 } else if (D->hasAttr<CUDASharedAttr>()) 3889 // __shared__ variables are odd. Shadows do get created, but 3890 // they are not registered with the CUDA runtime, so they 3891 // can't really be used to access their device-side 3892 // counterparts. It's not clear yet whether it's nvcc's bug or 3893 // a feature, but we've got to do the same for compatibility. 3894 Linkage = llvm::GlobalValue::InternalLinkage; 3895 } 3896 } 3897 3898 GV->setInitializer(Init); 3899 if (emitter) emitter->finalize(GV); 3900 3901 // If it is safe to mark the global 'constant', do so now. 3902 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3903 isTypeConstant(D->getType(), true)); 3904 3905 // If it is in a read-only section, mark it 'constant'. 3906 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3907 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3908 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3909 GV->setConstant(true); 3910 } 3911 3912 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3913 3914 3915 // On Darwin, if the normal linkage of a C++ thread_local variable is 3916 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3917 // copies within a linkage unit; otherwise, the backing variable has 3918 // internal linkage and all accesses should just be calls to the 3919 // Itanium-specified entry point, which has the normal linkage of the 3920 // variable. This is to preserve the ability to change the implementation 3921 // behind the scenes. 3922 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3923 Context.getTargetInfo().getTriple().isOSDarwin() && 3924 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3925 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3926 Linkage = llvm::GlobalValue::InternalLinkage; 3927 3928 GV->setLinkage(Linkage); 3929 if (D->hasAttr<DLLImportAttr>()) 3930 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3931 else if (D->hasAttr<DLLExportAttr>()) 3932 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3933 else 3934 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3935 3936 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3937 // common vars aren't constant even if declared const. 3938 GV->setConstant(false); 3939 // Tentative definition of global variables may be initialized with 3940 // non-zero null pointers. In this case they should have weak linkage 3941 // since common linkage must have zero initializer and must not have 3942 // explicit section therefore cannot have non-zero initial value. 3943 if (!GV->getInitializer()->isNullValue()) 3944 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3945 } 3946 3947 setNonAliasAttributes(D, GV); 3948 3949 if (D->getTLSKind() && !GV->isThreadLocal()) { 3950 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3951 CXXThreadLocals.push_back(D); 3952 setTLSMode(GV, *D); 3953 } 3954 3955 maybeSetTrivialComdat(*D, *GV); 3956 3957 // Emit the initializer function if necessary. 3958 if (NeedsGlobalCtor || NeedsGlobalDtor) 3959 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3960 3961 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3962 3963 // Emit global variable debug information. 3964 if (CGDebugInfo *DI = getModuleDebugInfo()) 3965 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3966 DI->EmitGlobalVariable(GV, D); 3967 } 3968 3969 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3970 CodeGenModule &CGM, const VarDecl *D, 3971 bool NoCommon) { 3972 // Don't give variables common linkage if -fno-common was specified unless it 3973 // was overridden by a NoCommon attribute. 3974 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3975 return true; 3976 3977 // C11 6.9.2/2: 3978 // A declaration of an identifier for an object that has file scope without 3979 // an initializer, and without a storage-class specifier or with the 3980 // storage-class specifier static, constitutes a tentative definition. 3981 if (D->getInit() || D->hasExternalStorage()) 3982 return true; 3983 3984 // A variable cannot be both common and exist in a section. 3985 if (D->hasAttr<SectionAttr>()) 3986 return true; 3987 3988 // A variable cannot be both common and exist in a section. 3989 // We don't try to determine which is the right section in the front-end. 3990 // If no specialized section name is applicable, it will resort to default. 3991 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3992 D->hasAttr<PragmaClangDataSectionAttr>() || 3993 D->hasAttr<PragmaClangRodataSectionAttr>()) 3994 return true; 3995 3996 // Thread local vars aren't considered common linkage. 3997 if (D->getTLSKind()) 3998 return true; 3999 4000 // Tentative definitions marked with WeakImportAttr are true definitions. 4001 if (D->hasAttr<WeakImportAttr>()) 4002 return true; 4003 4004 // A variable cannot be both common and exist in a comdat. 4005 if (shouldBeInCOMDAT(CGM, *D)) 4006 return true; 4007 4008 // Declarations with a required alignment do not have common linkage in MSVC 4009 // mode. 4010 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4011 if (D->hasAttr<AlignedAttr>()) 4012 return true; 4013 QualType VarType = D->getType(); 4014 if (Context.isAlignmentRequired(VarType)) 4015 return true; 4016 4017 if (const auto *RT = VarType->getAs<RecordType>()) { 4018 const RecordDecl *RD = RT->getDecl(); 4019 for (const FieldDecl *FD : RD->fields()) { 4020 if (FD->isBitField()) 4021 continue; 4022 if (FD->hasAttr<AlignedAttr>()) 4023 return true; 4024 if (Context.isAlignmentRequired(FD->getType())) 4025 return true; 4026 } 4027 } 4028 } 4029 4030 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4031 // common symbols, so symbols with greater alignment requirements cannot be 4032 // common. 4033 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4034 // alignments for common symbols via the aligncomm directive, so this 4035 // restriction only applies to MSVC environments. 4036 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4037 Context.getTypeAlignIfKnown(D->getType()) > 4038 Context.toBits(CharUnits::fromQuantity(32))) 4039 return true; 4040 4041 return false; 4042 } 4043 4044 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4045 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4046 if (Linkage == GVA_Internal) 4047 return llvm::Function::InternalLinkage; 4048 4049 if (D->hasAttr<WeakAttr>()) { 4050 if (IsConstantVariable) 4051 return llvm::GlobalVariable::WeakODRLinkage; 4052 else 4053 return llvm::GlobalVariable::WeakAnyLinkage; 4054 } 4055 4056 if (const auto *FD = D->getAsFunction()) 4057 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4058 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4059 4060 // We are guaranteed to have a strong definition somewhere else, 4061 // so we can use available_externally linkage. 4062 if (Linkage == GVA_AvailableExternally) 4063 return llvm::GlobalValue::AvailableExternallyLinkage; 4064 4065 // Note that Apple's kernel linker doesn't support symbol 4066 // coalescing, so we need to avoid linkonce and weak linkages there. 4067 // Normally, this means we just map to internal, but for explicit 4068 // instantiations we'll map to external. 4069 4070 // In C++, the compiler has to emit a definition in every translation unit 4071 // that references the function. We should use linkonce_odr because 4072 // a) if all references in this translation unit are optimized away, we 4073 // don't need to codegen it. b) if the function persists, it needs to be 4074 // merged with other definitions. c) C++ has the ODR, so we know the 4075 // definition is dependable. 4076 if (Linkage == GVA_DiscardableODR) 4077 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4078 : llvm::Function::InternalLinkage; 4079 4080 // An explicit instantiation of a template has weak linkage, since 4081 // explicit instantiations can occur in multiple translation units 4082 // and must all be equivalent. However, we are not allowed to 4083 // throw away these explicit instantiations. 4084 // 4085 // We don't currently support CUDA device code spread out across multiple TUs, 4086 // so say that CUDA templates are either external (for kernels) or internal. 4087 // This lets llvm perform aggressive inter-procedural optimizations. 4088 if (Linkage == GVA_StrongODR) { 4089 if (Context.getLangOpts().AppleKext) 4090 return llvm::Function::ExternalLinkage; 4091 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4092 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4093 : llvm::Function::InternalLinkage; 4094 return llvm::Function::WeakODRLinkage; 4095 } 4096 4097 // C++ doesn't have tentative definitions and thus cannot have common 4098 // linkage. 