xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 6586c676b42aa9c7e78f9b1d419767a02793a70f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CodeGenOptions.h"
42 #include "clang/Basic/Diagnostic.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/BinaryFormat/ELF.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/RISCVISAInfo.h"
72 #include "llvm/TargetParser/Triple.h"
73 #include "llvm/TargetParser/X86TargetParser.h"
74 #include "llvm/Transforms/Utils/BuildLibCalls.h"
75 #include <optional>
76 
77 using namespace clang;
78 using namespace CodeGen;
79 
80 static llvm::cl::opt<bool> LimitedCoverage(
81     "limited-coverage-experimental", llvm::cl::Hidden,
82     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
83 
84 static const char AnnotationSection[] = "llvm.metadata";
85 
86 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
87   switch (CGM.getContext().getCXXABIKind()) {
88   case TargetCXXABI::AppleARM64:
89   case TargetCXXABI::Fuchsia:
90   case TargetCXXABI::GenericAArch64:
91   case TargetCXXABI::GenericARM:
92   case TargetCXXABI::iOS:
93   case TargetCXXABI::WatchOS:
94   case TargetCXXABI::GenericMIPS:
95   case TargetCXXABI::GenericItanium:
96   case TargetCXXABI::WebAssembly:
97   case TargetCXXABI::XL:
98     return CreateItaniumCXXABI(CGM);
99   case TargetCXXABI::Microsoft:
100     return CreateMicrosoftCXXABI(CGM);
101   }
102 
103   llvm_unreachable("invalid C++ ABI kind");
104 }
105 
106 static std::unique_ptr<TargetCodeGenInfo>
107 createTargetCodeGenInfo(CodeGenModule &CGM) {
108   const TargetInfo &Target = CGM.getTarget();
109   const llvm::Triple &Triple = Target.getTriple();
110   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
111 
112   switch (Triple.getArch()) {
113   default:
114     return createDefaultTargetCodeGenInfo(CGM);
115 
116   case llvm::Triple::m68k:
117     return createM68kTargetCodeGenInfo(CGM);
118   case llvm::Triple::mips:
119   case llvm::Triple::mipsel:
120     if (Triple.getOS() == llvm::Triple::NaCl)
121       return createPNaClTargetCodeGenInfo(CGM);
122     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
123 
124   case llvm::Triple::mips64:
125   case llvm::Triple::mips64el:
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
127 
128   case llvm::Triple::avr: {
129     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130     // on avrtiny. For passing return value, R18~R25 are used on avr, and
131     // R22~R25 are used on avrtiny.
132     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
135   }
136 
137   case llvm::Triple::aarch64:
138   case llvm::Triple::aarch64_32:
139   case llvm::Triple::aarch64_be: {
140     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141     if (Target.getABI() == "darwinpcs")
142       Kind = AArch64ABIKind::DarwinPCS;
143     else if (Triple.isOSWindows())
144       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145     else if (Target.getABI() == "aapcs-soft")
146       Kind = AArch64ABIKind::AAPCSSoft;
147     else if (Target.getABI() == "pauthtest")
148       Kind = AArch64ABIKind::PAuthTest;
149 
150     return createAArch64TargetCodeGenInfo(CGM, Kind);
151   }
152 
153   case llvm::Triple::wasm32:
154   case llvm::Triple::wasm64: {
155     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
156     if (Target.getABI() == "experimental-mv")
157       Kind = WebAssemblyABIKind::ExperimentalMV;
158     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
159   }
160 
161   case llvm::Triple::arm:
162   case llvm::Triple::armeb:
163   case llvm::Triple::thumb:
164   case llvm::Triple::thumbeb: {
165     if (Triple.getOS() == llvm::Triple::Win32)
166       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
167 
168     ARMABIKind Kind = ARMABIKind::AAPCS;
169     StringRef ABIStr = Target.getABI();
170     if (ABIStr == "apcs-gnu")
171       Kind = ARMABIKind::APCS;
172     else if (ABIStr == "aapcs16")
173       Kind = ARMABIKind::AAPCS16_VFP;
174     else if (CodeGenOpts.FloatABI == "hard" ||
175              (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI()))
176       Kind = ARMABIKind::AAPCS_VFP;
177 
178     return createARMTargetCodeGenInfo(CGM, Kind);
179   }
180 
181   case llvm::Triple::ppc: {
182     if (Triple.isOSAIX())
183       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
184 
185     bool IsSoftFloat =
186         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
187     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
188   }
189   case llvm::Triple::ppcle: {
190     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
191     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
192   }
193   case llvm::Triple::ppc64:
194     if (Triple.isOSAIX())
195       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
196 
197     if (Triple.isOSBinFormatELF()) {
198       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
199       if (Target.getABI() == "elfv2")
200         Kind = PPC64_SVR4_ABIKind::ELFv2;
201       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
202 
203       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
204     }
205     return createPPC64TargetCodeGenInfo(CGM);
206   case llvm::Triple::ppc64le: {
207     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
208     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
209     if (Target.getABI() == "elfv1")
210       Kind = PPC64_SVR4_ABIKind::ELFv1;
211     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
212 
213     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
214   }
215 
216   case llvm::Triple::nvptx:
217   case llvm::Triple::nvptx64:
218     return createNVPTXTargetCodeGenInfo(CGM);
219 
220   case llvm::Triple::msp430:
221     return createMSP430TargetCodeGenInfo(CGM);
222 
223   case llvm::Triple::riscv32:
224   case llvm::Triple::riscv64: {
225     StringRef ABIStr = Target.getABI();
226     unsigned XLen = Target.getPointerWidth(LangAS::Default);
227     unsigned ABIFLen = 0;
228     if (ABIStr.ends_with("f"))
229       ABIFLen = 32;
230     else if (ABIStr.ends_with("d"))
231       ABIFLen = 64;
232     bool EABI = ABIStr.ends_with("e");
233     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
234   }
235 
236   case llvm::Triple::systemz: {
237     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
238     bool HasVector = !SoftFloat && Target.getABI() == "vector";
239     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
240   }
241 
242   case llvm::Triple::tce:
243   case llvm::Triple::tcele:
244     return createTCETargetCodeGenInfo(CGM);
245 
246   case llvm::Triple::x86: {
247     bool IsDarwinVectorABI = Triple.isOSDarwin();
248     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
249 
250     if (Triple.getOS() == llvm::Triple::Win32) {
251       return createWinX86_32TargetCodeGenInfo(
252           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
253           CodeGenOpts.NumRegisterParameters);
254     }
255     return createX86_32TargetCodeGenInfo(
256         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
257         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
258   }
259 
260   case llvm::Triple::x86_64: {
261     StringRef ABI = Target.getABI();
262     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
263                                : ABI == "avx"  ? X86AVXABILevel::AVX
264                                                : X86AVXABILevel::None);
265 
266     switch (Triple.getOS()) {
267     case llvm::Triple::Win32:
268       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
269     default:
270       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
271     }
272   }
273   case llvm::Triple::hexagon:
274     return createHexagonTargetCodeGenInfo(CGM);
275   case llvm::Triple::lanai:
276     return createLanaiTargetCodeGenInfo(CGM);
277   case llvm::Triple::r600:
278     return createAMDGPUTargetCodeGenInfo(CGM);
279   case llvm::Triple::amdgcn:
280     return createAMDGPUTargetCodeGenInfo(CGM);
281   case llvm::Triple::sparc:
282     return createSparcV8TargetCodeGenInfo(CGM);
283   case llvm::Triple::sparcv9:
284     return createSparcV9TargetCodeGenInfo(CGM);
285   case llvm::Triple::xcore:
286     return createXCoreTargetCodeGenInfo(CGM);
287   case llvm::Triple::arc:
288     return createARCTargetCodeGenInfo(CGM);
289   case llvm::Triple::spir:
290   case llvm::Triple::spir64:
291     return createCommonSPIRTargetCodeGenInfo(CGM);
292   case llvm::Triple::spirv32:
293   case llvm::Triple::spirv64:
294   case llvm::Triple::spirv:
295     return createSPIRVTargetCodeGenInfo(CGM);
296   case llvm::Triple::dxil:
297     return createDirectXTargetCodeGenInfo(CGM);
298   case llvm::Triple::ve:
299     return createVETargetCodeGenInfo(CGM);
300   case llvm::Triple::csky: {
301     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
302     bool hasFP64 =
303         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
304     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
305                                             : hasFP64   ? 64
306                                                         : 32);
307   }
308   case llvm::Triple::bpfeb:
309   case llvm::Triple::bpfel:
310     return createBPFTargetCodeGenInfo(CGM);
311   case llvm::Triple::loongarch32:
312   case llvm::Triple::loongarch64: {
313     StringRef ABIStr = Target.getABI();
314     unsigned ABIFRLen = 0;
315     if (ABIStr.ends_with("f"))
316       ABIFRLen = 32;
317     else if (ABIStr.ends_with("d"))
318       ABIFRLen = 64;
319     return createLoongArchTargetCodeGenInfo(
320         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
321   }
322   }
323 }
324 
325 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
326   if (!TheTargetCodeGenInfo)
327     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
328   return *TheTargetCodeGenInfo;
329 }
330 
331 CodeGenModule::CodeGenModule(ASTContext &C,
332                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
333                              const HeaderSearchOptions &HSO,
334                              const PreprocessorOptions &PPO,
335                              const CodeGenOptions &CGO, llvm::Module &M,
336                              DiagnosticsEngine &diags,
337                              CoverageSourceInfo *CoverageInfo)
338     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
339       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
340       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
341       VMContext(M.getContext()), VTables(*this), StackHandler(diags),
342       SanitizerMD(new SanitizerMetadata(*this)) {
343 
344   // Initialize the type cache.
345   Types.reset(new CodeGenTypes(*this));
346   llvm::LLVMContext &LLVMContext = M.getContext();
347   VoidTy = llvm::Type::getVoidTy(LLVMContext);
348   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
349   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
350   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
351   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
352   HalfTy = llvm::Type::getHalfTy(LLVMContext);
353   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
354   FloatTy = llvm::Type::getFloatTy(LLVMContext);
355   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
356   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
357   PointerAlignInBytes =
358       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
359           .getQuantity();
360   SizeSizeInBytes =
361     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
362   IntAlignInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
364   CharTy =
365     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
366   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
367   IntPtrTy = llvm::IntegerType::get(LLVMContext,
368     C.getTargetInfo().getMaxPointerWidth());
369   Int8PtrTy = llvm::PointerType::get(LLVMContext,
370                                      C.getTargetAddressSpace(LangAS::Default));
371   const llvm::DataLayout &DL = M.getDataLayout();
372   AllocaInt8PtrTy =
373       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
374   GlobalsInt8PtrTy =
375       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
376   ConstGlobalsPtrTy = llvm::PointerType::get(
377       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
378   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
379 
380   // Build C++20 Module initializers.
381   // TODO: Add Microsoft here once we know the mangling required for the
382   // initializers.
383   CXX20ModuleInits =
384       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
385                                        ItaniumMangleContext::MK_Itanium;
386 
387   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
388 
389   if (LangOpts.ObjC)
390     createObjCRuntime();
391   if (LangOpts.OpenCL)
392     createOpenCLRuntime();
393   if (LangOpts.OpenMP)
394     createOpenMPRuntime();
395   if (LangOpts.CUDA)
396     createCUDARuntime();
397   if (LangOpts.HLSL)
398     createHLSLRuntime();
399 
400   // Enable TBAA unless it's suppressed. TSan and TySan need TBAA even at O0.
401   if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Thread | SanitizerKind::Type) ||
402       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
403     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
404                                getLangOpts()));
405 
406   // If debug info or coverage generation is enabled, create the CGDebugInfo
407   // object.
408   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
409       CodeGenOpts.CoverageNotesFile.size() ||
410       CodeGenOpts.CoverageDataFile.size())
411     DebugInfo.reset(new CGDebugInfo(*this));
412 
413   Block.GlobalUniqueCount = 0;
414 
415   if (C.getLangOpts().ObjC)
416     ObjCData.reset(new ObjCEntrypoints());
417 
418   if (CodeGenOpts.hasProfileClangUse()) {
419     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
420         CodeGenOpts.ProfileInstrumentUsePath, *FS,
421         CodeGenOpts.ProfileRemappingFile);
422     // We're checking for profile read errors in CompilerInvocation, so if
423     // there was an error it should've already been caught. If it hasn't been
424     // somehow, trip an assertion.
425     assert(ReaderOrErr);
426     PGOReader = std::move(ReaderOrErr.get());
427   }
428 
429   // If coverage mapping generation is enabled, create the
430   // CoverageMappingModuleGen object.
431   if (CodeGenOpts.CoverageMapping)
432     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
433 
434   // Generate the module name hash here if needed.
435   if (CodeGenOpts.UniqueInternalLinkageNames &&
436       !getModule().getSourceFileName().empty()) {
437     std::string Path = getModule().getSourceFileName();
438     // Check if a path substitution is needed from the MacroPrefixMap.
439     for (const auto &Entry : LangOpts.MacroPrefixMap)
440       if (Path.rfind(Entry.first, 0) != std::string::npos) {
441         Path = Entry.second + Path.substr(Entry.first.size());
442         break;
443       }
444     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
445   }
446 
447   // Record mregparm value now so it is visible through all of codegen.
448   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
449     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
450                               CodeGenOpts.NumRegisterParameters);
451 }
452 
453 CodeGenModule::~CodeGenModule() {}
454 
455 void CodeGenModule::createObjCRuntime() {
456   // This is just isGNUFamily(), but we want to force implementors of
457   // new ABIs to decide how best to do this.
458   switch (LangOpts.ObjCRuntime.getKind()) {
459   case ObjCRuntime::GNUstep:
460   case ObjCRuntime::GCC:
461   case ObjCRuntime::ObjFW:
462     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
463     return;
464 
465   case ObjCRuntime::FragileMacOSX:
466   case ObjCRuntime::MacOSX:
467   case ObjCRuntime::iOS:
468   case ObjCRuntime::WatchOS:
469     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
470     return;
471   }
472   llvm_unreachable("bad runtime kind");
473 }
474 
475 void CodeGenModule::createOpenCLRuntime() {
476   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
477 }
478 
479 void CodeGenModule::createOpenMPRuntime() {
480   // Select a specialized code generation class based on the target, if any.
481   // If it does not exist use the default implementation.
482   switch (getTriple().getArch()) {
483   case llvm::Triple::nvptx:
484   case llvm::Triple::nvptx64:
485   case llvm::Triple::amdgcn:
486     assert(getLangOpts().OpenMPIsTargetDevice &&
487            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
488     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
489     break;
490   default:
491     if (LangOpts.OpenMPSimd)
492       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
493     else
494       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
495     break;
496   }
497 }
498 
499 void CodeGenModule::createCUDARuntime() {
500   CUDARuntime.reset(CreateNVCUDARuntime(*this));
501 }
502 
503 void CodeGenModule::createHLSLRuntime() {
504   HLSLRuntime.reset(new CGHLSLRuntime(*this));
505 }
506 
507 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
508   Replacements[Name] = C;
509 }
510 
511 void CodeGenModule::applyReplacements() {
512   for (auto &I : Replacements) {
513     StringRef MangledName = I.first;
514     llvm::Constant *Replacement = I.second;
515     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
516     if (!Entry)
517       continue;
518     auto *OldF = cast<llvm::Function>(Entry);
519     auto *NewF = dyn_cast<llvm::Function>(Replacement);
520     if (!NewF) {
521       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
522         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
523       } else {
524         auto *CE = cast<llvm::ConstantExpr>(Replacement);
525         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
526                CE->getOpcode() == llvm::Instruction::GetElementPtr);
527         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
528       }
529     }
530 
531     // Replace old with new, but keep the old order.
532     OldF->replaceAllUsesWith(Replacement);
533     if (NewF) {
534       NewF->removeFromParent();
535       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
536                                                        NewF);
537     }
538     OldF->eraseFromParent();
539   }
540 }
541 
542 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
543   GlobalValReplacements.push_back(std::make_pair(GV, C));
544 }
545 
546 void CodeGenModule::applyGlobalValReplacements() {
547   for (auto &I : GlobalValReplacements) {
548     llvm::GlobalValue *GV = I.first;
549     llvm::Constant *C = I.second;
550 
551     GV->replaceAllUsesWith(C);
552     GV->eraseFromParent();
553   }
554 }
555 
556 // This is only used in aliases that we created and we know they have a
557 // linear structure.
558 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
559   const llvm::Constant *C;
560   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
561     C = GA->getAliasee();
562   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
563     C = GI->getResolver();
564   else
565     return GV;
566 
567   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
568   if (!AliaseeGV)
569     return nullptr;
570 
571   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
572   if (FinalGV == GV)
573     return nullptr;
574 
575   return FinalGV;
576 }
577 
578 static bool checkAliasedGlobal(
579     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
580     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
581     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
582     SourceRange AliasRange) {
583   GV = getAliasedGlobal(Alias);
584   if (!GV) {
585     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
586     return false;
587   }
588 
589   if (GV->hasCommonLinkage()) {
590     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
591     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
592       Diags.Report(Location, diag::err_alias_to_common);
593       return false;
594     }
595   }
596 
597   if (GV->isDeclaration()) {
598     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
599     Diags.Report(Location, diag::note_alias_requires_mangled_name)
600         << IsIFunc << IsIFunc;
601     // Provide a note if the given function is not found and exists as a
602     // mangled name.
603     for (const auto &[Decl, Name] : MangledDeclNames) {
604       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
605         IdentifierInfo *II = ND->getIdentifier();
606         if (II && II->getName() == GV->getName()) {
607           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
608               << Name
609               << FixItHint::CreateReplacement(
610                      AliasRange,
611                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
612                          .str());
613         }
614       }
615     }
616     return false;
617   }
618 
619   if (IsIFunc) {
620     // Check resolver function type.
621     const auto *F = dyn_cast<llvm::Function>(GV);
622     if (!F) {
623       Diags.Report(Location, diag::err_alias_to_undefined)
624           << IsIFunc << IsIFunc;
625       return false;
626     }
627 
628     llvm::FunctionType *FTy = F->getFunctionType();
629     if (!FTy->getReturnType()->isPointerTy()) {
630       Diags.Report(Location, diag::err_ifunc_resolver_return);
631       return false;
632     }
633   }
634 
635   return true;
636 }
637 
638 // Emit a warning if toc-data attribute is requested for global variables that
639 // have aliases and remove the toc-data attribute.
640 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
641                                  const CodeGenOptions &CodeGenOpts,
642                                  DiagnosticsEngine &Diags,
643                                  SourceLocation Location) {
644   if (GVar->hasAttribute("toc-data")) {
645     auto GVId = GVar->getName();
646     // Is this a global variable specified by the user as local?
647     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
648       Diags.Report(Location, diag::warn_toc_unsupported_type)
649           << GVId << "the variable has an alias";
650     }
651     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
652     llvm::AttributeSet NewAttributes =
653         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
654     GVar->setAttributes(NewAttributes);
655   }
656 }
657 
658 void CodeGenModule::checkAliases() {
659   // Check if the constructed aliases are well formed. It is really unfortunate
660   // that we have to do this in CodeGen, but we only construct mangled names
661   // and aliases during codegen.
662   bool Error = false;
663   DiagnosticsEngine &Diags = getDiags();
664   for (const GlobalDecl &GD : Aliases) {
665     const auto *D = cast<ValueDecl>(GD.getDecl());
666     SourceLocation Location;
667     SourceRange Range;
668     bool IsIFunc = D->hasAttr<IFuncAttr>();
669     if (const Attr *A = D->getDefiningAttr()) {
670       Location = A->getLocation();
671       Range = A->getRange();
672     } else
673       llvm_unreachable("Not an alias or ifunc?");
674 
675     StringRef MangledName = getMangledName(GD);
676     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
677     const llvm::GlobalValue *GV = nullptr;
678     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
679                             MangledDeclNames, Range)) {
680       Error = true;
681       continue;
682     }
683 
684     if (getContext().getTargetInfo().getTriple().isOSAIX())
685       if (const llvm::GlobalVariable *GVar =
686               dyn_cast<const llvm::GlobalVariable>(GV))
687         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
688                              getCodeGenOpts(), Diags, Location);
689 
690     llvm::Constant *Aliasee =
691         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
692                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
693 
694     llvm::GlobalValue *AliaseeGV;
695     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
696       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
697     else
698       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
699 
700     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
701       StringRef AliasSection = SA->getName();
702       if (AliasSection != AliaseeGV->getSection())
703         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
704             << AliasSection << IsIFunc << IsIFunc;
705     }
706 
707     // We have to handle alias to weak aliases in here. LLVM itself disallows
708     // this since the object semantics would not match the IL one. For
709     // compatibility with gcc we implement it by just pointing the alias
710     // to its aliasee's aliasee. We also warn, since the user is probably
711     // expecting the link to be weak.
712     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
713       if (GA->isInterposable()) {
714         Diags.Report(Location, diag::warn_alias_to_weak_alias)
715             << GV->getName() << GA->getName() << IsIFunc;
716         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
717             GA->getAliasee(), Alias->getType());
718 
719         if (IsIFunc)
720           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
721         else
722           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
723       }
724     }
725     // ifunc resolvers are usually implemented to run before sanitizer
726     // initialization. Disable instrumentation to prevent the ordering issue.
727     if (IsIFunc)
728       cast<llvm::Function>(Aliasee)->addFnAttr(
729           llvm::Attribute::DisableSanitizerInstrumentation);
730   }
731   if (!Error)
732     return;
733 
734   for (const GlobalDecl &GD : Aliases) {
735     StringRef MangledName = getMangledName(GD);
736     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
737     Alias->replaceAllUsesWith(llvm::PoisonValue::get(Alias->getType()));
738     Alias->eraseFromParent();
739   }
740 }
741 
742 void CodeGenModule::clear() {
743   DeferredDeclsToEmit.clear();
744   EmittedDeferredDecls.clear();
745   DeferredAnnotations.clear();
746   if (OpenMPRuntime)
747     OpenMPRuntime->clear();
748 }
749 
750 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
751                                        StringRef MainFile) {
752   if (!hasDiagnostics())
753     return;
754   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
755     if (MainFile.empty())
756       MainFile = "<stdin>";
757     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
758   } else {
759     if (Mismatched > 0)
760       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
761 
762     if (Missing > 0)
763       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
764   }
765 }
766 
767 static std::optional<llvm::GlobalValue::VisibilityTypes>
768 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
769   // Map to LLVM visibility.
770   switch (K) {
771   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
772     return std::nullopt;
773   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
774     return llvm::GlobalValue::DefaultVisibility;
775   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
776     return llvm::GlobalValue::HiddenVisibility;
777   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
778     return llvm::GlobalValue::ProtectedVisibility;
779   }
780   llvm_unreachable("unknown option value!");
781 }
782 
783 static void
784 setLLVMVisibility(llvm::GlobalValue &GV,
785                   std::optional<llvm::GlobalValue::VisibilityTypes> V) {
786   if (!V)
787     return;
788 
789   // Reset DSO locality before setting the visibility. This removes
790   // any effects that visibility options and annotations may have
791   // had on the DSO locality. Setting the visibility will implicitly set
792   // appropriate globals to DSO Local; however, this will be pessimistic
793   // w.r.t. to the normal compiler IRGen.
794   GV.setDSOLocal(false);
795   GV.setVisibility(*V);
796 }
797 
798 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
799                                              llvm::Module &M) {
800   if (!LO.VisibilityFromDLLStorageClass)
801     return;
802 
803   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
804       getLLVMVisibility(LO.getDLLExportVisibility());
805 
806   std::optional<llvm::GlobalValue::VisibilityTypes>
807       NoDLLStorageClassVisibility =
808           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
809 
810   std::optional<llvm::GlobalValue::VisibilityTypes>
811       ExternDeclDLLImportVisibility =
812           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
813 
814   std::optional<llvm::GlobalValue::VisibilityTypes>
815       ExternDeclNoDLLStorageClassVisibility =
816           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
817 
818   for (llvm::GlobalValue &GV : M.global_values()) {
819     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
820       continue;
821 
822     if (GV.isDeclarationForLinker())
823       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
824                                     llvm::GlobalValue::DLLImportStorageClass
825                                 ? ExternDeclDLLImportVisibility
826                                 : ExternDeclNoDLLStorageClassVisibility);
827     else
828       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
829                                     llvm::GlobalValue::DLLExportStorageClass
830                                 ? DLLExportVisibility
831                                 : NoDLLStorageClassVisibility);
832 
833     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
834   }
835 }
836 
837 static bool isStackProtectorOn(const LangOptions &LangOpts,
838                                const llvm::Triple &Triple,
839                                clang::LangOptions::StackProtectorMode Mode) {
840   if (Triple.isAMDGPU() || Triple.isNVPTX())
841     return false;
842   return LangOpts.getStackProtector() == Mode;
843 }
844 
845 void CodeGenModule::Release() {
846   Module *Primary = getContext().getCurrentNamedModule();
847   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
848     EmitModuleInitializers(Primary);
849   EmitDeferred();
850   DeferredDecls.insert(EmittedDeferredDecls.begin(),
851                        EmittedDeferredDecls.end());
852   EmittedDeferredDecls.clear();
853   EmitVTablesOpportunistically();
854   applyGlobalValReplacements();
855   applyReplacements();
856   emitMultiVersionFunctions();
857 
858   if (Context.getLangOpts().IncrementalExtensions &&
859       GlobalTopLevelStmtBlockInFlight.first) {
860     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
861     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
862     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
863   }
864 
865   // Module implementations are initialized the same way as a regular TU that
866   // imports one or more modules.
867   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
868     EmitCXXModuleInitFunc(Primary);
869   else
870     EmitCXXGlobalInitFunc();
871   EmitCXXGlobalCleanUpFunc();
872   registerGlobalDtorsWithAtExit();
873   EmitCXXThreadLocalInitFunc();
874   if (ObjCRuntime)
875     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
876       AddGlobalCtor(ObjCInitFunction);
877   if (Context.getLangOpts().CUDA && CUDARuntime) {
878     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
879       AddGlobalCtor(CudaCtorFunction);
880   }
881   if (OpenMPRuntime) {
882     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
883     OpenMPRuntime->clear();
884   }
885   if (PGOReader) {
886     getModule().setProfileSummary(
887         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
888         llvm::ProfileSummary::PSK_Instr);
889     if (PGOStats.hasDiagnostics())
890       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
891   }
892   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
893     return L.LexOrder < R.LexOrder;
894   });
895   EmitCtorList(GlobalCtors, "llvm.global_ctors");
896   EmitCtorList(GlobalDtors, "llvm.global_dtors");
897   EmitGlobalAnnotations();
898   EmitStaticExternCAliases();
899   checkAliases();
900   EmitDeferredUnusedCoverageMappings();
901   CodeGenPGO(*this).setValueProfilingFlag(getModule());
902   CodeGenPGO(*this).setProfileVersion(getModule());
903   if (CoverageMapping)
904     CoverageMapping->emit();
905   if (CodeGenOpts.SanitizeCfiCrossDso) {
906     CodeGenFunction(*this).EmitCfiCheckFail();
907     CodeGenFunction(*this).EmitCfiCheckStub();
908   }
909   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
910     finalizeKCFITypes();
911   emitAtAvailableLinkGuard();
912   if (Context.getTargetInfo().getTriple().isWasm())
913     EmitMainVoidAlias();
914 
915   if (getTriple().isAMDGPU() ||
916       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
917     // Emit amdhsa_code_object_version module flag, which is code object version
918     // times 100.
919     if (getTarget().getTargetOpts().CodeObjectVersion !=
920         llvm::CodeObjectVersionKind::COV_None) {
921       getModule().addModuleFlag(llvm::Module::Error,
922                                 "amdhsa_code_object_version",
923                                 getTarget().getTargetOpts().CodeObjectVersion);
924     }
925 
926     // Currently, "-mprintf-kind" option is only supported for HIP
927     if (LangOpts.HIP) {
928       auto *MDStr = llvm::MDString::get(
929           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
930                              TargetOptions::AMDGPUPrintfKind::Hostcall)
931                                 ? "hostcall"
932                                 : "buffered");
933       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
934                                 MDStr);
935     }
936   }
937 
938   // Emit a global array containing all external kernels or device variables
939   // used by host functions and mark it as used for CUDA/HIP. This is necessary
940   // to get kernels or device variables in archives linked in even if these
941   // kernels or device variables are only used in host functions.
942   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
943     SmallVector<llvm::Constant *, 8> UsedArray;
944     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
945       GlobalDecl GD;
946       if (auto *FD = dyn_cast<FunctionDecl>(D))
947         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
948       else
949         GD = GlobalDecl(D);
950       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
951           GetAddrOfGlobal(GD), Int8PtrTy));
952     }
953 
954     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
955 
956     auto *GV = new llvm::GlobalVariable(
957         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
958         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
959     addCompilerUsedGlobal(GV);
960   }
961   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
962     // Emit a unique ID so that host and device binaries from the same
963     // compilation unit can be associated.
964     auto *GV = new llvm::GlobalVariable(
965         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
966         llvm::Constant::getNullValue(Int8Ty),
967         "__hip_cuid_" + getContext().getCUIDHash());
968     addCompilerUsedGlobal(GV);
969   }
970   emitLLVMUsed();
971   if (SanStats)
972     SanStats->finish();
973 
974   if (CodeGenOpts.Autolink &&
975       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
976     EmitModuleLinkOptions();
977   }
978 
979   // On ELF we pass the dependent library specifiers directly to the linker
980   // without manipulating them. This is in contrast to other platforms where
981   // they are mapped to a specific linker option by the compiler. This
982   // difference is a result of the greater variety of ELF linkers and the fact
983   // that ELF linkers tend to handle libraries in a more complicated fashion
984   // than on other platforms. This forces us to defer handling the dependent
985   // libs to the linker.
986   //
987   // CUDA/HIP device and host libraries are different. Currently there is no
988   // way to differentiate dependent libraries for host or device. Existing
989   // usage of #pragma comment(lib, *) is intended for host libraries on
990   // Windows. Therefore emit llvm.dependent-libraries only for host.
991   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
992     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
993     for (auto *MD : ELFDependentLibraries)
994       NMD->addOperand(MD);
995   }
996 
997   if (CodeGenOpts.DwarfVersion) {
998     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
999                               CodeGenOpts.DwarfVersion);
1000   }
1001 
1002   if (CodeGenOpts.Dwarf64)
1003     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1004 
1005   if (Context.getLangOpts().SemanticInterposition)
1006     // Require various optimization to respect semantic interposition.
1007     getModule().setSemanticInterposition(true);
1008 
1009   if (CodeGenOpts.EmitCodeView) {
1010     // Indicate that we want CodeView in the metadata.
1011     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1012   }
1013   if (CodeGenOpts.CodeViewGHash) {
1014     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1015   }
1016   if (CodeGenOpts.ControlFlowGuard) {
1017     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1018     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1019   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1020     // Function ID tables for Control Flow Guard (cfguard=1).
1021     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1022   }
1023   if (CodeGenOpts.EHContGuard) {
1024     // Function ID tables for EH Continuation Guard.
1025     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1026   }
1027   if (Context.getLangOpts().Kernel) {
1028     // Note if we are compiling with /kernel.
1029     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1030   }
1031   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1032     // We don't support LTO with 2 with different StrictVTablePointers
1033     // FIXME: we could support it by stripping all the information introduced
1034     // by StrictVTablePointers.
