1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenPGO.h" 23 #include "CodeGenTBAA.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/CharInfo.h" 35 #include "clang/Basic/Diagnostic.h" 36 #include "clang/Basic/Module.h" 37 #include "clang/Basic/SourceManager.h" 38 #include "clang/Basic/TargetInfo.h" 39 #include "clang/Basic/Version.h" 40 #include "clang/Frontend/CodeGenOptions.h" 41 #include "clang/Sema/SemaDiagnostic.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/CallingConv.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/Support/ConvertUTF.h" 51 #include "llvm/Support/ErrorHandling.h" 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 static const char AnnotationSection[] = "llvm.metadata"; 57 58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 59 switch (CGM.getTarget().getCXXABI().getKind()) { 60 case TargetCXXABI::GenericAArch64: 61 case TargetCXXABI::GenericARM: 62 case TargetCXXABI::iOS: 63 case TargetCXXABI::GenericItanium: 64 return CreateItaniumCXXABI(CGM); 65 case TargetCXXABI::Microsoft: 66 return CreateMicrosoftCXXABI(CGM); 67 } 68 69 llvm_unreachable("invalid C++ ABI kind"); 70 } 71 72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 73 llvm::Module &M, const llvm::DataLayout &TD, 74 DiagnosticsEngine &diags) 75 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 76 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 77 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 78 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 79 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 80 NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0), 81 CFConstantStringClassRef(0), 82 ConstantStringClassRef(0), NSConstantStringType(0), 83 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 84 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 85 LifetimeStartFn(0), LifetimeEndFn(0), 86 SanitizerBlacklist( 87 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 88 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 89 : LangOpts.Sanitize) { 90 91 // Initialize the type cache. 92 llvm::LLVMContext &LLVMContext = M.getContext(); 93 VoidTy = llvm::Type::getVoidTy(LLVMContext); 94 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 95 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 96 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 97 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 98 FloatTy = llvm::Type::getFloatTy(LLVMContext); 99 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 100 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 101 PointerAlignInBytes = 102 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 103 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 104 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 105 Int8PtrTy = Int8Ty->getPointerTo(0); 106 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 107 108 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 109 110 if (LangOpts.ObjC1) 111 createObjCRuntime(); 112 if (LangOpts.OpenCL) 113 createOpenCLRuntime(); 114 if (LangOpts.CUDA) 115 createCUDARuntime(); 116 117 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 118 if (SanOpts.Thread || 119 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 120 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 121 getCXXABI().getMangleContext()); 122 123 // If debug info or coverage generation is enabled, create the CGDebugInfo 124 // object. 125 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 126 CodeGenOpts.EmitGcovArcs || 127 CodeGenOpts.EmitGcovNotes) 128 DebugInfo = new CGDebugInfo(*this); 129 130 Block.GlobalUniqueCount = 0; 131 132 if (C.getLangOpts().ObjCAutoRefCount) 133 ARCData = new ARCEntrypoints(); 134 RRData = new RREntrypoints(); 135 136 if (!CodeGenOpts.InstrProfileInput.empty()) 137 PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput); 138 } 139 140 CodeGenModule::~CodeGenModule() { 141 delete ObjCRuntime; 142 delete OpenCLRuntime; 143 delete CUDARuntime; 144 delete TheTargetCodeGenInfo; 145 delete TBAA; 146 delete DebugInfo; 147 delete ARCData; 148 delete RRData; 149 } 150 151 void CodeGenModule::createObjCRuntime() { 152 // This is just isGNUFamily(), but we want to force implementors of 153 // new ABIs to decide how best to do this. 154 switch (LangOpts.ObjCRuntime.getKind()) { 155 case ObjCRuntime::GNUstep: 156 case ObjCRuntime::GCC: 157 case ObjCRuntime::ObjFW: 158 ObjCRuntime = CreateGNUObjCRuntime(*this); 159 return; 160 161 case ObjCRuntime::FragileMacOSX: 162 case ObjCRuntime::MacOSX: 163 case ObjCRuntime::iOS: 164 ObjCRuntime = CreateMacObjCRuntime(*this); 165 return; 166 } 167 llvm_unreachable("bad runtime kind"); 168 } 169 170 void CodeGenModule::createOpenCLRuntime() { 171 OpenCLRuntime = new CGOpenCLRuntime(*this); 172 } 173 174 void CodeGenModule::createCUDARuntime() { 175 CUDARuntime = CreateNVCUDARuntime(*this); 176 } 177 178 void CodeGenModule::applyReplacements() { 179 for (ReplacementsTy::iterator I = Replacements.begin(), 180 E = Replacements.end(); 181 I != E; ++I) { 182 StringRef MangledName = I->first(); 183 llvm::Constant *Replacement = I->second; 184 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 185 if (!Entry) 186 continue; 187 llvm::Function *OldF = cast<llvm::Function>(Entry); 188 llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement); 189 if (!NewF) { 190 if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 191 NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal()); 192 } else { 193 llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement); 194 assert(CE->getOpcode() == llvm::Instruction::BitCast || 195 CE->getOpcode() == llvm::Instruction::GetElementPtr); 196 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 197 } 198 } 199 200 // Replace old with new, but keep the old order. 201 OldF->replaceAllUsesWith(Replacement); 202 if (NewF) { 203 NewF->removeFromParent(); 204 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 205 } 206 OldF->eraseFromParent(); 207 } 208 } 209 210 void CodeGenModule::checkAliases() { 211 bool Error = false; 212 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 213 E = Aliases.end(); I != E; ++I) { 214 const GlobalDecl &GD = *I; 215 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 216 const AliasAttr *AA = D->getAttr<AliasAttr>(); 217 StringRef MangledName = getMangledName(GD); 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 220 llvm::GlobalValue *GV = Alias->getAliasedGlobal(); 221 if (GV->isDeclaration()) { 222 Error = true; 223 getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined); 224 } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) { 225 Error = true; 226 getDiags().Report(AA->getLocation(), diag::err_cyclic_alias); 227 } 228 } 229 if (!Error) 230 return; 231 232 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 233 E = Aliases.end(); I != E; ++I) { 234 const GlobalDecl &GD = *I; 235 StringRef MangledName = getMangledName(GD); 236 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 237 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 238 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 239 Alias->eraseFromParent(); 240 } 241 } 242 243 void CodeGenModule::clear() { 244 DeferredDeclsToEmit.clear(); 245 } 246 247 void CodeGenModule::Release() { 248 EmitDeferred(); 249 applyReplacements(); 250 checkAliases(); 251 EmitCXXGlobalInitFunc(); 252 EmitCXXGlobalDtorFunc(); 253 EmitCXXThreadLocalInitFunc(); 254 if (ObjCRuntime) 255 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 256 AddGlobalCtor(ObjCInitFunction); 257 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 258 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 259 EmitGlobalAnnotations(); 260 EmitStaticExternCAliases(); 261 emitLLVMUsed(); 262 263 if (CodeGenOpts.Autolink && 264 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 265 EmitModuleLinkOptions(); 266 } 267 if (CodeGenOpts.DwarfVersion) 268 // We actually want the latest version when there are conflicts. 269 // We can change from Warning to Latest if such mode is supported. 270 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 271 CodeGenOpts.DwarfVersion); 272 if (DebugInfo) 273 // We support a single version in the linked module: error out when 274 // modules do not have the same version. We are going to implement dropping 275 // debug info when the version number is not up-to-date. Once that is 276 // done, the bitcode linker is not going to see modules with different 277 // version numbers. 