xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 635186a8c412753532faa2681fc77d785d02857e)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/Diagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/ConvertUTF.h"
32 #include "llvm/CallingConv.h"
33 #include "llvm/Module.h"
34 #include "llvm/Intrinsics.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/ADT/Triple.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Support/CallSite.h"
39 #include "llvm/Support/ErrorHandling.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 
44 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
45                              llvm::Module &M, const llvm::TargetData &TD,
46                              Diagnostic &diags)
47   : BlockModule(C, M, TD, Types, *this), Context(C),
48     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
49     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
50     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
51     VTables(*this), Runtime(0), ABI(0),
52     CFConstantStringClassRef(0),
53     NSConstantStringClassRef(0),
54     VMContext(M.getContext()) {
55 
56   if (!Features.ObjC1)
57     Runtime = 0;
58   else if (!Features.NeXTRuntime)
59     Runtime = CreateGNUObjCRuntime(*this);
60   else if (Features.ObjCNonFragileABI)
61     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
62   else
63     Runtime = CreateMacObjCRuntime(*this);
64 
65   if (!Features.CPlusPlus)
66     ABI = 0;
67   else createCXXABI();
68 
69   // If debug info generation is enabled, create the CGDebugInfo object.
70   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
71 }
72 
73 CodeGenModule::~CodeGenModule() {
74   delete Runtime;
75   delete ABI;
76   delete DebugInfo;
77 }
78 
79 void CodeGenModule::createObjCRuntime() {
80   if (!Features.NeXTRuntime)
81     Runtime = CreateGNUObjCRuntime(*this);
82   else if (Features.ObjCNonFragileABI)
83     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
84   else
85     Runtime = CreateMacObjCRuntime(*this);
86 }
87 
88 void CodeGenModule::createCXXABI() {
89   // For now, just create an Itanium ABI.
90   ABI = CreateItaniumCXXABI(*this);
91 }
92 
93 void CodeGenModule::Release() {
94   EmitDeferred();
95   EmitCXXGlobalInitFunc();
96   EmitCXXGlobalDtorFunc();
97   if (Runtime)
98     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
99       AddGlobalCtor(ObjCInitFunction);
100   EmitCtorList(GlobalCtors, "llvm.global_ctors");
101   EmitCtorList(GlobalDtors, "llvm.global_dtors");
102   EmitAnnotations();
103   EmitLLVMUsed();
104 }
105 
106 bool CodeGenModule::isTargetDarwin() const {
107   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
108 }
109 
110 /// ErrorUnsupported - Print out an error that codegen doesn't support the
111 /// specified stmt yet.
112 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
113                                      bool OmitOnError) {
114   if (OmitOnError && getDiags().hasErrorOccurred())
115     return;
116   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
117                                                "cannot compile this %0 yet");
118   std::string Msg = Type;
119   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
120     << Msg << S->getSourceRange();
121 }
122 
123 /// ErrorUnsupported - Print out an error that codegen doesn't support the
124 /// specified decl yet.
125 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
126                                      bool OmitOnError) {
127   if (OmitOnError && getDiags().hasErrorOccurred())
128     return;
129   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
130                                                "cannot compile this %0 yet");
131   std::string Msg = Type;
132   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
133 }
134 
135 LangOptions::VisibilityMode
136 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
137   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
138     if (VD->getStorageClass() == VarDecl::PrivateExtern)
139       return LangOptions::Hidden;
140 
141   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
142     switch (attr->getVisibility()) {
143     default: assert(0 && "Unknown visibility!");
144     case VisibilityAttr::DefaultVisibility:
145       return LangOptions::Default;
146     case VisibilityAttr::HiddenVisibility:
147       return LangOptions::Hidden;
148     case VisibilityAttr::ProtectedVisibility:
149       return LangOptions::Protected;
150     }
151   }
152 
153   // This decl should have the same visibility as its parent.
154   if (const DeclContext *DC = D->getDeclContext())
155     return getDeclVisibilityMode(cast<Decl>(DC));
156 
157   return getLangOptions().getVisibilityMode();
158 }
159 
160 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
161                                         const Decl *D) const {
162   // Internal definitions always have default visibility.
163   if (GV->hasLocalLinkage()) {
164     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
165     return;
166   }
167 
168   switch (getDeclVisibilityMode(D)) {
169   default: assert(0 && "Unknown visibility!");
170   case LangOptions::Default:
171     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
172   case LangOptions::Hidden:
173     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
174   case LangOptions::Protected:
175     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
176   }
177 }
178 
179 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) {
180   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
181 
182   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
183     return getMangleContext().mangleCXXCtor(D, GD.getCtorType(),
184                                             Buffer.getBuffer());
185   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
186     return getMangleContext().mangleCXXDtor(D, GD.getDtorType(),
187                                             Buffer.getBuffer());
188 
189   if (!getMangleContext().shouldMangleDeclName(ND)) {
190     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
191     Buffer.setString(ND->getNameAsCString());
192     return;
193   }
194 
195   getMangleContext().mangleName(ND, Buffer.getBuffer());
196 }
197 
198 void CodeGenModule::getMangledName(MangleBuffer &Buffer, const BlockDecl *BD) {
199   getMangleContext().mangleBlock(BD, Buffer.getBuffer());
200 }
201 
202 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
203   return getModule().getNamedValue(Name);
204 }
205 
206 /// AddGlobalCtor - Add a function to the list that will be called before
207 /// main() runs.
208 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
209   // FIXME: Type coercion of void()* types.
210   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
211 }
212 
213 /// AddGlobalDtor - Add a function to the list that will be called
214 /// when the module is unloaded.
215 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
216   // FIXME: Type coercion of void()* types.
217   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
218 }
219 
220 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
221   // Ctor function type is void()*.
222   llvm::FunctionType* CtorFTy =
223     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
224                             std::vector<const llvm::Type*>(),
225                             false);
226   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
227 
228   // Get the type of a ctor entry, { i32, void ()* }.
229   llvm::StructType* CtorStructTy =
230     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
231                           llvm::PointerType::getUnqual(CtorFTy), NULL);
232 
233   // Construct the constructor and destructor arrays.
234   std::vector<llvm::Constant*> Ctors;
235   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
236     std::vector<llvm::Constant*> S;
237     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
238                 I->second, false));
239     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
240     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
241   }
242 
243   if (!Ctors.empty()) {
244     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
245     new llvm::GlobalVariable(TheModule, AT, false,
246                              llvm::GlobalValue::AppendingLinkage,
247                              llvm::ConstantArray::get(AT, Ctors),
248                              GlobalName);
249   }
250 }
251 
252 void CodeGenModule::EmitAnnotations() {
253   if (Annotations.empty())
254     return;
255 
256   // Create a new global variable for the ConstantStruct in the Module.
257   llvm::Constant *Array =
258   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
259                                                 Annotations.size()),
260                            Annotations);
261   llvm::GlobalValue *gv =
262   new llvm::GlobalVariable(TheModule, Array->getType(), false,
263                            llvm::GlobalValue::AppendingLinkage, Array,
264                            "llvm.global.annotations");
265   gv->setSection("llvm.metadata");
266 }
267 
268 static CodeGenModule::GVALinkage
269 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
270                       const LangOptions &Features) {
271   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
272 
273   Linkage L = FD->getLinkage();
274   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
275       FD->getType()->getLinkage() == UniqueExternalLinkage)
276     L = UniqueExternalLinkage;
277 
278   switch (L) {
279   case NoLinkage:
280   case InternalLinkage:
281   case UniqueExternalLinkage:
282     return CodeGenModule::GVA_Internal;
283 
284   case ExternalLinkage:
285     switch (FD->getTemplateSpecializationKind()) {
286     case TSK_Undeclared:
287     case TSK_ExplicitSpecialization:
288       External = CodeGenModule::GVA_StrongExternal;
289       break;
290 
291     case TSK_ExplicitInstantiationDefinition:
292       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
293 
294     case TSK_ExplicitInstantiationDeclaration:
295     case TSK_ImplicitInstantiation:
296       External = CodeGenModule::GVA_TemplateInstantiation;
297       break;
298     }
299   }
300 
301   if (!FD->isInlined())
302     return External;
303 
304   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
305     // GNU or C99 inline semantics. Determine whether this symbol should be
306     // externally visible.
