1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/Mangler.h" 41 #include "llvm/Target/TargetData.h" 42 #include "llvm/Support/CallSite.h" 43 #include "llvm/Support/ErrorHandling.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 48 switch (CGM.getContext().Target.getCXXABI()) { 49 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 50 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 51 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 52 } 53 54 llvm_unreachable("invalid C++ ABI kind"); 55 return *CreateItaniumCXXABI(CGM); 56 } 57 58 59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 60 llvm::Module &M, const llvm::TargetData &TD, 61 Diagnostic &diags) 62 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO), 66 TBAA(0), 67 VTables(*this), ObjCRuntime(0), DebugInfo(0), ARCData(0), RRData(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 NSConstantStringType(0), 70 VMContext(M.getContext()), 71 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 72 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 73 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 74 BlockObjectAssign(0), BlockObjectDispose(0), 75 BlockDescriptorType(0), GenericBlockLiteralType(0) { 76 if (Features.ObjC1) 77 createObjCRuntime(); 78 79 // Enable TBAA unless it's suppressed. 80 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 81 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 82 ABI.getMangleContext()); 83 84 // If debug info or coverage generation is enabled, create the CGDebugInfo 85 // object. 86 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 87 CodeGenOpts.EmitGcovNotes) 88 DebugInfo = new CGDebugInfo(*this); 89 90 Block.GlobalUniqueCount = 0; 91 92 if (C.getLangOptions().ObjCAutoRefCount) 93 ARCData = new ARCEntrypoints(); 94 RRData = new RREntrypoints(); 95 96 // Initialize the type cache. 97 llvm::LLVMContext &LLVMContext = M.getContext(); 98 VoidTy = llvm::Type::getVoidTy(LLVMContext); 99 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 100 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 101 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 102 PointerWidthInBits = C.Target.getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity(); 105 IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth()); 106 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 107 Int8PtrTy = Int8Ty->getPointerTo(0); 108 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 109 } 110 111 CodeGenModule::~CodeGenModule() { 112 delete ObjCRuntime; 113 delete &ABI; 114 delete TBAA; 115 delete DebugInfo; 116 delete ARCData; 117 delete RRData; 118 } 119 120 void CodeGenModule::createObjCRuntime() { 121 if (!Features.NeXTRuntime) 122 ObjCRuntime = CreateGNUObjCRuntime(*this); 123 else 124 ObjCRuntime = CreateMacObjCRuntime(*this); 125 } 126 127 void CodeGenModule::Release() { 128 EmitDeferred(); 129 EmitCXXGlobalInitFunc(); 130 EmitCXXGlobalDtorFunc(); 131 if (ObjCRuntime) 132 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 133 AddGlobalCtor(ObjCInitFunction); 134 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 135 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 136 EmitAnnotations(); 137 EmitLLVMUsed(); 138 139 SimplifyPersonality(); 140 141 if (getCodeGenOpts().EmitDeclMetadata) 142 EmitDeclMetadata(); 143 144 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 145 EmitCoverageFile(); 146 } 147 148 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 149 // Make sure that this type is translated. 150 Types.UpdateCompletedType(TD); 151 if (DebugInfo) 152 DebugInfo->UpdateCompletedType(TD); 153 } 154 155 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 156 if (!TBAA) 157 return 0; 158 return TBAA->getTBAAInfo(QTy); 159 } 160 161 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 162 llvm::MDNode *TBAAInfo) { 163 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 164 } 165 166 bool CodeGenModule::isTargetDarwin() const { 167 return getContext().Target.getTriple().isOSDarwin(); 168 } 169 170 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 171 unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error); 172 getDiags().Report(Context.getFullLoc(loc), diagID); 173 } 174 175 /// ErrorUnsupported - Print out an error that codegen doesn't support the 176 /// specified stmt yet. 177 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 178 bool OmitOnError) { 179 if (OmitOnError && getDiags().hasErrorOccurred()) 180 return; 181 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 182 "cannot compile this %0 yet"); 183 std::string Msg = Type; 184 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 185 << Msg << S->getSourceRange(); 186 } 187 188 /// ErrorUnsupported - Print out an error that codegen doesn't support the 189 /// specified decl yet. 190 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 191 bool OmitOnError) { 192 if (OmitOnError && getDiags().hasErrorOccurred()) 193 return; 194 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 195 "cannot compile this %0 yet"); 196 std::string Msg = Type; 197 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 198 } 199 200 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 201 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 202 } 203 204 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 205 const NamedDecl *D) const { 206 // Internal definitions always have default visibility. 207 if (GV->hasLocalLinkage()) { 208 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 209 return; 210 } 211 212 // Set visibility for definitions. 213 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 214 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 215 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 216 } 217 218 /// Set the symbol visibility of type information (vtable and RTTI) 219 /// associated with the given type. 220 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 221 const CXXRecordDecl *RD, 222 TypeVisibilityKind TVK) const { 223 setGlobalVisibility(GV, RD); 224 225 if (!CodeGenOpts.HiddenWeakVTables) 226 return; 227 228 // We never want to drop the visibility for RTTI names. 229 if (TVK == TVK_ForRTTIName) 230 return; 231 232 // We want to drop the visibility to hidden for weak type symbols. 233 // This isn't possible if there might be unresolved references 234 // elsewhere that rely on this symbol being visible. 235 236 // This should be kept roughly in sync with setThunkVisibility 237 // in CGVTables.cpp. 238 239 // Preconditions. 240 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 241 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 242 return; 243 244 // Don't override an explicit visibility attribute. 245 if (RD->getExplicitVisibility()) 246 return; 247 248 switch (RD->getTemplateSpecializationKind()) { 249 // We have to disable the optimization if this is an EI definition 250 // because there might be EI declarations in other shared objects. 251 case TSK_ExplicitInstantiationDefinition: 252 case TSK_ExplicitInstantiationDeclaration: 253 return; 254 255 // Every use of a non-template class's type information has to emit it. 256 case TSK_Undeclared: 257 break; 258 259 // In theory, implicit instantiations can ignore the possibility of 260 // an explicit instantiation declaration because there necessarily 261 // must be an EI definition somewhere with default visibility. In 262 // practice, it's possible to have an explicit instantiation for 263 // an arbitrary template class, and linkers aren't necessarily able 264 // to deal with mixed-visibility symbols. 265 case TSK_ExplicitSpecialization: 266 case TSK_ImplicitInstantiation: 267 if (!CodeGenOpts.HiddenWeakTemplateVTables) 268 return; 269 break; 270 } 271 272 // If there's a key function, there may be translation units 273 // that don't have the key function's definition. But ignore 274 // this if we're emitting RTTI under -fno-rtti. 275 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 276 if (Context.getKeyFunction(RD)) 277 return; 278 } 279 280 // Otherwise, drop the visibility to hidden. 281 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 282 GV->setUnnamedAddr(true); 283 } 284 285 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 286 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 287 288 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 289 if (!Str.empty()) 290 return Str; 291 292 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 293 IdentifierInfo *II = ND->getIdentifier(); 294 assert(II && "Attempt to mangle unnamed decl."); 295 296 Str = II->getName(); 297 return Str; 298 } 299 300 llvm::SmallString<256> Buffer; 301 llvm::raw_svector_ostream Out(Buffer); 302 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 303 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 304 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 305 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 306 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 307 getCXXABI().getMangleContext().mangleBlock(BD, Out); 308 else 309 getCXXABI().getMangleContext().mangleName(ND, Out); 310 311 // Allocate space for the mangled name. 312 Out.flush(); 313 size_t Length = Buffer.size(); 314 char *Name = MangledNamesAllocator.Allocate<char>(Length); 315 std::copy(Buffer.begin(), Buffer.end(), Name); 316 317 Str = StringRef(Name, Length); 318 319 return Str; 320 } 321 322 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 323 const BlockDecl *BD) { 324 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 325 const Decl *D = GD.getDecl(); 326 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 327 if (D == 0) 328 MangleCtx.mangleGlobalBlock(BD, Out); 329 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 330 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 331 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 332 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 333 else 334 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 335 } 336 337 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 338 return getModule().getNamedValue(Name); 339 } 340 341 /// AddGlobalCtor - Add a function to the list that will be called before 342 /// main() runs. 343 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 344 // FIXME: Type coercion of void()* types. 345 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 346 } 347 348 /// AddGlobalDtor - Add a function to the list that will be called 349 /// when the module is unloaded. 350 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 351 // FIXME: Type coercion of void()* types. 352 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 353 } 354 355 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 356 // Ctor function type is void()*. 