xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 63ca93c7d1d1ee91281ff7ccdbd7014151319324)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include "llvm/TargetParser/X86TargetParser.h"
73 #include <optional>
74 
75 using namespace clang;
76 using namespace CodeGen;
77 
78 static llvm::cl::opt<bool> LimitedCoverage(
79     "limited-coverage-experimental", llvm::cl::Hidden,
80     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
81 
82 static const char AnnotationSection[] = "llvm.metadata";
83 
84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
85   switch (CGM.getContext().getCXXABIKind()) {
86   case TargetCXXABI::AppleARM64:
87   case TargetCXXABI::Fuchsia:
88   case TargetCXXABI::GenericAArch64:
89   case TargetCXXABI::GenericARM:
90   case TargetCXXABI::iOS:
91   case TargetCXXABI::WatchOS:
92   case TargetCXXABI::GenericMIPS:
93   case TargetCXXABI::GenericItanium:
94   case TargetCXXABI::WebAssembly:
95   case TargetCXXABI::XL:
96     return CreateItaniumCXXABI(CGM);
97   case TargetCXXABI::Microsoft:
98     return CreateMicrosoftCXXABI(CGM);
99   }
100 
101   llvm_unreachable("invalid C++ ABI kind");
102 }
103 
104 static std::unique_ptr<TargetCodeGenInfo>
105 createTargetCodeGenInfo(CodeGenModule &CGM) {
106   const TargetInfo &Target = CGM.getTarget();
107   const llvm::Triple &Triple = Target.getTriple();
108   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
109 
110   switch (Triple.getArch()) {
111   default:
112     return createDefaultTargetCodeGenInfo(CGM);
113 
114   case llvm::Triple::le32:
115     return createPNaClTargetCodeGenInfo(CGM);
116   case llvm::Triple::m68k:
117     return createM68kTargetCodeGenInfo(CGM);
118   case llvm::Triple::mips:
119   case llvm::Triple::mipsel:
120     if (Triple.getOS() == llvm::Triple::NaCl)
121       return createPNaClTargetCodeGenInfo(CGM);
122     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
123 
124   case llvm::Triple::mips64:
125   case llvm::Triple::mips64el:
126     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
127 
128   case llvm::Triple::avr: {
129     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130     // on avrtiny. For passing return value, R18~R25 are used on avr, and
131     // R22~R25 are used on avrtiny.
132     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
135   }
136 
137   case llvm::Triple::aarch64:
138   case llvm::Triple::aarch64_32:
139   case llvm::Triple::aarch64_be: {
140     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141     if (Target.getABI() == "darwinpcs")
142       Kind = AArch64ABIKind::DarwinPCS;
143     else if (Triple.isOSWindows())
144       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145 
146     return createAArch64TargetCodeGenInfo(CGM, Kind);
147   }
148 
149   case llvm::Triple::wasm32:
150   case llvm::Triple::wasm64: {
151     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
152     if (Target.getABI() == "experimental-mv")
153       Kind = WebAssemblyABIKind::ExperimentalMV;
154     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
155   }
156 
157   case llvm::Triple::arm:
158   case llvm::Triple::armeb:
159   case llvm::Triple::thumb:
160   case llvm::Triple::thumbeb: {
161     if (Triple.getOS() == llvm::Triple::Win32)
162       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
163 
164     ARMABIKind Kind = ARMABIKind::AAPCS;
165     StringRef ABIStr = Target.getABI();
166     if (ABIStr == "apcs-gnu")
167       Kind = ARMABIKind::APCS;
168     else if (ABIStr == "aapcs16")
169       Kind = ARMABIKind::AAPCS16_VFP;
170     else if (CodeGenOpts.FloatABI == "hard" ||
171              (CodeGenOpts.FloatABI != "soft" &&
172               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
173                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
174                Triple.getEnvironment() == llvm::Triple::EABIHF)))
175       Kind = ARMABIKind::AAPCS_VFP;
176 
177     return createARMTargetCodeGenInfo(CGM, Kind);
178   }
179 
180   case llvm::Triple::ppc: {
181     if (Triple.isOSAIX())
182       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
183 
184     bool IsSoftFloat =
185         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
186     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
187   }
188   case llvm::Triple::ppcle: {
189     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
190     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
191   }
192   case llvm::Triple::ppc64:
193     if (Triple.isOSAIX())
194       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
195 
196     if (Triple.isOSBinFormatELF()) {
197       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
198       if (Target.getABI() == "elfv2")
199         Kind = PPC64_SVR4_ABIKind::ELFv2;
200       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
201 
202       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
203     }
204     return createPPC64TargetCodeGenInfo(CGM);
205   case llvm::Triple::ppc64le: {
206     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
207     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
208     if (Target.getABI() == "elfv1")
209       Kind = PPC64_SVR4_ABIKind::ELFv1;
210     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
211 
212     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
213   }
214 
215   case llvm::Triple::nvptx:
216   case llvm::Triple::nvptx64:
217     return createNVPTXTargetCodeGenInfo(CGM);
218 
219   case llvm::Triple::msp430:
220     return createMSP430TargetCodeGenInfo(CGM);
221 
222   case llvm::Triple::riscv32:
223   case llvm::Triple::riscv64: {
224     StringRef ABIStr = Target.getABI();
225     unsigned XLen = Target.getPointerWidth(LangAS::Default);
226     unsigned ABIFLen = 0;
227     if (ABIStr.endswith("f"))
228       ABIFLen = 32;
229     else if (ABIStr.endswith("d"))
230       ABIFLen = 64;
231     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen);
232   }
233 
234   case llvm::Triple::systemz: {
235     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
236     bool HasVector = !SoftFloat && Target.getABI() == "vector";
237     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
238   }
239 
240   case llvm::Triple::tce:
241   case llvm::Triple::tcele:
242     return createTCETargetCodeGenInfo(CGM);
243 
244   case llvm::Triple::x86: {
245     bool IsDarwinVectorABI = Triple.isOSDarwin();
246     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
247 
248     if (Triple.getOS() == llvm::Triple::Win32) {
249       return createWinX86_32TargetCodeGenInfo(
250           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
251           CodeGenOpts.NumRegisterParameters);
252     }
253     return createX86_32TargetCodeGenInfo(
254         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
255         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
256   }
257 
258   case llvm::Triple::x86_64: {
259     StringRef ABI = Target.getABI();
260     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
261                                : ABI == "avx"  ? X86AVXABILevel::AVX
262                                                : X86AVXABILevel::None);
263 
264     switch (Triple.getOS()) {
265     case llvm::Triple::Win32:
266       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
267     default:
268       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
269     }
270   }
271   case llvm::Triple::hexagon:
272     return createHexagonTargetCodeGenInfo(CGM);
273   case llvm::Triple::lanai:
274     return createLanaiTargetCodeGenInfo(CGM);
275   case llvm::Triple::r600:
276     return createAMDGPUTargetCodeGenInfo(CGM);
277   case llvm::Triple::amdgcn:
278     return createAMDGPUTargetCodeGenInfo(CGM);
279   case llvm::Triple::sparc:
280     return createSparcV8TargetCodeGenInfo(CGM);
281   case llvm::Triple::sparcv9:
282     return createSparcV9TargetCodeGenInfo(CGM);
283   case llvm::Triple::xcore:
284     return createXCoreTargetCodeGenInfo(CGM);
285   case llvm::Triple::arc:
286     return createARCTargetCodeGenInfo(CGM);
287   case llvm::Triple::spir:
288   case llvm::Triple::spir64:
289     return createCommonSPIRTargetCodeGenInfo(CGM);
290   case llvm::Triple::spirv32:
291   case llvm::Triple::spirv64:
292     return createSPIRVTargetCodeGenInfo(CGM);
293   case llvm::Triple::ve:
294     return createVETargetCodeGenInfo(CGM);
295   case llvm::Triple::csky: {
296     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
297     bool hasFP64 =
298         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
299     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
300                                             : hasFP64   ? 64
301                                                         : 32);
302   }
303   case llvm::Triple::bpfeb:
304   case llvm::Triple::bpfel:
305     return createBPFTargetCodeGenInfo(CGM);
306   case llvm::Triple::loongarch32:
307   case llvm::Triple::loongarch64: {
308     StringRef ABIStr = Target.getABI();
309     unsigned ABIFRLen = 0;
310     if (ABIStr.endswith("f"))
311       ABIFRLen = 32;
312     else if (ABIStr.endswith("d"))
313       ABIFRLen = 64;
314     return createLoongArchTargetCodeGenInfo(
315         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
316   }
317   }
318 }
319 
320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
321   if (!TheTargetCodeGenInfo)
322     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
323   return *TheTargetCodeGenInfo;
324 }
325 
326 CodeGenModule::CodeGenModule(ASTContext &C,
327                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
328                              const HeaderSearchOptions &HSO,
329                              const PreprocessorOptions &PPO,
330                              const CodeGenOptions &CGO, llvm::Module &M,
331                              DiagnosticsEngine &diags,
332                              CoverageSourceInfo *CoverageInfo)
333     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
334       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
335       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
336       VMContext(M.getContext()), Types(*this), VTables(*this),
337       SanitizerMD(new SanitizerMetadata(*this)) {
338 
339   // Initialize the type cache.
340   llvm::LLVMContext &LLVMContext = M.getContext();
341   VoidTy = llvm::Type::getVoidTy(LLVMContext);
342   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
343   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
344   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
345   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
346   HalfTy = llvm::Type::getHalfTy(LLVMContext);
347   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
348   FloatTy = llvm::Type::getFloatTy(LLVMContext);
349   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
350   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
351   PointerAlignInBytes =
352       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
353           .getQuantity();
354   SizeSizeInBytes =
355     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
356   IntAlignInBytes =
357     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
358   CharTy =
359     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
360   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
361   IntPtrTy = llvm::IntegerType::get(LLVMContext,
362     C.getTargetInfo().getMaxPointerWidth());
363   Int8PtrTy = Int8Ty->getPointerTo(0);
364   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
365   const llvm::DataLayout &DL = M.getDataLayout();
366   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
367   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
368   ConstGlobalsPtrTy = Int8Ty->getPointerTo(
369       C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
370   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
371 
372   // Build C++20 Module initializers.
373   // TODO: Add Microsoft here once we know the mangling required for the
374   // initializers.
375   CXX20ModuleInits =
376       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
377                                        ItaniumMangleContext::MK_Itanium;
378 
379   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
380 
381   if (LangOpts.ObjC)
382     createObjCRuntime();
383   if (LangOpts.OpenCL)
384     createOpenCLRuntime();
385   if (LangOpts.OpenMP)
386     createOpenMPRuntime();
387   if (LangOpts.CUDA)
388     createCUDARuntime();
389   if (LangOpts.HLSL)
390     createHLSLRuntime();
391 
392   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
393   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
394       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
395     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
396                                getCXXABI().getMangleContext()));
397 
398   // If debug info or coverage generation is enabled, create the CGDebugInfo
399   // object.
400   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
401       CodeGenOpts.CoverageNotesFile.size() ||
402       CodeGenOpts.CoverageDataFile.size())
403     DebugInfo.reset(new CGDebugInfo(*this));
404 
405   Block.GlobalUniqueCount = 0;
406 
407   if (C.getLangOpts().ObjC)
408     ObjCData.reset(new ObjCEntrypoints());
409 
410   if (CodeGenOpts.hasProfileClangUse()) {
411     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
412         CodeGenOpts.ProfileInstrumentUsePath, *FS,
413         CodeGenOpts.ProfileRemappingFile);
414     // We're checking for profile read errors in CompilerInvocation, so if
415     // there was an error it should've already been caught. If it hasn't been
416     // somehow, trip an assertion.
417     assert(ReaderOrErr);
418     PGOReader = std::move(ReaderOrErr.get());
419   }
420 
421   // If coverage mapping generation is enabled, create the
422   // CoverageMappingModuleGen object.
423   if (CodeGenOpts.CoverageMapping)
424     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
425 
426   // Generate the module name hash here if needed.
427   if (CodeGenOpts.UniqueInternalLinkageNames &&
428       !getModule().getSourceFileName().empty()) {
429     std::string Path = getModule().getSourceFileName();
430     // Check if a path substitution is needed from the MacroPrefixMap.
431     for (const auto &Entry : LangOpts.MacroPrefixMap)
432       if (Path.rfind(Entry.first, 0) != std::string::npos) {
433         Path = Entry.second + Path.substr(Entry.first.size());
434         break;
435       }
436     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
437   }
438 }
439 
440 CodeGenModule::~CodeGenModule() {}
441 
442 void CodeGenModule::createObjCRuntime() {
443   // This is just isGNUFamily(), but we want to force implementors of
444   // new ABIs to decide how best to do this.
445   switch (LangOpts.ObjCRuntime.getKind()) {
446   case ObjCRuntime::GNUstep:
447   case ObjCRuntime::GCC:
448   case ObjCRuntime::ObjFW:
449     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
450     return;
451 
452   case ObjCRuntime::FragileMacOSX:
453   case ObjCRuntime::MacOSX:
454   case ObjCRuntime::iOS:
455   case ObjCRuntime::WatchOS:
456     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
457     return;
458   }
459   llvm_unreachable("bad runtime kind");
460 }
461 
462 void CodeGenModule::createOpenCLRuntime() {
463   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
464 }
465 
466 void CodeGenModule::createOpenMPRuntime() {
467   // Select a specialized code generation class based on the target, if any.
468   // If it does not exist use the default implementation.
469   switch (getTriple().getArch()) {
470   case llvm::Triple::nvptx:
471   case llvm::Triple::nvptx64:
472   case llvm::Triple::amdgcn:
473     assert(getLangOpts().OpenMPIsTargetDevice &&
474            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
475     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
476     break;
477   default:
478     if (LangOpts.OpenMPSimd)
479       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
480     else
481       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
482     break;
483   }
484 }
485 
486 void CodeGenModule::createCUDARuntime() {
487   CUDARuntime.reset(CreateNVCUDARuntime(*this));
488 }
489 
490 void CodeGenModule::createHLSLRuntime() {
491   HLSLRuntime.reset(new CGHLSLRuntime(*this));
492 }
493 
494 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
495   Replacements[Name] = C;
496 }
497 
498 void CodeGenModule::applyReplacements() {
499   for (auto &I : Replacements) {
500     StringRef MangledName = I.first();
501     llvm::Constant *Replacement = I.second;
502     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
503     if (!Entry)
504       continue;
505     auto *OldF = cast<llvm::Function>(Entry);
506     auto *NewF = dyn_cast<llvm::Function>(Replacement);
507     if (!NewF) {
508       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
509         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
510       } else {
511         auto *CE = cast<llvm::ConstantExpr>(Replacement);
512         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
513                CE->getOpcode() == llvm::Instruction::GetElementPtr);
514         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
515       }
516     }
517 
518     // Replace old with new, but keep the old order.
519     OldF->replaceAllUsesWith(Replacement);
520     if (NewF) {
521       NewF->removeFromParent();
522       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
523                                                        NewF);
524     }
525     OldF->eraseFromParent();
526   }
527 }
528 
529 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
530   GlobalValReplacements.push_back(std::make_pair(GV, C));
531 }
532 
533 void CodeGenModule::applyGlobalValReplacements() {
534   for (auto &I : GlobalValReplacements) {
535     llvm::GlobalValue *GV = I.first;
536     llvm::Constant *C = I.second;
537 
538     GV->replaceAllUsesWith(C);
539     GV->eraseFromParent();
540   }
541 }
542 
543 // This is only used in aliases that we created and we know they have a
544 // linear structure.
545 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
546   const llvm::Constant *C;
547   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
548     C = GA->getAliasee();
549   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
550     C = GI->getResolver();
551   else
552     return GV;
553 
554   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
555   if (!AliaseeGV)
556     return nullptr;
557 
558   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
559   if (FinalGV == GV)
560     return nullptr;
561 
562   return FinalGV;
563 }
564 
565 static bool checkAliasedGlobal(
566     DiagnosticsEngine &Diags, SourceLocation Location, bool IsIFunc,
567     const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
568     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
569     SourceRange AliasRange) {
570   GV = getAliasedGlobal(Alias);
571   if (!GV) {
572     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
573     return false;
574   }
575 
576   if (GV->isDeclaration()) {
577     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
578     Diags.Report(Location, diag::note_alias_requires_mangled_name)
579         << IsIFunc << IsIFunc;
580     // Provide a note if the given function is not found and exists as a
581     // mangled name.
582     for (const auto &[Decl, Name] : MangledDeclNames) {
583       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
584         if (ND->getName() == GV->getName()) {
585           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
586               << Name
587               << FixItHint::CreateReplacement(
588                      AliasRange,
589                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
590                          .str());
591         }
592       }
593     }
594     return false;
595   }
596 
597   if (IsIFunc) {
598     // Check resolver function type.
599     const auto *F = dyn_cast<llvm::Function>(GV);
600     if (!F) {
601       Diags.Report(Location, diag::err_alias_to_undefined)
602           << IsIFunc << IsIFunc;
603       return false;
604     }
605 
606     llvm::FunctionType *FTy = F->getFunctionType();
607     if (!FTy->getReturnType()->isPointerTy()) {
608       Diags.Report(Location, diag::err_ifunc_resolver_return);
609       return false;
610     }
611   }
612 
613   return true;
614 }
615 
616 void CodeGenModule::checkAliases() {
617   // Check if the constructed aliases are well formed. It is really unfortunate
618   // that we have to do this in CodeGen, but we only construct mangled names
619   // and aliases during codegen.
620   bool Error = false;
621   DiagnosticsEngine &Diags = getDiags();
622   for (const GlobalDecl &GD : Aliases) {
623     const auto *D = cast<ValueDecl>(GD.getDecl());
624     SourceLocation Location;
625     SourceRange Range;
626     bool IsIFunc = D->hasAttr<IFuncAttr>();
627     if (const Attr *A = D->getDefiningAttr()) {
628       Location = A->getLocation();
629       Range = A->getRange();
630     } else
631       llvm_unreachable("Not an alias or ifunc?");
632 
633     StringRef MangledName = getMangledName(GD);
634     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
635     const llvm::GlobalValue *GV = nullptr;
636     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV,
637                             MangledDeclNames, Range)) {
638       Error = true;
639       continue;
640     }
641 
642     llvm::Constant *Aliasee =
643         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
644                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
645 
646     llvm::GlobalValue *AliaseeGV;
647     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
648       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
649     else
650       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
651 
652     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
653       StringRef AliasSection = SA->getName();
654       if (AliasSection != AliaseeGV->getSection())
655         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
656             << AliasSection << IsIFunc << IsIFunc;
657     }
658 
659     // We have to handle alias to weak aliases in here. LLVM itself disallows
660     // this since the object semantics would not match the IL one. For
661     // compatibility with gcc we implement it by just pointing the alias
662     // to its aliasee's aliasee. We also warn, since the user is probably
663     // expecting the link to be weak.
664     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
665       if (GA->isInterposable()) {
666         Diags.Report(Location, diag::warn_alias_to_weak_alias)
667             << GV->getName() << GA->getName() << IsIFunc;
668         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
669             GA->getAliasee(), Alias->getType());
670 
671         if (IsIFunc)
672           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
673         else
674           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
675       }
676     }
677   }
678   if (!Error)
679     return;
680 
681   for (const GlobalDecl &GD : Aliases) {
682     StringRef MangledName = getMangledName(GD);
683     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
684     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
685     Alias->eraseFromParent();
686   }
687 }
688 
689 void CodeGenModule::clear() {
690   DeferredDeclsToEmit.clear();
691   EmittedDeferredDecls.clear();
692   if (OpenMPRuntime)
693     OpenMPRuntime->clear();
694 }
695 
696 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
697                                        StringRef MainFile) {
698   if (!hasDiagnostics())
699     return;
700   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
701     if (MainFile.empty())
702       MainFile = "<stdin>";
703     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
704   } else {
705     if (Mismatched > 0)
706       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
707 
708     if (Missing > 0)
709       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
710   }
711 }
712 
713 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
714                                              llvm::Module &M) {
715   if (!LO.VisibilityFromDLLStorageClass)
716     return;
717 
718   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
719       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
720   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
721       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
722   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
723       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
724   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
725       CodeGenModule::GetLLVMVisibility(
726           LO.getExternDeclNoDLLStorageClassVisibility());
727 
728   for (llvm::GlobalValue &GV : M.global_values()) {
729     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
730       continue;
731 
732     // Reset DSO locality before setting the visibility. This removes
733     // any effects that visibility options and annotations may have
734     // had on the DSO locality. Setting the visibility will implicitly set
735     // appropriate globals to DSO Local; however, this will be pessimistic
736     // w.r.t. to the normal compiler IRGen.
737     GV.setDSOLocal(false);
738 
739     if (GV.isDeclarationForLinker()) {
740       GV.setVisibility(GV.getDLLStorageClass() ==
741                                llvm::GlobalValue::DLLImportStorageClass
742                            ? ExternDeclDLLImportVisibility
743                            : ExternDeclNoDLLStorageClassVisibility);
744     } else {
745       GV.setVisibility(GV.getDLLStorageClass() ==
746                                llvm::GlobalValue::DLLExportStorageClass
747                            ? DLLExportVisibility
748                            : NoDLLStorageClassVisibility);
749     }
750 
751     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
752   }
753 }
754 
755 void CodeGenModule::Release() {
756   Module *Primary = getContext().getCurrentNamedModule();
757   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
758     EmitModuleInitializers(Primary);
759   EmitDeferred();
760   DeferredDecls.insert(EmittedDeferredDecls.begin(),
761                        EmittedDeferredDecls.end());
762   EmittedDeferredDecls.clear();
763   EmitVTablesOpportunistically();
764   applyGlobalValReplacements();
765   applyReplacements();
766   emitMultiVersionFunctions();
767 
768   if (Context.getLangOpts().IncrementalExtensions &&
769       GlobalTopLevelStmtBlockInFlight.first) {
770     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
771     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
772     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
773   }
774 
775   // Module implementations are initialized the same way as a regular TU that
776   // imports one or more modules.
777   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
778     EmitCXXModuleInitFunc(Primary);
779   else
780     EmitCXXGlobalInitFunc();
781   EmitCXXGlobalCleanUpFunc();
782   registerGlobalDtorsWithAtExit();
783   EmitCXXThreadLocalInitFunc();
784   if (ObjCRuntime)
785     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
786       AddGlobalCtor(ObjCInitFunction);
787   if (Context.getLangOpts().CUDA && CUDARuntime) {
788     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
789       AddGlobalCtor(CudaCtorFunction);
790   }
791   if (OpenMPRuntime) {
792     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
793             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
794       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
795     }
796     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
797     OpenMPRuntime->clear();
798   }
799   if (PGOReader) {
800     getModule().setProfileSummary(
801         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
802         llvm::ProfileSummary::PSK_Instr);
803     if (PGOStats.hasDiagnostics())
804       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
805   }
806   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
807     return L.LexOrder < R.LexOrder;
808   });
809   EmitCtorList(GlobalCtors, "llvm.global_ctors");
810   EmitCtorList(GlobalDtors, "llvm.global_dtors");
811   EmitGlobalAnnotations();
812   EmitStaticExternCAliases();
813   checkAliases();
814   EmitDeferredUnusedCoverageMappings();
815   CodeGenPGO(*this).setValueProfilingFlag(getModule());
816   if (CoverageMapping)
817     CoverageMapping->emit();
818   if (CodeGenOpts.SanitizeCfiCrossDso) {
819     CodeGenFunction(*this).EmitCfiCheckFail();
820     CodeGenFunction(*this).EmitCfiCheckStub();
821   }
822   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
823     finalizeKCFITypes();
824   emitAtAvailableLinkGuard();
825   if (Context.getTargetInfo().getTriple().isWasm())
826     EmitMainVoidAlias();
827 
828   if (getTriple().isAMDGPU()) {
829     // Emit amdgpu_code_object_version module flag, which is code object version
830     // times 100.
831     if (getTarget().getTargetOpts().CodeObjectVersion !=
832         TargetOptions::COV_None) {
833       getModule().addModuleFlag(llvm::Module::Error,
834                                 "amdgpu_code_object_version",
835                                 getTarget().getTargetOpts().CodeObjectVersion);
836     }
837 
838     // Currently, "-mprintf-kind" option is only supported for HIP
839     if (LangOpts.HIP) {
840       auto *MDStr = llvm::MDString::get(
841           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
842                              TargetOptions::AMDGPUPrintfKind::Hostcall)
843                                 ? "hostcall"
844                                 : "buffered");
845       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
846                                 MDStr);
847     }
848   }
849 
850   // Emit a global array containing all external kernels or device variables
851   // used by host functions and mark it as used for CUDA/HIP. This is necessary
852   // to get kernels or device variables in archives linked in even if these
853   // kernels or device variables are only used in host functions.
854   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
855     SmallVector<llvm::Constant *, 8> UsedArray;
856     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
857       GlobalDecl GD;
858       if (auto *FD = dyn_cast<FunctionDecl>(D))
859         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
860       else
861         GD = GlobalDecl(D);
862       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
863           GetAddrOfGlobal(GD), Int8PtrTy));
864     }
865 
866     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
867 
868     auto *GV = new llvm::GlobalVariable(
869         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
870         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
871     addCompilerUsedGlobal(GV);
872   }
873 
874   emitLLVMUsed();
875   if (SanStats)
876     SanStats->finish();
877 
878   if (CodeGenOpts.Autolink &&
879       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
880     EmitModuleLinkOptions();
881   }
882 
883   // On ELF we pass the dependent library specifiers directly to the linker
884   // without manipulating them. This is in contrast to other platforms where
885   // they are mapped to a specific linker option by the compiler. This
886   // difference is a result of the greater variety of ELF linkers and the fact
887   // that ELF linkers tend to handle libraries in a more complicated fashion
888   // than on other platforms. This forces us to defer handling the dependent
889   // libs to the linker.
890   //
891   // CUDA/HIP device and host libraries are different. Currently there is no
892   // way to differentiate dependent libraries for host or device. Existing
893   // usage of #pragma comment(lib, *) is intended for host libraries on
894   // Windows. Therefore emit llvm.dependent-libraries only for host.
895   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
896     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
897     for (auto *MD : ELFDependentLibraries)
898       NMD->addOperand(MD);
899   }
900 
901   // Record mregparm value now so it is visible through rest of codegen.
902   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
903     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
904                               CodeGenOpts.NumRegisterParameters);
905 
906   if (CodeGenOpts.DwarfVersion) {
907     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
908                               CodeGenOpts.DwarfVersion);
909   }
910 
911   if (CodeGenOpts.Dwarf64)
912     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
913 
914   if (Context.getLangOpts().SemanticInterposition)
915     // Require various optimization to respect semantic interposition.
916     getModule().setSemanticInterposition(true);
917 
918   if (CodeGenOpts.EmitCodeView) {
919     // Indicate that we want CodeView in the metadata.
920     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
921   }
922   if (CodeGenOpts.CodeViewGHash) {
923     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
924   }
925   if (CodeGenOpts.ControlFlowGuard) {
926     // Function ID tables and checks for Control Flow Guard (cfguard=2).
927     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
928   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
929     // Function ID tables for Control Flow Guard (cfguard=1).
930     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
931   }
932   if (CodeGenOpts.EHContGuard) {
933     // Function ID tables for EH Continuation Guard.
934     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
935   }
936   if (Context.getLangOpts().Kernel) {
937     // Note if we are compiling with /kernel.
938     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
939   }
940   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
941     // We don't support LTO with 2 with different StrictVTablePointers
942     // FIXME: we could support it by stripping all the information introduced
943     // by StrictVTablePointers.
944 
945     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
946 
947     llvm::Metadata *Ops[2] = {
948               llvm::MDString::get(VMContext, "StrictVTablePointers"),
949               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
950                   llvm::Type::getInt32Ty(VMContext), 1))};
951 
952     getModule().addModuleFlag(llvm::Module::Require,
953                               "StrictVTablePointersRequirement",
954                               llvm::MDNode::get(VMContext, Ops));
955   }
956   if (getModuleDebugInfo())
957     // We support a single version in the linked module. The LLVM
958     // parser will drop debug info with a different version number
959     // (and warn about it, too).
960     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
961                               llvm::DEBUG_METADATA_VERSION);
962 
963   // We need to record the widths of enums and wchar_t, so that we can generate
964   // the correct build attributes in the ARM backend. wchar_size is also used by
965   // TargetLibraryInfo.
966   uint64_t WCharWidth =
967       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
968   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
969 
970   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
971   if (   Arch == llvm::Triple::arm
972       || Arch == llvm::Triple::armeb
973       || Arch == llvm::Triple::thumb
974       || Arch == llvm::Triple::thumbeb) {
975     // The minimum width of an enum in bytes
976     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
977     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
978   }
979 
980   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
981     StringRef ABIStr = Target.getABI();
982     llvm::LLVMContext &Ctx = TheModule.getContext();
983     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
984                               llvm::MDString::get(Ctx, ABIStr));
985   }
986 
987   if (CodeGenOpts.SanitizeCfiCrossDso) {
988     // Indicate that we want cross-DSO control flow integrity checks.