307     if (FD->isInlineDefinitionExternallyVisible())
308       return External;
309 
310     // C99 inline semantics, where the symbol is not externally visible.
311     return CodeGenModule::GVA_C99Inline;
312   }
313 
314   // C++0x [temp.explicit]p9:
315   //   [ Note: The intent is that an inline function that is the subject of
316   //   an explicit instantiation declaration will still be implicitly
317   //   instantiated when used so that the body can be considered for
318   //   inlining, but that no out-of-line copy of the inline function would be
319   //   generated in the translation unit. -- end note ]
320   if (FD->getTemplateSpecializationKind()
321                                        == TSK_ExplicitInstantiationDeclaration)
322     return CodeGenModule::GVA_C99Inline;
323 
324   return CodeGenModule::GVA_CXXInline;
325 }
326 
327 llvm::GlobalValue::LinkageTypes
328 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
329   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
330 
331   if (Linkage == GVA_Internal) {
332     return llvm::Function::InternalLinkage;
333   } else if (D->hasAttr<DLLExportAttr>()) {
334     return llvm::Function::DLLExportLinkage;
335   } else if (D->hasAttr<WeakAttr>()) {
336     return llvm::Function::WeakAnyLinkage;
337   } else if (Linkage == GVA_C99Inline) {
338     // In C99 mode, 'inline' functions are guaranteed to have a strong
339     // definition somewhere else, so we can use available_externally linkage.
340     return llvm::Function::AvailableExternallyLinkage;
341   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
342     // In C++, the compiler has to emit a definition in every translation unit
343     // that references the function.  We should use linkonce_odr because
344     // a) if all references in this translation unit are optimized away, we
345     // don't need to codegen it.  b) if the function persists, it needs to be
346     // merged with other definitions. c) C++ has the ODR, so we know the
347     // definition is dependable.
348     return llvm::Function::LinkOnceODRLinkage;
349   } else if (Linkage == GVA_ExplicitTemplateInstantiation) {
350     // An explicit instantiation of a template has weak linkage, since
351     // explicit instantiations can occur in multiple translation units
352     // and must all be equivalent. However, we are not allowed to
353     // throw away these explicit instantiations.
354     return llvm::Function::WeakODRLinkage;
355   } else {
356     assert(Linkage == GVA_StrongExternal);
357     // Otherwise, we have strong external linkage.
358     return llvm::Function::ExternalLinkage;
359   }
360 }
361 
362 
363 /// SetFunctionDefinitionAttributes - Set attributes for a global.
364 ///
365 /// FIXME: This is currently only done for aliases and functions, but not for
366 /// variables (these details are set in EmitGlobalVarDefinition for variables).
367 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
368                                                     llvm::GlobalValue *GV) {
369   SetCommonAttributes(D, GV);
370 }
371 
372 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
373                                               const CGFunctionInfo &Info,
374                                               llvm::Function *F) {
375   unsigned CallingConv;
376   AttributeListType AttributeList;
377   ConstructAttributeList(Info, D, AttributeList, CallingConv);
378   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
379                                           AttributeList.size()));
380   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
381 }
382 
383 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
384                                                            llvm::Function *F) {
385   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
386     F->addFnAttr(llvm::Attribute::NoUnwind);
387 
388   if (D->hasAttr<AlwaysInlineAttr>())
389     F->addFnAttr(llvm::Attribute::AlwaysInline);
390 
391   if (D->hasAttr<NoInlineAttr>())
392     F->addFnAttr(llvm::Attribute::NoInline);
393 
394   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
395     F->addFnAttr(llvm::Attribute::StackProtect);
396   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
397     F->addFnAttr(llvm::Attribute::StackProtectReq);
398 
399   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
400     unsigned width = Context.Target.getCharWidth();
401     F->setAlignment(AA->getAlignment() / width);
402     while ((AA = AA->getNext<AlignedAttr>()))
403       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
404   }
405   // C++ ABI requires 2-byte alignment for member functions.
406   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
407     F->setAlignment(2);
408 }
409 
410 void CodeGenModule::SetCommonAttributes(const Decl *D,
411                                         llvm::GlobalValue *GV) {
412   setGlobalVisibility(GV, D);
413 
414   if (D->hasAttr<UsedAttr>())
415     AddUsedGlobal(GV);
416 
417   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
418     GV->setSection(SA->getName());
419 
420   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
421 }
422 
423 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
424                                                   llvm::Function *F,
425                                                   const CGFunctionInfo &FI) {
426   SetLLVMFunctionAttributes(D, FI, F);
427   SetLLVMFunctionAttributesForDefinition(D, F);
428 
429   F->setLinkage(llvm::Function::InternalLinkage);
430 
431   SetCommonAttributes(D, F);
432 }
433 
434 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
435                                           llvm::Function *F,
436                                           bool IsIncompleteFunction) {
437   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
438 
439   if (!IsIncompleteFunction)
440     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
441 
442   // Only a few attributes are set on declarations; these may later be
443   // overridden by a definition.
444 
445   if (FD->hasAttr<DLLImportAttr>()) {
446     F->setLinkage(llvm::Function::DLLImportLinkage);
447   } else if (FD->hasAttr<WeakAttr>() ||
448              FD->hasAttr<WeakImportAttr>()) {
449     // "extern_weak" is overloaded in LLVM; we probably should have
450     // separate linkage types for this.
451     F->setLinkage(llvm::Function::ExternalWeakLinkage);
452   } else {
453     F->setLinkage(llvm::Function::ExternalLinkage);
454   }
455 
456   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
457     F->setSection(SA->getName());
458 }
459 
460 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
461   assert(!GV->isDeclaration() &&
462          "Only globals with definition can force usage.");
463   LLVMUsed.push_back(GV);
464 }
465 
466 void CodeGenModule::EmitLLVMUsed() {
467   // Don't create llvm.used if there is no need.
468   if (LLVMUsed.empty())
469     return;
470 
471   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
472 
473   // Convert LLVMUsed to what ConstantArray needs.
474   std::vector<llvm::Constant*> UsedArray;
475   UsedArray.resize(LLVMUsed.size());
476   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
477     UsedArray[i] =
478      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
479                                       i8PTy);
480   }
481 
482   if (UsedArray.empty())
483     return;
484   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
485 
486   llvm::GlobalVariable *GV =
487     new llvm::GlobalVariable(getModule(), ATy, false,
488                              llvm::GlobalValue::AppendingLinkage,
489                              llvm::ConstantArray::get(ATy, UsedArray),
490                              "llvm.used");
491 
492   GV->setSection("llvm.metadata");
493 }
494 
495 void CodeGenModule::EmitDeferred() {
496   // Emit code for any potentially referenced deferred decls.  Since a
497   // previously unused static decl may become used during the generation of code
498   // for a static function, iterate until no  changes are made.
499 
500   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
501     if (!DeferredVTables.empty()) {
502       const CXXRecordDecl *RD = DeferredVTables.back();
503       DeferredVTables.pop_back();
504       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
505       continue;
506     }
507 
508     GlobalDecl D = DeferredDeclsToEmit.back();
509     DeferredDeclsToEmit.pop_back();
510 
511     // Check to see if we've already emitted this.  This is necessary
512     // for a couple of reasons: first, decls can end up in the
513     // deferred-decls queue multiple times, and second, decls can end
514     // up with definitions in unusual ways (e.g. by an extern inline
515     // function acquiring a strong function redefinition).  Just
516     // ignore these cases.