278 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 279 llvm::DEBUG_METADATA_VERSION); 280 281 SimplifyPersonality(); 282 283 if (getCodeGenOpts().EmitDeclMetadata) 284 EmitDeclMetadata(); 285 286 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 287 EmitCoverageFile(); 288 289 if (DebugInfo) 290 DebugInfo->finalize(); 291 292 EmitVersionIdentMetadata(); 293 } 294 295 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 296 // Make sure that this type is translated. 297 Types.UpdateCompletedType(TD); 298 } 299 300 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 301 if (!TBAA) 302 return 0; 303 return TBAA->getTBAAInfo(QTy); 304 } 305 306 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 307 if (!TBAA) 308 return 0; 309 return TBAA->getTBAAInfoForVTablePtr(); 310 } 311 312 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 313 if (!TBAA) 314 return 0; 315 return TBAA->getTBAAStructInfo(QTy); 316 } 317 318 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 319 if (!TBAA) 320 return 0; 321 return TBAA->getTBAAStructTypeInfo(QTy); 322 } 323 324 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 325 llvm::MDNode *AccessN, 326 uint64_t O) { 327 if (!TBAA) 328 return 0; 329 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 330 } 331 332 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 333 /// and struct-path aware TBAA, the tag has the same format: 334 /// base type, access type and offset. 335 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 336 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 337 llvm::MDNode *TBAAInfo, 338 bool ConvertTypeToTag) { 339 if (ConvertTypeToTag && TBAA) 340 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 341 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 342 else 343 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 344 } 345 346 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 347 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 348 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 349 } 350 351 /// ErrorUnsupported - Print out an error that codegen doesn't support the 352 /// specified stmt yet. 353 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 354 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 355 "cannot compile this %0 yet"); 356 std::string Msg = Type; 357 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 358 << Msg << S->getSourceRange(); 359 } 360 361 /// ErrorUnsupported - Print out an error that codegen doesn't support the 362 /// specified decl yet. 363 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 364 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 365 "cannot compile this %0 yet"); 366 std::string Msg = Type; 367 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 368 } 369 370 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 371 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 372 } 373 374 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 375 const NamedDecl *D) const { 376 // Internal definitions always have default visibility. 377 if (GV->hasLocalLinkage()) { 378 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 379 return; 380 } 381 382 // Set visibility for definitions. 383 LinkageInfo LV = D->getLinkageAndVisibility(); 384 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 385 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 386 } 387 388 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 389 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 390 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 391 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 392 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 393 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 394 } 395 396 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 397 CodeGenOptions::TLSModel M) { 398 switch (M) { 399 case CodeGenOptions::GeneralDynamicTLSModel: 400 return llvm::GlobalVariable::GeneralDynamicTLSModel; 401 case CodeGenOptions::LocalDynamicTLSModel: 402 return llvm::GlobalVariable::LocalDynamicTLSModel; 403 case CodeGenOptions::InitialExecTLSModel: 404 return llvm::GlobalVariable::InitialExecTLSModel; 405 case CodeGenOptions::LocalExecTLSModel: 406 return llvm::GlobalVariable::LocalExecTLSModel; 407 } 408 llvm_unreachable("Invalid TLS model!"); 409 } 410 411 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 412 const VarDecl &D) const { 413 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 414 415 llvm::GlobalVariable::ThreadLocalMode TLM; 416 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 417 418 // Override the TLS model if it is explicitly specified. 419 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 420 TLM = GetLLVMTLSModel(Attr->getModel()); 421 } 422 423 GV->setThreadLocalMode(TLM); 424 } 425 426 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 427 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 428 429 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 430 if (!Str.empty()) 431 return Str; 432 433 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 434 IdentifierInfo *II = ND->getIdentifier(); 435 assert(II && "Attempt to mangle unnamed decl."); 436 437 Str = II->getName(); 438 return Str; 439 } 440 441 SmallString<256> Buffer; 442 llvm::raw_svector_ostream Out(Buffer); 443 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 444 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 445 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 446 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 447 else 448 getCXXABI().getMangleContext().mangleName(ND, Out); 449 450 // Allocate space for the mangled name. 451 Out.flush(); 452 size_t Length = Buffer.size(); 453 char *Name = MangledNamesAllocator.Allocate<char>(Length); 454 std::copy(Buffer.begin(), Buffer.end(), Name); 455 456 Str = StringRef(Name, Length); 457 458 return Str; 459 } 460 461 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 462 const BlockDecl *BD) { 463 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 464 const Decl *D = GD.getDecl(); 465 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 466 if (D == 0) 467 MangleCtx.mangleGlobalBlock(BD, 468 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 469 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 470 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 471 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 472 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 473 else 474 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 475 } 476 477 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 478 return getModule().getNamedValue(Name); 479 } 480 481 /// AddGlobalCtor - Add a function to the list that will be called before 482 /// main() runs. 483 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 484 // FIXME: Type coercion of void()* types. 485 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 486 } 487 488 /// AddGlobalDtor - Add a function to the list that will be called 489 /// when the module is unloaded. 490 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 491 // FIXME: Type coercion of void()* types. 492 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 493 } 494 495 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 496 // Ctor function type is void()*. 497 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 498 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 499 500 // Get the type of a ctor entry, { i32, void ()* }. 501 llvm::StructType *CtorStructTy = 502 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 503 504 // Construct the constructor and destructor arrays. 505 SmallVector<llvm::Constant*, 8> Ctors; 506 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 507 llvm::Constant *S[] = { 508 llvm::ConstantInt::get(Int32Ty, I->second, false), 509 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 510 }; 511 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 512 } 513 514 if (!Ctors.empty()) { 515 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 516 new llvm::GlobalVariable(TheModule, AT, false, 517 llvm::GlobalValue::AppendingLinkage, 518 llvm::ConstantArray::get(AT, Ctors), 519 GlobalName); 520 } 521 } 522 523 llvm::GlobalValue::LinkageTypes 524 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 525 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 526 527 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 528 529 if (Linkage == GVA_Internal) 530 return llvm::Function::InternalLinkage; 531 532 if (D->hasAttr<DLLExportAttr>()) 533 return llvm::Function::ExternalLinkage; 534 535 if (D->hasAttr<WeakAttr>()) 536 return llvm::Function::WeakAnyLinkage; 537 538 // In C99 mode, 'inline' functions are guaranteed to have a strong 539 // definition somewhere else, so we can use available_externally linkage. 