357 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 358 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 359 360 // Get the type of a ctor entry, { i32, void ()* }. 361 llvm::StructType *CtorStructTy = 362 llvm::StructType::get(llvm::Type::getInt32Ty(VMContext), 363 llvm::PointerType::getUnqual(CtorFTy), NULL); 364 365 // Construct the constructor and destructor arrays. 366 std::vector<llvm::Constant*> Ctors; 367 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 368 std::vector<llvm::Constant*> S; 369 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 370 I->second, false)); 371 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 372 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 373 } 374 375 if (!Ctors.empty()) { 376 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 377 new llvm::GlobalVariable(TheModule, AT, false, 378 llvm::GlobalValue::AppendingLinkage, 379 llvm::ConstantArray::get(AT, Ctors), 380 GlobalName); 381 } 382 } 383 384 void CodeGenModule::EmitAnnotations() { 385 if (Annotations.empty()) 386 return; 387 388 // Create a new global variable for the ConstantStruct in the Module. 389 llvm::Constant *Array = 390 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 391 Annotations.size()), 392 Annotations); 393 llvm::GlobalValue *gv = 394 new llvm::GlobalVariable(TheModule, Array->getType(), false, 395 llvm::GlobalValue::AppendingLinkage, Array, 396 "llvm.global.annotations"); 397 gv->setSection("llvm.metadata"); 398 } 399 400 llvm::GlobalValue::LinkageTypes 401 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 402 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 403 404 if (Linkage == GVA_Internal) 405 return llvm::Function::InternalLinkage; 406 407 if (D->hasAttr<DLLExportAttr>()) 408 return llvm::Function::DLLExportLinkage; 409 410 if (D->hasAttr<WeakAttr>()) 411 return llvm::Function::WeakAnyLinkage; 412 413 // In C99 mode, 'inline' functions are guaranteed to have a strong 414 // definition somewhere else, so we can use available_externally linkage. 415 if (Linkage == GVA_C99Inline) 416 return llvm::Function::AvailableExternallyLinkage; 417 418 // In C++, the compiler has to emit a definition in every translation unit 419 // that references the function. We should use linkonce_odr because 420 // a) if all references in this translation unit are optimized away, we 421 // don't need to codegen it. b) if the function persists, it needs to be 422 // merged with other definitions. c) C++ has the ODR, so we know the 423 // definition is dependable. 424 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 425 return !Context.getLangOptions().AppleKext 426 ? llvm::Function::LinkOnceODRLinkage 427 : llvm::Function::InternalLinkage; 428 429 // An explicit instantiation of a template has weak linkage, since 430 // explicit instantiations can occur in multiple translation units 431 // and must all be equivalent. However, we are not allowed to 432 // throw away these explicit instantiations. 433 if (Linkage == GVA_ExplicitTemplateInstantiation) 434 return !Context.getLangOptions().AppleKext 435 ? llvm::Function::WeakODRLinkage 436 : llvm::Function::InternalLinkage; 437 438 // Otherwise, we have strong external linkage. 439 assert(Linkage == GVA_StrongExternal); 440 return llvm::Function::ExternalLinkage; 441 } 442 443 444 /// SetFunctionDefinitionAttributes - Set attributes for a global. 445 /// 446 /// FIXME: This is currently only done for aliases and functions, but not for 447 /// variables (these details are set in EmitGlobalVarDefinition for variables). 448 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 449 llvm::GlobalValue *GV) { 450 SetCommonAttributes(D, GV); 451 } 452 453 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 454 const CGFunctionInfo &Info, 455 llvm::Function *F) { 456 unsigned CallingConv; 457 AttributeListType AttributeList; 458 ConstructAttributeList(Info, D, AttributeList, CallingConv); 459 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 460 AttributeList.size())); 461 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 462 } 463 464 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 465 llvm::Function *F) { 466 if (CodeGenOpts.UnwindTables) 467 F->setHasUWTable(); 468 469 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 470 F->addFnAttr(llvm::Attribute::NoUnwind); 471 472 if (D->hasAttr<AlwaysInlineAttr>()) 473 F->addFnAttr(llvm::Attribute::AlwaysInline); 474 475 if (D->hasAttr<NakedAttr>()) 476 F->addFnAttr(llvm::Attribute::Naked); 477 478 if (D->hasAttr<NoInlineAttr>()) 479 F->addFnAttr(llvm::Attribute::NoInline); 480 481 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 482 F->setUnnamedAddr(true); 483 484 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 485 F->addFnAttr(llvm::Attribute::StackProtect); 486 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 487 F->addFnAttr(llvm::Attribute::StackProtectReq); 488 489 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 490 if (alignment) 491 F->setAlignment(alignment); 492 493 // C++ ABI requires 2-byte alignment for member functions. 494 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 495 F->setAlignment(2); 496 } 497 498 void CodeGenModule::SetCommonAttributes(const Decl *D, 499 llvm::GlobalValue *GV) { 500 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 501 setGlobalVisibility(GV, ND); 502 else 503 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 504 505 if (D->hasAttr<UsedAttr>()) 506 AddUsedGlobal(GV); 507 508 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 509 GV->setSection(SA->getName()); 510 511 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 512 } 513 514 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 515 llvm::Function *F, 516 const CGFunctionInfo &FI) { 517 SetLLVMFunctionAttributes(D, FI, F); 518 SetLLVMFunctionAttributesForDefinition(D, F); 519 520 F->setLinkage(llvm::Function::InternalLinkage); 521 522 SetCommonAttributes(D, F); 523 } 524 525 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 526 llvm::Function *F, 527 bool IsIncompleteFunction) { 528 if (unsigned IID = F->getIntrinsicID()) { 529 // If this is an intrinsic function, set the function's attributes 530 // to the intrinsic's attributes. 531 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 532 return; 533 } 534 535 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 536 537 if (!IsIncompleteFunction) 538 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 539 540 // Only a few attributes are set on declarations; these may later be 541 // overridden by a definition. 542 543 if (FD->hasAttr<DLLImportAttr>()) { 544 F->setLinkage(llvm::Function::DLLImportLinkage); 545 } else if (FD->hasAttr<WeakAttr>() || 546 FD->isWeakImported()) { 547 // "extern_weak" is overloaded in LLVM; we probably should have 548 // separate linkage types for this. 549 F->setLinkage(llvm::Function::ExternalWeakLinkage); 550 } else { 551 F->setLinkage(llvm::Function::ExternalLinkage); 552 553 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 554 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 555 F->setVisibility(GetLLVMVisibility(LV.visibility())); 556 } 557 } 558 559 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 560 F->setSection(SA->getName()); 561 } 562 563 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 564 assert(!GV->isDeclaration() && 565 "Only globals with definition can force usage."); 566 LLVMUsed.push_back(GV); 567 } 568 569 void CodeGenModule::EmitLLVMUsed() { 570 // Don't create llvm.used if there is no need. 571 if (LLVMUsed.empty()) 572 return; 573 574 llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 575 576 // Convert LLVMUsed to what ConstantArray needs. 577 std::vector<llvm::Constant*> UsedArray; 578 UsedArray.resize(LLVMUsed.size()); 579 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 580 UsedArray[i] = 581 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 582 i8PTy); 583 } 584 585 if (UsedArray.empty()) 586 return; 587 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 588 589 llvm::GlobalVariable *GV = 590 new llvm::GlobalVariable(getModule(), ATy, false, 591 llvm::GlobalValue::AppendingLinkage, 592 llvm::ConstantArray::get(ATy, UsedArray), 593 "llvm.used"); 594 595 GV->setSection("llvm.metadata"); 596 } 597 598 void CodeGenModule::EmitDeferred() { 599 // Emit code for any potentially referenced deferred decls. Since a 600 // previously unused static decl may become used during the generation of code 601 // for a static function, iterate until no changes are made. 602 603 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 604 if (!DeferredVTables.empty()) { 605 const CXXRecordDecl *RD = DeferredVTables.back(); 606 DeferredVTables.pop_back(); 607 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 608 continue; 609 } 610 611 GlobalDecl D = DeferredDeclsToEmit.back(); 612 DeferredDeclsToEmit.pop_back(); 613 614 // Check to see if we've already emitted this. This is necessary 615 // for a couple of reasons: first, decls can end up in the 616 // deferred-decls queue multiple times, and second, decls can end 617 // up with definitions in unusual ways (e.g. by an extern inline 618 // function acquiring a strong function redefinition). Just 619 // ignore these cases. 620 // 621 // TODO: That said, looking this up multiple times is very wasteful. 622 StringRef Name = getMangledName(D); 623 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 624 assert(CGRef && "Deferred decl wasn't referenced?"); 625 626 if (!CGRef->isDeclaration()) 627 continue; 628 629 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 630 // purposes an alias counts as a definition. 631 if (isa<llvm::GlobalAlias>(CGRef)) 632 continue; 633 634 // Otherwise, emit the definition and move on to the next one. 635 EmitGlobalDefinition(D); 636 } 637 } 638 639 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 640 /// annotation information for a given GlobalValue. The annotation struct is 641 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 642 /// GlobalValue being annotated. The second field is the constant string 643 /// created from the AnnotateAttr's annotation. The third field is a constant 644 /// string containing the name of the translation unit. The fourth field is 645 /// the line number in the file of the annotated value declaration. 646 /// 647 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 648 /// appears to. 649 /// 650 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 651 const AnnotateAttr *AA, 652 unsigned LineNo) { 653 llvm::Module *M = &getModule(); 654 655 // get [N x i8] constants for the annotation string, and the filename string 656 // which are the 2nd and 3rd elements of the global annotation structure. 