xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 6362803cfed99bc008b12b488d2c2a682df0cc2d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 static const char AnnotationSection[] = "llvm.metadata";
52 
53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58   }
59 
60   llvm_unreachable("invalid C++ ABI kind");
61 }
62 
63 
64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                              llvm::Module &M, const llvm::TargetData &TD,
66                              DiagnosticsEngine &diags)
67   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
69     ABI(createCXXABI(*this)),
70     Types(*this),
71     TBAA(0),
72     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74     RRData(0), CFConstantStringClassRef(0),
75     ConstantStringClassRef(0), NSConstantStringType(0),
76     VMContext(M.getContext()),
77     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78     BlockObjectAssign(0), BlockObjectDispose(0),
79     BlockDescriptorType(0), GenericBlockLiteralType(0) {
80 
81   // Initialize the type cache.
82   llvm::LLVMContext &LLVMContext = M.getContext();
83   VoidTy = llvm::Type::getVoidTy(LLVMContext);
84   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88   FloatTy = llvm::Type::getFloatTy(LLVMContext);
89   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91   PointerAlignInBytes =
92   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95   Int8PtrTy = Int8Ty->getPointerTo(0);
96   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97 
98   if (LangOpts.ObjC1)
99     createObjCRuntime();
100   if (LangOpts.OpenCL)
101     createOpenCLRuntime();
102   if (LangOpts.CUDA)
103     createCUDARuntime();
104 
105   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
106   if (LangOpts.ThreadSanitizer ||
107       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
108     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
109                            ABI.getMangleContext());
110 
111   // If debug info or coverage generation is enabled, create the CGDebugInfo
112   // object.
113   if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo ||
114       CodeGenOpts.EmitGcovArcs ||
115       CodeGenOpts.EmitGcovNotes)
116     DebugInfo = new CGDebugInfo(*this);
117 
118   Block.GlobalUniqueCount = 0;
119 
120   if (C.getLangOpts().ObjCAutoRefCount)
121     ARCData = new ARCEntrypoints();
122   RRData = new RREntrypoints();
123 }
124 
125 CodeGenModule::~CodeGenModule() {
126   delete ObjCRuntime;
127   delete OpenCLRuntime;
128   delete CUDARuntime;
129   delete TheTargetCodeGenInfo;
130   delete &ABI;
131   delete TBAA;
132   delete DebugInfo;
133   delete ARCData;
134   delete RRData;
135 }
136 
137 void CodeGenModule::createObjCRuntime() {
138   // This is just isGNUFamily(), but we want to force implementors of
139   // new ABIs to decide how best to do this.
140   switch (LangOpts.ObjCRuntime.getKind()) {
141   case ObjCRuntime::GNU:
142   case ObjCRuntime::FragileGNU:
143     ObjCRuntime = CreateGNUObjCRuntime(*this);
144     return;
145 
146   case ObjCRuntime::FragileMacOSX:
147   case ObjCRuntime::MacOSX:
148   case ObjCRuntime::iOS:
149     ObjCRuntime = CreateMacObjCRuntime(*this);
150     return;
151   }
152   llvm_unreachable("bad runtime kind");
153 }
154 
155 void CodeGenModule::createOpenCLRuntime() {
156   OpenCLRuntime = new CGOpenCLRuntime(*this);
157 }
158 
159 void CodeGenModule::createCUDARuntime() {
160   CUDARuntime = CreateNVCUDARuntime(*this);
161 }
162 
163 void CodeGenModule::Release() {
164   EmitDeferred();
165   EmitCXXGlobalInitFunc();
166   EmitCXXGlobalDtorFunc();
167   if (ObjCRuntime)
168     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
169       AddGlobalCtor(ObjCInitFunction);
170   EmitCtorList(GlobalCtors, "llvm.global_ctors");
171   EmitCtorList(GlobalDtors, "llvm.global_dtors");
172   EmitGlobalAnnotations();
173   EmitLLVMUsed();
174 
175   SimplifyPersonality();
176 
177   if (getCodeGenOpts().EmitDeclMetadata)
178     EmitDeclMetadata();
179 
180   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
181     EmitCoverageFile();
182 
183   if (DebugInfo)
184     DebugInfo->finalize();
185 }
186 
187 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
188   // Make sure that this type is translated.
189   Types.UpdateCompletedType(TD);
190 }
191 
192 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
193   if (!TBAA)
194     return 0;
195   return TBAA->getTBAAInfo(QTy);
196 }
197 
198 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
199   if (!TBAA)
200     return 0;
201   return TBAA->getTBAAInfoForVTablePtr();
202 }
203 
204 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
205                                         llvm::MDNode *TBAAInfo) {
206   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
207 }
208 
209 bool CodeGenModule::isTargetDarwin() const {
210   return getContext().getTargetInfo().getTriple().isOSDarwin();
211 }
212 
213 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
214   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
215   getDiags().Report(Context.getFullLoc(loc), diagID);
216 }
217 
218 /// ErrorUnsupported - Print out an error that codegen doesn't support the
219 /// specified stmt yet.
220 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
221                                      bool OmitOnError) {
222   if (OmitOnError && getDiags().hasErrorOccurred())
223     return;
224   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
225                                                "cannot compile this %0 yet");
226   std::string Msg = Type;
227   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
228     << Msg << S->getSourceRange();
229 }
230 
231 /// ErrorUnsupported - Print out an error that codegen doesn't support the
232 /// specified decl yet.
233 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
234                                      bool OmitOnError) {
235   if (OmitOnError && getDiags().hasErrorOccurred())
236     return;
237   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
238                                                "cannot compile this %0 yet");
239   std::string Msg = Type;
240   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
241 }
242 
243 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
244   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
245 }
246 
247 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
248                                         const NamedDecl *D) const {
249   // Internal definitions always have default visibility.
250   if (GV->hasLocalLinkage()) {
251     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
252     return;
253   }
254 
255   // Set visibility for definitions.
256   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
257   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
258     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
259 }
260 
261 /// Set the symbol visibility of type information (vtable and RTTI)
262 /// associated with the given type.
263 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
264                                       const CXXRecordDecl *RD,
265                                       TypeVisibilityKind TVK) const {
266   setGlobalVisibility(GV, RD);
267 
268   if (!CodeGenOpts.HiddenWeakVTables)
269     return;
270 
271   // We never want to drop the visibility for RTTI names.
272   if (TVK == TVK_ForRTTIName)
273     return;
274 
275   // We want to drop the visibility to hidden for weak type symbols.
276   // This isn't possible if there might be unresolved references
277   // elsewhere that rely on this symbol being visible.
278 
279   // This should be kept roughly in sync with setThunkVisibility
280   // in CGVTables.cpp.
281 
282   // Preconditions.
283   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
284       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
285     return;
286 
287   // Don't override an explicit visibility attribute.
288   if (RD->getExplicitVisibility())
289     return;
290 
291   switch (RD->getTemplateSpecializationKind()) {
292   // We have to disable the optimization if this is an EI definition
293   // because there might be EI declarations in other shared objects.
294   case TSK_ExplicitInstantiationDefinition:
295   case TSK_ExplicitInstantiationDeclaration:
296     return;
297 
298   // Every use of a non-template class's type information has to emit it.
299   case TSK_Undeclared:
300     break;
301 
302   // In theory, implicit instantiations can ignore the possibility of
303   // an explicit instantiation declaration because there necessarily
304   // must be an EI definition somewhere with default visibility.  In
305   // practice, it's possible to have an explicit instantiation for
306   // an arbitrary template class, and linkers aren't necessarily able
307   // to deal with mixed-visibility symbols.
308   case TSK_ExplicitSpecialization:
309   case TSK_ImplicitInstantiation:
310     if (!CodeGenOpts.HiddenWeakTemplateVTables)
311       return;
312     break;
313   }
314 
315   // If there's a key function, there may be translation units
316   // that don't have the key function's definition.  But ignore
317   // this if we're emitting RTTI under -fno-rtti.
318   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
319     if (Context.getKeyFunction(RD))
320       return;
321   }
322 
323   // Otherwise, drop the visibility to hidden.
324   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
325   GV->setUnnamedAddr(true);
326 }
327 
328 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
329   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
330 
331   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
332   if (!Str.empty())
333     return Str;
334 
335   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
336     IdentifierInfo *II = ND->getIdentifier();
337     assert(II && "Attempt to mangle unnamed decl.");
338 
339     Str = II->getName();
340     return Str;
341   }
342 
343   SmallString<256> Buffer;
344   llvm::raw_svector_ostream Out(Buffer);
345   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
346     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
347   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
348     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
349   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
350     getCXXABI().getMangleContext().mangleBlock(BD, Out,
351       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
352   else
353     getCXXABI().getMangleContext().mangleName(ND, Out);
354 
355   // Allocate space for the mangled name.
356   Out.flush();
357   size_t Length = Buffer.size();
358   char *Name = MangledNamesAllocator.Allocate<char>(Length);
359   std::copy(Buffer.begin(), Buffer.end(), Name);
360 
361   Str = StringRef(Name, Length);
362 
363   return Str;
364 }
365 
366 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
367                                         const BlockDecl *BD) {
368   MangleContext &MangleCtx = getCXXABI().getMangleContext();
369   const Decl *D = GD.getDecl();
370   llvm::raw_svector_ostream Out(Buffer.getBuffer());
371   if (D == 0)
372     MangleCtx.mangleGlobalBlock(BD,
373       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
374   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
375     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
376   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
377     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
378   else
379     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
380 }
381 
382 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
383   return getModule().getNamedValue(Name);
384 }
385 
386 /// AddGlobalCtor - Add a function to the list that will be called before
387 /// main() runs.
388 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
389   // FIXME: Type coercion of void()* types.
390   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
391 }
392 
393 /// AddGlobalDtor - Add a function to the list that will be called
394 /// when the module is unloaded.
395 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
396   // FIXME: Type coercion of void()* types.
397   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
398 }
399 
400 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
401   // Ctor function type is void()*.
402   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
403   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
404 
405   // Get the type of a ctor entry, { i32, void ()* }.
406   llvm::StructType *CtorStructTy =
407     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
408 
409   // Construct the constructor and destructor arrays.