989     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
990   }
991 
992   if (CodeGenOpts.WholeProgramVTables) {
993     // Indicate whether VFE was enabled for this module, so that the
994     // vcall_visibility metadata added under whole program vtables is handled
995     // appropriately in the optimizer.
996     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
997                               CodeGenOpts.VirtualFunctionElimination);
998   }
999 
1000   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1001     getModule().addModuleFlag(llvm::Module::Override,
1002                               "CFI Canonical Jump Tables",
1003                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1004   }
1005 
1006   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1007     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1008     // KCFI assumes patchable-function-prefix is the same for all indirectly
1009     // called functions. Store the expected offset for code generation.
1010     if (CodeGenOpts.PatchableFunctionEntryOffset)
1011       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1012                                 CodeGenOpts.PatchableFunctionEntryOffset);
1013   }
1014 
1015   if (CodeGenOpts.CFProtectionReturn &&
1016       Target.checkCFProtectionReturnSupported(getDiags())) {
1017     // Indicate that we want to instrument return control flow protection.
1018     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1019                               1);
1020   }
1021 
1022   if (CodeGenOpts.CFProtectionBranch &&
1023       Target.checkCFProtectionBranchSupported(getDiags())) {
1024     // Indicate that we want to instrument branch control flow protection.
1025     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1026                               1);
1027   }
1028 
1029   if (CodeGenOpts.FunctionReturnThunks)
1030     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1031 
1032   if (CodeGenOpts.IndirectBranchCSPrefix)
1033     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1034 
1035   // Add module metadata for return address signing (ignoring
1036   // non-leaf/all) and stack tagging. These are actually turned on by function
1037   // attributes, but we use module metadata to emit build attributes. This is
1038   // needed for LTO, where the function attributes are inside bitcode
1039   // serialised into a global variable by the time build attributes are
1040   // emitted, so we can't access them. LTO objects could be compiled with
1041   // different flags therefore module flags are set to "Min" behavior to achieve
1042   // the same end result of the normal build where e.g BTI is off if any object
1043   // doesn't support it.
1044   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1045       LangOpts.getSignReturnAddressScope() !=
1046           LangOptions::SignReturnAddressScopeKind::None)
1047     getModule().addModuleFlag(llvm::Module::Override,
1048                               "sign-return-address-buildattr", 1);
1049   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1050     getModule().addModuleFlag(llvm::Module::Override,
1051                               "tag-stack-memory-buildattr", 1);
1052 
1053   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
1054       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
1055       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
1056       Arch == llvm::Triple::aarch64_be) {
1057     if (LangOpts.BranchTargetEnforcement)
1058       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1059                                 1);
1060     if (LangOpts.hasSignReturnAddress())
1061       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1062     if (LangOpts.isSignReturnAddressScopeAll())
1063       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1064                                 1);
1065     if (!LangOpts.isSignReturnAddressWithAKey())
1066       getModule().addModuleFlag(llvm::Module::Min,
1067                                 "sign-return-address-with-bkey", 1);
1068   }
1069 
1070   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1071     llvm::LLVMContext &Ctx = TheModule.getContext();
1072     getModule().addModuleFlag(
1073         llvm::Module::Error, "MemProfProfileFilename",
1074         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1075   }
1076 
1077   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1078     // Indicate whether __nvvm_reflect should be configured to flush denormal
1079     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1080     // property.)
1081     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1082                               CodeGenOpts.FP32DenormalMode.Output !=
1083                                   llvm::DenormalMode::IEEE);
1084   }
1085 
1086   if (LangOpts.EHAsynch)
1087     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1088 
1089   // Indicate whether this Module was compiled with -fopenmp
1090   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1091     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1092   if (getLangOpts().OpenMPIsTargetDevice)
1093     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1094                               LangOpts.OpenMP);
1095 
1096   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1097   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1098     EmitOpenCLMetadata();
1099     // Emit SPIR version.
1100     if (getTriple().isSPIR()) {
1101       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1102       // opencl.spir.version named metadata.
1103       // C++ for OpenCL has a distinct mapping for version compatibility with
1104       // OpenCL.
1105       auto Version = LangOpts.getOpenCLCompatibleVersion();
1106       llvm::Metadata *SPIRVerElts[] = {
1107           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1108               Int32Ty, Version / 100)),
1109           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1110               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1111       llvm::NamedMDNode *SPIRVerMD =
1112           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1113       llvm::LLVMContext &Ctx = TheModule.getContext();
1114       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1115     }
1116   }
1117 
1118   // HLSL related end of code gen work items.
1119   if (LangOpts.HLSL)
1120     getHLSLRuntime().finishCodeGen();
1121 
1122   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1123     assert(PLevel < 3 && "Invalid PIC Level");
1124     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1125     if (Context.getLangOpts().PIE)
1126       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1127   }
1128 
1129   if (getCodeGenOpts().CodeModel.size() > 0) {
1130     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1131                   .Case("tiny", llvm::CodeModel::Tiny)
1132                   .Case("small", llvm::CodeModel::Small)
1133                   .Case("kernel", llvm::CodeModel::Kernel)
1134                   .Case("medium", llvm::CodeModel::Medium)
1135                   .Case("large", llvm::CodeModel::Large)
1136                   .Default(~0u);
1137     if (CM != ~0u) {
1138       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1139       getModule().setCodeModel(codeModel);
1140     }
1141   }
1142 
1143   if (CodeGenOpts.NoPLT)
1144     getModule().setRtLibUseGOT();
1145   if (getTriple().isOSBinFormatELF() &&
1146       CodeGenOpts.DirectAccessExternalData !=
1147           getModule().getDirectAccessExternalData()) {
1148     getModule().setDirectAccessExternalData(
1149         CodeGenOpts.DirectAccessExternalData);
1150   }
1151   if (CodeGenOpts.UnwindTables)
1152     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1153 
1154   switch (CodeGenOpts.getFramePointer()) {
1155   case CodeGenOptions::FramePointerKind::None:
1156     // 0 ("none") is the default.
1157     break;
1158   case CodeGenOptions::FramePointerKind::NonLeaf:
1159     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1160     break;
1161   case CodeGenOptions::FramePointerKind::All:
1162     getModule().setFramePointer(llvm::FramePointerKind::All);
1163     break;
1164   }
1165 
1166   SimplifyPersonality();
1167 
1168   if (getCodeGenOpts().EmitDeclMetadata)
1169     EmitDeclMetadata();
1170 
1171   if (getCodeGenOpts().CoverageNotesFile.size() ||
1172       getCodeGenOpts().CoverageDataFile.size())
1173     EmitCoverageFile();
1174 
1175   if (CGDebugInfo *DI = getModuleDebugInfo())
1176     DI->finalize();
1177 
1178   if (getCodeGenOpts().EmitVersionIdentMetadata)
1179     EmitVersionIdentMetadata();
1180 
1181   if (!getCodeGenOpts().RecordCommandLine.empty())
1182     EmitCommandLineMetadata();
1183 
1184   if (!getCodeGenOpts().StackProtectorGuard.empty())
1185     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1186   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1187     getModule().setStackProtectorGuardReg(
1188         getCodeGenOpts().StackProtectorGuardReg);
1189   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1190     getModule().setStackProtectorGuardSymbol(
1191         getCodeGenOpts().StackProtectorGuardSymbol);
1192   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1193     getModule().setStackProtectorGuardOffset(
1194         getCodeGenOpts().StackProtectorGuardOffset);
1195   if (getCodeGenOpts().StackAlignment)
1196     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1197   if (getCodeGenOpts().SkipRaxSetup)
1198     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1199 
1200   if (getContext().getTargetInfo().getMaxTLSAlign())
1201     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1202                               getContext().getTargetInfo().getMaxTLSAlign());
1203 
1204   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1205 
1206   EmitBackendOptionsMetadata(getCodeGenOpts());
1207 
1208   // If there is device offloading code embed it in the host now.
1209   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1210 
1211   // Set visibility from DLL storage class
1212   // We do this at the end of LLVM IR generation; after any operation
1213   // that might affect the DLL storage class or the visibility, and
1214   // before anything that might act on these.
1215   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1216 }
1217 
1218 void CodeGenModule::EmitOpenCLMetadata() {
1219   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1220   // opencl.ocl.version named metadata node.
1221   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1222   auto Version = LangOpts.getOpenCLCompatibleVersion();
1223   llvm::Metadata *OCLVerElts[] = {
1224       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1225           Int32Ty, Version / 100)),
1226       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1227           Int32Ty, (Version % 100) / 10))};
1228   llvm::NamedMDNode *OCLVerMD =
1229       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1230   llvm::LLVMContext &Ctx = TheModule.getContext();
1231   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1232 }
1233 
1234 void CodeGenModule::EmitBackendOptionsMetadata(
1235     const CodeGenOptions &CodeGenOpts) {
1236   if (getTriple().isRISCV()) {
1237     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1238                               CodeGenOpts.SmallDataLimit);
1239   }
1240 }
1241 
1242 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1243   // Make sure that this type is translated.
1244   Types.UpdateCompletedType(TD);
1245 }
1246 
1247 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1248   // Make sure that this type is translated.
1249   Types.RefreshTypeCacheForClass(RD);
1250 }
1251 
1252 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1253   if (!TBAA)
1254     return nullptr;
1255   return TBAA->getTypeInfo(QTy);
1256 }
1257 
1258 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1259   if (!TBAA)
1260     return TBAAAccessInfo();
1261   if (getLangOpts().CUDAIsDevice) {
1262     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1263     // access info.
1264     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1265       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1266           nullptr)
1267         return TBAAAccessInfo();
1268     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1269       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1270           nullptr)
1271         return TBAAAccessInfo();
1272     }
1273   }
1274   return TBAA->getAccessInfo(AccessType);
1275 }
1276 
1277 TBAAAccessInfo
1278 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1279   if (!TBAA)
1280     return TBAAAccessInfo();
1281   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1282 }
1283 
1284 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1285   if (!TBAA)
1286     return nullptr;
1287   return TBAA->getTBAAStructInfo(QTy);
1288 }
1289 
1290 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1291   if (!TBAA)
1292     return nullptr;
1293   return TBAA->getBaseTypeInfo(QTy);
1294 }
1295 
1296 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1297   if (!TBAA)
1298     return nullptr;
1299   return TBAA->getAccessTagInfo(Info);
1300 }
1301 
1302 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1303                                                    TBAAAccessInfo TargetInfo) {
1304   if (!TBAA)
1305     return TBAAAccessInfo();
1306   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1307 }
1308 
1309 TBAAAccessInfo
1310 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1311                                                    TBAAAccessInfo InfoB) {
1312   if (!TBAA)
1313     return TBAAAccessInfo();
1314   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1315 }
1316 
1317 TBAAAccessInfo
1318 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1319                                               TBAAAccessInfo SrcInfo) {
1320   if (!TBAA)
1321     return TBAAAccessInfo();
1322   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1323 }
1324 
1325 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1326                                                 TBAAAccessInfo TBAAInfo) {
1327   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1328     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1329 }
1330 
1331 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1332     llvm::Instruction *I, const CXXRecordDecl *RD) {
1333   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1334                  llvm::MDNode::get(getLLVMContext(), {}));
1335 }
1336 
1337 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1338   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1339   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1340 }
1341 
1342 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1343 /// specified stmt yet.
1344 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1345   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1346                                                "cannot compile this %0 yet");
1347   std::string Msg = Type;
1348   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1349       << Msg << S->getSourceRange();
1350 }
1351 
1352 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1353 /// specified decl yet.
1354 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1355   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1356                                                "cannot compile this %0 yet");
1357   std::string Msg = Type;
1358   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1359 }
1360 
1361 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1362   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1363 }
1364 
1365 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1366                                         const NamedDecl *D) const {
1367   // Internal definitions always have default visibility.
1368   if (GV->hasLocalLinkage()) {
1369     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1370     return;
1371   }
1372   if (!D)
1373     return;
1374   // Set visibility for definitions, and for declarations if requested globally
1375   // or set explicitly.
1376   LinkageInfo LV = D->getLinkageAndVisibility();
1377   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1378     // Reject incompatible dlllstorage and visibility annotations.
1379     if (!LV.isVisibilityExplicit())
1380       return;
1381     if (GV->hasDLLExportStorageClass()) {
1382       if (LV.getVisibility() == HiddenVisibility)
1383         getDiags().Report(D->getLocation(),
1384                           diag::err_hidden_visibility_dllexport);
1385     } else if (LV.getVisibility() != DefaultVisibility) {
1386       getDiags().Report(D->getLocation(),
1387                         diag::err_non_default_visibility_dllimport);
1388     }
1389     return;
1390   }
1391 
1392   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1393       !GV->isDeclarationForLinker())
1394     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1395 }
1396 
1397 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1398                                  llvm::GlobalValue *GV) {
1399   if (GV->hasLocalLinkage())
1400     return true;
1401 
1402   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1403     return true;
1404 
1405   // DLLImport explicitly marks the GV as external.
1406   if (GV->hasDLLImportStorageClass())
1407     return false;
1408 
1409   const llvm::Triple &TT = CGM.getTriple();
1410   if (TT.isWindowsGNUEnvironment()) {
1411     // In MinGW, variables without DLLImport can still be automatically
1412     // imported from a DLL by the linker; don't mark variables that
1413     // potentially could come from another DLL as DSO local.
1414 
1415     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1416     // (and this actually happens in the public interface of libstdc++), so
1417     // such variables can't be marked as DSO local. (Native TLS variables
1418     // can't be dllimported at all, though.)
1419     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1420         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1421       return false;
1422   }
1423 
1424   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1425   // remain unresolved in the link, they can be resolved to zero, which is
1426   // outside the current DSO.
1427   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1428     return false;
1429 
1430   // Every other GV is local on COFF.
1431   // Make an exception for windows OS in the triple: Some firmware builds use
1432   // *-win32-macho triples. This (accidentally?) produced windows relocations
1433   // without GOT tables in older clang versions; Keep this behaviour.
1434   // FIXME: even thread local variables?
1435   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1436     return true;
1437 
1438   // Only handle COFF and ELF for now.
1439   if (!TT.isOSBinFormatELF())
1440     return false;
1441 
1442   // If this is not an executable, don't assume anything is local.
1443   const auto &CGOpts = CGM.getCodeGenOpts();
1444   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1445   const auto &LOpts = CGM.getLangOpts();
1446   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1447     // On ELF, if -fno-semantic-interposition is specified and the target
1448     // supports local aliases, there will be neither CC1
1449     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1450     // dso_local on the function if using a local alias is preferable (can avoid
1451     // PLT indirection).
1452     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1453       return false;
1454     return !(CGM.getLangOpts().SemanticInterposition ||
1455              CGM.getLangOpts().HalfNoSemanticInterposition);
1456   }
1457 
1458   // A definition cannot be preempted from an executable.
1459   if (!GV->isDeclarationForLinker())
1460     return true;
1461 
1462   // Most PIC code sequences that assume that a symbol is local cannot produce a
1463   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1464   // depended, it seems worth it to handle it here.
1465   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1466     return false;
1467 
1468   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1469   if (TT.isPPC64())
1470     return false;
1471 
1472   if (CGOpts.DirectAccessExternalData) {
1473     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1474     // for non-thread-local variables. If the symbol is not defined in the
1475     // executable, a copy relocation will be needed at link time. dso_local is
1476     // excluded for thread-local variables because they generally don't support
1477     // copy relocations.
1478     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1479       if (!Var->isThreadLocal())
1480         return true;
1481 
1482     // -fno-pic sets dso_local on a function declaration to allow direct
1483     // accesses when taking its address (similar to a data symbol). If the
1484     // function is not defined in the executable, a canonical PLT entry will be
1485     // needed at link time. -fno-direct-access-external-data can avoid the
1486     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1487     // it could just cause trouble without providing perceptible benefits.
1488     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1489       return true;
1490   }
1491 
1492   // If we can use copy relocations we can assume it is local.
1493 
1494   // Otherwise don't assume it is local.
1495   return false;
1496 }
1497 
1498 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1499   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1500 }
1501 
1502 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1503                                           GlobalDecl GD) const {
1504   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1505   // C++ destructors have a few C++ ABI specific special cases.
1506   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1507     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1508     return;
1509   }
1510   setDLLImportDLLExport(GV, D);
1511 }
1512 
1513 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1514                                           const NamedDecl *D) const {
1515   if (D && D->isExternallyVisible()) {
1516     if (D->hasAttr<DLLImportAttr>())
1517       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1518     else if ((D->hasAttr<DLLExportAttr>() ||
1519               shouldMapVisibilityToDLLExport(D)) &&
1520              !GV->isDeclarationForLinker())
1521       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1522   }
1523 }
1524 
1525 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1526                                     GlobalDecl GD) const {
1527   setDLLImportDLLExport(GV, GD);
1528   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1529 }
1530 
1531 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1532                                     const NamedDecl *D) const {
1533   setDLLImportDLLExport(GV, D);
1534   setGVPropertiesAux(GV, D);
1535 }
1536 
1537 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1538                                        const NamedDecl *D) const {
1539   setGlobalVisibility(GV, D);
1540   setDSOLocal(GV);
1541   GV->setPartition(CodeGenOpts.SymbolPartition);
1542 }
1543 
1544 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1545   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1546       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1547       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1548       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1549       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1550 }
1551 
1552 llvm::GlobalVariable::ThreadLocalMode
1553 CodeGenModule::GetDefaultLLVMTLSModel() const {
1554   switch (CodeGenOpts.getDefaultTLSModel()) {
1555   case CodeGenOptions::GeneralDynamicTLSModel:
1556     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1557   case CodeGenOptions::LocalDynamicTLSModel:
1558     return llvm::GlobalVariable::LocalDynamicTLSModel;
1559   case CodeGenOptions::InitialExecTLSModel:
1560     return llvm::GlobalVariable::InitialExecTLSModel;
1561   case CodeGenOptions::LocalExecTLSModel:
1562     return llvm::GlobalVariable::LocalExecTLSModel;
1563   }
1564   llvm_unreachable("Invalid TLS model!");
1565 }
1566 
1567 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1568   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1569 
1570   llvm::GlobalValue::ThreadLocalMode TLM;
1571   TLM = GetDefaultLLVMTLSModel();
1572 
1573   // Override the TLS model if it is explicitly specified.
1574   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1575     TLM = GetLLVMTLSModel(Attr->getModel());
1576   }
1577 
1578   GV->setThreadLocalMode(TLM);
1579 }
1580 
1581 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1582                                           StringRef Name) {
1583   const TargetInfo &Target = CGM.getTarget();
1584   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1585 }
1586 
1587 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1588                                                  const CPUSpecificAttr *Attr,
1589                                                  unsigned CPUIndex,
1590                                                  raw_ostream &Out) {
1591   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1592   // supported.
1593   if (Attr)
1594     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1595   else if (CGM.getTarget().supportsIFunc())
1596     Out << ".resolver";
1597 }
1598 
1599 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1600                                         const TargetVersionAttr *Attr,
1601                                         raw_ostream &Out) {
1602   if (Attr->isDefaultVersion())
1603     return;
1604   Out << "._";
1605   const TargetInfo &TI = CGM.getTarget();
1606   llvm::SmallVector<StringRef, 8> Feats;
1607   Attr->getFeatures(Feats);
1608   llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) {
1609     return TI.multiVersionSortPriority(FeatL) <
1610            TI.multiVersionSortPriority(FeatR);
1611   });
1612   for (const auto &Feat : Feats) {
1613     Out << 'M';
1614     Out << Feat;
1615   }
1616 }
1617 
1618 static void AppendTargetMangling(const CodeGenModule &CGM,
1619                                  const TargetAttr *Attr, raw_ostream &Out) {
1620   if (Attr->isDefaultVersion())
1621     return;
1622 
1623   Out << '.';
1624   const TargetInfo &Target = CGM.getTarget();
1625   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1626   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1627     // Multiversioning doesn't allow "no-${feature}", so we can
1628     // only have "+" prefixes here.
1629     assert(LHS.startswith("+") && RHS.startswith("+") &&
1630            "Features should always have a prefix.");
1631     return Target.multiVersionSortPriority(LHS.substr(1)) >
1632            Target.multiVersionSortPriority(RHS.substr(1));
1633   });
1634 
1635   bool IsFirst = true;
1636 
1637   if (!Info.CPU.empty()) {
1638     IsFirst = false;
1639     Out << "arch_" << Info.CPU;
1640   }
1641 
1642   for (StringRef Feat : Info.Features) {
1643     if (!IsFirst)
1644       Out << '_';
1645     IsFirst = false;
1646     Out << Feat.substr(1);
1647   }
1648 }
1649 
1650 // Returns true if GD is a function decl with internal linkage and
1651 // needs a unique suffix after the mangled name.
1652 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1653                                         CodeGenModule &CGM) {
1654   const Decl *D = GD.getDecl();
1655   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1656          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1657 }
1658 
1659 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1660                                        const TargetClonesAttr *Attr,
1661                                        unsigned VersionIndex,
1662                                        raw_ostream &Out) {
1663   const TargetInfo &TI = CGM.getTarget();
1664   if (TI.getTriple().isAArch64()) {
1665     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1666     if (FeatureStr == "default")
1667       return;
1668     Out << "._";
1669     SmallVector<StringRef, 8> Features;
1670     FeatureStr.split(Features, "+");
1671     llvm::stable_sort(Features,
1672                       [&TI](const StringRef FeatL, const StringRef FeatR) {
1673                         return TI.multiVersionSortPriority(FeatL) <
1674                                TI.multiVersionSortPriority(FeatR);
1675                       });
1676     for (auto &Feat : Features) {
1677       Out << 'M';
1678       Out << Feat;
1679     }
1680   } else {
1681     Out << '.';
1682     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1683     if (FeatureStr.startswith("arch="))
1684       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1685     else
1686       Out << FeatureStr;
1687 
1688     Out << '.' << Attr->getMangledIndex(VersionIndex);
1689   }
1690 }
1691 
1692 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1693                                       const NamedDecl *ND,
1694                                       bool OmitMultiVersionMangling = false) {
1695   SmallString<256> Buffer;
1696   llvm::raw_svector_ostream Out(Buffer);
1697   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1698   if (!CGM.getModuleNameHash().empty())
1699     MC.needsUniqueInternalLinkageNames();
1700   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1701   if (ShouldMangle)
1702     MC.mangleName(GD.getWithDecl(ND), Out);
1703   else {
1704     IdentifierInfo *II = ND->getIdentifier();
1705     assert(II && "Attempt to mangle unnamed decl.");
1706     const auto *FD = dyn_cast<FunctionDecl>(ND);
1707 
1708     if (FD &&
1709         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1710       Out << "__regcall3__" << II->getName();
1711     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1712                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1713       Out << "__device_stub__" << II->getName();
1714     } else {
1715       Out << II->getName();
1716     }
1717   }
1718 
1719   // Check if the module name hash should be appended for internal linkage
1720   // symbols.   This should come before multi-version target suffixes are
1721   // appended. This is to keep the name and module hash suffix of the
1722   // internal linkage function together.  The unique suffix should only be
1723   // added when name mangling is done to make sure that the final name can
1724   // be properly demangled.  For example, for C functions without prototypes,
1725   // name mangling is not done and the unique suffix should not be appeneded
1726   // then.
1727   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1728     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1729            "Hash computed when not explicitly requested");
1730     Out << CGM.getModuleNameHash();
1731   }
1732 
1733   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1734     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1735       switch (FD->getMultiVersionKind()) {
1736       case MultiVersionKind::CPUDispatch:
1737       case MultiVersionKind::CPUSpecific:
1738         AppendCPUSpecificCPUDispatchMangling(CGM,
1739                                              FD->getAttr<CPUSpecificAttr>(),
1740                                              GD.getMultiVersionIndex(), Out);
1741         break;
1742       case MultiVersionKind::Target:
1743         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1744         break;
1745       case MultiVersionKind::TargetVersion:
1746         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1747         break;
1748       case MultiVersionKind::TargetClones:
1749         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1750                                    GD.getMultiVersionIndex(), Out);
1751         break;
1752       case MultiVersionKind::None:
1753         llvm_unreachable("None multiversion type isn't valid here");
1754       }
1755     }
1756 
1757   // Make unique name for device side static file-scope variable for HIP.
1758   if (CGM.getContext().shouldExternalize(ND) &&
1759       CGM.getLangOpts().GPURelocatableDeviceCode &&
1760       CGM.getLangOpts().CUDAIsDevice)
1761     CGM.printPostfixForExternalizedDecl(Out, ND);
1762 
1763   return std::string(Out.str());
1764 }
1765 
1766 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1767                                             const FunctionDecl *FD,
1768                                             StringRef &CurName) {
1769   if (!FD->isMultiVersion())
1770     return;
1771 
1772   // Get the name of what this would be without the 'target' attribute.  This
1773   // allows us to lookup the version that was emitted when this wasn't a
1774   // multiversion function.
1775   std::string NonTargetName =
1776       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1777   GlobalDecl OtherGD;
1778   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1779     assert(OtherGD.getCanonicalDecl()
1780                .getDecl()
1781                ->getAsFunction()
1782                ->isMultiVersion() &&
1783            "Other GD should now be a multiversioned function");
1784     // OtherFD is the version of this function that was mangled BEFORE
1785     // becoming a MultiVersion function.  It potentially needs to be updated.
1786     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1787                                       .getDecl()
1788                                       ->getAsFunction()
1789                                       ->getMostRecentDecl();
1790     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1791     // This is so that if the initial version was already the 'default'
1792     // version, we don't try to update it.
1793     if (OtherName != NonTargetName) {
1794       // Remove instead of erase, since others may have stored the StringRef
1795       // to this.
1796       const auto ExistingRecord = Manglings.find(NonTargetName);
1797       if (ExistingRecord != std::end(Manglings))
1798         Manglings.remove(&(*ExistingRecord));
1799       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1800       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1801           Result.first->first();
1802       // If this is the current decl is being created, make sure we update the name.
1803       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1804         CurName = OtherNameRef;
1805       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1806         Entry->setName(OtherName);
1807     }
1808   }
1809 }
1810 
1811 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1812   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1813 
1814   // Some ABIs don't have constructor variants.  Make sure that base and
1815   // complete constructors get mangled the same.
1816   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1817     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1818       CXXCtorType OrigCtorType = GD.getCtorType();
1819       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1820       if (OrigCtorType == Ctor_Base)
1821         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1822     }
1823   }
1824 
1825   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1826   // static device variable depends on whether the variable is referenced by
1827   // a host or device host function. Therefore the mangled name cannot be
1828   // cached.
1829   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1830     auto FoundName = MangledDeclNames.find(CanonicalGD);
1831     if (FoundName != MangledDeclNames.end())
1832       return FoundName->second;
1833   }
1834 
1835   // Keep the first result in the case of a mangling collision.
1836   const auto *ND = cast<NamedDecl>(GD.getDecl());
1837   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1838 
1839   // Ensure either we have different ABIs between host and device compilations,
1840   // says host compilation following MSVC ABI but device compilation follows
1841   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1842   // mangling should be the same after name stubbing. The later checking is
1843   // very important as the device kernel name being mangled in host-compilation
1844   // is used to resolve the device binaries to be executed. Inconsistent naming
1845   // result in undefined behavior. Even though we cannot check that naming
1846   // directly between host- and device-compilations, the host- and
1847   // device-mangling in host compilation could help catching certain ones.
1848   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1849          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1850          (getContext().getAuxTargetInfo() &&
1851           (getContext().getAuxTargetInfo()->getCXXABI() !=
1852            getContext().getTargetInfo().getCXXABI())) ||
1853          getCUDARuntime().getDeviceSideName(ND) ==
1854              getMangledNameImpl(
1855                  *this,
1856                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1857                  ND));
1858 
1859   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1860   return MangledDeclNames[CanonicalGD] = Result.first->first();
1861 }
1862 
1863 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1864                                              const BlockDecl *BD) {
1865   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1866   const Decl *D = GD.getDecl();
1867 
1868   SmallString<256> Buffer;
1869   llvm::raw_svector_ostream Out(Buffer);
1870   if (!D)
1871     MangleCtx.mangleGlobalBlock(BD,
1872       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1873   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1874     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1875   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1876     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1877   else
1878     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1879 
1880   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1881   return Result.first->first();
1882 }
1883 
1884 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1885   auto it = MangledDeclNames.begin();
1886   while (it != MangledDeclNames.end()) {
1887     if (it->second == Name)
1888       return it->first;
1889     it++;
1890   }
1891   return GlobalDecl();
1892 }
1893 
1894 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1895   return getModule().getNamedValue(Name);
1896 }
1897 
1898 /// AddGlobalCtor - Add a function to the list that will be called before
1899 /// main() runs.
1900 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1901                                   unsigned LexOrder,
1902                                   llvm::Constant *AssociatedData) {
1903   // FIXME: Type coercion of void()* types.
1904   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1905 }
1906 
1907 /// AddGlobalDtor - Add a function to the list that will be called
1908 /// when the module is unloaded.