657 llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 658 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 659 AA->getAnnotation(), true); 660 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 661 M->getModuleIdentifier(), 662 true); 663 664 // Get the two global values corresponding to the ConstantArrays we just 665 // created to hold the bytes of the strings. 666 llvm::GlobalValue *annoGV = 667 new llvm::GlobalVariable(*M, anno->getType(), false, 668 llvm::GlobalValue::PrivateLinkage, anno, 669 GV->getName()); 670 // translation unit name string, emitted into the llvm.metadata section. 671 llvm::GlobalValue *unitGV = 672 new llvm::GlobalVariable(*M, unit->getType(), false, 673 llvm::GlobalValue::PrivateLinkage, unit, 674 ".str"); 675 unitGV->setUnnamedAddr(true); 676 677 // Create the ConstantStruct for the global annotation. 678 llvm::Constant *Fields[4] = { 679 llvm::ConstantExpr::getBitCast(GV, SBP), 680 llvm::ConstantExpr::getBitCast(annoGV, SBP), 681 llvm::ConstantExpr::getBitCast(unitGV, SBP), 682 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 683 }; 684 return llvm::ConstantStruct::getAnon(Fields); 685 } 686 687 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 688 // Never defer when EmitAllDecls is specified. 689 if (Features.EmitAllDecls) 690 return false; 691 692 return !getContext().DeclMustBeEmitted(Global); 693 } 694 695 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 696 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 697 assert(AA && "No alias?"); 698 699 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 700 701 // See if there is already something with the target's name in the module. 702 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 703 704 llvm::Constant *Aliasee; 705 if (isa<llvm::FunctionType>(DeclTy)) 706 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 707 /*ForVTable=*/false); 708 else 709 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 710 llvm::PointerType::getUnqual(DeclTy), 0); 711 if (!Entry) { 712 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 713 F->setLinkage(llvm::Function::ExternalWeakLinkage); 714 WeakRefReferences.insert(F); 715 } 716 717 return Aliasee; 718 } 719 720 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 721 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 722 723 // Weak references don't produce any output by themselves. 724 if (Global->hasAttr<WeakRefAttr>()) 725 return; 726 727 // If this is an alias definition (which otherwise looks like a declaration) 728 // emit it now. 729 if (Global->hasAttr<AliasAttr>()) 730 return EmitAliasDefinition(GD); 731 732 // Ignore declarations, they will be emitted on their first use. 733 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 734 if (FD->getIdentifier()) { 735 StringRef Name = FD->getName(); 736 if (Name == "_Block_object_assign") { 737 BlockObjectAssignDecl = FD; 738 } else if (Name == "_Block_object_dispose") { 739 BlockObjectDisposeDecl = FD; 740 } 741 } 742 743 // Forward declarations are emitted lazily on first use. 744 if (!FD->doesThisDeclarationHaveABody()) { 745 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 746 return; 747 748 const FunctionDecl *InlineDefinition = 0; 749 FD->getBody(InlineDefinition); 750 751 StringRef MangledName = getMangledName(GD); 752 llvm::StringMap<GlobalDecl>::iterator DDI = 753 DeferredDecls.find(MangledName); 754 if (DDI != DeferredDecls.end()) 755 DeferredDecls.erase(DDI); 756 EmitGlobalDefinition(InlineDefinition); 757 return; 758 } 759 } else { 760 const VarDecl *VD = cast<VarDecl>(Global); 761 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 762 763 if (VD->getIdentifier()) { 764 StringRef Name = VD->getName(); 765 if (Name == "_NSConcreteGlobalBlock") { 766 NSConcreteGlobalBlockDecl = VD; 767 } else if (Name == "_NSConcreteStackBlock") { 768 NSConcreteStackBlockDecl = VD; 769 } 770 } 771 772 773 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 774 return; 775 } 776 777 // Defer code generation when possible if this is a static definition, inline 778 // function etc. These we only want to emit if they are used. 779 if (!MayDeferGeneration(Global)) { 780 // Emit the definition if it can't be deferred. 781 EmitGlobalDefinition(GD); 782 return; 783 } 784 785 // If we're deferring emission of a C++ variable with an 786 // initializer, remember the order in which it appeared in the file. 787 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 788 cast<VarDecl>(Global)->hasInit()) { 789 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 790 CXXGlobalInits.push_back(0); 791 } 792 793 // If the value has already been used, add it directly to the 794 // DeferredDeclsToEmit list. 795 StringRef MangledName = getMangledName(GD); 796 if (GetGlobalValue(MangledName)) 797 DeferredDeclsToEmit.push_back(GD); 798 else { 799 // Otherwise, remember that we saw a deferred decl with this name. The 800 // first use of the mangled name will cause it to move into 801 // DeferredDeclsToEmit. 802 DeferredDecls[MangledName] = GD; 803 } 804 } 805 806 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 807 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 808 809 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 810 Context.getSourceManager(), 811 "Generating code for declaration"); 812 813 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 814 // At -O0, don't generate IR for functions with available_externally 815 // linkage. 816 if (CodeGenOpts.OptimizationLevel == 0 && 817 !Function->hasAttr<AlwaysInlineAttr>() && 818 getFunctionLinkage(Function) 819 == llvm::Function::AvailableExternallyLinkage) 820 return; 821 822 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 823 // Make sure to emit the definition(s) before we emit the thunks. 824 // This is necessary for the generation of certain thunks. 825 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 826 EmitCXXConstructor(CD, GD.getCtorType()); 827 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 828 EmitCXXDestructor(DD, GD.getDtorType()); 829 else 830 EmitGlobalFunctionDefinition(GD); 831 832 if (Method->isVirtual()) 833 getVTables().EmitThunks(GD); 834 835 return; 836 } 837 838 return EmitGlobalFunctionDefinition(GD); 839 } 840 841 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 842 return EmitGlobalVarDefinition(VD); 843 844 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 845 } 846 847 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 848 /// module, create and return an llvm Function with the specified type. If there 849 /// is something in the module with the specified name, return it potentially 850 /// bitcasted to the right type. 851 /// 852 /// If D is non-null, it specifies a decl that correspond to this. This is used 853 /// to set the attributes on the function when it is first created. 854 llvm::Constant * 855 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 856 llvm::Type *Ty, 857 GlobalDecl D, bool ForVTable, 858 llvm::Attributes ExtraAttrs) { 859 // Lookup the entry, lazily creating it if necessary. 860 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 861 if (Entry) { 862 if (WeakRefReferences.count(Entry)) { 863 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 864 if (FD && !FD->hasAttr<WeakAttr>()) 865 Entry->setLinkage(llvm::Function::ExternalLinkage); 866 867 WeakRefReferences.erase(Entry); 868 } 869 870 if (Entry->getType()->getElementType() == Ty) 871 return Entry; 872 873 // Make sure the result is of the correct type. 874 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 875 } 876 877 // This function doesn't have a complete type (for example, the return 878 // type is an incomplete struct). Use a fake type instead, and make 879 // sure not to try to set attributes. 880 bool IsIncompleteFunction = false; 881 882 llvm::FunctionType *FTy; 883 if (isa<llvm::FunctionType>(Ty)) { 884 FTy = cast<llvm::FunctionType>(Ty); 885 } else { 886 FTy = llvm::FunctionType::get(VoidTy, false); 887 IsIncompleteFunction = true; 888 } 889 890 llvm::Function *F = llvm::Function::Create(FTy, 891 llvm::Function::ExternalLinkage, 892 MangledName, &getModule()); 893 assert(F->getName() == MangledName && "name was uniqued!"); 894 if (D.getDecl()) 895 SetFunctionAttributes(D, F, IsIncompleteFunction); 896 if (ExtraAttrs != llvm::Attribute::None) 897 F->addFnAttr(ExtraAttrs); 898 899 // This is the first use or definition of a mangled name. If there is a 900 // deferred decl with this name, remember that we need to emit it at the end 901 // of the file. 902 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 903 if (DDI != DeferredDecls.end()) { 904 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 905 // list, and remove it from DeferredDecls (since we don't need it anymore). 906 DeferredDeclsToEmit.push_back(DDI->second); 907 DeferredDecls.erase(DDI); 908 909 // Otherwise, there are cases we have to worry about where we're 910 // using a declaration for which we must emit a definition but where 911 // we might not find a top-level definition: 912 // - member functions defined inline in their classes 913 // - friend functions defined inline in some class 914 // - special member functions with implicit definitions 915 // If we ever change our AST traversal to walk into class methods, 916 // this will be unnecessary. 917 // 918 // We also don't emit a definition for a function if it's going to be an entry 919 // in a vtable, unless it's already marked as used. 920 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 921 // Look for a declaration that's lexically in a record. 922 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 923 do { 924 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 925 if (FD->isImplicit() && !ForVTable) { 926 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 927 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 928 break; 929 } else if (FD->doesThisDeclarationHaveABody()) { 930 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 931 break; 932 } 933 } 934 FD = FD->getPreviousDeclaration(); 935 } while (FD); 936 } 937 938 // Make sure the result is of the requested type. 939 if (!IsIncompleteFunction) { 940 assert(F->getType()->getElementType() == Ty); 941 return F; 942 } 943 944 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 945 return llvm::ConstantExpr::getBitCast(F, PTy); 946 } 947 948 /// GetAddrOfFunction - Return the address of the given function. If Ty is 949 /// non-null, then this function will use the specified type if it has to 950 /// create it (this occurs when we see a definition of the function). 