1035 
1036     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1037 
1038     llvm::Metadata *Ops[2] = {
1039               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1040               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1041                   llvm::Type::getInt32Ty(VMContext), 1))};
1042 
1043     getModule().addModuleFlag(llvm::Module::Require,
1044                               "StrictVTablePointersRequirement",
1045                               llvm::MDNode::get(VMContext, Ops));
1046   }
1047   if (getModuleDebugInfo())
1048     // We support a single version in the linked module. The LLVM
1049     // parser will drop debug info with a different version number
1050     // (and warn about it, too).
1051     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1052                               llvm::DEBUG_METADATA_VERSION);
1053 
1054   // We need to record the widths of enums and wchar_t, so that we can generate
1055   // the correct build attributes in the ARM backend. wchar_size is also used by
1056   // TargetLibraryInfo.
1057   uint64_t WCharWidth =
1058       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1059   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1060 
1061   if (getTriple().isOSzOS()) {
1062     getModule().addModuleFlag(llvm::Module::Warning,
1063                               "zos_product_major_version",
1064                               uint32_t(CLANG_VERSION_MAJOR));
1065     getModule().addModuleFlag(llvm::Module::Warning,
1066                               "zos_product_minor_version",
1067                               uint32_t(CLANG_VERSION_MINOR));
1068     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1069                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1070     std::string ProductId = getClangVendor() + "clang";
1071     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1072                               llvm::MDString::get(VMContext, ProductId));
1073 
1074     // Record the language because we need it for the PPA2.
1075     StringRef lang_str = languageToString(
1076         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1077     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1078                               llvm::MDString::get(VMContext, lang_str));
1079 
1080     time_t TT = PreprocessorOpts.SourceDateEpoch
1081                     ? *PreprocessorOpts.SourceDateEpoch
1082                     : std::time(nullptr);
1083     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1084                               static_cast<uint64_t>(TT));
1085 
1086     // Multiple modes will be supported here.
1087     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1088                               llvm::MDString::get(VMContext, "ascii"));
1089   }
1090 
1091   llvm::Triple T = Context.getTargetInfo().getTriple();
1092   if (T.isARM() || T.isThumb()) {
1093     // The minimum width of an enum in bytes
1094     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1095     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1096   }
1097 
1098   if (T.isRISCV()) {
1099     StringRef ABIStr = Target.getABI();
1100     llvm::LLVMContext &Ctx = TheModule.getContext();
1101     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1102                               llvm::MDString::get(Ctx, ABIStr));
1103 
1104     // Add the canonical ISA string as metadata so the backend can set the ELF
1105     // attributes correctly. We use AppendUnique so LTO will keep all of the
1106     // unique ISA strings that were linked together.
1107     const std::vector<std::string> &Features =
1108         getTarget().getTargetOpts().Features;
1109     auto ParseResult =
1110         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1111     if (!errorToBool(ParseResult.takeError()))
1112       getModule().addModuleFlag(
1113           llvm::Module::AppendUnique, "riscv-isa",
1114           llvm::MDNode::get(
1115               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1116   }
1117 
1118   if (CodeGenOpts.SanitizeCfiCrossDso) {
1119     // Indicate that we want cross-DSO control flow integrity checks.
1120     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1121   }
1122 
1123   if (CodeGenOpts.WholeProgramVTables) {
1124     // Indicate whether VFE was enabled for this module, so that the
1125     // vcall_visibility metadata added under whole program vtables is handled
1126     // appropriately in the optimizer.
1127     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1128                               CodeGenOpts.VirtualFunctionElimination);
1129   }
1130 
1131   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1132     getModule().addModuleFlag(llvm::Module::Override,
1133                               "CFI Canonical Jump Tables",
1134                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1135   }
1136 
1137   if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) {
1138     getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers",
1139                               1);
1140   }
1141 
1142   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1143     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1144     // KCFI assumes patchable-function-prefix is the same for all indirectly
1145     // called functions. Store the expected offset for code generation.
1146     if (CodeGenOpts.PatchableFunctionEntryOffset)
1147       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1148                                 CodeGenOpts.PatchableFunctionEntryOffset);
1149   }
1150 
1151   if (CodeGenOpts.CFProtectionReturn &&
1152       Target.checkCFProtectionReturnSupported(getDiags())) {
1153     // Indicate that we want to instrument return control flow protection.
1154     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1155                               1);
1156   }
1157 
1158   if (CodeGenOpts.CFProtectionBranch &&
1159       Target.checkCFProtectionBranchSupported(getDiags())) {
1160     // Indicate that we want to instrument branch control flow protection.
1161     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1162                               1);
1163 
1164     auto Scheme = CodeGenOpts.getCFBranchLabelScheme();
1165     if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) {
1166       if (Scheme == CFBranchLabelSchemeKind::Default)
1167         Scheme = Target.getDefaultCFBranchLabelScheme();
1168       getModule().addModuleFlag(
1169           llvm::Module::Error, "cf-branch-label-scheme",
1170           llvm::MDString::get(getLLVMContext(),
1171                               getCFBranchLabelSchemeFlagVal(Scheme)));
1172     }
1173   }
1174 
1175   if (CodeGenOpts.FunctionReturnThunks)
1176     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1177 
1178   if (CodeGenOpts.IndirectBranchCSPrefix)
1179     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1180 
1181   // Add module metadata for return address signing (ignoring
1182   // non-leaf/all) and stack tagging. These are actually turned on by function
1183   // attributes, but we use module metadata to emit build attributes. This is
1184   // needed for LTO, where the function attributes are inside bitcode
1185   // serialised into a global variable by the time build attributes are
1186   // emitted, so we can't access them. LTO objects could be compiled with
1187   // different flags therefore module flags are set to "Min" behavior to achieve
1188   // the same end result of the normal build where e.g BTI is off if any object
1189   // doesn't support it.
1190   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1191       LangOpts.getSignReturnAddressScope() !=
1192           LangOptions::SignReturnAddressScopeKind::None)
1193     getModule().addModuleFlag(llvm::Module::Override,
1194                               "sign-return-address-buildattr", 1);
1195   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1196     getModule().addModuleFlag(llvm::Module::Override,
1197                               "tag-stack-memory-buildattr", 1);
1198 
1199   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1200     if (LangOpts.BranchTargetEnforcement)
1201       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1202                                 1);
1203     if (LangOpts.BranchProtectionPAuthLR)
1204       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1205                                 1);
1206     if (LangOpts.GuardedControlStack)
1207       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1208     if (LangOpts.hasSignReturnAddress())
1209       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1210     if (LangOpts.isSignReturnAddressScopeAll())
1211       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1212                                 1);
1213     if (!LangOpts.isSignReturnAddressWithAKey())
1214       getModule().addModuleFlag(llvm::Module::Min,
1215                                 "sign-return-address-with-bkey", 1);
1216 
1217     if (LangOpts.PointerAuthELFGOT)
1218       getModule().addModuleFlag(llvm::Module::Min, "ptrauth-elf-got", 1);
1219 
1220     if (getTriple().isOSLinux()) {
1221       if (LangOpts.PointerAuthCalls)
1222         getModule().addModuleFlag(llvm::Module::Min, "ptrauth-sign-personality",
1223                                   1);
1224       assert(getTriple().isOSBinFormatELF());
1225       using namespace llvm::ELF;
1226       uint64_t PAuthABIVersion =
1227           (LangOpts.PointerAuthIntrinsics
1228            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1229           (LangOpts.PointerAuthCalls
1230            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1231           (LangOpts.PointerAuthReturns
1232            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1233           (LangOpts.PointerAuthAuthTraps
1234            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1235           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1236            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1237           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1238            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1239           (LangOpts.PointerAuthInitFini
1240            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) |
1241           (LangOpts.PointerAuthInitFiniAddressDiscrimination
1242            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) |
1243           (LangOpts.PointerAuthELFGOT
1244            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) |
1245           (LangOpts.PointerAuthIndirectGotos
1246            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) |
1247           (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination
1248            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) |
1249           (LangOpts.PointerAuthFunctionTypeDiscrimination
1250            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR);
1251       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR ==
1252                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1253                     "Update when new enum items are defined");
1254       if (PAuthABIVersion != 0) {
1255         getModule().addModuleFlag(llvm::Module::Error,
1256                                   "aarch64-elf-pauthabi-platform",
1257                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1258         getModule().addModuleFlag(llvm::Module::Error,
1259                                   "aarch64-elf-pauthabi-version",
1260                                   PAuthABIVersion);
1261       }
1262     }
1263   }
1264 
1265   if (CodeGenOpts.StackClashProtector)
1266     getModule().addModuleFlag(
1267         llvm::Module::Override, "probe-stack",
1268         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1269 
1270   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1271     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1272                               CodeGenOpts.StackProbeSize);
1273 
1274   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1275     llvm::LLVMContext &Ctx = TheModule.getContext();
1276     getModule().addModuleFlag(
1277         llvm::Module::Error, "MemProfProfileFilename",
1278         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1279   }
1280 
1281   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1282     // Indicate whether __nvvm_reflect should be configured to flush denormal
1283     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1284     // property.)
1285     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1286                               CodeGenOpts.FP32DenormalMode.Output !=
1287                                   llvm::DenormalMode::IEEE);
1288   }
1289 
1290   if (LangOpts.EHAsynch)
1291     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1292 
1293   // Indicate whether this Module was compiled with -fopenmp
1294   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1295     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1296   if (getLangOpts().OpenMPIsTargetDevice)
1297     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1298                               LangOpts.OpenMP);
1299 
1300   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1301   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1302     EmitOpenCLMetadata();
1303     // Emit SPIR version.
1304     if (getTriple().isSPIR()) {
1305       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1306       // opencl.spir.version named metadata.
1307       // C++ for OpenCL has a distinct mapping for version compatibility with
1308       // OpenCL.
1309       auto Version = LangOpts.getOpenCLCompatibleVersion();
1310       llvm::Metadata *SPIRVerElts[] = {
1311           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1312               Int32Ty, Version / 100)),
1313           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1314               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1315       llvm::NamedMDNode *SPIRVerMD =
1316           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1317       llvm::LLVMContext &Ctx = TheModule.getContext();
1318       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1319     }
1320   }
1321 
1322   // HLSL related end of code gen work items.
1323   if (LangOpts.HLSL)
1324     getHLSLRuntime().finishCodeGen();
1325 
1326   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1327     assert(PLevel < 3 && "Invalid PIC Level");
1328     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1329     if (Context.getLangOpts().PIE)
1330       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1331   }
1332 
1333   if (getCodeGenOpts().CodeModel.size() > 0) {
1334     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1335                   .Case("tiny", llvm::CodeModel::Tiny)
1336                   .Case("small", llvm::CodeModel::Small)
1337                   .Case("kernel", llvm::CodeModel::Kernel)
1338                   .Case("medium", llvm::CodeModel::Medium)
1339                   .Case("large", llvm::CodeModel::Large)
1340                   .Default(~0u);
1341     if (CM != ~0u) {
1342       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1343       getModule().setCodeModel(codeModel);
1344 
1345       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1346           Context.getTargetInfo().getTriple().getArch() ==
1347               llvm::Triple::x86_64) {
1348         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1349       }
1350     }
1351   }
1352 
1353   if (CodeGenOpts.NoPLT)
1354     getModule().setRtLibUseGOT();
1355   if (getTriple().isOSBinFormatELF() &&
1356       CodeGenOpts.DirectAccessExternalData !=
1357           getModule().getDirectAccessExternalData()) {
1358     getModule().setDirectAccessExternalData(
1359         CodeGenOpts.DirectAccessExternalData);
1360   }
1361   if (CodeGenOpts.UnwindTables)
1362     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1363 
1364   switch (CodeGenOpts.getFramePointer()) {
1365   case CodeGenOptions::FramePointerKind::None:
1366     // 0 ("none") is the default.
1367     break;
1368   case CodeGenOptions::FramePointerKind::Reserved:
1369     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1370     break;
1371   case CodeGenOptions::FramePointerKind::NonLeaf:
1372     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1373     break;
1374   case CodeGenOptions::FramePointerKind::All:
1375     getModule().setFramePointer(llvm::FramePointerKind::All);
1376     break;
1377   }
1378 
1379   SimplifyPersonality();
1380 
1381   if (getCodeGenOpts().EmitDeclMetadata)
1382     EmitDeclMetadata();
1383 
1384   if (getCodeGenOpts().CoverageNotesFile.size() ||
1385       getCodeGenOpts().CoverageDataFile.size())
1386     EmitCoverageFile();
1387 
1388   if (CGDebugInfo *DI = getModuleDebugInfo())
1389     DI->finalize();
1390 
1391   if (getCodeGenOpts().EmitVersionIdentMetadata)
1392     EmitVersionIdentMetadata();
1393 
1394   if (!getCodeGenOpts().RecordCommandLine.empty())
1395     EmitCommandLineMetadata();
1396 
1397   if (!getCodeGenOpts().StackProtectorGuard.empty())
1398     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1399   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1400     getModule().setStackProtectorGuardReg(
1401         getCodeGenOpts().StackProtectorGuardReg);
1402   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1403     getModule().setStackProtectorGuardSymbol(
1404         getCodeGenOpts().StackProtectorGuardSymbol);
1405   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1406     getModule().setStackProtectorGuardOffset(
1407         getCodeGenOpts().StackProtectorGuardOffset);
1408   if (getCodeGenOpts().StackAlignment)
1409     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1410   if (getCodeGenOpts().SkipRaxSetup)
1411     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1412   if (getLangOpts().RegCall4)
1413     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1414 
1415   if (getContext().getTargetInfo().getMaxTLSAlign())
1416     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1417                               getContext().getTargetInfo().getMaxTLSAlign());
1418 
1419   getTargetCodeGenInfo().emitTargetGlobals(*this);
1420 
1421   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1422 
1423   EmitBackendOptionsMetadata(getCodeGenOpts());
1424 
1425   // If there is device offloading code embed it in the host now.
1426   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1427 
1428   // Set visibility from DLL storage class
1429   // We do this at the end of LLVM IR generation; after any operation
1430   // that might affect the DLL storage class or the visibility, and
1431   // before anything that might act on these.
1432   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1433 
1434   // Check the tail call symbols are truly undefined.
1435   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1436     for (auto &I : MustTailCallUndefinedGlobals) {
1437       if (!I.first->isDefined())
1438         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1439       else {
1440         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1441         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1442         if (!Entry || Entry->isWeakForLinker() ||
1443             Entry->isDeclarationForLinker())
1444           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1445       }
1446     }
1447   }
1448 }
1449 
1450 void CodeGenModule::EmitOpenCLMetadata() {
1451   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1452   // opencl.ocl.version named metadata node.
1453   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1454   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1455 
1456   auto EmitVersion = [this](StringRef MDName, int Version) {
1457     llvm::Metadata *OCLVerElts[] = {
1458         llvm::ConstantAsMetadata::get(
1459             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1460         llvm::ConstantAsMetadata::get(
1461             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1462     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1463     llvm::LLVMContext &Ctx = TheModule.getContext();
1464     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1465   };
1466 
1467   EmitVersion("opencl.ocl.version", CLVersion);
1468   if (LangOpts.OpenCLCPlusPlus) {
1469     // In addition to the OpenCL compatible version, emit the C++ version.
1470     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1471   }
1472 }
1473 
1474 void CodeGenModule::EmitBackendOptionsMetadata(
1475     const CodeGenOptions &CodeGenOpts) {
1476   if (getTriple().isRISCV()) {
1477     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1478                               CodeGenOpts.SmallDataLimit);
1479   }
1480 }
1481 
1482 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1483   // Make sure that this type is translated.
1484   getTypes().UpdateCompletedType(TD);
1485 }
1486 
1487 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1488   // Make sure that this type is translated.
1489   getTypes().RefreshTypeCacheForClass(RD);
1490 }
1491 
1492 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1493   if (!TBAA)
1494     return nullptr;
1495   return TBAA->getTypeInfo(QTy);
1496 }
1497 
1498 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1499   if (!TBAA)
1500     return TBAAAccessInfo();
1501   if (getLangOpts().CUDAIsDevice) {
1502     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1503     // access info.
1504     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1505       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1506           nullptr)
1507         return TBAAAccessInfo();
1508     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1509       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1510           nullptr)
1511         return TBAAAccessInfo();
1512     }
1513   }
1514   return TBAA->getAccessInfo(AccessType);
1515 }
1516 
1517 TBAAAccessInfo
1518 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1519   if (!TBAA)
1520     return TBAAAccessInfo();
1521   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1522 }
1523 
1524 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1525   if (!TBAA)
1526     return nullptr;
1527   return TBAA->getTBAAStructInfo(QTy);
1528 }
1529 
1530 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1531   if (!TBAA)
1532     return nullptr;
1533   return TBAA->getBaseTypeInfo(QTy);
1534 }
1535 
1536 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1537   if (!TBAA)
1538     return nullptr;
1539   return TBAA->getAccessTagInfo(Info);
1540 }
1541 
1542 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1543                                                    TBAAAccessInfo TargetInfo) {
1544   if (!TBAA)
1545     return TBAAAccessInfo();
1546   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1547 }
1548 
1549 TBAAAccessInfo
1550 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1551                                                    TBAAAccessInfo InfoB) {
1552   if (!TBAA)
1553     return TBAAAccessInfo();
1554   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1555 }
1556 
1557 TBAAAccessInfo
1558 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1559                                               TBAAAccessInfo SrcInfo) {
1560   if (!TBAA)
1561     return TBAAAccessInfo();
1562   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1563 }
1564 
1565 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1566                                                 TBAAAccessInfo TBAAInfo) {
1567   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1568     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1569 }
1570 
1571 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1572     llvm::Instruction *I, const CXXRecordDecl *RD) {
1573   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1574                  llvm::MDNode::get(getLLVMContext(), {}));
1575 }
1576 
1577 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1578   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1579   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1580 }
1581 
1582 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1583 /// specified stmt yet.
1584 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1585   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1586                                                "cannot compile this %0 yet");
1587   std::string Msg = Type;
1588   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1589       << Msg << S->getSourceRange();
1590 }
1591 
1592 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1593 /// specified decl yet.
1594 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1595   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1596                                                "cannot compile this %0 yet");
1597   std::string Msg = Type;
1598   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1599 }
1600 
1601 void CodeGenModule::runWithSufficientStackSpace(SourceLocation Loc,
1602                                                 llvm::function_ref<void()> Fn) {
1603   StackHandler.runWithSufficientStackSpace(Loc, Fn);
1604 }
1605 
1606 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1607   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1608 }
1609 
1610 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1611                                         const NamedDecl *D) const {
1612   // Internal definitions always have default visibility.
1613   if (GV->hasLocalLinkage()) {
1614     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1615     return;
1616   }
1617   if (!D)
1618     return;
1619 
1620   // Set visibility for definitions, and for declarations if requested globally
1621   // or set explicitly.
1622   LinkageInfo LV = D->getLinkageAndVisibility();
1623 
1624   // OpenMP declare target variables must be visible to the host so they can
1625   // be registered. We require protected visibility unless the variable has
1626   // the DT_nohost modifier and does not need to be registered.
1627   if (Context.getLangOpts().OpenMP &&
1628       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1629       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1630       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1631           OMPDeclareTargetDeclAttr::DT_NoHost &&
1632       LV.getVisibility() == HiddenVisibility) {
1633     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1634     return;
1635   }
1636 
1637   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1638     // Reject incompatible dlllstorage and visibility annotations.
1639     if (!LV.isVisibilityExplicit())
1640       return;
1641     if (GV->hasDLLExportStorageClass()) {
1642       if (LV.getVisibility() == HiddenVisibility)
1643         getDiags().Report(D->getLocation(),
1644                           diag::err_hidden_visibility_dllexport);
1645     } else if (LV.getVisibility() != DefaultVisibility) {
1646       getDiags().Report(D->getLocation(),
1647                         diag::err_non_default_visibility_dllimport);
1648     }
1649     return;
1650   }
1651 
1652   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1653       !GV->isDeclarationForLinker())
1654     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1655 }
1656 
1657 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1658                                  llvm::GlobalValue *GV) {
1659   if (GV->hasLocalLinkage())
1660     return true;
1661 
1662   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1663     return true;
1664 
1665   // DLLImport explicitly marks the GV as external.
1666   if (GV->hasDLLImportStorageClass())
1667     return false;
1668 
1669   const llvm::Triple &TT = CGM.getTriple();
1670   const auto &CGOpts = CGM.getCodeGenOpts();
1671   if (TT.isWindowsGNUEnvironment()) {
1672     // In MinGW, variables without DLLImport can still be automatically
1673     // imported from a DLL by the linker; don't mark variables that
1674     // potentially could come from another DLL as DSO local.
1675 
1676     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1677     // (and this actually happens in the public interface of libstdc++), so
1678     // such variables can't be marked as DSO local. (Native TLS variables
1679     // can't be dllimported at all, though.)
1680     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1681         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1682         CGOpts.AutoImport)
1683       return false;
1684   }
1685 
1686   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1687   // remain unresolved in the link, they can be resolved to zero, which is
1688   // outside the current DSO.
1689   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1690     return false;
1691 
1692   // Every other GV is local on COFF.
1693   // Make an exception for windows OS in the triple: Some firmware builds use
1694   // *-win32-macho triples. This (accidentally?) produced windows relocations
1695   // without GOT tables in older clang versions; Keep this behaviour.
1696   // FIXME: even thread local variables?
1697   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1698     return true;
1699 
1700   // Only handle COFF and ELF for now.
1701   if (!TT.isOSBinFormatELF())
1702     return false;
1703 
1704   // If this is not an executable, don't assume anything is local.
1705   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1706   const auto &LOpts = CGM.getLangOpts();
1707   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1708     // On ELF, if -fno-semantic-interposition is specified and the target
1709     // supports local aliases, there will be neither CC1
1710     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1711     // dso_local on the function if using a local alias is preferable (can avoid
1712     // PLT indirection).
1713     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1714       return false;
1715     return !(CGM.getLangOpts().SemanticInterposition ||
1716              CGM.getLangOpts().HalfNoSemanticInterposition);
1717   }
1718 
1719   // A definition cannot be preempted from an executable.
1720   if (!GV->isDeclarationForLinker())
1721     return true;
1722 
1723   // Most PIC code sequences that assume that a symbol is local cannot produce a
1724   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1725   // depended, it seems worth it to handle it here.
1726   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1727     return false;
1728 
1729   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1730   if (TT.isPPC64())
1731     return false;
1732 
1733   if (CGOpts.DirectAccessExternalData) {
1734     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1735     // for non-thread-local variables. If the symbol is not defined in the
1736     // executable, a copy relocation will be needed at link time. dso_local is
1737     // excluded for thread-local variables because they generally don't support
1738     // copy relocations.
1739     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1740       if (!Var->isThreadLocal())
1741         return true;
1742 
1743     // -fno-pic sets dso_local on a function declaration to allow direct
1744     // accesses when taking its address (similar to a data symbol). If the
1745     // function is not defined in the executable, a canonical PLT entry will be
1746     // needed at link time. -fno-direct-access-external-data can avoid the
1747     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1748     // it could just cause trouble without providing perceptible benefits.
1749     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1750       return true;
1751   }
1752 
1753   // If we can use copy relocations we can assume it is local.
1754 
1755   // Otherwise don't assume it is local.
1756   return false;
1757 }
1758 
1759 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1760   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1761 }
1762 
1763 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1764                                           GlobalDecl GD) const {
1765   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1766   // C++ destructors have a few C++ ABI specific special cases.
1767   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1768     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1769     return;
1770   }
1771   setDLLImportDLLExport(GV, D);
1772 }
1773 
1774 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1775                                           const NamedDecl *D) const {
1776   if (D && D->isExternallyVisible()) {
1777     if (D->hasAttr<DLLImportAttr>())
1778       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1779     else if ((D->hasAttr<DLLExportAttr>() ||
1780               shouldMapVisibilityToDLLExport(D)) &&
1781              !GV->isDeclarationForLinker())
1782       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1783   }
1784 }
1785 
1786 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1787                                     GlobalDecl GD) const {
1788   setDLLImportDLLExport(GV, GD);
1789   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1790 }
1791 
1792 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1793                                     const NamedDecl *D) const {
1794   setDLLImportDLLExport(GV, D);
1795   setGVPropertiesAux(GV, D);
1796 }
1797 
1798 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1799                                        const NamedDecl *D) const {
1800   setGlobalVisibility(GV, D);
1801   setDSOLocal(GV);
1802   GV->setPartition(CodeGenOpts.SymbolPartition);
1803 }
1804 
1805 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1806   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1807       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1808       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1809       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1810       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1811 }
1812 
1813 llvm::GlobalVariable::ThreadLocalMode
1814 CodeGenModule::GetDefaultLLVMTLSModel() const {
1815   switch (CodeGenOpts.getDefaultTLSModel()) {
1816   case CodeGenOptions::GeneralDynamicTLSModel:
1817     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1818   case CodeGenOptions::LocalDynamicTLSModel:
1819     return llvm::GlobalVariable::LocalDynamicTLSModel;
1820   case CodeGenOptions::InitialExecTLSModel:
1821     return llvm::GlobalVariable::InitialExecTLSModel;
1822   case CodeGenOptions::LocalExecTLSModel:
1823     return llvm::GlobalVariable::LocalExecTLSModel;
1824   }
1825   llvm_unreachable("Invalid TLS model!");
1826 }
1827 
1828 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1829   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1830 
1831   llvm::GlobalValue::ThreadLocalMode TLM;
1832   TLM = GetDefaultLLVMTLSModel();
1833 
1834   // Override the TLS model if it is explicitly specified.
1835   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1836     TLM = GetLLVMTLSModel(Attr->getModel());
1837   }
1838 
1839   GV->setThreadLocalMode(TLM);
1840 }
1841 
1842 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1843                                           StringRef Name) {
1844   const TargetInfo &Target = CGM.getTarget();
1845   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1846 }
1847 
1848 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1849                                                  const CPUSpecificAttr *Attr,
1850                                                  unsigned CPUIndex,
1851                                                  raw_ostream &Out) {
1852   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1853   // supported.
1854   if (Attr)
1855     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1856   else if (CGM.getTarget().supportsIFunc())
1857     Out << ".resolver";
1858 }
1859 
1860 // Returns true if GD is a function decl with internal linkage and
1861 // needs a unique suffix after the mangled name.
1862 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1863                                         CodeGenModule &CGM) {
1864   const Decl *D = GD.getDecl();
1865   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1866          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1867 }
1868 
1869 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1870                                       const NamedDecl *ND,
1871                                       bool OmitMultiVersionMangling = false) {
1872   SmallString<256> Buffer;
1873   llvm::raw_svector_ostream Out(Buffer);
1874   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1875   if (!CGM.getModuleNameHash().empty())
1876     MC.needsUniqueInternalLinkageNames();
1877   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1878   if (ShouldMangle)
1879     MC.mangleName(GD.getWithDecl(ND), Out);
1880   else {
1881     IdentifierInfo *II = ND->getIdentifier();
1882     assert(II && "Attempt to mangle unnamed decl.");
1883     const auto *FD = dyn_cast<FunctionDecl>(ND);
1884 
1885     if (FD &&
1886         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1887       if (CGM.getLangOpts().RegCall4)
1888         Out << "__regcall4__" << II->getName();
1889       else
1890         Out << "__regcall3__" << II->getName();
1891     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1892                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1893       Out << "__device_stub__" << II->getName();
1894     } else {
1895       Out << II->getName();
1896     }
1897   }
1898 
1899   // Check if the module name hash should be appended for internal linkage
1900   // symbols.   This should come before multi-version target suffixes are
1901   // appended. This is to keep the name and module hash suffix of the
1902   // internal linkage function together.  The unique suffix should only be
1903   // added when name mangling is done to make sure that the final name can
1904   // be properly demangled.  For example, for C functions without prototypes,
1905   // name mangling is not done and the unique suffix should not be appeneded
1906   // then.
1907   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1908     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1909            "Hash computed when not explicitly requested");
1910     Out << CGM.getModuleNameHash();
1911   }
1912 
1913   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1914     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1915       switch (FD->getMultiVersionKind()) {
1916       case MultiVersionKind::CPUDispatch:
1917       case MultiVersionKind::CPUSpecific:
1918         AppendCPUSpecificCPUDispatchMangling(CGM,
1919                                              FD->getAttr<CPUSpecificAttr>(),
1920                                              GD.getMultiVersionIndex(), Out);
1921         break;
1922       case MultiVersionKind::Target: {
1923         auto *Attr = FD->getAttr<TargetAttr>();
1924         assert(Attr && "Expected TargetAttr to be present "
1925                        "for attribute mangling");
1926         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1927         Info.appendAttributeMangling(Attr, Out);
1928         break;
1929       }
1930       case MultiVersionKind::TargetVersion: {
1931         auto *Attr = FD->getAttr<TargetVersionAttr>();
1932         assert(Attr && "Expected TargetVersionAttr to be present "
1933                        "for attribute mangling");
1934         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1935         Info.appendAttributeMangling(Attr, Out);
1936         break;
1937       }
1938       case MultiVersionKind::TargetClones: {
1939         auto *Attr = FD->getAttr<TargetClonesAttr>();
1940         assert(Attr && "Expected TargetClonesAttr to be present "
1941                        "for attribute mangling");
1942         unsigned Index = GD.getMultiVersionIndex();
1943         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1944         Info.appendAttributeMangling(Attr, Index, Out);
1945         break;
1946       }
1947       case MultiVersionKind::None:
1948         llvm_unreachable("None multiversion type isn't valid here");
1949       }
1950     }
1951 
1952   // Make unique name for device side static file-scope variable for HIP.
1953   if (CGM.getContext().shouldExternalize(ND) &&
1954       CGM.getLangOpts().GPURelocatableDeviceCode &&
1955       CGM.getLangOpts().CUDAIsDevice)
1956     CGM.printPostfixForExternalizedDecl(Out, ND);
1957 
1958   return std::string(Out.str());
1959 }
1960 
1961 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1962                                             const FunctionDecl *FD,
1963                                             StringRef &CurName) {
1964   if (!FD->isMultiVersion())
1965     return;
1966 
1967   // Get the name of what this would be without the 'target' attribute.  This
1968   // allows us to lookup the version that was emitted when this wasn't a
1969   // multiversion function.
1970   std::string NonTargetName =
1971       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1972   GlobalDecl OtherGD;
1973   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1974     assert(OtherGD.getCanonicalDecl()
1975                .getDecl()
1976                ->getAsFunction()
1977                ->isMultiVersion() &&
1978            "Other GD should now be a multiversioned function");
1979     // OtherFD is the version of this function that was mangled BEFORE
1980     // becoming a MultiVersion function.  It potentially needs to be updated.
1981     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1982                                       .getDecl()
1983                                       ->getAsFunction()
1984                                       ->getMostRecentDecl();
1985     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1986     // This is so that if the initial version was already the 'default'
1987     // version, we don't try to update it.
1988     if (OtherName != NonTargetName) {
1989       // Remove instead of erase, since others may have stored the StringRef
1990       // to this.
1991       const auto ExistingRecord = Manglings.find(NonTargetName);
1992       if (ExistingRecord != std::end(Manglings))
1993         Manglings.remove(&(*ExistingRecord));
1994       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1995       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1996           Result.first->first();
1997       // If this is the current decl is being created, make sure we update the name.
1998       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1999         CurName = OtherNameRef;
2000       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
2001         Entry->setName(OtherName);
2002     }
2003   }
2004 }
2005 
2006 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
2007   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
2008 
2009   // Some ABIs don't have constructor variants.  Make sure that base and
2010   // complete constructors get mangled the same.