4099 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4100 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4101 CodeGenOpts.NoCommon)) 4102 return llvm::GlobalVariable::CommonLinkage; 4103 4104 // selectany symbols are externally visible, so use weak instead of 4105 // linkonce. MSVC optimizes away references to const selectany globals, so 4106 // all definitions should be the same and ODR linkage should be used. 4107 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4108 if (D->hasAttr<SelectAnyAttr>()) 4109 return llvm::GlobalVariable::WeakODRLinkage; 4110 4111 // Otherwise, we have strong external linkage. 4112 assert(Linkage == GVA_StrongExternal); 4113 return llvm::GlobalVariable::ExternalLinkage; 4114 } 4115 4116 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4117 const VarDecl *VD, bool IsConstant) { 4118 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4119 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4120 } 4121 4122 /// Replace the uses of a function that was declared with a non-proto type. 4123 /// We want to silently drop extra arguments from call sites 4124 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4125 llvm::Function *newFn) { 4126 // Fast path. 4127 if (old->use_empty()) return; 4128 4129 llvm::Type *newRetTy = newFn->getReturnType(); 4130 SmallVector<llvm::Value*, 4> newArgs; 4131 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4132 4133 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4134 ui != ue; ) { 4135 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4136 llvm::User *user = use->getUser(); 4137 4138 // Recognize and replace uses of bitcasts. Most calls to 4139 // unprototyped functions will use bitcasts. 4140 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4141 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4142 replaceUsesOfNonProtoConstant(bitcast, newFn); 4143 continue; 4144 } 4145 4146 // Recognize calls to the function. 4147 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4148 if (!callSite) continue; 4149 if (!callSite->isCallee(&*use)) 4150 continue; 4151 4152 // If the return types don't match exactly, then we can't 4153 // transform this call unless it's dead. 4154 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4155 continue; 4156 4157 // Get the call site's attribute list. 4158 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4159 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4160 4161 // If the function was passed too few arguments, don't transform. 4162 unsigned newNumArgs = newFn->arg_size(); 4163 if (callSite->arg_size() < newNumArgs) 4164 continue; 4165 4166 // If extra arguments were passed, we silently drop them. 4167 // If any of the types mismatch, we don't transform. 4168 unsigned argNo = 0; 4169 bool dontTransform = false; 4170 for (llvm::Argument &A : newFn->args()) { 4171 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4172 dontTransform = true; 4173 break; 4174 } 4175 4176 // Add any parameter attributes. 4177 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4178 argNo++; 4179 } 4180 if (dontTransform) 4181 continue; 4182 4183 // Okay, we can transform this. Create the new call instruction and copy 4184 // over the required information. 4185 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4186 4187 // Copy over any operand bundles. 4188 callSite->getOperandBundlesAsDefs(newBundles); 4189 4190 llvm::CallBase *newCall; 4191 if (dyn_cast<llvm::CallInst>(callSite)) { 4192 newCall = 4193 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4194 } else { 4195 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4196 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4197 oldInvoke->getUnwindDest(), newArgs, 4198 newBundles, "", callSite); 4199 } 4200 newArgs.clear(); // for the next iteration 4201 4202 if (!newCall->getType()->isVoidTy()) 4203 newCall->takeName(callSite); 4204 newCall->setAttributes(llvm::AttributeList::get( 4205 newFn->getContext(), oldAttrs.getFnAttributes(), 4206 oldAttrs.getRetAttributes(), newArgAttrs)); 4207 newCall->setCallingConv(callSite->getCallingConv()); 4208 4209 // Finally, remove the old call, replacing any uses with the new one. 4210 if (!callSite->use_empty()) 4211 callSite->replaceAllUsesWith(newCall); 4212 4213 // Copy debug location attached to CI. 4214 if (callSite->getDebugLoc()) 4215 newCall->setDebugLoc(callSite->getDebugLoc()); 4216 4217 callSite->eraseFromParent(); 4218 } 4219 } 4220 4221 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4222 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4223 /// existing call uses of the old function in the module, this adjusts them to 4224 /// call the new function directly. 4225 /// 4226 /// This is not just a cleanup: the always_inline pass requires direct calls to 4227 /// functions to be able to inline them. If there is a bitcast in the way, it 4228 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4229 /// run at -O0. 4230 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4231 llvm::Function *NewFn) { 4232 // If we're redefining a global as a function, don't transform it. 4233 if (!isa<llvm::Function>(Old)) return; 4234 4235 replaceUsesOfNonProtoConstant(Old, NewFn); 4236 } 4237 4238 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4239 auto DK = VD->isThisDeclarationADefinition(); 4240 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4241 return; 4242 4243 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4244 // If we have a definition, this might be a deferred decl. If the 4245 // instantiation is explicit, make sure we emit it at the end. 4246 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4247 GetAddrOfGlobalVar(VD); 4248 4249 EmitTopLevelDecl(VD); 4250 } 4251 4252 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4253 llvm::GlobalValue *GV) { 4254 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4255 4256 // Compute the function info and LLVM type. 4257 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4258 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4259 4260 // Get or create the prototype for the function. 4261 if (!GV || (GV->getType()->getElementType() != Ty)) 4262 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4263 /*DontDefer=*/true, 4264 ForDefinition)); 4265 4266 // Already emitted. 4267 if (!GV->isDeclaration()) 4268 return; 4269 4270 // We need to set linkage and visibility on the function before 4271 // generating code for it because various parts of IR generation 4272 // want to propagate this information down (e.g. to local static 4273 // declarations). 4274 auto *Fn = cast<llvm::Function>(GV); 4275 setFunctionLinkage(GD, Fn); 4276 4277 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4278 setGVProperties(Fn, GD); 4279 4280 MaybeHandleStaticInExternC(D, Fn); 4281 4282 4283 maybeSetTrivialComdat(*D, *Fn); 4284 4285 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4286 4287 setNonAliasAttributes(GD, Fn); 4288 SetLLVMFunctionAttributesForDefinition(D, Fn); 4289 4290 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4291 AddGlobalCtor(Fn, CA->getPriority()); 4292 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4293 AddGlobalDtor(Fn, DA->getPriority()); 4294 if (D->hasAttr<AnnotateAttr>()) 4295 AddGlobalAnnotations(D, Fn); 4296 } 4297 4298 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4299 const auto *D = cast<ValueDecl>(GD.getDecl()); 4300 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4301 assert(AA && "Not an alias?"); 4302 4303 StringRef MangledName = getMangledName(GD); 4304 4305 if (AA->getAliasee() == MangledName) { 4306 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4307 return; 4308 } 4309 4310 // If there is a definition in the module, then it wins over the alias. 4311 // This is dubious, but allow it to be safe. Just ignore the alias. 4312 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4313 if (Entry && !Entry->isDeclaration()) 4314 return; 4315 4316 Aliases.push_back(GD); 4317 4318 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4319 4320 // Create a reference to the named value. This ensures that it is emitted 4321 // if a deferred decl. 4322 llvm::Constant *Aliasee; 4323 if (isa<llvm::FunctionType>(DeclTy)) 4324 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4325 /*ForVTable=*/false); 4326 else 4327 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4328 llvm::PointerType::getUnqual(DeclTy), 4329 /*D=*/nullptr); 4330 4331 // Create the new alias itself, but don't set a name yet. 4332 auto *GA = llvm::GlobalAlias::create( 4333 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4334 4335 if (Entry) { 4336 if (GA->getAliasee() == Entry) { 4337 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4338 return; 4339 } 4340 4341 assert(Entry->isDeclaration()); 4342 4343 // If there is a declaration in the module, then we had an extern followed 4344 // by the alias, as in: 4345 // extern int test6(); 4346 // ... 