951 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 952 llvm::Type *Ty, 953 bool ForVTable) { 954 // If there was no specific requested type, just convert it now. 955 if (!Ty) 956 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 957 958 StringRef MangledName = getMangledName(GD); 959 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 960 } 961 962 /// CreateRuntimeFunction - Create a new runtime function with the specified 963 /// type and name. 964 llvm::Constant * 965 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 966 StringRef Name, 967 llvm::Attributes ExtraAttrs) { 968 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 969 ExtraAttrs); 970 } 971 972 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D, 973 bool ConstantInit) { 974 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 975 return false; 976 977 if (Context.getLangOptions().CPlusPlus) { 978 if (const RecordType *Record 979 = Context.getBaseElementType(D->getType())->getAs<RecordType>()) 980 return ConstantInit && 981 cast<CXXRecordDecl>(Record->getDecl())->isPOD() && 982 !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields(); 983 } 984 985 return true; 986 } 987 988 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 989 /// create and return an llvm GlobalVariable with the specified type. If there 990 /// is something in the module with the specified name, return it potentially 991 /// bitcasted to the right type. 992 /// 993 /// If D is non-null, it specifies a decl that correspond to this. This is used 994 /// to set the attributes on the global when it is first created. 995 llvm::Constant * 996 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 997 llvm::PointerType *Ty, 998 const VarDecl *D, 999 bool UnnamedAddr) { 1000 // Lookup the entry, lazily creating it if necessary. 1001 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1002 if (Entry) { 1003 if (WeakRefReferences.count(Entry)) { 1004 if (D && !D->hasAttr<WeakAttr>()) 1005 Entry->setLinkage(llvm::Function::ExternalLinkage); 1006 1007 WeakRefReferences.erase(Entry); 1008 } 1009 1010 if (UnnamedAddr) 1011 Entry->setUnnamedAddr(true); 1012 1013 if (Entry->getType() == Ty) 1014 return Entry; 1015 1016 // Make sure the result is of the correct type. 1017 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1018 } 1019 1020 // This is the first use or definition of a mangled name. If there is a 1021 // deferred decl with this name, remember that we need to emit it at the end 1022 // of the file. 1023 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1024 if (DDI != DeferredDecls.end()) { 1025 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1026 // list, and remove it from DeferredDecls (since we don't need it anymore). 1027 DeferredDeclsToEmit.push_back(DDI->second); 1028 DeferredDecls.erase(DDI); 1029 } 1030 1031 llvm::GlobalVariable *GV = 1032 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1033 llvm::GlobalValue::ExternalLinkage, 1034 0, MangledName, 0, 1035 false, Ty->getAddressSpace()); 1036 1037 // Handle things which are present even on external declarations. 1038 if (D) { 1039 // FIXME: This code is overly simple and should be merged with other global 1040 // handling. 1041 GV->setConstant(DeclIsConstantGlobal(Context, D, false)); 1042 1043 // Set linkage and visibility in case we never see a definition. 1044 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1045 if (LV.linkage() != ExternalLinkage) { 1046 // Don't set internal linkage on declarations. 1047 } else { 1048 if (D->hasAttr<DLLImportAttr>()) 1049 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1050 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1051 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1052 1053 // Set visibility on a declaration only if it's explicit. 1054 if (LV.visibilityExplicit()) 1055 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1056 } 1057 1058 GV->setThreadLocal(D->isThreadSpecified()); 1059 } 1060 1061 return GV; 1062 } 1063 1064 1065 llvm::GlobalVariable * 1066 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1067 llvm::Type *Ty, 1068 llvm::GlobalValue::LinkageTypes Linkage) { 1069 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1070 llvm::GlobalVariable *OldGV = 0; 1071 1072 1073 if (GV) { 1074 // Check if the variable has the right type. 1075 if (GV->getType()->getElementType() == Ty) 1076 return GV; 1077 1078 // Because C++ name mangling, the only way we can end up with an already 1079 // existing global with the same name is if it has been declared extern "C". 1080 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1081 OldGV = GV; 1082 } 1083 1084 // Create a new variable. 1085 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1086 Linkage, 0, Name); 1087 1088 if (OldGV) { 1089 // Replace occurrences of the old variable if needed. 1090 GV->takeName(OldGV); 1091 1092 if (!OldGV->use_empty()) { 1093 llvm::Constant *NewPtrForOldDecl = 1094 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1095 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1096 } 1097 1098 OldGV->eraseFromParent(); 1099 } 1100 1101 return GV; 1102 } 1103 1104 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1105 /// given global variable. If Ty is non-null and if the global doesn't exist, 1106 /// then it will be greated with the specified type instead of whatever the 1107 /// normal requested type would be. 1108 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1109 llvm::Type *Ty) { 1110 assert(D->hasGlobalStorage() && "Not a global variable"); 1111 QualType ASTTy = D->getType(); 1112 if (Ty == 0) 1113 Ty = getTypes().ConvertTypeForMem(ASTTy); 1114 1115 llvm::PointerType *PTy = 1116 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1117 1118 StringRef MangledName = getMangledName(D); 1119 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1120 } 1121 1122 /// CreateRuntimeVariable - Create a new runtime global variable with the 1123 /// specified type and name. 1124 llvm::Constant * 1125 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1126 StringRef Name) { 1127 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1128 true); 1129 } 1130 1131 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1132 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1133 1134 if (MayDeferGeneration(D)) { 1135 // If we have not seen a reference to this variable yet, place it 1136 // into the deferred declarations table to be emitted if needed 1137 // later. 1138 StringRef MangledName = getMangledName(D); 1139 if (!GetGlobalValue(MangledName)) { 1140 DeferredDecls[MangledName] = D; 1141 return; 1142 } 1143 } 1144 1145 // The tentative definition is the only definition. 1146 EmitGlobalVarDefinition(D); 1147 } 1148 1149 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1150 if (DefinitionRequired) 1151 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1152 } 1153 1154 llvm::GlobalVariable::LinkageTypes 1155 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1156 if (RD->getLinkage() != ExternalLinkage) 1157 return llvm::GlobalVariable::InternalLinkage; 1158 1159 if (const CXXMethodDecl *KeyFunction 1160 = RD->getASTContext().getKeyFunction(RD)) { 1161 // If this class has a key function, use that to determine the linkage of 1162 // the vtable. 1163 const FunctionDecl *Def = 0; 1164 if (KeyFunction->hasBody(Def)) 1165 KeyFunction = cast<CXXMethodDecl>(Def); 1166 1167 switch (KeyFunction->getTemplateSpecializationKind()) { 1168 case TSK_Undeclared: 1169 case TSK_ExplicitSpecialization: 1170 // When compiling with optimizations turned on, we emit all vtables, 1171 // even if the key function is not defined in the current translation 1172 // unit. If this is the case, use available_externally linkage. 1173 if (!Def && CodeGenOpts.OptimizationLevel) 1174 return llvm::GlobalVariable::AvailableExternallyLinkage; 1175 1176 if (KeyFunction->isInlined()) 1177 return !Context.getLangOptions().AppleKext ? 1178 llvm::GlobalVariable::LinkOnceODRLinkage : 1179 llvm::Function::InternalLinkage; 1180 1181 return llvm::GlobalVariable::ExternalLinkage; 1182 1183 case TSK_ImplicitInstantiation: 1184 return !Context.getLangOptions().AppleKext ? 1185 llvm::GlobalVariable::LinkOnceODRLinkage : 1186 llvm::Function::InternalLinkage; 1187 1188 case TSK_ExplicitInstantiationDefinition: 1189 return !Context.getLangOptions().AppleKext ? 1190 llvm::GlobalVariable::WeakODRLinkage : 1191 llvm::Function::InternalLinkage; 1192 1193 case TSK_ExplicitInstantiationDeclaration: 1194 // FIXME: Use available_externally linkage. However, this currently 1195 // breaks LLVM's build due to undefined symbols. 1196 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1197 return !Context.getLangOptions().AppleKext ? 1198 llvm::GlobalVariable::LinkOnceODRLinkage : 1199 llvm::Function::InternalLinkage; 1200 } 1201 } 1202 1203 if (Context.getLangOptions().AppleKext) 1204 return llvm::Function::InternalLinkage; 1205 1206 switch (RD->getTemplateSpecializationKind()) { 1207 case TSK_Undeclared: 1208 case TSK_ExplicitSpecialization: 1209 case TSK_ImplicitInstantiation: 1210 // FIXME: Use available_externally linkage. However, this currently 1211 // breaks LLVM's build due to undefined symbols. 1212 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1213 case TSK_ExplicitInstantiationDeclaration: 1214 return llvm::GlobalVariable::LinkOnceODRLinkage; 1215 1216 case TSK_ExplicitInstantiationDefinition: 1217 return llvm::GlobalVariable::WeakODRLinkage; 1218 } 1219 1220 // Silence GCC warning. 1221 return llvm::GlobalVariable::LinkOnceODRLinkage; 1222 } 1223 1224 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1225 return Context.toCharUnitsFromBits( 1226 TheTargetData.getTypeStoreSizeInBits(Ty)); 1227 } 1228 1229 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1230 llvm::Constant *Init = 0; 1231 QualType ASTTy = D->getType(); 1232 bool NonConstInit = false; 1233 1234 const Expr *InitExpr = D->getAnyInitializer(); 1235 1236 if (!InitExpr) { 1237 // This is a tentative definition; tentative definitions are 1238 // implicitly initialized with { 0 }. 1239 // 1240 // Note that tentative definitions are only emitted at the end of 1241 // a translation unit, so they should never have incomplete 1242 // type. In addition, EmitTentativeDefinition makes sure that we 1243 // never attempt to emit a tentative definition if a real one 1244 // exists. A use may still exists, however, so we still may need 1245 // to do a RAUW. 1246 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1247 Init = EmitNullConstant(D->getType()); 1248 } else { 1249 Init = EmitConstantExpr(InitExpr, D->getType()); 1250 if (!Init) { 1251 QualType T = InitExpr->getType(); 1252 if (D->getType()->isReferenceType()) 1253 T = D->getType(); 1254 1255 if (getLangOptions().CPlusPlus) { 1256 Init = EmitNullConstant(T); 1257 NonConstInit = true; 1258 } else { 1259 ErrorUnsupported(D, "static initializer"); 1260 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1261 } 1262 } else { 1263 // We don't need an initializer, so remove the entry for the delayed 1264 // initializer position (just in case this entry was delayed). 