2011   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
2012     if (!getTarget().getCXXABI().hasConstructorVariants()) {
2013       CXXCtorType OrigCtorType = GD.getCtorType();
2014       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
2015       if (OrigCtorType == Ctor_Base)
2016         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
2017     }
2018   }
2019 
2020   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
2021   // static device variable depends on whether the variable is referenced by
2022   // a host or device host function. Therefore the mangled name cannot be
2023   // cached.
2024   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
2025     auto FoundName = MangledDeclNames.find(CanonicalGD);
2026     if (FoundName != MangledDeclNames.end())
2027       return FoundName->second;
2028   }
2029 
2030   // Keep the first result in the case of a mangling collision.
2031   const auto *ND = cast<NamedDecl>(GD.getDecl());
2032   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2033 
2034   // Ensure either we have different ABIs between host and device compilations,
2035   // says host compilation following MSVC ABI but device compilation follows
2036   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2037   // mangling should be the same after name stubbing. The later checking is
2038   // very important as the device kernel name being mangled in host-compilation
2039   // is used to resolve the device binaries to be executed. Inconsistent naming
2040   // result in undefined behavior. Even though we cannot check that naming
2041   // directly between host- and device-compilations, the host- and
2042   // device-mangling in host compilation could help catching certain ones.
2043   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2044          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2045          (getContext().getAuxTargetInfo() &&
2046           (getContext().getAuxTargetInfo()->getCXXABI() !=
2047            getContext().getTargetInfo().getCXXABI())) ||
2048          getCUDARuntime().getDeviceSideName(ND) ==
2049              getMangledNameImpl(
2050                  *this,
2051                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2052                  ND));
2053 
2054   // This invariant should hold true in the future.
2055   // Prior work:
2056   // https://discourse.llvm.org/t/rfc-clang-diagnostic-for-demangling-failures/82835/8
2057   // https://github.com/llvm/llvm-project/issues/111345
2058   // assert((MangledName.startswith("_Z") || MangledName.startswith("?")) &&
2059   //        !GD->hasAttr<AsmLabelAttr>() &&
2060   //        llvm::demangle(MangledName) != MangledName &&
2061   //        "LLVM demangler must demangle clang-generated names");
2062 
2063   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2064   return MangledDeclNames[CanonicalGD] = Result.first->first();
2065 }
2066 
2067 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2068                                              const BlockDecl *BD) {
2069   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2070   const Decl *D = GD.getDecl();
2071 
2072   SmallString<256> Buffer;
2073   llvm::raw_svector_ostream Out(Buffer);
2074   if (!D)
2075     MangleCtx.mangleGlobalBlock(BD,
2076       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2077   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2078     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2079   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2080     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2081   else
2082     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2083 
2084   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2085   return Result.first->first();
2086 }
2087 
2088 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2089   auto it = MangledDeclNames.begin();
2090   while (it != MangledDeclNames.end()) {
2091     if (it->second == Name)
2092       return it->first;
2093     it++;
2094   }
2095   return GlobalDecl();
2096 }
2097 
2098 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2099   return getModule().getNamedValue(Name);
2100 }
2101 
2102 /// AddGlobalCtor - Add a function to the list that will be called before
2103 /// main() runs.
2104 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2105                                   unsigned LexOrder,
2106                                   llvm::Constant *AssociatedData) {
2107   // FIXME: Type coercion of void()* types.
2108   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2109 }
2110 
2111 /// AddGlobalDtor - Add a function to the list that will be called
2112 /// when the module is unloaded.
2113 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2114                                   bool IsDtorAttrFunc) {
2115   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2116       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2117     DtorsUsingAtExit[Priority].push_back(Dtor);
2118     return;
2119   }
2120 
2121   // FIXME: Type coercion of void()* types.
2122   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2123 }
2124 
2125 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2126   if (Fns.empty()) return;
2127 
2128   const PointerAuthSchema &InitFiniAuthSchema =
2129       getCodeGenOpts().PointerAuth.InitFiniPointers;
2130 
2131   // Ctor function type is ptr.
2132   llvm::PointerType *PtrTy = llvm::PointerType::get(
2133       getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace());
2134 
2135   // Get the type of a ctor entry, { i32, ptr, ptr }.
2136   llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy);
2137 
2138   // Construct the constructor and destructor arrays.
2139   ConstantInitBuilder Builder(*this);
2140   auto Ctors = Builder.beginArray(CtorStructTy);
2141   for (const auto &I : Fns) {
2142     auto Ctor = Ctors.beginStruct(CtorStructTy);
2143     Ctor.addInt(Int32Ty, I.Priority);
2144     if (InitFiniAuthSchema) {
2145       llvm::Constant *StorageAddress =
2146           (InitFiniAuthSchema.isAddressDiscriminated()
2147                ? llvm::ConstantExpr::getIntToPtr(
2148                      llvm::ConstantInt::get(
2149                          IntPtrTy,
2150                          llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors),
2151                      PtrTy)
2152                : nullptr);
2153       llvm::Constant *SignedCtorPtr = getConstantSignedPointer(
2154           I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress,
2155           llvm::ConstantInt::get(
2156               SizeTy, InitFiniAuthSchema.getConstantDiscrimination()));
2157       Ctor.add(SignedCtorPtr);
2158     } else {
2159       Ctor.add(I.Initializer);
2160     }
2161     if (I.AssociatedData)
2162       Ctor.add(I.AssociatedData);
2163     else
2164       Ctor.addNullPointer(PtrTy);
2165     Ctor.finishAndAddTo(Ctors);
2166   }
2167 
2168   auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2169                                           /*constant*/ false,
2170                                           llvm::GlobalValue::AppendingLinkage);
2171 
2172   // The LTO linker doesn't seem to like it when we set an alignment
2173   // on appending variables.  Take it off as a workaround.
2174   List->setAlignment(std::nullopt);
2175 
2176   Fns.clear();
2177 }
2178 
2179 llvm::GlobalValue::LinkageTypes
2180 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2181   const auto *D = cast<FunctionDecl>(GD.getDecl());
2182 
2183   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2184 
2185   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2186     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2187 
2188   return getLLVMLinkageForDeclarator(D, Linkage);
2189 }
2190 
2191 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2192   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2193   if (!MDS) return nullptr;
2194 
2195   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2196 }
2197 
2198 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2199   if (auto *FnType = T->getAs<FunctionProtoType>())
2200     T = getContext().getFunctionType(
2201         FnType->getReturnType(), FnType->getParamTypes(),
2202         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2203 
2204   std::string OutName;
2205   llvm::raw_string_ostream Out(OutName);
2206   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2207       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2208 
2209   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2210     Out << ".normalized";
2211 
2212   return llvm::ConstantInt::get(Int32Ty,
2213                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2214 }
2215 
2216 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2217                                               const CGFunctionInfo &Info,
2218                                               llvm::Function *F, bool IsThunk) {
2219   unsigned CallingConv;
2220   llvm::AttributeList PAL;
2221   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2222                          /*AttrOnCallSite=*/false, IsThunk);
2223   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2224       getTarget().getTriple().isWindowsArm64EC()) {
2225     SourceLocation Loc;
2226     if (const Decl *D = GD.getDecl())
2227       Loc = D->getLocation();
2228 
2229     Error(Loc, "__vectorcall calling convention is not currently supported");
2230   }
2231   F->setAttributes(PAL);
2232   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2233 }
2234 
2235 static void removeImageAccessQualifier(std::string& TyName) {
2236   std::string ReadOnlyQual("__read_only");
2237   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2238   if (ReadOnlyPos != std::string::npos)
2239     // "+ 1" for the space after access qualifier.
2240     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2241   else {
2242     std::string WriteOnlyQual("__write_only");
2243     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2244     if (WriteOnlyPos != std::string::npos)
2245       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2246     else {
2247       std::string ReadWriteQual("__read_write");
2248       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2249       if (ReadWritePos != std::string::npos)
2250         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2251     }
2252   }
2253 }
2254 
2255 // Returns the address space id that should be produced to the
2256 // kernel_arg_addr_space metadata. This is always fixed to the ids
2257 // as specified in the SPIR 2.0 specification in order to differentiate
2258 // for example in clGetKernelArgInfo() implementation between the address
2259 // spaces with targets without unique mapping to the OpenCL address spaces
2260 // (basically all single AS CPUs).
2261 static unsigned ArgInfoAddressSpace(LangAS AS) {
2262   switch (AS) {
2263   case LangAS::opencl_global:
2264     return 1;
2265   case LangAS::opencl_constant:
2266     return 2;
2267   case LangAS::opencl_local:
2268     return 3;
2269   case LangAS::opencl_generic:
2270     return 4; // Not in SPIR 2.0 specs.
2271   case LangAS::opencl_global_device:
2272     return 5;
2273   case LangAS::opencl_global_host:
2274     return 6;
2275   default:
2276     return 0; // Assume private.
2277   }
2278 }
2279 
2280 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2281                                          const FunctionDecl *FD,
2282                                          CodeGenFunction *CGF) {
2283   assert(((FD && CGF) || (!FD && !CGF)) &&
2284          "Incorrect use - FD and CGF should either be both null or not!");
2285   // Create MDNodes that represent the kernel arg metadata.
2286   // Each MDNode is a list in the form of "key", N number of values which is
2287   // the same number of values as their are kernel arguments.
2288 
2289   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2290 
2291   // MDNode for the kernel argument address space qualifiers.
2292   SmallVector<llvm::Metadata *, 8> addressQuals;
2293 
2294   // MDNode for the kernel argument access qualifiers (images only).
2295   SmallVector<llvm::Metadata *, 8> accessQuals;
2296 
2297   // MDNode for the kernel argument type names.
2298   SmallVector<llvm::Metadata *, 8> argTypeNames;
2299 
2300   // MDNode for the kernel argument base type names.
2301   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2302 
2303   // MDNode for the kernel argument type qualifiers.
2304   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2305 
2306   // MDNode for the kernel argument names.
2307   SmallVector<llvm::Metadata *, 8> argNames;
2308 
2309   if (FD && CGF)
2310     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2311       const ParmVarDecl *parm = FD->getParamDecl(i);
2312       // Get argument name.
2313       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2314 
2315       if (!getLangOpts().OpenCL)
2316         continue;
2317       QualType ty = parm->getType();
2318       std::string typeQuals;
2319 
2320       // Get image and pipe access qualifier:
2321       if (ty->isImageType() || ty->isPipeType()) {
2322         const Decl *PDecl = parm;
2323         if (const auto *TD = ty->getAs<TypedefType>())
2324           PDecl = TD->getDecl();
2325         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2326         if (A && A->isWriteOnly())
2327           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2328         else if (A && A->isReadWrite())
2329           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2330         else
2331           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2332       } else
2333         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2334 
2335       auto getTypeSpelling = [&](QualType Ty) {
2336         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2337 
2338         if (Ty.isCanonical()) {
2339           StringRef typeNameRef = typeName;
2340           // Turn "unsigned type" to "utype"
2341           if (typeNameRef.consume_front("unsigned "))
2342             return std::string("u") + typeNameRef.str();
2343           if (typeNameRef.consume_front("signed "))
2344             return typeNameRef.str();
2345         }
2346 
2347         return typeName;
2348       };
2349 
2350       if (ty->isPointerType()) {
2351         QualType pointeeTy = ty->getPointeeType();
2352 
2353         // Get address qualifier.
2354         addressQuals.push_back(
2355             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2356                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2357 
2358         // Get argument type name.
2359         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2360         std::string baseTypeName =
2361             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2362         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2363         argBaseTypeNames.push_back(
2364             llvm::MDString::get(VMContext, baseTypeName));
2365 
2366         // Get argument type qualifiers:
2367         if (ty.isRestrictQualified())
2368           typeQuals = "restrict";
2369         if (pointeeTy.isConstQualified() ||
2370             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2371           typeQuals += typeQuals.empty() ? "const" : " const";
2372         if (pointeeTy.isVolatileQualified())
2373           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2374       } else {
2375         uint32_t AddrSpc = 0;
2376         bool isPipe = ty->isPipeType();
2377         if (ty->isImageType() || isPipe)
2378           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2379 
2380         addressQuals.push_back(
2381             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2382 
2383         // Get argument type name.
2384         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2385         std::string typeName = getTypeSpelling(ty);
2386         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2387 
2388         // Remove access qualifiers on images
2389         // (as they are inseparable from type in clang implementation,
2390         // but OpenCL spec provides a special query to get access qualifier
2391         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2392         if (ty->isImageType()) {
2393           removeImageAccessQualifier(typeName);
2394           removeImageAccessQualifier(baseTypeName);
2395         }
2396 
2397         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2398         argBaseTypeNames.push_back(
2399             llvm::MDString::get(VMContext, baseTypeName));
2400 
2401         if (isPipe)
2402           typeQuals = "pipe";
2403       }
2404       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2405     }
2406 
2407   if (getLangOpts().OpenCL) {
2408     Fn->setMetadata("kernel_arg_addr_space",
2409                     llvm::MDNode::get(VMContext, addressQuals));
2410     Fn->setMetadata("kernel_arg_access_qual",
2411                     llvm::MDNode::get(VMContext, accessQuals));
2412     Fn->setMetadata("kernel_arg_type",
2413                     llvm::MDNode::get(VMContext, argTypeNames));
2414     Fn->setMetadata("kernel_arg_base_type",
2415                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2416     Fn->setMetadata("kernel_arg_type_qual",
2417                     llvm::MDNode::get(VMContext, argTypeQuals));
2418   }
2419   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2420       getCodeGenOpts().HIPSaveKernelArgName)
2421     Fn->setMetadata("kernel_arg_name",
2422                     llvm::MDNode::get(VMContext, argNames));
2423 }
2424 
2425 /// Determines whether the language options require us to model
2426 /// unwind exceptions.  We treat -fexceptions as mandating this
2427 /// except under the fragile ObjC ABI with only ObjC exceptions
2428 /// enabled.  This means, for example, that C with -fexceptions
2429 /// enables this.
2430 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2431   // If exceptions are completely disabled, obviously this is false.
2432   if (!LangOpts.Exceptions) return false;
2433 
2434   // If C++ exceptions are enabled, this is true.
2435   if (LangOpts.CXXExceptions) return true;
2436 
2437   // If ObjC exceptions are enabled, this depends on the ABI.
2438   if (LangOpts.ObjCExceptions) {
2439     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2440   }
2441 
2442   return true;
2443 }
2444 
2445 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2446                                                       const CXXMethodDecl *MD) {
2447   // Check that the type metadata can ever actually be used by a call.
2448   if (!CGM.getCodeGenOpts().LTOUnit ||
2449       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2450     return false;
2451 
2452   // Only functions whose address can be taken with a member function pointer
2453   // need this sort of type metadata.
2454   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2455          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2456 }
2457 
2458 SmallVector<const CXXRecordDecl *, 0>
2459 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2460   llvm::SetVector<const CXXRecordDecl *> MostBases;
2461 
2462   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2463   CollectMostBases = [&](const CXXRecordDecl *RD) {
2464     if (RD->getNumBases() == 0)
2465       MostBases.insert(RD);
2466     for (const CXXBaseSpecifier &B : RD->bases())
2467       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2468   };
2469   CollectMostBases(RD);
2470   return MostBases.takeVector();
2471 }
2472 
2473 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2474                                                            llvm::Function *F) {
2475   llvm::AttrBuilder B(F->getContext());
2476 
2477   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2478     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2479 
2480   if (CodeGenOpts.StackClashProtector)
2481     B.addAttribute("probe-stack", "inline-asm");
2482 
2483   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2484     B.addAttribute("stack-probe-size",
2485                    std::to_string(CodeGenOpts.StackProbeSize));
2486 
2487   if (!hasUnwindExceptions(LangOpts))
2488     B.addAttribute(llvm::Attribute::NoUnwind);
2489 
2490   if (D && D->hasAttr<NoStackProtectorAttr>())
2491     ; // Do nothing.
2492   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2493            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2494     B.addAttribute(llvm::Attribute::StackProtectStrong);
2495   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2496     B.addAttribute(llvm::Attribute::StackProtect);
2497   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2498     B.addAttribute(llvm::Attribute::StackProtectStrong);
2499   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2500     B.addAttribute(llvm::Attribute::StackProtectReq);
2501 
2502   if (!D) {
2503     // Non-entry HLSL functions must always be inlined.
2504     if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline))
2505       B.addAttribute(llvm::Attribute::AlwaysInline);
2506     // If we don't have a declaration to control inlining, the function isn't
2507     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2508     // disabled, mark the function as noinline.
2509     else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2510              CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2511       B.addAttribute(llvm::Attribute::NoInline);
2512 
2513     F->addFnAttrs(B);
2514     return;
2515   }
2516 
2517   // Handle SME attributes that apply to function definitions,
2518   // rather than to function prototypes.
2519   if (D->hasAttr<ArmLocallyStreamingAttr>())
2520     B.addAttribute("aarch64_pstate_sm_body");
2521 
2522   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2523     if (Attr->isNewZA())
2524       B.addAttribute("aarch64_new_za");
2525     if (Attr->isNewZT0())
2526       B.addAttribute("aarch64_new_zt0");
2527   }
2528 
2529   // Track whether we need to add the optnone LLVM attribute,
2530   // starting with the default for this optimization level.
2531   bool ShouldAddOptNone =
2532       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2533   // We can't add optnone in the following cases, it won't pass the verifier.
2534   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2535   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2536 
2537   // Non-entry HLSL functions must always be inlined.
2538   if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) &&
2539       !D->hasAttr<NoInlineAttr>()) {
2540     B.addAttribute(llvm::Attribute::AlwaysInline);
2541   } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2542              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2543     // Add optnone, but do so only if the function isn't always_inline.
2544     B.addAttribute(llvm::Attribute::OptimizeNone);
2545 
2546     // OptimizeNone implies noinline; we should not be inlining such functions.
2547     B.addAttribute(llvm::Attribute::NoInline);
2548 
2549     // We still need to handle naked functions even though optnone subsumes
2550     // much of their semantics.
2551     if (D->hasAttr<NakedAttr>())
2552       B.addAttribute(llvm::Attribute::Naked);
2553 
2554     // OptimizeNone wins over OptimizeForSize and MinSize.
2555     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2556     F->removeFnAttr(llvm::Attribute::MinSize);
2557   } else if (D->hasAttr<NakedAttr>()) {
2558     // Naked implies noinline: we should not be inlining such functions.
2559     B.addAttribute(llvm::Attribute::Naked);
2560     B.addAttribute(llvm::Attribute::NoInline);
2561   } else if (D->hasAttr<NoDuplicateAttr>()) {
2562     B.addAttribute(llvm::Attribute::NoDuplicate);
2563   } else if (D->hasAttr<NoInlineAttr>() &&
2564              !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2565     // Add noinline if the function isn't always_inline.
2566     B.addAttribute(llvm::Attribute::NoInline);
2567   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2568              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2569     // (noinline wins over always_inline, and we can't specify both in IR)
2570     B.addAttribute(llvm::Attribute::AlwaysInline);
2571   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2572     // If we're not inlining, then force everything that isn't always_inline to
2573     // carry an explicit noinline attribute.
2574     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2575       B.addAttribute(llvm::Attribute::NoInline);
2576   } else {
2577     // Otherwise, propagate the inline hint attribute and potentially use its
2578     // absence to mark things as noinline.
2579     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2580       // Search function and template pattern redeclarations for inline.
2581       auto CheckForInline = [](const FunctionDecl *FD) {
2582         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2583           return Redecl->isInlineSpecified();
2584         };
2585         if (any_of(FD->redecls(), CheckRedeclForInline))
2586           return true;
2587         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2588         if (!Pattern)
2589           return false;
2590         return any_of(Pattern->redecls(), CheckRedeclForInline);
2591       };
2592       if (CheckForInline(FD)) {
2593         B.addAttribute(llvm::Attribute::InlineHint);
2594       } else if (CodeGenOpts.getInlining() ==
2595                      CodeGenOptions::OnlyHintInlining &&
2596                  !FD->isInlined() &&
2597                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2598         B.addAttribute(llvm::Attribute::NoInline);
2599       }
2600     }
2601   }
2602 
2603   // Add other optimization related attributes if we are optimizing this
2604   // function.
2605   if (!D->hasAttr<OptimizeNoneAttr>()) {
2606     if (D->hasAttr<ColdAttr>()) {
2607       if (!ShouldAddOptNone)
2608         B.addAttribute(llvm::Attribute::OptimizeForSize);
2609       B.addAttribute(llvm::Attribute::Cold);
2610     }
2611     if (D->hasAttr<HotAttr>())
2612       B.addAttribute(llvm::Attribute::Hot);
2613     if (D->hasAttr<MinSizeAttr>())
2614       B.addAttribute(llvm::Attribute::MinSize);
2615   }
2616 
2617   F->addFnAttrs(B);
2618 
2619   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2620   if (alignment)
2621     F->setAlignment(llvm::Align(alignment));
2622 
2623   if (!D->hasAttr<AlignedAttr>())
2624     if (LangOpts.FunctionAlignment)
2625       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2626 
2627   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2628   // reserve a bit for differentiating between virtual and non-virtual member
2629   // functions. If the current target's C++ ABI requires this and this is a
2630   // member function, set its alignment accordingly.
2631   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2632     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2633       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2634   }
2635 
2636   // In the cross-dso CFI mode with canonical jump tables, we want !type
2637   // attributes on definitions only.
2638   if (CodeGenOpts.SanitizeCfiCrossDso &&
2639       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2640     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2641       // Skip available_externally functions. They won't be codegen'ed in the
2642       // current module anyway.
2643       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2644         CreateFunctionTypeMetadataForIcall(FD, F);
2645     }
2646   }
2647 
2648   // Emit type metadata on member functions for member function pointer checks.
2649   // These are only ever necessary on definitions; we're guaranteed that the
2650   // definition will be present in the LTO unit as a result of LTO visibility.
2651   auto *MD = dyn_cast<CXXMethodDecl>(D);
2652   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2653     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2654       llvm::Metadata *Id =
2655           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2656               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2657       F->addTypeMetadata(0, Id);
2658     }
2659   }
2660 }
2661 
2662 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2663   const Decl *D = GD.getDecl();
2664   if (isa_and_nonnull<NamedDecl>(D))
2665     setGVProperties(GV, GD);
2666   else
2667     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2668 
2669   if (D && D->hasAttr<UsedAttr>())
2670     addUsedOrCompilerUsedGlobal(GV);
2671 
2672   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2673       VD &&
2674       ((CodeGenOpts.KeepPersistentStorageVariables &&
2675         (VD->getStorageDuration() == SD_Static ||
2676          VD->getStorageDuration() == SD_Thread)) ||
2677        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2678         VD->getType().isConstQualified())))
2679     addUsedOrCompilerUsedGlobal(GV);
2680 }
2681 
2682 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2683                                                 llvm::AttrBuilder &Attrs,
2684                                                 bool SetTargetFeatures) {
2685   // Add target-cpu and target-features attributes to functions. If
2686   // we have a decl for the function and it has a target attribute then
2687   // parse that and add it to the feature set.
2688   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2689   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2690   std::vector<std::string> Features;
2691   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2692   FD = FD ? FD->getMostRecentDecl() : FD;
2693   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2694   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2695   assert((!TD || !TV) && "both target_version and target specified");
2696   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2697   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2698   bool AddedAttr = false;
2699   if (TD || TV || SD || TC) {
2700     llvm::StringMap<bool> FeatureMap;
2701     getContext().getFunctionFeatureMap(FeatureMap, GD);
2702 
2703     // Produce the canonical string for this set of features.
2704     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2705       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2706 
2707     // Now add the target-cpu and target-features to the function.
2708     // While we populated the feature map above, we still need to
2709     // get and parse the target attribute so we can get the cpu for
2710     // the function.
2711     if (TD) {
2712       ParsedTargetAttr ParsedAttr =
2713           Target.parseTargetAttr(TD->getFeaturesStr());
2714       if (!ParsedAttr.CPU.empty() &&
2715           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2716         TargetCPU = ParsedAttr.CPU;
2717         TuneCPU = ""; // Clear the tune CPU.
2718       }
2719       if (!ParsedAttr.Tune.empty() &&
2720           getTarget().isValidCPUName(ParsedAttr.Tune))
2721         TuneCPU = ParsedAttr.Tune;
2722     }
2723 
2724     if (SD) {
2725       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2726       // favor this processor.
2727       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2728     }
2729   } else {
2730     // Otherwise just add the existing target cpu and target features to the
2731     // function.
2732     Features = getTarget().getTargetOpts().Features;
2733   }
2734 
2735   if (!TargetCPU.empty()) {
2736     Attrs.addAttribute("target-cpu", TargetCPU);
2737     AddedAttr = true;
2738   }
2739   if (!TuneCPU.empty()) {
2740     Attrs.addAttribute("tune-cpu", TuneCPU);
2741     AddedAttr = true;
2742   }
2743   if (!Features.empty() && SetTargetFeatures) {
2744     llvm::erase_if(Features, [&](const std::string& F) {
2745        return getTarget().isReadOnlyFeature(F.substr(1));
2746     });
2747     llvm::sort(Features);
2748     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2749     AddedAttr = true;
2750   }
2751 
2752   return AddedAttr;
2753 }
2754 
2755 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2756                                           llvm::GlobalObject *GO) {
2757   const Decl *D = GD.getDecl();
2758   SetCommonAttributes(GD, GO);
2759 
2760   if (D) {
2761     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2762       if (D->hasAttr<RetainAttr>())
2763         addUsedGlobal(GV);
2764       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2765         GV->addAttribute("bss-section", SA->getName());
2766       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2767         GV->addAttribute("data-section", SA->getName());
2768       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2769         GV->addAttribute("rodata-section", SA->getName());
2770       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2771         GV->addAttribute("relro-section", SA->getName());
2772     }
2773 
2774     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2775       if (D->hasAttr<RetainAttr>())
2776         addUsedGlobal(F);
2777       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2778         if (!D->getAttr<SectionAttr>())
2779           F->setSection(SA->getName());
2780 
2781       llvm::AttrBuilder Attrs(F->getContext());
2782       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2783         // We know that GetCPUAndFeaturesAttributes will always have the
2784         // newest set, since it has the newest possible FunctionDecl, so the
2785         // new ones should replace the old.
2786         llvm::AttributeMask RemoveAttrs;
2787         RemoveAttrs.addAttribute("target-cpu");
2788         RemoveAttrs.addAttribute("target-features");
2789         RemoveAttrs.addAttribute("tune-cpu");
2790         F->removeFnAttrs(RemoveAttrs);
2791         F->addFnAttrs(Attrs);
2792       }
2793     }
2794 
2795     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2796       GO->setSection(CSA->getName());
2797     else if (const auto *SA = D->getAttr<SectionAttr>())
2798       GO->setSection(SA->getName());
2799   }
2800 
2801   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2802 }
2803 
2804 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2805                                                   llvm::Function *F,
2806                                                   const CGFunctionInfo &FI) {
2807   const Decl *D = GD.getDecl();
2808   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2809   SetLLVMFunctionAttributesForDefinition(D, F);
2810 
2811   F->setLinkage(llvm::Function::InternalLinkage);
2812 
2813   setNonAliasAttributes(GD, F);
2814 }
2815 
2816 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2817   // Set linkage and visibility in case we never see a definition.
2818   LinkageInfo LV = ND->getLinkageAndVisibility();
2819   // Don't set internal linkage on declarations.
2820   // "extern_weak" is overloaded in LLVM; we probably should have
2821   // separate linkage types for this.
2822   if (isExternallyVisible(LV.getLinkage()) &&
2823       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2824     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2825 }
2826 
2827 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2828                                                        llvm::Function *F) {
2829   // Only if we are checking indirect calls.
2830   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2831     return;
2832 
2833   // Non-static class methods are handled via vtable or member function pointer
2834   // checks elsewhere.
2835   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2836     return;
2837 
2838   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2839   F->addTypeMetadata(0, MD);
2840   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2841 
2842   // Emit a hash-based bit set entry for cross-DSO calls.
2843   if (CodeGenOpts.SanitizeCfiCrossDso)
2844     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2845       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2846 }
2847 
2848 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2849   llvm::LLVMContext &Ctx = F->getContext();
2850   llvm::MDBuilder MDB(Ctx);
2851   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2852                  llvm::MDNode::get(
2853                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2854 }
2855 
2856 static bool allowKCFIIdentifier(StringRef Name) {
2857   // KCFI type identifier constants are only necessary for external assembly
2858   // functions, which means it's safe to skip unusual names. Subset of
2859   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2860   return llvm::all_of(Name, [](const char &C) {
2861     return llvm::isAlnum(C) || C == '_' || C == '.';
2862   });
2863 }
2864 
2865 void CodeGenModule::finalizeKCFITypes() {
2866   llvm::Module &M = getModule();
2867   for (auto &F : M.functions()) {
2868     // Remove KCFI type metadata from non-address-taken local functions.
2869     bool AddressTaken = F.hasAddressTaken();
2870     if (!AddressTaken && F.hasLocalLinkage())
2871       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2872 
2873     // Generate a constant with the expected KCFI type identifier for all
2874     // address-taken function declarations to support annotating indirectly
2875     // called assembly functions.
2876     if (!AddressTaken || !F.isDeclaration())
2877       continue;
2878 
2879     const llvm::ConstantInt *Type;
2880     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2881       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2882     else
2883       continue;
2884 
2885     StringRef Name = F.getName();
2886     if (!allowKCFIIdentifier(Name))
2887       continue;
2888 
2889     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2890                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2891                           .str();
2892     M.appendModuleInlineAsm(Asm);
2893   }
2894 }
2895 
2896 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2897                                           bool IsIncompleteFunction,
2898                                           bool IsThunk) {
2899 
2900   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2901     // If this is an intrinsic function, set the function's attributes
2902     // to the intrinsic's attributes.
2903     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2904     return;
2905   }
2906 
2907   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2908 
2909   if (!IsIncompleteFunction)
2910     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2911                               IsThunk);
2912 
2913   // Add the Returned attribute for "this", except for iOS 5 and earlier
2914   // where substantial code, including the libstdc++ dylib, was compiled with
2915   // GCC and does not actually return "this".
2916   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2917       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2918     assert(!F->arg_empty() &&
2919            F->arg_begin()->getType()
2920              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2921            "unexpected this return");
2922     F->addParamAttr(0, llvm::Attribute::Returned);
2923   }
2924 
2925   // Only a few attributes are set on declarations; these may later be
2926   // overridden by a definition.
2927 
2928   setLinkageForGV(F, FD);
2929   setGVProperties(F, FD);
2930 
2931   // Setup target-specific attributes.
2932   if (!IsIncompleteFunction && F->isDeclaration())
2933     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2934 
2935   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2936     F->setSection(CSA->getName());
2937   else if (const auto *SA = FD->getAttr<SectionAttr>())
2938      F->setSection(SA->getName());
2939 
2940   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2941     if (EA->isError())
2942       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2943     else if (EA->isWarning())
2944       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2945   }
2946 
2947   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2948   if (FD->isInlineBuiltinDeclaration()) {
2949     const FunctionDecl *FDBody;
2950     bool HasBody = FD->hasBody(FDBody);
2951     (void)HasBody;
2952     assert(HasBody && "Inline builtin declarations should always have an "
2953                       "available body!");
2954     if (shouldEmitFunction(FDBody))
2955       F->addFnAttr(llvm::Attribute::NoBuiltin);
2956   }
2957 
2958   if (FD->isReplaceableGlobalAllocationFunction()) {
2959     // A replaceable global allocation function does not act like a builtin by
2960     // default, only if it is invoked by a new-expression or delete-expression.