540 if (Linkage == GVA_C99Inline) 541 return llvm::Function::AvailableExternallyLinkage; 542 543 // Note that Apple's kernel linker doesn't support symbol 544 // coalescing, so we need to avoid linkonce and weak linkages there. 545 // Normally, this means we just map to internal, but for explicit 546 // instantiations we'll map to external. 547 548 // In C++, the compiler has to emit a definition in every translation unit 549 // that references the function. We should use linkonce_odr because 550 // a) if all references in this translation unit are optimized away, we 551 // don't need to codegen it. b) if the function persists, it needs to be 552 // merged with other definitions. c) C++ has the ODR, so we know the 553 // definition is dependable. 554 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 555 return !Context.getLangOpts().AppleKext 556 ? llvm::Function::LinkOnceODRLinkage 557 : llvm::Function::InternalLinkage; 558 559 // An explicit instantiation of a template has weak linkage, since 560 // explicit instantiations can occur in multiple translation units 561 // and must all be equivalent. However, we are not allowed to 562 // throw away these explicit instantiations. 563 if (Linkage == GVA_ExplicitTemplateInstantiation) 564 return !Context.getLangOpts().AppleKext 565 ? llvm::Function::WeakODRLinkage 566 : llvm::Function::ExternalLinkage; 567 568 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 569 // emitted on an as-needed basis. 570 if (isa<CXXDestructorDecl>(D) && 571 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 572 GD.getDtorType())) 573 return llvm::Function::LinkOnceODRLinkage; 574 575 // Otherwise, we have strong external linkage. 576 assert(Linkage == GVA_StrongExternal); 577 return llvm::Function::ExternalLinkage; 578 } 579 580 581 /// SetFunctionDefinitionAttributes - Set attributes for a global. 582 /// 583 /// FIXME: This is currently only done for aliases and functions, but not for 584 /// variables (these details are set in EmitGlobalVarDefinition for variables). 585 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 586 llvm::GlobalValue *GV) { 587 SetCommonAttributes(D, GV); 588 } 589 590 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 591 const CGFunctionInfo &Info, 592 llvm::Function *F) { 593 unsigned CallingConv; 594 AttributeListType AttributeList; 595 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 596 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 597 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 598 } 599 600 /// Determines whether the language options require us to model 601 /// unwind exceptions. We treat -fexceptions as mandating this 602 /// except under the fragile ObjC ABI with only ObjC exceptions 603 /// enabled. This means, for example, that C with -fexceptions 604 /// enables this. 605 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 606 // If exceptions are completely disabled, obviously this is false. 607 if (!LangOpts.Exceptions) return false; 608 609 // If C++ exceptions are enabled, this is true. 610 if (LangOpts.CXXExceptions) return true; 611 612 // If ObjC exceptions are enabled, this depends on the ABI. 613 if (LangOpts.ObjCExceptions) { 614 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 615 } 616 617 return true; 618 } 619 620 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 621 llvm::Function *F) { 622 llvm::AttrBuilder B; 623 624 if (CodeGenOpts.UnwindTables) 625 B.addAttribute(llvm::Attribute::UWTable); 626 627 if (!hasUnwindExceptions(LangOpts)) 628 B.addAttribute(llvm::Attribute::NoUnwind); 629 630 if (D->hasAttr<NakedAttr>()) { 631 // Naked implies noinline: we should not be inlining such functions. 632 B.addAttribute(llvm::Attribute::Naked); 633 B.addAttribute(llvm::Attribute::NoInline); 634 } else if (D->hasAttr<NoDuplicateAttr>()) { 635 B.addAttribute(llvm::Attribute::NoDuplicate); 636 } else if (D->hasAttr<NoInlineAttr>()) { 637 B.addAttribute(llvm::Attribute::NoInline); 638 } else if (D->hasAttr<AlwaysInlineAttr>() && 639 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 640 llvm::Attribute::NoInline)) { 641 // (noinline wins over always_inline, and we can't specify both in IR) 642 B.addAttribute(llvm::Attribute::AlwaysInline); 643 } 644 645 if (D->hasAttr<ColdAttr>()) { 646 B.addAttribute(llvm::Attribute::OptimizeForSize); 647 B.addAttribute(llvm::Attribute::Cold); 648 } 649 650 if (D->hasAttr<MinSizeAttr>()) 651 B.addAttribute(llvm::Attribute::MinSize); 652 653 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 654 B.addAttribute(llvm::Attribute::StackProtect); 655 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 656 B.addAttribute(llvm::Attribute::StackProtectStrong); 657 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 658 B.addAttribute(llvm::Attribute::StackProtectReq); 659 660 // Add sanitizer attributes if function is not blacklisted. 661 if (!SanitizerBlacklist->isIn(*F)) { 662 // When AddressSanitizer is enabled, set SanitizeAddress attribute 663 // unless __attribute__((no_sanitize_address)) is used. 664 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 665 B.addAttribute(llvm::Attribute::SanitizeAddress); 666 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 667 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 668 B.addAttribute(llvm::Attribute::SanitizeThread); 669 } 670 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 671 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 672 B.addAttribute(llvm::Attribute::SanitizeMemory); 673 } 674 675 F->addAttributes(llvm::AttributeSet::FunctionIndex, 676 llvm::AttributeSet::get( 677 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 678 679 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 680 F->setUnnamedAddr(true); 681 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 682 if (MD->isVirtual()) 683 F->setUnnamedAddr(true); 684 685 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 686 if (alignment) 687 F->setAlignment(alignment); 688 689 // C++ ABI requires 2-byte alignment for member functions. 690 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 691 F->setAlignment(2); 692 } 693 694 void CodeGenModule::SetCommonAttributes(const Decl *D, 695 llvm::GlobalValue *GV) { 696 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 697 setGlobalVisibility(GV, ND); 698 else 699 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 700 701 if (D->hasAttr<UsedAttr>()) 702 addUsedGlobal(GV); 703 704 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 705 GV->setSection(SA->getName()); 706 707 // Alias cannot have attributes. Filter them here. 708 if (!isa<llvm::GlobalAlias>(GV)) 709 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 710 } 711 712 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 713 llvm::Function *F, 714 const CGFunctionInfo &FI) { 715 SetLLVMFunctionAttributes(D, FI, F); 716 SetLLVMFunctionAttributesForDefinition(D, F); 717 718 F->setLinkage(llvm::Function::InternalLinkage); 719 720 SetCommonAttributes(D, F); 721 } 722 723 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 724 llvm::Function *F, 725 bool IsIncompleteFunction) { 726 if (unsigned IID = F->getIntrinsicID()) { 727 // If this is an intrinsic function, set the function's attributes 728 // to the intrinsic's attributes. 729 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 730 (llvm::Intrinsic::ID)IID)); 731 return; 732 } 733 734 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 735 736 if (!IsIncompleteFunction) 737 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 738 739 if (getCXXABI().HasThisReturn(GD)) { 740 assert(!F->arg_empty() && 741 F->arg_begin()->getType() 742 ->canLosslesslyBitCastTo(F->getReturnType()) && 743 "unexpected this return"); 744 F->addAttribute(1, llvm::Attribute::Returned); 745 } 746 747 // Only a few attributes are set on declarations; these may later be 748 // overridden by a definition. 749 750 if (FD->hasAttr<DLLImportAttr>()) { 751 F->setLinkage(llvm::Function::ExternalLinkage); 752 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 753 } else if (FD->hasAttr<WeakAttr>() || 754 FD->isWeakImported()) { 755 // "extern_weak" is overloaded in LLVM; we probably should have 756 // separate linkage types for this. 757 F->setLinkage(llvm::Function::ExternalWeakLinkage); 758 } else { 759 F->setLinkage(llvm::Function::ExternalLinkage); 760 if (FD->hasAttr<DLLExportAttr>()) 761 F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 762 763 LinkageInfo LV = FD->getLinkageAndVisibility(); 764 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 765 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 766 } 767 } 768 769 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 770 F->setSection(SA->getName()); 771 772 // A replaceable global allocation function does not act like a builtin by 773 // default, only if it is invoked by a new-expression or delete-expression. 