410   SmallVector<llvm::Constant*, 8> Ctors;
411   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
412     llvm::Constant *S[] = {
413       llvm::ConstantInt::get(Int32Ty, I->second, false),
414       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
415     };
416     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
417   }
418 
419   if (!Ctors.empty()) {
420     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
421     new llvm::GlobalVariable(TheModule, AT, false,
422                              llvm::GlobalValue::AppendingLinkage,
423                              llvm::ConstantArray::get(AT, Ctors),
424                              GlobalName);
425   }
426 }
427 
428 llvm::GlobalValue::LinkageTypes
429 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
430   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
431 
432   if (Linkage == GVA_Internal)
433     return llvm::Function::InternalLinkage;
434 
435   if (D->hasAttr<DLLExportAttr>())
436     return llvm::Function::DLLExportLinkage;
437 
438   if (D->hasAttr<WeakAttr>())
439     return llvm::Function::WeakAnyLinkage;
440 
441   // In C99 mode, 'inline' functions are guaranteed to have a strong
442   // definition somewhere else, so we can use available_externally linkage.
443   if (Linkage == GVA_C99Inline)
444     return llvm::Function::AvailableExternallyLinkage;
445 
446   // Note that Apple's kernel linker doesn't support symbol
447   // coalescing, so we need to avoid linkonce and weak linkages there.
448   // Normally, this means we just map to internal, but for explicit
449   // instantiations we'll map to external.
450 
451   // In C++, the compiler has to emit a definition in every translation unit
452   // that references the function.  We should use linkonce_odr because
453   // a) if all references in this translation unit are optimized away, we
454   // don't need to codegen it.  b) if the function persists, it needs to be
455   // merged with other definitions. c) C++ has the ODR, so we know the
456   // definition is dependable.
457   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
458     return !Context.getLangOpts().AppleKext
459              ? llvm::Function::LinkOnceODRLinkage
460              : llvm::Function::InternalLinkage;
461 
462   // An explicit instantiation of a template has weak linkage, since
463   // explicit instantiations can occur in multiple translation units
464   // and must all be equivalent. However, we are not allowed to
465   // throw away these explicit instantiations.
466   if (Linkage == GVA_ExplicitTemplateInstantiation)
467     return !Context.getLangOpts().AppleKext
468              ? llvm::Function::WeakODRLinkage
469              : llvm::Function::ExternalLinkage;
470 
471   // Otherwise, we have strong external linkage.
472   assert(Linkage == GVA_StrongExternal);
473   return llvm::Function::ExternalLinkage;
474 }
475 
476 
477 /// SetFunctionDefinitionAttributes - Set attributes for a global.
478 ///
479 /// FIXME: This is currently only done for aliases and functions, but not for
480 /// variables (these details are set in EmitGlobalVarDefinition for variables).
481 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
482                                                     llvm::GlobalValue *GV) {
483   SetCommonAttributes(D, GV);
484 }
485 
486 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
487                                               const CGFunctionInfo &Info,
488                                               llvm::Function *F) {
489   unsigned CallingConv;
490   AttributeListType AttributeList;
491   ConstructAttributeList(Info, D, AttributeList, CallingConv);
492   F->setAttributes(llvm::AttrListPtr::get(AttributeList));
493   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
494 }
495 
496 /// Determines whether the language options require us to model
497 /// unwind exceptions.  We treat -fexceptions as mandating this
498 /// except under the fragile ObjC ABI with only ObjC exceptions
499 /// enabled.  This means, for example, that C with -fexceptions
500 /// enables this.
501 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
502   // If exceptions are completely disabled, obviously this is false.
503   if (!LangOpts.Exceptions) return false;
504 
505   // If C++ exceptions are enabled, this is true.
506   if (LangOpts.CXXExceptions) return true;
507 
508   // If ObjC exceptions are enabled, this depends on the ABI.
509   if (LangOpts.ObjCExceptions) {
510     if (LangOpts.ObjCRuntime.isFragile()) return false;
511   }
512 
513   return true;
514 }
515 
516 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
517                                                            llvm::Function *F) {
518   if (CodeGenOpts.UnwindTables)
519     F->setHasUWTable();
520 
521   if (!hasUnwindExceptions(LangOpts))
522     F->addFnAttr(llvm::Attribute::NoUnwind);
523 
524   if (D->hasAttr<NakedAttr>()) {
525     // Naked implies noinline: we should not be inlining such functions.
526     F->addFnAttr(llvm::Attribute::Naked);
527     F->addFnAttr(llvm::Attribute::NoInline);
528   }
529 
530   if (D->hasAttr<NoInlineAttr>())
531     F->addFnAttr(llvm::Attribute::NoInline);
532 
533   // (noinline wins over always_inline, and we can't specify both in IR)
534   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
535       !F->hasFnAttr(llvm::Attribute::NoInline))
536     F->addFnAttr(llvm::Attribute::AlwaysInline);
537 
538   // FIXME: Communicate hot and cold attributes to LLVM more directly.
539   if (D->hasAttr<ColdAttr>())
540     F->addFnAttr(llvm::Attribute::OptimizeForSize);
541 
542   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
543     F->setUnnamedAddr(true);
544 
545   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
546     F->addFnAttr(llvm::Attribute::StackProtect);
547   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
548     F->addFnAttr(llvm::Attribute::StackProtectReq);
549 
550   if (LangOpts.AddressSanitizer) {
551     // When AddressSanitizer is enabled, set AddressSafety attribute
552     // unless __attribute__((no_address_safety_analysis)) is used.
553     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
554       F->addFnAttr(llvm::Attribute::AddressSafety);
555   }
556 
557   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
558   if (alignment)
559     F->setAlignment(alignment);
560 
561   // C++ ABI requires 2-byte alignment for member functions.
562   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
563     F->setAlignment(2);
564 }
565 
566 void CodeGenModule::SetCommonAttributes(const Decl *D,
567                                         llvm::GlobalValue *GV) {
568   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
569     setGlobalVisibility(GV, ND);
570   else
571     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
572 
573   if (D->hasAttr<UsedAttr>())
574     AddUsedGlobal(GV);
575 
576   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
577     GV->setSection(SA->getName());
578 
579   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
580 }
581 
582 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
583                                                   llvm::Function *F,
584                                                   const CGFunctionInfo &FI) {
585   SetLLVMFunctionAttributes(D, FI, F);
586   SetLLVMFunctionAttributesForDefinition(D, F);
587 
588   F->setLinkage(llvm::Function::InternalLinkage);
589 
590   SetCommonAttributes(D, F);
591 }
592 
593 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
594                                           llvm::Function *F,
595                                           bool IsIncompleteFunction) {
596   if (unsigned IID = F->getIntrinsicID()) {
597     // If this is an intrinsic function, set the function's attributes
598     // to the intrinsic's attributes.
599     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
600     return;
601   }
602 
603   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
604 
605   if (!IsIncompleteFunction)
606     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
607 
608   // Only a few attributes are set on declarations; these may later be
609   // overridden by a definition.
610 
611   if (FD->hasAttr<DLLImportAttr>()) {
612     F->setLinkage(llvm::Function::DLLImportLinkage);
613   } else if (FD->hasAttr<WeakAttr>() ||
614              FD->isWeakImported()) {
615     // "extern_weak" is overloaded in LLVM; we probably should have
616     // separate linkage types for this.
617     F->setLinkage(llvm::Function::ExternalWeakLinkage);
618   } else {
619     F->setLinkage(llvm::Function::ExternalLinkage);
620 
621     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
622     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
623       F->setVisibility(GetLLVMVisibility(LV.visibility()));
624     }
625   }
626 
627   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
628     F->setSection(SA->getName());
629 }
630 
631 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
632   assert(!GV->isDeclaration() &&
633          "Only globals with definition can force usage.");
634   LLVMUsed.push_back(GV);
635 }
636 
637 void CodeGenModule::EmitLLVMUsed() {
638   // Don't create llvm.used if there is no need.
639   if (LLVMUsed.empty())
640     return;
641 
642   // Convert LLVMUsed to what ConstantArray needs.
643   SmallVector<llvm::Constant*, 8> UsedArray;
644   UsedArray.resize(LLVMUsed.size());
645   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
646     UsedArray[i] =
647      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
648                                     Int8PtrTy);
649   }
650 
651   if (UsedArray.empty())
652     return;
653   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
654 
655   llvm::GlobalVariable *GV =
656     new llvm::GlobalVariable(getModule(), ATy, false,
657                              llvm::GlobalValue::AppendingLinkage,
658                              llvm::ConstantArray::get(ATy, UsedArray),
659                              "llvm.used");
660 
661   GV->setSection("llvm.metadata");
662 }
663 
664 void CodeGenModule::EmitDeferred() {
665   // Emit code for any potentially referenced deferred decls.  Since a
666   // previously unused static decl may become used during the generation of code
667   // for a static function, iterate until no changes are made.
668 
669   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
670     if (!DeferredVTables.empty()) {
671       const CXXRecordDecl *RD = DeferredVTables.back();
672       DeferredVTables.pop_back();
673       getCXXABI().EmitVTables(RD);
674       continue;
675     }
676 
677     GlobalDecl D = DeferredDeclsToEmit.back();
678     DeferredDeclsToEmit.pop_back();
679 
680     // Check to see if we've already emitted this.  This is necessary
681     // for a couple of reasons: first, decls can end up in the
682     // deferred-decls queue multiple times, and second, decls can end
683     // up with definitions in unusual ways (e.g. by an extern inline
684     // function acquiring a strong function redefinition).  Just
685     // ignore these cases.
686     //
687     // TODO: That said, looking this up multiple times is very wasteful.
688     StringRef Name = getMangledName(D);
689     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
690     assert(CGRef && "Deferred decl wasn't referenced?");
691 
692     if (!CGRef->isDeclaration())
693       continue;
694 
695     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
696     // purposes an alias counts as a definition.
697     if (isa<llvm::GlobalAlias>(CGRef))
698       continue;
699 
700     // Otherwise, emit the definition and move on to the next one.
701     EmitGlobalDefinition(D);
702   }
703 }
704 
705 void CodeGenModule::EmitGlobalAnnotations() {
706   if (Annotations.empty())
707     return;
708 
709   // Create a new global variable for the ConstantStruct in the Module.
710   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
711     Annotations[0]->getType(), Annotations.size()), Annotations);
712   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
713     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
714     "llvm.global.annotations");
715   gv->setSection(AnnotationSection);
716 }
717 
718 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
719   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
720   if (i != AnnotationStrings.end())
721     return i->second;
722 
723   // Not found yet, create a new global.