1909 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1910                                   bool IsDtorAttrFunc) {
1911   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1912       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1913     DtorsUsingAtExit[Priority].push_back(Dtor);
1914     return;
1915   }
1916 
1917   // FIXME: Type coercion of void()* types.
1918   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1919 }
1920 
1921 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1922   if (Fns.empty()) return;
1923 
1924   // Ctor function type is void()*.
1925   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1926   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1927       TheModule.getDataLayout().getProgramAddressSpace());
1928 
1929   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1930   llvm::StructType *CtorStructTy = llvm::StructType::get(
1931       Int32Ty, CtorPFTy, VoidPtrTy);
1932 
1933   // Construct the constructor and destructor arrays.
1934   ConstantInitBuilder builder(*this);
1935   auto ctors = builder.beginArray(CtorStructTy);
1936   for (const auto &I : Fns) {
1937     auto ctor = ctors.beginStruct(CtorStructTy);
1938     ctor.addInt(Int32Ty, I.Priority);
1939     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1940     if (I.AssociatedData)
1941       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1942     else
1943       ctor.addNullPointer(VoidPtrTy);
1944     ctor.finishAndAddTo(ctors);
1945   }
1946 
1947   auto list =
1948     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1949                                 /*constant*/ false,
1950                                 llvm::GlobalValue::AppendingLinkage);
1951 
1952   // The LTO linker doesn't seem to like it when we set an alignment
1953   // on appending variables.  Take it off as a workaround.
1954   list->setAlignment(std::nullopt);
1955 
1956   Fns.clear();
1957 }
1958 
1959 llvm::GlobalValue::LinkageTypes
1960 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1961   const auto *D = cast<FunctionDecl>(GD.getDecl());
1962 
1963   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1964 
1965   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1966     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1967 
1968   if (isa<CXXConstructorDecl>(D) &&
1969       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1970       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1971     // Our approach to inheriting constructors is fundamentally different from
1972     // that used by the MS ABI, so keep our inheriting constructor thunks
1973     // internal rather than trying to pick an unambiguous mangling for them.
1974     return llvm::GlobalValue::InternalLinkage;
1975   }
1976 
1977   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1978 }
1979 
1980 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1981   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1982   if (!MDS) return nullptr;
1983 
1984   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1985 }
1986 
1987 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1988   if (auto *FnType = T->getAs<FunctionProtoType>())
1989     T = getContext().getFunctionType(
1990         FnType->getReturnType(), FnType->getParamTypes(),
1991         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1992 
1993   std::string OutName;
1994   llvm::raw_string_ostream Out(OutName);
1995   getCXXABI().getMangleContext().mangleTypeName(
1996       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
1997 
1998   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
1999     Out << ".normalized";
2000 
2001   return llvm::ConstantInt::get(Int32Ty,
2002                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2003 }
2004 
2005 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2006                                               const CGFunctionInfo &Info,
2007                                               llvm::Function *F, bool IsThunk) {
2008   unsigned CallingConv;
2009   llvm::AttributeList PAL;
2010   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2011                          /*AttrOnCallSite=*/false, IsThunk);
2012   F->setAttributes(PAL);
2013   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2014 }
2015 
2016 static void removeImageAccessQualifier(std::string& TyName) {
2017   std::string ReadOnlyQual("__read_only");
2018   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2019   if (ReadOnlyPos != std::string::npos)
2020     // "+ 1" for the space after access qualifier.
2021     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2022   else {
2023     std::string WriteOnlyQual("__write_only");
2024     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2025     if (WriteOnlyPos != std::string::npos)
2026       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2027     else {
2028       std::string ReadWriteQual("__read_write");
2029       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2030       if (ReadWritePos != std::string::npos)
2031         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2032     }
2033   }
2034 }
2035 
2036 // Returns the address space id that should be produced to the
2037 // kernel_arg_addr_space metadata. This is always fixed to the ids
2038 // as specified in the SPIR 2.0 specification in order to differentiate
2039 // for example in clGetKernelArgInfo() implementation between the address
2040 // spaces with targets without unique mapping to the OpenCL address spaces
2041 // (basically all single AS CPUs).
2042 static unsigned ArgInfoAddressSpace(LangAS AS) {
2043   switch (AS) {
2044   case LangAS::opencl_global:
2045     return 1;
2046   case LangAS::opencl_constant:
2047     return 2;
2048   case LangAS::opencl_local:
2049     return 3;
2050   case LangAS::opencl_generic:
2051     return 4; // Not in SPIR 2.0 specs.
2052   case LangAS::opencl_global_device:
2053     return 5;
2054   case LangAS::opencl_global_host:
2055     return 6;
2056   default:
2057     return 0; // Assume private.
2058   }
2059 }
2060 
2061 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2062                                          const FunctionDecl *FD,
2063                                          CodeGenFunction *CGF) {
2064   assert(((FD && CGF) || (!FD && !CGF)) &&
2065          "Incorrect use - FD and CGF should either be both null or not!");
2066   // Create MDNodes that represent the kernel arg metadata.
2067   // Each MDNode is a list in the form of "key", N number of values which is
2068   // the same number of values as their are kernel arguments.
2069 
2070   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2071 
2072   // MDNode for the kernel argument address space qualifiers.
2073   SmallVector<llvm::Metadata *, 8> addressQuals;
2074 
2075   // MDNode for the kernel argument access qualifiers (images only).
2076   SmallVector<llvm::Metadata *, 8> accessQuals;
2077 
2078   // MDNode for the kernel argument type names.
2079   SmallVector<llvm::Metadata *, 8> argTypeNames;
2080 
2081   // MDNode for the kernel argument base type names.
2082   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2083 
2084   // MDNode for the kernel argument type qualifiers.
2085   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2086 
2087   // MDNode for the kernel argument names.
2088   SmallVector<llvm::Metadata *, 8> argNames;
2089 
2090   if (FD && CGF)
2091     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2092       const ParmVarDecl *parm = FD->getParamDecl(i);
2093       // Get argument name.
2094       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2095 
2096       if (!getLangOpts().OpenCL)
2097         continue;
2098       QualType ty = parm->getType();
2099       std::string typeQuals;
2100 
2101       // Get image and pipe access qualifier:
2102       if (ty->isImageType() || ty->isPipeType()) {
2103         const Decl *PDecl = parm;
2104         if (const auto *TD = ty->getAs<TypedefType>())
2105           PDecl = TD->getDecl();
2106         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2107         if (A && A->isWriteOnly())
2108           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2109         else if (A && A->isReadWrite())
2110           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2111         else
2112           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2113       } else
2114         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2115 
2116       auto getTypeSpelling = [&](QualType Ty) {
2117         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2118 
2119         if (Ty.isCanonical()) {
2120           StringRef typeNameRef = typeName;
2121           // Turn "unsigned type" to "utype"
2122           if (typeNameRef.consume_front("unsigned "))
2123             return std::string("u") + typeNameRef.str();
2124           if (typeNameRef.consume_front("signed "))
2125             return typeNameRef.str();
2126         }
2127 
2128         return typeName;
2129       };
2130 
2131       if (ty->isPointerType()) {
2132         QualType pointeeTy = ty->getPointeeType();
2133 
2134         // Get address qualifier.
2135         addressQuals.push_back(
2136             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2137                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2138 
2139         // Get argument type name.
2140         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2141         std::string baseTypeName =
2142             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2143         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2144         argBaseTypeNames.push_back(
2145             llvm::MDString::get(VMContext, baseTypeName));
2146 
2147         // Get argument type qualifiers:
2148         if (ty.isRestrictQualified())
2149           typeQuals = "restrict";
2150         if (pointeeTy.isConstQualified() ||
2151             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2152           typeQuals += typeQuals.empty() ? "const" : " const";
2153         if (pointeeTy.isVolatileQualified())
2154           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2155       } else {
2156         uint32_t AddrSpc = 0;
2157         bool isPipe = ty->isPipeType();
2158         if (ty->isImageType() || isPipe)
2159           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2160 
2161         addressQuals.push_back(
2162             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2163 
2164         // Get argument type name.
2165         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2166         std::string typeName = getTypeSpelling(ty);
2167         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2168 
2169         // Remove access qualifiers on images
2170         // (as they are inseparable from type in clang implementation,
2171         // but OpenCL spec provides a special query to get access qualifier
2172         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2173         if (ty->isImageType()) {
2174           removeImageAccessQualifier(typeName);
2175           removeImageAccessQualifier(baseTypeName);
2176         }
2177 
2178         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2179         argBaseTypeNames.push_back(
2180             llvm::MDString::get(VMContext, baseTypeName));
2181 
2182         if (isPipe)
2183           typeQuals = "pipe";
2184       }
2185       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2186     }
2187 
2188   if (getLangOpts().OpenCL) {
2189     Fn->setMetadata("kernel_arg_addr_space",
2190                     llvm::MDNode::get(VMContext, addressQuals));
2191     Fn->setMetadata("kernel_arg_access_qual",
2192                     llvm::MDNode::get(VMContext, accessQuals));
2193     Fn->setMetadata("kernel_arg_type",
2194                     llvm::MDNode::get(VMContext, argTypeNames));
2195     Fn->setMetadata("kernel_arg_base_type",
2196                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2197     Fn->setMetadata("kernel_arg_type_qual",
2198                     llvm::MDNode::get(VMContext, argTypeQuals));
2199   }
2200   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2201       getCodeGenOpts().HIPSaveKernelArgName)
2202     Fn->setMetadata("kernel_arg_name",
2203                     llvm::MDNode::get(VMContext, argNames));
2204 }
2205 
2206 /// Determines whether the language options require us to model
2207 /// unwind exceptions.  We treat -fexceptions as mandating this
2208 /// except under the fragile ObjC ABI with only ObjC exceptions
2209 /// enabled.  This means, for example, that C with -fexceptions
2210 /// enables this.
2211 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2212   // If exceptions are completely disabled, obviously this is false.
2213   if (!LangOpts.Exceptions) return false;
2214 
2215   // If C++ exceptions are enabled, this is true.
2216   if (LangOpts.CXXExceptions) return true;
2217 
2218   // If ObjC exceptions are enabled, this depends on the ABI.
2219   if (LangOpts.ObjCExceptions) {
2220     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2221   }
2222 
2223   return true;
2224 }
2225 
2226 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2227                                                       const CXXMethodDecl *MD) {
2228   // Check that the type metadata can ever actually be used by a call.
2229   if (!CGM.getCodeGenOpts().LTOUnit ||
2230       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2231     return false;
2232 
2233   // Only functions whose address can be taken with a member function pointer
2234   // need this sort of type metadata.
2235   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
2236          !isa<CXXDestructorDecl>(MD);
2237 }
2238 
2239 std::vector<const CXXRecordDecl *>
2240 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2241   llvm::SetVector<const CXXRecordDecl *> MostBases;
2242 
2243   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2244   CollectMostBases = [&](const CXXRecordDecl *RD) {
2245     if (RD->getNumBases() == 0)
2246       MostBases.insert(RD);
2247     for (const CXXBaseSpecifier &B : RD->bases())
2248       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2249   };
2250   CollectMostBases(RD);
2251   return MostBases.takeVector();
2252 }
2253 
2254 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2255                                                            llvm::Function *F) {
2256   llvm::AttrBuilder B(F->getContext());
2257 
2258   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2259     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2260 
2261   if (CodeGenOpts.StackClashProtector)
2262     B.addAttribute("probe-stack", "inline-asm");
2263 
2264   if (!hasUnwindExceptions(LangOpts))
2265     B.addAttribute(llvm::Attribute::NoUnwind);
2266 
2267   if (D && D->hasAttr<NoStackProtectorAttr>())
2268     ; // Do nothing.
2269   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2270            LangOpts.getStackProtector() == LangOptions::SSPOn)
2271     B.addAttribute(llvm::Attribute::StackProtectStrong);
2272   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
2273     B.addAttribute(llvm::Attribute::StackProtect);
2274   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
2275     B.addAttribute(llvm::Attribute::StackProtectStrong);
2276   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
2277     B.addAttribute(llvm::Attribute::StackProtectReq);
2278 
2279   if (!D) {
2280     // If we don't have a declaration to control inlining, the function isn't
2281     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2282     // disabled, mark the function as noinline.
2283     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2284         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2285       B.addAttribute(llvm::Attribute::NoInline);
2286 
2287     F->addFnAttrs(B);
2288     return;
2289   }
2290 
2291   // Track whether we need to add the optnone LLVM attribute,
2292   // starting with the default for this optimization level.
2293   bool ShouldAddOptNone =
2294       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2295   // We can't add optnone in the following cases, it won't pass the verifier.
2296   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2297   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2298 
2299   // Add optnone, but do so only if the function isn't always_inline.
2300   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2301       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2302     B.addAttribute(llvm::Attribute::OptimizeNone);
2303 
2304     // OptimizeNone implies noinline; we should not be inlining such functions.
2305     B.addAttribute(llvm::Attribute::NoInline);
2306 
2307     // We still need to handle naked functions even though optnone subsumes
2308     // much of their semantics.
2309     if (D->hasAttr<NakedAttr>())
2310       B.addAttribute(llvm::Attribute::Naked);
2311 
2312     // OptimizeNone wins over OptimizeForSize and MinSize.
2313     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2314     F->removeFnAttr(llvm::Attribute::MinSize);
2315   } else if (D->hasAttr<NakedAttr>()) {
2316     // Naked implies noinline: we should not be inlining such functions.
2317     B.addAttribute(llvm::Attribute::Naked);
2318     B.addAttribute(llvm::Attribute::NoInline);
2319   } else if (D->hasAttr<NoDuplicateAttr>()) {
2320     B.addAttribute(llvm::Attribute::NoDuplicate);
2321   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2322     // Add noinline if the function isn't always_inline.
2323     B.addAttribute(llvm::Attribute::NoInline);
2324   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2325              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2326     // (noinline wins over always_inline, and we can't specify both in IR)
2327     B.addAttribute(llvm::Attribute::AlwaysInline);
2328   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2329     // If we're not inlining, then force everything that isn't always_inline to
2330     // carry an explicit noinline attribute.
2331     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2332       B.addAttribute(llvm::Attribute::NoInline);
2333   } else {
2334     // Otherwise, propagate the inline hint attribute and potentially use its
2335     // absence to mark things as noinline.
2336     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2337       // Search function and template pattern redeclarations for inline.
2338       auto CheckForInline = [](const FunctionDecl *FD) {
2339         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2340           return Redecl->isInlineSpecified();
2341         };
2342         if (any_of(FD->redecls(), CheckRedeclForInline))
2343           return true;
2344         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2345         if (!Pattern)
2346           return false;
2347         return any_of(Pattern->redecls(), CheckRedeclForInline);
2348       };
2349       if (CheckForInline(FD)) {
2350         B.addAttribute(llvm::Attribute::InlineHint);
2351       } else if (CodeGenOpts.getInlining() ==
2352                      CodeGenOptions::OnlyHintInlining &&
2353                  !FD->isInlined() &&
2354                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2355         B.addAttribute(llvm::Attribute::NoInline);
2356       }
2357     }
2358   }
2359 
2360   // Add other optimization related attributes if we are optimizing this
2361   // function.
2362   if (!D->hasAttr<OptimizeNoneAttr>()) {
2363     if (D->hasAttr<ColdAttr>()) {
2364       if (!ShouldAddOptNone)
2365         B.addAttribute(llvm::Attribute::OptimizeForSize);
2366       B.addAttribute(llvm::Attribute::Cold);
2367     }
2368     if (D->hasAttr<HotAttr>())
2369       B.addAttribute(llvm::Attribute::Hot);
2370     if (D->hasAttr<MinSizeAttr>())
2371       B.addAttribute(llvm::Attribute::MinSize);
2372   }
2373 
2374   F->addFnAttrs(B);
2375 
2376   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2377   if (alignment)
2378     F->setAlignment(llvm::Align(alignment));
2379 
2380   if (!D->hasAttr<AlignedAttr>())
2381     if (LangOpts.FunctionAlignment)
2382       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2383 
2384   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2385   // reserve a bit for differentiating between virtual and non-virtual member
2386   // functions. If the current target's C++ ABI requires this and this is a
2387   // member function, set its alignment accordingly.
2388   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2389     if (F->getPointerAlignment(getDataLayout()) < 2 && isa<CXXMethodDecl>(D))
2390       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2391   }
2392 
2393   // In the cross-dso CFI mode with canonical jump tables, we want !type
2394   // attributes on definitions only.
2395   if (CodeGenOpts.SanitizeCfiCrossDso &&
2396       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2397     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2398       // Skip available_externally functions. They won't be codegen'ed in the
2399       // current module anyway.
2400       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2401         CreateFunctionTypeMetadataForIcall(FD, F);
2402     }
2403   }
2404 
2405   // Emit type metadata on member functions for member function pointer checks.
2406   // These are only ever necessary on definitions; we're guaranteed that the
2407   // definition will be present in the LTO unit as a result of LTO visibility.
2408   auto *MD = dyn_cast<CXXMethodDecl>(D);
2409   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2410     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2411       llvm::Metadata *Id =
2412           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2413               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2414       F->addTypeMetadata(0, Id);
2415     }
2416   }
2417 }
2418 
2419 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2420   const Decl *D = GD.getDecl();
2421   if (isa_and_nonnull<NamedDecl>(D))
2422     setGVProperties(GV, GD);
2423   else
2424     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2425 
2426   if (D && D->hasAttr<UsedAttr>())
2427     addUsedOrCompilerUsedGlobal(GV);
2428 
2429   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2430     const auto *VD = cast<VarDecl>(D);
2431     if (VD->getType().isConstQualified() &&
2432         VD->getStorageDuration() == SD_Static)
2433       addUsedOrCompilerUsedGlobal(GV);
2434   }
2435 }
2436 
2437 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2438                                                 llvm::AttrBuilder &Attrs,
2439                                                 bool SetTargetFeatures) {
2440   // Add target-cpu and target-features attributes to functions. If
2441   // we have a decl for the function and it has a target attribute then
2442   // parse that and add it to the feature set.
2443   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2444   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2445   std::vector<std::string> Features;
2446   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2447   FD = FD ? FD->getMostRecentDecl() : FD;
2448   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2449   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2450   assert((!TD || !TV) && "both target_version and target specified");
2451   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2452   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2453   bool AddedAttr = false;
2454   if (TD || TV || SD || TC) {
2455     llvm::StringMap<bool> FeatureMap;
2456     getContext().getFunctionFeatureMap(FeatureMap, GD);
2457 
2458     // Produce the canonical string for this set of features.
2459     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2460       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2461 
2462     // Now add the target-cpu and target-features to the function.
2463     // While we populated the feature map above, we still need to
2464     // get and parse the target attribute so we can get the cpu for
2465     // the function.
2466     if (TD) {
2467       ParsedTargetAttr ParsedAttr =
2468           Target.parseTargetAttr(TD->getFeaturesStr());
2469       if (!ParsedAttr.CPU.empty() &&
2470           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2471         TargetCPU = ParsedAttr.CPU;
2472         TuneCPU = ""; // Clear the tune CPU.
2473       }
2474       if (!ParsedAttr.Tune.empty() &&
2475           getTarget().isValidCPUName(ParsedAttr.Tune))
2476         TuneCPU = ParsedAttr.Tune;
2477     }
2478 
2479     if (SD) {
2480       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2481       // favor this processor.
2482       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2483     }
2484   } else {
2485     // Otherwise just add the existing target cpu and target features to the
2486     // function.
2487     Features = getTarget().getTargetOpts().Features;
2488   }
2489 
2490   if (!TargetCPU.empty()) {
2491     Attrs.addAttribute("target-cpu", TargetCPU);
2492     AddedAttr = true;
2493   }
2494   if (!TuneCPU.empty()) {
2495     Attrs.addAttribute("tune-cpu", TuneCPU);
2496     AddedAttr = true;
2497   }
2498   if (!Features.empty() && SetTargetFeatures) {
2499     llvm::erase_if(Features, [&](const std::string& F) {
2500        return getTarget().isReadOnlyFeature(F.substr(1));
2501     });
2502     llvm::sort(Features);
2503     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2504     AddedAttr = true;
2505   }
2506 
2507   return AddedAttr;
2508 }
2509 
2510 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2511                                           llvm::GlobalObject *GO) {
2512   const Decl *D = GD.getDecl();
2513   SetCommonAttributes(GD, GO);
2514 
2515   if (D) {
2516     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2517       if (D->hasAttr<RetainAttr>())
2518         addUsedGlobal(GV);
2519       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2520         GV->addAttribute("bss-section", SA->getName());
2521       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2522         GV->addAttribute("data-section", SA->getName());
2523       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2524         GV->addAttribute("rodata-section", SA->getName());
2525       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2526         GV->addAttribute("relro-section", SA->getName());
2527     }
2528 
2529     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2530       if (D->hasAttr<RetainAttr>())
2531         addUsedGlobal(F);
2532       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2533         if (!D->getAttr<SectionAttr>())
2534           F->addFnAttr("implicit-section-name", SA->getName());
2535 
2536       llvm::AttrBuilder Attrs(F->getContext());
2537       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2538         // We know that GetCPUAndFeaturesAttributes will always have the
2539         // newest set, since it has the newest possible FunctionDecl, so the
2540         // new ones should replace the old.
2541         llvm::AttributeMask RemoveAttrs;
2542         RemoveAttrs.addAttribute("target-cpu");
2543         RemoveAttrs.addAttribute("target-features");
2544         RemoveAttrs.addAttribute("tune-cpu");
2545         F->removeFnAttrs(RemoveAttrs);
2546         F->addFnAttrs(Attrs);
2547       }
2548     }
2549 
2550     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2551       GO->setSection(CSA->getName());
2552     else if (const auto *SA = D->getAttr<SectionAttr>())
2553       GO->setSection(SA->getName());
2554   }
2555 
2556   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2557 }
2558 
2559 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2560                                                   llvm::Function *F,
2561                                                   const CGFunctionInfo &FI) {
2562   const Decl *D = GD.getDecl();
2563   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2564   SetLLVMFunctionAttributesForDefinition(D, F);
2565 
2566   F->setLinkage(llvm::Function::InternalLinkage);
2567 
2568   setNonAliasAttributes(GD, F);
2569 }
2570 
2571 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2572   // Set linkage and visibility in case we never see a definition.
2573   LinkageInfo LV = ND->getLinkageAndVisibility();
2574   // Don't set internal linkage on declarations.
2575   // "extern_weak" is overloaded in LLVM; we probably should have
2576   // separate linkage types for this.
2577   if (isExternallyVisible(LV.getLinkage()) &&
2578       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2579     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2580 }
2581 
2582 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2583                                                        llvm::Function *F) {
2584   // Only if we are checking indirect calls.
2585   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2586     return;
2587 
2588   // Non-static class methods are handled via vtable or member function pointer
2589   // checks elsewhere.
2590   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2591     return;
2592 
2593   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2594   F->addTypeMetadata(0, MD);
2595   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2596 
2597   // Emit a hash-based bit set entry for cross-DSO calls.
2598   if (CodeGenOpts.SanitizeCfiCrossDso)
2599     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2600       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2601 }
2602 
2603 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2604   llvm::LLVMContext &Ctx = F->getContext();
2605   llvm::MDBuilder MDB(Ctx);
2606   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2607                  llvm::MDNode::get(
2608                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2609 }
2610 
2611 static bool allowKCFIIdentifier(StringRef Name) {
2612   // KCFI type identifier constants are only necessary for external assembly
2613   // functions, which means it's safe to skip unusual names. Subset of
2614   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2615   return llvm::all_of(Name, [](const char &C) {
2616     return llvm::isAlnum(C) || C == '_' || C == '.';
2617   });
2618 }
2619 
2620 void CodeGenModule::finalizeKCFITypes() {
2621   llvm::Module &M = getModule();
2622   for (auto &F : M.functions()) {
2623     // Remove KCFI type metadata from non-address-taken local functions.
2624     bool AddressTaken = F.hasAddressTaken();
2625     if (!AddressTaken && F.hasLocalLinkage())
2626       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2627 
2628     // Generate a constant with the expected KCFI type identifier for all
2629     // address-taken function declarations to support annotating indirectly
2630     // called assembly functions.
2631     if (!AddressTaken || !F.isDeclaration())
2632       continue;
2633 
2634     const llvm::ConstantInt *Type;
2635     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2636       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2637     else
2638       continue;
2639 
2640     StringRef Name = F.getName();
2641     if (!allowKCFIIdentifier(Name))
2642       continue;
2643 
2644     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2645                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2646                           .str();
2647     M.appendModuleInlineAsm(Asm);
2648   }
2649 }
2650 
2651 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2652                                           bool IsIncompleteFunction,
2653                                           bool IsThunk) {
2654 
2655   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2656     // If this is an intrinsic function, set the function's attributes
2657     // to the intrinsic's attributes.
2658     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2659     return;
2660   }
2661 
2662   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2663 
2664   if (!IsIncompleteFunction)
2665     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2666                               IsThunk);
2667 
2668   // Add the Returned attribute for "this", except for iOS 5 and earlier
2669   // where substantial code, including the libstdc++ dylib, was compiled with
2670   // GCC and does not actually return "this".
2671   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2672       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2673     assert(!F->arg_empty() &&
2674            F->arg_begin()->getType()
2675              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2676            "unexpected this return");
2677     F->addParamAttr(0, llvm::Attribute::Returned);
2678   }
2679 
2680   // Only a few attributes are set on declarations; these may later be
2681   // overridden by a definition.
2682 
2683   setLinkageForGV(F, FD);
2684   setGVProperties(F, FD);
2685 
2686   // Setup target-specific attributes.
2687   if (!IsIncompleteFunction && F->isDeclaration())
2688     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2689 
2690   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2691     F->setSection(CSA->getName());
2692   else if (const auto *SA = FD->getAttr<SectionAttr>())
2693      F->setSection(SA->getName());
2694 
2695   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2696     if (EA->isError())
2697       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2698     else if (EA->isWarning())
2699       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2700   }
2701 
2702   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2703   if (FD->isInlineBuiltinDeclaration()) {
2704     const FunctionDecl *FDBody;
2705     bool HasBody = FD->hasBody(FDBody);
2706     (void)HasBody;
2707     assert(HasBody && "Inline builtin declarations should always have an "
2708                       "available body!");
2709     if (shouldEmitFunction(FDBody))
2710       F->addFnAttr(llvm::Attribute::NoBuiltin);
2711   }
2712 
2713   if (FD->isReplaceableGlobalAllocationFunction()) {
2714     // A replaceable global allocation function does not act like a builtin by
2715     // default, only if it is invoked by a new-expression or delete-expression.
2716     F->addFnAttr(llvm::Attribute::NoBuiltin);
2717   }
2718 
2719   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2720     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2721   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2722     if (MD->isVirtual())
2723       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2724 
2725   // Don't emit entries for function declarations in the cross-DSO mode. This
2726   // is handled with better precision by the receiving DSO. But if jump tables
2727   // are non-canonical then we need type metadata in order to produce the local
2728   // jump table.
2729   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2730       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2731     CreateFunctionTypeMetadataForIcall(FD, F);
2732 
2733   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2734     setKCFIType(FD, F);
2735 
2736   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2737     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2738 
2739   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2740     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2741 
2742   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2743     // Annotate the callback behavior as metadata:
2744     //  - The callback callee (as argument number).
2745     //  - The callback payloads (as argument numbers).
2746     llvm::LLVMContext &Ctx = F->getContext();
2747     llvm::MDBuilder MDB(Ctx);
2748 
2749     // The payload indices are all but the first one in the encoding. The first
2750     // identifies the callback callee.
2751     int CalleeIdx = *CB->encoding_begin();
2752     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2753     F->addMetadata(llvm::LLVMContext::MD_callback,
2754                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2755                                                CalleeIdx, PayloadIndices,
2756                                                /* VarArgsArePassed */ false)}));
2757   }
2758 }
2759 
2760 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2761   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2762          "Only globals with definition can force usage.");
2763   LLVMUsed.emplace_back(GV);
2764 }
2765 
2766 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2767   assert(!GV->isDeclaration() &&
2768          "Only globals with definition can force usage.");
2769   LLVMCompilerUsed.emplace_back(GV);
2770 }
2771 
2772 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2773   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2774          "Only globals with definition can force usage.");
2775   if (getTriple().isOSBinFormatELF())
2776     LLVMCompilerUsed.emplace_back(GV);
2777   else
2778     LLVMUsed.emplace_back(GV);
2779 }
2780 
2781 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2782                      std::vector<llvm::WeakTrackingVH> &List) {
2783   // Don't create llvm.used if there is no need.
2784   if (List.empty())
2785     return;
2786 
2787   // Convert List to what ConstantArray needs.