1265 if (getLangOptions().CPlusPlus) 1266 DelayedCXXInitPosition.erase(D); 1267 } 1268 } 1269 1270 llvm::Type* InitType = Init->getType(); 1271 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1272 1273 // Strip off a bitcast if we got one back. 1274 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1275 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1276 // all zero index gep. 1277 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1278 Entry = CE->getOperand(0); 1279 } 1280 1281 // Entry is now either a Function or GlobalVariable. 1282 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1283 1284 // We have a definition after a declaration with the wrong type. 1285 // We must make a new GlobalVariable* and update everything that used OldGV 1286 // (a declaration or tentative definition) with the new GlobalVariable* 1287 // (which will be a definition). 1288 // 1289 // This happens if there is a prototype for a global (e.g. 1290 // "extern int x[];") and then a definition of a different type (e.g. 1291 // "int x[10];"). This also happens when an initializer has a different type 1292 // from the type of the global (this happens with unions). 1293 if (GV == 0 || 1294 GV->getType()->getElementType() != InitType || 1295 GV->getType()->getAddressSpace() != 1296 getContext().getTargetAddressSpace(ASTTy)) { 1297 1298 // Move the old entry aside so that we'll create a new one. 1299 Entry->setName(StringRef()); 1300 1301 // Make a new global with the correct type, this is now guaranteed to work. 1302 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1303 1304 // Replace all uses of the old global with the new global 1305 llvm::Constant *NewPtrForOldDecl = 1306 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1307 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1308 1309 // Erase the old global, since it is no longer used. 1310 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1311 } 1312 1313 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1314 SourceManager &SM = Context.getSourceManager(); 1315 AddAnnotation(EmitAnnotateAttr( 1316 GV, AA, SM.getExpansionLineNumber(D->getLocation()))); 1317 } 1318 1319 GV->setInitializer(Init); 1320 1321 // If it is safe to mark the global 'constant', do so now. 1322 GV->setConstant(false); 1323 if (!NonConstInit && DeclIsConstantGlobal(Context, D, true)) 1324 GV->setConstant(true); 1325 1326 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1327 1328 // Set the llvm linkage type as appropriate. 1329 llvm::GlobalValue::LinkageTypes Linkage = 1330 GetLLVMLinkageVarDefinition(D, GV); 1331 GV->setLinkage(Linkage); 1332 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1333 // common vars aren't constant even if declared const. 1334 GV->setConstant(false); 1335 1336 SetCommonAttributes(D, GV); 1337 1338 // Emit the initializer function if necessary. 1339 if (NonConstInit) 1340 EmitCXXGlobalVarDeclInitFunc(D, GV); 1341 1342 // Emit global variable debug information. 1343 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1344 DI->setLocation(D->getLocation()); 1345 DI->EmitGlobalVariable(GV, D); 1346 } 1347 } 1348 1349 llvm::GlobalValue::LinkageTypes 1350 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1351 llvm::GlobalVariable *GV) { 1352 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1353 if (Linkage == GVA_Internal) 1354 return llvm::Function::InternalLinkage; 1355 else if (D->hasAttr<DLLImportAttr>()) 1356 return llvm::Function::DLLImportLinkage; 1357 else if (D->hasAttr<DLLExportAttr>()) 1358 return llvm::Function::DLLExportLinkage; 1359 else if (D->hasAttr<WeakAttr>()) { 1360 if (GV->isConstant()) 1361 return llvm::GlobalVariable::WeakODRLinkage; 1362 else 1363 return llvm::GlobalVariable::WeakAnyLinkage; 1364 } else if (Linkage == GVA_TemplateInstantiation || 1365 Linkage == GVA_ExplicitTemplateInstantiation) 1366 return llvm::GlobalVariable::WeakODRLinkage; 1367 else if (!getLangOptions().CPlusPlus && 1368 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1369 D->getAttr<CommonAttr>()) && 1370 !D->hasExternalStorage() && !D->getInit() && 1371 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1372 !D->getAttr<WeakImportAttr>()) { 1373 // Thread local vars aren't considered common linkage. 1374 return llvm::GlobalVariable::CommonLinkage; 1375 } 1376 return llvm::GlobalVariable::ExternalLinkage; 1377 } 1378 1379 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1380 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1381 /// existing call uses of the old function in the module, this adjusts them to 1382 /// call the new function directly. 1383 /// 1384 /// This is not just a cleanup: the always_inline pass requires direct calls to 1385 /// functions to be able to inline them. If there is a bitcast in the way, it 1386 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1387 /// run at -O0. 1388 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1389 llvm::Function *NewFn) { 1390 // If we're redefining a global as a function, don't transform it. 1391 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1392 if (OldFn == 0) return; 1393 1394 llvm::Type *NewRetTy = NewFn->getReturnType(); 1395 SmallVector<llvm::Value*, 4> ArgList; 1396 1397 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1398 UI != E; ) { 1399 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1400 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1401 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1402 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1403 llvm::CallSite CS(CI); 1404 if (!CI || !CS.isCallee(I)) continue; 1405 1406 // If the return types don't match exactly, and if the call isn't dead, then 1407 // we can't transform this call. 1408 if (CI->getType() != NewRetTy && !CI->use_empty()) 1409 continue; 1410 1411 // Get the attribute list. 1412 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1413 llvm::AttrListPtr AttrList = CI->getAttributes(); 1414 1415 // Get any return attributes. 1416 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1417 1418 // Add the return attributes. 1419 if (RAttrs) 1420 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1421 1422 // If the function was passed too few arguments, don't transform. If extra 1423 // arguments were passed, we silently drop them. If any of the types 1424 // mismatch, we don't transform. 1425 unsigned ArgNo = 0; 1426 bool DontTransform = false; 1427 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1428 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1429 if (CS.arg_size() == ArgNo || 1430 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1431 DontTransform = true; 1432 break; 1433 } 1434 1435 // Add any parameter attributes. 1436 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1437 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1438 } 1439 if (DontTransform) 1440 continue; 1441 1442 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1443 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1444 1445 // Okay, we can transform this. Create the new call instruction and copy 1446 // over the required information. 1447 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1448 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1449 ArgList.clear(); 1450 if (!NewCall->getType()->isVoidTy()) 1451 NewCall->takeName(CI); 1452 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1453 AttrVec.end())); 1454 NewCall->setCallingConv(CI->getCallingConv()); 1455 1456 // Finally, remove the old call, replacing any uses with the new one. 1457 if (!CI->use_empty()) 1458 CI->replaceAllUsesWith(NewCall); 1459 1460 // Copy debug location attached to CI. 1461 if (!CI->getDebugLoc().isUnknown()) 1462 NewCall->setDebugLoc(CI->getDebugLoc()); 1463 CI->eraseFromParent(); 1464 } 1465 } 1466 1467 1468 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1469 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1470 1471 // Compute the function info and LLVM type. 1472 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1473 bool variadic = false; 1474 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1475 variadic = fpt->isVariadic(); 1476 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic); 1477 1478 // Get or create the prototype for the function. 1479 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1480 1481 // Strip off a bitcast if we got one back. 1482 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1483 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1484 Entry = CE->getOperand(0); 1485 } 1486 1487 1488 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1489 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1490 1491 // If the types mismatch then we have to rewrite the definition. 1492 assert(OldFn->isDeclaration() && 1493 "Shouldn't replace non-declaration"); 1494 1495 // F is the Function* for the one with the wrong type, we must make a new 1496 // Function* and update everything that used F (a declaration) with the new 1497 // Function* (which will be a definition). 1498 // 1499 // This happens if there is a prototype for a function 1500 // (e.g. "int f()") and then a definition of a different type 1501 // (e.g. "int f(int x)"). Move the old function aside so that it 1502 // doesn't interfere with GetAddrOfFunction. 1503 OldFn->setName(StringRef()); 1504 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1505 1506 // If this is an implementation of a function without a prototype, try to 1507 // replace any existing uses of the function (which may be calls) with uses 1508 // of the new function 1509 if (D->getType()->isFunctionNoProtoType()) { 1510 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1511 OldFn->removeDeadConstantUsers(); 1512 } 1513 1514 // Replace uses of F with the Function we will endow with a body. 1515 if (!Entry->use_empty()) { 1516 llvm::Constant *NewPtrForOldDecl = 1517 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1518 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1519 } 1520 1521 // Ok, delete the old function now, which is dead. 1522 OldFn->eraseFromParent(); 1523 1524 Entry = NewFn; 1525 } 1526 1527 // We need to set linkage and visibility on the function before 1528 // generating code for it because various parts of IR generation 1529 // want to propagate this information down (e.g. to local static 1530 // declarations). 