4347 // int test6() __attribute__((alias("test7"))); 4348 // 4349 // Remove it and replace uses of it with the alias. 4350 GA->takeName(Entry); 4351 4352 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4353 Entry->getType())); 4354 Entry->eraseFromParent(); 4355 } else { 4356 GA->setName(MangledName); 4357 } 4358 4359 // Set attributes which are particular to an alias; this is a 4360 // specialization of the attributes which may be set on a global 4361 // variable/function. 4362 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4363 D->isWeakImported()) { 4364 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4365 } 4366 4367 if (const auto *VD = dyn_cast<VarDecl>(D)) 4368 if (VD->getTLSKind()) 4369 setTLSMode(GA, *VD); 4370 4371 SetCommonAttributes(GD, GA); 4372 } 4373 4374 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4375 const auto *D = cast<ValueDecl>(GD.getDecl()); 4376 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4377 assert(IFA && "Not an ifunc?"); 4378 4379 StringRef MangledName = getMangledName(GD); 4380 4381 if (IFA->getResolver() == MangledName) { 4382 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4383 return; 4384 } 4385 4386 // Report an error if some definition overrides ifunc. 4387 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4388 if (Entry && !Entry->isDeclaration()) { 4389 GlobalDecl OtherGD; 4390 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4391 DiagnosedConflictingDefinitions.insert(GD).second) { 4392 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4393 << MangledName; 4394 Diags.Report(OtherGD.getDecl()->getLocation(), 4395 diag::note_previous_definition); 4396 } 4397 return; 4398 } 4399 4400 Aliases.push_back(GD); 4401 4402 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4403 llvm::Constant *Resolver = 4404 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4405 /*ForVTable=*/false); 4406 llvm::GlobalIFunc *GIF = 4407 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4408 "", Resolver, &getModule()); 4409 if (Entry) { 4410 if (GIF->getResolver() == Entry) { 4411 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4412 return; 4413 } 4414 assert(Entry->isDeclaration()); 4415 4416 // If there is a declaration in the module, then we had an extern followed 4417 // by the ifunc, as in: 4418 // extern int test(); 4419 // ... 4420 // int test() __attribute__((ifunc("resolver"))); 4421 // 4422 // Remove it and replace uses of it with the ifunc. 4423 GIF->takeName(Entry); 4424 4425 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4426 Entry->getType())); 4427 Entry->eraseFromParent(); 4428 } else 4429 GIF->setName(MangledName); 4430 4431 SetCommonAttributes(GD, GIF); 4432 } 4433 4434 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4435 ArrayRef<llvm::Type*> Tys) { 4436 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4437 Tys); 4438 } 4439 4440 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4441 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4442 const StringLiteral *Literal, bool TargetIsLSB, 4443 bool &IsUTF16, unsigned &StringLength) { 4444 StringRef String = Literal->getString(); 4445 unsigned NumBytes = String.size(); 4446 4447 // Check for simple case. 4448 if (!Literal->containsNonAsciiOrNull()) { 4449 StringLength = NumBytes; 4450 return *Map.insert(std::make_pair(String, nullptr)).first; 4451 } 4452 4453 // Otherwise, convert the UTF8 literals into a string of shorts. 4454 IsUTF16 = true; 4455 4456 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4457 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4458 llvm::UTF16 *ToPtr = &ToBuf[0]; 4459 4460 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4461 ToPtr + NumBytes, llvm::strictConversion); 4462 4463 // ConvertUTF8toUTF16 returns the length in ToPtr. 4464 StringLength = ToPtr - &ToBuf[0]; 4465 4466 // Add an explicit null. 4467 *ToPtr = 0; 4468 return *Map.insert(std::make_pair( 4469 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4470 (StringLength + 1) * 2), 4471 nullptr)).first; 4472 } 4473 4474 ConstantAddress 4475 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4476 unsigned StringLength = 0; 4477 bool isUTF16 = false; 4478 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4479 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4480 getDataLayout().isLittleEndian(), isUTF16, 4481 StringLength); 4482 4483 if (auto *C = Entry.second) 4484 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4485 4486 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4487 llvm::Constant *Zeros[] = { Zero, Zero }; 4488 4489 const ASTContext &Context = getContext(); 4490 const llvm::Triple &Triple = getTriple(); 4491 4492 const auto CFRuntime = getLangOpts().CFRuntime; 4493 const bool IsSwiftABI = 4494 static_cast<unsigned>(CFRuntime) >= 4495 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4496 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4497 4498 // If we don't already have it, get __CFConstantStringClassReference. 4499 if (!CFConstantStringClassRef) { 4500 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4501 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4502 Ty = llvm::ArrayType::get(Ty, 0); 4503 4504 switch (CFRuntime) { 4505 default: break; 4506 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4507 case LangOptions::CoreFoundationABI::Swift5_0: 4508 CFConstantStringClassName = 4509 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4510 : "$s10Foundation19_NSCFConstantStringCN"; 4511 Ty = IntPtrTy; 4512 break; 4513 case LangOptions::CoreFoundationABI::Swift4_2: 4514 CFConstantStringClassName = 4515 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4516 : "$S10Foundation19_NSCFConstantStringCN"; 4517 Ty = IntPtrTy; 4518 break; 4519 case LangOptions::CoreFoundationABI::Swift4_1: 4520 CFConstantStringClassName = 4521 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4522 : "__T010Foundation19_NSCFConstantStringCN"; 4523 Ty = IntPtrTy; 4524 break; 4525 } 4526 4527 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4528 4529 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4530 llvm::GlobalValue *GV = nullptr; 4531 4532 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4533 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4534 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4535 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4536 4537 const VarDecl *VD = nullptr; 4538 for (const auto &Result : DC->lookup(&II)) 4539 if ((VD = dyn_cast<VarDecl>(Result))) 4540 break; 4541 4542 if (Triple.isOSBinFormatELF()) { 4543 if (!VD) 4544 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4545 } else { 4546 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4547 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4548 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4549 else 4550 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4551 } 4552 4553 setDSOLocal(GV); 4554 } 4555 } 4556 4557 // Decay array -> ptr 4558 CFConstantStringClassRef = 4559 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4560 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4561 } 4562 4563 QualType CFTy = Context.getCFConstantStringType(); 4564 4565 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4566 4567 ConstantInitBuilder Builder(*this); 4568 auto Fields = Builder.beginStruct(STy); 4569 4570 // Class pointer. 4571 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4572 4573 // Flags. 4574 if (IsSwiftABI) { 4575 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4576 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4577 } else { 4578 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4579 } 4580 4581 // String pointer. 4582 llvm::Constant *C = nullptr; 4583 if (isUTF16) { 4584 auto Arr = llvm::makeArrayRef( 4585 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4586 Entry.first().size() / 2); 4587 C = llvm::ConstantDataArray::get(VMContext, Arr); 4588 } else { 4589 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4590 } 4591 4592 // Note: -fwritable-strings doesn't make the backing store strings of 4593 // CFStrings writable. (See <rdar://problem/10657500>) 4594 auto *GV = 4595 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4596 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4597 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4598 // Don't enforce the target's minimum global alignment, since the only use 4599 // of the string is via this class initializer. 