2788   SmallVector<llvm::Constant*, 8> UsedArray;
2789   UsedArray.resize(List.size());
2790   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2791     UsedArray[i] =
2792         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2793             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2794   }
2795 
2796   if (UsedArray.empty())
2797     return;
2798   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2799 
2800   auto *GV = new llvm::GlobalVariable(
2801       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2802       llvm::ConstantArray::get(ATy, UsedArray), Name);
2803 
2804   GV->setSection("llvm.metadata");
2805 }
2806 
2807 void CodeGenModule::emitLLVMUsed() {
2808   emitUsed(*this, "llvm.used", LLVMUsed);
2809   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2810 }
2811 
2812 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2813   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2814   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2815 }
2816 
2817 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2818   llvm::SmallString<32> Opt;
2819   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2820   if (Opt.empty())
2821     return;
2822   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2823   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2824 }
2825 
2826 void CodeGenModule::AddDependentLib(StringRef Lib) {
2827   auto &C = getLLVMContext();
2828   if (getTarget().getTriple().isOSBinFormatELF()) {
2829       ELFDependentLibraries.push_back(
2830         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2831     return;
2832   }
2833 
2834   llvm::SmallString<24> Opt;
2835   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2836   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2837   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2838 }
2839 
2840 /// Add link options implied by the given module, including modules
2841 /// it depends on, using a postorder walk.
2842 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2843                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2844                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2845   // Import this module's parent.
2846   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2847     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2848   }
2849 
2850   // Import this module's dependencies.
2851   for (Module *Import : llvm::reverse(Mod->Imports)) {
2852     if (Visited.insert(Import).second)
2853       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2854   }
2855 
2856   // Add linker options to link against the libraries/frameworks
2857   // described by this module.
2858   llvm::LLVMContext &Context = CGM.getLLVMContext();
2859   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2860 
2861   // For modules that use export_as for linking, use that module
2862   // name instead.
2863   if (Mod->UseExportAsModuleLinkName)
2864     return;
2865 
2866   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2867     // Link against a framework.  Frameworks are currently Darwin only, so we
2868     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2869     if (LL.IsFramework) {
2870       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2871                                  llvm::MDString::get(Context, LL.Library)};
2872 
2873       Metadata.push_back(llvm::MDNode::get(Context, Args));
2874       continue;
2875     }
2876 
2877     // Link against a library.
2878     if (IsELF) {
2879       llvm::Metadata *Args[2] = {
2880           llvm::MDString::get(Context, "lib"),
2881           llvm::MDString::get(Context, LL.Library),
2882       };
2883       Metadata.push_back(llvm::MDNode::get(Context, Args));
2884     } else {
2885       llvm::SmallString<24> Opt;
2886       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2887       auto *OptString = llvm::MDString::get(Context, Opt);
2888       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2889     }
2890   }
2891 }
2892 
2893 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2894   // Emit the initializers in the order that sub-modules appear in the
2895   // source, first Global Module Fragments, if present.
2896   if (auto GMF = Primary->getGlobalModuleFragment()) {
2897     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2898       if (isa<ImportDecl>(D))
2899         continue;
2900       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2901       EmitTopLevelDecl(D);
2902     }
2903   }
2904   // Second any associated with the module, itself.
2905   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2906     // Skip import decls, the inits for those are called explicitly.
2907     if (isa<ImportDecl>(D))
2908       continue;
2909     EmitTopLevelDecl(D);
2910   }
2911   // Third any associated with the Privat eMOdule Fragment, if present.
2912   if (auto PMF = Primary->getPrivateModuleFragment()) {
2913     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2914       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2915       EmitTopLevelDecl(D);
2916     }
2917   }
2918 }
2919 
2920 void CodeGenModule::EmitModuleLinkOptions() {
2921   // Collect the set of all of the modules we want to visit to emit link
2922   // options, which is essentially the imported modules and all of their
2923   // non-explicit child modules.
2924   llvm::SetVector<clang::Module *> LinkModules;
2925   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2926   SmallVector<clang::Module *, 16> Stack;
2927 
2928   // Seed the stack with imported modules.
2929   for (Module *M : ImportedModules) {
2930     // Do not add any link flags when an implementation TU of a module imports
2931     // a header of that same module.
2932     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2933         !getLangOpts().isCompilingModule())
2934       continue;
2935     if (Visited.insert(M).second)
2936       Stack.push_back(M);
2937   }
2938 
2939   // Find all of the modules to import, making a little effort to prune
2940   // non-leaf modules.
2941   while (!Stack.empty()) {
2942     clang::Module *Mod = Stack.pop_back_val();
2943 
2944     bool AnyChildren = false;
2945 
2946     // Visit the submodules of this module.
2947     for (const auto &SM : Mod->submodules()) {
2948       // Skip explicit children; they need to be explicitly imported to be
2949       // linked against.
2950       if (SM->IsExplicit)
2951         continue;
2952 
2953       if (Visited.insert(SM).second) {
2954         Stack.push_back(SM);
2955         AnyChildren = true;
2956       }
2957     }
2958 
2959     // We didn't find any children, so add this module to the list of
2960     // modules to link against.
2961     if (!AnyChildren) {
2962       LinkModules.insert(Mod);
2963     }
2964   }
2965 
2966   // Add link options for all of the imported modules in reverse topological
2967   // order.  We don't do anything to try to order import link flags with respect
2968   // to linker options inserted by things like #pragma comment().
2969   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2970   Visited.clear();
2971   for (Module *M : LinkModules)
2972     if (Visited.insert(M).second)
2973       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2974   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2975   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2976 
2977   // Add the linker options metadata flag.
2978   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2979   for (auto *MD : LinkerOptionsMetadata)
2980     NMD->addOperand(MD);
2981 }
2982 
2983 void CodeGenModule::EmitDeferred() {
2984   // Emit deferred declare target declarations.
2985   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2986     getOpenMPRuntime().emitDeferredTargetDecls();
2987 
2988   // Emit code for any potentially referenced deferred decls.  Since a
2989   // previously unused static decl may become used during the generation of code
2990   // for a static function, iterate until no changes are made.
2991 
2992   if (!DeferredVTables.empty()) {
2993     EmitDeferredVTables();
2994 
2995     // Emitting a vtable doesn't directly cause more vtables to
2996     // become deferred, although it can cause functions to be
2997     // emitted that then need those vtables.
2998     assert(DeferredVTables.empty());
2999   }
3000 
3001   // Emit CUDA/HIP static device variables referenced by host code only.
3002   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3003   // needed for further handling.
3004   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3005     llvm::append_range(DeferredDeclsToEmit,
3006                        getContext().CUDADeviceVarODRUsedByHost);
3007 
3008   // Stop if we're out of both deferred vtables and deferred declarations.
3009   if (DeferredDeclsToEmit.empty())
3010     return;
3011 
3012   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3013   // work, it will not interfere with this.
3014   std::vector<GlobalDecl> CurDeclsToEmit;
3015   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3016 
3017   for (GlobalDecl &D : CurDeclsToEmit) {
3018     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3019     // to get GlobalValue with exactly the type we need, not something that
3020     // might had been created for another decl with the same mangled name but
3021     // different type.
3022     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3023         GetAddrOfGlobal(D, ForDefinition));
3024 
3025     // In case of different address spaces, we may still get a cast, even with
3026     // IsForDefinition equal to true. Query mangled names table to get
3027     // GlobalValue.
3028     if (!GV)
3029       GV = GetGlobalValue(getMangledName(D));
3030 
3031     // Make sure GetGlobalValue returned non-null.
3032     assert(GV);
3033 
3034     // Check to see if we've already emitted this.  This is necessary
3035     // for a couple of reasons: first, decls can end up in the
3036     // deferred-decls queue multiple times, and second, decls can end
3037     // up with definitions in unusual ways (e.g. by an extern inline
3038     // function acquiring a strong function redefinition).  Just
3039     // ignore these cases.
3040     if (!GV->isDeclaration())
3041       continue;
3042 
3043     // If this is OpenMP, check if it is legal to emit this global normally.
3044     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3045       continue;
3046 
3047     // Otherwise, emit the definition and move on to the next one.
3048     EmitGlobalDefinition(D, GV);
3049 
3050     // If we found out that we need to emit more decls, do that recursively.
3051     // This has the advantage that the decls are emitted in a DFS and related
3052     // ones are close together, which is convenient for testing.
3053     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3054       EmitDeferred();
3055       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3056     }
3057   }
3058 }
3059 
3060 void CodeGenModule::EmitVTablesOpportunistically() {
3061   // Try to emit external vtables as available_externally if they have emitted
3062   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3063   // is not allowed to create new references to things that need to be emitted
3064   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3065 
3066   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3067          && "Only emit opportunistic vtables with optimizations");
3068 
3069   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3070     assert(getVTables().isVTableExternal(RD) &&
3071            "This queue should only contain external vtables");
3072     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3073       VTables.GenerateClassData(RD);
3074   }
3075   OpportunisticVTables.clear();
3076 }
3077 
3078 void CodeGenModule::EmitGlobalAnnotations() {
3079   if (Annotations.empty())
3080     return;
3081 
3082   // Create a new global variable for the ConstantStruct in the Module.
3083   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3084     Annotations[0]->getType(), Annotations.size()), Annotations);
3085   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3086                                       llvm::GlobalValue::AppendingLinkage,
3087                                       Array, "llvm.global.annotations");
3088   gv->setSection(AnnotationSection);
3089 }
3090 
3091 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3092   llvm::Constant *&AStr = AnnotationStrings[Str];
3093   if (AStr)
3094     return AStr;
3095 
3096   // Not found yet, create a new global.
3097   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3098   auto *gv = new llvm::GlobalVariable(
3099       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3100       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3101       ConstGlobalsPtrTy->getAddressSpace());
3102   gv->setSection(AnnotationSection);
3103   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3104   AStr = gv;
3105   return gv;
3106 }
3107 
3108 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3109   SourceManager &SM = getContext().getSourceManager();
3110   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3111   if (PLoc.isValid())
3112     return EmitAnnotationString(PLoc.getFilename());
3113   return EmitAnnotationString(SM.getBufferName(Loc));
3114 }
3115 
3116 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3117   SourceManager &SM = getContext().getSourceManager();
3118   PresumedLoc PLoc = SM.getPresumedLoc(L);
3119   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3120     SM.getExpansionLineNumber(L);
3121   return llvm::ConstantInt::get(Int32Ty, LineNo);
3122 }
3123 
3124 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3125   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3126   if (Exprs.empty())
3127     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3128 
3129   llvm::FoldingSetNodeID ID;
3130   for (Expr *E : Exprs) {
3131     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3132   }
3133   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3134   if (Lookup)
3135     return Lookup;
3136 
3137   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3138   LLVMArgs.reserve(Exprs.size());
3139   ConstantEmitter ConstEmiter(*this);
3140   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3141     const auto *CE = cast<clang::ConstantExpr>(E);
3142     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3143                                     CE->getType());
3144   });
3145   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3146   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3147                                       llvm::GlobalValue::PrivateLinkage, Struct,
3148                                       ".args");
3149   GV->setSection(AnnotationSection);
3150   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3151   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
3152 
3153   Lookup = Bitcasted;
3154   return Bitcasted;
3155 }
3156 
3157 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3158                                                 const AnnotateAttr *AA,
3159                                                 SourceLocation L) {
3160   // Get the globals for file name, annotation, and the line number.
3161   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3162                  *UnitGV = EmitAnnotationUnit(L),
3163                  *LineNoCst = EmitAnnotationLineNo(L),
3164                  *Args = EmitAnnotationArgs(AA);
3165 
3166   llvm::Constant *GVInGlobalsAS = GV;
3167   if (GV->getAddressSpace() !=
3168       getDataLayout().getDefaultGlobalsAddressSpace()) {
3169     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3170         GV, GV->getValueType()->getPointerTo(
3171                 getDataLayout().getDefaultGlobalsAddressSpace()));
3172   }
3173 
3174   // Create the ConstantStruct for the global annotation.
3175   llvm::Constant *Fields[] = {
3176       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
3177       llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
3178       llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
3179       LineNoCst,
3180       Args,
3181   };
3182   return llvm::ConstantStruct::getAnon(Fields);
3183 }
3184 
3185 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3186                                          llvm::GlobalValue *GV) {
3187   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3188   // Get the struct elements for these annotations.
3189   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3190     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3191 }
3192 
3193 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3194                                        SourceLocation Loc) const {
3195   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3196   // NoSanitize by function name.
3197   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3198     return true;
3199   // NoSanitize by location. Check "mainfile" prefix.
3200   auto &SM = Context.getSourceManager();
3201   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
3202   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3203     return true;
3204 
3205   // Check "src" prefix.
3206   if (Loc.isValid())
3207     return NoSanitizeL.containsLocation(Kind, Loc);
3208   // If location is unknown, this may be a compiler-generated function. Assume
3209   // it's located in the main file.
3210   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3211 }
3212 
3213 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3214                                        llvm::GlobalVariable *GV,
3215                                        SourceLocation Loc, QualType Ty,
3216                                        StringRef Category) const {
3217   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3218   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3219     return true;
3220   auto &SM = Context.getSourceManager();
3221   if (NoSanitizeL.containsMainFile(
3222           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
3223     return true;
3224   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3225     return true;
3226 
3227   // Check global type.
3228   if (!Ty.isNull()) {
3229     // Drill down the array types: if global variable of a fixed type is
3230     // not sanitized, we also don't instrument arrays of them.
3231     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3232       Ty = AT->getElementType();
3233     Ty = Ty.getCanonicalType().getUnqualifiedType();
3234     // Only record types (classes, structs etc.) are ignored.
3235     if (Ty->isRecordType()) {
3236       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3237       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3238         return true;
3239     }
3240   }
3241   return false;
3242 }
3243 
3244 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3245                                    StringRef Category) const {
3246   const auto &XRayFilter = getContext().getXRayFilter();
3247   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3248   auto Attr = ImbueAttr::NONE;
3249   if (Loc.isValid())
3250     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3251   if (Attr == ImbueAttr::NONE)
3252     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3253   switch (Attr) {
3254   case ImbueAttr::NONE:
3255     return false;
3256   case ImbueAttr::ALWAYS:
3257     Fn->addFnAttr("function-instrument", "xray-always");
3258     break;
3259   case ImbueAttr::ALWAYS_ARG1:
3260     Fn->addFnAttr("function-instrument", "xray-always");
3261     Fn->addFnAttr("xray-log-args", "1");
3262     break;
3263   case ImbueAttr::NEVER:
3264     Fn->addFnAttr("function-instrument", "xray-never");
3265     break;
3266   }
3267   return true;
3268 }
3269 
3270 ProfileList::ExclusionType
3271 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3272                                               SourceLocation Loc) const {
3273   const auto &ProfileList = getContext().getProfileList();
3274   // If the profile list is empty, then instrument everything.
3275   if (ProfileList.isEmpty())
3276     return ProfileList::Allow;
3277   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3278   // First, check the function name.
3279   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3280     return *V;
3281   // Next, check the source location.
3282   if (Loc.isValid())
3283     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3284       return *V;
3285   // If location is unknown, this may be a compiler-generated function. Assume
3286   // it's located in the main file.
3287   auto &SM = Context.getSourceManager();
3288   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
3289     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3290       return *V;
3291   return ProfileList.getDefault(Kind);
3292 }
3293 
3294 ProfileList::ExclusionType
3295 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3296                                                  SourceLocation Loc) const {
3297   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3298   if (V != ProfileList::Allow)
3299     return V;
3300 
3301   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3302   if (NumGroups > 1) {
3303     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3304     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3305       return ProfileList::Skip;
3306   }
3307   return ProfileList::Allow;
3308 }
3309 
3310 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3311   // Never defer when EmitAllDecls is specified.
3312   if (LangOpts.EmitAllDecls)
3313     return true;
3314 
3315   if (CodeGenOpts.KeepStaticConsts) {
3316     const auto *VD = dyn_cast<VarDecl>(Global);
3317     if (VD && VD->getType().isConstQualified() &&
3318         VD->getStorageDuration() == SD_Static)
3319       return true;
3320   }
3321 
3322   return getContext().DeclMustBeEmitted(Global);
3323 }
3324 
3325 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3326   // In OpenMP 5.0 variables and function may be marked as
3327   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3328   // that they must be emitted on the host/device. To be sure we need to have
3329   // seen a declare target with an explicit mentioning of the function, we know
3330   // we have if the level of the declare target attribute is -1. Note that we
3331   // check somewhere else if we should emit this at all.
3332   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3333     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3334         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3335     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3336       return false;
3337   }
3338 
3339   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3340     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3341       // Implicit template instantiations may change linkage if they are later
3342       // explicitly instantiated, so they should not be emitted eagerly.
3343       return false;
3344   }
3345   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3346     if (Context.getInlineVariableDefinitionKind(VD) ==
3347         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3348       // A definition of an inline constexpr static data member may change
3349       // linkage later if it's redeclared outside the class.
3350       return false;
3351     if (CXX20ModuleInits && VD->getOwningModule() &&
3352         !VD->getOwningModule()->isModuleMapModule()) {
3353       // For CXX20, module-owned initializers need to be deferred, since it is
3354       // not known at this point if they will be run for the current module or
3355       // as part of the initializer for an imported one.
3356       return false;
3357     }
3358   }
3359   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3360   // codegen for global variables, because they may be marked as threadprivate.
3361   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3362       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3363       !isTypeConstant(Global->getType(), false, false) &&
3364       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3365     return false;
3366 
3367   return true;
3368 }
3369 
3370 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3371   StringRef Name = getMangledName(GD);
3372 
3373   // The UUID descriptor should be pointer aligned.
3374   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3375 
3376   // Look for an existing global.
3377   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3378     return ConstantAddress(GV, GV->getValueType(), Alignment);
3379 
3380   ConstantEmitter Emitter(*this);
3381   llvm::Constant *Init;
3382 
3383   APValue &V = GD->getAsAPValue();
3384   if (!V.isAbsent()) {
3385     // If possible, emit the APValue version of the initializer. In particular,
3386     // this gets the type of the constant right.
3387     Init = Emitter.emitForInitializer(
3388         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3389   } else {
3390     // As a fallback, directly construct the constant.
3391     // FIXME: This may get padding wrong under esoteric struct layout rules.
3392     // MSVC appears to create a complete type 'struct __s_GUID' that it
3393     // presumably uses to represent these constants.
3394     MSGuidDecl::Parts Parts = GD->getParts();
3395     llvm::Constant *Fields[4] = {
3396         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3397         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3398         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3399         llvm::ConstantDataArray::getRaw(
3400             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3401             Int8Ty)};
3402     Init = llvm::ConstantStruct::getAnon(Fields);
3403   }
3404 
3405   auto *GV = new llvm::GlobalVariable(
3406       getModule(), Init->getType(),
3407       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3408   if (supportsCOMDAT())
3409     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3410   setDSOLocal(GV);
3411 
3412   if (!V.isAbsent()) {
3413     Emitter.finalize(GV);
3414     return ConstantAddress(GV, GV->getValueType(), Alignment);
3415   }
3416 
3417   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3418   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3419       GV, Ty->getPointerTo(GV->getAddressSpace()));
3420   return ConstantAddress(Addr, Ty, Alignment);
3421 }
3422 
3423 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3424     const UnnamedGlobalConstantDecl *GCD) {
3425   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3426 
3427   llvm::GlobalVariable **Entry = nullptr;
3428   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3429   if (*Entry)
3430     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3431 
3432   ConstantEmitter Emitter(*this);
3433   llvm::Constant *Init;
3434 
3435   const APValue &V = GCD->getValue();
3436 
3437   assert(!V.isAbsent());
3438   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3439                                     GCD->getType());
3440 
3441   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3442                                       /*isConstant=*/true,
3443                                       llvm::GlobalValue::PrivateLinkage, Init,
3444                                       ".constant");
3445   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3446   GV->setAlignment(Alignment.getAsAlign());
3447 
3448   Emitter.finalize(GV);
3449 
3450   *Entry = GV;
3451   return ConstantAddress(GV, GV->getValueType(), Alignment);
3452 }
3453 
3454 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3455     const TemplateParamObjectDecl *TPO) {
3456   StringRef Name = getMangledName(TPO);
3457   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3458 
3459   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3460     return ConstantAddress(GV, GV->getValueType(), Alignment);
3461 
3462   ConstantEmitter Emitter(*this);
3463   llvm::Constant *Init = Emitter.emitForInitializer(
3464         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3465 
3466   if (!Init) {
3467     ErrorUnsupported(TPO, "template parameter object");
3468     return ConstantAddress::invalid();
3469   }
3470 
3471   llvm::GlobalValue::LinkageTypes Linkage =
3472       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3473           ? llvm::GlobalValue::LinkOnceODRLinkage
3474           : llvm::GlobalValue::InternalLinkage;
3475   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3476                                       /*isConstant=*/true, Linkage, Init, Name);
3477   setGVProperties(GV, TPO);
3478   if (supportsCOMDAT())
3479     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3480   Emitter.finalize(GV);
3481 
3482   return ConstantAddress(GV, GV->getValueType(), Alignment);
3483 }
3484 
3485 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3486   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3487   assert(AA && "No alias?");
3488 
3489   CharUnits Alignment = getContext().getDeclAlign(VD);
3490   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3491 
3492   // See if there is already something with the target's name in the module.
3493   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3494   if (Entry) {
3495     unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
3496     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3497     return ConstantAddress(Ptr, DeclTy, Alignment);
3498   }
3499 
3500   llvm::Constant *Aliasee;
3501   if (isa<llvm::FunctionType>(DeclTy))
3502     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3503                                       GlobalDecl(cast<FunctionDecl>(VD)),
3504                                       /*ForVTable=*/false);
3505   else
3506     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3507                                     nullptr);
3508 
3509   auto *F = cast<llvm::GlobalValue>(Aliasee);
3510   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3511   WeakRefReferences.insert(F);
3512 
3513   return ConstantAddress(Aliasee, DeclTy, Alignment);
3514 }
3515 
3516 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3517   const auto *Global = cast<ValueDecl>(GD.getDecl());
3518 
3519   // Weak references don't produce any output by themselves.
3520   if (Global->hasAttr<WeakRefAttr>())
3521     return;
3522 
3523   // If this is an alias definition (which otherwise looks like a declaration)
3524   // emit it now.
3525   if (Global->hasAttr<AliasAttr>())
3526     return EmitAliasDefinition(GD);
3527 
3528   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3529   if (Global->hasAttr<IFuncAttr>())
3530     return emitIFuncDefinition(GD);
3531 
3532   // If this is a cpu_dispatch multiversion function, emit the resolver.
3533   if (Global->hasAttr<CPUDispatchAttr>())
3534     return emitCPUDispatchDefinition(GD);
3535 
3536   // If this is CUDA, be selective about which declarations we emit.
3537   if (LangOpts.CUDA) {
3538     if (LangOpts.CUDAIsDevice) {
3539       if (!Global->hasAttr<CUDADeviceAttr>() &&
3540           !Global->hasAttr<CUDAGlobalAttr>() &&
3541           !Global->hasAttr<CUDAConstantAttr>() &&
3542           !Global->hasAttr<CUDASharedAttr>() &&
3543           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3544           !Global->getType()->isCUDADeviceBuiltinTextureType())
3545         return;
3546     } else {
3547       // We need to emit host-side 'shadows' for all global
3548       // device-side variables because the CUDA runtime needs their
3549       // size and host-side address in order to provide access to
3550       // their device-side incarnations.
3551 
3552       // So device-only functions are the only things we skip.
3553       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3554           Global->hasAttr<CUDADeviceAttr>())
3555         return;
3556 
3557       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3558              "Expected Variable or Function");
3559     }
3560   }
3561 
3562   if (LangOpts.OpenMP) {
3563     // If this is OpenMP, check if it is legal to emit this global normally.
3564     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3565       return;
3566     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3567       if (MustBeEmitted(Global))
3568         EmitOMPDeclareReduction(DRD);
3569       return;
3570     }
3571     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3572       if (MustBeEmitted(Global))
3573         EmitOMPDeclareMapper(DMD);
3574       return;
3575     }
3576   }
3577 
3578   // Ignore declarations, they will be emitted on their first use.
3579   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3580     // Forward declarations are emitted lazily on first use.
3581     if (!FD->doesThisDeclarationHaveABody()) {
3582       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3583         return;
3584 
3585       StringRef MangledName = getMangledName(GD);
3586 
3587       // Compute the function info and LLVM type.
3588       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3589       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3590 
3591       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3592                               /*DontDefer=*/false);
3593       return;
3594     }
3595   } else {
3596     const auto *VD = cast<VarDecl>(Global);
3597     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3598     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3599         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3600       if (LangOpts.OpenMP) {
3601         // Emit declaration of the must-be-emitted declare target variable.
3602         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3603                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3604           bool UnifiedMemoryEnabled =
3605               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3606           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3607                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3608               !UnifiedMemoryEnabled) {
3609             (void)GetAddrOfGlobalVar(VD);
3610           } else {
3611             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3612                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3613                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3614                      UnifiedMemoryEnabled)) &&
3615                    "Link clause or to clause with unified memory expected.");
3616             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3617           }
3618 
3619           return;
3620         }
3621       }
3622       // If this declaration may have caused an inline variable definition to
3623       // change linkage, make sure that it's emitted.
3624       if (Context.getInlineVariableDefinitionKind(VD) ==
3625           ASTContext::InlineVariableDefinitionKind::Strong)
3626         GetAddrOfGlobalVar(VD);
3627       return;
3628     }
3629   }
3630 
3631   // Defer code generation to first use when possible, e.g. if this is an inline
3632   // function. If the global must always be emitted, do it eagerly if possible
3633   // to benefit from cache locality.
3634   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3635     // Emit the definition if it can't be deferred.
3636     EmitGlobalDefinition(GD);
3637     return;
3638   }
3639 
3640   // If we're deferring emission of a C++ variable with an
3641   // initializer, remember the order in which it appeared in the file.
3642   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3643       cast<VarDecl>(Global)->hasInit()) {
3644     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3645     CXXGlobalInits.push_back(nullptr);
3646   }
3647 
3648   StringRef MangledName = getMangledName(GD);
3649   if (GetGlobalValue(MangledName) != nullptr) {
3650     // The value has already been used and should therefore be emitted.
3651     addDeferredDeclToEmit(GD);
3652   } else if (MustBeEmitted(Global)) {
3653     // The value must be emitted, but cannot be emitted eagerly.
3654     assert(!MayBeEmittedEagerly(Global));
3655     addDeferredDeclToEmit(GD);
3656     EmittedDeferredDecls[MangledName] = GD;
3657   } else {
3658     // Otherwise, remember that we saw a deferred decl with this name.  The
3659     // first use of the mangled name will cause it to move into
3660     // DeferredDeclsToEmit.
3661     DeferredDecls[MangledName] = GD;
3662   }
3663 }
3664 
3665 // Check if T is a class type with a destructor that's not dllimport.
3666 static bool HasNonDllImportDtor(QualType T) {
3667   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3668     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3669       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3670         return true;
3671 
3672   return false;
3673 }
3674 
3675 namespace {
3676   struct FunctionIsDirectlyRecursive
3677       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3678     const StringRef Name;
3679     const Builtin::Context &BI;
3680     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3681         : Name(N), BI(C) {}
3682 
3683     bool VisitCallExpr(const CallExpr *E) {
3684       const FunctionDecl *FD = E->getDirectCallee();
3685       if (!FD)
3686         return false;
3687       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3688       if (Attr && Name == Attr->getLabel())
3689         return true;
3690       unsigned BuiltinID = FD->getBuiltinID();
3691       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3692         return false;
3693       StringRef BuiltinName = BI.getName(BuiltinID);
3694       if (BuiltinName.startswith("__builtin_") &&
3695           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3696         return true;
3697       }
3698       return false;
3699     }
3700 
3701     bool VisitStmt(const Stmt *S) {
3702       for (const Stmt *Child : S->children())
3703         if (Child && this->Visit(Child))
3704           return true;
3705       return false;
3706     }
3707   };
3708 
3709   // Make sure we're not referencing non-imported vars or functions.
3710   struct DLLImportFunctionVisitor
3711       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3712     bool SafeToInline = true;
3713 
3714     bool shouldVisitImplicitCode() const { return true; }
3715 
3716     bool VisitVarDecl(VarDecl *VD) {
3717       if (VD->getTLSKind()) {
3718         // A thread-local variable cannot be imported.
3719         SafeToInline = false;
3720         return SafeToInline;
3721       }
3722 
3723       // A variable definition might imply a destructor call.
3724       if (VD->isThisDeclarationADefinition())
3725         SafeToInline = !HasNonDllImportDtor(VD->getType());
3726 
3727       return SafeToInline;
3728     }
3729 
3730     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3731       if (const auto *D = E->getTemporary()->getDestructor())
3732         SafeToInline = D->hasAttr<DLLImportAttr>();
3733       return SafeToInline;
3734     }
3735 
3736     bool VisitDeclRefExpr(DeclRefExpr *E) {
3737       ValueDecl *VD = E->getDecl();
3738       if (isa<FunctionDecl>(VD))
3739         SafeToInline = VD->hasAttr<DLLImportAttr>();
3740       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3741         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3742       return SafeToInline;
3743     }
3744 
3745     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3746       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3747       return SafeToInline;
3748     }
3749 
3750     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3751       CXXMethodDecl *M = E->getMethodDecl();
3752       if (!M) {
3753         // Call through a pointer to member function. This is safe to inline.