1531 llvm::Function *Fn = cast<llvm::Function>(Entry); 1532 setFunctionLinkage(D, Fn); 1533 1534 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1535 setGlobalVisibility(Fn, D); 1536 1537 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1538 1539 SetFunctionDefinitionAttributes(D, Fn); 1540 SetLLVMFunctionAttributesForDefinition(D, Fn); 1541 1542 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1543 AddGlobalCtor(Fn, CA->getPriority()); 1544 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1545 AddGlobalDtor(Fn, DA->getPriority()); 1546 } 1547 1548 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1549 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1550 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1551 assert(AA && "Not an alias?"); 1552 1553 StringRef MangledName = getMangledName(GD); 1554 1555 // If there is a definition in the module, then it wins over the alias. 1556 // This is dubious, but allow it to be safe. Just ignore the alias. 1557 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1558 if (Entry && !Entry->isDeclaration()) 1559 return; 1560 1561 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1562 1563 // Create a reference to the named value. This ensures that it is emitted 1564 // if a deferred decl. 1565 llvm::Constant *Aliasee; 1566 if (isa<llvm::FunctionType>(DeclTy)) 1567 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1568 /*ForVTable=*/false); 1569 else 1570 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1571 llvm::PointerType::getUnqual(DeclTy), 0); 1572 1573 // Create the new alias itself, but don't set a name yet. 1574 llvm::GlobalValue *GA = 1575 new llvm::GlobalAlias(Aliasee->getType(), 1576 llvm::Function::ExternalLinkage, 1577 "", Aliasee, &getModule()); 1578 1579 if (Entry) { 1580 assert(Entry->isDeclaration()); 1581 1582 // If there is a declaration in the module, then we had an extern followed 1583 // by the alias, as in: 1584 // extern int test6(); 1585 // ... 1586 // int test6() __attribute__((alias("test7"))); 1587 // 1588 // Remove it and replace uses of it with the alias. 1589 GA->takeName(Entry); 1590 1591 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1592 Entry->getType())); 1593 Entry->eraseFromParent(); 1594 } else { 1595 GA->setName(MangledName); 1596 } 1597 1598 // Set attributes which are particular to an alias; this is a 1599 // specialization of the attributes which may be set on a global 1600 // variable/function. 1601 if (D->hasAttr<DLLExportAttr>()) { 1602 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1603 // The dllexport attribute is ignored for undefined symbols. 1604 if (FD->hasBody()) 1605 GA->setLinkage(llvm::Function::DLLExportLinkage); 1606 } else { 1607 GA->setLinkage(llvm::Function::DLLExportLinkage); 1608 } 1609 } else if (D->hasAttr<WeakAttr>() || 1610 D->hasAttr<WeakRefAttr>() || 1611 D->isWeakImported()) { 1612 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1613 } 1614 1615 SetCommonAttributes(D, GA); 1616 } 1617 1618 /// getBuiltinLibFunction - Given a builtin id for a function like 1619 /// "__builtin_fabsf", return a Function* for "fabsf". 1620 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1621 unsigned BuiltinID) { 1622 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1623 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1624 "isn't a lib fn"); 1625 1626 // Get the name, skip over the __builtin_ prefix (if necessary). 1627 StringRef Name; 1628 GlobalDecl D(FD); 1629 1630 // If the builtin has been declared explicitly with an assembler label, 1631 // use the mangled name. This differs from the plain label on platforms 1632 // that prefix labels. 1633 if (FD->hasAttr<AsmLabelAttr>()) 1634 Name = getMangledName(D); 1635 else if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1636 Name = Context.BuiltinInfo.GetName(BuiltinID) + 10; 1637 else 1638 Name = Context.BuiltinInfo.GetName(BuiltinID); 1639 1640 1641 llvm::FunctionType *Ty = 1642 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1643 1644 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); 1645 } 1646 1647 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1648 ArrayRef<llvm::Type*> Tys) { 1649 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1650 Tys); 1651 } 1652 1653 static llvm::StringMapEntry<llvm::Constant*> & 1654 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1655 const StringLiteral *Literal, 1656 bool TargetIsLSB, 1657 bool &IsUTF16, 1658 unsigned &StringLength) { 1659 StringRef String = Literal->getString(); 1660 unsigned NumBytes = String.size(); 1661 1662 // Check for simple case. 1663 if (!Literal->containsNonAsciiOrNull()) { 1664 StringLength = NumBytes; 1665 return Map.GetOrCreateValue(String); 1666 } 1667 1668 // Otherwise, convert the UTF8 literals into a byte string. 1669 SmallVector<UTF16, 128> ToBuf(NumBytes); 1670 const UTF8 *FromPtr = (UTF8 *)String.data(); 1671 UTF16 *ToPtr = &ToBuf[0]; 1672 1673 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1674 &ToPtr, ToPtr + NumBytes, 1675 strictConversion); 1676 1677 // ConvertUTF8toUTF16 returns the length in ToPtr. 1678 StringLength = ToPtr - &ToBuf[0]; 1679 1680 // Render the UTF-16 string into a byte array and convert to the target byte 1681 // order. 1682 // 1683 // FIXME: This isn't something we should need to do here. 1684 llvm::SmallString<128> AsBytes; 1685 AsBytes.reserve(StringLength * 2); 1686 for (unsigned i = 0; i != StringLength; ++i) { 1687 unsigned short Val = ToBuf[i]; 1688 if (TargetIsLSB) { 1689 AsBytes.push_back(Val & 0xFF); 1690 AsBytes.push_back(Val >> 8); 1691 } else { 1692 AsBytes.push_back(Val >> 8); 1693 AsBytes.push_back(Val & 0xFF); 1694 } 1695 } 1696 // Append one extra null character, the second is automatically added by our 1697 // caller. 1698 AsBytes.push_back(0); 1699 1700 IsUTF16 = true; 1701 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1702 } 1703 1704 static llvm::StringMapEntry<llvm::Constant*> & 1705 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1706 const StringLiteral *Literal, 1707 unsigned &StringLength) 1708 { 1709 StringRef String = Literal->getString(); 1710 StringLength = String.size(); 1711 return Map.GetOrCreateValue(String); 1712 } 1713 1714 llvm::Constant * 1715 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1716 unsigned StringLength = 0; 1717 bool isUTF16 = false; 1718 llvm::StringMapEntry<llvm::Constant*> &Entry = 1719 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1720 getTargetData().isLittleEndian(), 1721 isUTF16, StringLength); 1722 1723 if (llvm::Constant *C = Entry.getValue()) 1724 return C; 1725 1726 llvm::Constant *Zero = 1727 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1728 llvm::Constant *Zeros[] = { Zero, Zero }; 1729 1730 // If we don't already have it, get __CFConstantStringClassReference. 1731 if (!CFConstantStringClassRef) { 1732 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1733 Ty = llvm::ArrayType::get(Ty, 0); 1734 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1735 "__CFConstantStringClassReference"); 1736 // Decay array -> ptr 1737 CFConstantStringClassRef = 1738 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1739 } 1740 1741 QualType CFTy = getContext().getCFConstantStringType(); 1742 1743 llvm::StructType *STy = 1744 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1745 1746 std::vector<llvm::Constant*> Fields(4); 1747 1748 // Class pointer. 1749 Fields[0] = CFConstantStringClassRef; 1750 1751 // Flags. 1752 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1753 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1754 llvm::ConstantInt::get(Ty, 0x07C8); 1755 1756 // String pointer. 1757 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1758 1759 llvm::GlobalValue::LinkageTypes Linkage; 1760 bool isConstant; 1761 if (isUTF16) { 1762 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1763 Linkage = llvm::GlobalValue::InternalLinkage; 1764 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1765 // does make plain ascii ones writable. 1766 isConstant = true; 1767 } else { 1768 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1769 // when using private linkage. It is not clear if this is a bug in ld 1770 // or a reasonable new restriction. 1771 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1772 isConstant = !Features.WritableStrings; 1773 } 1774 1775 llvm::GlobalVariable *GV = 1776 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1777 ".str"); 1778 GV->setUnnamedAddr(true); 1779 if (isUTF16) { 1780 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1781 GV->setAlignment(Align.getQuantity()); 1782 } else { 1783 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1784 GV->setAlignment(Align.getQuantity()); 1785 } 1786 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1787 1788 // String length. 1789 Ty = getTypes().ConvertType(getContext().LongTy); 1790 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1791 1792 // The struct. 1793 C = llvm::ConstantStruct::get(STy, Fields); 1794 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1795 llvm::GlobalVariable::PrivateLinkage, C, 1796 "_unnamed_cfstring_"); 1797 if (const char *Sect = getContext().Target.getCFStringSection()) 1798 GV->setSection(Sect); 1799 Entry.setValue(GV); 1800 1801 return GV; 1802 } 1803 1804 static RecordDecl * 1805 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 1806 DeclContext *DC, IdentifierInfo *Id) { 1807 SourceLocation Loc; 1808 if (Ctx.getLangOptions().CPlusPlus) 1809 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1810 else 1811 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1812 } 1813 1814 llvm::Constant * 1815 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1816 unsigned StringLength = 0; 1817 llvm::StringMapEntry<llvm::Constant*> &Entry = 1818 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 1819 1820 if (llvm::Constant *C = Entry.getValue()) 1821 return C; 1822 1823 llvm::Constant *Zero = 1824 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1825 llvm::Constant *Zeros[] = { Zero, Zero }; 1826 1827 // If we don't already have it, get _NSConstantStringClassReference. 1828 if (!ConstantStringClassRef) { 1829 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1830 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1831 llvm::Constant *GV; 1832 if (Features.ObjCNonFragileABI) { 1833 std::string str = 1834 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1835 : "OBJC_CLASS_$_" + StringClass; 1836 GV = getObjCRuntime().GetClassGlobal(str); 1837 // Make sure the result is of the correct type. 1838 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1839 ConstantStringClassRef = 1840 llvm::ConstantExpr::getBitCast(GV, PTy); 1841 } else { 1842 std::string str = 1843 StringClass.empty() ? "_NSConstantStringClassReference" 1844 : "_" + StringClass + "ClassReference"; 1845 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 1846 GV = CreateRuntimeVariable(PTy, str); 1847 // Decay array -> ptr 1848 ConstantStringClassRef = 1849 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1850 } 1851 } 1852 1853 if (!NSConstantStringType) { 1854 // Construct the type for a constant NSString. 