774 if (FD->isReplaceableGlobalAllocationFunction()) 775 F->addAttribute(llvm::AttributeSet::FunctionIndex, 776 llvm::Attribute::NoBuiltin); 777 } 778 779 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 780 assert(!GV->isDeclaration() && 781 "Only globals with definition can force usage."); 782 LLVMUsed.push_back(GV); 783 } 784 785 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 786 assert(!GV->isDeclaration() && 787 "Only globals with definition can force usage."); 788 LLVMCompilerUsed.push_back(GV); 789 } 790 791 static void emitUsed(CodeGenModule &CGM, StringRef Name, 792 std::vector<llvm::WeakVH> &List) { 793 // Don't create llvm.used if there is no need. 794 if (List.empty()) 795 return; 796 797 // Convert List to what ConstantArray needs. 798 SmallVector<llvm::Constant*, 8> UsedArray; 799 UsedArray.resize(List.size()); 800 for (unsigned i = 0, e = List.size(); i != e; ++i) { 801 UsedArray[i] = 802 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 803 CGM.Int8PtrTy); 804 } 805 806 if (UsedArray.empty()) 807 return; 808 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 809 810 llvm::GlobalVariable *GV = 811 new llvm::GlobalVariable(CGM.getModule(), ATy, false, 812 llvm::GlobalValue::AppendingLinkage, 813 llvm::ConstantArray::get(ATy, UsedArray), 814 Name); 815 816 GV->setSection("llvm.metadata"); 817 } 818 819 void CodeGenModule::emitLLVMUsed() { 820 emitUsed(*this, "llvm.used", LLVMUsed); 821 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 822 } 823 824 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 825 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 826 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 827 } 828 829 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 830 llvm::SmallString<32> Opt; 831 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 832 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 833 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 834 } 835 836 void CodeGenModule::AddDependentLib(StringRef Lib) { 837 llvm::SmallString<24> Opt; 838 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 839 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 840 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 841 } 842 843 /// \brief Add link options implied by the given module, including modules 844 /// it depends on, using a postorder walk. 845 static void addLinkOptionsPostorder(CodeGenModule &CGM, 846 Module *Mod, 847 SmallVectorImpl<llvm::Value *> &Metadata, 848 llvm::SmallPtrSet<Module *, 16> &Visited) { 849 // Import this module's parent. 850 if (Mod->Parent && Visited.insert(Mod->Parent)) { 851 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 852 } 853 854 // Import this module's dependencies. 855 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 856 if (Visited.insert(Mod->Imports[I-1])) 857 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 858 } 859 860 // Add linker options to link against the libraries/frameworks 861 // described by this module. 862 llvm::LLVMContext &Context = CGM.getLLVMContext(); 863 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 864 // Link against a framework. Frameworks are currently Darwin only, so we 865 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 866 if (Mod->LinkLibraries[I-1].IsFramework) { 867 llvm::Value *Args[2] = { 868 llvm::MDString::get(Context, "-framework"), 869 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 870 }; 871 872 Metadata.push_back(llvm::MDNode::get(Context, Args)); 873 continue; 874 } 875 876 // Link against a library. 877 llvm::SmallString<24> Opt; 878 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 879 Mod->LinkLibraries[I-1].Library, Opt); 880 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 881 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 882 } 883 } 884 885 void CodeGenModule::EmitModuleLinkOptions() { 886 // Collect the set of all of the modules we want to visit to emit link 887 // options, which is essentially the imported modules and all of their 888 // non-explicit child modules. 889 llvm::SetVector<clang::Module *> LinkModules; 890 llvm::SmallPtrSet<clang::Module *, 16> Visited; 891 SmallVector<clang::Module *, 16> Stack; 892 893 // Seed the stack with imported modules. 894 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 895 MEnd = ImportedModules.end(); 896 M != MEnd; ++M) { 897 if (Visited.insert(*M)) 898 Stack.push_back(*M); 899 } 900 901 // Find all of the modules to import, making a little effort to prune 902 // non-leaf modules. 903 while (!Stack.empty()) { 904 clang::Module *Mod = Stack.pop_back_val(); 905 906 bool AnyChildren = false; 907 908 // Visit the submodules of this module. 909 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 910 SubEnd = Mod->submodule_end(); 911 Sub != SubEnd; ++Sub) { 912 // Skip explicit children; they need to be explicitly imported to be 913 // linked against. 914 if ((*Sub)->IsExplicit) 915 continue; 916 917 if (Visited.insert(*Sub)) { 918 Stack.push_back(*Sub); 919 AnyChildren = true; 920 } 921 } 922 923 // We didn't find any children, so add this module to the list of 924 // modules to link against. 925 if (!AnyChildren) { 926 LinkModules.insert(Mod); 927 } 928 } 929 930 // Add link options for all of the imported modules in reverse topological 931 // order. We don't do anything to try to order import link flags with respect 932 // to linker options inserted by things like #pragma comment(). 933 SmallVector<llvm::Value *, 16> MetadataArgs; 934 Visited.clear(); 935 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 936 MEnd = LinkModules.end(); 937 M != MEnd; ++M) { 938 if (Visited.insert(*M)) 939 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 940 } 941 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 942 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 943 944 // Add the linker options metadata flag. 945 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 946 llvm::MDNode::get(getLLVMContext(), 947 LinkerOptionsMetadata)); 948 } 949 950 void CodeGenModule::EmitDeferred() { 951 // Emit code for any potentially referenced deferred decls. Since a 952 // previously unused static decl may become used during the generation of code 953 // for a static function, iterate until no changes are made. 954 955 while (true) { 956 if (!DeferredVTables.empty()) { 957 EmitDeferredVTables(); 958 959 // Emitting a v-table doesn't directly cause more v-tables to 960 // become deferred, although it can cause functions to be 961 // emitted that then need those v-tables. 962 assert(DeferredVTables.empty()); 963 } 964 965 // Stop if we're out of both deferred v-tables and deferred declarations. 966 if (DeferredDeclsToEmit.empty()) break; 967 968 DeferredGlobal &G = DeferredDeclsToEmit.back(); 969 GlobalDecl D = G.GD; 970 llvm::GlobalValue *GV = G.GV; 971 DeferredDeclsToEmit.pop_back(); 972 973 assert(GV == GetGlobalValue(getMangledName(D))); 974 // Check to see if we've already emitted this. This is necessary 975 // for a couple of reasons: first, decls can end up in the 976 // deferred-decls queue multiple times, and second, decls can end 977 // up with definitions in unusual ways (e.g. by an extern inline 978 // function acquiring a strong function redefinition). Just 979 // ignore these cases. 980 if(!GV->isDeclaration()) 981 continue; 982 983 // Otherwise, emit the definition and move on to the next one. 984 EmitGlobalDefinition(D, GV); 985 } 986 } 987 988 void CodeGenModule::EmitGlobalAnnotations() { 989 if (Annotations.empty()) 990 return; 991 992 // Create a new global variable for the ConstantStruct in the Module. 993 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 994 Annotations[0]->getType(), Annotations.size()), Annotations); 995 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 996 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 997 "llvm.global.annotations"); 998 gv->setSection(AnnotationSection); 999 } 1000 1001 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1002 llvm::Constant *&AStr = AnnotationStrings[Str]; 1003 if (AStr) 1004 return AStr; 1005 1006 // Not found yet, create a new global. 