3754         SafeToInline = true;
3755       } else {
3756         SafeToInline = M->hasAttr<DLLImportAttr>();
3757       }
3758       return SafeToInline;
3759     }
3760 
3761     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3762       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3763       return SafeToInline;
3764     }
3765 
3766     bool VisitCXXNewExpr(CXXNewExpr *E) {
3767       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3768       return SafeToInline;
3769     }
3770   };
3771 }
3772 
3773 // isTriviallyRecursive - Check if this function calls another
3774 // decl that, because of the asm attribute or the other decl being a builtin,
3775 // ends up pointing to itself.
3776 bool
3777 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3778   StringRef Name;
3779   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3780     // asm labels are a special kind of mangling we have to support.
3781     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3782     if (!Attr)
3783       return false;
3784     Name = Attr->getLabel();
3785   } else {
3786     Name = FD->getName();
3787   }
3788 
3789   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3790   const Stmt *Body = FD->getBody();
3791   return Body ? Walker.Visit(Body) : false;
3792 }
3793 
3794 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3795   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3796     return true;
3797   const auto *F = cast<FunctionDecl>(GD.getDecl());
3798   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3799     return false;
3800 
3801   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3802     // Check whether it would be safe to inline this dllimport function.
3803     DLLImportFunctionVisitor Visitor;
3804     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3805     if (!Visitor.SafeToInline)
3806       return false;
3807 
3808     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3809       // Implicit destructor invocations aren't captured in the AST, so the
3810       // check above can't see them. Check for them manually here.
3811       for (const Decl *Member : Dtor->getParent()->decls())
3812         if (isa<FieldDecl>(Member))
3813           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3814             return false;
3815       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3816         if (HasNonDllImportDtor(B.getType()))
3817           return false;
3818     }
3819   }
3820 
3821   // Inline builtins declaration must be emitted. They often are fortified
3822   // functions.
3823   if (F->isInlineBuiltinDeclaration())
3824     return true;
3825 
3826   // PR9614. Avoid cases where the source code is lying to us. An available
3827   // externally function should have an equivalent function somewhere else,
3828   // but a function that calls itself through asm label/`__builtin_` trickery is
3829   // clearly not equivalent to the real implementation.
3830   // This happens in glibc's btowc and in some configure checks.
3831   return !isTriviallyRecursive(F);
3832 }
3833 
3834 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3835   return CodeGenOpts.OptimizationLevel > 0;
3836 }
3837 
3838 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3839                                                        llvm::GlobalValue *GV) {
3840   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3841 
3842   if (FD->isCPUSpecificMultiVersion()) {
3843     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3844     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3845       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3846   } else if (FD->isTargetClonesMultiVersion()) {
3847     auto *Clone = FD->getAttr<TargetClonesAttr>();
3848     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3849       if (Clone->isFirstOfVersion(I))
3850         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3851     // Ensure that the resolver function is also emitted.
3852     GetOrCreateMultiVersionResolver(GD);
3853   } else
3854     EmitGlobalFunctionDefinition(GD, GV);
3855 }
3856 
3857 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3858   const auto *D = cast<ValueDecl>(GD.getDecl());
3859 
3860   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3861                                  Context.getSourceManager(),
3862                                  "Generating code for declaration");
3863 
3864   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3865     // At -O0, don't generate IR for functions with available_externally
3866     // linkage.
3867     if (!shouldEmitFunction(GD))
3868       return;
3869 
3870     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3871       std::string Name;
3872       llvm::raw_string_ostream OS(Name);
3873       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3874                                /*Qualified=*/true);
3875       return Name;
3876     });
3877 
3878     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3879       // Make sure to emit the definition(s) before we emit the thunks.
3880       // This is necessary for the generation of certain thunks.
3881       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3882         ABI->emitCXXStructor(GD);
3883       else if (FD->isMultiVersion())
3884         EmitMultiVersionFunctionDefinition(GD, GV);
3885       else
3886         EmitGlobalFunctionDefinition(GD, GV);
3887 
3888       if (Method->isVirtual())
3889         getVTables().EmitThunks(GD);
3890 
3891       return;
3892     }
3893 
3894     if (FD->isMultiVersion())
3895       return EmitMultiVersionFunctionDefinition(GD, GV);
3896     return EmitGlobalFunctionDefinition(GD, GV);
3897   }
3898 
3899   if (const auto *VD = dyn_cast<VarDecl>(D))
3900     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3901 
3902   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3903 }
3904 
3905 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3906                                                       llvm::Function *NewFn);
3907 
3908 static unsigned
3909 TargetMVPriority(const TargetInfo &TI,
3910                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3911   unsigned Priority = 0;
3912   unsigned NumFeatures = 0;
3913   for (StringRef Feat : RO.Conditions.Features) {
3914     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3915     NumFeatures++;
3916   }
3917 
3918   if (!RO.Conditions.Architecture.empty())
3919     Priority = std::max(
3920         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3921 
3922   Priority += TI.multiVersionFeatureCost() * NumFeatures;
3923 
3924   return Priority;
3925 }
3926 
3927 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3928 // TU can forward declare the function without causing problems.  Particularly
3929 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3930 // work with internal linkage functions, so that the same function name can be
3931 // used with internal linkage in multiple TUs.
3932 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3933                                                        GlobalDecl GD) {
3934   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3935   if (FD->getFormalLinkage() == InternalLinkage)
3936     return llvm::GlobalValue::InternalLinkage;
3937   return llvm::GlobalValue::WeakODRLinkage;
3938 }
3939 
3940 void CodeGenModule::emitMultiVersionFunctions() {
3941   std::vector<GlobalDecl> MVFuncsToEmit;
3942   MultiVersionFuncs.swap(MVFuncsToEmit);
3943   for (GlobalDecl GD : MVFuncsToEmit) {
3944     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3945     assert(FD && "Expected a FunctionDecl");
3946 
3947     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3948     if (FD->isTargetMultiVersion()) {
3949       getContext().forEachMultiversionedFunctionVersion(
3950           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3951             GlobalDecl CurGD{
3952                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3953             StringRef MangledName = getMangledName(CurGD);
3954             llvm::Constant *Func = GetGlobalValue(MangledName);
3955             if (!Func) {
3956               if (CurFD->isDefined()) {
3957                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3958                 Func = GetGlobalValue(MangledName);
3959               } else {
3960                 const CGFunctionInfo &FI =
3961                     getTypes().arrangeGlobalDeclaration(GD);
3962                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3963                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3964                                          /*DontDefer=*/false, ForDefinition);
3965               }
3966               assert(Func && "This should have just been created");
3967             }
3968             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
3969               const auto *TA = CurFD->getAttr<TargetAttr>();
3970               llvm::SmallVector<StringRef, 8> Feats;
3971               TA->getAddedFeatures(Feats);
3972               Options.emplace_back(cast<llvm::Function>(Func),
3973                                    TA->getArchitecture(), Feats);
3974             } else {
3975               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
3976               llvm::SmallVector<StringRef, 8> Feats;
3977               TVA->getFeatures(Feats);
3978               Options.emplace_back(cast<llvm::Function>(Func),
3979                                    /*Architecture*/ "", Feats);
3980             }
3981           });
3982     } else if (FD->isTargetClonesMultiVersion()) {
3983       const auto *TC = FD->getAttr<TargetClonesAttr>();
3984       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3985            ++VersionIndex) {
3986         if (!TC->isFirstOfVersion(VersionIndex))
3987           continue;
3988         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3989                          VersionIndex};
3990         StringRef Version = TC->getFeatureStr(VersionIndex);
3991         StringRef MangledName = getMangledName(CurGD);
3992         llvm::Constant *Func = GetGlobalValue(MangledName);
3993         if (!Func) {
3994           if (FD->isDefined()) {
3995             EmitGlobalFunctionDefinition(CurGD, nullptr);
3996             Func = GetGlobalValue(MangledName);
3997           } else {
3998             const CGFunctionInfo &FI =
3999                 getTypes().arrangeGlobalDeclaration(CurGD);
4000             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4001             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4002                                      /*DontDefer=*/false, ForDefinition);
4003           }
4004           assert(Func && "This should have just been created");
4005         }
4006 
4007         StringRef Architecture;
4008         llvm::SmallVector<StringRef, 1> Feature;
4009 
4010         if (getTarget().getTriple().isAArch64()) {
4011           if (Version != "default") {
4012             llvm::SmallVector<StringRef, 8> VerFeats;
4013             Version.split(VerFeats, "+");
4014             for (auto &CurFeat : VerFeats)
4015               Feature.push_back(CurFeat.trim());
4016           }
4017         } else {
4018           if (Version.startswith("arch="))
4019             Architecture = Version.drop_front(sizeof("arch=") - 1);
4020           else if (Version != "default")
4021             Feature.push_back(Version);
4022         }
4023 
4024         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
4025       }
4026     } else {
4027       assert(0 && "Expected a target or target_clones multiversion function");
4028       continue;
4029     }
4030 
4031     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4032     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
4033       ResolverConstant = IFunc->getResolver();
4034     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4035 
4036     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4037 
4038     if (supportsCOMDAT())
4039       ResolverFunc->setComdat(
4040           getModule().getOrInsertComdat(ResolverFunc->getName()));
4041 
4042     const TargetInfo &TI = getTarget();
4043     llvm::stable_sort(
4044         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4045                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4046           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4047         });
4048     CodeGenFunction CGF(*this);
4049     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4050   }
4051 
4052   // Ensure that any additions to the deferred decls list caused by emitting a
4053   // variant are emitted.  This can happen when the variant itself is inline and
4054   // calls a function without linkage.
4055   if (!MVFuncsToEmit.empty())
4056     EmitDeferred();
4057 
4058   // Ensure that any additions to the multiversion funcs list from either the
4059   // deferred decls or the multiversion functions themselves are emitted.
4060   if (!MultiVersionFuncs.empty())
4061     emitMultiVersionFunctions();
4062 }
4063 
4064 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4065   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4066   assert(FD && "Not a FunctionDecl?");
4067   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4068   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4069   assert(DD && "Not a cpu_dispatch Function?");
4070 
4071   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4072   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4073 
4074   StringRef ResolverName = getMangledName(GD);
4075   UpdateMultiVersionNames(GD, FD, ResolverName);
4076 
4077   llvm::Type *ResolverType;
4078   GlobalDecl ResolverGD;
4079   if (getTarget().supportsIFunc()) {
4080     ResolverType = llvm::FunctionType::get(
4081         llvm::PointerType::get(DeclTy,
4082                                getTypes().getTargetAddressSpace(FD->getType())),
4083         false);
4084   }
4085   else {
4086     ResolverType = DeclTy;
4087     ResolverGD = GD;
4088   }
4089 
4090   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4091       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4092   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4093   if (supportsCOMDAT())
4094     ResolverFunc->setComdat(
4095         getModule().getOrInsertComdat(ResolverFunc->getName()));
4096 
4097   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4098   const TargetInfo &Target = getTarget();
4099   unsigned Index = 0;
4100   for (const IdentifierInfo *II : DD->cpus()) {
4101     // Get the name of the target function so we can look it up/create it.
4102     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4103                               getCPUSpecificMangling(*this, II->getName());
4104 
4105     llvm::Constant *Func = GetGlobalValue(MangledName);
4106 
4107     if (!Func) {
4108       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4109       if (ExistingDecl.getDecl() &&
4110           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4111         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4112         Func = GetGlobalValue(MangledName);
4113       } else {
4114         if (!ExistingDecl.getDecl())
4115           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4116 
4117       Func = GetOrCreateLLVMFunction(
4118           MangledName, DeclTy, ExistingDecl,
4119           /*ForVTable=*/false, /*DontDefer=*/true,
4120           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4121       }
4122     }
4123 
4124     llvm::SmallVector<StringRef, 32> Features;
4125     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4126     llvm::transform(Features, Features.begin(),
4127                     [](StringRef Str) { return Str.substr(1); });
4128     llvm::erase_if(Features, [&Target](StringRef Feat) {
4129       return !Target.validateCpuSupports(Feat);
4130     });
4131     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4132     ++Index;
4133   }
4134 
4135   llvm::stable_sort(
4136       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4137                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4138         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4139                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4140       });
4141 
4142   // If the list contains multiple 'default' versions, such as when it contains
4143   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4144   // always run on at least a 'pentium'). We do this by deleting the 'least
4145   // advanced' (read, lowest mangling letter).
4146   while (Options.size() > 1 &&
4147          llvm::X86::getCpuSupportsMask(
4148              (Options.end() - 2)->Conditions.Features) == 0) {
4149     StringRef LHSName = (Options.end() - 2)->Function->getName();
4150     StringRef RHSName = (Options.end() - 1)->Function->getName();
4151     if (LHSName.compare(RHSName) < 0)
4152       Options.erase(Options.end() - 2);
4153     else
4154       Options.erase(Options.end() - 1);
4155   }
4156 
4157   CodeGenFunction CGF(*this);
4158   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4159 
4160   if (getTarget().supportsIFunc()) {
4161     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4162     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4163 
4164     // Fix up function declarations that were created for cpu_specific before
4165     // cpu_dispatch was known
4166     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4167       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4168       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4169                                            &getModule());
4170       GI->takeName(IFunc);
4171       IFunc->replaceAllUsesWith(GI);
4172       IFunc->eraseFromParent();
4173       IFunc = GI;
4174     }
4175 
4176     std::string AliasName = getMangledNameImpl(
4177         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4178     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4179     if (!AliasFunc) {
4180       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4181                                            &getModule());
4182       SetCommonAttributes(GD, GA);
4183     }
4184   }
4185 }
4186 
4187 /// If a dispatcher for the specified mangled name is not in the module, create
4188 /// and return an llvm Function with the specified type.
4189 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4190   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4191   assert(FD && "Not a FunctionDecl?");
4192 
4193   std::string MangledName =
4194       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4195 
4196   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4197   // a separate resolver).
4198   std::string ResolverName = MangledName;
4199   if (getTarget().supportsIFunc())
4200     ResolverName += ".ifunc";
4201   else if (FD->isTargetMultiVersion())
4202     ResolverName += ".resolver";
4203 
4204   // If the resolver has already been created, just return it.
4205   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4206     return ResolverGV;
4207 
4208   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4209   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4210 
4211   // The resolver needs to be created. For target and target_clones, defer
4212   // creation until the end of the TU.
4213   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4214     MultiVersionFuncs.push_back(GD);
4215 
4216   // For cpu_specific, don't create an ifunc yet because we don't know if the
4217   // cpu_dispatch will be emitted in this translation unit.
4218   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4219     llvm::Type *ResolverType = llvm::FunctionType::get(
4220         llvm::PointerType::get(DeclTy,
4221                                getTypes().getTargetAddressSpace(FD->getType())),
4222         false);
4223     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4224         MangledName + ".resolver", ResolverType, GlobalDecl{},
4225         /*ForVTable=*/false);
4226     llvm::GlobalIFunc *GIF =
4227         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4228                                   "", Resolver, &getModule());
4229     GIF->setName(ResolverName);
4230     SetCommonAttributes(FD, GIF);
4231 
4232     return GIF;
4233   }
4234 
4235   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4236       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4237   assert(isa<llvm::GlobalValue>(Resolver) &&
4238          "Resolver should be created for the first time");
4239   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4240   return Resolver;
4241 }
4242 
4243 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4244 /// module, create and return an llvm Function with the specified type. If there
4245 /// is something in the module with the specified name, return it potentially
4246 /// bitcasted to the right type.
4247 ///
4248 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4249 /// to set the attributes on the function when it is first created.
4250 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4251     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4252     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4253     ForDefinition_t IsForDefinition) {
4254   const Decl *D = GD.getDecl();
4255 
4256   // Any attempts to use a MultiVersion function should result in retrieving
4257   // the iFunc instead. Name Mangling will handle the rest of the changes.
4258   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4259     // For the device mark the function as one that should be emitted.
4260     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4261         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4262         !DontDefer && !IsForDefinition) {
4263       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4264         GlobalDecl GDDef;
4265         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4266           GDDef = GlobalDecl(CD, GD.getCtorType());
4267         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4268           GDDef = GlobalDecl(DD, GD.getDtorType());
4269         else
4270           GDDef = GlobalDecl(FDDef);
4271         EmitGlobal(GDDef);
4272       }
4273     }
4274 
4275     if (FD->isMultiVersion()) {
4276       UpdateMultiVersionNames(GD, FD, MangledName);
4277       if (!IsForDefinition)
4278         return GetOrCreateMultiVersionResolver(GD);
4279     }
4280   }
4281 
4282   // Lookup the entry, lazily creating it if necessary.
4283   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4284   if (Entry) {
4285     if (WeakRefReferences.erase(Entry)) {
4286       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4287       if (FD && !FD->hasAttr<WeakAttr>())
4288         Entry->setLinkage(llvm::Function::ExternalLinkage);
4289     }
4290 
4291     // Handle dropped DLL attributes.
4292     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4293         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4294       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4295       setDSOLocal(Entry);
4296     }
4297 
4298     // If there are two attempts to define the same mangled name, issue an
4299     // error.
4300     if (IsForDefinition && !Entry->isDeclaration()) {
4301       GlobalDecl OtherGD;
4302       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4303       // to make sure that we issue an error only once.
4304       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4305           (GD.getCanonicalDecl().getDecl() !=
4306            OtherGD.getCanonicalDecl().getDecl()) &&
4307           DiagnosedConflictingDefinitions.insert(GD).second) {
4308         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4309             << MangledName;
4310         getDiags().Report(OtherGD.getDecl()->getLocation(),
4311                           diag::note_previous_definition);
4312       }
4313     }
4314 
4315     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4316         (Entry->getValueType() == Ty)) {
4317       return Entry;
4318     }
4319 
4320     // Make sure the result is of the correct type.
4321     // (If function is requested for a definition, we always need to create a new
4322     // function, not just return a bitcast.)
4323     if (!IsForDefinition)
4324       return llvm::ConstantExpr::getBitCast(
4325           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4326   }
4327 
4328   // This function doesn't have a complete type (for example, the return
4329   // type is an incomplete struct). Use a fake type instead, and make
4330   // sure not to try to set attributes.
4331   bool IsIncompleteFunction = false;
4332 
4333   llvm::FunctionType *FTy;
4334   if (isa<llvm::FunctionType>(Ty)) {
4335     FTy = cast<llvm::FunctionType>(Ty);
4336   } else {
4337     FTy = llvm::FunctionType::get(VoidTy, false);
4338     IsIncompleteFunction = true;
4339   }
4340 
4341   llvm::Function *F =
4342       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4343                              Entry ? StringRef() : MangledName, &getModule());
4344 
4345   // If we already created a function with the same mangled name (but different
4346   // type) before, take its name and add it to the list of functions to be
4347   // replaced with F at the end of CodeGen.
4348   //
4349   // This happens if there is a prototype for a function (e.g. "int f()") and
4350   // then a definition of a different type (e.g. "int f(int x)").
4351   if (Entry) {
4352     F->takeName(Entry);
4353 
4354     // This might be an implementation of a function without a prototype, in
4355     // which case, try to do special replacement of calls which match the new
4356     // prototype.  The really key thing here is that we also potentially drop
4357     // arguments from the call site so as to make a direct call, which makes the
4358     // inliner happier and suppresses a number of optimizer warnings (!) about
4359     // dropping arguments.
4360     if (!Entry->use_empty()) {
4361       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4362       Entry->removeDeadConstantUsers();
4363     }
4364 
4365     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4366         F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
4367     addGlobalValReplacement(Entry, BC);
4368   }
4369 
4370   assert(F->getName() == MangledName && "name was uniqued!");
4371   if (D)
4372     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4373   if (ExtraAttrs.hasFnAttrs()) {
4374     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4375     F->addFnAttrs(B);
4376   }
4377 
4378   if (!DontDefer) {
4379     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4380     // each other bottoming out with the base dtor.  Therefore we emit non-base
4381     // dtors on usage, even if there is no dtor definition in the TU.
4382     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4383         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4384                                            GD.getDtorType()))
4385       addDeferredDeclToEmit(GD);
4386 
4387     // This is the first use or definition of a mangled name.  If there is a
4388     // deferred decl with this name, remember that we need to emit it at the end
4389     // of the file.
4390     auto DDI = DeferredDecls.find(MangledName);
4391     if (DDI != DeferredDecls.end()) {
4392       // Move the potentially referenced deferred decl to the
4393       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4394       // don't need it anymore).
4395       addDeferredDeclToEmit(DDI->second);
4396       EmittedDeferredDecls[DDI->first] = DDI->second;
4397       DeferredDecls.erase(DDI);
4398 
4399       // Otherwise, there are cases we have to worry about where we're
4400       // using a declaration for which we must emit a definition but where
4401       // we might not find a top-level definition:
4402       //   - member functions defined inline in their classes
4403       //   - friend functions defined inline in some class
4404       //   - special member functions with implicit definitions
4405       // If we ever change our AST traversal to walk into class methods,
4406       // this will be unnecessary.
4407       //
4408       // We also don't emit a definition for a function if it's going to be an
4409       // entry in a vtable, unless it's already marked as used.
4410     } else if (getLangOpts().CPlusPlus && D) {
4411       // Look for a declaration that's lexically in a record.
4412       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4413            FD = FD->getPreviousDecl()) {
4414         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4415           if (FD->doesThisDeclarationHaveABody()) {
4416             addDeferredDeclToEmit(GD.getWithDecl(FD));
4417             break;
4418           }
4419         }
4420       }
4421     }
4422   }
4423 
4424   // Make sure the result is of the requested type.
4425   if (!IsIncompleteFunction) {
4426     assert(F->getFunctionType() == Ty);
4427     return F;
4428   }
4429 
4430   return llvm::ConstantExpr::getBitCast(F,
4431                                         Ty->getPointerTo(F->getAddressSpace()));
4432 }
4433 
4434 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4435 /// non-null, then this function will use the specified type if it has to
4436 /// create it (this occurs when we see a definition of the function).
4437 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4438                                                  llvm::Type *Ty,
4439                                                  bool ForVTable,
4440                                                  bool DontDefer,
4441                                               ForDefinition_t IsForDefinition) {
4442   assert(!cast<FunctionDecl>(GD.getDecl())->isImmediateFunction() &&
4443          "an immediate function should never be emitted");
4444   // If there was no specific requested type, just convert it now.
4445   if (!Ty) {
4446     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4447     Ty = getTypes().ConvertType(FD->getType());
4448   }
4449 
4450   // Devirtualized destructor calls may come through here instead of via
4451   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4452   // of the complete destructor when necessary.
4453   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4454     if (getTarget().getCXXABI().isMicrosoft() &&
4455         GD.getDtorType() == Dtor_Complete &&
4456         DD->getParent()->getNumVBases() == 0)
4457       GD = GlobalDecl(DD, Dtor_Base);
4458   }
4459 
4460   StringRef MangledName = getMangledName(GD);
4461   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4462                                     /*IsThunk=*/false, llvm::AttributeList(),
4463                                     IsForDefinition);
4464   // Returns kernel handle for HIP kernel stub function.
4465   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4466       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4467     auto *Handle = getCUDARuntime().getKernelHandle(
4468         cast<llvm::Function>(F->stripPointerCasts()), GD);
4469     if (IsForDefinition)
4470       return F;
4471     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4472   }
4473   return F;
4474 }
4475 
4476 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4477   llvm::GlobalValue *F =
4478       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4479 
4480   return llvm::ConstantExpr::getBitCast(
4481       llvm::NoCFIValue::get(F),
4482       llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace()));
4483 }
4484 
4485 static const FunctionDecl *
4486 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4487   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4488   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4489 
4490   IdentifierInfo &CII = C.Idents.get(Name);
4491   for (const auto *Result : DC->lookup(&CII))
4492     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4493       return FD;
4494 
4495   if (!C.getLangOpts().CPlusPlus)
4496     return nullptr;
4497 
4498   // Demangle the premangled name from getTerminateFn()
4499   IdentifierInfo &CXXII =
4500       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4501           ? C.Idents.get("terminate")
4502           : C.Idents.get(Name);
4503 
4504   for (const auto &N : {"__cxxabiv1", "std"}) {
4505     IdentifierInfo &NS = C.Idents.get(N);
4506     for (const auto *Result : DC->lookup(&NS)) {
4507       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4508       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4509         for (const auto *Result : LSD->lookup(&NS))
4510           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4511             break;
4512 
4513       if (ND)
4514         for (const auto *Result : ND->lookup(&CXXII))
4515           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4516             return FD;
4517     }
4518   }
4519 
4520   return nullptr;
4521 }
4522 
4523 /// CreateRuntimeFunction - Create a new runtime function with the specified
4524 /// type and name.
4525 llvm::FunctionCallee
4526 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4527                                      llvm::AttributeList ExtraAttrs, bool Local,
4528                                      bool AssumeConvergent) {
4529   if (AssumeConvergent) {
4530     ExtraAttrs =
4531         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4532   }
4533 
4534   llvm::Constant *C =
4535       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4536                               /*DontDefer=*/false, /*IsThunk=*/false,
4537                               ExtraAttrs);
4538 
4539   if (auto *F = dyn_cast<llvm::Function>(C)) {
4540     if (F->empty()) {
4541       F->setCallingConv(getRuntimeCC());
4542 
4543       // In Windows Itanium environments, try to mark runtime functions
4544       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4545       // will link their standard library statically or dynamically. Marking
4546       // functions imported when they are not imported can cause linker errors
4547       // and warnings.
4548       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4549           !getCodeGenOpts().LTOVisibilityPublicStd) {
4550         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4551         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4552           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4553           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4554         }
4555       }
4556       setDSOLocal(F);
4557     }
4558   }
4559 
4560   return {FTy, C};
4561 }
4562 
4563 /// isTypeConstant - Determine whether an object of this type can be emitted
4564 /// as a constant.
4565 ///
4566 /// If ExcludeCtor is true, the duration when the object's constructor runs
4567 /// will not be considered. The caller will need to verify that the object is
4568 /// not written to during its construction. ExcludeDtor works similarly.
4569 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor,
4570                                    bool ExcludeDtor) {
4571   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4572     return false;
4573 
4574   if (Context.getLangOpts().CPlusPlus) {
4575     if (const CXXRecordDecl *Record
4576           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4577       return ExcludeCtor && !Record->hasMutableFields() &&
4578              (Record->hasTrivialDestructor() || ExcludeDtor);
4579   }
4580 
4581   return true;
4582 }
4583 
4584 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4585 /// create and return an llvm GlobalVariable with the specified type and address
4586 /// space. If there is something in the module with the specified name, return
4587 /// it potentially bitcasted to the right type.
4588 ///
4589 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4590 /// to set the attributes on the global when it is first created.
4591 ///
4592 /// If IsForDefinition is true, it is guaranteed that an actual global with
4593 /// type Ty will be returned, not conversion of a variable with the same
4594 /// mangled name but some other type.
4595 llvm::Constant *
4596 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4597                                      LangAS AddrSpace, const VarDecl *D,
4598                                      ForDefinition_t IsForDefinition) {
4599   // Lookup the entry, lazily creating it if necessary.
4600   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4601   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4602   if (Entry) {
4603     if (WeakRefReferences.erase(Entry)) {
4604       if (D && !D->hasAttr<WeakAttr>())
4605         Entry->setLinkage(llvm::Function::ExternalLinkage);
4606     }
4607 
4608     // Handle dropped DLL attributes.
4609     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4610         !shouldMapVisibilityToDLLExport(D))
4611       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4612 
4613     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4614       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4615 
4616     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4617       return Entry;
4618 
4619     // If there are two attempts to define the same mangled name, issue an
4620     // error.
4621     if (IsForDefinition && !Entry->isDeclaration()) {
4622       GlobalDecl OtherGD;
4623       const VarDecl *OtherD;
4624 
4625       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4626       // to make sure that we issue an error only once.
4627       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4628           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4629           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4630           OtherD->hasInit() &&
4631           DiagnosedConflictingDefinitions.insert(D).second) {
4632         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4633             << MangledName;
4634         getDiags().Report(OtherGD.getDecl()->getLocation(),
4635                           diag::note_previous_definition);
4636       }
4637     }
4638 
4639     // Make sure the result is of the correct type.
4640     if (Entry->getType()->getAddressSpace() != TargetAS) {
4641       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4642                                                   Ty->getPointerTo(TargetAS));
4643     }
4644 
4645     // (If global is requested for a definition, we always need to create a new
4646     // global, not just return a bitcast.)
4647     if (!IsForDefinition)
4648       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4649   }
4650 
4651   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4652 
4653   auto *GV = new llvm::GlobalVariable(
4654       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4655       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4656       getContext().getTargetAddressSpace(DAddrSpace));
4657 
4658   // If we already created a global with the same mangled name (but different
4659   // type) before, take its name and remove it from its parent.
4660   if (Entry) {
4661     GV->takeName(Entry);
4662 
4663     if (!Entry->use_empty()) {
4664       llvm::Constant *NewPtrForOldDecl =
4665           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4666       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4667     }
4668 
4669     Entry->eraseFromParent();
4670   }
4671 
4672   // This is the first use or definition of a mangled name.  If there is a
4673   // deferred decl with this name, remember that we need to emit it at the end
4674   // of the file.