517     //
518     // TODO: That said, looking this up multiple times is very wasteful.
519     MangleBuffer Name;
520     getMangledName(Name, D);
521     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
522     assert(CGRef && "Deferred decl wasn't referenced?");
523 
524     if (!CGRef->isDeclaration())
525       continue;
526 
527     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
528     // purposes an alias counts as a definition.
529     if (isa<llvm::GlobalAlias>(CGRef))
530       continue;
531 
532     // Otherwise, emit the definition and move on to the next one.
533     EmitGlobalDefinition(D);
534   }
535 }
536 
537 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
538 /// annotation information for a given GlobalValue.  The annotation struct is
539 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
540 /// GlobalValue being annotated.  The second field is the constant string
541 /// created from the AnnotateAttr's annotation.  The third field is a constant
542 /// string containing the name of the translation unit.  The fourth field is
543 /// the line number in the file of the annotated value declaration.
544 ///
545 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
546 ///        appears to.
547 ///
548 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
549                                                 const AnnotateAttr *AA,
550                                                 unsigned LineNo) {
551   llvm::Module *M = &getModule();
552 
553   // get [N x i8] constants for the annotation string, and the filename string
554   // which are the 2nd and 3rd elements of the global annotation structure.
555   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
556   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
557                                                   AA->getAnnotation(), true);
558   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
559                                                   M->getModuleIdentifier(),
560                                                   true);
561 
562   // Get the two global values corresponding to the ConstantArrays we just
563   // created to hold the bytes of the strings.
564   llvm::GlobalValue *annoGV =
565     new llvm::GlobalVariable(*M, anno->getType(), false,
566                              llvm::GlobalValue::PrivateLinkage, anno,
567                              GV->getName());
568   // translation unit name string, emitted into the llvm.metadata section.
569   llvm::GlobalValue *unitGV =
570     new llvm::GlobalVariable(*M, unit->getType(), false,
571                              llvm::GlobalValue::PrivateLinkage, unit,
572                              ".str");
573 
574   // Create the ConstantStruct for the global annotation.
575   llvm::Constant *Fields[4] = {
576     llvm::ConstantExpr::getBitCast(GV, SBP),
577     llvm::ConstantExpr::getBitCast(annoGV, SBP),
578     llvm::ConstantExpr::getBitCast(unitGV, SBP),
579     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
580   };
581   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
582 }
583 
584 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
585   // Never defer when EmitAllDecls is specified or the decl has
586   // attribute used.
587   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
588     return false;
589 
590   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
591     // Constructors and destructors should never be deferred.
592     if (FD->hasAttr<ConstructorAttr>() ||
593         FD->hasAttr<DestructorAttr>())
594       return false;
595 
596     // The key function for a class must never be deferred.
597     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
598       const CXXRecordDecl *RD = MD->getParent();
599       if (MD->isOutOfLine() && RD->isDynamicClass()) {
600         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
601         if (KeyFunction &&
602             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
603           return false;
604       }
605     }
606 
607     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
608 
609     // static, static inline, always_inline, and extern inline functions can
610     // always be deferred.  Normal inline functions can be deferred in C99/C++.
611     // Implicit template instantiations can also be deferred in C++.
612     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
613         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
614       return true;
615     return false;
616   }
617 
618   const VarDecl *VD = cast<VarDecl>(Global);
619   assert(VD->isFileVarDecl() && "Invalid decl");
620 
621   // We never want to defer structs that have non-trivial constructors or
622   // destructors.
623 
624   // FIXME: Handle references.
625   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
626     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
627       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
628         return false;
629     }
630   }
631 
632   // Static data may be deferred, but out-of-line static data members
633   // cannot be.
634   Linkage L = VD->getLinkage();
635   if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
636       VD->getType()->getLinkage() == UniqueExternalLinkage)
637     L = UniqueExternalLinkage;
638 
639   switch (L) {
640   case NoLinkage:
641   case InternalLinkage:
642   case UniqueExternalLinkage:
643     // Initializer has side effects?
644     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
645       return false;
646     return !(VD->isStaticDataMember() && VD->isOutOfLine());
647 
648   case ExternalLinkage:
649     break;
650   }
651 
652   return false;
653 }
654 
655 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
656   const AliasAttr *AA = VD->getAttr<AliasAttr>();
657   assert(AA && "No alias?");
658 
659   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
660 
661   // See if there is already something with the target's name in the module.
662   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
663 
664   llvm::Constant *Aliasee;
665   if (isa<llvm::FunctionType>(DeclTy))
666     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
667   else
668     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
669                                     llvm::PointerType::getUnqual(DeclTy), 0);
670   if (!Entry) {
671     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
672     F->setLinkage(llvm::Function::ExternalWeakLinkage);
673     WeakRefReferences.insert(F);
674   }
675 
676   return Aliasee;
677 }
678 
679 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
680   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
681 
682   // Weak references don't produce any output by themselves.
683   if (Global->hasAttr<WeakRefAttr>())
684     return;
685 
686   // If this is an alias definition (which otherwise looks like a declaration)
687   // emit it now.
688   if (Global->hasAttr<AliasAttr>())
689     return EmitAliasDefinition(GD);
690 
691   // Ignore declarations, they will be emitted on their first use.
692   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
693     // Forward declarations are emitted lazily on first use.
694     if (!FD->isThisDeclarationADefinition())
695       return;
696   } else {
697     const VarDecl *VD = cast<VarDecl>(Global);
698     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
699 
700     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
701       return;
702   }
703 
704   // Defer code generation when possible if this is a static definition, inline
705   // function etc.  These we only want to emit if they are used.
706   if (!MayDeferGeneration(Global)) {
707     // Emit the definition if it can't be deferred.
708     EmitGlobalDefinition(GD);
709     return;
710   }
711 
712   // If the value has already been used, add it directly to the
713   // DeferredDeclsToEmit list.
714   MangleBuffer MangledName;
715   getMangledName(MangledName, GD);
716   if (GetGlobalValue(MangledName))
717     DeferredDeclsToEmit.push_back(GD);
718   else {
719     // Otherwise, remember that we saw a deferred decl with this name.  The
720     // first use of the mangled name will cause it to move into
721     // DeferredDeclsToEmit.
722     DeferredDecls[MangledName] = GD;
723   }
724 }
725 
726 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
727   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
728 
729   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
730                                  Context.getSourceManager(),
731                                  "Generating code for declaration");
732 
733   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
734     if (Method->isVirtual())
735       getVTables().EmitThunks(GD);
736 
737   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
738     return EmitCXXConstructor(CD, GD.getCtorType());
739 
740   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
741     return EmitCXXDestructor(DD, GD.getDtorType());
742 
743   if (isa<FunctionDecl>(D))
744     return EmitGlobalFunctionDefinition(GD);
745 
746   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
747     return EmitGlobalVarDefinition(VD);
748 
749   assert(0 && "Invalid argument to EmitGlobalDefinition()");
750 }
751 
752 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
753 /// module, create and return an llvm Function with the specified type. If there
754 /// is something in the module with the specified name, return it potentially
755 /// bitcasted to the right type.
756 ///
757 /// If D is non-null, it specifies a decl that correspond to this.  This is used
758 /// to set the attributes on the function when it is first created.
759 llvm::Constant *
760 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
761                                        const llvm::Type *Ty,
762                                        GlobalDecl D) {
763   // Lookup the entry, lazily creating it if necessary.
764   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
765   if (Entry) {
766     if (WeakRefReferences.count(Entry)) {
767       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
768       if (FD && !FD->hasAttr<WeakAttr>())
769         Entry->setLinkage(llvm::Function::ExternalLinkage);
770 
771       WeakRefReferences.erase(Entry);
772     }
773 
774     if (Entry->getType()->getElementType() == Ty)
775       return Entry;
776 
777     // Make sure the result is of the correct type.