724   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
725   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
726     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
727   gv->setSection(AnnotationSection);
728   gv->setUnnamedAddr(true);
729   AnnotationStrings[Str] = gv;
730   return gv;
731 }
732 
733 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
734   SourceManager &SM = getContext().getSourceManager();
735   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
736   if (PLoc.isValid())
737     return EmitAnnotationString(PLoc.getFilename());
738   return EmitAnnotationString(SM.getBufferName(Loc));
739 }
740 
741 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
742   SourceManager &SM = getContext().getSourceManager();
743   PresumedLoc PLoc = SM.getPresumedLoc(L);
744   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
745     SM.getExpansionLineNumber(L);
746   return llvm::ConstantInt::get(Int32Ty, LineNo);
747 }
748 
749 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
750                                                 const AnnotateAttr *AA,
751                                                 SourceLocation L) {
752   // Get the globals for file name, annotation, and the line number.
753   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
754                  *UnitGV = EmitAnnotationUnit(L),
755                  *LineNoCst = EmitAnnotationLineNo(L);
756 
757   // Create the ConstantStruct for the global annotation.
758   llvm::Constant *Fields[4] = {
759     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
760     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
761     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
762     LineNoCst
763   };
764   return llvm::ConstantStruct::getAnon(Fields);
765 }
766 
767 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
768                                          llvm::GlobalValue *GV) {
769   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
770   // Get the struct elements for these annotations.
771   for (specific_attr_iterator<AnnotateAttr>
772        ai = D->specific_attr_begin<AnnotateAttr>(),
773        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
774     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
775 }
776 
777 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
778   // Never defer when EmitAllDecls is specified.
779   if (LangOpts.EmitAllDecls)
780     return false;
781 
782   return !getContext().DeclMustBeEmitted(Global);
783 }
784 
785 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
786   const AliasAttr *AA = VD->getAttr<AliasAttr>();
787   assert(AA && "No alias?");
788 
789   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
790 
791   // See if there is already something with the target's name in the module.
792   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
793 
794   llvm::Constant *Aliasee;
795   if (isa<llvm::FunctionType>(DeclTy))
796     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
797                                       /*ForVTable=*/false);
798   else
799     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
800                                     llvm::PointerType::getUnqual(DeclTy), 0);
801   if (!Entry) {
802     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
803     F->setLinkage(llvm::Function::ExternalWeakLinkage);
804     WeakRefReferences.insert(F);
805   }
806 
807   return Aliasee;
808 }
809 
810 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
811   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
812 
813   // Weak references don't produce any output by themselves.
814   if (Global->hasAttr<WeakRefAttr>())
815     return;
816 
817   // If this is an alias definition (which otherwise looks like a declaration)
818   // emit it now.
819   if (Global->hasAttr<AliasAttr>())
820     return EmitAliasDefinition(GD);
821 
822   // If this is CUDA, be selective about which declarations we emit.
823   if (LangOpts.CUDA) {
824     if (CodeGenOpts.CUDAIsDevice) {
825       if (!Global->hasAttr<CUDADeviceAttr>() &&
826           !Global->hasAttr<CUDAGlobalAttr>() &&
827           !Global->hasAttr<CUDAConstantAttr>() &&
828           !Global->hasAttr<CUDASharedAttr>())
829         return;
830     } else {
831       if (!Global->hasAttr<CUDAHostAttr>() && (
832             Global->hasAttr<CUDADeviceAttr>() ||
833             Global->hasAttr<CUDAConstantAttr>() ||
834             Global->hasAttr<CUDASharedAttr>()))
835         return;
836     }
837   }
838 
839   // Ignore declarations, they will be emitted on their first use.
840   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
841     // Forward declarations are emitted lazily on first use.
842     if (!FD->doesThisDeclarationHaveABody()) {
843       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
844         return;
845 
846       const FunctionDecl *InlineDefinition = 0;
847       FD->getBody(InlineDefinition);
848 
849       StringRef MangledName = getMangledName(GD);
850       DeferredDecls.erase(MangledName);
851       EmitGlobalDefinition(InlineDefinition);
852       return;
853     }
854   } else {
855     const VarDecl *VD = cast<VarDecl>(Global);
856     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
857 
858     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
859       return;
860   }
861 
862   // Defer code generation when possible if this is a static definition, inline
863   // function etc.  These we only want to emit if they are used.
864   if (!MayDeferGeneration(Global)) {
865     // Emit the definition if it can't be deferred.
866     EmitGlobalDefinition(GD);
867     return;
868   }
869 
870   // If we're deferring emission of a C++ variable with an
871   // initializer, remember the order in which it appeared in the file.
872   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
873       cast<VarDecl>(Global)->hasInit()) {
874     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
875     CXXGlobalInits.push_back(0);
876   }
877 
878   // If the value has already been used, add it directly to the
879   // DeferredDeclsToEmit list.
880   StringRef MangledName = getMangledName(GD);
881   if (GetGlobalValue(MangledName))
882     DeferredDeclsToEmit.push_back(GD);
883   else {
884     // Otherwise, remember that we saw a deferred decl with this name.  The
885     // first use of the mangled name will cause it to move into
886     // DeferredDeclsToEmit.
887     DeferredDecls[MangledName] = GD;
888   }
889 }
890 
891 namespace {
892   struct FunctionIsDirectlyRecursive :
893     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
894     const StringRef Name;
895     const Builtin::Context &BI;
896     bool Result;
897     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
898       Name(N), BI(C), Result(false) {
899     }
900     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
901 
902     bool TraverseCallExpr(CallExpr *E) {
903       const FunctionDecl *FD = E->getDirectCallee();
904       if (!FD)
905         return true;
906       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
907       if (Attr && Name == Attr->getLabel()) {
908         Result = true;
909         return false;
910       }
911       unsigned BuiltinID = FD->getBuiltinID();
912       if (!BuiltinID)
913         return true;
914       StringRef BuiltinName = BI.GetName(BuiltinID);
915       if (BuiltinName.startswith("__builtin_") &&
916           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
917         Result = true;
918         return false;
919       }
920       return true;
921     }
922   };
923 }
924 
925 // isTriviallyRecursive - Check if this function calls another
926 // decl that, because of the asm attribute or the other decl being a builtin,
927 // ends up pointing to itself.
928 bool
929 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
930   StringRef Name;
931   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
932     // asm labels are a special kind of mangling we have to support.
933     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
934     if (!Attr)
935       return false;
936     Name = Attr->getLabel();
937   } else {
938     Name = FD->getName();
939   }
940 
941   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
942   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
943   return Walker.Result;
944 }
945 
946 bool
947 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
948   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
949     return true;
950   if (CodeGenOpts.OptimizationLevel == 0 &&
951       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
952     return false;
953   // PR9614. Avoid cases where the source code is lying to us. An available
954   // externally function should have an equivalent function somewhere else,
955   // but a function that calls itself is clearly not equivalent to the real
956   // implementation.
957   // This happens in glibc's btowc and in some configure checks.
958   return !isTriviallyRecursive(F);
959 }
960 
961 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
962   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
963 
964   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
965                                  Context.getSourceManager(),
966                                  "Generating code for declaration");
967 
968   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
969     // At -O0, don't generate IR for functions with available_externally
970     // linkage.
971     if (!shouldEmitFunction(Function))
972       return;
973 
974     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
975       // Make sure to emit the definition(s) before we emit the thunks.
976       // This is necessary for the generation of certain thunks.
977       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
978         EmitCXXConstructor(CD, GD.getCtorType());
979       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
980         EmitCXXDestructor(DD, GD.getDtorType());
981       else
982         EmitGlobalFunctionDefinition(GD);
983 
984       if (Method->isVirtual())
985         getVTables().EmitThunks(GD);
986 
987       return;
988     }
989 
990     return EmitGlobalFunctionDefinition(GD);
991   }
992 
993   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
994     return EmitGlobalVarDefinition(VD);
995 
996   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
997 }
998 
999 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1000 /// module, create and return an llvm Function with the specified type. If there
1001 /// is something in the module with the specified name, return it potentially
1002 /// bitcasted to the right type.
1003 ///
1004 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1005 /// to set the attributes on the function when it is first created.
1006 llvm::Constant *
1007 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1008                                        llvm::Type *Ty,
1009                                        GlobalDecl D, bool ForVTable,
1010                                        llvm::Attributes ExtraAttrs) {
1011   // Lookup the entry, lazily creating it if necessary.
1012   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1013   if (Entry) {
1014     if (WeakRefReferences.count(Entry)) {
1015       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1016       if (FD && !FD->hasAttr<WeakAttr>())
1017         Entry->setLinkage(llvm::Function::ExternalLinkage);
1018 
1019       WeakRefReferences.erase(Entry);
1020     }
1021 
1022     if (Entry->getType()->getElementType() == Ty)
1023       return Entry;
1024 
1025     // Make sure the result is of the correct type.
1026     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1027   }
1028 
1029   // This function doesn't have a complete type (for example, the return
1030   // type is an incomplete struct). Use a fake type instead, and make
1031   // sure not to try to set attributes.
1032   bool IsIncompleteFunction = false;
1033 
1034   llvm::FunctionType *FTy;
1035   if (isa<llvm::FunctionType>(Ty)) {
1036     FTy = cast<llvm::FunctionType>(Ty);
1037   } else {
1038     FTy = llvm::FunctionType::get(VoidTy, false);
1039     IsIncompleteFunction = true;
1040   }
1041 
1042   llvm::Function *F = llvm::Function::Create(FTy,
1043                                              llvm::Function::ExternalLinkage,
1044                                              MangledName, &getModule());
1045   assert(F->getName() == MangledName && "name was uniqued!");
1046   if (D.getDecl())
1047     SetFunctionAttributes(D, F, IsIncompleteFunction);
1048   if (ExtraAttrs != llvm::Attribute::None)
1049     F->addFnAttr(ExtraAttrs);
1050 
1051   // This is the first use or definition of a mangled name.  If there is a
1052   // deferred decl with this name, remember that we need to emit it at the end
1053   // of the file.
1054   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1055   if (DDI != DeferredDecls.end()) {
1056     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1057     // list, and remove it from DeferredDecls (since we don't need it anymore).
1058     DeferredDeclsToEmit.push_back(DDI->second);
1059     DeferredDecls.erase(DDI);
1060 
1061   // Otherwise, there are cases we have to worry about where we're
1062   // using a declaration for which we must emit a definition but where
1063   // we might not find a top-level definition:
1064   //   - member functions defined inline in their classes
1065   //   - friend functions defined inline in some class
1066   //   - special member functions with implicit definitions
1067   // If we ever change our AST traversal to walk into class methods,
1068   // this will be unnecessary.
1069   //
1070   // We also don't emit a definition for a function if it's going to be an entry
1071   // in a vtable, unless it's already marked as used.
1072   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1073     // Look for a declaration that's lexically in a record.