4600 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4601 : Context.getTypeAlignInChars(Context.CharTy); 4602 GV->setAlignment(Align.getQuantity()); 4603 4604 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4605 // Without it LLVM can merge the string with a non unnamed_addr one during 4606 // LTO. Doing that changes the section it ends in, which surprises ld64. 4607 if (Triple.isOSBinFormatMachO()) 4608 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4609 : "__TEXT,__cstring,cstring_literals"); 4610 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4611 // the static linker to adjust permissions to read-only later on. 4612 else if (Triple.isOSBinFormatELF()) 4613 GV->setSection(".rodata"); 4614 4615 // String. 4616 llvm::Constant *Str = 4617 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4618 4619 if (isUTF16) 4620 // Cast the UTF16 string to the correct type. 4621 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4622 Fields.add(Str); 4623 4624 // String length. 4625 llvm::IntegerType *LengthTy = 4626 llvm::IntegerType::get(getModule().getContext(), 4627 Context.getTargetInfo().getLongWidth()); 4628 if (IsSwiftABI) { 4629 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4630 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4631 LengthTy = Int32Ty; 4632 else 4633 LengthTy = IntPtrTy; 4634 } 4635 Fields.addInt(LengthTy, StringLength); 4636 4637 CharUnits Alignment = getPointerAlign(); 4638 4639 // The struct. 4640 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4641 /*isConstant=*/false, 4642 llvm::GlobalVariable::PrivateLinkage); 4643 switch (Triple.getObjectFormat()) { 4644 case llvm::Triple::UnknownObjectFormat: 4645 llvm_unreachable("unknown file format"); 4646 case llvm::Triple::XCOFF: 4647 llvm_unreachable("XCOFF is not yet implemented"); 4648 case llvm::Triple::COFF: 4649 case llvm::Triple::ELF: 4650 case llvm::Triple::Wasm: 4651 GV->setSection("cfstring"); 4652 break; 4653 case llvm::Triple::MachO: 4654 GV->setSection("__DATA,__cfstring"); 4655 break; 4656 } 4657 Entry.second = GV; 4658 4659 return ConstantAddress(GV, Alignment); 4660 } 4661 4662 bool CodeGenModule::getExpressionLocationsEnabled() const { 4663 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4664 } 4665 4666 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4667 if (ObjCFastEnumerationStateType.isNull()) { 4668 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4669 D->startDefinition(); 4670 4671 QualType FieldTypes[] = { 4672 Context.UnsignedLongTy, 4673 Context.getPointerType(Context.getObjCIdType()), 4674 Context.getPointerType(Context.UnsignedLongTy), 4675 Context.getConstantArrayType(Context.UnsignedLongTy, 4676 llvm::APInt(32, 5), ArrayType::Normal, 0) 4677 }; 4678 4679 for (size_t i = 0; i < 4; ++i) { 4680 FieldDecl *Field = FieldDecl::Create(Context, 4681 D, 4682 SourceLocation(), 4683 SourceLocation(), nullptr, 4684 FieldTypes[i], /*TInfo=*/nullptr, 4685 /*BitWidth=*/nullptr, 4686 /*Mutable=*/false, 4687 ICIS_NoInit); 4688 Field->setAccess(AS_public); 4689 D->addDecl(Field); 4690 } 4691 4692 D->completeDefinition(); 4693 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4694 } 4695 4696 return ObjCFastEnumerationStateType; 4697 } 4698 4699 llvm::Constant * 4700 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4701 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4702 4703 // Don't emit it as the address of the string, emit the string data itself 4704 // as an inline array. 4705 if (E->getCharByteWidth() == 1) { 4706 SmallString<64> Str(E->getString()); 4707 4708 // Resize the string to the right size, which is indicated by its type. 4709 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4710 Str.resize(CAT->getSize().getZExtValue()); 4711 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4712 } 4713 4714 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4715 llvm::Type *ElemTy = AType->getElementType(); 4716 unsigned NumElements = AType->getNumElements(); 4717 4718 // Wide strings have either 2-byte or 4-byte elements. 4719 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4720 SmallVector<uint16_t, 32> Elements; 4721 Elements.reserve(NumElements); 4722 4723 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4724 Elements.push_back(E->getCodeUnit(i)); 4725 Elements.resize(NumElements); 4726 return llvm::ConstantDataArray::get(VMContext, Elements); 4727 } 4728 4729 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4730 SmallVector<uint32_t, 32> Elements; 4731 Elements.reserve(NumElements); 4732 4733 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4734 Elements.push_back(E->getCodeUnit(i)); 4735 Elements.resize(NumElements); 4736 return llvm::ConstantDataArray::get(VMContext, Elements); 4737 } 4738 4739 static llvm::GlobalVariable * 4740 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4741 CodeGenModule &CGM, StringRef GlobalName, 4742 CharUnits Alignment) { 4743 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4744 CGM.getStringLiteralAddressSpace()); 4745 4746 llvm::Module &M = CGM.getModule(); 4747 // Create a global variable for this string 4748 auto *GV = new llvm::GlobalVariable( 4749 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4750 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4751 GV->setAlignment(Alignment.getQuantity()); 4752 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4753 if (GV->isWeakForLinker()) { 4754 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4755 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4756 } 4757 CGM.setDSOLocal(GV); 4758 4759 return GV; 4760 } 4761 4762 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4763 /// constant array for the given string literal. 4764 ConstantAddress 4765 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4766 StringRef Name) { 4767 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4768 4769 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4770 llvm::GlobalVariable **Entry = nullptr; 4771 if (!LangOpts.WritableStrings) { 4772 Entry = &ConstantStringMap[C]; 4773 if (auto GV = *Entry) { 4774 if (Alignment.getQuantity() > GV->getAlignment()) 4775 GV->setAlignment(Alignment.getQuantity()); 4776 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4777 Alignment); 4778 } 4779 } 4780 4781 SmallString<256> MangledNameBuffer; 4782 StringRef GlobalVariableName; 4783 llvm::GlobalValue::LinkageTypes LT; 4784 4785 // Mangle the string literal if that's how the ABI merges duplicate strings. 4786 // Don't do it if they are writable, since we don't want writes in one TU to 4787 // affect strings in another. 4788 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4789 !LangOpts.WritableStrings) { 4790 llvm::raw_svector_ostream Out(MangledNameBuffer); 4791 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4792 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4793 GlobalVariableName = MangledNameBuffer; 4794 } else { 4795 LT = llvm::GlobalValue::PrivateLinkage; 4796 GlobalVariableName = Name; 4797 } 4798 4799 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4800 if (Entry) 4801 *Entry = GV; 4802 4803 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4804 QualType()); 4805 4806 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4807 Alignment); 4808 } 4809 4810 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4811 /// array for the given ObjCEncodeExpr node. 4812 ConstantAddress 4813 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4814 std::string Str; 4815 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4816 4817 return GetAddrOfConstantCString(Str); 4818 } 4819 4820 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4821 /// the literal and a terminating '\0' character. 4822 /// The result has pointer to array type. 4823 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4824 const std::string &Str, const char *GlobalName) { 4825 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4826 CharUnits Alignment = 4827 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4828 4829 llvm::Constant *C = 4830 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4831 4832 // Don't share any string literals if strings aren't constant. 