2961     F->addFnAttr(llvm::Attribute::NoBuiltin);
2962   }
2963 
2964   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2965     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2966   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2967     if (MD->isVirtual())
2968       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2969 
2970   // Don't emit entries for function declarations in the cross-DSO mode. This
2971   // is handled with better precision by the receiving DSO. But if jump tables
2972   // are non-canonical then we need type metadata in order to produce the local
2973   // jump table.
2974   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2975       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2976     CreateFunctionTypeMetadataForIcall(FD, F);
2977 
2978   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2979     setKCFIType(FD, F);
2980 
2981   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2982     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2983 
2984   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2985     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2986 
2987   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2988     // Annotate the callback behavior as metadata:
2989     //  - The callback callee (as argument number).
2990     //  - The callback payloads (as argument numbers).
2991     llvm::LLVMContext &Ctx = F->getContext();
2992     llvm::MDBuilder MDB(Ctx);
2993 
2994     // The payload indices are all but the first one in the encoding. The first
2995     // identifies the callback callee.
2996     int CalleeIdx = *CB->encoding_begin();
2997     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2998     F->addMetadata(llvm::LLVMContext::MD_callback,
2999                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
3000                                                CalleeIdx, PayloadIndices,
3001                                                /* VarArgsArePassed */ false)}));
3002   }
3003 }
3004 
3005 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
3006   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3007          "Only globals with definition can force usage.");
3008   LLVMUsed.emplace_back(GV);
3009 }
3010 
3011 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
3012   assert(!GV->isDeclaration() &&
3013          "Only globals with definition can force usage.");
3014   LLVMCompilerUsed.emplace_back(GV);
3015 }
3016 
3017 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
3018   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3019          "Only globals with definition can force usage.");
3020   if (getTriple().isOSBinFormatELF())
3021     LLVMCompilerUsed.emplace_back(GV);
3022   else
3023     LLVMUsed.emplace_back(GV);
3024 }
3025 
3026 static void emitUsed(CodeGenModule &CGM, StringRef Name,
3027                      std::vector<llvm::WeakTrackingVH> &List) {
3028   // Don't create llvm.used if there is no need.
3029   if (List.empty())
3030     return;
3031 
3032   // Convert List to what ConstantArray needs.
3033   SmallVector<llvm::Constant*, 8> UsedArray;
3034   UsedArray.resize(List.size());
3035   for (unsigned i = 0, e = List.size(); i != e; ++i) {
3036     UsedArray[i] =
3037         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
3038             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
3039   }
3040 
3041   if (UsedArray.empty())
3042     return;
3043   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
3044 
3045   auto *GV = new llvm::GlobalVariable(
3046       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
3047       llvm::ConstantArray::get(ATy, UsedArray), Name);
3048 
3049   GV->setSection("llvm.metadata");
3050 }
3051 
3052 void CodeGenModule::emitLLVMUsed() {
3053   emitUsed(*this, "llvm.used", LLVMUsed);
3054   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
3055 }
3056 
3057 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
3058   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
3059   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3060 }
3061 
3062 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
3063   llvm::SmallString<32> Opt;
3064   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3065   if (Opt.empty())
3066     return;
3067   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3068   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3069 }
3070 
3071 void CodeGenModule::AddDependentLib(StringRef Lib) {
3072   auto &C = getLLVMContext();
3073   if (getTarget().getTriple().isOSBinFormatELF()) {
3074       ELFDependentLibraries.push_back(
3075         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3076     return;
3077   }
3078 
3079   llvm::SmallString<24> Opt;
3080   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3081   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3082   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3083 }
3084 
3085 /// Add link options implied by the given module, including modules
3086 /// it depends on, using a postorder walk.
3087 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3088                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3089                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3090   // Import this module's parent.
3091   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3092     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3093   }
3094 
3095   // Import this module's dependencies.
3096   for (Module *Import : llvm::reverse(Mod->Imports)) {
3097     if (Visited.insert(Import).second)
3098       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3099   }
3100 
3101   // Add linker options to link against the libraries/frameworks
3102   // described by this module.
3103   llvm::LLVMContext &Context = CGM.getLLVMContext();
3104   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3105 
3106   // For modules that use export_as for linking, use that module
3107   // name instead.
3108   if (Mod->UseExportAsModuleLinkName)
3109     return;
3110 
3111   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3112     // Link against a framework.  Frameworks are currently Darwin only, so we
3113     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3114     if (LL.IsFramework) {
3115       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3116                                  llvm::MDString::get(Context, LL.Library)};
3117 
3118       Metadata.push_back(llvm::MDNode::get(Context, Args));
3119       continue;
3120     }
3121 
3122     // Link against a library.
3123     if (IsELF) {
3124       llvm::Metadata *Args[2] = {
3125           llvm::MDString::get(Context, "lib"),
3126           llvm::MDString::get(Context, LL.Library),
3127       };
3128       Metadata.push_back(llvm::MDNode::get(Context, Args));
3129     } else {
3130       llvm::SmallString<24> Opt;
3131       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3132       auto *OptString = llvm::MDString::get(Context, Opt);
3133       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3134     }
3135   }
3136 }
3137 
3138 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3139   assert(Primary->isNamedModuleUnit() &&
3140          "We should only emit module initializers for named modules.");
3141 
3142   // Emit the initializers in the order that sub-modules appear in the
3143   // source, first Global Module Fragments, if present.
3144   if (auto GMF = Primary->getGlobalModuleFragment()) {
3145     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3146       if (isa<ImportDecl>(D))
3147         continue;
3148       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3149       EmitTopLevelDecl(D);
3150     }
3151   }
3152   // Second any associated with the module, itself.
3153   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3154     // Skip import decls, the inits for those are called explicitly.
3155     if (isa<ImportDecl>(D))
3156       continue;
3157     EmitTopLevelDecl(D);
3158   }
3159   // Third any associated with the Privat eMOdule Fragment, if present.
3160   if (auto PMF = Primary->getPrivateModuleFragment()) {
3161     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3162       // Skip import decls, the inits for those are called explicitly.
3163       if (isa<ImportDecl>(D))
3164         continue;
3165       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3166       EmitTopLevelDecl(D);
3167     }
3168   }
3169 }
3170 
3171 void CodeGenModule::EmitModuleLinkOptions() {
3172   // Collect the set of all of the modules we want to visit to emit link
3173   // options, which is essentially the imported modules and all of their
3174   // non-explicit child modules.
3175   llvm::SetVector<clang::Module *> LinkModules;
3176   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3177   SmallVector<clang::Module *, 16> Stack;
3178 
3179   // Seed the stack with imported modules.
3180   for (Module *M : ImportedModules) {
3181     // Do not add any link flags when an implementation TU of a module imports
3182     // a header of that same module.
3183     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3184         !getLangOpts().isCompilingModule())
3185       continue;
3186     if (Visited.insert(M).second)
3187       Stack.push_back(M);
3188   }
3189 
3190   // Find all of the modules to import, making a little effort to prune
3191   // non-leaf modules.
3192   while (!Stack.empty()) {
3193     clang::Module *Mod = Stack.pop_back_val();
3194 
3195     bool AnyChildren = false;
3196 
3197     // Visit the submodules of this module.
3198     for (const auto &SM : Mod->submodules()) {
3199       // Skip explicit children; they need to be explicitly imported to be
3200       // linked against.
3201       if (SM->IsExplicit)
3202         continue;
3203 
3204       if (Visited.insert(SM).second) {
3205         Stack.push_back(SM);
3206         AnyChildren = true;
3207       }
3208     }
3209 
3210     // We didn't find any children, so add this module to the list of
3211     // modules to link against.
3212     if (!AnyChildren) {
3213       LinkModules.insert(Mod);
3214     }
3215   }
3216 
3217   // Add link options for all of the imported modules in reverse topological
3218   // order.  We don't do anything to try to order import link flags with respect
3219   // to linker options inserted by things like #pragma comment().
3220   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3221   Visited.clear();
3222   for (Module *M : LinkModules)
3223     if (Visited.insert(M).second)
3224       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3225   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3226   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3227 
3228   // Add the linker options metadata flag.
3229   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3230   for (auto *MD : LinkerOptionsMetadata)
3231     NMD->addOperand(MD);
3232 }
3233 
3234 void CodeGenModule::EmitDeferred() {
3235   // Emit deferred declare target declarations.
3236   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3237     getOpenMPRuntime().emitDeferredTargetDecls();
3238 
3239   // Emit code for any potentially referenced deferred decls.  Since a
3240   // previously unused static decl may become used during the generation of code
3241   // for a static function, iterate until no changes are made.
3242 
3243   if (!DeferredVTables.empty()) {
3244     EmitDeferredVTables();
3245 
3246     // Emitting a vtable doesn't directly cause more vtables to
3247     // become deferred, although it can cause functions to be
3248     // emitted that then need those vtables.
3249     assert(DeferredVTables.empty());
3250   }
3251 
3252   // Emit CUDA/HIP static device variables referenced by host code only.
3253   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3254   // needed for further handling.
3255   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3256     llvm::append_range(DeferredDeclsToEmit,
3257                        getContext().CUDADeviceVarODRUsedByHost);
3258 
3259   // Stop if we're out of both deferred vtables and deferred declarations.
3260   if (DeferredDeclsToEmit.empty())
3261     return;
3262 
3263   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3264   // work, it will not interfere with this.
3265   std::vector<GlobalDecl> CurDeclsToEmit;
3266   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3267 
3268   for (GlobalDecl &D : CurDeclsToEmit) {
3269     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3270     // to get GlobalValue with exactly the type we need, not something that
3271     // might had been created for another decl with the same mangled name but
3272     // different type.
3273     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3274         GetAddrOfGlobal(D, ForDefinition));
3275 
3276     // In case of different address spaces, we may still get a cast, even with
3277     // IsForDefinition equal to true. Query mangled names table to get
3278     // GlobalValue.
3279     if (!GV)
3280       GV = GetGlobalValue(getMangledName(D));
3281 
3282     // Make sure GetGlobalValue returned non-null.
3283     assert(GV);
3284 
3285     // Check to see if we've already emitted this.  This is necessary
3286     // for a couple of reasons: first, decls can end up in the
3287     // deferred-decls queue multiple times, and second, decls can end
3288     // up with definitions in unusual ways (e.g. by an extern inline
3289     // function acquiring a strong function redefinition).  Just
3290     // ignore these cases.
3291     if (!GV->isDeclaration())
3292       continue;
3293 
3294     // If this is OpenMP, check if it is legal to emit this global normally.
3295     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3296       continue;
3297 
3298     // Otherwise, emit the definition and move on to the next one.
3299     EmitGlobalDefinition(D, GV);
3300 
3301     // If we found out that we need to emit more decls, do that recursively.
3302     // This has the advantage that the decls are emitted in a DFS and related
3303     // ones are close together, which is convenient for testing.
3304     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3305       EmitDeferred();
3306       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3307     }
3308   }
3309 }
3310 
3311 void CodeGenModule::EmitVTablesOpportunistically() {
3312   // Try to emit external vtables as available_externally if they have emitted
3313   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3314   // is not allowed to create new references to things that need to be emitted
3315   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3316 
3317   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3318          && "Only emit opportunistic vtables with optimizations");
3319 
3320   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3321     assert(getVTables().isVTableExternal(RD) &&
3322            "This queue should only contain external vtables");
3323     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3324       VTables.GenerateClassData(RD);
3325   }
3326   OpportunisticVTables.clear();
3327 }
3328 
3329 void CodeGenModule::EmitGlobalAnnotations() {
3330   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3331     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3332     if (GV)
3333       AddGlobalAnnotations(VD, GV);
3334   }
3335   DeferredAnnotations.clear();
3336 
3337   if (Annotations.empty())
3338     return;
3339 
3340   // Create a new global variable for the ConstantStruct in the Module.
3341   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3342     Annotations[0]->getType(), Annotations.size()), Annotations);
3343   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3344                                       llvm::GlobalValue::AppendingLinkage,
3345                                       Array, "llvm.global.annotations");
3346   gv->setSection(AnnotationSection);
3347 }
3348 
3349 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3350   llvm::Constant *&AStr = AnnotationStrings[Str];
3351   if (AStr)
3352     return AStr;
3353 
3354   // Not found yet, create a new global.
3355   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3356   auto *gv = new llvm::GlobalVariable(
3357       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3358       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3359       ConstGlobalsPtrTy->getAddressSpace());
3360   gv->setSection(AnnotationSection);
3361   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3362   AStr = gv;
3363   return gv;
3364 }
3365 
3366 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3367   SourceManager &SM = getContext().getSourceManager();
3368   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3369   if (PLoc.isValid())
3370     return EmitAnnotationString(PLoc.getFilename());
3371   return EmitAnnotationString(SM.getBufferName(Loc));
3372 }
3373 
3374 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3375   SourceManager &SM = getContext().getSourceManager();
3376   PresumedLoc PLoc = SM.getPresumedLoc(L);
3377   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3378     SM.getExpansionLineNumber(L);
3379   return llvm::ConstantInt::get(Int32Ty, LineNo);
3380 }
3381 
3382 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3383   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3384   if (Exprs.empty())
3385     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3386 
3387   llvm::FoldingSetNodeID ID;
3388   for (Expr *E : Exprs) {
3389     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3390   }
3391   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3392   if (Lookup)
3393     return Lookup;
3394 
3395   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3396   LLVMArgs.reserve(Exprs.size());
3397   ConstantEmitter ConstEmiter(*this);
3398   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3399     const auto *CE = cast<clang::ConstantExpr>(E);
3400     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3401                                     CE->getType());
3402   });
3403   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3404   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3405                                       llvm::GlobalValue::PrivateLinkage, Struct,
3406                                       ".args");
3407   GV->setSection(AnnotationSection);
3408   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3409 
3410   Lookup = GV;
3411   return GV;
3412 }
3413 
3414 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3415                                                 const AnnotateAttr *AA,
3416                                                 SourceLocation L) {
3417   // Get the globals for file name, annotation, and the line number.
3418   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3419                  *UnitGV = EmitAnnotationUnit(L),
3420                  *LineNoCst = EmitAnnotationLineNo(L),
3421                  *Args = EmitAnnotationArgs(AA);
3422 
3423   llvm::Constant *GVInGlobalsAS = GV;
3424   if (GV->getAddressSpace() !=
3425       getDataLayout().getDefaultGlobalsAddressSpace()) {
3426     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3427         GV,
3428         llvm::PointerType::get(
3429             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3430   }
3431 
3432   // Create the ConstantStruct for the global annotation.
3433   llvm::Constant *Fields[] = {
3434       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3435   };
3436   return llvm::ConstantStruct::getAnon(Fields);
3437 }
3438 
3439 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3440                                          llvm::GlobalValue *GV) {
3441   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3442   // Get the struct elements for these annotations.
3443   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3444     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3445 }
3446 
3447 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3448                                        SourceLocation Loc) const {
3449   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3450   // NoSanitize by function name.
3451   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3452     return true;
3453   // NoSanitize by location. Check "mainfile" prefix.
3454   auto &SM = Context.getSourceManager();
3455   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3456   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3457     return true;
3458 
3459   // Check "src" prefix.
3460   if (Loc.isValid())
3461     return NoSanitizeL.containsLocation(Kind, Loc);
3462   // If location is unknown, this may be a compiler-generated function. Assume
3463   // it's located in the main file.
3464   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3465 }
3466 
3467 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3468                                        llvm::GlobalVariable *GV,
3469                                        SourceLocation Loc, QualType Ty,
3470                                        StringRef Category) const {
3471   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3472   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3473     return true;
3474   auto &SM = Context.getSourceManager();
3475   if (NoSanitizeL.containsMainFile(
3476           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3477           Category))
3478     return true;
3479   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3480     return true;
3481 
3482   // Check global type.
3483   if (!Ty.isNull()) {
3484     // Drill down the array types: if global variable of a fixed type is
3485     // not sanitized, we also don't instrument arrays of them.
3486     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3487       Ty = AT->getElementType();
3488     Ty = Ty.getCanonicalType().getUnqualifiedType();
3489     // Only record types (classes, structs etc.) are ignored.
3490     if (Ty->isRecordType()) {
3491       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3492       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3493         return true;
3494     }
3495   }
3496   return false;
3497 }
3498 
3499 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3500                                    StringRef Category) const {
3501   const auto &XRayFilter = getContext().getXRayFilter();
3502   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3503   auto Attr = ImbueAttr::NONE;
3504   if (Loc.isValid())
3505     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3506   if (Attr == ImbueAttr::NONE)
3507     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3508   switch (Attr) {
3509   case ImbueAttr::NONE:
3510     return false;
3511   case ImbueAttr::ALWAYS:
3512     Fn->addFnAttr("function-instrument", "xray-always");
3513     break;
3514   case ImbueAttr::ALWAYS_ARG1:
3515     Fn->addFnAttr("function-instrument", "xray-always");
3516     Fn->addFnAttr("xray-log-args", "1");
3517     break;
3518   case ImbueAttr::NEVER:
3519     Fn->addFnAttr("function-instrument", "xray-never");
3520     break;
3521   }
3522   return true;
3523 }
3524 
3525 ProfileList::ExclusionType
3526 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3527                                               SourceLocation Loc) const {
3528   const auto &ProfileList = getContext().getProfileList();
3529   // If the profile list is empty, then instrument everything.
3530   if (ProfileList.isEmpty())
3531     return ProfileList::Allow;
3532   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3533   // First, check the function name.
3534   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3535     return *V;
3536   // Next, check the source location.
3537   if (Loc.isValid())
3538     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3539       return *V;
3540   // If location is unknown, this may be a compiler-generated function. Assume
3541   // it's located in the main file.
3542   auto &SM = Context.getSourceManager();
3543   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3544     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3545       return *V;
3546   return ProfileList.getDefault(Kind);
3547 }
3548 
3549 ProfileList::ExclusionType
3550 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3551                                                  SourceLocation Loc) const {
3552   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3553   if (V != ProfileList::Allow)
3554     return V;
3555 
3556   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3557   if (NumGroups > 1) {
3558     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3559     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3560       return ProfileList::Skip;
3561   }
3562   return ProfileList::Allow;
3563 }
3564 
3565 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3566   // Never defer when EmitAllDecls is specified.
3567   if (LangOpts.EmitAllDecls)
3568     return true;
3569 
3570   const auto *VD = dyn_cast<VarDecl>(Global);
3571   if (VD &&
3572       ((CodeGenOpts.KeepPersistentStorageVariables &&
3573         (VD->getStorageDuration() == SD_Static ||
3574          VD->getStorageDuration() == SD_Thread)) ||
3575        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3576         VD->getType().isConstQualified())))
3577     return true;
3578 
3579   return getContext().DeclMustBeEmitted(Global);
3580 }
3581 
3582 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3583   // In OpenMP 5.0 variables and function may be marked as
3584   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3585   // that they must be emitted on the host/device. To be sure we need to have
3586   // seen a declare target with an explicit mentioning of the function, we know
3587   // we have if the level of the declare target attribute is -1. Note that we
3588   // check somewhere else if we should emit this at all.
3589   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3590     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3591         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3592     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3593       return false;
3594   }
3595 
3596   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3597     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3598       // Implicit template instantiations may change linkage if they are later
3599       // explicitly instantiated, so they should not be emitted eagerly.
3600       return false;
3601     // Defer until all versions have been semantically checked.
3602     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3603       return false;
3604   }
3605   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3606     if (Context.getInlineVariableDefinitionKind(VD) ==
3607         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3608       // A definition of an inline constexpr static data member may change
3609       // linkage later if it's redeclared outside the class.
3610       return false;
3611     if (CXX20ModuleInits && VD->getOwningModule() &&
3612         !VD->getOwningModule()->isModuleMapModule()) {
3613       // For CXX20, module-owned initializers need to be deferred, since it is
3614       // not known at this point if they will be run for the current module or
3615       // as part of the initializer for an imported one.
3616       return false;
3617     }
3618   }
3619   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3620   // codegen for global variables, because they may be marked as threadprivate.
3621   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3622       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3623       !Global->getType().isConstantStorage(getContext(), false, false) &&
3624       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3625     return false;
3626 
3627   return true;
3628 }
3629 
3630 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3631   StringRef Name = getMangledName(GD);
3632 
3633   // The UUID descriptor should be pointer aligned.
3634   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3635 
3636   // Look for an existing global.
3637   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3638     return ConstantAddress(GV, GV->getValueType(), Alignment);
3639 
3640   ConstantEmitter Emitter(*this);
3641   llvm::Constant *Init;
3642 
3643   APValue &V = GD->getAsAPValue();
3644   if (!V.isAbsent()) {
3645     // If possible, emit the APValue version of the initializer. In particular,
3646     // this gets the type of the constant right.
3647     Init = Emitter.emitForInitializer(
3648         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3649   } else {
3650     // As a fallback, directly construct the constant.
3651     // FIXME: This may get padding wrong under esoteric struct layout rules.
3652     // MSVC appears to create a complete type 'struct __s_GUID' that it
3653     // presumably uses to represent these constants.
3654     MSGuidDecl::Parts Parts = GD->getParts();
3655     llvm::Constant *Fields[4] = {
3656         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3657         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3658         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3659         llvm::ConstantDataArray::getRaw(
3660             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3661             Int8Ty)};
3662     Init = llvm::ConstantStruct::getAnon(Fields);
3663   }
3664 
3665   auto *GV = new llvm::GlobalVariable(
3666       getModule(), Init->getType(),
3667       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3668   if (supportsCOMDAT())
3669     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3670   setDSOLocal(GV);
3671 
3672   if (!V.isAbsent()) {
3673     Emitter.finalize(GV);
3674     return ConstantAddress(GV, GV->getValueType(), Alignment);
3675   }
3676 
3677   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3678   return ConstantAddress(GV, Ty, Alignment);
3679 }
3680 
3681 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3682     const UnnamedGlobalConstantDecl *GCD) {
3683   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3684 
3685   llvm::GlobalVariable **Entry = nullptr;
3686   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3687   if (*Entry)
3688     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3689 
3690   ConstantEmitter Emitter(*this);
3691   llvm::Constant *Init;
3692 
3693   const APValue &V = GCD->getValue();
3694 
3695   assert(!V.isAbsent());
3696   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3697                                     GCD->getType());
3698 
3699   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3700                                       /*isConstant=*/true,
3701                                       llvm::GlobalValue::PrivateLinkage, Init,
3702                                       ".constant");
3703   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3704   GV->setAlignment(Alignment.getAsAlign());
3705 
3706   Emitter.finalize(GV);
3707 
3708   *Entry = GV;
3709   return ConstantAddress(GV, GV->getValueType(), Alignment);
3710 }
3711 
3712 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3713     const TemplateParamObjectDecl *TPO) {
3714   StringRef Name = getMangledName(TPO);
3715   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3716 
3717   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3718     return ConstantAddress(GV, GV->getValueType(), Alignment);
3719 
3720   ConstantEmitter Emitter(*this);
3721   llvm::Constant *Init = Emitter.emitForInitializer(
3722         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3723 
3724   if (!Init) {
3725     ErrorUnsupported(TPO, "template parameter object");
3726     return ConstantAddress::invalid();
3727   }
3728 
3729   llvm::GlobalValue::LinkageTypes Linkage =
3730       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3731           ? llvm::GlobalValue::LinkOnceODRLinkage
3732           : llvm::GlobalValue::InternalLinkage;
3733   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3734                                       /*isConstant=*/true, Linkage, Init, Name);
3735   setGVProperties(GV, TPO);
3736   if (supportsCOMDAT())
3737     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3738   Emitter.finalize(GV);
3739 
3740     return ConstantAddress(GV, GV->getValueType(), Alignment);
3741 }
3742 
3743 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3744   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3745   assert(AA && "No alias?");
3746 
3747   CharUnits Alignment = getContext().getDeclAlign(VD);
3748   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3749 
3750   // See if there is already something with the target's name in the module.
3751   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3752   if (Entry)
3753     return ConstantAddress(Entry, DeclTy, Alignment);
3754 
3755   llvm::Constant *Aliasee;
3756   if (isa<llvm::FunctionType>(DeclTy))
3757     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3758                                       GlobalDecl(cast<FunctionDecl>(VD)),
3759                                       /*ForVTable=*/false);
3760   else
3761     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3762                                     nullptr);
3763 
3764   auto *F = cast<llvm::GlobalValue>(Aliasee);
3765   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3766   WeakRefReferences.insert(F);
3767 
3768   return ConstantAddress(Aliasee, DeclTy, Alignment);
3769 }
3770 
3771 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3772   if (!D)
3773     return false;
3774   if (auto *A = D->getAttr<AttrT>())
3775     return A->isImplicit();
3776   return D->isImplicit();
3777 }
3778 
3779 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3780   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3781   // We need to emit host-side 'shadows' for all global
3782   // device-side variables because the CUDA runtime needs their
3783   // size and host-side address in order to provide access to
3784   // their device-side incarnations.
3785   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3786          Global->hasAttr<CUDAConstantAttr>() ||
3787          Global->hasAttr<CUDASharedAttr>() ||
3788          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3789          Global->getType()->isCUDADeviceBuiltinTextureType();
3790 }
3791 
3792 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3793   const auto *Global = cast<ValueDecl>(GD.getDecl());
3794 
3795   // Weak references don't produce any output by themselves.
3796   if (Global->hasAttr<WeakRefAttr>())
3797     return;
3798 
3799   // If this is an alias definition (which otherwise looks like a declaration)
3800   // emit it now.
3801   if (Global->hasAttr<AliasAttr>())
3802     return EmitAliasDefinition(GD);
3803 
3804   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3805   if (Global->hasAttr<IFuncAttr>())
3806     return emitIFuncDefinition(GD);
3807 
3808   // If this is a cpu_dispatch multiversion function, emit the resolver.
3809   if (Global->hasAttr<CPUDispatchAttr>())
3810     return emitCPUDispatchDefinition(GD);
3811 
3812   // If this is CUDA, be selective about which declarations we emit.
3813   // Non-constexpr non-lambda implicit host device functions are not emitted
3814   // unless they are used on device side.
3815   if (LangOpts.CUDA) {
3816     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3817            "Expected Variable or Function");
3818     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3819       if (!shouldEmitCUDAGlobalVar(VD))
3820         return;
3821     } else if (LangOpts.CUDAIsDevice) {
3822       const auto *FD = dyn_cast<FunctionDecl>(Global);
3823       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3824            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3825             hasImplicitAttr<CUDAHostAttr>(FD) &&
3826             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3827             !isLambdaCallOperator(FD) &&
3828             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3829           !Global->hasAttr<CUDAGlobalAttr>() &&
3830           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3831             !Global->hasAttr<CUDAHostAttr>()))
3832         return;
3833       // Device-only functions are the only things we skip.
3834     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3835                Global->hasAttr<CUDADeviceAttr>())
3836       return;
3837   }
3838 
3839   if (LangOpts.OpenMP) {
3840     // If this is OpenMP, check if it is legal to emit this global normally.
3841     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3842       return;
3843     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3844       if (MustBeEmitted(Global))
3845         EmitOMPDeclareReduction(DRD);
3846       return;
3847     }
3848     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3849       if (MustBeEmitted(Global))
3850         EmitOMPDeclareMapper(DMD);
3851       return;
3852     }
3853   }
3854 
3855   // Ignore declarations, they will be emitted on their first use.
3856   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3857     // Update deferred annotations with the latest declaration if the function
3858     // function was already used or defined.
3859     if (FD->hasAttr<AnnotateAttr>()) {
3860       StringRef MangledName = getMangledName(GD);
3861       if (GetGlobalValue(MangledName))
3862         DeferredAnnotations[MangledName] = FD;
3863     }
3864 
3865     // Forward declarations are emitted lazily on first use.
3866     if (!FD->doesThisDeclarationHaveABody()) {
3867       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3868           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3869         return;
3870 
3871       StringRef MangledName = getMangledName(GD);
3872 
3873       // Compute the function info and LLVM type.
3874       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3875       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3876 
3877       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3878                               /*DontDefer=*/false);
3879       return;
3880     }
3881   } else {
3882     const auto *VD = cast<VarDecl>(Global);
3883     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3884     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3885         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3886       if (LangOpts.OpenMP) {
3887         // Emit declaration of the must-be-emitted declare target variable.
3888         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3889                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3890 
3891           // If this variable has external storage and doesn't require special
3892           // link handling we defer to its canonical definition.
3893           if (VD->hasExternalStorage() &&
3894               Res != OMPDeclareTargetDeclAttr::MT_Link)
3895             return;
3896 
3897           bool UnifiedMemoryEnabled =
3898               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3899           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3900                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3901               !UnifiedMemoryEnabled) {
3902             (void)GetAddrOfGlobalVar(VD);
3903           } else {
3904             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3905                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3906                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3907                      UnifiedMemoryEnabled)) &&
3908                    "Link clause or to clause with unified memory expected.");
3909             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3910           }
3911 
3912           return;
3913         }
3914       }
3915       // If this declaration may have caused an inline variable definition to
3916       // change linkage, make sure that it's emitted.
3917       if (Context.getInlineVariableDefinitionKind(VD) ==
3918           ASTContext::InlineVariableDefinitionKind::Strong)
3919         GetAddrOfGlobalVar(VD);
3920       return;
3921     }
3922   }
3923 
3924   // Defer code generation to first use when possible, e.g. if this is an inline
3925   // function. If the global must always be emitted, do it eagerly if possible
3926   // to benefit from cache locality.
3927   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3928     // Emit the definition if it can't be deferred.
3929     EmitGlobalDefinition(GD);
3930     addEmittedDeferredDecl(GD);
3931     return;
3932   }
3933 
3934   // If we're deferring emission of a C++ variable with an
3935   // initializer, remember the order in which it appeared in the file.
3936   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3937       cast<VarDecl>(Global)->hasInit()) {
3938     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3939     CXXGlobalInits.push_back(nullptr);
3940   }
3941 
3942   StringRef MangledName = getMangledName(GD);
3943   if (GetGlobalValue(MangledName) != nullptr) {
3944     // The value has already been used and should therefore be emitted.
3945     addDeferredDeclToEmit(GD);
3946   } else if (MustBeEmitted(Global)) {
3947     // The value must be emitted, but cannot be emitted eagerly.
3948     assert(!MayBeEmittedEagerly(Global));
3949     addDeferredDeclToEmit(GD);
3950   } else {
3951     // Otherwise, remember that we saw a deferred decl with this name.  The
3952     // first use of the mangled name will cause it to move into
3953     // DeferredDeclsToEmit.
3954     DeferredDecls[MangledName] = GD;
3955   }
3956 }
3957 
3958 // Check if T is a class type with a destructor that's not dllimport.