1074     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1075     do {
1076       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1077         if (FD->isImplicit() && !ForVTable) {
1078           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1079           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1080           break;
1081         } else if (FD->doesThisDeclarationHaveABody()) {
1082           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1083           break;
1084         }
1085       }
1086       FD = FD->getPreviousDecl();
1087     } while (FD);
1088   }
1089 
1090   // Make sure the result is of the requested type.
1091   if (!IsIncompleteFunction) {
1092     assert(F->getType()->getElementType() == Ty);
1093     return F;
1094   }
1095 
1096   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1097   return llvm::ConstantExpr::getBitCast(F, PTy);
1098 }
1099 
1100 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1101 /// non-null, then this function will use the specified type if it has to
1102 /// create it (this occurs when we see a definition of the function).
1103 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1104                                                  llvm::Type *Ty,
1105                                                  bool ForVTable) {
1106   // If there was no specific requested type, just convert it now.
1107   if (!Ty)
1108     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1109 
1110   StringRef MangledName = getMangledName(GD);
1111   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1112 }
1113 
1114 /// CreateRuntimeFunction - Create a new runtime function with the specified
1115 /// type and name.
1116 llvm::Constant *
1117 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1118                                      StringRef Name,
1119                                      llvm::Attributes ExtraAttrs) {
1120   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1121                                  ExtraAttrs);
1122 }
1123 
1124 /// isTypeConstant - Determine whether an object of this type can be emitted
1125 /// as a constant.
1126 ///
1127 /// If ExcludeCtor is true, the duration when the object's constructor runs
1128 /// will not be considered. The caller will need to verify that the object is
1129 /// not written to during its construction.
1130 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1131   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1132     return false;
1133 
1134   if (Context.getLangOpts().CPlusPlus) {
1135     if (const CXXRecordDecl *Record
1136           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1137       return ExcludeCtor && !Record->hasMutableFields() &&
1138              Record->hasTrivialDestructor();
1139   }
1140 
1141   return true;
1142 }
1143 
1144 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1145 /// create and return an llvm GlobalVariable with the specified type.  If there
1146 /// is something in the module with the specified name, return it potentially
1147 /// bitcasted to the right type.
1148 ///
1149 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1150 /// to set the attributes on the global when it is first created.
1151 llvm::Constant *
1152 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1153                                      llvm::PointerType *Ty,
1154                                      const VarDecl *D,
1155                                      bool UnnamedAddr) {
1156   // Lookup the entry, lazily creating it if necessary.
1157   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1158   if (Entry) {
1159     if (WeakRefReferences.count(Entry)) {
1160       if (D && !D->hasAttr<WeakAttr>())
1161         Entry->setLinkage(llvm::Function::ExternalLinkage);
1162 
1163       WeakRefReferences.erase(Entry);
1164     }
1165 
1166     if (UnnamedAddr)
1167       Entry->setUnnamedAddr(true);
1168 
1169     if (Entry->getType() == Ty)
1170       return Entry;
1171 
1172     // Make sure the result is of the correct type.
1173     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1174   }
1175 
1176   // This is the first use or definition of a mangled name.  If there is a
1177   // deferred decl with this name, remember that we need to emit it at the end
1178   // of the file.
1179   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1180   if (DDI != DeferredDecls.end()) {
1181     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1182     // list, and remove it from DeferredDecls (since we don't need it anymore).
1183     DeferredDeclsToEmit.push_back(DDI->second);
1184     DeferredDecls.erase(DDI);
1185   }
1186 
1187   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1188   llvm::GlobalVariable *GV =
1189     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1190                              llvm::GlobalValue::ExternalLinkage,
1191                              0, MangledName, 0,
1192                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1193 
1194   // Handle things which are present even on external declarations.
1195   if (D) {
1196     // FIXME: This code is overly simple and should be merged with other global
1197     // handling.
1198     GV->setConstant(isTypeConstant(D->getType(), false));
1199 
1200     // Set linkage and visibility in case we never see a definition.
1201     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1202     if (LV.linkage() != ExternalLinkage) {
1203       // Don't set internal linkage on declarations.
1204     } else {
1205       if (D->hasAttr<DLLImportAttr>())
1206         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1207       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1208         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1209 
1210       // Set visibility on a declaration only if it's explicit.
1211       if (LV.visibilityExplicit())
1212         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1213     }
1214 
1215     GV->setThreadLocal(D->isThreadSpecified());
1216 
1217     // Set the TLS model if it it's explicitly specified.
1218     if (D->hasAttr<TLSModelAttr>()) {
1219       const TLSModelAttr *Attr = D->getAttr<TLSModelAttr>();
1220       GV->setThreadLocalMode(GetLLVMTLSModel(Attr->getModel()));
1221     }
1222   }
1223 
1224   if (AddrSpace != Ty->getAddressSpace())
1225     return llvm::ConstantExpr::getBitCast(GV, Ty);
1226   else
1227     return GV;
1228 }
1229 
1230 
1231 llvm::GlobalVariable *
1232 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1233                                       llvm::Type *Ty,
1234                                       llvm::GlobalValue::LinkageTypes Linkage) {
1235   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1236   llvm::GlobalVariable *OldGV = 0;
1237 
1238 
1239   if (GV) {
1240     // Check if the variable has the right type.
1241     if (GV->getType()->getElementType() == Ty)
1242       return GV;
1243 
1244     // Because C++ name mangling, the only way we can end up with an already
1245     // existing global with the same name is if it has been declared extern "C".
1246       assert(GV->isDeclaration() && "Declaration has wrong type!");
1247     OldGV = GV;
1248   }
1249 
1250   // Create a new variable.
1251   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1252                                 Linkage, 0, Name);
1253 
1254   if (OldGV) {
1255     // Replace occurrences of the old variable if needed.
1256     GV->takeName(OldGV);
1257 
1258     if (!OldGV->use_empty()) {
1259       llvm::Constant *NewPtrForOldDecl =
1260       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1261       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1262     }
1263 
1264     OldGV->eraseFromParent();
1265   }
1266 
1267   return GV;
1268 }
1269 
1270 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1271 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1272 /// then it will be created with the specified type instead of whatever the
1273 /// normal requested type would be.
1274 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1275                                                   llvm::Type *Ty) {
1276   assert(D->hasGlobalStorage() && "Not a global variable");
1277   QualType ASTTy = D->getType();
1278   if (Ty == 0)
1279     Ty = getTypes().ConvertTypeForMem(ASTTy);
1280 
1281   llvm::PointerType *PTy =
1282     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1283 
1284   StringRef MangledName = getMangledName(D);
1285   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1286 }
1287 
1288 /// CreateRuntimeVariable - Create a new runtime global variable with the
1289 /// specified type and name.
1290 llvm::Constant *
1291 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1292                                      StringRef Name) {
1293   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1294                                true);
1295 }
1296 
1297 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1298   assert(!D->getInit() && "Cannot emit definite definitions here!");
1299 
1300   if (MayDeferGeneration(D)) {
1301     // If we have not seen a reference to this variable yet, place it
1302     // into the deferred declarations table to be emitted if needed
1303     // later.
1304     StringRef MangledName = getMangledName(D);
1305     if (!GetGlobalValue(MangledName)) {
1306       DeferredDecls[MangledName] = D;
1307       return;
1308     }
1309   }
1310 
1311   // The tentative definition is the only definition.
1312   EmitGlobalVarDefinition(D);
1313 }
1314 
1315 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1316   if (DefinitionRequired)
1317     getCXXABI().EmitVTables(Class);
1318 }
1319 
1320 llvm::GlobalVariable::LinkageTypes
1321 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1322   if (RD->getLinkage() != ExternalLinkage)
1323     return llvm::GlobalVariable::InternalLinkage;
1324 
1325   if (const CXXMethodDecl *KeyFunction
1326                                     = RD->getASTContext().getKeyFunction(RD)) {
1327     // If this class has a key function, use that to determine the linkage of
1328     // the vtable.
1329     const FunctionDecl *Def = 0;
1330     if (KeyFunction->hasBody(Def))
1331       KeyFunction = cast<CXXMethodDecl>(Def);
1332 
1333     switch (KeyFunction->getTemplateSpecializationKind()) {
1334       case TSK_Undeclared:
1335       case TSK_ExplicitSpecialization:
1336         // When compiling with optimizations turned on, we emit all vtables,
1337         // even if the key function is not defined in the current translation
1338         // unit. If this is the case, use available_externally linkage.
1339         if (!Def && CodeGenOpts.OptimizationLevel)
1340           return llvm::GlobalVariable::AvailableExternallyLinkage;
1341 
1342         if (KeyFunction->isInlined())
1343           return !Context.getLangOpts().AppleKext ?
1344                    llvm::GlobalVariable::LinkOnceODRLinkage :
1345                    llvm::Function::InternalLinkage;
1346 
1347         return llvm::GlobalVariable::ExternalLinkage;
1348 
1349       case TSK_ImplicitInstantiation:
1350         return !Context.getLangOpts().AppleKext ?
1351                  llvm::GlobalVariable::LinkOnceODRLinkage :
1352                  llvm::Function::InternalLinkage;
1353 
1354       case TSK_ExplicitInstantiationDefinition:
1355         return !Context.getLangOpts().AppleKext ?
1356                  llvm::GlobalVariable::WeakODRLinkage :
1357                  llvm::Function::InternalLinkage;
1358 
1359       case TSK_ExplicitInstantiationDeclaration:
1360         // FIXME: Use available_externally linkage. However, this currently
1361         // breaks LLVM's build due to undefined symbols.
1362         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1363         return !Context.getLangOpts().AppleKext ?
1364                  llvm::GlobalVariable::LinkOnceODRLinkage :
1365                  llvm::Function::InternalLinkage;
1366     }
1367   }
1368 
1369   if (Context.getLangOpts().AppleKext)
1370     return llvm::Function::InternalLinkage;
1371 
1372   switch (RD->getTemplateSpecializationKind()) {
1373   case TSK_Undeclared:
1374   case TSK_ExplicitSpecialization:
1375   case TSK_ImplicitInstantiation:
1376     // FIXME: Use available_externally linkage. However, this currently
1377     // breaks LLVM's build due to undefined symbols.