1007 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1008 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 1009 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 1010 gv->setSection(AnnotationSection); 1011 gv->setUnnamedAddr(true); 1012 AStr = gv; 1013 return gv; 1014 } 1015 1016 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1017 SourceManager &SM = getContext().getSourceManager(); 1018 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1019 if (PLoc.isValid()) 1020 return EmitAnnotationString(PLoc.getFilename()); 1021 return EmitAnnotationString(SM.getBufferName(Loc)); 1022 } 1023 1024 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1025 SourceManager &SM = getContext().getSourceManager(); 1026 PresumedLoc PLoc = SM.getPresumedLoc(L); 1027 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1028 SM.getExpansionLineNumber(L); 1029 return llvm::ConstantInt::get(Int32Ty, LineNo); 1030 } 1031 1032 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1033 const AnnotateAttr *AA, 1034 SourceLocation L) { 1035 // Get the globals for file name, annotation, and the line number. 1036 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1037 *UnitGV = EmitAnnotationUnit(L), 1038 *LineNoCst = EmitAnnotationLineNo(L); 1039 1040 // Create the ConstantStruct for the global annotation. 1041 llvm::Constant *Fields[4] = { 1042 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1043 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1044 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1045 LineNoCst 1046 }; 1047 return llvm::ConstantStruct::getAnon(Fields); 1048 } 1049 1050 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1051 llvm::GlobalValue *GV) { 1052 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1053 // Get the struct elements for these annotations. 1054 for (specific_attr_iterator<AnnotateAttr> 1055 ai = D->specific_attr_begin<AnnotateAttr>(), 1056 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1057 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 1058 } 1059 1060 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1061 // Never defer when EmitAllDecls is specified. 1062 if (LangOpts.EmitAllDecls) 1063 return false; 1064 1065 return !getContext().DeclMustBeEmitted(Global); 1066 } 1067 1068 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1069 const CXXUuidofExpr* E) { 1070 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1071 // well-formed. 1072 StringRef Uuid = E->getUuidAsStringRef(Context); 1073 std::string Name = "_GUID_" + Uuid.lower(); 1074 std::replace(Name.begin(), Name.end(), '-', '_'); 1075 1076 // Look for an existing global. 1077 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1078 return GV; 1079 1080 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1081 assert(Init && "failed to initialize as constant"); 1082 1083 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1084 getModule(), Init->getType(), 1085 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1086 return GV; 1087 } 1088 1089 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1090 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1091 assert(AA && "No alias?"); 1092 1093 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1094 1095 // See if there is already something with the target's name in the module. 1096 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1097 if (Entry) { 1098 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1099 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1100 } 1101 1102 llvm::Constant *Aliasee; 1103 if (isa<llvm::FunctionType>(DeclTy)) 1104 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1105 GlobalDecl(cast<FunctionDecl>(VD)), 1106 /*ForVTable=*/false); 1107 else 1108 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1109 llvm::PointerType::getUnqual(DeclTy), 0); 1110 1111 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1112 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1113 WeakRefReferences.insert(F); 1114 1115 return Aliasee; 1116 } 1117 1118 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1119 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1120 1121 // Weak references don't produce any output by themselves. 1122 if (Global->hasAttr<WeakRefAttr>()) 1123 return; 1124 1125 // If this is an alias definition (which otherwise looks like a declaration) 1126 // emit it now. 1127 if (Global->hasAttr<AliasAttr>()) 1128 return EmitAliasDefinition(GD); 1129 1130 // If this is CUDA, be selective about which declarations we emit. 1131 if (LangOpts.CUDA) { 1132 if (CodeGenOpts.CUDAIsDevice) { 1133 if (!Global->hasAttr<CUDADeviceAttr>() && 1134 !Global->hasAttr<CUDAGlobalAttr>() && 1135 !Global->hasAttr<CUDAConstantAttr>() && 1136 !Global->hasAttr<CUDASharedAttr>()) 1137 return; 1138 } else { 1139 if (!Global->hasAttr<CUDAHostAttr>() && ( 1140 Global->hasAttr<CUDADeviceAttr>() || 1141 Global->hasAttr<CUDAConstantAttr>() || 1142 Global->hasAttr<CUDASharedAttr>())) 1143 return; 1144 } 1145 } 1146 1147 // Ignore declarations, they will be emitted on their first use. 1148 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1149 // Forward declarations are emitted lazily on first use. 1150 if (!FD->doesThisDeclarationHaveABody()) { 1151 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1152 return; 1153 1154 const FunctionDecl *InlineDefinition = 0; 1155 FD->getBody(InlineDefinition); 1156 1157 StringRef MangledName = getMangledName(GD); 1158 DeferredDecls.erase(MangledName); 1159 EmitGlobalDefinition(InlineDefinition); 1160 return; 1161 } 1162 } else { 1163 const VarDecl *VD = cast<VarDecl>(Global); 1164 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1165 1166 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1167 return; 1168 } 1169 1170 // Defer code generation when possible if this is a static definition, inline 1171 // function etc. These we only want to emit if they are used. 1172 if (!MayDeferGeneration(Global)) { 1173 // Emit the definition if it can't be deferred. 1174 EmitGlobalDefinition(GD); 1175 return; 1176 } 1177 1178 // If we're deferring emission of a C++ variable with an 1179 // initializer, remember the order in which it appeared in the file. 1180 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1181 cast<VarDecl>(Global)->hasInit()) { 1182 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1183 CXXGlobalInits.push_back(0); 1184 } 1185 1186 // If the value has already been used, add it directly to the 1187 // DeferredDeclsToEmit list. 1188 StringRef MangledName = getMangledName(GD); 1189 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1190 addDeferredDeclToEmit(GV, GD); 1191 else { 1192 // Otherwise, remember that we saw a deferred decl with this name. The 1193 // first use of the mangled name will cause it to move into 1194 // DeferredDeclsToEmit. 1195 DeferredDecls[MangledName] = GD; 1196 } 1197 } 1198 1199 namespace { 1200 struct FunctionIsDirectlyRecursive : 1201 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1202 const StringRef Name; 1203 const Builtin::Context &BI; 1204 bool Result; 1205 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1206 Name(N), BI(C), Result(false) { 1207 } 1208 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1209 1210 bool TraverseCallExpr(CallExpr *E) { 1211 const FunctionDecl *FD = E->getDirectCallee(); 1212 if (!FD) 1213 return true; 1214 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1215 if (Attr && Name == Attr->getLabel()) { 1216 Result = true; 1217 return false; 1218 } 1219 unsigned BuiltinID = FD->getBuiltinID(); 1220 if (!BuiltinID) 1221 return true; 1222 StringRef BuiltinName = BI.GetName(BuiltinID); 1223 if (BuiltinName.startswith("__builtin_") && 1224 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1225 Result = true; 1226 return false; 1227 } 1228 return true; 1229 } 1230 }; 1231 } 1232 1233 // isTriviallyRecursive - Check if this function calls another 1234 // decl that, because of the asm attribute or the other decl being a builtin, 1235 // ends up pointing to itself. 1236 bool 1237 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1238 StringRef Name; 1239 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1240 // asm labels are a special kind of mangling we have to support. 