778     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
779     return llvm::ConstantExpr::getBitCast(Entry, PTy);
780   }
781 
782   // This function doesn't have a complete type (for example, the return
783   // type is an incomplete struct). Use a fake type instead, and make
784   // sure not to try to set attributes.
785   bool IsIncompleteFunction = false;
786 
787   const llvm::FunctionType *FTy;
788   if (isa<llvm::FunctionType>(Ty)) {
789     FTy = cast<llvm::FunctionType>(Ty);
790   } else {
791     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
792                                   std::vector<const llvm::Type*>(), false);
793     IsIncompleteFunction = true;
794   }
795   llvm::Function *F = llvm::Function::Create(FTy,
796                                              llvm::Function::ExternalLinkage,
797                                              MangledName, &getModule());
798   assert(F->getName() == MangledName && "name was uniqued!");
799   if (D.getDecl())
800     SetFunctionAttributes(D, F, IsIncompleteFunction);
801 
802   // This is the first use or definition of a mangled name.  If there is a
803   // deferred decl with this name, remember that we need to emit it at the end
804   // of the file.
805   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
806   if (DDI != DeferredDecls.end()) {
807     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
808     // list, and remove it from DeferredDecls (since we don't need it anymore).
809     DeferredDeclsToEmit.push_back(DDI->second);
810     DeferredDecls.erase(DDI);
811   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
812     // If this the first reference to a C++ inline function in a class, queue up
813     // the deferred function body for emission.  These are not seen as
814     // top-level declarations.
815     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
816       DeferredDeclsToEmit.push_back(D);
817     // A called constructor which has no definition or declaration need be
818     // synthesized.
819     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
820       if (CD->isImplicit()) {
821         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
822         DeferredDeclsToEmit.push_back(D);
823       }
824     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
825       if (DD->isImplicit()) {
826         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
827         DeferredDeclsToEmit.push_back(D);
828       }
829     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
830       if (MD->isCopyAssignment() && MD->isImplicit()) {
831         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
832         DeferredDeclsToEmit.push_back(D);
833       }
834     }
835   }
836 
837   // Make sure the result is of the requested type.
838   if (!IsIncompleteFunction) {
839     assert(F->getType()->getElementType() == Ty);
840     return F;
841   }
842 
843   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
844   return llvm::ConstantExpr::getBitCast(F, PTy);
845 }
846 
847 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
848 /// non-null, then this function will use the specified type if it has to
849 /// create it (this occurs when we see a definition of the function).
850 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
851                                                  const llvm::Type *Ty) {
852   // If there was no specific requested type, just convert it now.
853   if (!Ty)
854     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
855   MangleBuffer MangledName;
856   getMangledName(MangledName, GD);
857   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
858 }
859 
860 /// CreateRuntimeFunction - Create a new runtime function with the specified
861 /// type and name.
862 llvm::Constant *
863 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
864                                      llvm::StringRef Name) {
865   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
866 }
867 
868 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
869   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
870     return false;
871   if (Context.getLangOptions().CPlusPlus &&
872       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
873     // FIXME: We should do something fancier here!
874     return false;
875   }
876   return true;
877 }
878 
879 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
880 /// create and return an llvm GlobalVariable with the specified type.  If there
881 /// is something in the module with the specified name, return it potentially
882 /// bitcasted to the right type.
883 ///
884 /// If D is non-null, it specifies a decl that correspond to this.  This is used
885 /// to set the attributes on the global when it is first created.
886 llvm::Constant *
887 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
888                                      const llvm::PointerType *Ty,
889                                      const VarDecl *D) {
890   // Lookup the entry, lazily creating it if necessary.
891   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
892   if (Entry) {
893     if (WeakRefReferences.count(Entry)) {
894       if (D && !D->hasAttr<WeakAttr>())
895         Entry->setLinkage(llvm::Function::ExternalLinkage);
896 
897       WeakRefReferences.erase(Entry);
898     }
899 
900     if (Entry->getType() == Ty)
901       return Entry;
902 
903     // Make sure the result is of the correct type.
904     return llvm::ConstantExpr::getBitCast(Entry, Ty);
905   }
906 
907   // This is the first use or definition of a mangled name.  If there is a
908   // deferred decl with this name, remember that we need to emit it at the end
909   // of the file.
910   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
911   if (DDI != DeferredDecls.end()) {
912     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
913     // list, and remove it from DeferredDecls (since we don't need it anymore).
914     DeferredDeclsToEmit.push_back(DDI->second);
915     DeferredDecls.erase(DDI);
916   }
917 
918   llvm::GlobalVariable *GV =
919     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
920                              llvm::GlobalValue::ExternalLinkage,
921                              0, MangledName, 0,
922                              false, Ty->getAddressSpace());
923 
924   // Handle things which are present even on external declarations.
925   if (D) {
926     // FIXME: This code is overly simple and should be merged with other global
927     // handling.
928     GV->setConstant(DeclIsConstantGlobal(Context, D));
929 
930     // FIXME: Merge with other attribute handling code.
931     if (D->getStorageClass() == VarDecl::PrivateExtern)
932       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
933 
934     if (D->hasAttr<WeakAttr>() ||
935         D->hasAttr<WeakImportAttr>())
936       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
937 
938     GV->setThreadLocal(D->isThreadSpecified());
939   }
940 
941   return GV;
942 }
943 
944 
945 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
946 /// given global variable.  If Ty is non-null and if the global doesn't exist,
947 /// then it will be greated with the specified type instead of whatever the
948 /// normal requested type would be.
949 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
950                                                   const llvm::Type *Ty) {
951   assert(D->hasGlobalStorage() && "Not a global variable");
952   QualType ASTTy = D->getType();
953   if (Ty == 0)
954     Ty = getTypes().ConvertTypeForMem(ASTTy);
955 
956   const llvm::PointerType *PTy =
957     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
958 
959   MangleBuffer MangledName;
960   getMangledName(MangledName, D);
961   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
962 }
963 
964 /// CreateRuntimeVariable - Create a new runtime global variable with the
965 /// specified type and name.
966 llvm::Constant *
967 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
968                                      llvm::StringRef Name) {
969   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
970 }
971 
972 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
973   assert(!D->getInit() && "Cannot emit definite definitions here!");
974 
975   if (MayDeferGeneration(D)) {
976     // If we have not seen a reference to this variable yet, place it
977     // into the deferred declarations table to be emitted if needed
978     // later.
979     MangleBuffer MangledName;
980     getMangledName(MangledName, D);
981     if (!GetGlobalValue(MangledName)) {
982       DeferredDecls[MangledName] = D;
983       return;
984     }
985   }
986 
987   // The tentative definition is the only definition.
988   EmitGlobalVarDefinition(D);
989 }
990 
991 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
992   if (DefinitionRequired)
993     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
994 }
995 
996 llvm::GlobalVariable::LinkageTypes
997 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
998   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
999     return llvm::GlobalVariable::InternalLinkage;
1000 
1001   if (const CXXMethodDecl *KeyFunction
1002                                     = RD->getASTContext().getKeyFunction(RD)) {
1003     // If this class has a key function, use that to determine the linkage of
1004     // the vtable.
1005     const FunctionDecl *Def = 0;
1006     if (KeyFunction->getBody(Def))
1007       KeyFunction = cast<CXXMethodDecl>(Def);
1008 
1009     switch (KeyFunction->getTemplateSpecializationKind()) {
1010       case TSK_Undeclared:
1011       case TSK_ExplicitSpecialization:
1012         if (KeyFunction->isInlined())
1013           return llvm::GlobalVariable::WeakODRLinkage;
1014 
1015         return llvm::GlobalVariable::ExternalLinkage;
1016 
1017       case TSK_ImplicitInstantiation:
1018       case TSK_ExplicitInstantiationDefinition:
1019         return llvm::GlobalVariable::WeakODRLinkage;
1020 
1021       case TSK_ExplicitInstantiationDeclaration:
1022         // FIXME: Use available_externally linkage. However, this currently
1023         // breaks LLVM's build due to undefined symbols.