1378     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1379   case TSK_ExplicitInstantiationDeclaration:
1380     return llvm::GlobalVariable::LinkOnceODRLinkage;
1381 
1382   case TSK_ExplicitInstantiationDefinition:
1383       return llvm::GlobalVariable::WeakODRLinkage;
1384   }
1385 
1386   llvm_unreachable("Invalid TemplateSpecializationKind!");
1387 }
1388 
1389 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1390     return Context.toCharUnitsFromBits(
1391       TheTargetData.getTypeStoreSizeInBits(Ty));
1392 }
1393 
1394 llvm::Constant *
1395 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1396                                                        const Expr *rawInit) {
1397   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1398   if (const ExprWithCleanups *withCleanups =
1399           dyn_cast<ExprWithCleanups>(rawInit)) {
1400     cleanups = withCleanups->getObjects();
1401     rawInit = withCleanups->getSubExpr();
1402   }
1403 
1404   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1405   if (!init || !init->initializesStdInitializerList() ||
1406       init->getNumInits() == 0)
1407     return 0;
1408 
1409   ASTContext &ctx = getContext();
1410   unsigned numInits = init->getNumInits();
1411   // FIXME: This check is here because we would otherwise silently miscompile
1412   // nested global std::initializer_lists. Better would be to have a real
1413   // implementation.
1414   for (unsigned i = 0; i < numInits; ++i) {
1415     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1416     if (inner && inner->initializesStdInitializerList()) {
1417       ErrorUnsupported(inner, "nested global std::initializer_list");
1418       return 0;
1419     }
1420   }
1421 
1422   // Synthesize a fake VarDecl for the array and initialize that.
1423   QualType elementType = init->getInit(0)->getType();
1424   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1425   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1426                                                 ArrayType::Normal, 0);
1427 
1428   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1429   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1430                                               arrayType, D->getLocation());
1431   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1432                                                           D->getDeclContext()),
1433                                           D->getLocStart(), D->getLocation(),
1434                                           name, arrayType, sourceInfo,
1435                                           SC_Static, SC_Static);
1436 
1437   // Now clone the InitListExpr to initialize the array instead.
1438   // Incredible hack: we want to use the existing InitListExpr here, so we need
1439   // to tell it that it no longer initializes a std::initializer_list.
1440   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(),
1441                                     const_cast<InitListExpr*>(init)->getInits(),
1442                                                    init->getNumInits(),
1443                                                    init->getRBraceLoc());
1444   arrayInit->setType(arrayType);
1445 
1446   if (!cleanups.empty())
1447     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1448 
1449   backingArray->setInit(arrayInit);
1450 
1451   // Emit the definition of the array.
1452   EmitGlobalVarDefinition(backingArray);
1453 
1454   // Inspect the initializer list to validate it and determine its type.
1455   // FIXME: doing this every time is probably inefficient; caching would be nice
1456   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1457   RecordDecl::field_iterator field = record->field_begin();
1458   if (field == record->field_end()) {
1459     ErrorUnsupported(D, "weird std::initializer_list");
1460     return 0;
1461   }
1462   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1463   // Start pointer.
1464   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1465     ErrorUnsupported(D, "weird std::initializer_list");
1466     return 0;
1467   }
1468   ++field;
1469   if (field == record->field_end()) {
1470     ErrorUnsupported(D, "weird std::initializer_list");
1471     return 0;
1472   }
1473   bool isStartEnd = false;
1474   if (ctx.hasSameType(field->getType(), elementPtr)) {
1475     // End pointer.
1476     isStartEnd = true;
1477   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1478     ErrorUnsupported(D, "weird std::initializer_list");
1479     return 0;
1480   }
1481 
1482   // Now build an APValue representing the std::initializer_list.
1483   APValue initListValue(APValue::UninitStruct(), 0, 2);
1484   APValue &startField = initListValue.getStructField(0);
1485   APValue::LValuePathEntry startOffsetPathEntry;
1486   startOffsetPathEntry.ArrayIndex = 0;
1487   startField = APValue(APValue::LValueBase(backingArray),
1488                        CharUnits::fromQuantity(0),
1489                        llvm::makeArrayRef(startOffsetPathEntry),
1490                        /*IsOnePastTheEnd=*/false, 0);
1491 
1492   if (isStartEnd) {
1493     APValue &endField = initListValue.getStructField(1);
1494     APValue::LValuePathEntry endOffsetPathEntry;
1495     endOffsetPathEntry.ArrayIndex = numInits;
1496     endField = APValue(APValue::LValueBase(backingArray),
1497                        ctx.getTypeSizeInChars(elementType) * numInits,
1498                        llvm::makeArrayRef(endOffsetPathEntry),
1499                        /*IsOnePastTheEnd=*/true, 0);
1500   } else {
1501     APValue &sizeField = initListValue.getStructField(1);
1502     sizeField = APValue(llvm::APSInt(numElements));
1503   }
1504 
1505   // Emit the constant for the initializer_list.
1506   llvm::Constant *llvmInit =
1507       EmitConstantValueForMemory(initListValue, D->getType());
1508   assert(llvmInit && "failed to initialize as constant");
1509   return llvmInit;
1510 }
1511 
1512 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1513                                                  unsigned AddrSpace) {
1514   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1515     if (D->hasAttr<CUDAConstantAttr>())
1516       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1517     else if (D->hasAttr<CUDASharedAttr>())
1518       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1519     else
1520       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1521   }
1522 
1523   return AddrSpace;
1524 }
1525 
1526 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1527   llvm::Constant *Init = 0;
1528   QualType ASTTy = D->getType();
1529   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1530   bool NeedsGlobalCtor = false;
1531   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1532 
1533   const VarDecl *InitDecl;
1534   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1535 
1536   if (!InitExpr) {
1537     // This is a tentative definition; tentative definitions are
1538     // implicitly initialized with { 0 }.
1539     //
1540     // Note that tentative definitions are only emitted at the end of
1541     // a translation unit, so they should never have incomplete
1542     // type. In addition, EmitTentativeDefinition makes sure that we
1543     // never attempt to emit a tentative definition if a real one
1544     // exists. A use may still exists, however, so we still may need
1545     // to do a RAUW.
1546     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1547     Init = EmitNullConstant(D->getType());
1548   } else {
1549     // If this is a std::initializer_list, emit the special initializer.
1550     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1551     // An empty init list will perform zero-initialization, which happens
1552     // to be exactly what we want.
1553     // FIXME: It does so in a global constructor, which is *not* what we
1554     // want.
1555 
1556     if (!Init) {
1557       initializedGlobalDecl = GlobalDecl(D);
1558       Init = EmitConstantInit(*InitDecl);
1559     }
1560     if (!Init) {
1561       QualType T = InitExpr->getType();
1562       if (D->getType()->isReferenceType())
1563         T = D->getType();
1564 
1565       if (getLangOpts().CPlusPlus) {
1566         Init = EmitNullConstant(T);
1567         NeedsGlobalCtor = true;
1568       } else {
1569         ErrorUnsupported(D, "static initializer");
1570         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1571       }
1572     } else {
1573       // We don't need an initializer, so remove the entry for the delayed
1574       // initializer position (just in case this entry was delayed) if we
1575       // also don't need to register a destructor.
1576       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1577         DelayedCXXInitPosition.erase(D);
1578     }
1579   }
1580 
1581   llvm::Type* InitType = Init->getType();
1582   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1583 
1584   // Strip off a bitcast if we got one back.
1585   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1586     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1587            // all zero index gep.
1588            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1589     Entry = CE->getOperand(0);
1590   }
1591 
1592   // Entry is now either a Function or GlobalVariable.
1593   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1594 
1595   // We have a definition after a declaration with the wrong type.
1596   // We must make a new GlobalVariable* and update everything that used OldGV
1597   // (a declaration or tentative definition) with the new GlobalVariable*
1598   // (which will be a definition).
1599   //
1600   // This happens if there is a prototype for a global (e.g.
1601   // "extern int x[];") and then a definition of a different type (e.g.
1602   // "int x[10];"). This also happens when an initializer has a different type
1603   // from the type of the global (this happens with unions).
1604   if (GV == 0 ||
1605       GV->getType()->getElementType() != InitType ||
1606       GV->getType()->getAddressSpace() !=
1607        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1608 
1609     // Move the old entry aside so that we'll create a new one.
1610     Entry->setName(StringRef());
1611 
1612     // Make a new global with the correct type, this is now guaranteed to work.
1613     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1614 
1615     // Replace all uses of the old global with the new global
1616     llvm::Constant *NewPtrForOldDecl =
1617         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1618     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1619 
1620     // Erase the old global, since it is no longer used.
1621     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1622   }
1623 
1624   if (D->hasAttr<AnnotateAttr>())
1625     AddGlobalAnnotations(D, GV);
1626 
1627   GV->setInitializer(Init);
1628 
1629   // If it is safe to mark the global 'constant', do so now.
1630   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1631                   isTypeConstant(D->getType(), true));
1632 
1633   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1634 
1635   // Set the llvm linkage type as appropriate.
1636   llvm::GlobalValue::LinkageTypes Linkage =
1637     GetLLVMLinkageVarDefinition(D, GV);
1638   GV->setLinkage(Linkage);
1639   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1640     // common vars aren't constant even if declared const.
1641     GV->setConstant(false);
1642 
1643   SetCommonAttributes(D, GV);
1644 
1645   // Emit the initializer function if necessary.
1646   if (NeedsGlobalCtor || NeedsGlobalDtor)
1647     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1648 
1649   // Emit global variable debug information.
1650   if (CGDebugInfo *DI = getModuleDebugInfo())
1651     if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo)
1652       DI->EmitGlobalVariable(GV, D);
1653 }
1654 
1655 llvm::GlobalValue::LinkageTypes
1656 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1657                                            llvm::GlobalVariable *GV) {
1658   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1659   if (Linkage == GVA_Internal)
1660     return llvm::Function::InternalLinkage;
1661   else if (D->hasAttr<DLLImportAttr>())
1662     return llvm::Function::DLLImportLinkage;
1663   else if (D->hasAttr<DLLExportAttr>())
1664     return llvm::Function::DLLExportLinkage;
1665   else if (D->hasAttr<WeakAttr>()) {
1666     if (GV->isConstant())
1667       return llvm::GlobalVariable::WeakODRLinkage;
1668     else
1669       return llvm::GlobalVariable::WeakAnyLinkage;
1670   } else if (Linkage == GVA_TemplateInstantiation ||
1671              Linkage == GVA_ExplicitTemplateInstantiation)
1672     return llvm::GlobalVariable::WeakODRLinkage;
1673   else if (!getLangOpts().CPlusPlus &&
1674            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1675              D->getAttr<CommonAttr>()) &&
1676            !D->hasExternalStorage() && !D->getInit() &&
1677            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1678            !D->getAttr<WeakImportAttr>()) {
1679     // Thread local vars aren't considered common linkage.
1680     return llvm::GlobalVariable::CommonLinkage;
1681   }
1682   return llvm::GlobalVariable::ExternalLinkage;
1683 }
1684 
1685 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1686 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1687 /// existing call uses of the old function in the module, this adjusts them to
1688 /// call the new function directly.