4675   auto DDI = DeferredDecls.find(MangledName);
4676   if (DDI != DeferredDecls.end()) {
4677     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4678     // list, and remove it from DeferredDecls (since we don't need it anymore).
4679     addDeferredDeclToEmit(DDI->second);
4680     EmittedDeferredDecls[DDI->first] = DDI->second;
4681     DeferredDecls.erase(DDI);
4682   }
4683 
4684   // Handle things which are present even on external declarations.
4685   if (D) {
4686     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4687       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4688 
4689     // FIXME: This code is overly simple and should be merged with other global
4690     // handling.
4691     GV->setConstant(isTypeConstant(D->getType(), false, false));
4692 
4693     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4694 
4695     setLinkageForGV(GV, D);
4696 
4697     if (D->getTLSKind()) {
4698       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4699         CXXThreadLocals.push_back(D);
4700       setTLSMode(GV, *D);
4701     }
4702 
4703     setGVProperties(GV, D);
4704 
4705     // If required by the ABI, treat declarations of static data members with
4706     // inline initializers as definitions.
4707     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4708       EmitGlobalVarDefinition(D);
4709     }
4710 
4711     // Emit section information for extern variables.
4712     if (D->hasExternalStorage()) {
4713       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4714         GV->setSection(SA->getName());
4715     }
4716 
4717     // Handle XCore specific ABI requirements.
4718     if (getTriple().getArch() == llvm::Triple::xcore &&
4719         D->getLanguageLinkage() == CLanguageLinkage &&
4720         D->getType().isConstant(Context) &&
4721         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4722       GV->setSection(".cp.rodata");
4723 
4724     // Check if we a have a const declaration with an initializer, we may be
4725     // able to emit it as available_externally to expose it's value to the
4726     // optimizer.
4727     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4728         D->getType().isConstQualified() && !GV->hasInitializer() &&
4729         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4730       const auto *Record =
4731           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4732       bool HasMutableFields = Record && Record->hasMutableFields();
4733       if (!HasMutableFields) {
4734         const VarDecl *InitDecl;
4735         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4736         if (InitExpr) {
4737           ConstantEmitter emitter(*this);
4738           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4739           if (Init) {
4740             auto *InitType = Init->getType();
4741             if (GV->getValueType() != InitType) {
4742               // The type of the initializer does not match the definition.
4743               // This happens when an initializer has a different type from
4744               // the type of the global (because of padding at the end of a
4745               // structure for instance).
4746               GV->setName(StringRef());
4747               // Make a new global with the correct type, this is now guaranteed
4748               // to work.
4749               auto *NewGV = cast<llvm::GlobalVariable>(
4750                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4751                       ->stripPointerCasts());
4752 
4753               // Erase the old global, since it is no longer used.
4754               GV->eraseFromParent();
4755               GV = NewGV;
4756             } else {
4757               GV->setInitializer(Init);
4758               GV->setConstant(true);
4759               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4760             }
4761             emitter.finalize(GV);
4762           }
4763         }
4764       }
4765     }
4766   }
4767 
4768   if (GV->isDeclaration()) {
4769     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4770     // External HIP managed variables needed to be recorded for transformation
4771     // in both device and host compilations.
4772     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4773         D->hasExternalStorage())
4774       getCUDARuntime().handleVarRegistration(D, *GV);
4775   }
4776 
4777   if (D)
4778     SanitizerMD->reportGlobal(GV, *D);
4779 
4780   LangAS ExpectedAS =
4781       D ? D->getType().getAddressSpace()
4782         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4783   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4784   if (DAddrSpace != ExpectedAS) {
4785     return getTargetCodeGenInfo().performAddrSpaceCast(
4786         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4787   }
4788 
4789   return GV;
4790 }
4791 
4792 llvm::Constant *
4793 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4794   const Decl *D = GD.getDecl();
4795 
4796   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4797     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4798                                 /*DontDefer=*/false, IsForDefinition);
4799 
4800   if (isa<CXXMethodDecl>(D)) {
4801     auto FInfo =
4802         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4803     auto Ty = getTypes().GetFunctionType(*FInfo);
4804     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4805                              IsForDefinition);
4806   }
4807 
4808   if (isa<FunctionDecl>(D)) {
4809     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4810     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4811     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4812                              IsForDefinition);
4813   }
4814 
4815   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4816 }
4817 
4818 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4819     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4820     llvm::Align Alignment) {
4821   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4822   llvm::GlobalVariable *OldGV = nullptr;
4823 
4824   if (GV) {
4825     // Check if the variable has the right type.
4826     if (GV->getValueType() == Ty)
4827       return GV;
4828 
4829     // Because C++ name mangling, the only way we can end up with an already
4830     // existing global with the same name is if it has been declared extern "C".
4831     assert(GV->isDeclaration() && "Declaration has wrong type!");
4832     OldGV = GV;
4833   }
4834 
4835   // Create a new variable.
4836   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4837                                 Linkage, nullptr, Name);
4838 
4839   if (OldGV) {
4840     // Replace occurrences of the old variable if needed.
4841     GV->takeName(OldGV);
4842 
4843     if (!OldGV->use_empty()) {
4844       llvm::Constant *NewPtrForOldDecl =
4845       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4846       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4847     }
4848 
4849     OldGV->eraseFromParent();
4850   }
4851 
4852   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4853       !GV->hasAvailableExternallyLinkage())
4854     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4855 
4856   GV->setAlignment(Alignment);
4857 
4858   return GV;
4859 }
4860 
4861 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4862 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4863 /// then it will be created with the specified type instead of whatever the
4864 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4865 /// that an actual global with type Ty will be returned, not conversion of a
4866 /// variable with the same mangled name but some other type.
4867 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4868                                                   llvm::Type *Ty,
4869                                            ForDefinition_t IsForDefinition) {
4870   assert(D->hasGlobalStorage() && "Not a global variable");
4871   QualType ASTTy = D->getType();
4872   if (!Ty)
4873     Ty = getTypes().ConvertTypeForMem(ASTTy);
4874 
4875   StringRef MangledName = getMangledName(D);
4876   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4877                                IsForDefinition);
4878 }
4879 
4880 /// CreateRuntimeVariable - Create a new runtime global variable with the
4881 /// specified type and name.
4882 llvm::Constant *
4883 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4884                                      StringRef Name) {
4885   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4886                                                        : LangAS::Default;
4887   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4888   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4889   return Ret;
4890 }
4891 
4892 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4893   assert(!D->getInit() && "Cannot emit definite definitions here!");
4894 
4895   StringRef MangledName = getMangledName(D);
4896   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4897 
4898   // We already have a definition, not declaration, with the same mangled name.
4899   // Emitting of declaration is not required (and actually overwrites emitted
4900   // definition).
4901   if (GV && !GV->isDeclaration())
4902     return;
4903 
4904   // If we have not seen a reference to this variable yet, place it into the
4905   // deferred declarations table to be emitted if needed later.
4906   if (!MustBeEmitted(D) && !GV) {
4907       DeferredDecls[MangledName] = D;
4908       return;
4909   }
4910 
4911   // The tentative definition is the only definition.
4912   EmitGlobalVarDefinition(D);
4913 }
4914 
4915 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4916   EmitExternalVarDeclaration(D);
4917 }
4918 
4919 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4920   return Context.toCharUnitsFromBits(
4921       getDataLayout().getTypeStoreSizeInBits(Ty));
4922 }
4923 
4924 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4925   if (LangOpts.OpenCL) {
4926     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4927     assert(AS == LangAS::opencl_global ||
4928            AS == LangAS::opencl_global_device ||
4929            AS == LangAS::opencl_global_host ||
4930            AS == LangAS::opencl_constant ||
4931            AS == LangAS::opencl_local ||
4932            AS >= LangAS::FirstTargetAddressSpace);
4933     return AS;
4934   }
4935 
4936   if (LangOpts.SYCLIsDevice &&
4937       (!D || D->getType().getAddressSpace() == LangAS::Default))
4938     return LangAS::sycl_global;
4939 
4940   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4941     if (D) {
4942       if (D->hasAttr<CUDAConstantAttr>())
4943         return LangAS::cuda_constant;
4944       if (D->hasAttr<CUDASharedAttr>())
4945         return LangAS::cuda_shared;
4946       if (D->hasAttr<CUDADeviceAttr>())
4947         return LangAS::cuda_device;
4948       if (D->getType().isConstQualified())
4949         return LangAS::cuda_constant;
4950     }
4951     return LangAS::cuda_device;
4952   }
4953 
4954   if (LangOpts.OpenMP) {
4955     LangAS AS;
4956     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4957       return AS;
4958   }
4959   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4960 }
4961 
4962 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4963   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4964   if (LangOpts.OpenCL)
4965     return LangAS::opencl_constant;
4966   if (LangOpts.SYCLIsDevice)
4967     return LangAS::sycl_global;
4968   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4969     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4970     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4971     // with OpVariable instructions with Generic storage class which is not
4972     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4973     // UniformConstant storage class is not viable as pointers to it may not be
4974     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4975     return LangAS::cuda_device;
4976   if (auto AS = getTarget().getConstantAddressSpace())
4977     return *AS;
4978   return LangAS::Default;
4979 }
4980 
4981 // In address space agnostic languages, string literals are in default address
4982 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4983 // emitted in constant address space in LLVM IR. To be consistent with other
4984 // parts of AST, string literal global variables in constant address space
4985 // need to be casted to default address space before being put into address
4986 // map and referenced by other part of CodeGen.
4987 // In OpenCL, string literals are in constant address space in AST, therefore
4988 // they should not be casted to default address space.
4989 static llvm::Constant *
4990 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4991                                        llvm::GlobalVariable *GV) {
4992   llvm::Constant *Cast = GV;
4993   if (!CGM.getLangOpts().OpenCL) {
4994     auto AS = CGM.GetGlobalConstantAddressSpace();
4995     if (AS != LangAS::Default)
4996       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4997           CGM, GV, AS, LangAS::Default,
4998           GV->getValueType()->getPointerTo(
4999               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5000   }
5001   return Cast;
5002 }
5003 
5004 template<typename SomeDecl>
5005 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5006                                                llvm::GlobalValue *GV) {
5007   if (!getLangOpts().CPlusPlus)
5008     return;
5009 
5010   // Must have 'used' attribute, or else inline assembly can't rely on
5011   // the name existing.
5012   if (!D->template hasAttr<UsedAttr>())
5013     return;
5014 
5015   // Must have internal linkage and an ordinary name.
5016   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
5017     return;
5018 
5019   // Must be in an extern "C" context. Entities declared directly within
5020   // a record are not extern "C" even if the record is in such a context.
5021   const SomeDecl *First = D->getFirstDecl();
5022   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5023     return;
5024 
5025   // OK, this is an internal linkage entity inside an extern "C" linkage
5026   // specification. Make a note of that so we can give it the "expected"
5027   // mangled name if nothing else is using that name.
5028   std::pair<StaticExternCMap::iterator, bool> R =
5029       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5030 
5031   // If we have multiple internal linkage entities with the same name
5032   // in extern "C" regions, none of them gets that name.
5033   if (!R.second)
5034     R.first->second = nullptr;
5035 }
5036 
5037 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5038   if (!CGM.supportsCOMDAT())
5039     return false;
5040 
5041   if (D.hasAttr<SelectAnyAttr>())
5042     return true;
5043 
5044   GVALinkage Linkage;
5045   if (auto *VD = dyn_cast<VarDecl>(&D))
5046     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5047   else
5048     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5049 
5050   switch (Linkage) {
5051   case GVA_Internal:
5052   case GVA_AvailableExternally:
5053   case GVA_StrongExternal:
5054     return false;
5055   case GVA_DiscardableODR:
5056   case GVA_StrongODR:
5057     return true;
5058   }
5059   llvm_unreachable("No such linkage");
5060 }
5061 
5062 bool CodeGenModule::supportsCOMDAT() const {
5063   return getTriple().supportsCOMDAT();
5064 }
5065 
5066 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5067                                           llvm::GlobalObject &GO) {
5068   if (!shouldBeInCOMDAT(*this, D))
5069     return;
5070   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5071 }
5072 
5073 /// Pass IsTentative as true if you want to create a tentative definition.
5074 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5075                                             bool IsTentative) {
5076   // OpenCL global variables of sampler type are translated to function calls,
5077   // therefore no need to be translated.
5078   QualType ASTTy = D->getType();
5079   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5080     return;
5081 
5082   // If this is OpenMP device, check if it is legal to emit this global
5083   // normally.
5084   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5085       OpenMPRuntime->emitTargetGlobalVariable(D))
5086     return;
5087 
5088   llvm::TrackingVH<llvm::Constant> Init;
5089   bool NeedsGlobalCtor = false;
5090   // Whether the definition of the variable is available externally.
5091   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5092   // since this is the job for its original source.
5093   bool IsDefinitionAvailableExternally =
5094       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5095   bool NeedsGlobalDtor =
5096       !IsDefinitionAvailableExternally &&
5097       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5098 
5099   const VarDecl *InitDecl;
5100   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5101 
5102   std::optional<ConstantEmitter> emitter;
5103 
5104   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5105   // as part of their declaration."  Sema has already checked for
5106   // error cases, so we just need to set Init to UndefValue.
5107   bool IsCUDASharedVar =
5108       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5109   // Shadows of initialized device-side global variables are also left
5110   // undefined.
5111   // Managed Variables should be initialized on both host side and device side.
5112   bool IsCUDAShadowVar =
5113       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5114       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5115        D->hasAttr<CUDASharedAttr>());
5116   bool IsCUDADeviceShadowVar =
5117       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5118       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5119        D->getType()->isCUDADeviceBuiltinTextureType());
5120   if (getLangOpts().CUDA &&
5121       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5122     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5123   else if (D->hasAttr<LoaderUninitializedAttr>())
5124     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5125   else if (!InitExpr) {
5126     // This is a tentative definition; tentative definitions are
5127     // implicitly initialized with { 0 }.
5128     //
5129     // Note that tentative definitions are only emitted at the end of
5130     // a translation unit, so they should never have incomplete
5131     // type. In addition, EmitTentativeDefinition makes sure that we
5132     // never attempt to emit a tentative definition if a real one
5133     // exists. A use may still exists, however, so we still may need
5134     // to do a RAUW.
5135     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5136     Init = EmitNullConstant(D->getType());
5137   } else {
5138     initializedGlobalDecl = GlobalDecl(D);
5139     emitter.emplace(*this);
5140     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5141     if (!Initializer) {
5142       QualType T = InitExpr->getType();
5143       if (D->getType()->isReferenceType())
5144         T = D->getType();
5145 
5146       if (getLangOpts().CPlusPlus) {
5147         if (InitDecl->hasFlexibleArrayInit(getContext()))
5148           ErrorUnsupported(D, "flexible array initializer");
5149         Init = EmitNullConstant(T);
5150 
5151         if (!IsDefinitionAvailableExternally)
5152           NeedsGlobalCtor = true;
5153       } else {
5154         ErrorUnsupported(D, "static initializer");
5155         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5156       }
5157     } else {
5158       Init = Initializer;
5159       // We don't need an initializer, so remove the entry for the delayed
5160       // initializer position (just in case this entry was delayed) if we
5161       // also don't need to register a destructor.
5162       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5163         DelayedCXXInitPosition.erase(D);
5164 
5165 #ifndef NDEBUG
5166       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5167                           InitDecl->getFlexibleArrayInitChars(getContext());
5168       CharUnits CstSize = CharUnits::fromQuantity(
5169           getDataLayout().getTypeAllocSize(Init->getType()));
5170       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5171 #endif
5172     }
5173   }
5174 
5175   llvm::Type* InitType = Init->getType();
5176   llvm::Constant *Entry =
5177       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5178 
5179   // Strip off pointer casts if we got them.
5180   Entry = Entry->stripPointerCasts();
5181 
5182   // Entry is now either a Function or GlobalVariable.
5183   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5184 
5185   // We have a definition after a declaration with the wrong type.
5186   // We must make a new GlobalVariable* and update everything that used OldGV
5187   // (a declaration or tentative definition) with the new GlobalVariable*
5188   // (which will be a definition).
5189   //
5190   // This happens if there is a prototype for a global (e.g.
5191   // "extern int x[];") and then a definition of a different type (e.g.
5192   // "int x[10];"). This also happens when an initializer has a different type
5193   // from the type of the global (this happens with unions).
5194   if (!GV || GV->getValueType() != InitType ||
5195       GV->getType()->getAddressSpace() !=
5196           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5197 
5198     // Move the old entry aside so that we'll create a new one.
5199     Entry->setName(StringRef());
5200 
5201     // Make a new global with the correct type, this is now guaranteed to work.
5202     GV = cast<llvm::GlobalVariable>(
5203         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5204             ->stripPointerCasts());
5205 
5206     // Replace all uses of the old global with the new global
5207     llvm::Constant *NewPtrForOldDecl =
5208         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5209                                                              Entry->getType());
5210     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5211 
5212     // Erase the old global, since it is no longer used.
5213     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5214   }
5215 
5216   MaybeHandleStaticInExternC(D, GV);
5217 
5218   if (D->hasAttr<AnnotateAttr>())
5219     AddGlobalAnnotations(D, GV);
5220 
5221   // Set the llvm linkage type as appropriate.
5222   llvm::GlobalValue::LinkageTypes Linkage =
5223       getLLVMLinkageVarDefinition(D, GV->isConstant());
5224 
5225   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5226   // the device. [...]"
5227   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5228   // __device__, declares a variable that: [...]
5229   // Is accessible from all the threads within the grid and from the host
5230   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5231   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5232   if (GV && LangOpts.CUDA) {
5233     if (LangOpts.CUDAIsDevice) {
5234       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5235           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5236            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5237            D->getType()->isCUDADeviceBuiltinTextureType()))
5238         GV->setExternallyInitialized(true);
5239     } else {
5240       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5241     }
5242     getCUDARuntime().handleVarRegistration(D, *GV);
5243   }
5244 
5245   GV->setInitializer(Init);
5246   if (emitter)
5247     emitter->finalize(GV);
5248 
5249   // If it is safe to mark the global 'constant', do so now.
5250   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5251                   isTypeConstant(D->getType(), true, true));
5252 
5253   // If it is in a read-only section, mark it 'constant'.
5254   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5255     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5256     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5257       GV->setConstant(true);
5258   }
5259 
5260   CharUnits AlignVal = getContext().getDeclAlign(D);
5261   // Check for alignment specifed in an 'omp allocate' directive.
5262   if (std::optional<CharUnits> AlignValFromAllocate =
5263           getOMPAllocateAlignment(D))
5264     AlignVal = *AlignValFromAllocate;
5265   GV->setAlignment(AlignVal.getAsAlign());
5266 
5267   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5268   // function is only defined alongside the variable, not also alongside
5269   // callers. Normally, all accesses to a thread_local go through the
5270   // thread-wrapper in order to ensure initialization has occurred, underlying
5271   // variable will never be used other than the thread-wrapper, so it can be
5272   // converted to internal linkage.
5273   //
5274   // However, if the variable has the 'constinit' attribute, it _can_ be
5275   // referenced directly, without calling the thread-wrapper, so the linkage
5276   // must not be changed.
5277   //
5278   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5279   // weak or linkonce, the de-duplication semantics are important to preserve,
5280   // so we don't change the linkage.
5281   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5282       Linkage == llvm::GlobalValue::ExternalLinkage &&
5283       Context.getTargetInfo().getTriple().isOSDarwin() &&
5284       !D->hasAttr<ConstInitAttr>())
5285     Linkage = llvm::GlobalValue::InternalLinkage;
5286 
5287   GV->setLinkage(Linkage);
5288   if (D->hasAttr<DLLImportAttr>())
5289     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5290   else if (D->hasAttr<DLLExportAttr>())
5291     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5292   else
5293     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5294 
5295   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5296     // common vars aren't constant even if declared const.
5297     GV->setConstant(false);
5298     // Tentative definition of global variables may be initialized with
5299     // non-zero null pointers. In this case they should have weak linkage
5300     // since common linkage must have zero initializer and must not have
5301     // explicit section therefore cannot have non-zero initial value.
5302     if (!GV->getInitializer()->isNullValue())
5303       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5304   }
5305 
5306   setNonAliasAttributes(D, GV);
5307 
5308   if (D->getTLSKind() && !GV->isThreadLocal()) {
5309     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5310       CXXThreadLocals.push_back(D);
5311     setTLSMode(GV, *D);
5312   }
5313 
5314   maybeSetTrivialComdat(*D, *GV);
5315 
5316   // Emit the initializer function if necessary.
5317   if (NeedsGlobalCtor || NeedsGlobalDtor)
5318     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5319 
5320   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5321 
5322   // Emit global variable debug information.
5323   if (CGDebugInfo *DI = getModuleDebugInfo())
5324     if (getCodeGenOpts().hasReducedDebugInfo())
5325       DI->EmitGlobalVariable(GV, D);
5326 }
5327 
5328 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5329   if (CGDebugInfo *DI = getModuleDebugInfo())
5330     if (getCodeGenOpts().hasReducedDebugInfo()) {
5331       QualType ASTTy = D->getType();
5332       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5333       llvm::Constant *GV =
5334           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5335       DI->EmitExternalVariable(
5336           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5337     }
5338 }
5339 
5340 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5341                                       CodeGenModule &CGM, const VarDecl *D,
5342                                       bool NoCommon) {
5343   // Don't give variables common linkage if -fno-common was specified unless it
5344   // was overridden by a NoCommon attribute.
5345   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5346     return true;
5347 
5348   // C11 6.9.2/2:
5349   //   A declaration of an identifier for an object that has file scope without
5350   //   an initializer, and without a storage-class specifier or with the
5351   //   storage-class specifier static, constitutes a tentative definition.
5352   if (D->getInit() || D->hasExternalStorage())
5353     return true;
5354 
5355   // A variable cannot be both common and exist in a section.
5356   if (D->hasAttr<SectionAttr>())
5357     return true;
5358 
5359   // A variable cannot be both common and exist in a section.
5360   // We don't try to determine which is the right section in the front-end.
5361   // If no specialized section name is applicable, it will resort to default.
5362   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5363       D->hasAttr<PragmaClangDataSectionAttr>() ||
5364       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5365       D->hasAttr<PragmaClangRodataSectionAttr>())
5366     return true;
5367 
5368   // Thread local vars aren't considered common linkage.
5369   if (D->getTLSKind())
5370     return true;
5371 
5372   // Tentative definitions marked with WeakImportAttr are true definitions.
5373   if (D->hasAttr<WeakImportAttr>())
5374     return true;
5375 
5376   // A variable cannot be both common and exist in a comdat.
5377   if (shouldBeInCOMDAT(CGM, *D))
5378     return true;
5379 
5380   // Declarations with a required alignment do not have common linkage in MSVC
5381   // mode.
5382   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5383     if (D->hasAttr<AlignedAttr>())
5384       return true;
5385     QualType VarType = D->getType();
5386     if (Context.isAlignmentRequired(VarType))
5387       return true;
5388 
5389     if (const auto *RT = VarType->getAs<RecordType>()) {
5390       const RecordDecl *RD = RT->getDecl();
5391       for (const FieldDecl *FD : RD->fields()) {
5392         if (FD->isBitField())
5393           continue;
5394         if (FD->hasAttr<AlignedAttr>())
5395           return true;
5396         if (Context.isAlignmentRequired(FD->getType()))
5397           return true;
5398       }
5399     }
5400   }
5401 
5402   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5403   // common symbols, so symbols with greater alignment requirements cannot be
5404   // common.
5405   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5406   // alignments for common symbols via the aligncomm directive, so this
5407   // restriction only applies to MSVC environments.
5408   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5409       Context.getTypeAlignIfKnown(D->getType()) >
5410           Context.toBits(CharUnits::fromQuantity(32)))
5411     return true;
5412 
5413   return false;
5414 }
5415 
5416 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5417     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5418   if (Linkage == GVA_Internal)
5419     return llvm::Function::InternalLinkage;
5420 
5421   if (D->hasAttr<WeakAttr>())
5422     return llvm::GlobalVariable::WeakAnyLinkage;
5423 
5424   if (const auto *FD = D->getAsFunction())
5425     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5426       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5427 
5428   // We are guaranteed to have a strong definition somewhere else,
5429   // so we can use available_externally linkage.
5430   if (Linkage == GVA_AvailableExternally)
5431     return llvm::GlobalValue::AvailableExternallyLinkage;
5432 
5433   // Note that Apple's kernel linker doesn't support symbol
5434   // coalescing, so we need to avoid linkonce and weak linkages there.
5435   // Normally, this means we just map to internal, but for explicit
5436   // instantiations we'll map to external.
5437 
5438   // In C++, the compiler has to emit a definition in every translation unit
5439   // that references the function.  We should use linkonce_odr because
5440   // a) if all references in this translation unit are optimized away, we
5441   // don't need to codegen it.  b) if the function persists, it needs to be
5442   // merged with other definitions. c) C++ has the ODR, so we know the
5443   // definition is dependable.
5444   if (Linkage == GVA_DiscardableODR)
5445     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5446                                             : llvm::Function::InternalLinkage;
5447 
5448   // An explicit instantiation of a template has weak linkage, since
5449   // explicit instantiations can occur in multiple translation units
5450   // and must all be equivalent. However, we are not allowed to
5451   // throw away these explicit instantiations.
5452   //
5453   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5454   // so say that CUDA templates are either external (for kernels) or internal.
5455   // This lets llvm perform aggressive inter-procedural optimizations. For
5456   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5457   // therefore we need to follow the normal linkage paradigm.
5458   if (Linkage == GVA_StrongODR) {
5459     if (getLangOpts().AppleKext)
5460       return llvm::Function::ExternalLinkage;
5461     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5462         !getLangOpts().GPURelocatableDeviceCode)
5463       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5464                                           : llvm::Function::InternalLinkage;
5465     return llvm::Function::WeakODRLinkage;
5466   }
5467 
5468   // C++ doesn't have tentative definitions and thus cannot have common
5469   // linkage.
5470   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5471       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5472                                  CodeGenOpts.NoCommon))
5473     return llvm::GlobalVariable::CommonLinkage;
5474 
5475   // selectany symbols are externally visible, so use weak instead of
5476   // linkonce.  MSVC optimizes away references to const selectany globals, so
5477   // all definitions should be the same and ODR linkage should be used.
5478   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5479   if (D->hasAttr<SelectAnyAttr>())
5480     return llvm::GlobalVariable::WeakODRLinkage;
5481 
5482   // Otherwise, we have strong external linkage.
5483   assert(Linkage == GVA_StrongExternal);
5484   return llvm::GlobalVariable::ExternalLinkage;
5485 }
5486 
5487 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5488     const VarDecl *VD, bool IsConstant) {
5489   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5490   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5491 }
5492 
5493 /// Replace the uses of a function that was declared with a non-proto type.
5494 /// We want to silently drop extra arguments from call sites
5495 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5496                                           llvm::Function *newFn) {
5497   // Fast path.
5498   if (old->use_empty()) return;
5499 
5500   llvm::Type *newRetTy = newFn->getReturnType();
5501   SmallVector<llvm::Value*, 4> newArgs;
5502 
5503   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5504          ui != ue; ) {
5505     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5506     llvm::User *user = use->getUser();
5507 
5508     // Recognize and replace uses of bitcasts.  Most calls to
5509     // unprototyped functions will use bitcasts.
5510     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5511       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5512         replaceUsesOfNonProtoConstant(bitcast, newFn);
5513       continue;
5514     }
5515 
5516     // Recognize calls to the function.
5517     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5518     if (!callSite) continue;
5519     if (!callSite->isCallee(&*use))
5520       continue;
5521 
5522     // If the return types don't match exactly, then we can't
5523     // transform this call unless it's dead.
5524     if (callSite->getType() != newRetTy && !callSite->use_empty())
5525       continue;
5526 
5527     // Get the call site's attribute list.
5528     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5529     llvm::AttributeList oldAttrs = callSite->getAttributes();
5530 
5531     // If the function was passed too few arguments, don't transform.
5532     unsigned newNumArgs = newFn->arg_size();
5533     if (callSite->arg_size() < newNumArgs)
5534       continue;
5535 
5536     // If extra arguments were passed, we silently drop them.
5537     // If any of the types mismatch, we don't transform.
5538     unsigned argNo = 0;
5539     bool dontTransform = false;
5540     for (llvm::Argument &A : newFn->args()) {
5541       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5542         dontTransform = true;
5543         break;
5544       }
5545 
5546       // Add any parameter attributes.
5547       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5548       argNo++;
5549     }
5550     if (dontTransform)
5551       continue;
5552 
5553     // Okay, we can transform this.  Create the new call instruction and copy
5554     // over the required information.
5555     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5556 
5557     // Copy over any operand bundles.