3959 static bool HasNonDllImportDtor(QualType T) {
3960   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3961     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3962       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3963         return true;
3964 
3965   return false;
3966 }
3967 
3968 namespace {
3969   struct FunctionIsDirectlyRecursive
3970       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3971     const StringRef Name;
3972     const Builtin::Context &BI;
3973     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3974         : Name(N), BI(C) {}
3975 
3976     bool VisitCallExpr(const CallExpr *E) {
3977       const FunctionDecl *FD = E->getDirectCallee();
3978       if (!FD)
3979         return false;
3980       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3981       if (Attr && Name == Attr->getLabel())
3982         return true;
3983       unsigned BuiltinID = FD->getBuiltinID();
3984       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3985         return false;
3986       StringRef BuiltinName = BI.getName(BuiltinID);
3987       if (BuiltinName.starts_with("__builtin_") &&
3988           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3989         return true;
3990       }
3991       return false;
3992     }
3993 
3994     bool VisitStmt(const Stmt *S) {
3995       for (const Stmt *Child : S->children())
3996         if (Child && this->Visit(Child))
3997           return true;
3998       return false;
3999     }
4000   };
4001 
4002   // Make sure we're not referencing non-imported vars or functions.
4003   struct DLLImportFunctionVisitor
4004       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
4005     bool SafeToInline = true;
4006 
4007     bool shouldVisitImplicitCode() const { return true; }
4008 
4009     bool VisitVarDecl(VarDecl *VD) {
4010       if (VD->getTLSKind()) {
4011         // A thread-local variable cannot be imported.
4012         SafeToInline = false;
4013         return SafeToInline;
4014       }
4015 
4016       // A variable definition might imply a destructor call.
4017       if (VD->isThisDeclarationADefinition())
4018         SafeToInline = !HasNonDllImportDtor(VD->getType());
4019 
4020       return SafeToInline;
4021     }
4022 
4023     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
4024       if (const auto *D = E->getTemporary()->getDestructor())
4025         SafeToInline = D->hasAttr<DLLImportAttr>();
4026       return SafeToInline;
4027     }
4028 
4029     bool VisitDeclRefExpr(DeclRefExpr *E) {
4030       ValueDecl *VD = E->getDecl();
4031       if (isa<FunctionDecl>(VD))
4032         SafeToInline = VD->hasAttr<DLLImportAttr>();
4033       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
4034         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
4035       return SafeToInline;
4036     }
4037 
4038     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
4039       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
4040       return SafeToInline;
4041     }
4042 
4043     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
4044       CXXMethodDecl *M = E->getMethodDecl();
4045       if (!M) {
4046         // Call through a pointer to member function. This is safe to inline.
4047         SafeToInline = true;
4048       } else {
4049         SafeToInline = M->hasAttr<DLLImportAttr>();
4050       }
4051       return SafeToInline;
4052     }
4053 
4054     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
4055       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
4056       return SafeToInline;
4057     }
4058 
4059     bool VisitCXXNewExpr(CXXNewExpr *E) {
4060       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
4061       return SafeToInline;
4062     }
4063   };
4064 }
4065 
4066 // isTriviallyRecursive - Check if this function calls another
4067 // decl that, because of the asm attribute or the other decl being a builtin,
4068 // ends up pointing to itself.
4069 bool
4070 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4071   StringRef Name;
4072   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4073     // asm labels are a special kind of mangling we have to support.
4074     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4075     if (!Attr)
4076       return false;
4077     Name = Attr->getLabel();
4078   } else {
4079     Name = FD->getName();
4080   }
4081 
4082   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4083   const Stmt *Body = FD->getBody();
4084   return Body ? Walker.Visit(Body) : false;
4085 }
4086 
4087 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4088   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4089     return true;
4090 
4091   const auto *F = cast<FunctionDecl>(GD.getDecl());
4092   // Inline builtins declaration must be emitted. They often are fortified
4093   // functions.
4094   if (F->isInlineBuiltinDeclaration())
4095     return true;
4096 
4097   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4098     return false;
4099 
4100   // We don't import function bodies from other named module units since that
4101   // behavior may break ABI compatibility of the current unit.
4102   if (const Module *M = F->getOwningModule();
4103       M && M->getTopLevelModule()->isNamedModule() &&
4104       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4105     // There are practices to mark template member function as always-inline
4106     // and mark the template as extern explicit instantiation but not give
4107     // the definition for member function. So we have to emit the function
4108     // from explicitly instantiation with always-inline.
4109     //
4110     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4111     //
4112     // TODO: Maybe it is better to give it a warning if we call a non-inline
4113     // function from other module units which is marked as always-inline.
4114     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4115       return false;
4116     }
4117   }
4118 
4119   if (F->hasAttr<NoInlineAttr>())
4120     return false;
4121 
4122   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4123     // Check whether it would be safe to inline this dllimport function.
4124     DLLImportFunctionVisitor Visitor;
4125     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4126     if (!Visitor.SafeToInline)
4127       return false;
4128 
4129     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4130       // Implicit destructor invocations aren't captured in the AST, so the
4131       // check above can't see them. Check for them manually here.
4132       for (const Decl *Member : Dtor->getParent()->decls())
4133         if (isa<FieldDecl>(Member))
4134           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4135             return false;
4136       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4137         if (HasNonDllImportDtor(B.getType()))
4138           return false;
4139     }
4140   }
4141 
4142   // PR9614. Avoid cases where the source code is lying to us. An available
4143   // externally function should have an equivalent function somewhere else,
4144   // but a function that calls itself through asm label/`__builtin_` trickery is
4145   // clearly not equivalent to the real implementation.
4146   // This happens in glibc's btowc and in some configure checks.
4147   return !isTriviallyRecursive(F);
4148 }
4149 
4150 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4151   return CodeGenOpts.OptimizationLevel > 0;
4152 }
4153 
4154 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4155                                                        llvm::GlobalValue *GV) {
4156   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4157 
4158   if (FD->isCPUSpecificMultiVersion()) {
4159     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4160     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4161       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4162   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4163     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4164       // AArch64 favors the default target version over the clone if any.
4165       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4166           TC->isFirstOfVersion(I))
4167         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4168     // Ensure that the resolver function is also emitted.
4169     GetOrCreateMultiVersionResolver(GD);
4170   } else
4171     EmitGlobalFunctionDefinition(GD, GV);
4172 
4173   // Defer the resolver emission until we can reason whether the TU
4174   // contains a default target version implementation.
4175   if (FD->isTargetVersionMultiVersion())
4176     AddDeferredMultiVersionResolverToEmit(GD);
4177 }
4178 
4179 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4180   const auto *D = cast<ValueDecl>(GD.getDecl());
4181 
4182   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4183                                  Context.getSourceManager(),
4184                                  "Generating code for declaration");
4185 
4186   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4187     // At -O0, don't generate IR for functions with available_externally
4188     // linkage.
4189     if (!shouldEmitFunction(GD))
4190       return;
4191 
4192     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4193       std::string Name;
4194       llvm::raw_string_ostream OS(Name);
4195       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4196                                /*Qualified=*/true);
4197       return Name;
4198     });
4199 
4200     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4201       // Make sure to emit the definition(s) before we emit the thunks.
4202       // This is necessary for the generation of certain thunks.
4203       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4204         ABI->emitCXXStructor(GD);
4205       else if (FD->isMultiVersion())
4206         EmitMultiVersionFunctionDefinition(GD, GV);
4207       else
4208         EmitGlobalFunctionDefinition(GD, GV);
4209 
4210       if (Method->isVirtual())
4211         getVTables().EmitThunks(GD);
4212 
4213       return;
4214     }
4215 
4216     if (FD->isMultiVersion())
4217       return EmitMultiVersionFunctionDefinition(GD, GV);
4218     return EmitGlobalFunctionDefinition(GD, GV);
4219   }
4220 
4221   if (const auto *VD = dyn_cast<VarDecl>(D))
4222     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4223 
4224   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4225 }
4226 
4227 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4228                                                       llvm::Function *NewFn);
4229 
4230 static unsigned getFMVPriority(const TargetInfo &TI,
4231                                const CodeGenFunction::FMVResolverOption &RO) {
4232   llvm::SmallVector<StringRef, 8> Features{RO.Features};
4233   if (RO.Architecture)
4234     Features.push_back(*RO.Architecture);
4235   return TI.getFMVPriority(Features);
4236 }
4237 
4238 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4239 // TU can forward declare the function without causing problems.  Particularly
4240 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4241 // work with internal linkage functions, so that the same function name can be
4242 // used with internal linkage in multiple TUs.
4243 static llvm::GlobalValue::LinkageTypes
4244 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) {
4245   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4246   if (FD->getFormalLinkage() == Linkage::Internal)
4247     return llvm::GlobalValue::InternalLinkage;
4248   return llvm::GlobalValue::WeakODRLinkage;
4249 }
4250 
4251 void CodeGenModule::emitMultiVersionFunctions() {
4252   std::vector<GlobalDecl> MVFuncsToEmit;
4253   MultiVersionFuncs.swap(MVFuncsToEmit);
4254   for (GlobalDecl GD : MVFuncsToEmit) {
4255     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4256     assert(FD && "Expected a FunctionDecl");
4257 
4258     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4259       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4260       StringRef MangledName = getMangledName(CurGD);
4261       llvm::Constant *Func = GetGlobalValue(MangledName);
4262       if (!Func) {
4263         if (Decl->isDefined()) {
4264           EmitGlobalFunctionDefinition(CurGD, nullptr);
4265           Func = GetGlobalValue(MangledName);
4266         } else {
4267           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4268           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4269           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4270                                    /*DontDefer=*/false, ForDefinition);
4271         }
4272         assert(Func && "This should have just been created");
4273       }
4274       return cast<llvm::Function>(Func);
4275     };
4276 
4277     // For AArch64, a resolver is only emitted if a function marked with
4278     // target_version("default")) or target_clones() is present and defined
4279     // in this TU. For other architectures it is always emitted.
4280     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4281     SmallVector<CodeGenFunction::FMVResolverOption, 10> Options;
4282 
4283     getContext().forEachMultiversionedFunctionVersion(
4284         FD, [&](const FunctionDecl *CurFD) {
4285           llvm::SmallVector<StringRef, 8> Feats;
4286           bool IsDefined = CurFD->getDefinition() != nullptr;
4287 
4288           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4289             assert(getTarget().getTriple().isX86() && "Unsupported target");
4290             TA->getX86AddedFeatures(Feats);
4291             llvm::Function *Func = createFunction(CurFD);
4292             Options.emplace_back(Func, Feats, TA->getX86Architecture());
4293           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4294             if (TVA->isDefaultVersion() && IsDefined)
4295               ShouldEmitResolver = true;
4296             llvm::Function *Func = createFunction(CurFD);
4297             char Delim = getTarget().getTriple().isAArch64() ? '+' : ',';
4298             TVA->getFeatures(Feats, Delim);
4299             Options.emplace_back(Func, Feats);
4300           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4301             if (IsDefined)
4302               ShouldEmitResolver = true;
4303             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4304               if (!TC->isFirstOfVersion(I))
4305                 continue;
4306 
4307               llvm::Function *Func = createFunction(CurFD, I);
4308               Feats.clear();
4309               if (getTarget().getTriple().isX86()) {
4310                 TC->getX86Feature(Feats, I);
4311                 Options.emplace_back(Func, Feats, TC->getX86Architecture(I));
4312               } else {
4313                 char Delim = getTarget().getTriple().isAArch64() ? '+' : ',';
4314                 TC->getFeatures(Feats, I, Delim);
4315                 Options.emplace_back(Func, Feats);
4316               }
4317             }
4318           } else
4319             llvm_unreachable("unexpected MultiVersionKind");
4320         });
4321 
4322     if (!ShouldEmitResolver)
4323       continue;
4324 
4325     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4326     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4327       ResolverConstant = IFunc->getResolver();
4328       if (FD->isTargetClonesMultiVersion() &&
4329           !getTarget().getTriple().isAArch64()) {
4330         std::string MangledName = getMangledNameImpl(
4331             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4332         if (!GetGlobalValue(MangledName + ".ifunc")) {
4333           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4334           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4335           // In prior versions of Clang, the mangling for ifuncs incorrectly
4336           // included an .ifunc suffix. This alias is generated for backward
4337           // compatibility. It is deprecated, and may be removed in the future.
4338           auto *Alias = llvm::GlobalAlias::create(
4339               DeclTy, 0, getMultiversionLinkage(*this, GD),
4340               MangledName + ".ifunc", IFunc, &getModule());
4341           SetCommonAttributes(FD, Alias);
4342         }
4343       }
4344     }
4345     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4346 
4347     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4348 
4349     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4350       ResolverFunc->setComdat(
4351           getModule().getOrInsertComdat(ResolverFunc->getName()));
4352 
4353     const TargetInfo &TI = getTarget();
4354     llvm::stable_sort(
4355         Options, [&TI](const CodeGenFunction::FMVResolverOption &LHS,
4356                        const CodeGenFunction::FMVResolverOption &RHS) {
4357           return getFMVPriority(TI, LHS) > getFMVPriority(TI, RHS);
4358         });
4359     CodeGenFunction CGF(*this);
4360     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4361   }
4362 
4363   // Ensure that any additions to the deferred decls list caused by emitting a
4364   // variant are emitted.  This can happen when the variant itself is inline and
4365   // calls a function without linkage.
4366   if (!MVFuncsToEmit.empty())
4367     EmitDeferred();
4368 
4369   // Ensure that any additions to the multiversion funcs list from either the
4370   // deferred decls or the multiversion functions themselves are emitted.
4371   if (!MultiVersionFuncs.empty())
4372     emitMultiVersionFunctions();
4373 }
4374 
4375 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4376                                    llvm::Constant *New) {
4377   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4378   New->takeName(Old);
4379   Old->replaceAllUsesWith(New);
4380   Old->eraseFromParent();
4381 }
4382 
4383 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4384   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4385   assert(FD && "Not a FunctionDecl?");
4386   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4387   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4388   assert(DD && "Not a cpu_dispatch Function?");
4389 
4390   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4391   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4392 
4393   StringRef ResolverName = getMangledName(GD);
4394   UpdateMultiVersionNames(GD, FD, ResolverName);
4395 
4396   llvm::Type *ResolverType;
4397   GlobalDecl ResolverGD;
4398   if (getTarget().supportsIFunc()) {
4399     ResolverType = llvm::FunctionType::get(
4400         llvm::PointerType::get(DeclTy,
4401                                getTypes().getTargetAddressSpace(FD->getType())),
4402         false);
4403   }
4404   else {
4405     ResolverType = DeclTy;
4406     ResolverGD = GD;
4407   }
4408 
4409   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4410       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4411   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4412   if (supportsCOMDAT())
4413     ResolverFunc->setComdat(
4414         getModule().getOrInsertComdat(ResolverFunc->getName()));
4415 
4416   SmallVector<CodeGenFunction::FMVResolverOption, 10> Options;
4417   const TargetInfo &Target = getTarget();
4418   unsigned Index = 0;
4419   for (const IdentifierInfo *II : DD->cpus()) {
4420     // Get the name of the target function so we can look it up/create it.
4421     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4422                               getCPUSpecificMangling(*this, II->getName());
4423 
4424     llvm::Constant *Func = GetGlobalValue(MangledName);
4425 
4426     if (!Func) {
4427       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4428       if (ExistingDecl.getDecl() &&
4429           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4430         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4431         Func = GetGlobalValue(MangledName);
4432       } else {
4433         if (!ExistingDecl.getDecl())
4434           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4435 
4436       Func = GetOrCreateLLVMFunction(
4437           MangledName, DeclTy, ExistingDecl,
4438           /*ForVTable=*/false, /*DontDefer=*/true,
4439           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4440       }
4441     }
4442 
4443     llvm::SmallVector<StringRef, 32> Features;
4444     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4445     llvm::transform(Features, Features.begin(),
4446                     [](StringRef Str) { return Str.substr(1); });
4447     llvm::erase_if(Features, [&Target](StringRef Feat) {
4448       return !Target.validateCpuSupports(Feat);
4449     });
4450     Options.emplace_back(cast<llvm::Function>(Func), Features);
4451     ++Index;
4452   }
4453 
4454   llvm::stable_sort(Options, [](const CodeGenFunction::FMVResolverOption &LHS,
4455                                 const CodeGenFunction::FMVResolverOption &RHS) {
4456     return llvm::X86::getCpuSupportsMask(LHS.Features) >
4457            llvm::X86::getCpuSupportsMask(RHS.Features);
4458   });
4459 
4460   // If the list contains multiple 'default' versions, such as when it contains
4461   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4462   // always run on at least a 'pentium'). We do this by deleting the 'least
4463   // advanced' (read, lowest mangling letter).
4464   while (Options.size() > 1 && llvm::all_of(llvm::X86::getCpuSupportsMask(
4465                                                 (Options.end() - 2)->Features),
4466                                             [](auto X) { return X == 0; })) {
4467     StringRef LHSName = (Options.end() - 2)->Function->getName();
4468     StringRef RHSName = (Options.end() - 1)->Function->getName();
4469     if (LHSName.compare(RHSName) < 0)
4470       Options.erase(Options.end() - 2);
4471     else
4472       Options.erase(Options.end() - 1);
4473   }
4474 
4475   CodeGenFunction CGF(*this);
4476   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4477 
4478   if (getTarget().supportsIFunc()) {
4479     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4480     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4481     unsigned AS = IFunc->getType()->getPointerAddressSpace();
4482 
4483     // Fix up function declarations that were created for cpu_specific before
4484     // cpu_dispatch was known
4485     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4486       auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "",
4487                                            ResolverFunc, &getModule());
4488       replaceDeclarationWith(IFunc, GI);
4489       IFunc = GI;
4490     }
4491 
4492     std::string AliasName = getMangledNameImpl(
4493         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4494     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4495     if (!AliasFunc) {
4496       auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName,
4497                                            IFunc, &getModule());
4498       SetCommonAttributes(GD, GA);
4499     }
4500   }
4501 }
4502 
4503 /// Adds a declaration to the list of multi version functions if not present.
4504 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4505   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4506   assert(FD && "Not a FunctionDecl?");
4507 
4508   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4509     std::string MangledName =
4510         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4511     if (!DeferredResolversToEmit.insert(MangledName).second)
4512       return;
4513   }
4514   MultiVersionFuncs.push_back(GD);
4515 }
4516 
4517 /// If a dispatcher for the specified mangled name is not in the module, create
4518 /// and return it. The dispatcher is either an llvm Function with the specified
4519 /// type, or a global ifunc.
4520 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4521   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4522   assert(FD && "Not a FunctionDecl?");
4523 
4524   std::string MangledName =
4525       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4526 
4527   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4528   // a separate resolver).
4529   std::string ResolverName = MangledName;
4530   if (getTarget().supportsIFunc()) {
4531     switch (FD->getMultiVersionKind()) {
4532     case MultiVersionKind::None:
4533       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4534     case MultiVersionKind::Target:
4535     case MultiVersionKind::CPUSpecific:
4536     case MultiVersionKind::CPUDispatch:
4537       ResolverName += ".ifunc";
4538       break;
4539     case MultiVersionKind::TargetClones:
4540     case MultiVersionKind::TargetVersion:
4541       break;
4542     }
4543   } else if (FD->isTargetMultiVersion()) {
4544     ResolverName += ".resolver";
4545   }
4546 
4547   bool ShouldReturnIFunc =
4548       getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion();
4549 
4550   // If the resolver has already been created, just return it. This lookup may
4551   // yield a function declaration instead of a resolver on AArch64. That is
4552   // because we didn't know whether a resolver will be generated when we first
4553   // encountered a use of the symbol named after this resolver. Therefore,
4554   // targets which support ifuncs should not return here unless we actually
4555   // found an ifunc.
4556   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4557   if (ResolverGV && (isa<llvm::GlobalIFunc>(ResolverGV) || !ShouldReturnIFunc))
4558     return ResolverGV;
4559 
4560   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4561   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4562 
4563   // The resolver needs to be created. For target and target_clones, defer
4564   // creation until the end of the TU.
4565   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4566     AddDeferredMultiVersionResolverToEmit(GD);
4567 
4568   // For cpu_specific, don't create an ifunc yet because we don't know if the
4569   // cpu_dispatch will be emitted in this translation unit.
4570   if (ShouldReturnIFunc) {
4571     unsigned AS = getTypes().getTargetAddressSpace(FD->getType());
4572     llvm::Type *ResolverType =
4573         llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false);
4574     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4575         MangledName + ".resolver", ResolverType, GlobalDecl{},
4576         /*ForVTable=*/false);
4577     llvm::GlobalIFunc *GIF =
4578         llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD),
4579                                   "", Resolver, &getModule());
4580     GIF->setName(ResolverName);
4581     SetCommonAttributes(FD, GIF);
4582     if (ResolverGV)
4583       replaceDeclarationWith(ResolverGV, GIF);
4584     return GIF;
4585   }
4586 
4587   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4588       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4589   assert(isa<llvm::GlobalValue>(Resolver) && !ResolverGV &&
4590          "Resolver should be created for the first time");
4591   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4592   return Resolver;
4593 }
4594 
4595 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4596                                            const llvm::GlobalValue *GV) const {
4597   auto SC = GV->getDLLStorageClass();
4598   if (SC == llvm::GlobalValue::DefaultStorageClass)
4599     return false;
4600   const Decl *MRD = D->getMostRecentDecl();
4601   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4602             !MRD->hasAttr<DLLImportAttr>()) ||
4603            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4604             !MRD->hasAttr<DLLExportAttr>())) &&
4605           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4606 }
4607 
4608 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4609 /// module, create and return an llvm Function with the specified type. If there
4610 /// is something in the module with the specified name, return it potentially
4611 /// bitcasted to the right type.
4612 ///
4613 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4614 /// to set the attributes on the function when it is first created.
4615 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4616     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4617     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4618     ForDefinition_t IsForDefinition) {
4619   const Decl *D = GD.getDecl();
4620 
4621   std::string NameWithoutMultiVersionMangling;
4622   // Any attempts to use a MultiVersion function should result in retrieving
4623   // the iFunc instead. Name Mangling will handle the rest of the changes.
4624   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4625     // For the device mark the function as one that should be emitted.
4626     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4627         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4628         !DontDefer && !IsForDefinition) {
4629       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4630         GlobalDecl GDDef;
4631         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4632           GDDef = GlobalDecl(CD, GD.getCtorType());
4633         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4634           GDDef = GlobalDecl(DD, GD.getDtorType());
4635         else
4636           GDDef = GlobalDecl(FDDef);
4637         EmitGlobal(GDDef);
4638       }
4639     }
4640 
4641     if (FD->isMultiVersion()) {
4642       UpdateMultiVersionNames(GD, FD, MangledName);
4643       if (!IsForDefinition) {
4644         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4645         // function is used. Instead we defer the emission until we see a
4646         // default definition. In the meantime we just reference the symbol
4647         // without FMV mangling (it may or may not be replaced later).
4648         if (getTarget().getTriple().isAArch64()) {
4649           AddDeferredMultiVersionResolverToEmit(GD);
4650           NameWithoutMultiVersionMangling = getMangledNameImpl(
4651               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4652         } else
4653           return GetOrCreateMultiVersionResolver(GD);
4654       }
4655     }
4656   }
4657 
4658   if (!NameWithoutMultiVersionMangling.empty())
4659     MangledName = NameWithoutMultiVersionMangling;
4660 
4661   // Lookup the entry, lazily creating it if necessary.
4662   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4663   if (Entry) {
4664     if (WeakRefReferences.erase(Entry)) {
4665       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4666       if (FD && !FD->hasAttr<WeakAttr>())
4667         Entry->setLinkage(llvm::Function::ExternalLinkage);
4668     }
4669 
4670     // Handle dropped DLL attributes.
4671     if (D && shouldDropDLLAttribute(D, Entry)) {
4672       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4673       setDSOLocal(Entry);
4674     }
4675 
4676     // If there are two attempts to define the same mangled name, issue an
4677     // error.
4678     if (IsForDefinition && !Entry->isDeclaration()) {
4679       GlobalDecl OtherGD;
4680       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4681       // to make sure that we issue an error only once.
4682       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4683           (GD.getCanonicalDecl().getDecl() !=
4684            OtherGD.getCanonicalDecl().getDecl()) &&
4685           DiagnosedConflictingDefinitions.insert(GD).second) {
4686         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4687             << MangledName;
4688         getDiags().Report(OtherGD.getDecl()->getLocation(),
4689                           diag::note_previous_definition);
4690       }
4691     }
4692 
4693     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4694         (Entry->getValueType() == Ty)) {
4695       return Entry;
4696     }
4697 
4698     // Make sure the result is of the correct type.
4699     // (If function is requested for a definition, we always need to create a new
4700     // function, not just return a bitcast.)
4701     if (!IsForDefinition)
4702       return Entry;
4703   }
4704 
4705   // This function doesn't have a complete type (for example, the return
4706   // type is an incomplete struct). Use a fake type instead, and make
4707   // sure not to try to set attributes.
4708   bool IsIncompleteFunction = false;
4709 
4710   llvm::FunctionType *FTy;
4711   if (isa<llvm::FunctionType>(Ty)) {
4712     FTy = cast<llvm::FunctionType>(Ty);
4713   } else {
4714     FTy = llvm::FunctionType::get(VoidTy, false);
4715     IsIncompleteFunction = true;
4716   }
4717 
4718   llvm::Function *F =
4719       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4720                              Entry ? StringRef() : MangledName, &getModule());
4721 
4722   // Store the declaration associated with this function so it is potentially
4723   // updated by further declarations or definitions and emitted at the end.
4724   if (D && D->hasAttr<AnnotateAttr>())
4725     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4726 
4727   // If we already created a function with the same mangled name (but different
4728   // type) before, take its name and add it to the list of functions to be
4729   // replaced with F at the end of CodeGen.
4730   //
4731   // This happens if there is a prototype for a function (e.g. "int f()") and
4732   // then a definition of a different type (e.g. "int f(int x)").
4733   if (Entry) {
4734     F->takeName(Entry);
4735 
4736     // This might be an implementation of a function without a prototype, in
4737     // which case, try to do special replacement of calls which match the new
4738     // prototype.  The really key thing here is that we also potentially drop
4739     // arguments from the call site so as to make a direct call, which makes the
4740     // inliner happier and suppresses a number of optimizer warnings (!) about
4741     // dropping arguments.
4742     if (!Entry->use_empty()) {
4743       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4744       Entry->removeDeadConstantUsers();
4745     }
4746 
4747     addGlobalValReplacement(Entry, F);
4748   }
4749 
4750   assert(F->getName() == MangledName && "name was uniqued!");
4751   if (D)
4752     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4753   if (ExtraAttrs.hasFnAttrs()) {
4754     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4755     F->addFnAttrs(B);
4756   }
4757 
4758   if (!DontDefer) {
4759     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4760     // each other bottoming out with the base dtor.  Therefore we emit non-base
4761     // dtors on usage, even if there is no dtor definition in the TU.
4762     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4763         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4764                                            GD.getDtorType()))
4765       addDeferredDeclToEmit(GD);
4766 
4767     // This is the first use or definition of a mangled name.  If there is a
4768     // deferred decl with this name, remember that we need to emit it at the end
4769     // of the file.
4770     auto DDI = DeferredDecls.find(MangledName);
4771     if (DDI != DeferredDecls.end()) {
4772       // Move the potentially referenced deferred decl to the
4773       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4774       // don't need it anymore).
4775       addDeferredDeclToEmit(DDI->second);
4776       DeferredDecls.erase(DDI);
4777 
4778       // Otherwise, there are cases we have to worry about where we're
4779       // using a declaration for which we must emit a definition but where
4780       // we might not find a top-level definition:
4781       //   - member functions defined inline in their classes
4782       //   - friend functions defined inline in some class
4783       //   - special member functions with implicit definitions
4784       // If we ever change our AST traversal to walk into class methods,
4785       // this will be unnecessary.
4786       //
4787       // We also don't emit a definition for a function if it's going to be an
4788       // entry in a vtable, unless it's already marked as used.
4789     } else if (getLangOpts().CPlusPlus && D) {
4790       // Look for a declaration that's lexically in a record.
4791       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4792            FD = FD->getPreviousDecl()) {
4793         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4794           if (FD->doesThisDeclarationHaveABody()) {
4795             addDeferredDeclToEmit(GD.getWithDecl(FD));
4796             break;
4797           }
4798         }
4799       }
4800     }
4801   }
4802 
4803   // Make sure the result is of the requested type.
4804   if (!IsIncompleteFunction) {
4805     assert(F->getFunctionType() == Ty);
4806     return F;
4807   }
4808 
4809   return F;
4810 }
4811 
4812 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4813 /// non-null, then this function will use the specified type if it has to
4814 /// create it (this occurs when we see a definition of the function).
4815 llvm::Constant *
4816 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4817                                  bool DontDefer,
4818                                  ForDefinition_t IsForDefinition) {
4819   // If there was no specific requested type, just convert it now.
4820   if (!Ty) {
4821     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4822     Ty = getTypes().ConvertType(FD->getType());
4823   }
4824 
4825   // Devirtualized destructor calls may come through here instead of via
4826   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4827   // of the complete destructor when necessary.
4828   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4829     if (getTarget().getCXXABI().isMicrosoft() &&
4830         GD.getDtorType() == Dtor_Complete &&
4831         DD->getParent()->getNumVBases() == 0)
4832       GD = GlobalDecl(DD, Dtor_Base);
4833   }
4834 
4835   StringRef MangledName = getMangledName(GD);
4836   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4837                                     /*IsThunk=*/false, llvm::AttributeList(),
4838                                     IsForDefinition);
4839   // Returns kernel handle for HIP kernel stub function.
4840   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4841       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4842     auto *Handle = getCUDARuntime().getKernelHandle(
4843         cast<llvm::Function>(F->stripPointerCasts()), GD);
4844     if (IsForDefinition)
4845       return F;
4846     return Handle;
4847   }
4848   return F;
4849 }
4850 
4851 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4852   llvm::GlobalValue *F =
4853       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4854 
4855   return llvm::NoCFIValue::get(F);
4856 }
4857 
4858 static const FunctionDecl *
4859 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4860   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4861   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4862 
4863   IdentifierInfo &CII = C.Idents.get(Name);
4864   for (const auto *Result : DC->lookup(&CII))
4865     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4866       return FD;
4867 
4868   if (!C.getLangOpts().CPlusPlus)
4869     return nullptr;
4870 
4871   // Demangle the premangled name from getTerminateFn()
4872   IdentifierInfo &CXXII =
4873       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4874           ? C.Idents.get("terminate")
4875           : C.Idents.get(Name);
4876 
4877   for (const auto &N : {"__cxxabiv1", "std"}) {
4878     IdentifierInfo &NS = C.Idents.get(N);
4879     for (const auto *Result : DC->lookup(&NS)) {
4880       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4881       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4882         for (const auto *Result : LSD->lookup(&NS))
4883           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4884             break;
4885 
4886       if (ND)
4887         for (const auto *Result : ND->lookup(&CXXII))
4888           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4889             return FD;
4890     }
4891   }
4892 
4893   return nullptr;
4894 }
4895 
4896 static void setWindowsItaniumDLLImport(CodeGenModule &CGM, bool Local,
4897                                        llvm::Function *F, StringRef Name) {
4898   // In Windows Itanium environments, try to mark runtime functions
4899   // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4900   // will link their standard library statically or dynamically. Marking
4901   // functions imported when they are not imported can cause linker errors
4902   // and warnings.