1241 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1242 if (!Attr) 1243 return false; 1244 Name = Attr->getLabel(); 1245 } else { 1246 Name = FD->getName(); 1247 } 1248 1249 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1250 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1251 return Walker.Result; 1252 } 1253 1254 bool 1255 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1256 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1257 return true; 1258 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1259 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1260 return false; 1261 // PR9614. Avoid cases where the source code is lying to us. An available 1262 // externally function should have an equivalent function somewhere else, 1263 // but a function that calls itself is clearly not equivalent to the real 1264 // implementation. 1265 // This happens in glibc's btowc and in some configure checks. 1266 return !isTriviallyRecursive(F); 1267 } 1268 1269 /// If the type for the method's class was generated by 1270 /// CGDebugInfo::createContextChain(), the cache contains only a 1271 /// limited DIType without any declarations. Since EmitFunctionStart() 1272 /// needs to find the canonical declaration for each method, we need 1273 /// to construct the complete type prior to emitting the method. 1274 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1275 if (!D->isInstance()) 1276 return; 1277 1278 if (CGDebugInfo *DI = getModuleDebugInfo()) 1279 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1280 const PointerType *ThisPtr = 1281 cast<PointerType>(D->getThisType(getContext())); 1282 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1283 } 1284 } 1285 1286 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1287 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1288 1289 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1290 Context.getSourceManager(), 1291 "Generating code for declaration"); 1292 1293 if (isa<FunctionDecl>(D)) { 1294 // At -O0, don't generate IR for functions with available_externally 1295 // linkage. 1296 if (!shouldEmitFunction(GD)) 1297 return; 1298 1299 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1300 CompleteDIClassType(Method); 1301 // Make sure to emit the definition(s) before we emit the thunks. 1302 // This is necessary for the generation of certain thunks. 1303 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1304 EmitCXXConstructor(CD, GD.getCtorType()); 1305 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1306 EmitCXXDestructor(DD, GD.getDtorType()); 1307 else 1308 EmitGlobalFunctionDefinition(GD, GV); 1309 1310 if (Method->isVirtual()) 1311 getVTables().EmitThunks(GD); 1312 1313 return; 1314 } 1315 1316 return EmitGlobalFunctionDefinition(GD, GV); 1317 } 1318 1319 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1320 return EmitGlobalVarDefinition(VD); 1321 1322 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1323 } 1324 1325 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1326 /// module, create and return an llvm Function with the specified type. If there 1327 /// is something in the module with the specified name, return it potentially 1328 /// bitcasted to the right type. 1329 /// 1330 /// If D is non-null, it specifies a decl that correspond to this. This is used 1331 /// to set the attributes on the function when it is first created. 1332 llvm::Constant * 1333 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1334 llvm::Type *Ty, 1335 GlobalDecl GD, bool ForVTable, 1336 bool DontDefer, 1337 llvm::AttributeSet ExtraAttrs) { 1338 const Decl *D = GD.getDecl(); 1339 1340 // Lookup the entry, lazily creating it if necessary. 1341 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1342 if (Entry) { 1343 if (WeakRefReferences.erase(Entry)) { 1344 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1345 if (FD && !FD->hasAttr<WeakAttr>()) 1346 Entry->setLinkage(llvm::Function::ExternalLinkage); 1347 } 1348 1349 if (Entry->getType()->getElementType() == Ty) 1350 return Entry; 1351 1352 // Make sure the result is of the correct type. 1353 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1354 } 1355 1356 // This function doesn't have a complete type (for example, the return 1357 // type is an incomplete struct). Use a fake type instead, and make 1358 // sure not to try to set attributes. 1359 bool IsIncompleteFunction = false; 1360 1361 llvm::FunctionType *FTy; 1362 if (isa<llvm::FunctionType>(Ty)) { 1363 FTy = cast<llvm::FunctionType>(Ty); 1364 } else { 1365 FTy = llvm::FunctionType::get(VoidTy, false); 1366 IsIncompleteFunction = true; 1367 } 1368 1369 llvm::Function *F = llvm::Function::Create(FTy, 1370 llvm::Function::ExternalLinkage, 1371 MangledName, &getModule()); 1372 assert(F->getName() == MangledName && "name was uniqued!"); 1373 if (D) 1374 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1375 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1376 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1377 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1378 llvm::AttributeSet::get(VMContext, 1379 llvm::AttributeSet::FunctionIndex, 1380 B)); 1381 } 1382 1383 if (!DontDefer) { 1384 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1385 // each other bottoming out with the base dtor. Therefore we emit non-base 1386 // dtors on usage, even if there is no dtor definition in the TU. 1387 if (D && isa<CXXDestructorDecl>(D) && 1388 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1389 GD.getDtorType())) 1390 addDeferredDeclToEmit(F, GD); 1391 1392 // This is the first use or definition of a mangled name. If there is a 1393 // deferred decl with this name, remember that we need to emit it at the end 1394 // of the file. 1395 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1396 if (DDI != DeferredDecls.end()) { 1397 // Move the potentially referenced deferred decl to the 1398 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1399 // don't need it anymore). 1400 addDeferredDeclToEmit(F, DDI->second); 1401 DeferredDecls.erase(DDI); 1402 1403 // Otherwise, if this is a sized deallocation function, emit a weak 1404 // definition 1405 // for it at the end of the translation unit. 1406 } else if (D && cast<FunctionDecl>(D) 1407 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1408 addDeferredDeclToEmit(F, GD); 1409 1410 // Otherwise, there are cases we have to worry about where we're 1411 // using a declaration for which we must emit a definition but where 1412 // we might not find a top-level definition: 1413 // - member functions defined inline in their classes 1414 // - friend functions defined inline in some class 1415 // - special member functions with implicit definitions 1416 // If we ever change our AST traversal to walk into class methods, 1417 // this will be unnecessary. 1418 // 1419 // We also don't emit a definition for a function if it's going to be an 1420 // entry 1421 // in a vtable, unless it's already marked as used. 1422 } else if (getLangOpts().CPlusPlus && D) { 1423 // Look for a declaration that's lexically in a record. 1424 const FunctionDecl *FD = cast<FunctionDecl>(D); 1425 FD = FD->getMostRecentDecl(); 1426 do { 1427 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1428 if (FD->isImplicit() && !ForVTable) { 1429 assert(FD->isUsed() && 1430 "Sema didn't mark implicit function as used!"); 1431 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1432 break; 1433 } else if (FD->doesThisDeclarationHaveABody()) { 1434 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1435 break; 1436 } 1437 } 1438 FD = FD->getPreviousDecl(); 1439 } while (FD); 1440 } 1441 } 1442 1443 // Make sure the result is of the requested type. 1444 if (!IsIncompleteFunction) { 1445 assert(F->getType()->getElementType() == Ty); 1446 return F; 1447 } 1448 1449 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1450 return llvm::ConstantExpr::getBitCast(F, PTy); 1451 } 1452 1453 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1454 /// non-null, then this function will use the specified type if it has to 1455 /// create it (this occurs when we see a definition of the function). 1456 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1457 llvm::Type *Ty, 1458 bool ForVTable, 1459 bool DontDefer) { 1460 // If there was no specific requested type, just convert it now. 1461 if (!Ty) 1462 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1463 1464 StringRef MangledName = getMangledName(GD); 1465 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1466 } 1467 1468 /// CreateRuntimeFunction - Create a new runtime function with the specified 1469 /// type and name. 1470 llvm::Constant * 1471 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1472 StringRef Name, 1473 llvm::AttributeSet ExtraAttrs) { 1474 llvm::Constant *C = 1475 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1476 /*DontDefer=*/false, ExtraAttrs); 1477 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1478 if (F->empty()) 1479 F->setCallingConv(getRuntimeCC()); 1480 return C; 1481 } 1482 1483 /// isTypeConstant - Determine whether an object of this type can be emitted 1484 /// as a constant. 