5558     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5559     callSite->getOperandBundlesAsDefs(newBundles);
5560 
5561     llvm::CallBase *newCall;
5562     if (isa<llvm::CallInst>(callSite)) {
5563       newCall =
5564           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5565     } else {
5566       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5567       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5568                                          oldInvoke->getUnwindDest(), newArgs,
5569                                          newBundles, "", callSite);
5570     }
5571     newArgs.clear(); // for the next iteration
5572 
5573     if (!newCall->getType()->isVoidTy())
5574       newCall->takeName(callSite);
5575     newCall->setAttributes(
5576         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5577                                  oldAttrs.getRetAttrs(), newArgAttrs));
5578     newCall->setCallingConv(callSite->getCallingConv());
5579 
5580     // Finally, remove the old call, replacing any uses with the new one.
5581     if (!callSite->use_empty())
5582       callSite->replaceAllUsesWith(newCall);
5583 
5584     // Copy debug location attached to CI.
5585     if (callSite->getDebugLoc())
5586       newCall->setDebugLoc(callSite->getDebugLoc());
5587 
5588     callSite->eraseFromParent();
5589   }
5590 }
5591 
5592 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5593 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5594 /// existing call uses of the old function in the module, this adjusts them to
5595 /// call the new function directly.
5596 ///
5597 /// This is not just a cleanup: the always_inline pass requires direct calls to
5598 /// functions to be able to inline them.  If there is a bitcast in the way, it
5599 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5600 /// run at -O0.
5601 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5602                                                       llvm::Function *NewFn) {
5603   // If we're redefining a global as a function, don't transform it.
5604   if (!isa<llvm::Function>(Old)) return;
5605 
5606   replaceUsesOfNonProtoConstant(Old, NewFn);
5607 }
5608 
5609 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5610   auto DK = VD->isThisDeclarationADefinition();
5611   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5612     return;
5613 
5614   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5615   // If we have a definition, this might be a deferred decl. If the
5616   // instantiation is explicit, make sure we emit it at the end.
5617   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5618     GetAddrOfGlobalVar(VD);
5619 
5620   EmitTopLevelDecl(VD);
5621 }
5622 
5623 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5624                                                  llvm::GlobalValue *GV) {
5625   const auto *D = cast<FunctionDecl>(GD.getDecl());
5626 
5627   // Compute the function info and LLVM type.
5628   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5629   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5630 
5631   // Get or create the prototype for the function.
5632   if (!GV || (GV->getValueType() != Ty))
5633     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5634                                                    /*DontDefer=*/true,
5635                                                    ForDefinition));
5636 
5637   // Already emitted.
5638   if (!GV->isDeclaration())
5639     return;
5640 
5641   // We need to set linkage and visibility on the function before
5642   // generating code for it because various parts of IR generation
5643   // want to propagate this information down (e.g. to local static
5644   // declarations).
5645   auto *Fn = cast<llvm::Function>(GV);
5646   setFunctionLinkage(GD, Fn);
5647 
5648   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5649   setGVProperties(Fn, GD);
5650 
5651   MaybeHandleStaticInExternC(D, Fn);
5652 
5653   maybeSetTrivialComdat(*D, *Fn);
5654 
5655   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5656 
5657   setNonAliasAttributes(GD, Fn);
5658   SetLLVMFunctionAttributesForDefinition(D, Fn);
5659 
5660   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5661     AddGlobalCtor(Fn, CA->getPriority());
5662   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5663     AddGlobalDtor(Fn, DA->getPriority(), true);
5664   if (D->hasAttr<AnnotateAttr>())
5665     AddGlobalAnnotations(D, Fn);
5666 }
5667 
5668 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5669   const auto *D = cast<ValueDecl>(GD.getDecl());
5670   const AliasAttr *AA = D->getAttr<AliasAttr>();
5671   assert(AA && "Not an alias?");
5672 
5673   StringRef MangledName = getMangledName(GD);
5674 
5675   if (AA->getAliasee() == MangledName) {
5676     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5677     return;
5678   }
5679 
5680   // If there is a definition in the module, then it wins over the alias.
5681   // This is dubious, but allow it to be safe.  Just ignore the alias.
5682   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5683   if (Entry && !Entry->isDeclaration())
5684     return;
5685 
5686   Aliases.push_back(GD);
5687 
5688   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5689 
5690   // Create a reference to the named value.  This ensures that it is emitted
5691   // if a deferred decl.
5692   llvm::Constant *Aliasee;
5693   llvm::GlobalValue::LinkageTypes LT;
5694   if (isa<llvm::FunctionType>(DeclTy)) {
5695     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5696                                       /*ForVTable=*/false);
5697     LT = getFunctionLinkage(GD);
5698   } else {
5699     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5700                                     /*D=*/nullptr);
5701     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5702       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5703     else
5704       LT = getFunctionLinkage(GD);
5705   }
5706 
5707   // Create the new alias itself, but don't set a name yet.
5708   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5709   auto *GA =
5710       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5711 
5712   if (Entry) {
5713     if (GA->getAliasee() == Entry) {
5714       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5715       return;
5716     }
5717 
5718     assert(Entry->isDeclaration());
5719 
5720     // If there is a declaration in the module, then we had an extern followed
5721     // by the alias, as in:
5722     //   extern int test6();
5723     //   ...
5724     //   int test6() __attribute__((alias("test7")));
5725     //
5726     // Remove it and replace uses of it with the alias.
5727     GA->takeName(Entry);
5728 
5729     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5730                                                           Entry->getType()));
5731     Entry->eraseFromParent();
5732   } else {
5733     GA->setName(MangledName);
5734   }
5735 
5736   // Set attributes which are particular to an alias; this is a
5737   // specialization of the attributes which may be set on a global
5738   // variable/function.
5739   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5740       D->isWeakImported()) {
5741     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5742   }
5743 
5744   if (const auto *VD = dyn_cast<VarDecl>(D))
5745     if (VD->getTLSKind())
5746       setTLSMode(GA, *VD);
5747 
5748   SetCommonAttributes(GD, GA);
5749 
5750   // Emit global alias debug information.
5751   if (isa<VarDecl>(D))
5752     if (CGDebugInfo *DI = getModuleDebugInfo())
5753       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5754 }
5755 
5756 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5757   const auto *D = cast<ValueDecl>(GD.getDecl());
5758   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5759   assert(IFA && "Not an ifunc?");
5760 
5761   StringRef MangledName = getMangledName(GD);
5762 
5763   if (IFA->getResolver() == MangledName) {
5764     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5765     return;
5766   }
5767 
5768   // Report an error if some definition overrides ifunc.
5769   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5770   if (Entry && !Entry->isDeclaration()) {
5771     GlobalDecl OtherGD;
5772     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5773         DiagnosedConflictingDefinitions.insert(GD).second) {
5774       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5775           << MangledName;
5776       Diags.Report(OtherGD.getDecl()->getLocation(),
5777                    diag::note_previous_definition);
5778     }
5779     return;
5780   }
5781 
5782   Aliases.push_back(GD);
5783 
5784   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5785   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5786   llvm::Constant *Resolver =
5787       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5788                               /*ForVTable=*/false);
5789   llvm::GlobalIFunc *GIF =
5790       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5791                                 "", Resolver, &getModule());
5792   if (Entry) {
5793     if (GIF->getResolver() == Entry) {
5794       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5795       return;
5796     }
5797     assert(Entry->isDeclaration());
5798 
5799     // If there is a declaration in the module, then we had an extern followed
5800     // by the ifunc, as in:
5801     //   extern int test();
5802     //   ...
5803     //   int test() __attribute__((ifunc("resolver")));
5804     //
5805     // Remove it and replace uses of it with the ifunc.
5806     GIF->takeName(Entry);
5807 
5808     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5809                                                           Entry->getType()));
5810     Entry->eraseFromParent();
5811   } else
5812     GIF->setName(MangledName);
5813 
5814   SetCommonAttributes(GD, GIF);
5815 }
5816 
5817 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5818                                             ArrayRef<llvm::Type*> Tys) {
5819   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5820                                          Tys);
5821 }
5822 
5823 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5824 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5825                          const StringLiteral *Literal, bool TargetIsLSB,
5826                          bool &IsUTF16, unsigned &StringLength) {
5827   StringRef String = Literal->getString();
5828   unsigned NumBytes = String.size();
5829 
5830   // Check for simple case.
5831   if (!Literal->containsNonAsciiOrNull()) {
5832     StringLength = NumBytes;
5833     return *Map.insert(std::make_pair(String, nullptr)).first;
5834   }
5835 
5836   // Otherwise, convert the UTF8 literals into a string of shorts.
5837   IsUTF16 = true;
5838 
5839   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5840   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5841   llvm::UTF16 *ToPtr = &ToBuf[0];
5842 
5843   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5844                                  ToPtr + NumBytes, llvm::strictConversion);
5845 
5846   // ConvertUTF8toUTF16 returns the length in ToPtr.
5847   StringLength = ToPtr - &ToBuf[0];
5848 
5849   // Add an explicit null.
5850   *ToPtr = 0;
5851   return *Map.insert(std::make_pair(
5852                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5853                                    (StringLength + 1) * 2),
5854                          nullptr)).first;
5855 }
5856 
5857 ConstantAddress
5858 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5859   unsigned StringLength = 0;
5860   bool isUTF16 = false;
5861   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5862       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5863                                getDataLayout().isLittleEndian(), isUTF16,
5864                                StringLength);
5865 
5866   if (auto *C = Entry.second)
5867     return ConstantAddress(
5868         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5869 
5870   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5871   llvm::Constant *Zeros[] = { Zero, Zero };
5872 
5873   const ASTContext &Context = getContext();
5874   const llvm::Triple &Triple = getTriple();
5875 
5876   const auto CFRuntime = getLangOpts().CFRuntime;
5877   const bool IsSwiftABI =
5878       static_cast<unsigned>(CFRuntime) >=
5879       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5880   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5881 
5882   // If we don't already have it, get __CFConstantStringClassReference.
5883   if (!CFConstantStringClassRef) {
5884     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5885     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5886     Ty = llvm::ArrayType::get(Ty, 0);
5887 
5888     switch (CFRuntime) {
5889     default: break;
5890     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5891     case LangOptions::CoreFoundationABI::Swift5_0:
5892       CFConstantStringClassName =
5893           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5894                               : "$s10Foundation19_NSCFConstantStringCN";
5895       Ty = IntPtrTy;
5896       break;
5897     case LangOptions::CoreFoundationABI::Swift4_2:
5898       CFConstantStringClassName =
5899           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5900                               : "$S10Foundation19_NSCFConstantStringCN";
5901       Ty = IntPtrTy;
5902       break;
5903     case LangOptions::CoreFoundationABI::Swift4_1:
5904       CFConstantStringClassName =
5905           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5906                               : "__T010Foundation19_NSCFConstantStringCN";
5907       Ty = IntPtrTy;
5908       break;
5909     }
5910 
5911     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5912 
5913     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5914       llvm::GlobalValue *GV = nullptr;
5915 
5916       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5917         IdentifierInfo &II = Context.Idents.get(GV->getName());
5918         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5919         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5920 
5921         const VarDecl *VD = nullptr;
5922         for (const auto *Result : DC->lookup(&II))
5923           if ((VD = dyn_cast<VarDecl>(Result)))
5924             break;
5925 
5926         if (Triple.isOSBinFormatELF()) {
5927           if (!VD)
5928             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5929         } else {
5930           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5931           if (!VD || !VD->hasAttr<DLLExportAttr>())
5932             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5933           else
5934             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5935         }
5936 
5937         setDSOLocal(GV);
5938       }
5939     }
5940 
5941     // Decay array -> ptr
5942     CFConstantStringClassRef =
5943         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5944                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5945   }
5946 
5947   QualType CFTy = Context.getCFConstantStringType();
5948 
5949   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5950 
5951   ConstantInitBuilder Builder(*this);
5952   auto Fields = Builder.beginStruct(STy);
5953 
5954   // Class pointer.
5955   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5956 
5957   // Flags.
5958   if (IsSwiftABI) {
5959     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5960     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5961   } else {
5962     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5963   }
5964 
5965   // String pointer.
5966   llvm::Constant *C = nullptr;
5967   if (isUTF16) {
5968     auto Arr = llvm::ArrayRef(
5969         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5970         Entry.first().size() / 2);
5971     C = llvm::ConstantDataArray::get(VMContext, Arr);
5972   } else {
5973     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5974   }
5975 
5976   // Note: -fwritable-strings doesn't make the backing store strings of
5977   // CFStrings writable.
5978   auto *GV =
5979       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5980                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5981   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5982   // Don't enforce the target's minimum global alignment, since the only use
5983   // of the string is via this class initializer.
5984   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5985                             : Context.getTypeAlignInChars(Context.CharTy);
5986   GV->setAlignment(Align.getAsAlign());
5987 
5988   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5989   // Without it LLVM can merge the string with a non unnamed_addr one during
5990   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5991   if (Triple.isOSBinFormatMachO())
5992     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5993                            : "__TEXT,__cstring,cstring_literals");
5994   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5995   // the static linker to adjust permissions to read-only later on.
5996   else if (Triple.isOSBinFormatELF())
5997     GV->setSection(".rodata");
5998 
5999   // String.
6000   llvm::Constant *Str =
6001       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
6002 
6003   if (isUTF16)
6004     // Cast the UTF16 string to the correct type.
6005     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
6006   Fields.add(Str);
6007 
6008   // String length.
6009   llvm::IntegerType *LengthTy =
6010       llvm::IntegerType::get(getModule().getContext(),
6011                              Context.getTargetInfo().getLongWidth());
6012   if (IsSwiftABI) {
6013     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6014         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6015       LengthTy = Int32Ty;
6016     else
6017       LengthTy = IntPtrTy;
6018   }
6019   Fields.addInt(LengthTy, StringLength);
6020 
6021   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6022   // properly aligned on 32-bit platforms.
6023   CharUnits Alignment =
6024       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6025 
6026   // The struct.
6027   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6028                                     /*isConstant=*/false,
6029                                     llvm::GlobalVariable::PrivateLinkage);
6030   GV->addAttribute("objc_arc_inert");
6031   switch (Triple.getObjectFormat()) {
6032   case llvm::Triple::UnknownObjectFormat:
6033     llvm_unreachable("unknown file format");
6034   case llvm::Triple::DXContainer:
6035   case llvm::Triple::GOFF:
6036   case llvm::Triple::SPIRV:
6037   case llvm::Triple::XCOFF:
6038     llvm_unreachable("unimplemented");
6039   case llvm::Triple::COFF:
6040   case llvm::Triple::ELF:
6041   case llvm::Triple::Wasm:
6042     GV->setSection("cfstring");
6043     break;
6044   case llvm::Triple::MachO:
6045     GV->setSection("__DATA,__cfstring");
6046     break;
6047   }
6048   Entry.second = GV;
6049 
6050   return ConstantAddress(GV, GV->getValueType(), Alignment);
6051 }
6052 
6053 bool CodeGenModule::getExpressionLocationsEnabled() const {
6054   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6055 }
6056 
6057 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6058   if (ObjCFastEnumerationStateType.isNull()) {
6059     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6060     D->startDefinition();
6061 
6062     QualType FieldTypes[] = {
6063       Context.UnsignedLongTy,
6064       Context.getPointerType(Context.getObjCIdType()),
6065       Context.getPointerType(Context.UnsignedLongTy),
6066       Context.getConstantArrayType(Context.UnsignedLongTy,
6067                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
6068     };
6069 
6070     for (size_t i = 0; i < 4; ++i) {
6071       FieldDecl *Field = FieldDecl::Create(Context,
6072                                            D,
6073                                            SourceLocation(),
6074                                            SourceLocation(), nullptr,
6075                                            FieldTypes[i], /*TInfo=*/nullptr,
6076                                            /*BitWidth=*/nullptr,
6077                                            /*Mutable=*/false,
6078                                            ICIS_NoInit);
6079       Field->setAccess(AS_public);
6080       D->addDecl(Field);
6081     }
6082 
6083     D->completeDefinition();
6084     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6085   }
6086 
6087   return ObjCFastEnumerationStateType;
6088 }
6089 
6090 llvm::Constant *
6091 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6092   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6093 
6094   // Don't emit it as the address of the string, emit the string data itself
6095   // as an inline array.
6096   if (E->getCharByteWidth() == 1) {
6097     SmallString<64> Str(E->getString());
6098 
6099     // Resize the string to the right size, which is indicated by its type.
6100     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6101     assert(CAT && "String literal not of constant array type!");
6102     Str.resize(CAT->getSize().getZExtValue());
6103     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6104   }
6105 
6106   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6107   llvm::Type *ElemTy = AType->getElementType();
6108   unsigned NumElements = AType->getNumElements();
6109 
6110   // Wide strings have either 2-byte or 4-byte elements.
6111   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6112     SmallVector<uint16_t, 32> Elements;
6113     Elements.reserve(NumElements);
6114 
6115     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6116       Elements.push_back(E->getCodeUnit(i));
6117     Elements.resize(NumElements);
6118     return llvm::ConstantDataArray::get(VMContext, Elements);
6119   }
6120 
6121   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6122   SmallVector<uint32_t, 32> Elements;
6123   Elements.reserve(NumElements);
6124 
6125   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6126     Elements.push_back(E->getCodeUnit(i));
6127   Elements.resize(NumElements);
6128   return llvm::ConstantDataArray::get(VMContext, Elements);
6129 }
6130 
6131 static llvm::GlobalVariable *
6132 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6133                       CodeGenModule &CGM, StringRef GlobalName,
6134                       CharUnits Alignment) {
6135   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6136       CGM.GetGlobalConstantAddressSpace());
6137 
6138   llvm::Module &M = CGM.getModule();
6139   // Create a global variable for this string
6140   auto *GV = new llvm::GlobalVariable(
6141       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6142       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6143   GV->setAlignment(Alignment.getAsAlign());
6144   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6145   if (GV->isWeakForLinker()) {
6146     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6147     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6148   }
6149   CGM.setDSOLocal(GV);
6150 
6151   return GV;
6152 }
6153 
6154 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6155 /// constant array for the given string literal.
6156 ConstantAddress
6157 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6158                                                   StringRef Name) {
6159   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
6160 
6161   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6162   llvm::GlobalVariable **Entry = nullptr;
6163   if (!LangOpts.WritableStrings) {
6164     Entry = &ConstantStringMap[C];
6165     if (auto GV = *Entry) {
6166       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6167         GV->setAlignment(Alignment.getAsAlign());
6168       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6169                              GV->getValueType(), Alignment);
6170     }
6171   }
6172 
6173   SmallString<256> MangledNameBuffer;
6174   StringRef GlobalVariableName;
6175   llvm::GlobalValue::LinkageTypes LT;
6176 
6177   // Mangle the string literal if that's how the ABI merges duplicate strings.
6178   // Don't do it if they are writable, since we don't want writes in one TU to
6179   // affect strings in another.
6180   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6181       !LangOpts.WritableStrings) {
6182     llvm::raw_svector_ostream Out(MangledNameBuffer);
6183     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6184     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6185     GlobalVariableName = MangledNameBuffer;
6186   } else {
6187     LT = llvm::GlobalValue::PrivateLinkage;
6188     GlobalVariableName = Name;
6189   }
6190 
6191   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6192 
6193   CGDebugInfo *DI = getModuleDebugInfo();
6194   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6195     DI->AddStringLiteralDebugInfo(GV, S);
6196 
6197   if (Entry)
6198     *Entry = GV;
6199 
6200   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6201 
6202   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6203                          GV->getValueType(), Alignment);
6204 }
6205 
6206 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6207 /// array for the given ObjCEncodeExpr node.
6208 ConstantAddress
6209 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6210   std::string Str;
6211   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6212 
6213   return GetAddrOfConstantCString(Str);
6214 }
6215 
6216 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6217 /// the literal and a terminating '\0' character.
6218 /// The result has pointer to array type.
6219 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6220     const std::string &Str, const char *GlobalName) {
6221   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6222   CharUnits Alignment =
6223     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
6224 
6225   llvm::Constant *C =
6226       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6227 
6228   // Don't share any string literals if strings aren't constant.
6229   llvm::GlobalVariable **Entry = nullptr;
6230   if (!LangOpts.WritableStrings) {
6231     Entry = &ConstantStringMap[C];
6232     if (auto GV = *Entry) {
6233       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6234         GV->setAlignment(Alignment.getAsAlign());
6235       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6236                              GV->getValueType(), Alignment);
6237     }
6238   }
6239 
6240   // Get the default prefix if a name wasn't specified.
6241   if (!GlobalName)
6242     GlobalName = ".str";
6243   // Create a global variable for this.
6244   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6245                                   GlobalName, Alignment);
6246   if (Entry)
6247     *Entry = GV;
6248 
6249   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6250                          GV->getValueType(), Alignment);
6251 }
6252 
6253 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6254     const MaterializeTemporaryExpr *E, const Expr *Init) {
6255   assert((E->getStorageDuration() == SD_Static ||
6256           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6257   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6258 
6259   // If we're not materializing a subobject of the temporary, keep the
6260   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6261   QualType MaterializedType = Init->getType();
6262   if (Init == E->getSubExpr())
6263     MaterializedType = E->getType();
6264 
6265   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6266 
6267   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6268   if (!InsertResult.second) {
6269     // We've seen this before: either we already created it or we're in the
6270     // process of doing so.
6271     if (!InsertResult.first->second) {
6272       // We recursively re-entered this function, probably during emission of
6273       // the initializer. Create a placeholder. We'll clean this up in the
6274       // outer call, at the end of this function.
6275       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6276       InsertResult.first->second = new llvm::GlobalVariable(
6277           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6278           nullptr);
6279     }
6280     return ConstantAddress(InsertResult.first->second,
6281                            llvm::cast<llvm::GlobalVariable>(
6282                                InsertResult.first->second->stripPointerCasts())
6283                                ->getValueType(),
6284                            Align);
6285   }
6286 
6287   // FIXME: If an externally-visible declaration extends multiple temporaries,
6288   // we need to give each temporary the same name in every translation unit (and
6289   // we also need to make the temporaries externally-visible).
6290   SmallString<256> Name;
6291   llvm::raw_svector_ostream Out(Name);
6292   getCXXABI().getMangleContext().mangleReferenceTemporary(
6293       VD, E->getManglingNumber(), Out);
6294 
6295   APValue *Value = nullptr;
6296   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6297     // If the initializer of the extending declaration is a constant
6298     // initializer, we should have a cached constant initializer for this
6299     // temporary. Note that this might have a different value from the value
6300     // computed by evaluating the initializer if the surrounding constant
6301     // expression modifies the temporary.
6302     Value = E->getOrCreateValue(false);
6303   }
6304 
6305   // Try evaluating it now, it might have a constant initializer.
6306   Expr::EvalResult EvalResult;
6307   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6308       !EvalResult.hasSideEffects())
6309     Value = &EvalResult.Val;
6310 
6311   LangAS AddrSpace =
6312       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6313 
6314   std::optional<ConstantEmitter> emitter;
6315   llvm::Constant *InitialValue = nullptr;
6316   bool Constant = false;
6317   llvm::Type *Type;
6318   if (Value) {
6319     // The temporary has a constant initializer, use it.
6320     emitter.emplace(*this);
6321     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6322                                                MaterializedType);
6323     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/ Value,
6324                               /*ExcludeDtor*/ false);
6325     Type = InitialValue->getType();
6326   } else {
6327     // No initializer, the initialization will be provided when we
6328     // initialize the declaration which performed lifetime extension.
6329     Type = getTypes().ConvertTypeForMem(MaterializedType);
6330   }
6331 
6332   // Create a global variable for this lifetime-extended temporary.
6333   llvm::GlobalValue::LinkageTypes Linkage =
6334       getLLVMLinkageVarDefinition(VD, Constant);
6335   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6336     const VarDecl *InitVD;
6337     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6338         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6339       // Temporaries defined inside a class get linkonce_odr linkage because the
6340       // class can be defined in multiple translation units.
6341       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6342     } else {
6343       // There is no need for this temporary to have external linkage if the
6344       // VarDecl has external linkage.
6345       Linkage = llvm::GlobalVariable::InternalLinkage;
6346     }
6347   }
6348   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6349   auto *GV = new llvm::GlobalVariable(
6350       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6351       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6352   if (emitter) emitter->finalize(GV);
6353   // Don't assign dllimport or dllexport to local linkage globals.
6354   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6355     setGVProperties(GV, VD);
6356     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6357       // The reference temporary should never be dllexport.
6358       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6359   }
6360   GV->setAlignment(Align.getAsAlign());
6361   if (supportsCOMDAT() && GV->isWeakForLinker())
6362     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6363   if (VD->getTLSKind())
6364     setTLSMode(GV, *VD);
6365   llvm::Constant *CV = GV;
6366   if (AddrSpace != LangAS::Default)
6367     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6368         *this, GV, AddrSpace, LangAS::Default,
6369         Type->getPointerTo(
6370             getContext().getTargetAddressSpace(LangAS::Default)));
6371 
6372   // Update the map with the new temporary. If we created a placeholder above,
6373   // replace it with the new global now.
6374   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6375   if (Entry) {
6376     Entry->replaceAllUsesWith(
6377         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6378     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6379   }
6380   Entry = CV;
6381 
6382   return ConstantAddress(CV, Type, Align);
6383 }
6384 
6385 /// EmitObjCPropertyImplementations - Emit information for synthesized
6386 /// properties for an implementation.
6387 void CodeGenModule::EmitObjCPropertyImplementations(const
6388                                                     ObjCImplementationDecl *D) {
6389   for (const auto *PID : D->property_impls()) {
6390     // Dynamic is just for type-checking.
6391     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6392       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6393 
6394       // Determine which methods need to be implemented, some may have
6395       // been overridden. Note that ::isPropertyAccessor is not the method
6396       // we want, that just indicates if the decl came from a
6397       // property. What we want to know is if the method is defined in
6398       // this implementation.
6399       auto *Getter = PID->getGetterMethodDecl();
6400       if (!Getter || Getter->isSynthesizedAccessorStub())
6401         CodeGenFunction(*this).GenerateObjCGetter(
6402             const_cast<ObjCImplementationDecl *>(D), PID);
6403       auto *Setter = PID->getSetterMethodDecl();
6404       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6405         CodeGenFunction(*this).GenerateObjCSetter(
6406                                  const_cast<ObjCImplementationDecl *>(D), PID);
6407     }
6408   }
6409 }
6410 
6411 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6412   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6413   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6414        ivar; ivar = ivar->getNextIvar())
6415     if (ivar->getType().isDestructedType())
6416       return true;
6417 
6418   return false;
6419 }
6420 
6421 static bool AllTrivialInitializers(CodeGenModule &CGM,
6422                                    ObjCImplementationDecl *D) {
6423   CodeGenFunction CGF(CGM);
6424   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6425        E = D->init_end(); B != E; ++B) {
6426     CXXCtorInitializer *CtorInitExp = *B;
6427     Expr *Init = CtorInitExp->getInit();
6428     if (!CGF.isTrivialInitializer(Init))
6429       return false;
6430   }
6431   return true;
6432 }
6433 
6434 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6435 /// for an implementation.
6436 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6437   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6438   if (needsDestructMethod(D)) {
6439     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6440     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6441     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6442         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6443         getContext().VoidTy, nullptr, D,
6444         /*isInstance=*/true, /*isVariadic=*/false,
6445         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6446         /*isImplicitlyDeclared=*/true,
6447         /*isDefined=*/false, ObjCMethodDecl::Required);
6448     D->addInstanceMethod(DTORMethod);
6449     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6450     D->setHasDestructors(true);
6451   }
6452 
6453   // If the implementation doesn't have any ivar initializers, we don't need
6454   // a .cxx_construct.
6455   if (D->getNumIvarInitializers() == 0 ||
6456       AllTrivialInitializers(*this, D))
6457     return;
6458 
6459   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6460   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6461   // The constructor returns 'self'.
6462   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6463       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6464       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6465       /*isVariadic=*/false,
6466       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6467       /*isImplicitlyDeclared=*/true,
6468       /*isDefined=*/false, ObjCMethodDecl::Required);
6469   D->addInstanceMethod(CTORMethod);
6470   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6471   D->setHasNonZeroConstructors(true);
6472 }
6473 
6474 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6475 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6476   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6477       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6478     ErrorUnsupported(LSD, "linkage spec");
6479     return;
6480   }
6481 
6482   EmitDeclContext(LSD);
6483 }
6484 
6485 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6486   // Device code should not be at top level.
6487   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6488     return;
6489 
6490   std::unique_ptr<CodeGenFunction> &CurCGF =
6491       GlobalTopLevelStmtBlockInFlight.first;
6492 
6493   // We emitted a top-level stmt but after it there is initialization.
6494   // Stop squashing the top-level stmts into a single function.
6495   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6496     CurCGF->FinishFunction(D->getEndLoc());
6497     CurCGF = nullptr;
6498   }
6499 
6500   if (!CurCGF) {
6501     // void __stmts__N(void)
6502     // FIXME: Ask the ABI name mangler to pick a name.