1689 ///
1690 /// This is not just a cleanup: the always_inline pass requires direct calls to
1691 /// functions to be able to inline them.  If there is a bitcast in the way, it
1692 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1693 /// run at -O0.
1694 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1695                                                       llvm::Function *NewFn) {
1696   // If we're redefining a global as a function, don't transform it.
1697   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1698   if (OldFn == 0) return;
1699 
1700   llvm::Type *NewRetTy = NewFn->getReturnType();
1701   SmallVector<llvm::Value*, 4> ArgList;
1702 
1703   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1704        UI != E; ) {
1705     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1706     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1707     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1708     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1709     llvm::CallSite CS(CI);
1710     if (!CI || !CS.isCallee(I)) continue;
1711 
1712     // If the return types don't match exactly, and if the call isn't dead, then
1713     // we can't transform this call.
1714     if (CI->getType() != NewRetTy && !CI->use_empty())
1715       continue;
1716 
1717     // Get the attribute list.
1718     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1719     llvm::AttrListPtr AttrList = CI->getAttributes();
1720 
1721     // Get any return attributes.
1722     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1723 
1724     // Add the return attributes.
1725     if (RAttrs)
1726       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1727 
1728     // If the function was passed too few arguments, don't transform.  If extra
1729     // arguments were passed, we silently drop them.  If any of the types
1730     // mismatch, we don't transform.
1731     unsigned ArgNo = 0;
1732     bool DontTransform = false;
1733     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1734          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1735       if (CS.arg_size() == ArgNo ||
1736           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1737         DontTransform = true;
1738         break;
1739       }
1740 
1741       // Add any parameter attributes.
1742       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1743         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1744     }
1745     if (DontTransform)
1746       continue;
1747 
1748     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1749       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1750 
1751     // Okay, we can transform this.  Create the new call instruction and copy
1752     // over the required information.
1753     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1754     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1755     ArgList.clear();
1756     if (!NewCall->getType()->isVoidTy())
1757       NewCall->takeName(CI);
1758     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec));
1759     NewCall->setCallingConv(CI->getCallingConv());
1760 
1761     // Finally, remove the old call, replacing any uses with the new one.
1762     if (!CI->use_empty())
1763       CI->replaceAllUsesWith(NewCall);
1764 
1765     // Copy debug location attached to CI.
1766     if (!CI->getDebugLoc().isUnknown())
1767       NewCall->setDebugLoc(CI->getDebugLoc());
1768     CI->eraseFromParent();
1769   }
1770 }
1771 
1772 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1773   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1774   // If we have a definition, this might be a deferred decl. If the
1775   // instantiation is explicit, make sure we emit it at the end.
1776   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1777     GetAddrOfGlobalVar(VD);
1778 }
1779 
1780 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1781   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1782 
1783   // Compute the function info and LLVM type.
1784   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1785   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1786 
1787   // Get or create the prototype for the function.
1788   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1789 
1790   // Strip off a bitcast if we got one back.
1791   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1792     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1793     Entry = CE->getOperand(0);
1794   }
1795 
1796 
1797   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1798     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1799 
1800     // If the types mismatch then we have to rewrite the definition.
1801     assert(OldFn->isDeclaration() &&
1802            "Shouldn't replace non-declaration");
1803 
1804     // F is the Function* for the one with the wrong type, we must make a new
1805     // Function* and update everything that used F (a declaration) with the new
1806     // Function* (which will be a definition).
1807     //
1808     // This happens if there is a prototype for a function
1809     // (e.g. "int f()") and then a definition of a different type
1810     // (e.g. "int f(int x)").  Move the old function aside so that it
1811     // doesn't interfere with GetAddrOfFunction.
1812     OldFn->setName(StringRef());
1813     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1814 
1815     // If this is an implementation of a function without a prototype, try to
1816     // replace any existing uses of the function (which may be calls) with uses
1817     // of the new function
1818     if (D->getType()->isFunctionNoProtoType()) {
1819       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1820       OldFn->removeDeadConstantUsers();
1821     }
1822 
1823     // Replace uses of F with the Function we will endow with a body.
1824     if (!Entry->use_empty()) {
1825       llvm::Constant *NewPtrForOldDecl =
1826         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1827       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1828     }
1829 
1830     // Ok, delete the old function now, which is dead.
1831     OldFn->eraseFromParent();
1832 
1833     Entry = NewFn;
1834   }
1835 
1836   // We need to set linkage and visibility on the function before
1837   // generating code for it because various parts of IR generation
1838   // want to propagate this information down (e.g. to local static
1839   // declarations).
1840   llvm::Function *Fn = cast<llvm::Function>(Entry);
1841   setFunctionLinkage(D, Fn);
1842 
1843   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1844   setGlobalVisibility(Fn, D);
1845 
1846   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1847 
1848   SetFunctionDefinitionAttributes(D, Fn);
1849   SetLLVMFunctionAttributesForDefinition(D, Fn);
1850 
1851   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1852     AddGlobalCtor(Fn, CA->getPriority());
1853   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1854     AddGlobalDtor(Fn, DA->getPriority());
1855   if (D->hasAttr<AnnotateAttr>())
1856     AddGlobalAnnotations(D, Fn);
1857 }
1858 
1859 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1860   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1861   const AliasAttr *AA = D->getAttr<AliasAttr>();
1862   assert(AA && "Not an alias?");
1863 
1864   StringRef MangledName = getMangledName(GD);
1865 
1866   // If there is a definition in the module, then it wins over the alias.
1867   // This is dubious, but allow it to be safe.  Just ignore the alias.
1868   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1869   if (Entry && !Entry->isDeclaration())
1870     return;
1871 
1872   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1873 
1874   // Create a reference to the named value.  This ensures that it is emitted
1875   // if a deferred decl.
1876   llvm::Constant *Aliasee;
1877   if (isa<llvm::FunctionType>(DeclTy))
1878     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1879                                       /*ForVTable=*/false);
1880   else
1881     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1882                                     llvm::PointerType::getUnqual(DeclTy), 0);
1883 
1884   // Create the new alias itself, but don't set a name yet.
1885   llvm::GlobalValue *GA =
1886     new llvm::GlobalAlias(Aliasee->getType(),
1887                           llvm::Function::ExternalLinkage,
1888                           "", Aliasee, &getModule());
1889 
1890   if (Entry) {
1891     assert(Entry->isDeclaration());
1892 
1893     // If there is a declaration in the module, then we had an extern followed
1894     // by the alias, as in:
1895     //   extern int test6();
1896     //   ...
1897     //   int test6() __attribute__((alias("test7")));
1898     //
1899     // Remove it and replace uses of it with the alias.
1900     GA->takeName(Entry);
1901 
1902     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1903                                                           Entry->getType()));
1904     Entry->eraseFromParent();
1905   } else {
1906     GA->setName(MangledName);
1907   }
1908 
1909   // Set attributes which are particular to an alias; this is a
1910   // specialization of the attributes which may be set on a global
1911   // variable/function.
1912   if (D->hasAttr<DLLExportAttr>()) {
1913     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1914       // The dllexport attribute is ignored for undefined symbols.
1915       if (FD->hasBody())
1916         GA->setLinkage(llvm::Function::DLLExportLinkage);
1917     } else {
1918       GA->setLinkage(llvm::Function::DLLExportLinkage);
1919     }
1920   } else if (D->hasAttr<WeakAttr>() ||
1921              D->hasAttr<WeakRefAttr>() ||
1922              D->isWeakImported()) {
1923     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1924   }
1925 
1926   SetCommonAttributes(D, GA);
1927 }
1928 
1929 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1930                                             ArrayRef<llvm::Type*> Tys) {
1931   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1932                                          Tys);
1933 }
1934 
1935 static llvm::StringMapEntry<llvm::Constant*> &
1936 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1937                          const StringLiteral *Literal,
1938                          bool TargetIsLSB,
1939                          bool &IsUTF16,
1940                          unsigned &StringLength) {
1941   StringRef String = Literal->getString();
1942   unsigned NumBytes = String.size();
1943 
1944   // Check for simple case.
1945   if (!Literal->containsNonAsciiOrNull()) {
1946     StringLength = NumBytes;
1947     return Map.GetOrCreateValue(String);
1948   }
1949 
1950   // Otherwise, convert the UTF8 literals into a string of shorts.
1951   IsUTF16 = true;
1952 
1953   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
1954   const UTF8 *FromPtr = (UTF8 *)String.data();
1955   UTF16 *ToPtr = &ToBuf[0];
1956 
1957   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1958                            &ToPtr, ToPtr + NumBytes,
1959                            strictConversion);
1960 
1961   // ConvertUTF8toUTF16 returns the length in ToPtr.
1962   StringLength = ToPtr - &ToBuf[0];
1963 
1964   // Add an explicit null.
1965   *ToPtr = 0;
1966   return Map.
1967     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
1968                                (StringLength + 1) * 2));
1969 }
1970 
1971 static llvm::StringMapEntry<llvm::Constant*> &
1972 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1973                        const StringLiteral *Literal,
1974                        unsigned &StringLength) {
1975   StringRef String = Literal->getString();
1976   StringLength = String.size();
1977   return Map.GetOrCreateValue(String);
1978 }
1979 
1980 llvm::Constant *
1981 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1982   unsigned StringLength = 0;
1983   bool isUTF16 = false;
1984   llvm::StringMapEntry<llvm::Constant*> &Entry =
1985     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1986                              getTargetData().isLittleEndian(),
1987                              isUTF16, StringLength);
1988 
1989   if (llvm::Constant *C = Entry.getValue())
1990     return C;
1991 
1992   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1993   llvm::Constant *Zeros[] = { Zero, Zero };
1994 
1995   // If we don't already have it, get __CFConstantStringClassReference.
1996   if (!CFConstantStringClassRef) {
1997     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1998     Ty = llvm::ArrayType::get(Ty, 0);
1999     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2000                                            "__CFConstantStringClassReference");
2001     // Decay array -> ptr
2002     CFConstantStringClassRef =
2003       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2004   }
2005 
2006   QualType CFTy = getContext().getCFConstantStringType();
2007 
2008   llvm::StructType *STy =
2009     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2010 
2011   llvm::Constant *Fields[4];
2012 
2013   // Class pointer.
2014   Fields[0] = CFConstantStringClassRef;
2015 
2016   // Flags.
2017   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2018   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2019     llvm::ConstantInt::get(Ty, 0x07C8);
2020 
2021   // String pointer.