1855 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1856 Context.getTranslationUnitDecl(), 1857 &Context.Idents.get("__builtin_NSString")); 1858 D->startDefinition(); 1859 1860 QualType FieldTypes[3]; 1861 1862 // const int *isa; 1863 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 1864 // const char *str; 1865 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 1866 // unsigned int length; 1867 FieldTypes[2] = Context.UnsignedIntTy; 1868 1869 // Create fields 1870 for (unsigned i = 0; i < 3; ++i) { 1871 FieldDecl *Field = FieldDecl::Create(Context, D, 1872 SourceLocation(), 1873 SourceLocation(), 0, 1874 FieldTypes[i], /*TInfo=*/0, 1875 /*BitWidth=*/0, 1876 /*Mutable=*/false, 1877 /*HasInit=*/false); 1878 Field->setAccess(AS_public); 1879 D->addDecl(Field); 1880 } 1881 1882 D->completeDefinition(); 1883 QualType NSTy = Context.getTagDeclType(D); 1884 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1885 } 1886 1887 std::vector<llvm::Constant*> Fields(3); 1888 1889 // Class pointer. 1890 Fields[0] = ConstantStringClassRef; 1891 1892 // String pointer. 1893 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1894 1895 llvm::GlobalValue::LinkageTypes Linkage; 1896 bool isConstant; 1897 Linkage = llvm::GlobalValue::PrivateLinkage; 1898 isConstant = !Features.WritableStrings; 1899 1900 llvm::GlobalVariable *GV = 1901 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1902 ".str"); 1903 GV->setUnnamedAddr(true); 1904 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1905 GV->setAlignment(Align.getQuantity()); 1906 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1907 1908 // String length. 1909 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1910 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1911 1912 // The struct. 1913 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 1914 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1915 llvm::GlobalVariable::PrivateLinkage, C, 1916 "_unnamed_nsstring_"); 1917 // FIXME. Fix section. 1918 if (const char *Sect = 1919 Features.ObjCNonFragileABI 1920 ? getContext().Target.getNSStringNonFragileABISection() 1921 : getContext().Target.getNSStringSection()) 1922 GV->setSection(Sect); 1923 Entry.setValue(GV); 1924 1925 return GV; 1926 } 1927 1928 QualType CodeGenModule::getObjCFastEnumerationStateType() { 1929 if (ObjCFastEnumerationStateType.isNull()) { 1930 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1931 Context.getTranslationUnitDecl(), 1932 &Context.Idents.get("__objcFastEnumerationState")); 1933 D->startDefinition(); 1934 1935 QualType FieldTypes[] = { 1936 Context.UnsignedLongTy, 1937 Context.getPointerType(Context.getObjCIdType()), 1938 Context.getPointerType(Context.UnsignedLongTy), 1939 Context.getConstantArrayType(Context.UnsignedLongTy, 1940 llvm::APInt(32, 5), ArrayType::Normal, 0) 1941 }; 1942 1943 for (size_t i = 0; i < 4; ++i) { 1944 FieldDecl *Field = FieldDecl::Create(Context, 1945 D, 1946 SourceLocation(), 1947 SourceLocation(), 0, 1948 FieldTypes[i], /*TInfo=*/0, 1949 /*BitWidth=*/0, 1950 /*Mutable=*/false, 1951 /*HasInit=*/false); 1952 Field->setAccess(AS_public); 1953 D->addDecl(Field); 1954 } 1955 1956 D->completeDefinition(); 1957 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 1958 } 1959 1960 return ObjCFastEnumerationStateType; 1961 } 1962 1963 /// GetStringForStringLiteral - Return the appropriate bytes for a 1964 /// string literal, properly padded to match the literal type. 1965 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1966 const ASTContext &Context = getContext(); 1967 const ConstantArrayType *CAT = 1968 Context.getAsConstantArrayType(E->getType()); 1969 assert(CAT && "String isn't pointer or array!"); 1970 1971 // Resize the string to the right size. 1972 uint64_t RealLen = CAT->getSize().getZExtValue(); 1973 1974 switch (E->getKind()) { 1975 case StringLiteral::Ascii: 1976 case StringLiteral::UTF8: 1977 break; 1978 case StringLiteral::Wide: 1979 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1980 break; 1981 case StringLiteral::UTF16: 1982 RealLen *= Context.Target.getChar16Width() / Context.getCharWidth(); 1983 break; 1984 case StringLiteral::UTF32: 1985 RealLen *= Context.Target.getChar32Width() / Context.getCharWidth(); 1986 break; 1987 } 1988 1989 std::string Str = E->getString().str(); 1990 Str.resize(RealLen, '\0'); 1991 1992 return Str; 1993 } 1994 1995 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1996 /// constant array for the given string literal. 1997 llvm::Constant * 1998 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1999 // FIXME: This can be more efficient. 2000 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 2001 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2002 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S), 2003 /* GlobalName */ 0, 2004 Align.getQuantity()); 2005 if (S->isWide() || S->isUTF16() || S->isUTF32()) { 2006 llvm::Type *DestTy = 2007 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 2008 C = llvm::ConstantExpr::getBitCast(C, DestTy); 2009 } 2010 return C; 2011 } 2012 2013 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2014 /// array for the given ObjCEncodeExpr node. 2015 llvm::Constant * 2016 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2017 std::string Str; 2018 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2019 2020 return GetAddrOfConstantCString(Str); 2021 } 2022 2023 2024 /// GenerateWritableString -- Creates storage for a string literal. 2025 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2026 bool constant, 2027 CodeGenModule &CGM, 2028 const char *GlobalName, 2029 unsigned Alignment) { 2030 // Create Constant for this string literal. Don't add a '\0'. 2031 llvm::Constant *C = 2032 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 2033 2034 // Create a global variable for this string 2035 llvm::GlobalVariable *GV = 2036 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2037 llvm::GlobalValue::PrivateLinkage, 2038 C, GlobalName); 2039 GV->setAlignment(Alignment); 2040 GV->setUnnamedAddr(true); 2041 return GV; 2042 } 2043 2044 /// GetAddrOfConstantString - Returns a pointer to a character array 2045 /// containing the literal. This contents are exactly that of the 2046 /// given string, i.e. it will not be null terminated automatically; 2047 /// see GetAddrOfConstantCString. Note that whether the result is 2048 /// actually a pointer to an LLVM constant depends on 2049 /// Feature.WriteableStrings. 2050 /// 2051 /// The result has pointer to array type. 2052 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2053 const char *GlobalName, 2054 unsigned Alignment) { 2055 bool IsConstant = !Features.WritableStrings; 2056 2057 // Get the default prefix if a name wasn't specified. 2058 if (!GlobalName) 2059 GlobalName = ".str"; 2060 2061 // Don't share any string literals if strings aren't constant. 2062 if (!IsConstant) 2063 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2064 2065 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2066 ConstantStringMap.GetOrCreateValue(Str); 2067 2068 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2069 if (Alignment > GV->getAlignment()) { 2070 GV->setAlignment(Alignment); 2071 } 2072 return GV; 2073 } 2074 2075 // Create a global variable for this. 2076 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment); 2077 Entry.setValue(GV); 2078 return GV; 2079 } 2080 2081 /// GetAddrOfConstantCString - Returns a pointer to a character 2082 /// array containing the literal and a terminating '\0' 2083 /// character. The result has pointer to array type. 2084 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2085 const char *GlobalName, 2086 unsigned Alignment) { 2087 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2088 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2089 } 2090 2091 /// EmitObjCPropertyImplementations - Emit information for synthesized 2092 /// properties for an implementation. 2093 void CodeGenModule::EmitObjCPropertyImplementations(const 2094 ObjCImplementationDecl *D) { 2095 for (ObjCImplementationDecl::propimpl_iterator 2096 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2097 ObjCPropertyImplDecl *PID = *i; 2098 2099 // Dynamic is just for type-checking. 2100 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2101 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2102 2103 // Determine which methods need to be implemented, some may have 2104 // been overridden. Note that ::isSynthesized is not the method 2105 // we want, that just indicates if the decl came from a 2106 // property. What we want to know is if the method is defined in 2107 // this implementation. 2108 if (!D->getInstanceMethod(PD->getGetterName())) 2109 CodeGenFunction(*this).GenerateObjCGetter( 2110 const_cast<ObjCImplementationDecl *>(D), PID); 2111 if (!PD->isReadOnly() && 2112 !D->getInstanceMethod(PD->getSetterName())) 2113 CodeGenFunction(*this).GenerateObjCSetter( 2114 const_cast<ObjCImplementationDecl *>(D), PID); 2115 } 2116 } 2117 } 2118 2119 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2120 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2121 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2122 ivar; ivar = ivar->getNextIvar()) 2123 if (ivar->getType().isDestructedType()) 2124 return true; 2125 2126 return false; 2127 } 2128 2129 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2130 /// for an implementation. 2131 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2132 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2133 if (needsDestructMethod(D)) { 2134 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2135 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2136 ObjCMethodDecl *DTORMethod = 2137 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2138 cxxSelector, getContext().VoidTy, 0, D, true, 2139 false, true, false, ObjCMethodDecl::Required); 2140 D->addInstanceMethod(DTORMethod); 2141 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2142 D->setHasCXXStructors(true); 2143 } 2144 2145 // If the implementation doesn't have any ivar initializers, we don't need 2146 // a .cxx_construct. 2147 if (D->getNumIvarInitializers() == 0) 2148 return; 2149 2150 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2151 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2152 // The constructor returns 'self'. 2153 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2154 D->getLocation(), 2155 D->getLocation(), cxxSelector, 2156 getContext().getObjCIdType(), 0, 2157 D, true, false, true, false, 2158 ObjCMethodDecl::Required); 2159 D->addInstanceMethod(CTORMethod); 2160 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2161 D->setHasCXXStructors(true); 2162 } 2163 2164 /// EmitNamespace - Emit all declarations in a namespace. 