4833 llvm::GlobalVariable **Entry = nullptr; 4834 if (!LangOpts.WritableStrings) { 4835 Entry = &ConstantStringMap[C]; 4836 if (auto GV = *Entry) { 4837 if (Alignment.getQuantity() > GV->getAlignment()) 4838 GV->setAlignment(Alignment.getQuantity()); 4839 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4840 Alignment); 4841 } 4842 } 4843 4844 // Get the default prefix if a name wasn't specified. 4845 if (!GlobalName) 4846 GlobalName = ".str"; 4847 // Create a global variable for this. 4848 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4849 GlobalName, Alignment); 4850 if (Entry) 4851 *Entry = GV; 4852 4853 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4854 Alignment); 4855 } 4856 4857 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4858 const MaterializeTemporaryExpr *E, const Expr *Init) { 4859 assert((E->getStorageDuration() == SD_Static || 4860 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4861 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4862 4863 // If we're not materializing a subobject of the temporary, keep the 4864 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4865 QualType MaterializedType = Init->getType(); 4866 if (Init == E->GetTemporaryExpr()) 4867 MaterializedType = E->getType(); 4868 4869 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4870 4871 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4872 return ConstantAddress(Slot, Align); 4873 4874 // FIXME: If an externally-visible declaration extends multiple temporaries, 4875 // we need to give each temporary the same name in every translation unit (and 4876 // we also need to make the temporaries externally-visible). 4877 SmallString<256> Name; 4878 llvm::raw_svector_ostream Out(Name); 4879 getCXXABI().getMangleContext().mangleReferenceTemporary( 4880 VD, E->getManglingNumber(), Out); 4881 4882 APValue *Value = nullptr; 4883 if (E->getStorageDuration() == SD_Static) { 4884 // We might have a cached constant initializer for this temporary. Note 4885 // that this might have a different value from the value computed by 4886 // evaluating the initializer if the surrounding constant expression 4887 // modifies the temporary. 4888 Value = getContext().getMaterializedTemporaryValue(E, false); 4889 if (Value && Value->isUninit()) 4890 Value = nullptr; 4891 } 4892 4893 // Try evaluating it now, it might have a constant initializer. 4894 Expr::EvalResult EvalResult; 4895 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4896 !EvalResult.hasSideEffects()) 4897 Value = &EvalResult.Val; 4898 4899 LangAS AddrSpace = 4900 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4901 4902 Optional<ConstantEmitter> emitter; 4903 llvm::Constant *InitialValue = nullptr; 4904 bool Constant = false; 4905 llvm::Type *Type; 4906 if (Value) { 4907 // The temporary has a constant initializer, use it. 4908 emitter.emplace(*this); 4909 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4910 MaterializedType); 4911 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4912 Type = InitialValue->getType(); 4913 } else { 4914 // No initializer, the initialization will be provided when we 4915 // initialize the declaration which performed lifetime extension. 4916 Type = getTypes().ConvertTypeForMem(MaterializedType); 4917 } 4918 4919 // Create a global variable for this lifetime-extended temporary. 4920 llvm::GlobalValue::LinkageTypes Linkage = 4921 getLLVMLinkageVarDefinition(VD, Constant); 4922 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4923 const VarDecl *InitVD; 4924 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4925 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4926 // Temporaries defined inside a class get linkonce_odr linkage because the 4927 // class can be defined in multiple translation units. 4928 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4929 } else { 4930 // There is no need for this temporary to have external linkage if the 4931 // VarDecl has external linkage. 4932 Linkage = llvm::GlobalVariable::InternalLinkage; 4933 } 4934 } 4935 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4936 auto *GV = new llvm::GlobalVariable( 4937 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4938 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4939 if (emitter) emitter->finalize(GV); 4940 setGVProperties(GV, VD); 4941 GV->setAlignment(Align.getQuantity()); 4942 if (supportsCOMDAT() && GV->isWeakForLinker()) 4943 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4944 if (VD->getTLSKind()) 4945 setTLSMode(GV, *VD); 4946 llvm::Constant *CV = GV; 4947 if (AddrSpace != LangAS::Default) 4948 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4949 *this, GV, AddrSpace, LangAS::Default, 4950 Type->getPointerTo( 4951 getContext().getTargetAddressSpace(LangAS::Default))); 4952 MaterializedGlobalTemporaryMap[E] = CV; 4953 return ConstantAddress(CV, Align); 4954 } 4955 4956 /// EmitObjCPropertyImplementations - Emit information for synthesized 4957 /// properties for an implementation. 4958 void CodeGenModule::EmitObjCPropertyImplementations(const 4959 ObjCImplementationDecl *D) { 4960 for (const auto *PID : D->property_impls()) { 4961 // Dynamic is just for type-checking. 4962 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4963 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4964 4965 // Determine which methods need to be implemented, some may have 4966 // been overridden. Note that ::isPropertyAccessor is not the method 4967 // we want, that just indicates if the decl came from a 4968 // property. What we want to know is if the method is defined in 4969 // this implementation. 4970 if (!D->getInstanceMethod(PD->getGetterName())) 4971 CodeGenFunction(*this).GenerateObjCGetter( 4972 const_cast<ObjCImplementationDecl *>(D), PID); 4973 if (!PD->isReadOnly() && 4974 !D->getInstanceMethod(PD->getSetterName())) 4975 CodeGenFunction(*this).GenerateObjCSetter( 4976 const_cast<ObjCImplementationDecl *>(D), PID); 4977 } 4978 } 4979 } 4980 4981 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4982 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4983 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4984 ivar; ivar = ivar->getNextIvar()) 4985 if (ivar->getType().isDestructedType()) 4986 return true; 4987 4988 return false; 4989 } 4990 4991 static bool AllTrivialInitializers(CodeGenModule &CGM, 4992 ObjCImplementationDecl *D) { 4993 CodeGenFunction CGF(CGM); 4994 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4995 E = D->init_end(); B != E; ++B) { 4996 CXXCtorInitializer *CtorInitExp = *B; 4997 Expr *Init = CtorInitExp->getInit(); 4998 if (!CGF.isTrivialInitializer(Init)) 4999 return false; 5000 } 5001 return true; 5002 } 5003 5004 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5005 /// for an implementation. 5006 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5007 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5008 if (needsDestructMethod(D)) { 5009 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5010 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5011 ObjCMethodDecl *DTORMethod = 5012 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 5013 cxxSelector, getContext().VoidTy, nullptr, D, 5014 /*isInstance=*/true, /*isVariadic=*/false, 5015 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 5016 /*isDefined=*/false, ObjCMethodDecl::Required); 5017 D->addInstanceMethod(DTORMethod); 5018 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5019 D->setHasDestructors(true); 5020 } 5021 5022 // If the implementation doesn't have any ivar initializers, we don't need 5023 // a .cxx_construct. 5024 if (D->getNumIvarInitializers() == 0 || 5025 AllTrivialInitializers(*this, D)) 5026 return; 5027 5028 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5029 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5030 // The constructor returns 'self'. 5031 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 5032 D->getLocation(), 5033 D->getLocation(), 5034 cxxSelector, 5035 getContext().getObjCIdType(), 5036 nullptr, D, /*isInstance=*/true, 5037 /*isVariadic=*/false, 5038 /*isPropertyAccessor=*/true, 5039 /*isImplicitlyDeclared=*/true, 5040 /*isDefined=*/false, 5041 ObjCMethodDecl::Required); 5042 D->addInstanceMethod(CTORMethod); 5043 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5044 D->setHasNonZeroConstructors(true); 5045 } 5046 5047 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5048 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5049 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5050 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5051 ErrorUnsupported(LSD, "linkage spec"); 5052 return; 5053 } 5054 5055 EmitDeclContext(LSD); 5056 } 5057 5058 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5059 for (auto *I : DC->decls()) { 5060 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5061 // are themselves considered "top-level", so EmitTopLevelDecl on an 5062 // ObjCImplDecl does not recursively visit them. We need to do that in 5063 // case they're nested inside another construct (LinkageSpecDecl / 5064 // ExportDecl) that does stop them from being considered "top-level". 