4903   if (!Local && CGM.getTriple().isWindowsItaniumEnvironment() &&
4904       !CGM.getCodeGenOpts().LTOVisibilityPublicStd) {
4905     const FunctionDecl *FD = GetRuntimeFunctionDecl(CGM.getContext(), Name);
4906     if (!FD || FD->hasAttr<DLLImportAttr>()) {
4907       F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4908       F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4909     }
4910   }
4911 }
4912 
4913 llvm::FunctionCallee CodeGenModule::CreateRuntimeFunction(
4914     QualType ReturnTy, ArrayRef<QualType> ArgTys, StringRef Name,
4915     llvm::AttributeList ExtraAttrs, bool Local, bool AssumeConvergent) {
4916   if (AssumeConvergent) {
4917     ExtraAttrs =
4918         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4919   }
4920 
4921   QualType FTy = Context.getFunctionType(ReturnTy, ArgTys,
4922                                          FunctionProtoType::ExtProtoInfo());
4923   const CGFunctionInfo &Info = getTypes().arrangeFreeFunctionType(
4924       Context.getCanonicalType(FTy).castAs<FunctionProtoType>());
4925   auto *ConvTy = getTypes().GetFunctionType(Info);
4926   llvm::Constant *C = GetOrCreateLLVMFunction(
4927       Name, ConvTy, GlobalDecl(), /*ForVTable=*/false,
4928       /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
4929 
4930   if (auto *F = dyn_cast<llvm::Function>(C)) {
4931     if (F->empty()) {
4932       SetLLVMFunctionAttributes(GlobalDecl(), Info, F, /*IsThunk*/ false);
4933       // FIXME: Set calling-conv properly in ExtProtoInfo
4934       F->setCallingConv(getRuntimeCC());
4935       setWindowsItaniumDLLImport(*this, Local, F, Name);
4936       setDSOLocal(F);
4937     }
4938   }
4939   return {ConvTy, C};
4940 }
4941 
4942 /// CreateRuntimeFunction - Create a new runtime function with the specified
4943 /// type and name.
4944 llvm::FunctionCallee
4945 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4946                                      llvm::AttributeList ExtraAttrs, bool Local,
4947                                      bool AssumeConvergent) {
4948   if (AssumeConvergent) {
4949     ExtraAttrs =
4950         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4951   }
4952 
4953   llvm::Constant *C =
4954       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4955                               /*DontDefer=*/false, /*IsThunk=*/false,
4956                               ExtraAttrs);
4957 
4958   if (auto *F = dyn_cast<llvm::Function>(C)) {
4959     if (F->empty()) {
4960       F->setCallingConv(getRuntimeCC());
4961       setWindowsItaniumDLLImport(*this, Local, F, Name);
4962       setDSOLocal(F);
4963       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4964       // of trying to approximate the attributes using the LLVM function
4965       // signature.  The other overload of CreateRuntimeFunction does this; it
4966       // should be used for new code.
4967       markRegisterParameterAttributes(F);
4968     }
4969   }
4970 
4971   return {FTy, C};
4972 }
4973 
4974 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4975 /// create and return an llvm GlobalVariable with the specified type and address
4976 /// space. If there is something in the module with the specified name, return
4977 /// it potentially bitcasted to the right type.
4978 ///
4979 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4980 /// to set the attributes on the global when it is first created.
4981 ///
4982 /// If IsForDefinition is true, it is guaranteed that an actual global with
4983 /// type Ty will be returned, not conversion of a variable with the same
4984 /// mangled name but some other type.
4985 llvm::Constant *
4986 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4987                                      LangAS AddrSpace, const VarDecl *D,
4988                                      ForDefinition_t IsForDefinition) {
4989   // Lookup the entry, lazily creating it if necessary.
4990   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4991   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4992   if (Entry) {
4993     if (WeakRefReferences.erase(Entry)) {
4994       if (D && !D->hasAttr<WeakAttr>())
4995         Entry->setLinkage(llvm::Function::ExternalLinkage);
4996     }
4997 
4998     // Handle dropped DLL attributes.
4999     if (D && shouldDropDLLAttribute(D, Entry))
5000       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
5001 
5002     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
5003       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
5004 
5005     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
5006       return Entry;
5007 
5008     // If there are two attempts to define the same mangled name, issue an
5009     // error.
5010     if (IsForDefinition && !Entry->isDeclaration()) {
5011       GlobalDecl OtherGD;
5012       const VarDecl *OtherD;
5013 
5014       // Check that D is not yet in DiagnosedConflictingDefinitions is required
5015       // to make sure that we issue an error only once.
5016       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
5017           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
5018           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
5019           OtherD->hasInit() &&
5020           DiagnosedConflictingDefinitions.insert(D).second) {
5021         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
5022             << MangledName;
5023         getDiags().Report(OtherGD.getDecl()->getLocation(),
5024                           diag::note_previous_definition);
5025       }
5026     }
5027 
5028     // Make sure the result is of the correct type.
5029     if (Entry->getType()->getAddressSpace() != TargetAS)
5030       return llvm::ConstantExpr::getAddrSpaceCast(
5031           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
5032 
5033     // (If global is requested for a definition, we always need to create a new
5034     // global, not just return a bitcast.)
5035     if (!IsForDefinition)
5036       return Entry;
5037   }
5038 
5039   auto DAddrSpace = GetGlobalVarAddressSpace(D);
5040 
5041   auto *GV = new llvm::GlobalVariable(
5042       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
5043       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
5044       getContext().getTargetAddressSpace(DAddrSpace));
5045 
5046   // If we already created a global with the same mangled name (but different
5047   // type) before, take its name and remove it from its parent.
5048   if (Entry) {
5049     GV->takeName(Entry);
5050 
5051     if (!Entry->use_empty()) {
5052       Entry->replaceAllUsesWith(GV);
5053     }
5054 
5055     Entry->eraseFromParent();
5056   }
5057 
5058   // This is the first use or definition of a mangled name.  If there is a
5059   // deferred decl with this name, remember that we need to emit it at the end
5060   // of the file.
5061   auto DDI = DeferredDecls.find(MangledName);
5062   if (DDI != DeferredDecls.end()) {
5063     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
5064     // list, and remove it from DeferredDecls (since we don't need it anymore).
5065     addDeferredDeclToEmit(DDI->second);
5066     DeferredDecls.erase(DDI);
5067   }
5068 
5069   // Handle things which are present even on external declarations.
5070   if (D) {
5071     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
5072       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
5073 
5074     // FIXME: This code is overly simple and should be merged with other global
5075     // handling.
5076     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
5077 
5078     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
5079 
5080     setLinkageForGV(GV, D);
5081 
5082     if (D->getTLSKind()) {
5083       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5084         CXXThreadLocals.push_back(D);
5085       setTLSMode(GV, *D);
5086     }
5087 
5088     setGVProperties(GV, D);
5089 
5090     // If required by the ABI, treat declarations of static data members with
5091     // inline initializers as definitions.
5092     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5093       EmitGlobalVarDefinition(D);
5094     }
5095 
5096     // Emit section information for extern variables.
5097     if (D->hasExternalStorage()) {
5098       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5099         GV->setSection(SA->getName());
5100     }
5101 
5102     // Handle XCore specific ABI requirements.
5103     if (getTriple().getArch() == llvm::Triple::xcore &&
5104         D->getLanguageLinkage() == CLanguageLinkage &&
5105         D->getType().isConstant(Context) &&
5106         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5107       GV->setSection(".cp.rodata");
5108 
5109     // Handle code model attribute
5110     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5111       GV->setCodeModel(CMA->getModel());
5112 
5113     // Check if we a have a const declaration with an initializer, we may be
5114     // able to emit it as available_externally to expose it's value to the
5115     // optimizer.
5116     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5117         D->getType().isConstQualified() && !GV->hasInitializer() &&
5118         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5119       const auto *Record =
5120           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5121       bool HasMutableFields = Record && Record->hasMutableFields();
5122       if (!HasMutableFields) {
5123         const VarDecl *InitDecl;
5124         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5125         if (InitExpr) {
5126           ConstantEmitter emitter(*this);
5127           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5128           if (Init) {
5129             auto *InitType = Init->getType();
5130             if (GV->getValueType() != InitType) {
5131               // The type of the initializer does not match the definition.
5132               // This happens when an initializer has a different type from
5133               // the type of the global (because of padding at the end of a
5134               // structure for instance).
5135               GV->setName(StringRef());
5136               // Make a new global with the correct type, this is now guaranteed
5137               // to work.
5138               auto *NewGV = cast<llvm::GlobalVariable>(
5139                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5140                       ->stripPointerCasts());
5141 
5142               // Erase the old global, since it is no longer used.
5143               GV->eraseFromParent();
5144               GV = NewGV;
5145             } else {
5146               GV->setInitializer(Init);
5147               GV->setConstant(true);
5148               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5149             }
5150             emitter.finalize(GV);
5151           }
5152         }
5153       }
5154     }
5155   }
5156 
5157   if (D &&
5158       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5159     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5160     // External HIP managed variables needed to be recorded for transformation
5161     // in both device and host compilations.
5162     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5163         D->hasExternalStorage())
5164       getCUDARuntime().handleVarRegistration(D, *GV);
5165   }
5166 
5167   if (D)
5168     SanitizerMD->reportGlobal(GV, *D);
5169 
5170   LangAS ExpectedAS =
5171       D ? D->getType().getAddressSpace()
5172         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5173   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5174   if (DAddrSpace != ExpectedAS) {
5175     return getTargetCodeGenInfo().performAddrSpaceCast(
5176         *this, GV, DAddrSpace, ExpectedAS,
5177         llvm::PointerType::get(getLLVMContext(), TargetAS));
5178   }
5179 
5180   return GV;
5181 }
5182 
5183 llvm::Constant *
5184 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5185   const Decl *D = GD.getDecl();
5186 
5187   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5188     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5189                                 /*DontDefer=*/false, IsForDefinition);
5190 
5191   if (isa<CXXMethodDecl>(D)) {
5192     auto FInfo =
5193         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5194     auto Ty = getTypes().GetFunctionType(*FInfo);
5195     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5196                              IsForDefinition);
5197   }
5198 
5199   if (isa<FunctionDecl>(D)) {
5200     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5201     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5202     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5203                              IsForDefinition);
5204   }
5205 
5206   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5207 }
5208 
5209 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5210     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5211     llvm::Align Alignment) {
5212   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5213   llvm::GlobalVariable *OldGV = nullptr;
5214 
5215   if (GV) {
5216     // Check if the variable has the right type.
5217     if (GV->getValueType() == Ty)
5218       return GV;
5219 
5220     // Because C++ name mangling, the only way we can end up with an already
5221     // existing global with the same name is if it has been declared extern "C".
5222     assert(GV->isDeclaration() && "Declaration has wrong type!");
5223     OldGV = GV;
5224   }
5225 
5226   // Create a new variable.
5227   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5228                                 Linkage, nullptr, Name);
5229 
5230   if (OldGV) {
5231     // Replace occurrences of the old variable if needed.
5232     GV->takeName(OldGV);
5233 
5234     if (!OldGV->use_empty()) {
5235       OldGV->replaceAllUsesWith(GV);
5236     }
5237 
5238     OldGV->eraseFromParent();
5239   }
5240 
5241   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5242       !GV->hasAvailableExternallyLinkage())
5243     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5244 
5245   GV->setAlignment(Alignment);
5246 
5247   return GV;
5248 }
5249 
5250 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5251 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5252 /// then it will be created with the specified type instead of whatever the
5253 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5254 /// that an actual global with type Ty will be returned, not conversion of a
5255 /// variable with the same mangled name but some other type.
5256 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5257                                                   llvm::Type *Ty,
5258                                            ForDefinition_t IsForDefinition) {
5259   assert(D->hasGlobalStorage() && "Not a global variable");
5260   QualType ASTTy = D->getType();
5261   if (!Ty)
5262     Ty = getTypes().ConvertTypeForMem(ASTTy);
5263 
5264   StringRef MangledName = getMangledName(D);
5265   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5266                                IsForDefinition);
5267 }
5268 
5269 /// CreateRuntimeVariable - Create a new runtime global variable with the
5270 /// specified type and name.
5271 llvm::Constant *
5272 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5273                                      StringRef Name) {
5274   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5275                                                        : LangAS::Default;
5276   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5277   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5278   return Ret;
5279 }
5280 
5281 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5282   assert(!D->getInit() && "Cannot emit definite definitions here!");
5283 
5284   StringRef MangledName = getMangledName(D);
5285   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5286 
5287   // We already have a definition, not declaration, with the same mangled name.
5288   // Emitting of declaration is not required (and actually overwrites emitted
5289   // definition).
5290   if (GV && !GV->isDeclaration())
5291     return;
5292 
5293   // If we have not seen a reference to this variable yet, place it into the
5294   // deferred declarations table to be emitted if needed later.
5295   if (!MustBeEmitted(D) && !GV) {
5296       DeferredDecls[MangledName] = D;
5297       return;
5298   }
5299 
5300   // The tentative definition is the only definition.
5301   EmitGlobalVarDefinition(D);
5302 }
5303 
5304 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5305   if (auto const *V = dyn_cast<const VarDecl>(D))
5306     EmitExternalVarDeclaration(V);
5307   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5308     EmitExternalFunctionDeclaration(FD);
5309 }
5310 
5311 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5312   return Context.toCharUnitsFromBits(
5313       getDataLayout().getTypeStoreSizeInBits(Ty));
5314 }
5315 
5316 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5317   if (LangOpts.OpenCL) {
5318     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5319     assert(AS == LangAS::opencl_global ||
5320            AS == LangAS::opencl_global_device ||
5321            AS == LangAS::opencl_global_host ||
5322            AS == LangAS::opencl_constant ||
5323            AS == LangAS::opencl_local ||
5324            AS >= LangAS::FirstTargetAddressSpace);
5325     return AS;
5326   }
5327 
5328   if (LangOpts.SYCLIsDevice &&
5329       (!D || D->getType().getAddressSpace() == LangAS::Default))
5330     return LangAS::sycl_global;
5331 
5332   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5333     if (D) {
5334       if (D->hasAttr<CUDAConstantAttr>())
5335         return LangAS::cuda_constant;
5336       if (D->hasAttr<CUDASharedAttr>())
5337         return LangAS::cuda_shared;
5338       if (D->hasAttr<CUDADeviceAttr>())
5339         return LangAS::cuda_device;
5340       if (D->getType().isConstQualified())
5341         return LangAS::cuda_constant;
5342     }
5343     return LangAS::cuda_device;
5344   }
5345 
5346   if (LangOpts.OpenMP) {
5347     LangAS AS;
5348     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5349       return AS;
5350   }
5351   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5352 }
5353 
5354 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5355   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5356   if (LangOpts.OpenCL)
5357     return LangAS::opencl_constant;
5358   if (LangOpts.SYCLIsDevice)
5359     return LangAS::sycl_global;
5360   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5361     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5362     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5363     // with OpVariable instructions with Generic storage class which is not
5364     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5365     // UniformConstant storage class is not viable as pointers to it may not be
5366     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5367     return LangAS::cuda_device;
5368   if (auto AS = getTarget().getConstantAddressSpace())
5369     return *AS;
5370   return LangAS::Default;
5371 }
5372 
5373 // In address space agnostic languages, string literals are in default address
5374 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5375 // emitted in constant address space in LLVM IR. To be consistent with other
5376 // parts of AST, string literal global variables in constant address space
5377 // need to be casted to default address space before being put into address
5378 // map and referenced by other part of CodeGen.
5379 // In OpenCL, string literals are in constant address space in AST, therefore
5380 // they should not be casted to default address space.
5381 static llvm::Constant *
5382 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5383                                        llvm::GlobalVariable *GV) {
5384   llvm::Constant *Cast = GV;
5385   if (!CGM.getLangOpts().OpenCL) {
5386     auto AS = CGM.GetGlobalConstantAddressSpace();
5387     if (AS != LangAS::Default)
5388       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5389           CGM, GV, AS, LangAS::Default,
5390           llvm::PointerType::get(
5391               CGM.getLLVMContext(),
5392               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5393   }
5394   return Cast;
5395 }
5396 
5397 template<typename SomeDecl>
5398 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5399                                                llvm::GlobalValue *GV) {
5400   if (!getLangOpts().CPlusPlus)
5401     return;
5402 
5403   // Must have 'used' attribute, or else inline assembly can't rely on
5404   // the name existing.
5405   if (!D->template hasAttr<UsedAttr>())
5406     return;
5407 
5408   // Must have internal linkage and an ordinary name.
5409   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5410     return;
5411 
5412   // Must be in an extern "C" context. Entities declared directly within
5413   // a record are not extern "C" even if the record is in such a context.
5414   const SomeDecl *First = D->getFirstDecl();
5415   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5416     return;
5417 
5418   // OK, this is an internal linkage entity inside an extern "C" linkage
5419   // specification. Make a note of that so we can give it the "expected"
5420   // mangled name if nothing else is using that name.
5421   std::pair<StaticExternCMap::iterator, bool> R =
5422       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5423 
5424   // If we have multiple internal linkage entities with the same name
5425   // in extern "C" regions, none of them gets that name.
5426   if (!R.second)
5427     R.first->second = nullptr;
5428 }
5429 
5430 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5431   if (!CGM.supportsCOMDAT())
5432     return false;
5433 
5434   if (D.hasAttr<SelectAnyAttr>())
5435     return true;
5436 
5437   GVALinkage Linkage;
5438   if (auto *VD = dyn_cast<VarDecl>(&D))
5439     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5440   else
5441     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5442 
5443   switch (Linkage) {
5444   case GVA_Internal:
5445   case GVA_AvailableExternally:
5446   case GVA_StrongExternal:
5447     return false;
5448   case GVA_DiscardableODR:
5449   case GVA_StrongODR:
5450     return true;
5451   }
5452   llvm_unreachable("No such linkage");
5453 }
5454 
5455 bool CodeGenModule::supportsCOMDAT() const {
5456   return getTriple().supportsCOMDAT();
5457 }
5458 
5459 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5460                                           llvm::GlobalObject &GO) {
5461   if (!shouldBeInCOMDAT(*this, D))
5462     return;
5463   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5464 }
5465 
5466 const ABIInfo &CodeGenModule::getABIInfo() {
5467   return getTargetCodeGenInfo().getABIInfo();
5468 }
5469 
5470 /// Pass IsTentative as true if you want to create a tentative definition.
5471 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5472                                             bool IsTentative) {
5473   // OpenCL global variables of sampler type are translated to function calls,
5474   // therefore no need to be translated.
5475   QualType ASTTy = D->getType();
5476   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5477     return;
5478 
5479   // If this is OpenMP device, check if it is legal to emit this global
5480   // normally.
5481   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5482       OpenMPRuntime->emitTargetGlobalVariable(D))
5483     return;
5484 
5485   llvm::TrackingVH<llvm::Constant> Init;
5486   bool NeedsGlobalCtor = false;
5487   // Whether the definition of the variable is available externally.
5488   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5489   // since this is the job for its original source.
5490   bool IsDefinitionAvailableExternally =
5491       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5492   bool NeedsGlobalDtor =
5493       !IsDefinitionAvailableExternally &&
5494       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5495 
5496   // It is helpless to emit the definition for an available_externally variable
5497   // which can't be marked as const.
5498   // We don't need to check if it needs global ctor or dtor. See the above
5499   // comment for ideas.
5500   if (IsDefinitionAvailableExternally &&
5501       (!D->hasConstantInitialization() ||
5502        // TODO: Update this when we have interface to check constexpr
5503        // destructor.
5504        D->needsDestruction(getContext()) ||
5505        !D->getType().isConstantStorage(getContext(), true, true)))
5506     return;
5507 
5508   const VarDecl *InitDecl;
5509   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5510 
5511   std::optional<ConstantEmitter> emitter;
5512 
5513   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5514   // as part of their declaration."  Sema has already checked for
5515   // error cases, so we just need to set Init to UndefValue.
5516   bool IsCUDASharedVar =
5517       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5518   // Shadows of initialized device-side global variables are also left
5519   // undefined.
5520   // Managed Variables should be initialized on both host side and device side.
5521   bool IsCUDAShadowVar =
5522       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5523       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5524        D->hasAttr<CUDASharedAttr>());
5525   bool IsCUDADeviceShadowVar =
5526       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5527       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5528        D->getType()->isCUDADeviceBuiltinTextureType());
5529   if (getLangOpts().CUDA &&
5530       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5531     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5532   else if (D->hasAttr<LoaderUninitializedAttr>())
5533     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5534   else if (!InitExpr) {
5535     // This is a tentative definition; tentative definitions are
5536     // implicitly initialized with { 0 }.
5537     //
5538     // Note that tentative definitions are only emitted at the end of
5539     // a translation unit, so they should never have incomplete
5540     // type. In addition, EmitTentativeDefinition makes sure that we
5541     // never attempt to emit a tentative definition if a real one
5542     // exists. A use may still exists, however, so we still may need
5543     // to do a RAUW.
5544     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5545     Init = EmitNullConstant(D->getType());
5546   } else {
5547     initializedGlobalDecl = GlobalDecl(D);
5548     emitter.emplace(*this);
5549     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5550     if (!Initializer) {
5551       QualType T = InitExpr->getType();
5552       if (D->getType()->isReferenceType())
5553         T = D->getType();
5554 
5555       if (getLangOpts().CPlusPlus) {
5556         Init = EmitNullConstant(T);
5557         if (!IsDefinitionAvailableExternally)
5558           NeedsGlobalCtor = true;
5559         if (InitDecl->hasFlexibleArrayInit(getContext())) {
5560           ErrorUnsupported(D, "flexible array initializer");
5561           // We cannot create ctor for flexible array initializer
5562           NeedsGlobalCtor = false;
5563         }
5564       } else {
5565         ErrorUnsupported(D, "static initializer");
5566         Init = llvm::PoisonValue::get(getTypes().ConvertType(T));
5567       }
5568     } else {
5569       Init = Initializer;
5570       // We don't need an initializer, so remove the entry for the delayed
5571       // initializer position (just in case this entry was delayed) if we
5572       // also don't need to register a destructor.
5573       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5574         DelayedCXXInitPosition.erase(D);
5575 
5576 #ifndef NDEBUG
5577       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5578                           InitDecl->getFlexibleArrayInitChars(getContext());
5579       CharUnits CstSize = CharUnits::fromQuantity(
5580           getDataLayout().getTypeAllocSize(Init->getType()));
5581       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5582 #endif
5583     }
5584   }
5585 
5586   llvm::Type* InitType = Init->getType();
5587   llvm::Constant *Entry =
5588       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5589 
5590   // Strip off pointer casts if we got them.
5591   Entry = Entry->stripPointerCasts();
5592 
5593   // Entry is now either a Function or GlobalVariable.
5594   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5595 
5596   // We have a definition after a declaration with the wrong type.
5597   // We must make a new GlobalVariable* and update everything that used OldGV
5598   // (a declaration or tentative definition) with the new GlobalVariable*
5599   // (which will be a definition).
5600   //
5601   // This happens if there is a prototype for a global (e.g.
5602   // "extern int x[];") and then a definition of a different type (e.g.
5603   // "int x[10];"). This also happens when an initializer has a different type
5604   // from the type of the global (this happens with unions).
5605   if (!GV || GV->getValueType() != InitType ||
5606       GV->getType()->getAddressSpace() !=
5607           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5608 
5609     // Move the old entry aside so that we'll create a new one.
5610     Entry->setName(StringRef());
5611 
5612     // Make a new global with the correct type, this is now guaranteed to work.
5613     GV = cast<llvm::GlobalVariable>(
5614         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5615             ->stripPointerCasts());
5616 
5617     // Replace all uses of the old global with the new global
5618     llvm::Constant *NewPtrForOldDecl =
5619         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5620                                                              Entry->getType());
5621     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5622 
5623     // Erase the old global, since it is no longer used.
5624     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5625   }
5626 
5627   MaybeHandleStaticInExternC(D, GV);
5628 
5629   if (D->hasAttr<AnnotateAttr>())
5630     AddGlobalAnnotations(D, GV);
5631 
5632   // Set the llvm linkage type as appropriate.
5633   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5634 
5635   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5636   // the device. [...]"
5637   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5638   // __device__, declares a variable that: [...]
5639   // Is accessible from all the threads within the grid and from the host
5640   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5641   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5642   if (LangOpts.CUDA) {
5643     if (LangOpts.CUDAIsDevice) {
5644       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5645           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5646            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5647            D->getType()->isCUDADeviceBuiltinTextureType()))
5648         GV->setExternallyInitialized(true);
5649     } else {
5650       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5651     }
5652     getCUDARuntime().handleVarRegistration(D, *GV);
5653   }
5654 
5655   if (LangOpts.HLSL)
5656     getHLSLRuntime().handleGlobalVarDefinition(D, GV);
5657 
5658   GV->setInitializer(Init);
5659   if (emitter)
5660     emitter->finalize(GV);
5661 
5662   // If it is safe to mark the global 'constant', do so now.
5663   GV->setConstant((D->hasAttr<CUDAConstantAttr>() && LangOpts.CUDAIsDevice) ||
5664                   (!NeedsGlobalCtor && !NeedsGlobalDtor &&
5665                    D->getType().isConstantStorage(getContext(), true, true)));
5666 
5667   // If it is in a read-only section, mark it 'constant'.
5668   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5669     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5670     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5671       GV->setConstant(true);
5672   }
5673 
5674   CharUnits AlignVal = getContext().getDeclAlign(D);
5675   // Check for alignment specifed in an 'omp allocate' directive.
5676   if (std::optional<CharUnits> AlignValFromAllocate =
5677           getOMPAllocateAlignment(D))
5678     AlignVal = *AlignValFromAllocate;
5679   GV->setAlignment(AlignVal.getAsAlign());
5680 
5681   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5682   // function is only defined alongside the variable, not also alongside
5683   // callers. Normally, all accesses to a thread_local go through the
5684   // thread-wrapper in order to ensure initialization has occurred, underlying
5685   // variable will never be used other than the thread-wrapper, so it can be
5686   // converted to internal linkage.
5687   //
5688   // However, if the variable has the 'constinit' attribute, it _can_ be
5689   // referenced directly, without calling the thread-wrapper, so the linkage
5690   // must not be changed.
5691   //
5692   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5693   // weak or linkonce, the de-duplication semantics are important to preserve,
5694   // so we don't change the linkage.
5695   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5696       Linkage == llvm::GlobalValue::ExternalLinkage &&
5697       Context.getTargetInfo().getTriple().isOSDarwin() &&
5698       !D->hasAttr<ConstInitAttr>())
5699     Linkage = llvm::GlobalValue::InternalLinkage;
5700 
5701   GV->setLinkage(Linkage);
5702   if (D->hasAttr<DLLImportAttr>())
5703     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5704   else if (D->hasAttr<DLLExportAttr>())
5705     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5706   else
5707     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5708 
5709   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5710     // common vars aren't constant even if declared const.
5711     GV->setConstant(false);
5712     // Tentative definition of global variables may be initialized with
5713     // non-zero null pointers. In this case they should have weak linkage
5714     // since common linkage must have zero initializer and must not have
5715     // explicit section therefore cannot have non-zero initial value.
5716     if (!GV->getInitializer()->isNullValue())
5717       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5718   }
5719 
5720   setNonAliasAttributes(D, GV);
5721 
5722   if (D->getTLSKind() && !GV->isThreadLocal()) {
5723     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5724       CXXThreadLocals.push_back(D);
5725     setTLSMode(GV, *D);
5726   }
5727 
5728   maybeSetTrivialComdat(*D, *GV);
5729 
5730   // Emit the initializer function if necessary.
5731   if (NeedsGlobalCtor || NeedsGlobalDtor)
5732     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5733 
5734   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5735 
5736   // Emit global variable debug information.
5737   if (CGDebugInfo *DI = getModuleDebugInfo())
5738     if (getCodeGenOpts().hasReducedDebugInfo())
5739       DI->EmitGlobalVariable(GV, D);
5740 }
5741 
5742 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5743   if (CGDebugInfo *DI = getModuleDebugInfo())
5744     if (getCodeGenOpts().hasReducedDebugInfo()) {
5745       QualType ASTTy = D->getType();
5746       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5747       llvm::Constant *GV =
5748           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5749       DI->EmitExternalVariable(
5750           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5751     }
5752 }
5753 
5754 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5755   if (CGDebugInfo *DI = getModuleDebugInfo())
5756     if (getCodeGenOpts().hasReducedDebugInfo()) {
5757       auto *Ty = getTypes().ConvertType(FD->getType());
5758       StringRef MangledName = getMangledName(FD);
5759       auto *Fn = cast<llvm::Function>(
5760           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5761       if (!Fn->getSubprogram())
5762         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5763     }
5764 }
5765 
5766 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5767                                       CodeGenModule &CGM, const VarDecl *D,
5768                                       bool NoCommon) {
5769   // Don't give variables common linkage if -fno-common was specified unless it
5770   // was overridden by a NoCommon attribute.
5771   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5772     return true;
5773 
5774   // C11 6.9.2/2:
5775   //   A declaration of an identifier for an object that has file scope without
5776   //   an initializer, and without a storage-class specifier or with the
5777   //   storage-class specifier static, constitutes a tentative definition.
5778   if (D->getInit() || D->hasExternalStorage())
5779     return true;
5780 
5781   // A variable cannot be both common and exist in a section.
5782   if (D->hasAttr<SectionAttr>())
5783     return true;
5784 
5785   // A variable cannot be both common and exist in a section.
5786   // We don't try to determine which is the right section in the front-end.
5787   // If no specialized section name is applicable, it will resort to default.
5788   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5789       D->hasAttr<PragmaClangDataSectionAttr>() ||
5790       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5791       D->hasAttr<PragmaClangRodataSectionAttr>())
5792     return true;
5793 
5794   // Thread local vars aren't considered common linkage.
5795   if (D->getTLSKind())
5796     return true;
5797 
5798   // Tentative definitions marked with WeakImportAttr are true definitions.
5799   if (D->hasAttr<WeakImportAttr>())
5800     return true;
5801 
5802   // A variable cannot be both common and exist in a comdat.
5803   if (shouldBeInCOMDAT(CGM, *D))
5804     return true;
5805 
5806   // Declarations with a required alignment do not have common linkage in MSVC
5807   // mode.
5808   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5809     if (D->hasAttr<AlignedAttr>())
5810       return true;
5811     QualType VarType = D->getType();
5812     if (Context.isAlignmentRequired(VarType))
5813       return true;
5814 
5815     if (const auto *RT = VarType->getAs<RecordType>()) {
5816       const RecordDecl *RD = RT->getDecl();
5817       for (const FieldDecl *FD : RD->fields()) {
5818         if (FD->isBitField())
5819           continue;
5820         if (FD->hasAttr<AlignedAttr>())
5821           return true;
5822         if (Context.isAlignmentRequired(FD->getType()))
5823           return true;
5824       }
5825     }
5826   }
5827 
5828   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5829   // common symbols, so symbols with greater alignment requirements cannot be
5830   // common.
5831   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5832   // alignments for common symbols via the aligncomm directive, so this
5833   // restriction only applies to MSVC environments.
5834   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5835       Context.getTypeAlignIfKnown(D->getType()) >
5836           Context.toBits(CharUnits::fromQuantity(32)))
5837     return true;
5838 
5839   return false;
5840 }
5841 
5842 llvm::GlobalValue::LinkageTypes
5843 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5844                                            GVALinkage Linkage) {
5845   if (Linkage == GVA_Internal)
5846     return llvm::Function::InternalLinkage;
5847 
5848   if (D->hasAttr<WeakAttr>())
5849     return llvm::GlobalVariable::WeakAnyLinkage;
5850 
5851   if (const auto *FD = D->getAsFunction())
5852     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5853       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5854 
5855   // We are guaranteed to have a strong definition somewhere else,
5856   // so we can use available_externally linkage.