2022   llvm::Constant *C = 0;
2023   if (isUTF16) {
2024     ArrayRef<uint16_t> Arr =
2025       llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2026                                    Entry.getKey().size() / 2);
2027     C = llvm::ConstantDataArray::get(VMContext, Arr);
2028   } else {
2029     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2030   }
2031 
2032   llvm::GlobalValue::LinkageTypes Linkage;
2033   if (isUTF16)
2034     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2035     Linkage = llvm::GlobalValue::InternalLinkage;
2036   else
2037     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2038     // when using private linkage. It is not clear if this is a bug in ld
2039     // or a reasonable new restriction.
2040     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2041 
2042   // Note: -fwritable-strings doesn't make the backing store strings of
2043   // CFStrings writable. (See <rdar://problem/10657500>)
2044   llvm::GlobalVariable *GV =
2045     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2046                              Linkage, C, ".str");
2047   GV->setUnnamedAddr(true);
2048   if (isUTF16) {
2049     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2050     GV->setAlignment(Align.getQuantity());
2051   } else {
2052     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2053     GV->setAlignment(Align.getQuantity());
2054   }
2055 
2056   // String.
2057   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2058 
2059   if (isUTF16)
2060     // Cast the UTF16 string to the correct type.
2061     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2062 
2063   // String length.
2064   Ty = getTypes().ConvertType(getContext().LongTy);
2065   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2066 
2067   // The struct.
2068   C = llvm::ConstantStruct::get(STy, Fields);
2069   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2070                                 llvm::GlobalVariable::PrivateLinkage, C,
2071                                 "_unnamed_cfstring_");
2072   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2073     GV->setSection(Sect);
2074   Entry.setValue(GV);
2075 
2076   return GV;
2077 }
2078 
2079 static RecordDecl *
2080 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2081                  DeclContext *DC, IdentifierInfo *Id) {
2082   SourceLocation Loc;
2083   if (Ctx.getLangOpts().CPlusPlus)
2084     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2085   else
2086     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2087 }
2088 
2089 llvm::Constant *
2090 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2091   unsigned StringLength = 0;
2092   llvm::StringMapEntry<llvm::Constant*> &Entry =
2093     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2094 
2095   if (llvm::Constant *C = Entry.getValue())
2096     return C;
2097 
2098   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2099   llvm::Constant *Zeros[] = { Zero, Zero };
2100 
2101   // If we don't already have it, get _NSConstantStringClassReference.
2102   if (!ConstantStringClassRef) {
2103     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2104     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2105     llvm::Constant *GV;
2106     if (LangOpts.ObjCRuntime.isNonFragile()) {
2107       std::string str =
2108         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2109                             : "OBJC_CLASS_$_" + StringClass;
2110       GV = getObjCRuntime().GetClassGlobal(str);
2111       // Make sure the result is of the correct type.
2112       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2113       ConstantStringClassRef =
2114         llvm::ConstantExpr::getBitCast(GV, PTy);
2115     } else {
2116       std::string str =
2117         StringClass.empty() ? "_NSConstantStringClassReference"
2118                             : "_" + StringClass + "ClassReference";
2119       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2120       GV = CreateRuntimeVariable(PTy, str);
2121       // Decay array -> ptr
2122       ConstantStringClassRef =
2123         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2124     }
2125   }
2126 
2127   if (!NSConstantStringType) {
2128     // Construct the type for a constant NSString.
2129     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2130                                      Context.getTranslationUnitDecl(),
2131                                    &Context.Idents.get("__builtin_NSString"));
2132     D->startDefinition();
2133 
2134     QualType FieldTypes[3];
2135 
2136     // const int *isa;
2137     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2138     // const char *str;
2139     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2140     // unsigned int length;
2141     FieldTypes[2] = Context.UnsignedIntTy;
2142 
2143     // Create fields
2144     for (unsigned i = 0; i < 3; ++i) {
2145       FieldDecl *Field = FieldDecl::Create(Context, D,
2146                                            SourceLocation(),
2147                                            SourceLocation(), 0,
2148                                            FieldTypes[i], /*TInfo=*/0,
2149                                            /*BitWidth=*/0,
2150                                            /*Mutable=*/false,
2151                                            ICIS_NoInit);
2152       Field->setAccess(AS_public);
2153       D->addDecl(Field);
2154     }
2155 
2156     D->completeDefinition();
2157     QualType NSTy = Context.getTagDeclType(D);
2158     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2159   }
2160 
2161   llvm::Constant *Fields[3];
2162 
2163   // Class pointer.
2164   Fields[0] = ConstantStringClassRef;
2165 
2166   // String pointer.
2167   llvm::Constant *C =
2168     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2169 
2170   llvm::GlobalValue::LinkageTypes Linkage;
2171   bool isConstant;
2172   Linkage = llvm::GlobalValue::PrivateLinkage;
2173   isConstant = !LangOpts.WritableStrings;
2174 
2175   llvm::GlobalVariable *GV =
2176   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2177                            ".str");
2178   GV->setUnnamedAddr(true);
2179   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2180   GV->setAlignment(Align.getQuantity());
2181   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2182 
2183   // String length.
2184   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2185   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2186 
2187   // The struct.
2188   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2189   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2190                                 llvm::GlobalVariable::PrivateLinkage, C,
2191                                 "_unnamed_nsstring_");
2192   // FIXME. Fix section.
2193   if (const char *Sect =
2194         LangOpts.ObjCRuntime.isNonFragile()
2195           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2196           : getContext().getTargetInfo().getNSStringSection())
2197     GV->setSection(Sect);
2198   Entry.setValue(GV);
2199 
2200   return GV;
2201 }
2202 
2203 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2204   if (ObjCFastEnumerationStateType.isNull()) {
2205     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2206                                      Context.getTranslationUnitDecl(),
2207                       &Context.Idents.get("__objcFastEnumerationState"));
2208     D->startDefinition();
2209 
2210     QualType FieldTypes[] = {
2211       Context.UnsignedLongTy,
2212       Context.getPointerType(Context.getObjCIdType()),
2213       Context.getPointerType(Context.UnsignedLongTy),
2214       Context.getConstantArrayType(Context.UnsignedLongTy,
2215                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2216     };
2217 
2218     for (size_t i = 0; i < 4; ++i) {
2219       FieldDecl *Field = FieldDecl::Create(Context,
2220                                            D,
2221                                            SourceLocation(),
2222                                            SourceLocation(), 0,
2223                                            FieldTypes[i], /*TInfo=*/0,
2224                                            /*BitWidth=*/0,
2225                                            /*Mutable=*/false,
2226                                            ICIS_NoInit);
2227       Field->setAccess(AS_public);
2228       D->addDecl(Field);
2229     }
2230 
2231     D->completeDefinition();
2232     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2233   }
2234 
2235   return ObjCFastEnumerationStateType;
2236 }
2237 
2238 llvm::Constant *
2239 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2240   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2241 
2242   // Don't emit it as the address of the string, emit the string data itself
2243   // as an inline array.
2244   if (E->getCharByteWidth() == 1) {
2245     SmallString<64> Str(E->getString());
2246 
2247     // Resize the string to the right size, which is indicated by its type.
2248     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2249     Str.resize(CAT->getSize().getZExtValue());
2250     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2251   }
2252 
2253   llvm::ArrayType *AType =
2254     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2255   llvm::Type *ElemTy = AType->getElementType();
2256   unsigned NumElements = AType->getNumElements();
2257 
2258   // Wide strings have either 2-byte or 4-byte elements.
2259   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2260     SmallVector<uint16_t, 32> Elements;
2261     Elements.reserve(NumElements);
2262 
2263     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2264       Elements.push_back(E->getCodeUnit(i));
2265     Elements.resize(NumElements);
2266     return llvm::ConstantDataArray::get(VMContext, Elements);
2267   }
2268 
2269   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2270   SmallVector<uint32_t, 32> Elements;
2271   Elements.reserve(NumElements);
2272 
2273   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2274     Elements.push_back(E->getCodeUnit(i));
2275   Elements.resize(NumElements);
2276   return llvm::ConstantDataArray::get(VMContext, Elements);
2277 }
2278 
2279 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2280 /// constant array for the given string literal.
2281 llvm::Constant *
2282 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2283   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2284   if (S->isAscii() || S->isUTF8()) {
2285     SmallString<64> Str(S->getString());
2286 
2287     // Resize the string to the right size, which is indicated by its type.
2288     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2289     Str.resize(CAT->getSize().getZExtValue());
2290     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2291   }
2292 
2293   // FIXME: the following does not memoize wide strings.
2294   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2295   llvm::GlobalVariable *GV =
2296     new llvm::GlobalVariable(getModule(),C->getType(),
2297                              !LangOpts.WritableStrings,
2298                              llvm::GlobalValue::PrivateLinkage,
2299                              C,".str");
2300 
2301   GV->setAlignment(Align.getQuantity());
2302   GV->setUnnamedAddr(true);
2303   return GV;
2304 }
2305 
2306 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2307 /// array for the given ObjCEncodeExpr node.
2308 llvm::Constant *
2309 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2310   std::string Str;
2311   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2312 
2313   return GetAddrOfConstantCString(Str);
2314 }
2315 
2316 
2317 /// GenerateWritableString -- Creates storage for a string literal.
2318 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2319                                              bool constant,
2320                                              CodeGenModule &CGM,
2321                                              const char *GlobalName,
2322                                              unsigned Alignment) {
2323   // Create Constant for this string literal. Don't add a '\0'.
2324   llvm::Constant *C =
2325       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2326 
2327   // Create a global variable for this string
2328   llvm::GlobalVariable *GV =
2329     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2330                              llvm::GlobalValue::PrivateLinkage,
2331                              C, GlobalName);
2332   GV->setAlignment(Alignment);
2333   GV->setUnnamedAddr(true);
2334   return GV;
2335 }
2336 
2337 /// GetAddrOfConstantString - Returns a pointer to a character array
2338 /// containing the literal. This contents are exactly that of the
2339 /// given string, i.e. it will not be null terminated automatically;
2340 /// see GetAddrOfConstantCString. Note that whether the result is
2341 /// actually a pointer to an LLVM constant depends on
2342 /// Feature.WriteableStrings.
2343 ///
2344 /// The result has pointer to array type.
2345 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2346                                                        const char *GlobalName,
2347                                                        unsigned Alignment) {
2348   // Get the default prefix if a name wasn't specified.
2349   if (!GlobalName)
2350     GlobalName = ".str";
2351 
2352   // Don't share any string literals if strings aren't constant.