2165 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2166 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2167 I != E; ++I) 2168 EmitTopLevelDecl(*I); 2169 } 2170 2171 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2172 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2173 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2174 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2175 ErrorUnsupported(LSD, "linkage spec"); 2176 return; 2177 } 2178 2179 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2180 I != E; ++I) 2181 EmitTopLevelDecl(*I); 2182 } 2183 2184 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2185 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2186 // If an error has occurred, stop code generation, but continue 2187 // parsing and semantic analysis (to ensure all warnings and errors 2188 // are emitted). 2189 if (Diags.hasErrorOccurred()) 2190 return; 2191 2192 // Ignore dependent declarations. 2193 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2194 return; 2195 2196 switch (D->getKind()) { 2197 case Decl::CXXConversion: 2198 case Decl::CXXMethod: 2199 case Decl::Function: 2200 // Skip function templates 2201 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2202 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2203 return; 2204 2205 EmitGlobal(cast<FunctionDecl>(D)); 2206 break; 2207 2208 case Decl::Var: 2209 EmitGlobal(cast<VarDecl>(D)); 2210 break; 2211 2212 // Indirect fields from global anonymous structs and unions can be 2213 // ignored; only the actual variable requires IR gen support. 2214 case Decl::IndirectField: 2215 break; 2216 2217 // C++ Decls 2218 case Decl::Namespace: 2219 EmitNamespace(cast<NamespaceDecl>(D)); 2220 break; 2221 // No code generation needed. 2222 case Decl::UsingShadow: 2223 case Decl::Using: 2224 case Decl::UsingDirective: 2225 case Decl::ClassTemplate: 2226 case Decl::FunctionTemplate: 2227 case Decl::TypeAliasTemplate: 2228 case Decl::NamespaceAlias: 2229 case Decl::Block: 2230 break; 2231 case Decl::CXXConstructor: 2232 // Skip function templates 2233 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2234 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2235 return; 2236 2237 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2238 break; 2239 case Decl::CXXDestructor: 2240 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2241 return; 2242 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2243 break; 2244 2245 case Decl::StaticAssert: 2246 // Nothing to do. 2247 break; 2248 2249 // Objective-C Decls 2250 2251 // Forward declarations, no (immediate) code generation. 2252 case Decl::ObjCClass: 2253 case Decl::ObjCForwardProtocol: 2254 case Decl::ObjCInterface: 2255 break; 2256 2257 case Decl::ObjCCategory: { 2258 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2259 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2260 Context.ResetObjCLayout(CD->getClassInterface()); 2261 break; 2262 } 2263 2264 case Decl::ObjCProtocol: 2265 ObjCRuntime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2266 break; 2267 2268 case Decl::ObjCCategoryImpl: 2269 // Categories have properties but don't support synthesize so we 2270 // can ignore them here. 2271 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2272 break; 2273 2274 case Decl::ObjCImplementation: { 2275 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2276 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2277 Context.ResetObjCLayout(OMD->getClassInterface()); 2278 EmitObjCPropertyImplementations(OMD); 2279 EmitObjCIvarInitializations(OMD); 2280 ObjCRuntime->GenerateClass(OMD); 2281 break; 2282 } 2283 case Decl::ObjCMethod: { 2284 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2285 // If this is not a prototype, emit the body. 2286 if (OMD->getBody()) 2287 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2288 break; 2289 } 2290 case Decl::ObjCCompatibleAlias: 2291 // compatibility-alias is a directive and has no code gen. 2292 break; 2293 2294 case Decl::LinkageSpec: 2295 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2296 break; 2297 2298 case Decl::FileScopeAsm: { 2299 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2300 StringRef AsmString = AD->getAsmString()->getString(); 2301 2302 const std::string &S = getModule().getModuleInlineAsm(); 2303 if (S.empty()) 2304 getModule().setModuleInlineAsm(AsmString); 2305 else if (*--S.end() == '\n') 2306 getModule().setModuleInlineAsm(S + AsmString.str()); 2307 else 2308 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2309 break; 2310 } 2311 2312 default: 2313 // Make sure we handled everything we should, every other kind is a 2314 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2315 // function. Need to recode Decl::Kind to do that easily. 2316 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2317 } 2318 } 2319 2320 /// Turns the given pointer into a constant. 2321 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2322 const void *Ptr) { 2323 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2324 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2325 return llvm::ConstantInt::get(i64, PtrInt); 2326 } 2327 2328 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2329 llvm::NamedMDNode *&GlobalMetadata, 2330 GlobalDecl D, 2331 llvm::GlobalValue *Addr) { 2332 if (!GlobalMetadata) 2333 GlobalMetadata = 2334 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2335 2336 // TODO: should we report variant information for ctors/dtors? 2337 llvm::Value *Ops[] = { 2338 Addr, 2339 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2340 }; 2341 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2342 } 2343 2344 /// Emits metadata nodes associating all the global values in the 2345 /// current module with the Decls they came from. This is useful for 2346 /// projects using IR gen as a subroutine. 2347 /// 2348 /// Since there's currently no way to associate an MDNode directly 2349 /// with an llvm::GlobalValue, we create a global named metadata 2350 /// with the name 'clang.global.decl.ptrs'. 2351 void CodeGenModule::EmitDeclMetadata() { 2352 llvm::NamedMDNode *GlobalMetadata = 0; 2353 2354 // StaticLocalDeclMap 2355 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2356 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2357 I != E; ++I) { 2358 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2359 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2360 } 2361 } 2362 2363 /// Emits metadata nodes for all the local variables in the current 2364 /// function. 2365 void CodeGenFunction::EmitDeclMetadata() { 2366 if (LocalDeclMap.empty()) return; 2367 2368 llvm::LLVMContext &Context = getLLVMContext(); 2369 2370 // Find the unique metadata ID for this name. 2371 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2372 2373 llvm::NamedMDNode *GlobalMetadata = 0; 2374 2375 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2376 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2377 const Decl *D = I->first; 2378 llvm::Value *Addr = I->second; 2379 2380 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2381 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2382 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2383 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2384 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2385 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2386 } 2387 } 2388 } 2389 2390 void CodeGenModule::EmitCoverageFile() { 2391 if (!getCodeGenOpts().CoverageFile.empty()) { 2392 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2393 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2394 llvm::LLVMContext &Ctx = TheModule.getContext(); 2395 llvm::MDString *CoverageFile = 2396 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2397 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2398 llvm::MDNode *CU = CUNode->getOperand(i); 2399 llvm::Value *node[] = { CoverageFile, CU }; 2400 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2401 GCov->addOperand(N); 2402 } 2403 } 2404 } 2405 } 2406 2407 ///@name Custom Runtime Function Interfaces 2408 ///@{ 2409 // 2410 // FIXME: These can be eliminated once we can have clients just get the required 2411 // AST nodes from the builtin tables. 2412 2413 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2414 if (BlockObjectDispose) 2415 return BlockObjectDispose; 2416 2417 // If we saw an explicit decl, use that. 2418 if (BlockObjectDisposeDecl) { 2419 return BlockObjectDispose = GetAddrOfFunction( 2420 BlockObjectDisposeDecl, 2421 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2422 } 2423 2424 // Otherwise construct the function by hand. 2425 llvm::Type *args[] = { Int8PtrTy, Int32Ty }; 2426 llvm::FunctionType *fty 2427 = llvm::FunctionType::get(VoidTy, args, false); 2428 return BlockObjectDispose = 2429 CreateRuntimeFunction(fty, "_Block_object_dispose"); 2430 } 2431 2432 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2433 if (BlockObjectAssign) 2434 return BlockObjectAssign; 2435 2436 // If we saw an explicit decl, use that. 2437 if (BlockObjectAssignDecl) { 2438 return BlockObjectAssign = GetAddrOfFunction( 2439 BlockObjectAssignDecl, 2440 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2441 } 2442 2443 // Otherwise construct the function by hand. 2444 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty }; 2445 llvm::FunctionType *fty 2446 = llvm::FunctionType::get(VoidTy, args, false); 2447 return BlockObjectAssign = 2448 CreateRuntimeFunction(fty, "_Block_object_assign"); 2449 } 2450 2451 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2452 if (NSConcreteGlobalBlock) 2453 return NSConcreteGlobalBlock; 2454 2455 // If we saw an explicit decl, use that. 2456 if (NSConcreteGlobalBlockDecl) { 2457 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2458 NSConcreteGlobalBlockDecl, 2459 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2460 } 2461 2462 // Otherwise construct the variable by hand. 2463 return NSConcreteGlobalBlock = 2464 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock"); 2465 } 2466 2467 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2468 if (NSConcreteStackBlock) 2469 return NSConcreteStackBlock; 2470 2471 // If we saw an explicit decl, use that. 2472 if (NSConcreteStackBlockDecl) { 2473 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2474 NSConcreteStackBlockDecl, 2475 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2476 } 2477 2478 // Otherwise construct the variable by hand. 2479 return NSConcreteStackBlock = 2480 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock"); 2481 } 2482 2483 ///@} 2484