5857   if (Linkage == GVA_AvailableExternally)
5858     return llvm::GlobalValue::AvailableExternallyLinkage;
5859 
5860   // Note that Apple's kernel linker doesn't support symbol
5861   // coalescing, so we need to avoid linkonce and weak linkages there.
5862   // Normally, this means we just map to internal, but for explicit
5863   // instantiations we'll map to external.
5864 
5865   // In C++, the compiler has to emit a definition in every translation unit
5866   // that references the function.  We should use linkonce_odr because
5867   // a) if all references in this translation unit are optimized away, we
5868   // don't need to codegen it.  b) if the function persists, it needs to be
5869   // merged with other definitions. c) C++ has the ODR, so we know the
5870   // definition is dependable.
5871   if (Linkage == GVA_DiscardableODR)
5872     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5873                                             : llvm::Function::InternalLinkage;
5874 
5875   // An explicit instantiation of a template has weak linkage, since
5876   // explicit instantiations can occur in multiple translation units
5877   // and must all be equivalent. However, we are not allowed to
5878   // throw away these explicit instantiations.
5879   //
5880   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5881   // so say that CUDA templates are either external (for kernels) or internal.
5882   // This lets llvm perform aggressive inter-procedural optimizations. For
5883   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5884   // therefore we need to follow the normal linkage paradigm.
5885   if (Linkage == GVA_StrongODR) {
5886     if (getLangOpts().AppleKext)
5887       return llvm::Function::ExternalLinkage;
5888     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5889         !getLangOpts().GPURelocatableDeviceCode)
5890       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5891                                           : llvm::Function::InternalLinkage;
5892     return llvm::Function::WeakODRLinkage;
5893   }
5894 
5895   // C++ doesn't have tentative definitions and thus cannot have common
5896   // linkage.
5897   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5898       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5899                                  CodeGenOpts.NoCommon))
5900     return llvm::GlobalVariable::CommonLinkage;
5901 
5902   // selectany symbols are externally visible, so use weak instead of
5903   // linkonce.  MSVC optimizes away references to const selectany globals, so
5904   // all definitions should be the same and ODR linkage should be used.
5905   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5906   if (D->hasAttr<SelectAnyAttr>())
5907     return llvm::GlobalVariable::WeakODRLinkage;
5908 
5909   // Otherwise, we have strong external linkage.
5910   assert(Linkage == GVA_StrongExternal);
5911   return llvm::GlobalVariable::ExternalLinkage;
5912 }
5913 
5914 llvm::GlobalValue::LinkageTypes
5915 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5916   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5917   return getLLVMLinkageForDeclarator(VD, Linkage);
5918 }
5919 
5920 /// Replace the uses of a function that was declared with a non-proto type.
5921 /// We want to silently drop extra arguments from call sites
5922 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5923                                           llvm::Function *newFn) {
5924   // Fast path.
5925   if (old->use_empty())
5926     return;
5927 
5928   llvm::Type *newRetTy = newFn->getReturnType();
5929   SmallVector<llvm::Value *, 4> newArgs;
5930 
5931   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5932 
5933   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5934        ui != ue; ui++) {
5935     llvm::User *user = ui->getUser();
5936 
5937     // Recognize and replace uses of bitcasts.  Most calls to
5938     // unprototyped functions will use bitcasts.
5939     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5940       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5941         replaceUsesOfNonProtoConstant(bitcast, newFn);
5942       continue;
5943     }
5944 
5945     // Recognize calls to the function.
5946     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5947     if (!callSite)
5948       continue;
5949     if (!callSite->isCallee(&*ui))
5950       continue;
5951 
5952     // If the return types don't match exactly, then we can't
5953     // transform this call unless it's dead.
5954     if (callSite->getType() != newRetTy && !callSite->use_empty())
5955       continue;
5956 
5957     // Get the call site's attribute list.
5958     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5959     llvm::AttributeList oldAttrs = callSite->getAttributes();
5960 
5961     // If the function was passed too few arguments, don't transform.
5962     unsigned newNumArgs = newFn->arg_size();
5963     if (callSite->arg_size() < newNumArgs)
5964       continue;
5965 
5966     // If extra arguments were passed, we silently drop them.
5967     // If any of the types mismatch, we don't transform.
5968     unsigned argNo = 0;
5969     bool dontTransform = false;
5970     for (llvm::Argument &A : newFn->args()) {
5971       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5972         dontTransform = true;
5973         break;
5974       }
5975 
5976       // Add any parameter attributes.
5977       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5978       argNo++;
5979     }
5980     if (dontTransform)
5981       continue;
5982 
5983     // Okay, we can transform this.  Create the new call instruction and copy
5984     // over the required information.
5985     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5986 
5987     // Copy over any operand bundles.
5988     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5989     callSite->getOperandBundlesAsDefs(newBundles);
5990 
5991     llvm::CallBase *newCall;
5992     if (isa<llvm::CallInst>(callSite)) {
5993       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
5994                                        callSite->getIterator());
5995     } else {
5996       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5997       newCall = llvm::InvokeInst::Create(
5998           newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(),
5999           newArgs, newBundles, "", callSite->getIterator());
6000     }
6001     newArgs.clear(); // for the next iteration
6002 
6003     if (!newCall->getType()->isVoidTy())
6004       newCall->takeName(callSite);
6005     newCall->setAttributes(
6006         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
6007                                  oldAttrs.getRetAttrs(), newArgAttrs));
6008     newCall->setCallingConv(callSite->getCallingConv());
6009 
6010     // Finally, remove the old call, replacing any uses with the new one.
6011     if (!callSite->use_empty())
6012       callSite->replaceAllUsesWith(newCall);
6013 
6014     // Copy debug location attached to CI.
6015     if (callSite->getDebugLoc())
6016       newCall->setDebugLoc(callSite->getDebugLoc());
6017 
6018     callSitesToBeRemovedFromParent.push_back(callSite);
6019   }
6020 
6021   for (auto *callSite : callSitesToBeRemovedFromParent) {
6022     callSite->eraseFromParent();
6023   }
6024 }
6025 
6026 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
6027 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
6028 /// existing call uses of the old function in the module, this adjusts them to
6029 /// call the new function directly.
6030 ///
6031 /// This is not just a cleanup: the always_inline pass requires direct calls to
6032 /// functions to be able to inline them.  If there is a bitcast in the way, it
6033 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
6034 /// run at -O0.
6035 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
6036                                                       llvm::Function *NewFn) {
6037   // If we're redefining a global as a function, don't transform it.
6038   if (!isa<llvm::Function>(Old)) return;
6039 
6040   replaceUsesOfNonProtoConstant(Old, NewFn);
6041 }
6042 
6043 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
6044   auto DK = VD->isThisDeclarationADefinition();
6045   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
6046       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
6047     return;
6048 
6049   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
6050   // If we have a definition, this might be a deferred decl. If the
6051   // instantiation is explicit, make sure we emit it at the end.
6052   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
6053     GetAddrOfGlobalVar(VD);
6054 
6055   EmitTopLevelDecl(VD);
6056 }
6057 
6058 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
6059                                                  llvm::GlobalValue *GV) {
6060   const auto *D = cast<FunctionDecl>(GD.getDecl());
6061 
6062   // Compute the function info and LLVM type.
6063   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
6064   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
6065 
6066   // Get or create the prototype for the function.
6067   if (!GV || (GV->getValueType() != Ty))
6068     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
6069                                                    /*DontDefer=*/true,
6070                                                    ForDefinition));
6071 
6072   // Already emitted.
6073   if (!GV->isDeclaration())
6074     return;
6075 
6076   // We need to set linkage and visibility on the function before
6077   // generating code for it because various parts of IR generation
6078   // want to propagate this information down (e.g. to local static
6079   // declarations).
6080   auto *Fn = cast<llvm::Function>(GV);
6081   setFunctionLinkage(GD, Fn);
6082 
6083   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
6084   setGVProperties(Fn, GD);
6085 
6086   MaybeHandleStaticInExternC(D, Fn);
6087 
6088   maybeSetTrivialComdat(*D, *Fn);
6089 
6090   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6091 
6092   setNonAliasAttributes(GD, Fn);
6093   SetLLVMFunctionAttributesForDefinition(D, Fn);
6094 
6095   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6096     AddGlobalCtor(Fn, CA->getPriority());
6097   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6098     AddGlobalDtor(Fn, DA->getPriority(), true);
6099   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6100     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6101 }
6102 
6103 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6104   const auto *D = cast<ValueDecl>(GD.getDecl());
6105   const AliasAttr *AA = D->getAttr<AliasAttr>();
6106   assert(AA && "Not an alias?");
6107 
6108   StringRef MangledName = getMangledName(GD);
6109 
6110   if (AA->getAliasee() == MangledName) {
6111     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6112     return;
6113   }
6114 
6115   // If there is a definition in the module, then it wins over the alias.
6116   // This is dubious, but allow it to be safe.  Just ignore the alias.
6117   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6118   if (Entry && !Entry->isDeclaration())
6119     return;
6120 
6121   Aliases.push_back(GD);
6122 
6123   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6124 
6125   // Create a reference to the named value.  This ensures that it is emitted
6126   // if a deferred decl.
6127   llvm::Constant *Aliasee;
6128   llvm::GlobalValue::LinkageTypes LT;
6129   if (isa<llvm::FunctionType>(DeclTy)) {
6130     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6131                                       /*ForVTable=*/false);
6132     LT = getFunctionLinkage(GD);
6133   } else {
6134     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6135                                     /*D=*/nullptr);
6136     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6137       LT = getLLVMLinkageVarDefinition(VD);
6138     else
6139       LT = getFunctionLinkage(GD);
6140   }
6141 
6142   // Create the new alias itself, but don't set a name yet.
6143   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6144   auto *GA =
6145       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6146 
6147   if (Entry) {
6148     if (GA->getAliasee() == Entry) {
6149       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6150       return;
6151     }
6152 
6153     assert(Entry->isDeclaration());
6154 
6155     // If there is a declaration in the module, then we had an extern followed
6156     // by the alias, as in:
6157     //   extern int test6();
6158     //   ...
6159     //   int test6() __attribute__((alias("test7")));
6160     //
6161     // Remove it and replace uses of it with the alias.
6162     GA->takeName(Entry);
6163 
6164     Entry->replaceAllUsesWith(GA);
6165     Entry->eraseFromParent();
6166   } else {
6167     GA->setName(MangledName);
6168   }
6169 
6170   // Set attributes which are particular to an alias; this is a
6171   // specialization of the attributes which may be set on a global
6172   // variable/function.
6173   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6174       D->isWeakImported()) {
6175     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6176   }
6177 
6178   if (const auto *VD = dyn_cast<VarDecl>(D))
6179     if (VD->getTLSKind())
6180       setTLSMode(GA, *VD);
6181 
6182   SetCommonAttributes(GD, GA);
6183 
6184   // Emit global alias debug information.
6185   if (isa<VarDecl>(D))
6186     if (CGDebugInfo *DI = getModuleDebugInfo())
6187       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6188 }
6189 
6190 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6191   const auto *D = cast<ValueDecl>(GD.getDecl());
6192   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6193   assert(IFA && "Not an ifunc?");
6194 
6195   StringRef MangledName = getMangledName(GD);
6196 
6197   if (IFA->getResolver() == MangledName) {
6198     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6199     return;
6200   }
6201 
6202   // Report an error if some definition overrides ifunc.
6203   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6204   if (Entry && !Entry->isDeclaration()) {
6205     GlobalDecl OtherGD;
6206     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6207         DiagnosedConflictingDefinitions.insert(GD).second) {
6208       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6209           << MangledName;
6210       Diags.Report(OtherGD.getDecl()->getLocation(),
6211                    diag::note_previous_definition);
6212     }
6213     return;
6214   }
6215 
6216   Aliases.push_back(GD);
6217 
6218   // The resolver might not be visited yet. Specify a dummy non-function type to
6219   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6220   // was emitted) or the whole function will be replaced (if the resolver has
6221   // not been emitted).
6222   llvm::Constant *Resolver =
6223       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6224                               /*ForVTable=*/false);
6225   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6226   unsigned AS = getTypes().getTargetAddressSpace(D->getType());
6227   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
6228       DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
6229   if (Entry) {
6230     if (GIF->getResolver() == Entry) {
6231       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6232       return;
6233     }
6234     assert(Entry->isDeclaration());
6235 
6236     // If there is a declaration in the module, then we had an extern followed
6237     // by the ifunc, as in:
6238     //   extern int test();
6239     //   ...
6240     //   int test() __attribute__((ifunc("resolver")));
6241     //
6242     // Remove it and replace uses of it with the ifunc.
6243     GIF->takeName(Entry);
6244 
6245     Entry->replaceAllUsesWith(GIF);
6246     Entry->eraseFromParent();
6247   } else
6248     GIF->setName(MangledName);
6249   SetCommonAttributes(GD, GIF);
6250 }
6251 
6252 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6253                                             ArrayRef<llvm::Type*> Tys) {
6254   return llvm::Intrinsic::getOrInsertDeclaration(&getModule(),
6255                                                  (llvm::Intrinsic::ID)IID, Tys);
6256 }
6257 
6258 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6259 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6260                          const StringLiteral *Literal, bool TargetIsLSB,
6261                          bool &IsUTF16, unsigned &StringLength) {
6262   StringRef String = Literal->getString();
6263   unsigned NumBytes = String.size();
6264 
6265   // Check for simple case.
6266   if (!Literal->containsNonAsciiOrNull()) {
6267     StringLength = NumBytes;
6268     return *Map.insert(std::make_pair(String, nullptr)).first;
6269   }
6270 
6271   // Otherwise, convert the UTF8 literals into a string of shorts.
6272   IsUTF16 = true;
6273 
6274   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6275   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6276   llvm::UTF16 *ToPtr = &ToBuf[0];
6277 
6278   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6279                                  ToPtr + NumBytes, llvm::strictConversion);
6280 
6281   // ConvertUTF8toUTF16 returns the length in ToPtr.
6282   StringLength = ToPtr - &ToBuf[0];
6283 
6284   // Add an explicit null.
6285   *ToPtr = 0;
6286   return *Map.insert(std::make_pair(
6287                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6288                                    (StringLength + 1) * 2),
6289                          nullptr)).first;
6290 }
6291 
6292 ConstantAddress
6293 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6294   unsigned StringLength = 0;
6295   bool isUTF16 = false;
6296   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6297       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6298                                getDataLayout().isLittleEndian(), isUTF16,
6299                                StringLength);
6300 
6301   if (auto *C = Entry.second)
6302     return ConstantAddress(
6303         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6304 
6305   const ASTContext &Context = getContext();
6306   const llvm::Triple &Triple = getTriple();
6307 
6308   const auto CFRuntime = getLangOpts().CFRuntime;
6309   const bool IsSwiftABI =
6310       static_cast<unsigned>(CFRuntime) >=
6311       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6312   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6313 
6314   // If we don't already have it, get __CFConstantStringClassReference.
6315   if (!CFConstantStringClassRef) {
6316     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6317     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6318     Ty = llvm::ArrayType::get(Ty, 0);
6319 
6320     switch (CFRuntime) {
6321     default: break;
6322     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6323     case LangOptions::CoreFoundationABI::Swift5_0:
6324       CFConstantStringClassName =
6325           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6326                               : "$s10Foundation19_NSCFConstantStringCN";
6327       Ty = IntPtrTy;
6328       break;
6329     case LangOptions::CoreFoundationABI::Swift4_2:
6330       CFConstantStringClassName =
6331           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6332                               : "$S10Foundation19_NSCFConstantStringCN";
6333       Ty = IntPtrTy;
6334       break;
6335     case LangOptions::CoreFoundationABI::Swift4_1:
6336       CFConstantStringClassName =
6337           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6338                               : "__T010Foundation19_NSCFConstantStringCN";
6339       Ty = IntPtrTy;
6340       break;
6341     }
6342 
6343     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6344 
6345     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6346       llvm::GlobalValue *GV = nullptr;
6347 
6348       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6349         IdentifierInfo &II = Context.Idents.get(GV->getName());
6350         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6351         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6352 
6353         const VarDecl *VD = nullptr;
6354         for (const auto *Result : DC->lookup(&II))
6355           if ((VD = dyn_cast<VarDecl>(Result)))
6356             break;
6357 
6358         if (Triple.isOSBinFormatELF()) {
6359           if (!VD)
6360             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6361         } else {
6362           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6363           if (!VD || !VD->hasAttr<DLLExportAttr>())
6364             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6365           else
6366             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6367         }
6368 
6369         setDSOLocal(GV);
6370       }
6371     }
6372 
6373     // Decay array -> ptr
6374     CFConstantStringClassRef =
6375         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6376   }
6377 
6378   QualType CFTy = Context.getCFConstantStringType();
6379 
6380   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6381 
6382   ConstantInitBuilder Builder(*this);
6383   auto Fields = Builder.beginStruct(STy);
6384 
6385   // Class pointer.
6386   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6387 
6388   // Flags.
6389   if (IsSwiftABI) {
6390     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6391     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6392   } else {
6393     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6394   }
6395 
6396   // String pointer.
6397   llvm::Constant *C = nullptr;
6398   if (isUTF16) {
6399     auto Arr = llvm::ArrayRef(
6400         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6401         Entry.first().size() / 2);
6402     C = llvm::ConstantDataArray::get(VMContext, Arr);
6403   } else {
6404     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6405   }
6406 
6407   // Note: -fwritable-strings doesn't make the backing store strings of
6408   // CFStrings writable.
6409   auto *GV =
6410       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6411                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6412   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6413   // Don't enforce the target's minimum global alignment, since the only use
6414   // of the string is via this class initializer.
6415   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6416                             : Context.getTypeAlignInChars(Context.CharTy);
6417   GV->setAlignment(Align.getAsAlign());
6418 
6419   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6420   // Without it LLVM can merge the string with a non unnamed_addr one during
6421   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6422   if (Triple.isOSBinFormatMachO())
6423     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6424                            : "__TEXT,__cstring,cstring_literals");
6425   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6426   // the static linker to adjust permissions to read-only later on.
6427   else if (Triple.isOSBinFormatELF())
6428     GV->setSection(".rodata");
6429 
6430   // String.
6431   Fields.add(GV);
6432 
6433   // String length.
6434   llvm::IntegerType *LengthTy =
6435       llvm::IntegerType::get(getModule().getContext(),
6436                              Context.getTargetInfo().getLongWidth());
6437   if (IsSwiftABI) {
6438     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6439         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6440       LengthTy = Int32Ty;
6441     else
6442       LengthTy = IntPtrTy;
6443   }
6444   Fields.addInt(LengthTy, StringLength);
6445 
6446   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6447   // properly aligned on 32-bit platforms.
6448   CharUnits Alignment =
6449       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6450 
6451   // The struct.
6452   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6453                                     /*isConstant=*/false,
6454                                     llvm::GlobalVariable::PrivateLinkage);
6455   GV->addAttribute("objc_arc_inert");
6456   switch (Triple.getObjectFormat()) {
6457   case llvm::Triple::UnknownObjectFormat:
6458     llvm_unreachable("unknown file format");
6459   case llvm::Triple::DXContainer:
6460   case llvm::Triple::GOFF:
6461   case llvm::Triple::SPIRV:
6462   case llvm::Triple::XCOFF:
6463     llvm_unreachable("unimplemented");
6464   case llvm::Triple::COFF:
6465   case llvm::Triple::ELF:
6466   case llvm::Triple::Wasm:
6467     GV->setSection("cfstring");
6468     break;
6469   case llvm::Triple::MachO:
6470     GV->setSection("__DATA,__cfstring");
6471     break;
6472   }
6473   Entry.second = GV;
6474 
6475   return ConstantAddress(GV, GV->getValueType(), Alignment);
6476 }
6477 
6478 bool CodeGenModule::getExpressionLocationsEnabled() const {
6479   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6480 }
6481 
6482 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6483   if (ObjCFastEnumerationStateType.isNull()) {
6484     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6485     D->startDefinition();
6486 
6487     QualType FieldTypes[] = {
6488         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6489         Context.getPointerType(Context.UnsignedLongTy),
6490         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6491                                      nullptr, ArraySizeModifier::Normal, 0)};
6492 
6493     for (size_t i = 0; i < 4; ++i) {
6494       FieldDecl *Field = FieldDecl::Create(Context,
6495                                            D,
6496                                            SourceLocation(),
6497                                            SourceLocation(), nullptr,
6498                                            FieldTypes[i], /*TInfo=*/nullptr,
6499                                            /*BitWidth=*/nullptr,
6500                                            /*Mutable=*/false,
6501                                            ICIS_NoInit);
6502       Field->setAccess(AS_public);
6503       D->addDecl(Field);
6504     }
6505 
6506     D->completeDefinition();
6507     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6508   }
6509 
6510   return ObjCFastEnumerationStateType;
6511 }
6512 
6513 llvm::Constant *
6514 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6515   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6516 
6517   // Don't emit it as the address of the string, emit the string data itself
6518   // as an inline array.
6519   if (E->getCharByteWidth() == 1) {
6520     SmallString<64> Str(E->getString());
6521 
6522     // Resize the string to the right size, which is indicated by its type.
6523     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6524     assert(CAT && "String literal not of constant array type!");
6525     Str.resize(CAT->getZExtSize());
6526     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6527   }
6528 
6529   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6530   llvm::Type *ElemTy = AType->getElementType();
6531   unsigned NumElements = AType->getNumElements();
6532 
6533   // Wide strings have either 2-byte or 4-byte elements.
6534   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6535     SmallVector<uint16_t, 32> Elements;
6536     Elements.reserve(NumElements);
6537 
6538     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6539       Elements.push_back(E->getCodeUnit(i));
6540     Elements.resize(NumElements);
6541     return llvm::ConstantDataArray::get(VMContext, Elements);
6542   }
6543 
6544   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6545   SmallVector<uint32_t, 32> Elements;
6546   Elements.reserve(NumElements);
6547 
6548   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6549     Elements.push_back(E->getCodeUnit(i));
6550   Elements.resize(NumElements);
6551   return llvm::ConstantDataArray::get(VMContext, Elements);
6552 }
6553 
6554 static llvm::GlobalVariable *
6555 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6556                       CodeGenModule &CGM, StringRef GlobalName,
6557                       CharUnits Alignment) {
6558   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6559       CGM.GetGlobalConstantAddressSpace());
6560 
6561   llvm::Module &M = CGM.getModule();
6562   // Create a global variable for this string
6563   auto *GV = new llvm::GlobalVariable(
6564       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6565       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6566   GV->setAlignment(Alignment.getAsAlign());
6567   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6568   if (GV->isWeakForLinker()) {
6569     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6570     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6571   }
6572   CGM.setDSOLocal(GV);
6573 
6574   return GV;
6575 }
6576 
6577 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6578 /// constant array for the given string literal.
6579 ConstantAddress
6580 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6581                                                   StringRef Name) {
6582   CharUnits Alignment =
6583       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6584 
6585   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6586   llvm::GlobalVariable **Entry = nullptr;
6587   if (!LangOpts.WritableStrings) {
6588     Entry = &ConstantStringMap[C];
6589     if (auto GV = *Entry) {
6590       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6591         GV->setAlignment(Alignment.getAsAlign());
6592       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6593                              GV->getValueType(), Alignment);
6594     }
6595   }
6596 
6597   SmallString<256> MangledNameBuffer;
6598   StringRef GlobalVariableName;
6599   llvm::GlobalValue::LinkageTypes LT;
6600 
6601   // Mangle the string literal if that's how the ABI merges duplicate strings.
6602   // Don't do it if they are writable, since we don't want writes in one TU to
6603   // affect strings in another.
6604   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6605       !LangOpts.WritableStrings) {
6606     llvm::raw_svector_ostream Out(MangledNameBuffer);
6607     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6608     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6609     GlobalVariableName = MangledNameBuffer;
6610   } else {
6611     LT = llvm::GlobalValue::PrivateLinkage;
6612     GlobalVariableName = Name;
6613   }
6614 
6615   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6616 
6617   CGDebugInfo *DI = getModuleDebugInfo();
6618   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6619     DI->AddStringLiteralDebugInfo(GV, S);
6620 
6621   if (Entry)
6622     *Entry = GV;
6623 
6624   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6625 
6626   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6627                          GV->getValueType(), Alignment);
6628 }
6629 
6630 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6631 /// array for the given ObjCEncodeExpr node.
6632 ConstantAddress
6633 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6634   std::string Str;
6635   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6636 
6637   return GetAddrOfConstantCString(Str);
6638 }
6639 
6640 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6641 /// the literal and a terminating '\0' character.
6642 /// The result has pointer to array type.
6643 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6644     const std::string &Str, const char *GlobalName) {
6645   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6646   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6647       getContext().CharTy, /*VD=*/nullptr);
6648 
6649   llvm::Constant *C =
6650       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6651 
6652   // Don't share any string literals if strings aren't constant.
6653   llvm::GlobalVariable **Entry = nullptr;
6654   if (!LangOpts.WritableStrings) {
6655     Entry = &ConstantStringMap[C];
6656     if (auto GV = *Entry) {
6657       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6658         GV->setAlignment(Alignment.getAsAlign());
6659       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6660                              GV->getValueType(), Alignment);
6661     }
6662   }
6663 
6664   // Get the default prefix if a name wasn't specified.
6665   if (!GlobalName)
6666     GlobalName = ".str";
6667   // Create a global variable for this.
6668   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6669                                   GlobalName, Alignment);
6670   if (Entry)
6671     *Entry = GV;
6672 
6673   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6674                          GV->getValueType(), Alignment);
6675 }
6676 
6677 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6678     const MaterializeTemporaryExpr *E, const Expr *Init) {
6679   assert((E->getStorageDuration() == SD_Static ||
6680           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6681   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6682 
6683   // If we're not materializing a subobject of the temporary, keep the
6684   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6685   QualType MaterializedType = Init->getType();
6686   if (Init == E->getSubExpr())
6687     MaterializedType = E->getType();
6688 
6689   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6690 
6691   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6692   if (!InsertResult.second) {
6693     // We've seen this before: either we already created it or we're in the
6694     // process of doing so.
6695     if (!InsertResult.first->second) {
6696       // We recursively re-entered this function, probably during emission of
6697       // the initializer. Create a placeholder. We'll clean this up in the
6698       // outer call, at the end of this function.
6699       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6700       InsertResult.first->second = new llvm::GlobalVariable(
6701           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6702           nullptr);
6703     }
6704     return ConstantAddress(InsertResult.first->second,
6705                            llvm::cast<llvm::GlobalVariable>(
6706                                InsertResult.first->second->stripPointerCasts())
6707                                ->getValueType(),
6708                            Align);
6709   }
6710 
6711   // FIXME: If an externally-visible declaration extends multiple temporaries,
6712   // we need to give each temporary the same name in every translation unit (and
6713   // we also need to make the temporaries externally-visible).
6714   SmallString<256> Name;
6715   llvm::raw_svector_ostream Out(Name);
6716   getCXXABI().getMangleContext().mangleReferenceTemporary(
6717       VD, E->getManglingNumber(), Out);
6718 
6719   APValue *Value = nullptr;
6720   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6721     // If the initializer of the extending declaration is a constant
6722     // initializer, we should have a cached constant initializer for this
6723     // temporary. Note that this might have a different value from the value
6724     // computed by evaluating the initializer if the surrounding constant
6725     // expression modifies the temporary.
6726     Value = E->getOrCreateValue(false);
6727   }
6728 
6729   // Try evaluating it now, it might have a constant initializer.
6730   Expr::EvalResult EvalResult;
6731   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6732       !EvalResult.hasSideEffects())
6733     Value = &EvalResult.Val;
6734 
6735   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6736 
6737   std::optional<ConstantEmitter> emitter;
6738   llvm::Constant *InitialValue = nullptr;
6739   bool Constant = false;
6740   llvm::Type *Type;
6741   if (Value) {
6742     // The temporary has a constant initializer, use it.
6743     emitter.emplace(*this);
6744     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6745                                                MaterializedType);
6746     Constant =
6747         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6748                                            /*ExcludeDtor*/ false);
6749     Type = InitialValue->getType();
6750   } else {
6751     // No initializer, the initialization will be provided when we
6752     // initialize the declaration which performed lifetime extension.
6753     Type = getTypes().ConvertTypeForMem(MaterializedType);
6754   }
6755 
6756   // Create a global variable for this lifetime-extended temporary.
6757   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6758   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6759     const VarDecl *InitVD;
6760     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6761         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6762       // Temporaries defined inside a class get linkonce_odr linkage because the
6763       // class can be defined in multiple translation units.
6764       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6765     } else {
6766       // There is no need for this temporary to have external linkage if the
6767       // VarDecl has external linkage.
6768       Linkage = llvm::GlobalVariable::InternalLinkage;
6769     }
6770   }
6771   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6772   auto *GV = new llvm::GlobalVariable(
6773       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6774       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6775   if (emitter) emitter->finalize(GV);
6776   // Don't assign dllimport or dllexport to local linkage globals.
6777   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6778     setGVProperties(GV, VD);
6779     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6780       // The reference temporary should never be dllexport.
6781       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6782   }
6783   GV->setAlignment(Align.getAsAlign());
6784   if (supportsCOMDAT() && GV->isWeakForLinker())
6785     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6786   if (VD->getTLSKind())
6787     setTLSMode(GV, *VD);
6788   llvm::Constant *CV = GV;
6789   if (AddrSpace != LangAS::Default)
6790     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6791         *this, GV, AddrSpace, LangAS::Default,
6792         llvm::PointerType::get(
6793             getLLVMContext(),
6794             getContext().getTargetAddressSpace(LangAS::Default)));
6795 
6796   // Update the map with the new temporary. If we created a placeholder above,
6797   // replace it with the new global now.
6798   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6799   if (Entry) {
6800     Entry->replaceAllUsesWith(CV);
6801     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6802   }
6803   Entry = CV;
6804 
6805   return ConstantAddress(CV, Type, Align);
6806 }
6807 
6808 /// EmitObjCPropertyImplementations - Emit information for synthesized
6809 /// properties for an implementation.
6810 void CodeGenModule::EmitObjCPropertyImplementations(const
6811                                                     ObjCImplementationDecl *D) {
6812   for (const auto *PID : D->property_impls()) {
6813     // Dynamic is just for type-checking.
6814     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6815       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6816 
6817       // Determine which methods need to be implemented, some may have
6818       // been overridden. Note that ::isPropertyAccessor is not the method
6819       // we want, that just indicates if the decl came from a
6820       // property. What we want to know is if the method is defined in
6821       // this implementation.
6822       auto *Getter = PID->getGetterMethodDecl();
6823       if (!Getter || Getter->isSynthesizedAccessorStub())
6824         CodeGenFunction(*this).GenerateObjCGetter(
6825             const_cast<ObjCImplementationDecl *>(D), PID);
6826       auto *Setter = PID->getSetterMethodDecl();
6827       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6828         CodeGenFunction(*this).GenerateObjCSetter(
6829                                  const_cast<ObjCImplementationDecl *>(D), PID);
6830     }
6831   }
6832 }
6833 
6834 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6835   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6836   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6837        ivar; ivar = ivar->getNextIvar())
6838     if (ivar->getType().isDestructedType())
6839       return true;
6840 
6841   return false;
6842 }
6843 
6844 static bool AllTrivialInitializers(CodeGenModule &CGM,
6845                                    ObjCImplementationDecl *D) {
6846   CodeGenFunction CGF(CGM);
6847   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6848        E = D->init_end(); B != E; ++B) {
6849     CXXCtorInitializer *CtorInitExp = *B;
6850     Expr *Init = CtorInitExp->getInit();
6851     if (!CGF.isTrivialInitializer(Init))
6852       return false;
6853   }
6854   return true;
6855 }
6856 
6857 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6858 /// for an implementation.