1485 /// 1486 /// If ExcludeCtor is true, the duration when the object's constructor runs 1487 /// will not be considered. The caller will need to verify that the object is 1488 /// not written to during its construction. 1489 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1490 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1491 return false; 1492 1493 if (Context.getLangOpts().CPlusPlus) { 1494 if (const CXXRecordDecl *Record 1495 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1496 return ExcludeCtor && !Record->hasMutableFields() && 1497 Record->hasTrivialDestructor(); 1498 } 1499 1500 return true; 1501 } 1502 1503 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1504 /// create and return an llvm GlobalVariable with the specified type. If there 1505 /// is something in the module with the specified name, return it potentially 1506 /// bitcasted to the right type. 1507 /// 1508 /// If D is non-null, it specifies a decl that correspond to this. This is used 1509 /// to set the attributes on the global when it is first created. 1510 llvm::Constant * 1511 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1512 llvm::PointerType *Ty, 1513 const VarDecl *D, 1514 bool UnnamedAddr) { 1515 // Lookup the entry, lazily creating it if necessary. 1516 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1517 if (Entry) { 1518 if (WeakRefReferences.erase(Entry)) { 1519 if (D && !D->hasAttr<WeakAttr>()) 1520 Entry->setLinkage(llvm::Function::ExternalLinkage); 1521 } 1522 1523 if (UnnamedAddr) 1524 Entry->setUnnamedAddr(true); 1525 1526 if (Entry->getType() == Ty) 1527 return Entry; 1528 1529 // Make sure the result is of the correct type. 1530 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1531 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1532 1533 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1534 } 1535 1536 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1537 llvm::GlobalVariable *GV = 1538 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1539 llvm::GlobalValue::ExternalLinkage, 1540 0, MangledName, 0, 1541 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1542 1543 // This is the first use or definition of a mangled name. If there is a 1544 // deferred decl with this name, remember that we need to emit it at the end 1545 // of the file. 1546 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1547 if (DDI != DeferredDecls.end()) { 1548 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1549 // list, and remove it from DeferredDecls (since we don't need it anymore). 1550 addDeferredDeclToEmit(GV, DDI->second); 1551 DeferredDecls.erase(DDI); 1552 } 1553 1554 // Handle things which are present even on external declarations. 1555 if (D) { 1556 // FIXME: This code is overly simple and should be merged with other global 1557 // handling. 1558 GV->setConstant(isTypeConstant(D->getType(), false)); 1559 1560 // Set linkage and visibility in case we never see a definition. 1561 LinkageInfo LV = D->getLinkageAndVisibility(); 1562 if (LV.getLinkage() != ExternalLinkage) { 1563 // Don't set internal linkage on declarations. 1564 } else { 1565 if (D->hasAttr<DLLImportAttr>()) { 1566 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1567 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1568 } else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1569 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1570 1571 // Set visibility on a declaration only if it's explicit. 1572 if (LV.isVisibilityExplicit()) 1573 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1574 } 1575 1576 if (D->getTLSKind()) { 1577 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1578 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1579 setTLSMode(GV, *D); 1580 } 1581 1582 // If required by the ABI, treat declarations of static data members with 1583 // inline initializers as definitions. 1584 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1585 D->isStaticDataMember() && D->hasInit() && 1586 !D->isThisDeclarationADefinition()) 1587 EmitGlobalVarDefinition(D); 1588 } 1589 1590 if (AddrSpace != Ty->getAddressSpace()) 1591 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1592 1593 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1594 D->getLanguageLinkage() == CLanguageLinkage && 1595 D->getType().isConstant(Context) && 1596 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1597 GV->setSection(".cp.rodata"); 1598 1599 return GV; 1600 } 1601 1602 1603 llvm::GlobalVariable * 1604 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1605 llvm::Type *Ty, 1606 llvm::GlobalValue::LinkageTypes Linkage) { 1607 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1608 llvm::GlobalVariable *OldGV = 0; 1609 1610 1611 if (GV) { 1612 // Check if the variable has the right type. 1613 if (GV->getType()->getElementType() == Ty) 1614 return GV; 1615 1616 // Because C++ name mangling, the only way we can end up with an already 1617 // existing global with the same name is if it has been declared extern "C". 1618 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1619 OldGV = GV; 1620 } 1621 1622 // Create a new variable. 1623 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1624 Linkage, 0, Name); 1625 1626 if (OldGV) { 1627 // Replace occurrences of the old variable if needed. 1628 GV->takeName(OldGV); 1629 1630 if (!OldGV->use_empty()) { 1631 llvm::Constant *NewPtrForOldDecl = 1632 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1633 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1634 } 1635 1636 OldGV->eraseFromParent(); 1637 } 1638 1639 return GV; 1640 } 1641 1642 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1643 /// given global variable. If Ty is non-null and if the global doesn't exist, 1644 /// then it will be created with the specified type instead of whatever the 1645 /// normal requested type would be. 1646 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1647 llvm::Type *Ty) { 1648 assert(D->hasGlobalStorage() && "Not a global variable"); 1649 QualType ASTTy = D->getType(); 1650 if (Ty == 0) 1651 Ty = getTypes().ConvertTypeForMem(ASTTy); 1652 1653 llvm::PointerType *PTy = 1654 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1655 1656 StringRef MangledName = getMangledName(D); 1657 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1658 } 1659 1660 /// CreateRuntimeVariable - Create a new runtime global variable with the 1661 /// specified type and name. 1662 llvm::Constant * 1663 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1664 StringRef Name) { 1665 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1666 true); 1667 } 1668 1669 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1670 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1671 1672 if (MayDeferGeneration(D)) { 1673 // If we have not seen a reference to this variable yet, place it 1674 // into the deferred declarations table to be emitted if needed 1675 // later. 1676 StringRef MangledName = getMangledName(D); 1677 if (!GetGlobalValue(MangledName)) { 1678 DeferredDecls[MangledName] = D; 1679 return; 1680 } 1681 } 1682 1683 // The tentative definition is the only definition. 1684 EmitGlobalVarDefinition(D); 1685 } 1686 1687 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1688 return Context.toCharUnitsFromBits( 1689 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1690 } 1691 1692 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1693 unsigned AddrSpace) { 1694 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1695 if (D->hasAttr<CUDAConstantAttr>()) 1696 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1697 else if (D->hasAttr<CUDASharedAttr>()) 1698 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1699 else 1700 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1701 } 1702 1703 return AddrSpace; 1704 } 1705 1706 template<typename SomeDecl> 1707 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1708 llvm::GlobalValue *GV) { 1709 if (!getLangOpts().CPlusPlus) 1710 return; 1711 1712 // Must have 'used' attribute, or else inline assembly can't rely on 1713 // the name existing. 