2353   if (LangOpts.WritableStrings)
2354     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2355 
2356   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2357     ConstantStringMap.GetOrCreateValue(Str);
2358 
2359   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2360     if (Alignment > GV->getAlignment()) {
2361       GV->setAlignment(Alignment);
2362     }
2363     return GV;
2364   }
2365 
2366   // Create a global variable for this.
2367   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2368                                                    Alignment);
2369   Entry.setValue(GV);
2370   return GV;
2371 }
2372 
2373 /// GetAddrOfConstantCString - Returns a pointer to a character
2374 /// array containing the literal and a terminating '\0'
2375 /// character. The result has pointer to array type.
2376 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2377                                                         const char *GlobalName,
2378                                                         unsigned Alignment) {
2379   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2380   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2381 }
2382 
2383 /// EmitObjCPropertyImplementations - Emit information for synthesized
2384 /// properties for an implementation.
2385 void CodeGenModule::EmitObjCPropertyImplementations(const
2386                                                     ObjCImplementationDecl *D) {
2387   for (ObjCImplementationDecl::propimpl_iterator
2388          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2389     ObjCPropertyImplDecl *PID = *i;
2390 
2391     // Dynamic is just for type-checking.
2392     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2393       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2394 
2395       // Determine which methods need to be implemented, some may have
2396       // been overridden. Note that ::isSynthesized is not the method
2397       // we want, that just indicates if the decl came from a
2398       // property. What we want to know is if the method is defined in
2399       // this implementation.
2400       if (!D->getInstanceMethod(PD->getGetterName()))
2401         CodeGenFunction(*this).GenerateObjCGetter(
2402                                  const_cast<ObjCImplementationDecl *>(D), PID);
2403       if (!PD->isReadOnly() &&
2404           !D->getInstanceMethod(PD->getSetterName()))
2405         CodeGenFunction(*this).GenerateObjCSetter(
2406                                  const_cast<ObjCImplementationDecl *>(D), PID);
2407     }
2408   }
2409 }
2410 
2411 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2412   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2413   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2414        ivar; ivar = ivar->getNextIvar())
2415     if (ivar->getType().isDestructedType())
2416       return true;
2417 
2418   return false;
2419 }
2420 
2421 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2422 /// for an implementation.
2423 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2424   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2425   if (needsDestructMethod(D)) {
2426     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2427     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2428     ObjCMethodDecl *DTORMethod =
2429       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2430                              cxxSelector, getContext().VoidTy, 0, D,
2431                              /*isInstance=*/true, /*isVariadic=*/false,
2432                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2433                              /*isDefined=*/false, ObjCMethodDecl::Required);
2434     D->addInstanceMethod(DTORMethod);
2435     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2436     D->setHasCXXStructors(true);
2437   }
2438 
2439   // If the implementation doesn't have any ivar initializers, we don't need
2440   // a .cxx_construct.
2441   if (D->getNumIvarInitializers() == 0)
2442     return;
2443 
2444   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2445   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2446   // The constructor returns 'self'.
2447   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2448                                                 D->getLocation(),
2449                                                 D->getLocation(),
2450                                                 cxxSelector,
2451                                                 getContext().getObjCIdType(), 0,
2452                                                 D, /*isInstance=*/true,
2453                                                 /*isVariadic=*/false,
2454                                                 /*isSynthesized=*/true,
2455                                                 /*isImplicitlyDeclared=*/true,
2456                                                 /*isDefined=*/false,
2457                                                 ObjCMethodDecl::Required);
2458   D->addInstanceMethod(CTORMethod);
2459   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2460   D->setHasCXXStructors(true);
2461 }
2462 
2463 /// EmitNamespace - Emit all declarations in a namespace.
2464 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2465   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2466        I != E; ++I)
2467     EmitTopLevelDecl(*I);
2468 }
2469 
2470 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2471 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2472   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2473       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2474     ErrorUnsupported(LSD, "linkage spec");
2475     return;
2476   }
2477 
2478   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2479        I != E; ++I)
2480     EmitTopLevelDecl(*I);
2481 }
2482 
2483 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2484 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2485   // If an error has occurred, stop code generation, but continue
2486   // parsing and semantic analysis (to ensure all warnings and errors
2487   // are emitted).
2488   if (Diags.hasErrorOccurred())
2489     return;
2490 
2491   // Ignore dependent declarations.
2492   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2493     return;
2494 
2495   switch (D->getKind()) {
2496   case Decl::CXXConversion:
2497   case Decl::CXXMethod:
2498   case Decl::Function:
2499     // Skip function templates
2500     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2501         cast<FunctionDecl>(D)->isLateTemplateParsed())
2502       return;
2503 
2504     EmitGlobal(cast<FunctionDecl>(D));
2505     break;
2506 
2507   case Decl::Var:
2508     EmitGlobal(cast<VarDecl>(D));
2509     break;
2510 
2511   // Indirect fields from global anonymous structs and unions can be
2512   // ignored; only the actual variable requires IR gen support.
2513   case Decl::IndirectField:
2514     break;
2515 
2516   // C++ Decls
2517   case Decl::Namespace:
2518     EmitNamespace(cast<NamespaceDecl>(D));
2519     break;
2520     // No code generation needed.
2521   case Decl::UsingShadow:
2522   case Decl::Using:
2523   case Decl::UsingDirective:
2524   case Decl::ClassTemplate:
2525   case Decl::FunctionTemplate:
2526   case Decl::TypeAliasTemplate:
2527   case Decl::NamespaceAlias:
2528   case Decl::Block:
2529   case Decl::Import:
2530     break;
2531   case Decl::CXXConstructor:
2532     // Skip function templates
2533     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2534         cast<FunctionDecl>(D)->isLateTemplateParsed())
2535       return;
2536 
2537     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2538     break;
2539   case Decl::CXXDestructor:
2540     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2541       return;
2542     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2543     break;
2544 
2545   case Decl::StaticAssert:
2546     // Nothing to do.
2547     break;
2548 
2549   // Objective-C Decls
2550 
2551   // Forward declarations, no (immediate) code generation.
2552   case Decl::ObjCInterface:
2553     break;
2554 
2555   case Decl::ObjCCategory: {
2556     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2557     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2558       Context.ResetObjCLayout(CD->getClassInterface());
2559     break;
2560   }
2561 
2562   case Decl::ObjCProtocol: {
2563     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2564     if (Proto->isThisDeclarationADefinition())
2565       ObjCRuntime->GenerateProtocol(Proto);
2566     break;
2567   }
2568 
2569   case Decl::ObjCCategoryImpl:
2570     // Categories have properties but don't support synthesize so we
2571     // can ignore them here.
2572     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2573     break;
2574 
2575   case Decl::ObjCImplementation: {
2576     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2577     if (LangOpts.ObjCRuntime.isNonFragile() && OMD->hasSynthBitfield())
2578       Context.ResetObjCLayout(OMD->getClassInterface());
2579     EmitObjCPropertyImplementations(OMD);
2580     EmitObjCIvarInitializations(OMD);
2581     ObjCRuntime->GenerateClass(OMD);
2582     // Emit global variable debug information.
2583     if (CGDebugInfo *DI = getModuleDebugInfo())
2584       DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2585 				   OMD->getLocation());
2586 
2587     break;
2588   }
2589   case Decl::ObjCMethod: {
2590     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2591     // If this is not a prototype, emit the body.
2592     if (OMD->getBody())
2593       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2594     break;
2595   }
2596   case Decl::ObjCCompatibleAlias:
2597     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2598     break;
2599 
2600   case Decl::LinkageSpec:
2601     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2602     break;
2603 
2604   case Decl::FileScopeAsm: {
2605     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2606     StringRef AsmString = AD->getAsmString()->getString();
2607 
2608     const std::string &S = getModule().getModuleInlineAsm();
2609     if (S.empty())
2610       getModule().setModuleInlineAsm(AsmString);
2611     else if (*--S.end() == '\n')
2612       getModule().setModuleInlineAsm(S + AsmString.str());
2613     else
2614       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2615     break;
2616   }
2617 
2618   default:
2619     // Make sure we handled everything we should, every other kind is a
2620     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2621     // function. Need to recode Decl::Kind to do that easily.
2622     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2623   }
2624 }
2625 
2626 /// Turns the given pointer into a constant.
2627 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2628                                           const void *Ptr) {
2629   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2630   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2631   return llvm::ConstantInt::get(i64, PtrInt);
2632 }
2633 
2634 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2635                                    llvm::NamedMDNode *&GlobalMetadata,
2636                                    GlobalDecl D,
2637                                    llvm::GlobalValue *Addr) {
2638   if (!GlobalMetadata)
2639     GlobalMetadata =
2640       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2641 
2642   // TODO: should we report variant information for ctors/dtors?
2643   llvm::Value *Ops[] = {
2644     Addr,
2645     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2646   };
2647   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2648 }
2649 
2650 /// Emits metadata nodes associating all the global values in the
2651 /// current module with the Decls they came from.  This is useful for
2652 /// projects using IR gen as a subroutine.
2653 ///
2654 /// Since there's currently no way to associate an MDNode directly
2655 /// with an llvm::GlobalValue, we create a global named metadata
2656 /// with the name 'clang.global.decl.ptrs'.
2657 void CodeGenModule::EmitDeclMetadata() {
2658   llvm::NamedMDNode *GlobalMetadata = 0;
2659 
2660   // StaticLocalDeclMap
2661   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2662          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2663        I != E; ++I) {
2664     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2665     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2666   }
2667 }
2668 
2669 /// Emits metadata nodes for all the local variables in the current
2670 /// function.
2671 void CodeGenFunction::EmitDeclMetadata() {
2672   if (LocalDeclMap.empty()) return;
2673 
2674   llvm::LLVMContext &Context = getLLVMContext();
2675 
2676   // Find the unique metadata ID for this name.
2677   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2678 
2679   llvm::NamedMDNode *GlobalMetadata = 0;
2680 
2681   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2682          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2683     const Decl *D = I->first;
2684     llvm::Value *Addr = I->second;
2685 
2686     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2687       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2688       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2689     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2690       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2691       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2692     }
2693   }
2694 }
2695 
2696 void CodeGenModule::EmitCoverageFile() {
2697   if (!getCodeGenOpts().CoverageFile.empty()) {
2698     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2699       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2700       llvm::LLVMContext &Ctx = TheModule.getContext();
2701       llvm::MDString *CoverageFile =
2702           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2703       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2704         llvm::MDNode *CU = CUNode->getOperand(i);
2705         llvm::Value *node[] = { CoverageFile, CU };
2706         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2707         GCov->addOperand(N);
2708       }
2709     }
2710   }
2711 }
2712