1024         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1025         return llvm::GlobalVariable::WeakODRLinkage;
1026     }
1027   }
1028 
1029   switch (RD->getTemplateSpecializationKind()) {
1030   case TSK_Undeclared:
1031   case TSK_ExplicitSpecialization:
1032   case TSK_ImplicitInstantiation:
1033   case TSK_ExplicitInstantiationDefinition:
1034     return llvm::GlobalVariable::WeakODRLinkage;
1035 
1036   case TSK_ExplicitInstantiationDeclaration:
1037     // FIXME: Use available_externally linkage. However, this currently
1038     // breaks LLVM's build due to undefined symbols.
1039     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1040     return llvm::GlobalVariable::WeakODRLinkage;
1041   }
1042 
1043   // Silence GCC warning.
1044   return llvm::GlobalVariable::WeakODRLinkage;
1045 }
1046 
1047 static CodeGenModule::GVALinkage
1048 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1049   // If this is a static data member, compute the kind of template
1050   // specialization. Otherwise, this variable is not part of a
1051   // template.
1052   TemplateSpecializationKind TSK = TSK_Undeclared;
1053   if (VD->isStaticDataMember())
1054     TSK = VD->getTemplateSpecializationKind();
1055 
1056   Linkage L = VD->getLinkage();
1057   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1058       VD->getType()->getLinkage() == UniqueExternalLinkage)
1059     L = UniqueExternalLinkage;
1060 
1061   switch (L) {
1062   case NoLinkage:
1063   case InternalLinkage:
1064   case UniqueExternalLinkage:
1065     return CodeGenModule::GVA_Internal;
1066 
1067   case ExternalLinkage:
1068     switch (TSK) {
1069     case TSK_Undeclared:
1070     case TSK_ExplicitSpecialization:
1071       return CodeGenModule::GVA_StrongExternal;
1072 
1073     case TSK_ExplicitInstantiationDeclaration:
1074       llvm_unreachable("Variable should not be instantiated");
1075       // Fall through to treat this like any other instantiation.
1076 
1077     case TSK_ExplicitInstantiationDefinition:
1078       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
1079 
1080     case TSK_ImplicitInstantiation:
1081       return CodeGenModule::GVA_TemplateInstantiation;
1082     }
1083   }
1084 
1085   return CodeGenModule::GVA_StrongExternal;
1086 }
1087 
1088 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1089     return CharUnits::fromQuantity(
1090       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1091 }
1092 
1093 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1094   llvm::Constant *Init = 0;
1095   QualType ASTTy = D->getType();
1096   bool NonConstInit = false;
1097 
1098   const Expr *InitExpr = D->getAnyInitializer();
1099 
1100   if (!InitExpr) {
1101     // This is a tentative definition; tentative definitions are
1102     // implicitly initialized with { 0 }.
1103     //
1104     // Note that tentative definitions are only emitted at the end of
1105     // a translation unit, so they should never have incomplete
1106     // type. In addition, EmitTentativeDefinition makes sure that we
1107     // never attempt to emit a tentative definition if a real one
1108     // exists. A use may still exists, however, so we still may need
1109     // to do a RAUW.
1110     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1111     Init = EmitNullConstant(D->getType());
1112   } else {
1113     Init = EmitConstantExpr(InitExpr, D->getType());
1114     if (!Init) {
1115       QualType T = InitExpr->getType();
1116       if (D->getType()->isReferenceType())
1117         T = D->getType();
1118 
1119       if (getLangOptions().CPlusPlus) {
1120         EmitCXXGlobalVarDeclInitFunc(D);
1121         Init = EmitNullConstant(T);
1122         NonConstInit = true;
1123       } else {
1124         ErrorUnsupported(D, "static initializer");
1125         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1126       }
1127     }
1128   }
1129 
1130   const llvm::Type* InitType = Init->getType();
1131   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1132 
1133   // Strip off a bitcast if we got one back.
1134   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1135     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1136            // all zero index gep.
1137            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1138     Entry = CE->getOperand(0);
1139   }
1140 
1141   // Entry is now either a Function or GlobalVariable.
1142   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1143 
1144   // We have a definition after a declaration with the wrong type.
1145   // We must make a new GlobalVariable* and update everything that used OldGV
1146   // (a declaration or tentative definition) with the new GlobalVariable*
1147   // (which will be a definition).
1148   //
1149   // This happens if there is a prototype for a global (e.g.
1150   // "extern int x[];") and then a definition of a different type (e.g.
1151   // "int x[10];"). This also happens when an initializer has a different type
1152   // from the type of the global (this happens with unions).
1153   if (GV == 0 ||
1154       GV->getType()->getElementType() != InitType ||
1155       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1156 
1157     // Move the old entry aside so that we'll create a new one.
1158     Entry->setName(llvm::StringRef());
1159 
1160     // Make a new global with the correct type, this is now guaranteed to work.
1161     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1162 
1163     // Replace all uses of the old global with the new global
1164     llvm::Constant *NewPtrForOldDecl =
1165         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1166     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1167 
1168     // Erase the old global, since it is no longer used.
1169     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1170   }
1171 
1172   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1173     SourceManager &SM = Context.getSourceManager();
1174     AddAnnotation(EmitAnnotateAttr(GV, AA,
1175                               SM.getInstantiationLineNumber(D->getLocation())));
1176   }
1177 
1178   GV->setInitializer(Init);
1179 
1180   // If it is safe to mark the global 'constant', do so now.
1181   GV->setConstant(false);
1182   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1183     GV->setConstant(true);
1184 
1185   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1186 
1187   // Set the llvm linkage type as appropriate.
1188   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1189   if (Linkage == GVA_Internal)
1190     GV->setLinkage(llvm::Function::InternalLinkage);
1191   else if (D->hasAttr<DLLImportAttr>())
1192     GV->setLinkage(llvm::Function::DLLImportLinkage);
1193   else if (D->hasAttr<DLLExportAttr>())
1194     GV->setLinkage(llvm::Function::DLLExportLinkage);
1195   else if (D->hasAttr<WeakAttr>()) {
1196     if (GV->isConstant())
1197       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1198     else
1199       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1200   } else if (Linkage == GVA_TemplateInstantiation ||
1201              Linkage == GVA_ExplicitTemplateInstantiation)
1202     // FIXME: It seems like we can provide more specific linkage here
1203     // (LinkOnceODR, WeakODR).
1204     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1205   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1206            !D->hasExternalStorage() && !D->getInit() &&
1207            !D->getAttr<SectionAttr>()) {
1208     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1209     // common vars aren't constant even if declared const.
1210     GV->setConstant(false);
1211   } else
1212     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1213 
1214   SetCommonAttributes(D, GV);
1215 
1216   // Emit global variable debug information.
1217   if (CGDebugInfo *DI = getDebugInfo()) {
1218     DI->setLocation(D->getLocation());
1219     DI->EmitGlobalVariable(GV, D);
1220   }
1221 }
1222 
1223 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1224 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1225 /// existing call uses of the old function in the module, this adjusts them to
1226 /// call the new function directly.
1227 ///
1228 /// This is not just a cleanup: the always_inline pass requires direct calls to
1229 /// functions to be able to inline them.  If there is a bitcast in the way, it
1230 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1231 /// run at -O0.
1232 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1233                                                       llvm::Function *NewFn) {
1234   // If we're redefining a global as a function, don't transform it.