6859 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6860   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6861   if (needsDestructMethod(D)) {
6862     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6863     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6864     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6865         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6866         getContext().VoidTy, nullptr, D,
6867         /*isInstance=*/true, /*isVariadic=*/false,
6868         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6869         /*isImplicitlyDeclared=*/true,
6870         /*isDefined=*/false, ObjCImplementationControl::Required);
6871     D->addInstanceMethod(DTORMethod);
6872     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6873     D->setHasDestructors(true);
6874   }
6875 
6876   // If the implementation doesn't have any ivar initializers, we don't need
6877   // a .cxx_construct.
6878   if (D->getNumIvarInitializers() == 0 ||
6879       AllTrivialInitializers(*this, D))
6880     return;
6881 
6882   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6883   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6884   // The constructor returns 'self'.
6885   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6886       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6887       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6888       /*isVariadic=*/false,
6889       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6890       /*isImplicitlyDeclared=*/true,
6891       /*isDefined=*/false, ObjCImplementationControl::Required);
6892   D->addInstanceMethod(CTORMethod);
6893   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6894   D->setHasNonZeroConstructors(true);
6895 }
6896 
6897 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6898 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6899   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6900       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6901     ErrorUnsupported(LSD, "linkage spec");
6902     return;
6903   }
6904 
6905   EmitDeclContext(LSD);
6906 }
6907 
6908 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6909   // Device code should not be at top level.
6910   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6911     return;
6912 
6913   std::unique_ptr<CodeGenFunction> &CurCGF =
6914       GlobalTopLevelStmtBlockInFlight.first;
6915 
6916   // We emitted a top-level stmt but after it there is initialization.
6917   // Stop squashing the top-level stmts into a single function.
6918   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6919     CurCGF->FinishFunction(D->getEndLoc());
6920     CurCGF = nullptr;
6921   }
6922 
6923   if (!CurCGF) {
6924     // void __stmts__N(void)
6925     // FIXME: Ask the ABI name mangler to pick a name.
6926     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6927     FunctionArgList Args;
6928     QualType RetTy = getContext().VoidTy;
6929     const CGFunctionInfo &FnInfo =
6930         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6931     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6932     llvm::Function *Fn = llvm::Function::Create(
6933         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6934 
6935     CurCGF.reset(new CodeGenFunction(*this));
6936     GlobalTopLevelStmtBlockInFlight.second = D;
6937     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6938                           D->getBeginLoc(), D->getBeginLoc());
6939     CXXGlobalInits.push_back(Fn);
6940   }
6941 
6942   CurCGF->EmitStmt(D->getStmt());
6943 }
6944 
6945 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6946   for (auto *I : DC->decls()) {
6947     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6948     // are themselves considered "top-level", so EmitTopLevelDecl on an
6949     // ObjCImplDecl does not recursively visit them. We need to do that in
6950     // case they're nested inside another construct (LinkageSpecDecl /
6951     // ExportDecl) that does stop them from being considered "top-level".
6952     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6953       for (auto *M : OID->methods())
6954         EmitTopLevelDecl(M);
6955     }
6956 
6957     EmitTopLevelDecl(I);
6958   }
6959 }
6960 
6961 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6962 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6963   // Ignore dependent declarations.
6964   if (D->isTemplated())
6965     return;
6966 
6967   // Consteval function shouldn't be emitted.
6968   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6969     return;
6970 
6971   switch (D->getKind()) {
6972   case Decl::CXXConversion:
6973   case Decl::CXXMethod:
6974   case Decl::Function:
6975     EmitGlobal(cast<FunctionDecl>(D));
6976     // Always provide some coverage mapping
6977     // even for the functions that aren't emitted.
6978     AddDeferredUnusedCoverageMapping(D);
6979     break;
6980 
6981   case Decl::CXXDeductionGuide:
6982     // Function-like, but does not result in code emission.
6983     break;
6984 
6985   case Decl::Var:
6986   case Decl::Decomposition:
6987   case Decl::VarTemplateSpecialization:
6988     EmitGlobal(cast<VarDecl>(D));
6989     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6990       for (auto *B : DD->bindings())
6991         if (auto *HD = B->getHoldingVar())
6992           EmitGlobal(HD);
6993     break;
6994 
6995   // Indirect fields from global anonymous structs and unions can be
6996   // ignored; only the actual variable requires IR gen support.
6997   case Decl::IndirectField:
6998     break;
6999 
7000   // C++ Decls
7001   case Decl::Namespace:
7002     EmitDeclContext(cast<NamespaceDecl>(D));
7003     break;
7004   case Decl::ClassTemplateSpecialization: {
7005     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
7006     if (CGDebugInfo *DI = getModuleDebugInfo())
7007       if (Spec->getSpecializationKind() ==
7008               TSK_ExplicitInstantiationDefinition &&
7009           Spec->hasDefinition())
7010         DI->completeTemplateDefinition(*Spec);
7011   } [[fallthrough]];
7012   case Decl::CXXRecord: {
7013     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
7014     if (CGDebugInfo *DI = getModuleDebugInfo()) {
7015       if (CRD->hasDefinition())
7016         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7017       if (auto *ES = D->getASTContext().getExternalSource())
7018         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
7019           DI->completeUnusedClass(*CRD);
7020     }
7021     // Emit any static data members, they may be definitions.
7022     for (auto *I : CRD->decls())
7023       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
7024         EmitTopLevelDecl(I);
7025     break;
7026   }
7027     // No code generation needed.
7028   case Decl::UsingShadow:
7029   case Decl::ClassTemplate:
7030   case Decl::VarTemplate:
7031   case Decl::Concept:
7032   case Decl::VarTemplatePartialSpecialization:
7033   case Decl::FunctionTemplate:
7034   case Decl::TypeAliasTemplate:
7035   case Decl::Block:
7036   case Decl::Empty:
7037   case Decl::Binding:
7038     break;
7039   case Decl::Using:          // using X; [C++]
7040     if (CGDebugInfo *DI = getModuleDebugInfo())
7041         DI->EmitUsingDecl(cast<UsingDecl>(*D));
7042     break;
7043   case Decl::UsingEnum: // using enum X; [C++]
7044     if (CGDebugInfo *DI = getModuleDebugInfo())
7045       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
7046     break;
7047   case Decl::NamespaceAlias:
7048     if (CGDebugInfo *DI = getModuleDebugInfo())
7049         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
7050     break;
7051   case Decl::UsingDirective: // using namespace X; [C++]
7052     if (CGDebugInfo *DI = getModuleDebugInfo())
7053       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
7054     break;
7055   case Decl::CXXConstructor:
7056     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
7057     break;
7058   case Decl::CXXDestructor:
7059     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
7060     break;
7061 
7062   case Decl::StaticAssert:
7063     // Nothing to do.
7064     break;
7065 
7066   // Objective-C Decls
7067 
7068   // Forward declarations, no (immediate) code generation.
7069   case Decl::ObjCInterface:
7070   case Decl::ObjCCategory:
7071     break;
7072 
7073   case Decl::ObjCProtocol: {
7074     auto *Proto = cast<ObjCProtocolDecl>(D);
7075     if (Proto->isThisDeclarationADefinition())
7076       ObjCRuntime->GenerateProtocol(Proto);
7077     break;
7078   }
7079 
7080   case Decl::ObjCCategoryImpl:
7081     // Categories have properties but don't support synthesize so we
7082     // can ignore them here.
7083     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
7084     break;
7085 
7086   case Decl::ObjCImplementation: {
7087     auto *OMD = cast<ObjCImplementationDecl>(D);
7088     EmitObjCPropertyImplementations(OMD);
7089     EmitObjCIvarInitializations(OMD);
7090     ObjCRuntime->GenerateClass(OMD);
7091     // Emit global variable debug information.
7092     if (CGDebugInfo *DI = getModuleDebugInfo())
7093       if (getCodeGenOpts().hasReducedDebugInfo())
7094         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7095             OMD->getClassInterface()), OMD->getLocation());
7096     break;
7097   }
7098   case Decl::ObjCMethod: {
7099     auto *OMD = cast<ObjCMethodDecl>(D);
7100     // If this is not a prototype, emit the body.
7101     if (OMD->getBody())
7102       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7103     break;
7104   }
7105   case Decl::ObjCCompatibleAlias:
7106     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7107     break;
7108 
7109   case Decl::PragmaComment: {
7110     const auto *PCD = cast<PragmaCommentDecl>(D);
7111     switch (PCD->getCommentKind()) {
7112     case PCK_Unknown:
7113       llvm_unreachable("unexpected pragma comment kind");
7114     case PCK_Linker:
7115       AppendLinkerOptions(PCD->getArg());
7116       break;
7117     case PCK_Lib:
7118         AddDependentLib(PCD->getArg());
7119       break;
7120     case PCK_Compiler:
7121     case PCK_ExeStr:
7122     case PCK_User:
7123       break; // We ignore all of these.
7124     }
7125     break;
7126   }
7127 
7128   case Decl::PragmaDetectMismatch: {
7129     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7130     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7131     break;
7132   }
7133 
7134   case Decl::LinkageSpec:
7135     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7136     break;
7137 
7138   case Decl::FileScopeAsm: {
7139     // File-scope asm is ignored during device-side CUDA compilation.
7140     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7141       break;
7142     // File-scope asm is ignored during device-side OpenMP compilation.
7143     if (LangOpts.OpenMPIsTargetDevice)
7144       break;
7145     // File-scope asm is ignored during device-side SYCL compilation.
7146     if (LangOpts.SYCLIsDevice)
7147       break;
7148     auto *AD = cast<FileScopeAsmDecl>(D);
7149     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7150     break;
7151   }
7152 
7153   case Decl::TopLevelStmt:
7154     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7155     break;
7156 
7157   case Decl::Import: {
7158     auto *Import = cast<ImportDecl>(D);
7159 
7160     // If we've already imported this module, we're done.
7161     if (!ImportedModules.insert(Import->getImportedModule()))
7162       break;
7163 
7164     // Emit debug information for direct imports.
7165     if (!Import->getImportedOwningModule()) {
7166       if (CGDebugInfo *DI = getModuleDebugInfo())
7167         DI->EmitImportDecl(*Import);
7168     }
7169 
7170     // For C++ standard modules we are done - we will call the module
7171     // initializer for imported modules, and that will likewise call those for
7172     // any imports it has.
7173     if (CXX20ModuleInits && Import->getImportedModule() &&
7174         Import->getImportedModule()->isNamedModule())
7175       break;
7176 
7177     // For clang C++ module map modules the initializers for sub-modules are
7178     // emitted here.
7179 
7180     // Find all of the submodules and emit the module initializers.
7181     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7182     SmallVector<clang::Module *, 16> Stack;
7183     Visited.insert(Import->getImportedModule());
7184     Stack.push_back(Import->getImportedModule());
7185 
7186     while (!Stack.empty()) {
7187       clang::Module *Mod = Stack.pop_back_val();
7188       if (!EmittedModuleInitializers.insert(Mod).second)
7189         continue;
7190 
7191       for (auto *D : Context.getModuleInitializers(Mod))
7192         EmitTopLevelDecl(D);
7193 
7194       // Visit the submodules of this module.
7195       for (auto *Submodule : Mod->submodules()) {
7196         // Skip explicit children; they need to be explicitly imported to emit
7197         // the initializers.
7198         if (Submodule->IsExplicit)
7199           continue;
7200 
7201         if (Visited.insert(Submodule).second)
7202           Stack.push_back(Submodule);
7203       }
7204     }
7205     break;
7206   }
7207 
7208   case Decl::Export:
7209     EmitDeclContext(cast<ExportDecl>(D));
7210     break;
7211 
7212   case Decl::OMPThreadPrivate:
7213     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7214     break;
7215 
7216   case Decl::OMPAllocate:
7217     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7218     break;
7219 
7220   case Decl::OMPDeclareReduction:
7221     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7222     break;
7223 
7224   case Decl::OMPDeclareMapper:
7225     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7226     break;
7227 
7228   case Decl::OMPRequires:
7229     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7230     break;
7231 
7232   case Decl::Typedef:
7233   case Decl::TypeAlias: // using foo = bar; [C++11]
7234     if (CGDebugInfo *DI = getModuleDebugInfo())
7235       DI->EmitAndRetainType(
7236           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7237     break;
7238 
7239   case Decl::Record:
7240     if (CGDebugInfo *DI = getModuleDebugInfo())
7241       if (cast<RecordDecl>(D)->getDefinition())
7242         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7243     break;
7244 
7245   case Decl::Enum:
7246     if (CGDebugInfo *DI = getModuleDebugInfo())
7247       if (cast<EnumDecl>(D)->getDefinition())
7248         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7249     break;
7250 
7251   case Decl::HLSLBuffer:
7252     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7253     break;
7254 
7255   default:
7256     // Make sure we handled everything we should, every other kind is a
7257     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7258     // function. Need to recode Decl::Kind to do that easily.
7259     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7260     break;
7261   }
7262 }
7263 
7264 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7265   // Do we need to generate coverage mapping?
7266   if (!CodeGenOpts.CoverageMapping)
7267     return;
7268   switch (D->getKind()) {
7269   case Decl::CXXConversion:
7270   case Decl::CXXMethod:
7271   case Decl::Function:
7272   case Decl::ObjCMethod:
7273   case Decl::CXXConstructor:
7274   case Decl::CXXDestructor: {
7275     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7276       break;
7277     SourceManager &SM = getContext().getSourceManager();
7278     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7279       break;
7280     if (!llvm::coverage::SystemHeadersCoverage &&
7281         SM.isInSystemHeader(D->getBeginLoc()))
7282       break;
7283     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7284     break;
7285   }
7286   default:
7287     break;
7288   };
7289 }
7290 
7291 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7292   // Do we need to generate coverage mapping?
7293   if (!CodeGenOpts.CoverageMapping)
7294     return;
7295   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7296     if (Fn->isTemplateInstantiation())
7297       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7298   }
7299   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7300 }
7301 
7302 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7303   // We call takeVector() here to avoid use-after-free.
7304   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7305   // we deserialize function bodies to emit coverage info for them, and that
7306   // deserializes more declarations. How should we handle that case?
7307   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7308     if (!Entry.second)
7309       continue;
7310     const Decl *D = Entry.first;
7311     switch (D->getKind()) {
7312     case Decl::CXXConversion:
7313     case Decl::CXXMethod:
7314     case Decl::Function:
7315     case Decl::ObjCMethod: {
7316       CodeGenPGO PGO(*this);
7317       GlobalDecl GD(cast<FunctionDecl>(D));
7318       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7319                                   getFunctionLinkage(GD));
7320       break;
7321     }
7322     case Decl::CXXConstructor: {
7323       CodeGenPGO PGO(*this);
7324       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7325       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7326                                   getFunctionLinkage(GD));
7327       break;
7328     }
7329     case Decl::CXXDestructor: {
7330       CodeGenPGO PGO(*this);
7331       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7332       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7333                                   getFunctionLinkage(GD));
7334       break;
7335     }
7336     default:
7337       break;
7338     };
7339   }
7340 }
7341 
7342 void CodeGenModule::EmitMainVoidAlias() {
7343   // In order to transition away from "__original_main" gracefully, emit an
7344   // alias for "main" in the no-argument case so that libc can detect when
7345   // new-style no-argument main is in used.
7346   if (llvm::Function *F = getModule().getFunction("main")) {
7347     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7348         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7349       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7350       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7351     }
7352   }
7353 }
7354 
7355 /// Turns the given pointer into a constant.
7356 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7357                                           const void *Ptr) {
7358   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7359   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7360   return llvm::ConstantInt::get(i64, PtrInt);
7361 }
7362 
7363 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7364                                    llvm::NamedMDNode *&GlobalMetadata,
7365                                    GlobalDecl D,
7366                                    llvm::GlobalValue *Addr) {
7367   if (!GlobalMetadata)
7368     GlobalMetadata =
7369       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7370 
7371   // TODO: should we report variant information for ctors/dtors?
7372   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7373                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7374                                CGM.getLLVMContext(), D.getDecl()))};
7375   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7376 }
7377 
7378 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7379                                                  llvm::GlobalValue *CppFunc) {
7380   // Store the list of ifuncs we need to replace uses in.
7381   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7382   // List of ConstantExprs that we should be able to delete when we're done
7383   // here.
7384   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7385 
7386   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7387   if (Elem == CppFunc)
7388     return false;
7389 
7390   // First make sure that all users of this are ifuncs (or ifuncs via a
7391   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7392   // later.
7393   for (llvm::User *User : Elem->users()) {
7394     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7395     // ifunc directly. In any other case, just give up, as we don't know what we
7396     // could break by changing those.
7397     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7398       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7399         return false;
7400 
7401       for (llvm::User *CEUser : ConstExpr->users()) {
7402         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7403           IFuncs.push_back(IFunc);
7404         } else {
7405           return false;
7406         }
7407       }
7408       CEs.push_back(ConstExpr);
7409     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7410       IFuncs.push_back(IFunc);
7411     } else {
7412       // This user is one we don't know how to handle, so fail redirection. This
7413       // will result in an ifunc retaining a resolver name that will ultimately
7414       // fail to be resolved to a defined function.
7415       return false;
7416     }
7417   }
7418 
7419   // Now we know this is a valid case where we can do this alias replacement, we
7420   // need to remove all of the references to Elem (and the bitcasts!) so we can
7421   // delete it.
7422   for (llvm::GlobalIFunc *IFunc : IFuncs)
7423     IFunc->setResolver(nullptr);
7424   for (llvm::ConstantExpr *ConstExpr : CEs)
7425     ConstExpr->destroyConstant();
7426 
7427   // We should now be out of uses for the 'old' version of this function, so we
7428   // can erase it as well.
7429   Elem->eraseFromParent();
7430 
7431   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7432     // The type of the resolver is always just a function-type that returns the
7433     // type of the IFunc, so create that here. If the type of the actual
7434     // resolver doesn't match, it just gets bitcast to the right thing.
7435     auto *ResolverTy =
7436         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7437     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7438         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7439     IFunc->setResolver(Resolver);
7440   }
7441   return true;
7442 }
7443 
7444 /// For each function which is declared within an extern "C" region and marked
7445 /// as 'used', but has internal linkage, create an alias from the unmangled
7446 /// name to the mangled name if possible. People expect to be able to refer
7447 /// to such functions with an unmangled name from inline assembly within the
7448 /// same translation unit.
7449 void CodeGenModule::EmitStaticExternCAliases() {
7450   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7451     return;
7452   for (auto &I : StaticExternCValues) {
7453     const IdentifierInfo *Name = I.first;
7454     llvm::GlobalValue *Val = I.second;
7455 
7456     // If Val is null, that implies there were multiple declarations that each
7457     // had a claim to the unmangled name. In this case, generation of the alias
7458     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7459     if (!Val)
7460       break;
7461 
7462     llvm::GlobalValue *ExistingElem =
7463         getModule().getNamedValue(Name->getName());
7464 
7465     // If there is either not something already by this name, or we were able to
7466     // replace all uses from IFuncs, create the alias.
7467     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7468       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7469   }
7470 }
7471 
7472 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7473                                              GlobalDecl &Result) const {
7474   auto Res = Manglings.find(MangledName);
7475   if (Res == Manglings.end())
7476     return false;
7477   Result = Res->getValue();
7478   return true;
7479 }
7480 
7481 /// Emits metadata nodes associating all the global values in the
7482 /// current module with the Decls they came from.  This is useful for
7483 /// projects using IR gen as a subroutine.
7484 ///
7485 /// Since there's currently no way to associate an MDNode directly
7486 /// with an llvm::GlobalValue, we create a global named metadata
7487 /// with the name 'clang.global.decl.ptrs'.
7488 void CodeGenModule::EmitDeclMetadata() {
7489   llvm::NamedMDNode *GlobalMetadata = nullptr;
7490 
7491   for (auto &I : MangledDeclNames) {
7492     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7493     // Some mangled names don't necessarily have an associated GlobalValue
7494     // in this module, e.g. if we mangled it for DebugInfo.
7495     if (Addr)
7496       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7497   }
7498 }
7499 
7500 /// Emits metadata nodes for all the local variables in the current
7501 /// function.
7502 void CodeGenFunction::EmitDeclMetadata() {
7503   if (LocalDeclMap.empty()) return;
7504 
7505   llvm::LLVMContext &Context = getLLVMContext();
7506 
7507   // Find the unique metadata ID for this name.
7508   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7509 
7510   llvm::NamedMDNode *GlobalMetadata = nullptr;
7511 
7512   for (auto &I : LocalDeclMap) {
7513     const Decl *D = I.first;
7514     llvm::Value *Addr = I.second.emitRawPointer(*this);
7515     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7516       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7517       Alloca->setMetadata(
7518           DeclPtrKind, llvm::MDNode::get(
7519                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7520     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7521       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7522       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7523     }
7524   }
7525 }
7526 
7527 void CodeGenModule::EmitVersionIdentMetadata() {
7528   llvm::NamedMDNode *IdentMetadata =
7529     TheModule.getOrInsertNamedMetadata("llvm.ident");
7530   std::string Version = getClangFullVersion();
7531   llvm::LLVMContext &Ctx = TheModule.getContext();
7532 
7533   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7534   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7535 }
7536 
7537 void CodeGenModule::EmitCommandLineMetadata() {
7538   llvm::NamedMDNode *CommandLineMetadata =
7539     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7540   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7541   llvm::LLVMContext &Ctx = TheModule.getContext();
7542 
7543   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7544   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7545 }
7546 
7547 void CodeGenModule::EmitCoverageFile() {
7548   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7549   if (!CUNode)
7550     return;
7551 
7552   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7553   llvm::LLVMContext &Ctx = TheModule.getContext();
7554   auto *CoverageDataFile =
7555       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7556   auto *CoverageNotesFile =
7557       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7558   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7559     llvm::MDNode *CU = CUNode->getOperand(i);
7560     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7561     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7562   }
7563 }
7564 
7565 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7566                                                        bool ForEH) {
7567   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7568   // FIXME: should we even be calling this method if RTTI is disabled
7569   // and it's not for EH?
7570   if (!shouldEmitRTTI(ForEH))
7571     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7572 
7573   if (ForEH && Ty->isObjCObjectPointerType() &&
7574       LangOpts.ObjCRuntime.isGNUFamily())
7575     return ObjCRuntime->GetEHType(Ty);
7576 
7577   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7578 }
7579 
7580 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7581   // Do not emit threadprivates in simd-only mode.
7582   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7583     return;
7584   for (auto RefExpr : D->varlist()) {
7585     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7586     bool PerformInit =
7587         VD->getAnyInitializer() &&
7588         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7589                                                         /*ForRef=*/false);
7590 
7591     Address Addr(GetAddrOfGlobalVar(VD),
7592                  getTypes().ConvertTypeForMem(VD->getType()),
7593                  getContext().getDeclAlign(VD));
7594     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7595             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7596       CXXGlobalInits.push_back(InitFunction);
7597   }
7598 }
7599 
7600 llvm::Metadata *
7601 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7602                                             StringRef Suffix) {
7603   if (auto *FnType = T->getAs<FunctionProtoType>())
7604     T = getContext().getFunctionType(
7605         FnType->getReturnType(), FnType->getParamTypes(),
7606         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7607 
7608   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7609   if (InternalId)
7610     return InternalId;
7611 
7612   if (isExternallyVisible(T->getLinkage())) {
7613     std::string OutName;
7614     llvm::raw_string_ostream Out(OutName);
7615     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7616         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7617 
7618     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7619       Out << ".normalized";
7620 
7621     Out << Suffix;
7622 
7623     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7624   } else {
7625     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7626                                            llvm::ArrayRef<llvm::Metadata *>());
7627   }
7628 
7629   return InternalId;
7630 }
7631 
7632 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7633   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7634 }
7635 
7636 llvm::Metadata *
7637 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7638   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7639 }
7640 
7641 // Generalize pointer types to a void pointer with the qualifiers of the
7642 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7643 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7644 // 'void *'.
7645 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7646   if (!Ty->isPointerType())
7647     return Ty;
7648 
7649   return Ctx.getPointerType(
7650       QualType(Ctx.VoidTy).withCVRQualifiers(
7651           Ty->getPointeeType().getCVRQualifiers()));
7652 }
7653 
7654 // Apply type generalization to a FunctionType's return and argument types
7655 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7656   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7657     SmallVector<QualType, 8> GeneralizedParams;
7658     for (auto &Param : FnType->param_types())
7659       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7660 
7661     return Ctx.getFunctionType(
7662         GeneralizeType(Ctx, FnType->getReturnType()),
7663         GeneralizedParams, FnType->getExtProtoInfo());
7664   }
7665 
7666   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7667     return Ctx.getFunctionNoProtoType(
7668         GeneralizeType(Ctx, FnType->getReturnType()));
7669 
7670   llvm_unreachable("Encountered unknown FunctionType");
7671 }
7672 
7673 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7674   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7675                                       GeneralizedMetadataIdMap, ".generalized");
7676 }
7677 
7678 /// Returns whether this module needs the "all-vtables" type identifier.
7679 bool CodeGenModule::NeedAllVtablesTypeId() const {
7680   // Returns true if at least one of vtable-based CFI checkers is enabled and
7681   // is not in the trapping mode.
7682   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7683            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7684           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7685            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7686           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7687            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7688           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7689            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7690 }
7691 
7692 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7693                                           CharUnits Offset,
7694                                           const CXXRecordDecl *RD) {
7695   llvm::Metadata *MD =
7696       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7697   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7698 
7699   if (CodeGenOpts.SanitizeCfiCrossDso)
7700     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7701       VTable->addTypeMetadata(Offset.getQuantity(),
7702                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7703 
7704   if (NeedAllVtablesTypeId()) {
7705     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7706     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7707   }
7708 }
7709 
7710 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7711   if (!SanStats)
7712     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7713 
7714   return *SanStats;
7715 }
7716 
7717 llvm::Value *
7718 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7719                                                   CodeGenFunction &CGF) {
7720   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7721   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7722   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7723   auto *Call = CGF.EmitRuntimeCall(
7724       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7725   return Call;
7726 }
7727 
7728 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7729     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7730   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7731                                  /* forPointeeType= */ true);
7732 }
7733 
7734 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7735                                                  LValueBaseInfo *BaseInfo,
7736                                                  TBAAAccessInfo *TBAAInfo,
7737                                                  bool forPointeeType) {
7738   if (TBAAInfo)
7739     *TBAAInfo = getTBAAAccessInfo(T);
7740 
7741   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7742   // that doesn't return the information we need to compute BaseInfo.
7743 
7744   // Honor alignment typedef attributes even on incomplete types.
7745   // We also honor them straight for C++ class types, even as pointees;
7746   // there's an expressivity gap here.
7747   if (auto TT = T->getAs<TypedefType>()) {
7748     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7749       if (BaseInfo)
7750         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7751       return getContext().toCharUnitsFromBits(Align);
7752     }
7753   }
7754 
7755   bool AlignForArray = T->isArrayType();
7756 
7757   // Analyze the base element type, so we don't get confused by incomplete
7758   // array types.
7759   T = getContext().getBaseElementType(T);
7760 
7761   if (T->isIncompleteType()) {
7762     // We could try to replicate the logic from
7763     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7764     // type is incomplete, so it's impossible to test. We could try to reuse
7765     // getTypeAlignIfKnown, but that doesn't return the information we need
7766     // to set BaseInfo.  So just ignore the possibility that the alignment is
7767     // greater than one.
7768     if (BaseInfo)
7769       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7770     return CharUnits::One();
7771   }
7772 
7773   if (BaseInfo)
7774     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7775 
7776   CharUnits Alignment;
7777   const CXXRecordDecl *RD;
7778   if (T.getQualifiers().hasUnaligned()) {
7779     Alignment = CharUnits::One();
7780   } else if (forPointeeType && !AlignForArray &&
7781              (RD = T->getAsCXXRecordDecl())) {
7782     // For C++ class pointees, we don't know whether we're pointing at a
7783     // base or a complete object, so we generally need to use the
7784     // non-virtual alignment.
7785     Alignment = getClassPointerAlignment(RD);
7786   } else {
7787     Alignment = getContext().getTypeAlignInChars(T);
7788   }
7789 
7790   // Cap to the global maximum type alignment unless the alignment
7791   // was somehow explicit on the type.
7792   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7793     if (Alignment.getQuantity() > MaxAlign &&
7794         !getContext().isAlignmentRequired(T))
7795       Alignment = CharUnits::fromQuantity(MaxAlign);
7796   }
7797   return Alignment;
7798 }
7799 
7800 bool CodeGenModule::stopAutoInit() {
7801   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7802   if (StopAfter) {
7803     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7804     // used
7805     if (NumAutoVarInit >= StopAfter) {
7806       return true;
7807     }
7808     if (!NumAutoVarInit) {
7809       unsigned DiagID = getDiags().getCustomDiagID(
7810           DiagnosticsEngine::Warning,
7811           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7812           "number of times ftrivial-auto-var-init=%1 gets applied.");
7813       getDiags().Report(DiagID)
7814           << StopAfter
7815           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7816                       LangOptions::TrivialAutoVarInitKind::Zero
7817                   ? "zero"
7818                   : "pattern");
7819     }
7820     ++NumAutoVarInit;
7821   }
7822   return false;
7823 }
7824 
7825 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7826                                                     const Decl *D) const {
7827   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7828   // postfix beginning with '.' since the symbol name can be demangled.
7829   if (LangOpts.HIP)
7830     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7831   else
7832     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7833 
7834   // If the CUID is not specified we try to generate a unique postfix.
7835   if (getLangOpts().CUID.empty()) {
7836     SourceManager &SM = getContext().getSourceManager();
7837     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7838     assert(PLoc.isValid() && "Source location is expected to be valid.");
7839 
7840     // Get the hash of the user defined macros.
7841     llvm::MD5 Hash;
7842     llvm::MD5::MD5Result Result;
7843     for (const auto &Arg : PreprocessorOpts.Macros)
7844       Hash.update(Arg.first);
7845     Hash.final(Result);
7846 
7847     // Get the UniqueID for the file containing the decl.
7848     llvm::sys::fs::UniqueID ID;
7849     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7850       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7851       assert(PLoc.isValid() && "Source location is expected to be valid.");
7852       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7853         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7854             << PLoc.getFilename() << EC.message();
7855     }
7856     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7857        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7858   } else {
7859     OS << getContext().getCUIDHash();
7860   }
7861 }
7862 
7863 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7864   assert(DeferredDeclsToEmit.empty() &&
7865          "Should have emitted all decls deferred to emit.");
7866   assert(NewBuilder->DeferredDecls.empty() &&
7867          "Newly created module should not have deferred decls");
7868   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7869   assert(EmittedDeferredDecls.empty() &&
7870          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7871 
7872   assert(NewBuilder->DeferredVTables.empty() &&
7873          "Newly created module should not have deferred vtables");
7874   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7875 
7876   assert(NewBuilder->MangledDeclNames.empty() &&
7877          "Newly created module should not have mangled decl names");
7878   assert(NewBuilder->Manglings.empty() &&
7879          "Newly created module should not have manglings");
7880   NewBuilder->Manglings = std::move(Manglings);
7881 
7882   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7883 
7884   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7885 }
7886