6503     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6504     FunctionArgList Args;
6505     QualType RetTy = getContext().VoidTy;
6506     const CGFunctionInfo &FnInfo =
6507         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6508     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6509     llvm::Function *Fn = llvm::Function::Create(
6510         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6511 
6512     CurCGF.reset(new CodeGenFunction(*this));
6513     GlobalTopLevelStmtBlockInFlight.second = D;
6514     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6515                           D->getBeginLoc(), D->getBeginLoc());
6516     CXXGlobalInits.push_back(Fn);
6517   }
6518 
6519   CurCGF->EmitStmt(D->getStmt());
6520 }
6521 
6522 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6523   for (auto *I : DC->decls()) {
6524     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6525     // are themselves considered "top-level", so EmitTopLevelDecl on an
6526     // ObjCImplDecl does not recursively visit them. We need to do that in
6527     // case they're nested inside another construct (LinkageSpecDecl /
6528     // ExportDecl) that does stop them from being considered "top-level".
6529     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6530       for (auto *M : OID->methods())
6531         EmitTopLevelDecl(M);
6532     }
6533 
6534     EmitTopLevelDecl(I);
6535   }
6536 }
6537 
6538 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6539 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6540   // Ignore dependent declarations.
6541   if (D->isTemplated())
6542     return;
6543 
6544   // Consteval function shouldn't be emitted.
6545   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6546     return;
6547 
6548   switch (D->getKind()) {
6549   case Decl::CXXConversion:
6550   case Decl::CXXMethod:
6551   case Decl::Function:
6552     EmitGlobal(cast<FunctionDecl>(D));
6553     // Always provide some coverage mapping
6554     // even for the functions that aren't emitted.
6555     AddDeferredUnusedCoverageMapping(D);
6556     break;
6557 
6558   case Decl::CXXDeductionGuide:
6559     // Function-like, but does not result in code emission.
6560     break;
6561 
6562   case Decl::Var:
6563   case Decl::Decomposition:
6564   case Decl::VarTemplateSpecialization:
6565     EmitGlobal(cast<VarDecl>(D));
6566     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6567       for (auto *B : DD->bindings())
6568         if (auto *HD = B->getHoldingVar())
6569           EmitGlobal(HD);
6570     break;
6571 
6572   // Indirect fields from global anonymous structs and unions can be
6573   // ignored; only the actual variable requires IR gen support.
6574   case Decl::IndirectField:
6575     break;
6576 
6577   // C++ Decls
6578   case Decl::Namespace:
6579     EmitDeclContext(cast<NamespaceDecl>(D));
6580     break;
6581   case Decl::ClassTemplateSpecialization: {
6582     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6583     if (CGDebugInfo *DI = getModuleDebugInfo())
6584       if (Spec->getSpecializationKind() ==
6585               TSK_ExplicitInstantiationDefinition &&
6586           Spec->hasDefinition())
6587         DI->completeTemplateDefinition(*Spec);
6588   } [[fallthrough]];
6589   case Decl::CXXRecord: {
6590     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6591     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6592       if (CRD->hasDefinition())
6593         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6594       if (auto *ES = D->getASTContext().getExternalSource())
6595         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6596           DI->completeUnusedClass(*CRD);
6597     }
6598     // Emit any static data members, they may be definitions.
6599     for (auto *I : CRD->decls())
6600       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6601         EmitTopLevelDecl(I);
6602     break;
6603   }
6604     // No code generation needed.
6605   case Decl::UsingShadow:
6606   case Decl::ClassTemplate:
6607   case Decl::VarTemplate:
6608   case Decl::Concept:
6609   case Decl::VarTemplatePartialSpecialization:
6610   case Decl::FunctionTemplate:
6611   case Decl::TypeAliasTemplate:
6612   case Decl::Block:
6613   case Decl::Empty:
6614   case Decl::Binding:
6615     break;
6616   case Decl::Using:          // using X; [C++]
6617     if (CGDebugInfo *DI = getModuleDebugInfo())
6618         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6619     break;
6620   case Decl::UsingEnum: // using enum X; [C++]
6621     if (CGDebugInfo *DI = getModuleDebugInfo())
6622       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6623     break;
6624   case Decl::NamespaceAlias:
6625     if (CGDebugInfo *DI = getModuleDebugInfo())
6626         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6627     break;
6628   case Decl::UsingDirective: // using namespace X; [C++]
6629     if (CGDebugInfo *DI = getModuleDebugInfo())
6630       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6631     break;
6632   case Decl::CXXConstructor:
6633     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6634     break;
6635   case Decl::CXXDestructor:
6636     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6637     break;
6638 
6639   case Decl::StaticAssert:
6640     // Nothing to do.
6641     break;
6642 
6643   // Objective-C Decls
6644 
6645   // Forward declarations, no (immediate) code generation.
6646   case Decl::ObjCInterface:
6647   case Decl::ObjCCategory:
6648     break;
6649 
6650   case Decl::ObjCProtocol: {
6651     auto *Proto = cast<ObjCProtocolDecl>(D);
6652     if (Proto->isThisDeclarationADefinition())
6653       ObjCRuntime->GenerateProtocol(Proto);
6654     break;
6655   }
6656 
6657   case Decl::ObjCCategoryImpl:
6658     // Categories have properties but don't support synthesize so we
6659     // can ignore them here.
6660     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6661     break;
6662 
6663   case Decl::ObjCImplementation: {
6664     auto *OMD = cast<ObjCImplementationDecl>(D);
6665     EmitObjCPropertyImplementations(OMD);
6666     EmitObjCIvarInitializations(OMD);
6667     ObjCRuntime->GenerateClass(OMD);
6668     // Emit global variable debug information.
6669     if (CGDebugInfo *DI = getModuleDebugInfo())
6670       if (getCodeGenOpts().hasReducedDebugInfo())
6671         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6672             OMD->getClassInterface()), OMD->getLocation());
6673     break;
6674   }
6675   case Decl::ObjCMethod: {
6676     auto *OMD = cast<ObjCMethodDecl>(D);
6677     // If this is not a prototype, emit the body.
6678     if (OMD->getBody())
6679       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6680     break;
6681   }
6682   case Decl::ObjCCompatibleAlias:
6683     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6684     break;
6685 
6686   case Decl::PragmaComment: {
6687     const auto *PCD = cast<PragmaCommentDecl>(D);
6688     switch (PCD->getCommentKind()) {
6689     case PCK_Unknown:
6690       llvm_unreachable("unexpected pragma comment kind");
6691     case PCK_Linker:
6692       AppendLinkerOptions(PCD->getArg());
6693       break;
6694     case PCK_Lib:
6695         AddDependentLib(PCD->getArg());
6696       break;
6697     case PCK_Compiler:
6698     case PCK_ExeStr:
6699     case PCK_User:
6700       break; // We ignore all of these.
6701     }
6702     break;
6703   }
6704 
6705   case Decl::PragmaDetectMismatch: {
6706     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6707     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6708     break;
6709   }
6710 
6711   case Decl::LinkageSpec:
6712     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6713     break;
6714 
6715   case Decl::FileScopeAsm: {
6716     // File-scope asm is ignored during device-side CUDA compilation.
6717     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6718       break;
6719     // File-scope asm is ignored during device-side OpenMP compilation.
6720     if (LangOpts.OpenMPIsTargetDevice)
6721       break;
6722     // File-scope asm is ignored during device-side SYCL compilation.
6723     if (LangOpts.SYCLIsDevice)
6724       break;
6725     auto *AD = cast<FileScopeAsmDecl>(D);
6726     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6727     break;
6728   }
6729 
6730   case Decl::TopLevelStmt:
6731     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6732     break;
6733 
6734   case Decl::Import: {
6735     auto *Import = cast<ImportDecl>(D);
6736 
6737     // If we've already imported this module, we're done.
6738     if (!ImportedModules.insert(Import->getImportedModule()))
6739       break;
6740 
6741     // Emit debug information for direct imports.
6742     if (!Import->getImportedOwningModule()) {
6743       if (CGDebugInfo *DI = getModuleDebugInfo())
6744         DI->EmitImportDecl(*Import);
6745     }
6746 
6747     // For C++ standard modules we are done - we will call the module
6748     // initializer for imported modules, and that will likewise call those for
6749     // any imports it has.
6750     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6751         !Import->getImportedOwningModule()->isModuleMapModule())
6752       break;
6753 
6754     // For clang C++ module map modules the initializers for sub-modules are
6755     // emitted here.
6756 
6757     // Find all of the submodules and emit the module initializers.
6758     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6759     SmallVector<clang::Module *, 16> Stack;
6760     Visited.insert(Import->getImportedModule());
6761     Stack.push_back(Import->getImportedModule());
6762 
6763     while (!Stack.empty()) {
6764       clang::Module *Mod = Stack.pop_back_val();
6765       if (!EmittedModuleInitializers.insert(Mod).second)
6766         continue;
6767 
6768       for (auto *D : Context.getModuleInitializers(Mod))
6769         EmitTopLevelDecl(D);
6770 
6771       // Visit the submodules of this module.
6772       for (auto *Submodule : Mod->submodules()) {
6773         // Skip explicit children; they need to be explicitly imported to emit
6774         // the initializers.
6775         if (Submodule->IsExplicit)
6776           continue;
6777 
6778         if (Visited.insert(Submodule).second)
6779           Stack.push_back(Submodule);
6780       }
6781     }
6782     break;
6783   }
6784 
6785   case Decl::Export:
6786     EmitDeclContext(cast<ExportDecl>(D));
6787     break;
6788 
6789   case Decl::OMPThreadPrivate:
6790     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6791     break;
6792 
6793   case Decl::OMPAllocate:
6794     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6795     break;
6796 
6797   case Decl::OMPDeclareReduction:
6798     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6799     break;
6800 
6801   case Decl::OMPDeclareMapper:
6802     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6803     break;
6804 
6805   case Decl::OMPRequires:
6806     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6807     break;
6808 
6809   case Decl::Typedef:
6810   case Decl::TypeAlias: // using foo = bar; [C++11]
6811     if (CGDebugInfo *DI = getModuleDebugInfo())
6812       DI->EmitAndRetainType(
6813           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6814     break;
6815 
6816   case Decl::Record:
6817     if (CGDebugInfo *DI = getModuleDebugInfo())
6818       if (cast<RecordDecl>(D)->getDefinition())
6819         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6820     break;
6821 
6822   case Decl::Enum:
6823     if (CGDebugInfo *DI = getModuleDebugInfo())
6824       if (cast<EnumDecl>(D)->getDefinition())
6825         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6826     break;
6827 
6828   case Decl::HLSLBuffer:
6829     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6830     break;
6831 
6832   default:
6833     // Make sure we handled everything we should, every other kind is a
6834     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6835     // function. Need to recode Decl::Kind to do that easily.
6836     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6837     break;
6838   }
6839 }
6840 
6841 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6842   // Do we need to generate coverage mapping?
6843   if (!CodeGenOpts.CoverageMapping)
6844     return;
6845   switch (D->getKind()) {
6846   case Decl::CXXConversion:
6847   case Decl::CXXMethod:
6848   case Decl::Function:
6849   case Decl::ObjCMethod:
6850   case Decl::CXXConstructor:
6851   case Decl::CXXDestructor: {
6852     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6853       break;
6854     SourceManager &SM = getContext().getSourceManager();
6855     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6856       break;
6857     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6858     if (I == DeferredEmptyCoverageMappingDecls.end())
6859       DeferredEmptyCoverageMappingDecls[D] = true;
6860     break;
6861   }
6862   default:
6863     break;
6864   };
6865 }
6866 
6867 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6868   // Do we need to generate coverage mapping?
6869   if (!CodeGenOpts.CoverageMapping)
6870     return;
6871   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6872     if (Fn->isTemplateInstantiation())
6873       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6874   }
6875   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6876   if (I == DeferredEmptyCoverageMappingDecls.end())
6877     DeferredEmptyCoverageMappingDecls[D] = false;
6878   else
6879     I->second = false;
6880 }
6881 
6882 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6883   // We call takeVector() here to avoid use-after-free.
6884   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6885   // we deserialize function bodies to emit coverage info for them, and that
6886   // deserializes more declarations. How should we handle that case?
6887   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6888     if (!Entry.second)
6889       continue;
6890     const Decl *D = Entry.first;
6891     switch (D->getKind()) {
6892     case Decl::CXXConversion:
6893     case Decl::CXXMethod:
6894     case Decl::Function:
6895     case Decl::ObjCMethod: {
6896       CodeGenPGO PGO(*this);
6897       GlobalDecl GD(cast<FunctionDecl>(D));
6898       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6899                                   getFunctionLinkage(GD));
6900       break;
6901     }
6902     case Decl::CXXConstructor: {
6903       CodeGenPGO PGO(*this);
6904       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6905       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6906                                   getFunctionLinkage(GD));
6907       break;
6908     }
6909     case Decl::CXXDestructor: {
6910       CodeGenPGO PGO(*this);
6911       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6912       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6913                                   getFunctionLinkage(GD));
6914       break;
6915     }
6916     default:
6917       break;
6918     };
6919   }
6920 }
6921 
6922 void CodeGenModule::EmitMainVoidAlias() {
6923   // In order to transition away from "__original_main" gracefully, emit an
6924   // alias for "main" in the no-argument case so that libc can detect when
6925   // new-style no-argument main is in used.
6926   if (llvm::Function *F = getModule().getFunction("main")) {
6927     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6928         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6929       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6930       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6931     }
6932   }
6933 }
6934 
6935 /// Turns the given pointer into a constant.
6936 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6937                                           const void *Ptr) {
6938   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6939   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6940   return llvm::ConstantInt::get(i64, PtrInt);
6941 }
6942 
6943 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6944                                    llvm::NamedMDNode *&GlobalMetadata,
6945                                    GlobalDecl D,
6946                                    llvm::GlobalValue *Addr) {
6947   if (!GlobalMetadata)
6948     GlobalMetadata =
6949       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6950 
6951   // TODO: should we report variant information for ctors/dtors?
6952   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6953                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6954                                CGM.getLLVMContext(), D.getDecl()))};
6955   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6956 }
6957 
6958 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6959                                                  llvm::GlobalValue *CppFunc) {
6960   // Store the list of ifuncs we need to replace uses in.
6961   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6962   // List of ConstantExprs that we should be able to delete when we're done
6963   // here.
6964   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6965 
6966   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6967   if (Elem == CppFunc)
6968     return false;
6969 
6970   // First make sure that all users of this are ifuncs (or ifuncs via a
6971   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6972   // later.
6973   for (llvm::User *User : Elem->users()) {
6974     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6975     // ifunc directly. In any other case, just give up, as we don't know what we
6976     // could break by changing those.
6977     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6978       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6979         return false;
6980 
6981       for (llvm::User *CEUser : ConstExpr->users()) {
6982         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6983           IFuncs.push_back(IFunc);
6984         } else {
6985           return false;
6986         }
6987       }
6988       CEs.push_back(ConstExpr);
6989     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6990       IFuncs.push_back(IFunc);
6991     } else {
6992       // This user is one we don't know how to handle, so fail redirection. This
6993       // will result in an ifunc retaining a resolver name that will ultimately
6994       // fail to be resolved to a defined function.
6995       return false;
6996     }
6997   }
6998 
6999   // Now we know this is a valid case where we can do this alias replacement, we
7000   // need to remove all of the references to Elem (and the bitcasts!) so we can
7001   // delete it.
7002   for (llvm::GlobalIFunc *IFunc : IFuncs)
7003     IFunc->setResolver(nullptr);
7004   for (llvm::ConstantExpr *ConstExpr : CEs)
7005     ConstExpr->destroyConstant();
7006 
7007   // We should now be out of uses for the 'old' version of this function, so we
7008   // can erase it as well.
7009   Elem->eraseFromParent();
7010 
7011   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7012     // The type of the resolver is always just a function-type that returns the
7013     // type of the IFunc, so create that here. If the type of the actual
7014     // resolver doesn't match, it just gets bitcast to the right thing.
7015     auto *ResolverTy =
7016         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7017     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7018         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7019     IFunc->setResolver(Resolver);
7020   }
7021   return true;
7022 }
7023 
7024 /// For each function which is declared within an extern "C" region and marked
7025 /// as 'used', but has internal linkage, create an alias from the unmangled
7026 /// name to the mangled name if possible. People expect to be able to refer
7027 /// to such functions with an unmangled name from inline assembly within the
7028 /// same translation unit.
7029 void CodeGenModule::EmitStaticExternCAliases() {
7030   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7031     return;
7032   for (auto &I : StaticExternCValues) {
7033     IdentifierInfo *Name = I.first;
7034     llvm::GlobalValue *Val = I.second;
7035 
7036     // If Val is null, that implies there were multiple declarations that each
7037     // had a claim to the unmangled name. In this case, generation of the alias
7038     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7039     if (!Val)
7040       break;
7041 
7042     llvm::GlobalValue *ExistingElem =
7043         getModule().getNamedValue(Name->getName());
7044 
7045     // If there is either not something already by this name, or we were able to
7046     // replace all uses from IFuncs, create the alias.
7047     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7048       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7049   }
7050 }
7051 
7052 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7053                                              GlobalDecl &Result) const {
7054   auto Res = Manglings.find(MangledName);
7055   if (Res == Manglings.end())
7056     return false;
7057   Result = Res->getValue();
7058   return true;
7059 }
7060 
7061 /// Emits metadata nodes associating all the global values in the
7062 /// current module with the Decls they came from.  This is useful for
7063 /// projects using IR gen as a subroutine.
7064 ///
7065 /// Since there's currently no way to associate an MDNode directly
7066 /// with an llvm::GlobalValue, we create a global named metadata
7067 /// with the name 'clang.global.decl.ptrs'.
7068 void CodeGenModule::EmitDeclMetadata() {
7069   llvm::NamedMDNode *GlobalMetadata = nullptr;
7070 
7071   for (auto &I : MangledDeclNames) {
7072     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7073     // Some mangled names don't necessarily have an associated GlobalValue
7074     // in this module, e.g. if we mangled it for DebugInfo.
7075     if (Addr)
7076       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7077   }
7078 }
7079 
7080 /// Emits metadata nodes for all the local variables in the current
7081 /// function.
7082 void CodeGenFunction::EmitDeclMetadata() {
7083   if (LocalDeclMap.empty()) return;
7084 
7085   llvm::LLVMContext &Context = getLLVMContext();
7086 
7087   // Find the unique metadata ID for this name.
7088   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7089 
7090   llvm::NamedMDNode *GlobalMetadata = nullptr;
7091 
7092   for (auto &I : LocalDeclMap) {
7093     const Decl *D = I.first;
7094     llvm::Value *Addr = I.second.getPointer();
7095     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7096       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7097       Alloca->setMetadata(
7098           DeclPtrKind, llvm::MDNode::get(
7099                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7100     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7101       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7102       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7103     }
7104   }
7105 }
7106 
7107 void CodeGenModule::EmitVersionIdentMetadata() {
7108   llvm::NamedMDNode *IdentMetadata =
7109     TheModule.getOrInsertNamedMetadata("llvm.ident");
7110   std::string Version = getClangFullVersion();
7111   llvm::LLVMContext &Ctx = TheModule.getContext();
7112 
7113   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7114   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7115 }
7116 
7117 void CodeGenModule::EmitCommandLineMetadata() {
7118   llvm::NamedMDNode *CommandLineMetadata =
7119     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7120   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7121   llvm::LLVMContext &Ctx = TheModule.getContext();
7122 
7123   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7124   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7125 }
7126 
7127 void CodeGenModule::EmitCoverageFile() {
7128   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7129   if (!CUNode)
7130     return;
7131 
7132   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7133   llvm::LLVMContext &Ctx = TheModule.getContext();
7134   auto *CoverageDataFile =
7135       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7136   auto *CoverageNotesFile =
7137       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7138   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7139     llvm::MDNode *CU = CUNode->getOperand(i);
7140     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7141     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7142   }
7143 }
7144 
7145 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7146                                                        bool ForEH) {
7147   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7148   // FIXME: should we even be calling this method if RTTI is disabled
7149   // and it's not for EH?
7150   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
7151       (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
7152        getTriple().isNVPTX()))
7153     return llvm::Constant::getNullValue(Int8PtrTy);
7154 
7155   if (ForEH && Ty->isObjCObjectPointerType() &&
7156       LangOpts.ObjCRuntime.isGNUFamily())
7157     return ObjCRuntime->GetEHType(Ty);
7158 
7159   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7160 }
7161 
7162 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7163   // Do not emit threadprivates in simd-only mode.
7164   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7165     return;
7166   for (auto RefExpr : D->varlists()) {
7167     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7168     bool PerformInit =
7169         VD->getAnyInitializer() &&
7170         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7171                                                         /*ForRef=*/false);
7172 
7173     Address Addr(GetAddrOfGlobalVar(VD),
7174                  getTypes().ConvertTypeForMem(VD->getType()),
7175                  getContext().getDeclAlign(VD));
7176     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7177             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7178       CXXGlobalInits.push_back(InitFunction);
7179   }
7180 }
7181 
7182 llvm::Metadata *
7183 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7184                                             StringRef Suffix) {
7185   if (auto *FnType = T->getAs<FunctionProtoType>())
7186     T = getContext().getFunctionType(
7187         FnType->getReturnType(), FnType->getParamTypes(),
7188         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7189 
7190   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7191   if (InternalId)
7192     return InternalId;
7193 
7194   if (isExternallyVisible(T->getLinkage())) {
7195     std::string OutName;
7196     llvm::raw_string_ostream Out(OutName);
7197     getCXXABI().getMangleContext().mangleTypeName(
7198         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7199 
7200     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7201       Out << ".normalized";
7202 
7203     Out << Suffix;
7204 
7205     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7206   } else {
7207     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7208                                            llvm::ArrayRef<llvm::Metadata *>());
7209   }
7210 
7211   return InternalId;
7212 }
7213 
7214 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7215   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7216 }
7217 
7218 llvm::Metadata *
7219 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7220   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7221 }
7222 
7223 // Generalize pointer types to a void pointer with the qualifiers of the
7224 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7225 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7226 // 'void *'.
7227 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7228   if (!Ty->isPointerType())
7229     return Ty;
7230 
7231   return Ctx.getPointerType(
7232       QualType(Ctx.VoidTy).withCVRQualifiers(
7233           Ty->getPointeeType().getCVRQualifiers()));
7234 }
7235 
7236 // Apply type generalization to a FunctionType's return and argument types
7237 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7238   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7239     SmallVector<QualType, 8> GeneralizedParams;
7240     for (auto &Param : FnType->param_types())
7241       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7242 
7243     return Ctx.getFunctionType(
7244         GeneralizeType(Ctx, FnType->getReturnType()),
7245         GeneralizedParams, FnType->getExtProtoInfo());
7246   }
7247 
7248   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7249     return Ctx.getFunctionNoProtoType(
7250         GeneralizeType(Ctx, FnType->getReturnType()));
7251 
7252   llvm_unreachable("Encountered unknown FunctionType");
7253 }
7254 
7255 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7256   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7257                                       GeneralizedMetadataIdMap, ".generalized");
7258 }
7259 
7260 /// Returns whether this module needs the "all-vtables" type identifier.
7261 bool CodeGenModule::NeedAllVtablesTypeId() const {
7262   // Returns true if at least one of vtable-based CFI checkers is enabled and
7263   // is not in the trapping mode.
7264   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7265            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7266           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7267            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7268           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7269            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7270           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7271            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7272 }
7273 
7274 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7275                                           CharUnits Offset,
7276                                           const CXXRecordDecl *RD) {
7277   llvm::Metadata *MD =
7278       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7279   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7280 
7281   if (CodeGenOpts.SanitizeCfiCrossDso)
7282     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7283       VTable->addTypeMetadata(Offset.getQuantity(),
7284                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7285 
7286   if (NeedAllVtablesTypeId()) {
7287     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7288     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7289   }
7290 }
7291 
7292 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7293   if (!SanStats)
7294     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7295 
7296   return *SanStats;
7297 }
7298 
7299 llvm::Value *
7300 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7301                                                   CodeGenFunction &CGF) {
7302   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7303   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7304   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7305   auto *Call = CGF.EmitRuntimeCall(
7306       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7307   return Call;
7308 }
7309 
7310 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7311     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7312   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7313                                  /* forPointeeType= */ true);
7314 }
7315 
7316 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7317                                                  LValueBaseInfo *BaseInfo,
7318                                                  TBAAAccessInfo *TBAAInfo,
7319                                                  bool forPointeeType) {
7320   if (TBAAInfo)
7321     *TBAAInfo = getTBAAAccessInfo(T);
7322 
7323   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7324   // that doesn't return the information we need to compute BaseInfo.
7325 
7326   // Honor alignment typedef attributes even on incomplete types.
7327   // We also honor them straight for C++ class types, even as pointees;
7328   // there's an expressivity gap here.
7329   if (auto TT = T->getAs<TypedefType>()) {
7330     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7331       if (BaseInfo)
7332         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7333       return getContext().toCharUnitsFromBits(Align);
7334     }
7335   }
7336 
7337   bool AlignForArray = T->isArrayType();
7338 
7339   // Analyze the base element type, so we don't get confused by incomplete
7340   // array types.
7341   T = getContext().getBaseElementType(T);
7342 
7343   if (T->isIncompleteType()) {
7344     // We could try to replicate the logic from
7345     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7346     // type is incomplete, so it's impossible to test. We could try to reuse
7347     // getTypeAlignIfKnown, but that doesn't return the information we need
7348     // to set BaseInfo.  So just ignore the possibility that the alignment is
7349     // greater than one.
7350     if (BaseInfo)
7351       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7352     return CharUnits::One();
7353   }
7354 
7355   if (BaseInfo)
7356     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7357 
7358   CharUnits Alignment;
7359   const CXXRecordDecl *RD;
7360   if (T.getQualifiers().hasUnaligned()) {
7361     Alignment = CharUnits::One();
7362   } else if (forPointeeType && !AlignForArray &&
7363              (RD = T->getAsCXXRecordDecl())) {
7364     // For C++ class pointees, we don't know whether we're pointing at a
7365     // base or a complete object, so we generally need to use the
7366     // non-virtual alignment.
7367     Alignment = getClassPointerAlignment(RD);
7368   } else {
7369     Alignment = getContext().getTypeAlignInChars(T);
7370   }
7371 
7372   // Cap to the global maximum type alignment unless the alignment
7373   // was somehow explicit on the type.
7374   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7375     if (Alignment.getQuantity() > MaxAlign &&
7376         !getContext().isAlignmentRequired(T))
7377       Alignment = CharUnits::fromQuantity(MaxAlign);
7378   }
7379   return Alignment;
7380 }
7381 
7382 bool CodeGenModule::stopAutoInit() {
7383   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7384   if (StopAfter) {
7385     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7386     // used
7387     if (NumAutoVarInit >= StopAfter) {
7388       return true;
7389     }
7390     if (!NumAutoVarInit) {
7391       unsigned DiagID = getDiags().getCustomDiagID(
7392           DiagnosticsEngine::Warning,
7393           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7394           "number of times ftrivial-auto-var-init=%1 gets applied.");
7395       getDiags().Report(DiagID)
7396           << StopAfter
7397           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7398                       LangOptions::TrivialAutoVarInitKind::Zero
7399                   ? "zero"
7400                   : "pattern");
7401     }
7402     ++NumAutoVarInit;
7403   }
7404   return false;
7405 }
7406 
7407 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7408                                                     const Decl *D) const {
7409   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7410   // postfix beginning with '.' since the symbol name can be demangled.
7411   if (LangOpts.HIP)
7412     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7413   else
7414     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7415 
7416   // If the CUID is not specified we try to generate a unique postfix.
7417   if (getLangOpts().CUID.empty()) {
7418     SourceManager &SM = getContext().getSourceManager();
7419     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7420     assert(PLoc.isValid() && "Source location is expected to be valid.");
7421 
7422     // Get the hash of the user defined macros.
7423     llvm::MD5 Hash;
7424     llvm::MD5::MD5Result Result;
7425     for (const auto &Arg : PreprocessorOpts.Macros)
7426       Hash.update(Arg.first);
7427     Hash.final(Result);
7428 
7429     // Get the UniqueID for the file containing the decl.
7430     llvm::sys::fs::UniqueID ID;
7431     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7432       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7433       assert(PLoc.isValid() && "Source location is expected to be valid.");
7434       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7435         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7436             << PLoc.getFilename() << EC.message();
7437     }
7438     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7439        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7440   } else {
7441     OS << getContext().getCUIDHash();
7442   }
7443 }
7444 
7445 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7446   assert(DeferredDeclsToEmit.empty() &&
7447          "Should have emitted all decls deferred to emit.");
7448   assert(NewBuilder->DeferredDecls.empty() &&
7449          "Newly created module should not have deferred decls");
7450   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7451 
7452   assert(NewBuilder->DeferredVTables.empty() &&
7453          "Newly created module should not have deferred vtables");
7454   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7455 
7456   assert(NewBuilder->MangledDeclNames.empty() &&
7457          "Newly created module should not have mangled decl names");
7458   assert(NewBuilder->Manglings.empty() &&
7459          "Newly created module should not have manglings");
7460   NewBuilder->Manglings = std::move(Manglings);
7461 
7462   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7463 
7464   NewBuilder->TBAA = std::move(TBAA);
7465 
7466   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7467          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7468 
7469   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7470 
7471   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7472 }
7473