5065 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5066 for (auto *M : OID->methods()) 5067 EmitTopLevelDecl(M); 5068 } 5069 5070 EmitTopLevelDecl(I); 5071 } 5072 } 5073 5074 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5075 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5076 // Ignore dependent declarations. 5077 if (D->isTemplated()) 5078 return; 5079 5080 switch (D->getKind()) { 5081 case Decl::CXXConversion: 5082 case Decl::CXXMethod: 5083 case Decl::Function: 5084 EmitGlobal(cast<FunctionDecl>(D)); 5085 // Always provide some coverage mapping 5086 // even for the functions that aren't emitted. 5087 AddDeferredUnusedCoverageMapping(D); 5088 break; 5089 5090 case Decl::CXXDeductionGuide: 5091 // Function-like, but does not result in code emission. 5092 break; 5093 5094 case Decl::Var: 5095 case Decl::Decomposition: 5096 case Decl::VarTemplateSpecialization: 5097 EmitGlobal(cast<VarDecl>(D)); 5098 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5099 for (auto *B : DD->bindings()) 5100 if (auto *HD = B->getHoldingVar()) 5101 EmitGlobal(HD); 5102 break; 5103 5104 // Indirect fields from global anonymous structs and unions can be 5105 // ignored; only the actual variable requires IR gen support. 5106 case Decl::IndirectField: 5107 break; 5108 5109 // C++ Decls 5110 case Decl::Namespace: 5111 EmitDeclContext(cast<NamespaceDecl>(D)); 5112 break; 5113 case Decl::ClassTemplateSpecialization: { 5114 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5115 if (DebugInfo && 5116 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5117 Spec->hasDefinition()) 5118 DebugInfo->completeTemplateDefinition(*Spec); 5119 } LLVM_FALLTHROUGH; 5120 case Decl::CXXRecord: 5121 if (DebugInfo) { 5122 if (auto *ES = D->getASTContext().getExternalSource()) 5123 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5124 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5125 } 5126 // Emit any static data members, they may be definitions. 5127 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5128 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5129 EmitTopLevelDecl(I); 5130 break; 5131 // No code generation needed. 5132 case Decl::UsingShadow: 5133 case Decl::ClassTemplate: 5134 case Decl::VarTemplate: 5135 case Decl::VarTemplatePartialSpecialization: 5136 case Decl::FunctionTemplate: 5137 case Decl::TypeAliasTemplate: 5138 case Decl::Block: 5139 case Decl::Empty: 5140 case Decl::Binding: 5141 break; 5142 case Decl::Using: // using X; [C++] 5143 if (CGDebugInfo *DI = getModuleDebugInfo()) 5144 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5145 return; 5146 case Decl::NamespaceAlias: 5147 if (CGDebugInfo *DI = getModuleDebugInfo()) 5148 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5149 return; 5150 case Decl::UsingDirective: // using namespace X; [C++] 5151 if (CGDebugInfo *DI = getModuleDebugInfo()) 5152 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5153 return; 5154 case Decl::CXXConstructor: 5155 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5156 break; 5157 case Decl::CXXDestructor: 5158 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5159 break; 5160 5161 case Decl::StaticAssert: 5162 // Nothing to do. 5163 break; 5164 5165 // Objective-C Decls 5166 5167 // Forward declarations, no (immediate) code generation. 5168 case Decl::ObjCInterface: 5169 case Decl::ObjCCategory: 5170 break; 5171 5172 case Decl::ObjCProtocol: { 5173 auto *Proto = cast<ObjCProtocolDecl>(D); 5174 if (Proto->isThisDeclarationADefinition()) 5175 ObjCRuntime->GenerateProtocol(Proto); 5176 break; 5177 } 5178 5179 case Decl::ObjCCategoryImpl: 5180 // Categories have properties but don't support synthesize so we 5181 // can ignore them here. 5182 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5183 break; 5184 5185 case Decl::ObjCImplementation: { 5186 auto *OMD = cast<ObjCImplementationDecl>(D); 5187 EmitObjCPropertyImplementations(OMD); 5188 EmitObjCIvarInitializations(OMD); 5189 ObjCRuntime->GenerateClass(OMD); 5190 // Emit global variable debug information. 5191 if (CGDebugInfo *DI = getModuleDebugInfo()) 5192 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 5193 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5194 OMD->getClassInterface()), OMD->getLocation()); 5195 break; 5196 } 5197 case Decl::ObjCMethod: { 5198 auto *OMD = cast<ObjCMethodDecl>(D); 5199 // If this is not a prototype, emit the body. 5200 if (OMD->getBody()) 5201 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5202 break; 5203 } 5204 case Decl::ObjCCompatibleAlias: 5205 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5206 break; 5207 5208 case Decl::PragmaComment: { 5209 const auto *PCD = cast<PragmaCommentDecl>(D); 5210 switch (PCD->getCommentKind()) { 5211 case PCK_Unknown: 5212 llvm_unreachable("unexpected pragma comment kind"); 5213 case PCK_Linker: 5214 AppendLinkerOptions(PCD->getArg()); 5215 break; 5216 case PCK_Lib: 5217 AddDependentLib(PCD->getArg()); 5218 break; 5219 case PCK_Compiler: 5220 case PCK_ExeStr: 5221 case PCK_User: 5222 break; // We ignore all of these. 5223 } 5224 break; 5225 } 5226 5227 case Decl::PragmaDetectMismatch: { 5228 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5229 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5230 break; 5231 } 5232 5233 case Decl::LinkageSpec: 5234 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5235 break; 5236 5237 case Decl::FileScopeAsm: { 5238 // File-scope asm is ignored during device-side CUDA compilation. 5239 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5240 break; 5241 // File-scope asm is ignored during device-side OpenMP compilation. 5242 if (LangOpts.OpenMPIsDevice) 5243 break; 5244 auto *AD = cast<FileScopeAsmDecl>(D); 5245 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5246 break; 5247 } 5248 5249 case Decl::Import: { 5250 auto *Import = cast<ImportDecl>(D); 5251 5252 // If we've already imported this module, we're done. 5253 if (!ImportedModules.insert(Import->getImportedModule())) 5254 break; 5255 5256 // Emit debug information for direct imports. 5257 if (!Import->getImportedOwningModule()) { 5258 if (CGDebugInfo *DI = getModuleDebugInfo()) 5259 DI->EmitImportDecl(*Import); 5260 } 5261 5262 // Find all of the submodules and emit the module initializers. 5263 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5264 SmallVector<clang::Module *, 16> Stack; 5265 Visited.insert(Import->getImportedModule()); 5266 Stack.push_back(Import->getImportedModule()); 5267 5268 while (!Stack.empty()) { 5269 clang::Module *Mod = Stack.pop_back_val(); 5270 if (!EmittedModuleInitializers.insert(Mod).second) 5271 continue; 5272 5273 for (auto *D : Context.getModuleInitializers(Mod)) 5274 EmitTopLevelDecl(D); 5275 5276 // Visit the submodules of this module. 5277 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5278 SubEnd = Mod->submodule_end(); 5279 Sub != SubEnd; ++Sub) { 5280 // Skip explicit children; they need to be explicitly imported to emit 5281 // the initializers. 5282 if ((*Sub)->IsExplicit) 5283 continue; 5284 5285 if (Visited.insert(*Sub).second) 5286 Stack.push_back(*Sub); 5287 } 5288 } 5289 break; 5290 } 5291 5292 case Decl::Export: 5293 EmitDeclContext(cast<ExportDecl>(D)); 5294 break; 5295 5296 case Decl::OMPThreadPrivate: 5297 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5298 break; 5299 5300 case Decl::OMPAllocate: 5301 break; 5302 5303 case Decl::OMPDeclareReduction: 5304 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5305 break; 5306 5307 case Decl::OMPDeclareMapper: 5308 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5309 break; 5310 5311 case Decl::OMPRequires: 5312 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5313 break; 5314 5315 default: 5316 // Make sure we handled everything we should, every other kind is a 5317 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5318 // function. Need to recode Decl::Kind to do that easily. 