1235   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1236   if (OldFn == 0) return;
1237 
1238   const llvm::Type *NewRetTy = NewFn->getReturnType();
1239   llvm::SmallVector<llvm::Value*, 4> ArgList;
1240 
1241   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1242        UI != E; ) {
1243     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1244     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1245     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1246     llvm::CallSite CS(CI);
1247     if (!CI || !CS.isCallee(I)) continue;
1248 
1249     // If the return types don't match exactly, and if the call isn't dead, then
1250     // we can't transform this call.
1251     if (CI->getType() != NewRetTy && !CI->use_empty())
1252       continue;
1253 
1254     // If the function was passed too few arguments, don't transform.  If extra
1255     // arguments were passed, we silently drop them.  If any of the types
1256     // mismatch, we don't transform.
1257     unsigned ArgNo = 0;
1258     bool DontTransform = false;
1259     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1260          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1261       if (CS.arg_size() == ArgNo ||
1262           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1263         DontTransform = true;
1264         break;
1265       }
1266     }
1267     if (DontTransform)
1268       continue;
1269 
1270     // Okay, we can transform this.  Create the new call instruction and copy
1271     // over the required information.
1272     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1273     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1274                                                      ArgList.end(), "", CI);
1275     ArgList.clear();
1276     if (!NewCall->getType()->isVoidTy())
1277       NewCall->takeName(CI);
1278     NewCall->setAttributes(CI->getAttributes());
1279     NewCall->setCallingConv(CI->getCallingConv());
1280 
1281     // Finally, remove the old call, replacing any uses with the new one.
1282     if (!CI->use_empty())
1283       CI->replaceAllUsesWith(NewCall);
1284 
1285     // Copy debug location attached to CI.
1286     if (!CI->getDebugLoc().isUnknown())
1287       NewCall->setDebugLoc(CI->getDebugLoc());
1288     CI->eraseFromParent();
1289   }
1290 }
1291 
1292 
1293 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1294   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1295   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1296   getMangleContext().mangleInitDiscriminator();
1297   // Get or create the prototype for the function.
1298   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1299 
1300   // Strip off a bitcast if we got one back.
1301   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1302     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1303     Entry = CE->getOperand(0);
1304   }
1305 
1306 
1307   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1308     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1309 
1310     // If the types mismatch then we have to rewrite the definition.
1311     assert(OldFn->isDeclaration() &&
1312            "Shouldn't replace non-declaration");
1313 
1314     // F is the Function* for the one with the wrong type, we must make a new
1315     // Function* and update everything that used F (a declaration) with the new
1316     // Function* (which will be a definition).
1317     //
1318     // This happens if there is a prototype for a function
1319     // (e.g. "int f()") and then a definition of a different type
1320     // (e.g. "int f(int x)").  Move the old function aside so that it
1321     // doesn't interfere with GetAddrOfFunction.
1322     OldFn->setName(llvm::StringRef());
1323     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1324 
1325     // If this is an implementation of a function without a prototype, try to
1326     // replace any existing uses of the function (which may be calls) with uses
1327     // of the new function
1328     if (D->getType()->isFunctionNoProtoType()) {
1329       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1330       OldFn->removeDeadConstantUsers();
1331     }
1332 
1333     // Replace uses of F with the Function we will endow with a body.
1334     if (!Entry->use_empty()) {
1335       llvm::Constant *NewPtrForOldDecl =
1336         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1337       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1338     }
1339 
1340     // Ok, delete the old function now, which is dead.
1341     OldFn->eraseFromParent();
1342 
1343     Entry = NewFn;
1344   }
1345 
1346   llvm::Function *Fn = cast<llvm::Function>(Entry);
1347   setFunctionLinkage(D, Fn);
1348 
1349   CodeGenFunction(*this).GenerateCode(D, Fn);
1350 
1351   SetFunctionDefinitionAttributes(D, Fn);
1352   SetLLVMFunctionAttributesForDefinition(D, Fn);
1353 
1354   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1355     AddGlobalCtor(Fn, CA->getPriority());
1356   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1357     AddGlobalDtor(Fn, DA->getPriority());
1358 }
1359 
1360 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1361   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1362   const AliasAttr *AA = D->getAttr<AliasAttr>();
1363   assert(AA && "Not an alias?");
1364 
1365   MangleBuffer MangledName;
1366   getMangledName(MangledName, GD);
1367 
1368   // If there is a definition in the module, then it wins over the alias.
1369   // This is dubious, but allow it to be safe.  Just ignore the alias.
1370   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1371   if (Entry && !Entry->isDeclaration())
1372     return;
1373 
1374   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1375 
1376   // Create a reference to the named value.  This ensures that it is emitted
1377   // if a deferred decl.
1378   llvm::Constant *Aliasee;
1379   if (isa<llvm::FunctionType>(DeclTy))
1380     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1381   else
1382     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1383                                     llvm::PointerType::getUnqual(DeclTy), 0);
1384 
1385   // Create the new alias itself, but don't set a name yet.
1386   llvm::GlobalValue *GA =
1387     new llvm::GlobalAlias(Aliasee->getType(),
1388                           llvm::Function::ExternalLinkage,
1389                           "", Aliasee, &getModule());
1390 
1391   if (Entry) {
1392     assert(Entry->isDeclaration());
1393 
1394     // If there is a declaration in the module, then we had an extern followed
1395     // by the alias, as in:
1396     //   extern int test6();
1397     //   ...
1398     //   int test6() __attribute__((alias("test7")));
1399     //
1400     // Remove it and replace uses of it with the alias.
1401     GA->takeName(Entry);
1402 
1403     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1404                                                           Entry->getType()));
1405     Entry->eraseFromParent();
1406   } else {
1407     GA->setName(MangledName.getString());
1408   }
1409 
1410   // Set attributes which are particular to an alias; this is a
1411   // specialization of the attributes which may be set on a global
1412   // variable/function.
1413   if (D->hasAttr<DLLExportAttr>()) {
1414     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1415       // The dllexport attribute is ignored for undefined symbols.
1416       if (FD->getBody())
1417         GA->setLinkage(llvm::Function::DLLExportLinkage);
1418     } else {
1419       GA->setLinkage(llvm::Function::DLLExportLinkage);
1420     }
1421   } else if (D->hasAttr<WeakAttr>() ||
1422              D->hasAttr<WeakRefAttr>() ||
1423              D->hasAttr<WeakImportAttr>()) {
1424     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1425   }
1426 
1427   SetCommonAttributes(D, GA);
1428 }
1429 
1430 /// getBuiltinLibFunction - Given a builtin id for a function like
1431 /// "__builtin_fabsf", return a Function* for "fabsf".
1432 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1433                                                   unsigned BuiltinID) {
1434   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1435           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1436          "isn't a lib fn");
1437 
1438   // Get the name, skip over the __builtin_ prefix (if necessary).
1439   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1440   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1441     Name += 10;
1442 
1443   const llvm::FunctionType *Ty =
1444     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1445 
1446   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1447 }
1448 
1449 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1450                                             unsigned NumTys) {
1451   return llvm::Intrinsic::getDeclaration(&getModule(),
1452                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1453 }
1454 
1455 
1456 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1457                                            const llvm::Type *SrcType,
1458                                            const llvm::Type *SizeType) {
1459   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1460   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1461 }
1462 
1463 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1464                                             const llvm::Type *SrcType,
1465                                             const llvm::Type *SizeType) {
1466   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1467   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1468 }
1469 
1470 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1471                                            const llvm::Type *SizeType) {
1472   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1473   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1474 }
1475 
1476 static llvm::StringMapEntry<llvm::Constant*> &
1477 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1478                          const StringLiteral *Literal,
1479                          bool TargetIsLSB,
1480                          bool &IsUTF16,
1481                          unsigned &StringLength) {
1482   unsigned NumBytes = Literal->getByteLength();
1483 
1484   // Check for simple case.
1485   if (!Literal->containsNonAsciiOrNull()) {
1486     StringLength = NumBytes;
1487     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1488                                                 StringLength));
1489   }
1490 
1491   // Otherwise, convert the UTF8 literals into a byte string.