5319 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5320 break; 5321 } 5322 } 5323 5324 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5325 // Do we need to generate coverage mapping? 5326 if (!CodeGenOpts.CoverageMapping) 5327 return; 5328 switch (D->getKind()) { 5329 case Decl::CXXConversion: 5330 case Decl::CXXMethod: 5331 case Decl::Function: 5332 case Decl::ObjCMethod: 5333 case Decl::CXXConstructor: 5334 case Decl::CXXDestructor: { 5335 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5336 return; 5337 SourceManager &SM = getContext().getSourceManager(); 5338 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5339 return; 5340 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5341 if (I == DeferredEmptyCoverageMappingDecls.end()) 5342 DeferredEmptyCoverageMappingDecls[D] = true; 5343 break; 5344 } 5345 default: 5346 break; 5347 }; 5348 } 5349 5350 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5351 // Do we need to generate coverage mapping? 5352 if (!CodeGenOpts.CoverageMapping) 5353 return; 5354 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5355 if (Fn->isTemplateInstantiation()) 5356 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5357 } 5358 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5359 if (I == DeferredEmptyCoverageMappingDecls.end()) 5360 DeferredEmptyCoverageMappingDecls[D] = false; 5361 else 5362 I->second = false; 5363 } 5364 5365 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5366 // We call takeVector() here to avoid use-after-free. 5367 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5368 // we deserialize function bodies to emit coverage info for them, and that 5369 // deserializes more declarations. How should we handle that case? 5370 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5371 if (!Entry.second) 5372 continue; 5373 const Decl *D = Entry.first; 5374 switch (D->getKind()) { 5375 case Decl::CXXConversion: 5376 case Decl::CXXMethod: 5377 case Decl::Function: 5378 case Decl::ObjCMethod: { 5379 CodeGenPGO PGO(*this); 5380 GlobalDecl GD(cast<FunctionDecl>(D)); 5381 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5382 getFunctionLinkage(GD)); 5383 break; 5384 } 5385 case Decl::CXXConstructor: { 5386 CodeGenPGO PGO(*this); 5387 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5388 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5389 getFunctionLinkage(GD)); 5390 break; 5391 } 5392 case Decl::CXXDestructor: { 5393 CodeGenPGO PGO(*this); 5394 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5395 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5396 getFunctionLinkage(GD)); 5397 break; 5398 } 5399 default: 5400 break; 5401 }; 5402 } 5403 } 5404 5405 /// Turns the given pointer into a constant. 5406 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5407 const void *Ptr) { 5408 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5409 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5410 return llvm::ConstantInt::get(i64, PtrInt); 5411 } 5412 5413 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5414 llvm::NamedMDNode *&GlobalMetadata, 5415 GlobalDecl D, 5416 llvm::GlobalValue *Addr) { 5417 if (!GlobalMetadata) 5418 GlobalMetadata = 5419 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5420 5421 // TODO: should we report variant information for ctors/dtors? 5422 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5423 llvm::ConstantAsMetadata::get(GetPointerConstant( 5424 CGM.getLLVMContext(), D.getDecl()))}; 5425 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5426 } 5427 5428 /// For each function which is declared within an extern "C" region and marked 5429 /// as 'used', but has internal linkage, create an alias from the unmangled 5430 /// name to the mangled name if possible. People expect to be able to refer 5431 /// to such functions with an unmangled name from inline assembly within the 5432 /// same translation unit. 5433 void CodeGenModule::EmitStaticExternCAliases() { 5434 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5435 return; 5436 for (auto &I : StaticExternCValues) { 5437 IdentifierInfo *Name = I.first; 5438 llvm::GlobalValue *Val = I.second; 5439 if (Val && !getModule().getNamedValue(Name->getName())) 5440 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5441 } 5442 } 5443 5444 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5445 GlobalDecl &Result) const { 5446 auto Res = Manglings.find(MangledName); 5447 if (Res == Manglings.end()) 5448 return false; 5449 Result = Res->getValue(); 5450 return true; 5451 } 5452 5453 /// Emits metadata nodes associating all the global values in the 5454 /// current module with the Decls they came from. This is useful for 5455 /// projects using IR gen as a subroutine. 5456 /// 5457 /// Since there's currently no way to associate an MDNode directly 5458 /// with an llvm::GlobalValue, we create a global named metadata 5459 /// with the name 'clang.global.decl.ptrs'. 5460 void CodeGenModule::EmitDeclMetadata() { 5461 llvm::NamedMDNode *GlobalMetadata = nullptr; 5462 5463 for (auto &I : MangledDeclNames) { 5464 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5465 // Some mangled names don't necessarily have an associated GlobalValue 5466 // in this module, e.g. if we mangled it for DebugInfo. 5467 if (Addr) 5468 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5469 } 5470 } 5471 5472 /// Emits metadata nodes for all the local variables in the current 5473 /// function. 5474 void CodeGenFunction::EmitDeclMetadata() { 5475 if (LocalDeclMap.empty()) return; 5476 5477 llvm::LLVMContext &Context = getLLVMContext(); 5478 5479 // Find the unique metadata ID for this name. 5480 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5481 5482 llvm::NamedMDNode *GlobalMetadata = nullptr; 5483 5484 for (auto &I : LocalDeclMap) { 5485 const Decl *D = I.first; 5486 llvm::Value *Addr = I.second.getPointer(); 5487 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5488 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5489 Alloca->setMetadata( 5490 DeclPtrKind, llvm::MDNode::get( 5491 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5492 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5493 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5494 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5495 } 5496 } 5497 } 5498 5499 void CodeGenModule::EmitVersionIdentMetadata() { 5500 llvm::NamedMDNode *IdentMetadata = 5501 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5502 std::string Version = getClangFullVersion(); 5503 llvm::LLVMContext &Ctx = TheModule.getContext(); 5504 5505 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5506 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5507 } 5508 5509 void CodeGenModule::EmitCommandLineMetadata() { 5510 llvm::NamedMDNode *CommandLineMetadata = 5511 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5512 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5513 llvm::LLVMContext &Ctx = TheModule.getContext(); 5514 5515 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5516 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5517 } 5518 5519 void CodeGenModule::EmitTargetMetadata() { 5520 // Warning, new MangledDeclNames may be appended within this loop. 5521 // We rely on MapVector insertions adding new elements to the end 5522 // of the container. 5523 // FIXME: Move this loop into the one target that needs it, and only 5524 // loop over those declarations for which we couldn't emit the target 5525 // metadata when we emitted the declaration. 5526 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5527 auto Val = *(MangledDeclNames.begin() + I); 5528 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5529 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5530 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5531 } 5532 } 5533 5534 void CodeGenModule::EmitCoverageFile() { 5535 if (getCodeGenOpts().CoverageDataFile.empty() && 5536 getCodeGenOpts().CoverageNotesFile.empty()) 5537 return; 5538 5539 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5540 if (!CUNode) 5541 return; 5542 5543 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5544 llvm::LLVMContext &Ctx = TheModule.getContext(); 5545 auto *CoverageDataFile = 5546 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5547 auto *CoverageNotesFile = 5548 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5549 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5550 llvm::MDNode *CU = CUNode->getOperand(i); 5551 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5552 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5553 } 5554 } 5555 5556 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5557 // Sema has checked that all uuid strings are of the form 5558 // "12345678-1234-1234-1234-1234567890ab". 5559 assert(Uuid.size() == 36); 5560 for (unsigned i = 0; i < 36; ++i) { 5561 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5562 else assert(isHexDigit(Uuid[i])); 5563 } 5564 5565 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5566 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5567 5568 llvm::Constant *Field3[8]; 5569 for (unsigned Idx = 0; Idx < 8; ++Idx) 5570 Field3[Idx] = llvm::ConstantInt::get( 5571 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5572 5573 llvm::Constant *Fields[4] = { 5574 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5575 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5576 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5577 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5578 }; 5579 5580 return llvm::ConstantStruct::getAnon(Fields); 5581 } 5582 5583 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5584 bool ForEH) { 5585 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5586 // FIXME: should we even be calling this method if RTTI is disabled 5587 // and it's not for EH? 5588 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5589 return llvm::Constant::getNullValue(Int8PtrTy); 5590 5591 if (ForEH && Ty->isObjCObjectPointerType() && 5592 LangOpts.ObjCRuntime.isGNUFamily()) 5593 return ObjCRuntime->GetEHType(Ty); 5594 5595 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5596 } 5597 5598 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5599 // Do not emit threadprivates in simd-only mode. 5600 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5601 return; 5602 for (auto RefExpr : D->varlists()) { 5603 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5604 bool PerformInit = 5605 VD->getAnyInitializer() && 5606 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5607 /*ForRef=*/false); 5608 5609 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5610 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5611 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5612 CXXGlobalInits.push_back(InitFunction); 5613 } 5614 } 5615 5616 llvm::Metadata * 5617 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5618 StringRef Suffix) { 5619 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5620 if (InternalId) 5621 return InternalId; 5622 5623 if (isExternallyVisible(T->getLinkage())) { 5624 std::string OutName; 5625 llvm::raw_string_ostream Out(OutName); 5626 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5627 Out << Suffix; 5628 5629 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5630 } else { 5631 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5632 llvm::ArrayRef<llvm::Metadata *>()); 5633 } 5634 5635 return InternalId; 5636 } 5637 5638 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5639 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5640 } 5641 5642 llvm::Metadata * 5643 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5644 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5645 } 5646 5647 // Generalize pointer types to a void pointer with the qualifiers of the 5648 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5649 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5650 // 'void *'. 5651 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5652 if (!Ty->isPointerType()) 5653 return Ty; 5654 5655 return Ctx.getPointerType( 5656 QualType(Ctx.VoidTy).withCVRQualifiers( 5657 Ty->getPointeeType().getCVRQualifiers())); 5658 } 5659 5660 // Apply type generalization to a FunctionType's return and argument types 5661 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5662 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5663 SmallVector<QualType, 8> GeneralizedParams; 5664 for (auto &Param : FnType->param_types()) 5665 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5666 5667 return Ctx.getFunctionType( 5668 GeneralizeType(Ctx, FnType->getReturnType()), 5669 GeneralizedParams, FnType->getExtProtoInfo()); 5670 } 5671 5672 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5673 return Ctx.getFunctionNoProtoType( 5674 GeneralizeType(Ctx, FnType->getReturnType())); 5675 5676 llvm_unreachable("Encountered unknown FunctionType"); 5677 } 5678 5679 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5680 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5681 GeneralizedMetadataIdMap, ".generalized"); 5682 } 5683 5684 /// Returns whether this module needs the "all-vtables" type identifier. 5685 bool CodeGenModule::NeedAllVtablesTypeId() const { 5686 // Returns true if at least one of vtable-based CFI checkers is enabled and 5687 // is not in the trapping mode. 5688 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5689 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5690 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5691 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5692 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5693 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5694 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5695 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5696 } 5697 5698 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5699 CharUnits Offset, 5700 const CXXRecordDecl *RD) { 5701 llvm::Metadata *MD = 5702 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5703 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5704 5705 if (CodeGenOpts.SanitizeCfiCrossDso) 5706 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5707 VTable->addTypeMetadata(Offset.getQuantity(), 5708 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5709 5710 if (NeedAllVtablesTypeId()) { 5711 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5712 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5713 } 5714 } 5715 5716 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5717 assert(TD != nullptr); 5718 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5719 5720 ParsedAttr.Features.erase( 5721 llvm::remove_if(ParsedAttr.Features, 5722 [&](const std::string &Feat) { 5723 return !Target.isValidFeatureName( 5724 StringRef{Feat}.substr(1)); 5725 }), 5726 ParsedAttr.Features.end()); 5727 return ParsedAttr; 5728 } 5729 5730 5731 // Fills in the supplied string map with the set of target features for the 5732 // passed in function. 5733 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5734 GlobalDecl GD) { 5735 StringRef TargetCPU = Target.getTargetOpts().CPU; 5736 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5737 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5738 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5739 5740 // Make a copy of the features as passed on the command line into the 5741 // beginning of the additional features from the function to override. 5742 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5743 Target.getTargetOpts().FeaturesAsWritten.begin(), 5744 Target.getTargetOpts().FeaturesAsWritten.end()); 5745 5746 if (ParsedAttr.Architecture != "" && 5747 Target.isValidCPUName(ParsedAttr.Architecture)) 5748 TargetCPU = ParsedAttr.Architecture; 5749 5750 // Now populate the feature map, first with the TargetCPU which is either 5751 // the default or a new one from the target attribute string. Then we'll use 5752 // the passed in features (FeaturesAsWritten) along with the new ones from 5753 // the attribute. 5754 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5755 ParsedAttr.Features); 5756 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5757 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5758 Target.getCPUSpecificCPUDispatchFeatures( 5759 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5760 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5761 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5762 } else { 5763 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5764 Target.getTargetOpts().Features); 5765 } 5766 } 5767 5768 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5769 if (!SanStats) 5770 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5771 5772 return *SanStats; 5773 } 5774 llvm::Value * 5775 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5776 CodeGenFunction &CGF) { 5777 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5778 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5779 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5780 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5781 "__translate_sampler_initializer"), 5782 {C}); 5783 } 5784