1492   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1493   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1494   UTF16 *ToPtr = &ToBuf[0];
1495 
1496   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1497                                                &ToPtr, ToPtr + NumBytes,
1498                                                strictConversion);
1499 
1500   // Check for conversion failure.
1501   if (Result != conversionOK) {
1502     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1503     // this duplicate code.
1504     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1505     StringLength = NumBytes;
1506     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1507                                                 StringLength));
1508   }
1509 
1510   // ConvertUTF8toUTF16 returns the length in ToPtr.
1511   StringLength = ToPtr - &ToBuf[0];
1512 
1513   // Render the UTF-16 string into a byte array and convert to the target byte
1514   // order.
1515   //
1516   // FIXME: This isn't something we should need to do here.
1517   llvm::SmallString<128> AsBytes;
1518   AsBytes.reserve(StringLength * 2);
1519   for (unsigned i = 0; i != StringLength; ++i) {
1520     unsigned short Val = ToBuf[i];
1521     if (TargetIsLSB) {
1522       AsBytes.push_back(Val & 0xFF);
1523       AsBytes.push_back(Val >> 8);
1524     } else {
1525       AsBytes.push_back(Val >> 8);
1526       AsBytes.push_back(Val & 0xFF);
1527     }
1528   }
1529   // Append one extra null character, the second is automatically added by our
1530   // caller.
1531   AsBytes.push_back(0);
1532 
1533   IsUTF16 = true;
1534   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1535 }
1536 
1537 llvm::Constant *
1538 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1539   unsigned StringLength = 0;
1540   bool isUTF16 = false;
1541   llvm::StringMapEntry<llvm::Constant*> &Entry =
1542     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1543                              getTargetData().isLittleEndian(),
1544                              isUTF16, StringLength);
1545 
1546   if (llvm::Constant *C = Entry.getValue())
1547     return C;
1548 
1549   llvm::Constant *Zero =
1550       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1551   llvm::Constant *Zeros[] = { Zero, Zero };
1552 
1553   // If we don't already have it, get __CFConstantStringClassReference.
1554   if (!CFConstantStringClassRef) {
1555     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1556     Ty = llvm::ArrayType::get(Ty, 0);
1557     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1558                                            "__CFConstantStringClassReference");
1559     // Decay array -> ptr
1560     CFConstantStringClassRef =
1561       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1562   }
1563 
1564   QualType CFTy = getContext().getCFConstantStringType();
1565 
1566   const llvm::StructType *STy =
1567     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1568 
1569   std::vector<llvm::Constant*> Fields(4);
1570 
1571   // Class pointer.
1572   Fields[0] = CFConstantStringClassRef;
1573 
1574   // Flags.
1575   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1576   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1577     llvm::ConstantInt::get(Ty, 0x07C8);
1578 
1579   // String pointer.
1580   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1581 
1582   llvm::GlobalValue::LinkageTypes Linkage;
1583   bool isConstant;
1584   if (isUTF16) {
1585     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1586     Linkage = llvm::GlobalValue::InternalLinkage;
1587     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1588     // does make plain ascii ones writable.
1589     isConstant = true;
1590   } else {
1591     Linkage = llvm::GlobalValue::PrivateLinkage;
1592     isConstant = !Features.WritableStrings;
1593   }
1594 
1595   llvm::GlobalVariable *GV =
1596     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1597                              ".str");
1598   if (isUTF16) {
1599     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1600     GV->setAlignment(Align.getQuantity());
1601   }
1602   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1603 
1604   // String length.
1605   Ty = getTypes().ConvertType(getContext().LongTy);
1606   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1607 
1608   // The struct.
1609   C = llvm::ConstantStruct::get(STy, Fields);
1610   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1611                                 llvm::GlobalVariable::PrivateLinkage, C,
1612                                 "_unnamed_cfstring_");
1613   if (const char *Sect = getContext().Target.getCFStringSection())
1614     GV->setSection(Sect);
1615   Entry.setValue(GV);
1616 
1617   return GV;
1618 }
1619 
1620 llvm::Constant *
1621 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1622   unsigned StringLength = 0;
1623   bool isUTF16 = false;
1624   llvm::StringMapEntry<llvm::Constant*> &Entry =
1625     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1626                              getTargetData().isLittleEndian(),
1627                              isUTF16, StringLength);
1628 
1629   if (llvm::Constant *C = Entry.getValue())
1630     return C;
1631 
1632   llvm::Constant *Zero =
1633   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1634   llvm::Constant *Zeros[] = { Zero, Zero };
1635 
1636   // If we don't already have it, get _NSConstantStringClassReference.
1637   if (!NSConstantStringClassRef) {
1638     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1639     Ty = llvm::ArrayType::get(Ty, 0);
1640     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1641                                         Features.ObjCNonFragileABI ?
1642                                         "OBJC_CLASS_$_NSConstantString" :
1643                                         "_NSConstantStringClassReference");
1644     // Decay array -> ptr
1645     NSConstantStringClassRef =
1646       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1647   }
1648 
1649   QualType NSTy = getContext().getNSConstantStringType();
1650 
1651   const llvm::StructType *STy =
1652   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1653 
1654   std::vector<llvm::Constant*> Fields(3);
1655 
1656   // Class pointer.
1657   Fields[0] = NSConstantStringClassRef;
1658 
1659   // String pointer.
1660   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1661 
1662   llvm::GlobalValue::LinkageTypes Linkage;
1663   bool isConstant;
1664   if (isUTF16) {
1665     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1666     Linkage = llvm::GlobalValue::InternalLinkage;
1667     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1668     // does make plain ascii ones writable.
1669     isConstant = true;
1670   } else {
1671     Linkage = llvm::GlobalValue::PrivateLinkage;
1672     isConstant = !Features.WritableStrings;
1673   }
1674 
1675   llvm::GlobalVariable *GV =
1676   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1677                            ".str");
1678   if (isUTF16) {
1679     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1680     GV->setAlignment(Align.getQuantity());
1681   }
1682   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1683 
1684   // String length.
1685   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1686   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1687 
1688   // The struct.
1689   C = llvm::ConstantStruct::get(STy, Fields);
1690   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1691                                 llvm::GlobalVariable::PrivateLinkage, C,
1692                                 "_unnamed_nsstring_");
1693   // FIXME. Fix section.
1694   if (const char *Sect =
1695         Features.ObjCNonFragileABI
1696           ? getContext().Target.getNSStringNonFragileABISection()
1697           : getContext().Target.getNSStringSection())
1698     GV->setSection(Sect);
1699   Entry.setValue(GV);
1700 
1701   return GV;
1702 }
1703 
1704 /// GetStringForStringLiteral - Return the appropriate bytes for a
1705 /// string literal, properly padded to match the literal type.
1706 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1707   const char *StrData = E->getStrData();
1708   unsigned Len = E->getByteLength();
1709 
1710   const ConstantArrayType *CAT =
1711     getContext().getAsConstantArrayType(E->getType());
1712   assert(CAT && "String isn't pointer or array!");
1713 
1714   // Resize the string to the right size.
1715   std::string Str(StrData, StrData+Len);
1716   uint64_t RealLen = CAT->getSize().getZExtValue();
1717 
1718   if (E->isWide())
1719     RealLen *= getContext().Target.getWCharWidth()/8;
1720 
1721   Str.resize(RealLen, '\0');
1722 
1723   return Str;
1724 }
1725 
1726 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1727 /// constant array for the given string literal.
1728 llvm::Constant *
1729 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1730   // FIXME: This can be more efficient.
1731   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1732   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1733   if (S->isWide()) {
1734     llvm::Type *DestTy =
1735         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1736     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1737   }
1738   return C;
1739 }
1740 
1741 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1742 /// array for the given ObjCEncodeExpr node.
1743 llvm::Constant *
1744 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1745   std::string Str;
1746   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1747 
1748   return GetAddrOfConstantCString(Str);
1749 }
1750 
1751 
1752 /// GenerateWritableString -- Creates storage for a string literal.
1753 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1754                                              bool constant,
1755                                              CodeGenModule &CGM,
1756                                              const char *GlobalName) {
1757   // Create Constant for this string literal. Don't add a '\0'.
1758   llvm::Constant *C =
1759       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1760 
1761   // Create a global variable for this string
1762   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1763                                   llvm::GlobalValue::PrivateLinkage,
1764                                   C, GlobalName);
1765 }
1766 
1767 /// GetAddrOfConstantString - Returns a pointer to a character array
1768 /// containing the literal. This contents are exactly that of the
1769 /// given string, i.e. it will not be null terminated automatically;
1770 /// see GetAddrOfConstantCString. Note that whether the result is
1771 /// actually a pointer to an LLVM constant depends on
1772 /// Feature.WriteableStrings.
1773 ///
1774 /// The result has pointer to array type.
1775 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1776                                                        const char *GlobalName) {
1777   bool IsConstant = !Features.WritableStrings;
1778 
1779   // Get the default prefix if a name wasn't specified.
1780   if (!GlobalName)
1781     GlobalName = ".str";
1782 
1783   // Don't share any string literals if strings aren't constant.
1784   if (!IsConstant)
1785     return GenerateStringLiteral(str, false, *this, GlobalName);
1786 
1787   llvm::StringMapEntry<llvm::Constant *> &Entry =
1788     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1789 
1790   if (Entry.getValue())
1791     return Entry.getValue();
1792 
1793   // Create a global variable for this.
1794   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1795   Entry.setValue(C);
1796   return C;
1797 }
1798 
1799 /// GetAddrOfConstantCString - Returns a pointer to a character
1800 /// array containing the literal and a terminating '\-'
1801 /// character. The result has pointer to array type.
1802 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1803                                                         const char *GlobalName){
1804   return GetAddrOfConstantString(str + '\0', GlobalName);
1805 }
1806 
1807 /// EmitObjCPropertyImplementations - Emit information for synthesized
1808 /// properties for an implementation.
1809 void CodeGenModule::EmitObjCPropertyImplementations(const
1810                                                     ObjCImplementationDecl *D) {
1811   for (ObjCImplementationDecl::propimpl_iterator
1812          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1813     ObjCPropertyImplDecl *PID = *i;
1814 
1815     // Dynamic is just for type-checking.
1816     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1817       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1818 
1819       // Determine which methods need to be implemented, some may have
1820       // been overridden. Note that ::isSynthesized is not the method
1821       // we want, that just indicates if the decl came from a
1822       // property. What we want to know is if the method is defined in
1823       // this implementation.
1824       if (!D->getInstanceMethod(PD->getGetterName()))
1825         CodeGenFunction(*this).GenerateObjCGetter(
1826                                  const_cast<ObjCImplementationDecl *>(D), PID);
1827       if (!PD->isReadOnly() &&
1828           !D->getInstanceMethod(PD->getSetterName()))
1829         CodeGenFunction(*this).GenerateObjCSetter(
1830                                  const_cast<ObjCImplementationDecl *>(D), PID);
1831     }
1832   }
1833 }
1834 
1835 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1836 /// for an implementation.
1837 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1838   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1839     return;
1840   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1841   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1842   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1843   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1844   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1845                                                   D->getLocation(),
1846                                                   D->getLocation(), cxxSelector,
1847                                                   getContext().VoidTy, 0,
1848                                                   DC, true, false, true,
1849                                                   ObjCMethodDecl::Required);
1850   D->addInstanceMethod(DTORMethod);
1851   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1852 
1853   II = &getContext().Idents.get(".cxx_construct");
1854   cxxSelector = getContext().Selectors.getSelector(0, &II);
1855   // The constructor returns 'self'.
1856   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1857                                                 D->getLocation(),
1858                                                 D->getLocation(), cxxSelector,
1859                                                 getContext().getObjCIdType(), 0,
1860                                                 DC, true, false, true,
1861                                                 ObjCMethodDecl::Required);
1862   D->addInstanceMethod(CTORMethod);
1863   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1864 
1865 
1866 }
1867 
1868 /// EmitNamespace - Emit all declarations in a namespace.
1869 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1870   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1871        I != E; ++I)
1872     EmitTopLevelDecl(*I);
1873 }
1874 
1875 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1876 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1877   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1878       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1879     ErrorUnsupported(LSD, "linkage spec");
1880     return;
1881   }
1882 
1883   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1884        I != E; ++I)
1885     EmitTopLevelDecl(*I);
1886 }
1887 
1888 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1889 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1890   // If an error has occurred, stop code generation, but continue
1891   // parsing and semantic analysis (to ensure all warnings and errors
1892   // are emitted).
1893   if (Diags.hasErrorOccurred())
1894     return;
1895 
1896   // Ignore dependent declarations.
1897   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1898     return;
1899 
1900   switch (D->getKind()) {
1901   case Decl::CXXConversion:
1902   case Decl::CXXMethod:
1903   case Decl::Function:
1904     // Skip function templates
1905     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1906       return;
1907 
1908     EmitGlobal(cast<FunctionDecl>(D));
1909     break;
1910 
1911   case Decl::Var:
1912     EmitGlobal(cast<VarDecl>(D));
1913     break;
1914 
1915   // C++ Decls
1916   case Decl::Namespace:
1917     EmitNamespace(cast<NamespaceDecl>(D));
1918     break;
1919     // No code generation needed.
1920   case Decl::UsingShadow:
1921   case Decl::Using:
1922   case Decl::UsingDirective:
1923   case Decl::ClassTemplate:
1924   case Decl::FunctionTemplate:
1925   case Decl::NamespaceAlias:
1926     break;
1927   case Decl::CXXConstructor:
1928     // Skip function templates
1929     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1930       return;
1931 
1932     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1933     break;
1934   case Decl::CXXDestructor:
1935     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1936     break;
1937 
1938   case Decl::StaticAssert:
1939     // Nothing to do.
1940     break;
1941 
1942   // Objective-C Decls
1943 
1944   // Forward declarations, no (immediate) code generation.
1945   case Decl::ObjCClass:
1946   case Decl::ObjCForwardProtocol:
1947   case Decl::ObjCCategory:
1948   case Decl::ObjCInterface:
1949     break;
1950 
1951   case Decl::ObjCProtocol:
1952     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1953     break;
1954 
1955   case Decl::ObjCCategoryImpl:
1956     // Categories have properties but don't support synthesize so we
1957     // can ignore them here.
1958     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1959     break;
1960 
1961   case Decl::ObjCImplementation: {
1962     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1963     EmitObjCPropertyImplementations(OMD);
1964     EmitObjCIvarInitializations(OMD);
1965     Runtime->GenerateClass(OMD);
1966     break;
1967   }
1968   case Decl::ObjCMethod: {
1969     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1970     // If this is not a prototype, emit the body.
1971     if (OMD->getBody())
1972       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1973     break;
1974   }
1975   case Decl::ObjCCompatibleAlias:
1976     // compatibility-alias is a directive and has no code gen.
1977     break;
1978 
1979   case Decl::LinkageSpec:
1980     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1981     break;
1982 
1983   case Decl::FileScopeAsm: {
1984     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1985     llvm::StringRef AsmString = AD->getAsmString()->getString();
1986 
1987     const std::string &S = getModule().getModuleInlineAsm();
1988     if (S.empty())
1989       getModule().setModuleInlineAsm(AsmString);
1990     else
1991       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1992     break;
1993   }
1994 
1995   default:
1996     // Make sure we handled everything we should, every other kind is a
1997     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1998     // function. Need to recode Decl::Kind to do that easily.
1999     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2000   }
2001 }
2002