1714 if (!D->template hasAttr<UsedAttr>()) 1715 return; 1716 1717 // Must have internal linkage and an ordinary name. 1718 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1719 return; 1720 1721 // Must be in an extern "C" context. Entities declared directly within 1722 // a record are not extern "C" even if the record is in such a context. 1723 const SomeDecl *First = D->getFirstDecl(); 1724 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1725 return; 1726 1727 // OK, this is an internal linkage entity inside an extern "C" linkage 1728 // specification. Make a note of that so we can give it the "expected" 1729 // mangled name if nothing else is using that name. 1730 std::pair<StaticExternCMap::iterator, bool> R = 1731 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1732 1733 // If we have multiple internal linkage entities with the same name 1734 // in extern "C" regions, none of them gets that name. 1735 if (!R.second) 1736 R.first->second = 0; 1737 } 1738 1739 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1740 llvm::Constant *Init = 0; 1741 QualType ASTTy = D->getType(); 1742 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1743 bool NeedsGlobalCtor = false; 1744 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1745 1746 const VarDecl *InitDecl; 1747 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1748 1749 if (!InitExpr) { 1750 // This is a tentative definition; tentative definitions are 1751 // implicitly initialized with { 0 }. 1752 // 1753 // Note that tentative definitions are only emitted at the end of 1754 // a translation unit, so they should never have incomplete 1755 // type. In addition, EmitTentativeDefinition makes sure that we 1756 // never attempt to emit a tentative definition if a real one 1757 // exists. A use may still exists, however, so we still may need 1758 // to do a RAUW. 1759 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1760 Init = EmitNullConstant(D->getType()); 1761 } else { 1762 initializedGlobalDecl = GlobalDecl(D); 1763 Init = EmitConstantInit(*InitDecl); 1764 1765 if (!Init) { 1766 QualType T = InitExpr->getType(); 1767 if (D->getType()->isReferenceType()) 1768 T = D->getType(); 1769 1770 if (getLangOpts().CPlusPlus) { 1771 Init = EmitNullConstant(T); 1772 NeedsGlobalCtor = true; 1773 } else { 1774 ErrorUnsupported(D, "static initializer"); 1775 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1776 } 1777 } else { 1778 // We don't need an initializer, so remove the entry for the delayed 1779 // initializer position (just in case this entry was delayed) if we 1780 // also don't need to register a destructor. 1781 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1782 DelayedCXXInitPosition.erase(D); 1783 } 1784 } 1785 1786 llvm::Type* InitType = Init->getType(); 1787 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1788 1789 // Strip off a bitcast if we got one back. 1790 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1791 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1792 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1793 // All zero index gep. 1794 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1795 Entry = CE->getOperand(0); 1796 } 1797 1798 // Entry is now either a Function or GlobalVariable. 1799 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1800 1801 // We have a definition after a declaration with the wrong type. 1802 // We must make a new GlobalVariable* and update everything that used OldGV 1803 // (a declaration or tentative definition) with the new GlobalVariable* 1804 // (which will be a definition). 1805 // 1806 // This happens if there is a prototype for a global (e.g. 1807 // "extern int x[];") and then a definition of a different type (e.g. 1808 // "int x[10];"). This also happens when an initializer has a different type 1809 // from the type of the global (this happens with unions). 1810 if (GV == 0 || 1811 GV->getType()->getElementType() != InitType || 1812 GV->getType()->getAddressSpace() != 1813 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1814 1815 // Move the old entry aside so that we'll create a new one. 1816 Entry->setName(StringRef()); 1817 1818 // Make a new global with the correct type, this is now guaranteed to work. 1819 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1820 1821 // Replace all uses of the old global with the new global 1822 llvm::Constant *NewPtrForOldDecl = 1823 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1824 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1825 1826 // Erase the old global, since it is no longer used. 1827 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1828 } 1829 1830 MaybeHandleStaticInExternC(D, GV); 1831 1832 if (D->hasAttr<AnnotateAttr>()) 1833 AddGlobalAnnotations(D, GV); 1834 1835 GV->setInitializer(Init); 1836 1837 // If it is safe to mark the global 'constant', do so now. 1838 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1839 isTypeConstant(D->getType(), true)); 1840 1841 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1842 1843 // Set the llvm linkage type as appropriate. 1844 llvm::GlobalValue::LinkageTypes Linkage = 1845 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1846 GV->setLinkage(Linkage); 1847 if (D->hasAttr<DLLImportAttr>()) 1848 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1849 else if (D->hasAttr<DLLExportAttr>()) 1850 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1851 1852 // If required by the ABI, give definitions of static data members with inline 1853 // initializers linkonce_odr linkage. 1854 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1855 D->isStaticDataMember() && InitExpr && 1856 !InitDecl->isThisDeclarationADefinition()) 1857 GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage); 1858 1859 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1860 // common vars aren't constant even if declared const. 1861 GV->setConstant(false); 1862 1863 SetCommonAttributes(D, GV); 1864 1865 // Emit the initializer function if necessary. 1866 if (NeedsGlobalCtor || NeedsGlobalDtor) 1867 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1868 1869 // If we are compiling with ASan, add metadata indicating dynamically 1870 // initialized globals. 1871 if (SanOpts.Address && NeedsGlobalCtor) { 1872 llvm::Module &M = getModule(); 1873 1874 llvm::NamedMDNode *DynamicInitializers = 1875 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1876 llvm::Value *GlobalToAdd[] = { GV }; 1877 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1878 DynamicInitializers->addOperand(ThisGlobal); 1879 } 1880 1881 // Emit global variable debug information. 1882 if (CGDebugInfo *DI = getModuleDebugInfo()) 1883 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1884 DI->EmitGlobalVariable(GV, D); 1885 } 1886 1887 llvm::GlobalValue::LinkageTypes 1888 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1889 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1890 if (Linkage == GVA_Internal) 1891 return llvm::Function::InternalLinkage; 1892 else if (D->hasAttr<DLLImportAttr>()) 1893 return llvm::Function::ExternalLinkage; 1894 else if (D->hasAttr<DLLExportAttr>()) 1895 return llvm::Function::ExternalLinkage; 1896 else if (D->hasAttr<SelectAnyAttr>()) { 1897 // selectany symbols are externally visible, so use weak instead of 1898 // linkonce. MSVC optimizes away references to const selectany globals, so 1899 // all definitions should be the same and ODR linkage should be used. 1900 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1901 return llvm::GlobalVariable::WeakODRLinkage; 1902 } else if (D->hasAttr<WeakAttr>()) { 1903 if (isConstant) 1904 return llvm::GlobalVariable::WeakODRLinkage; 1905 else 1906 return llvm::GlobalVariable::WeakAnyLinkage; 1907 } else if (Linkage == GVA_TemplateInstantiation || 1908 Linkage == GVA_ExplicitTemplateInstantiation) 1909 return llvm::GlobalVariable::WeakODRLinkage; 1910 else if (!getLangOpts().CPlusPlus && 1911 ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) || 1912 D->hasAttr<CommonAttr>()) && 1913 !D->hasExternalStorage() && !D->getInit() && 1914 !D->hasAttr<SectionAttr>() && !D->getTLSKind() && 1915 !D->hasAttr<WeakImportAttr>()) { 1916 // Thread local vars aren't considered common linkage. 1917 return llvm::GlobalVariable::CommonLinkage; 1918 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1919 getTarget().getTriple().isMacOSX()) 1920 // On Darwin, the backing variable for a C++11 thread_local variable always 1921 // has internal linkage; all accesses should just be calls to the 1922 // Itanium-specified entry point, which has the normal linkage of the 1923 // variable. 1924 return llvm::GlobalValue::InternalLinkage; 1925 return llvm::GlobalVariable::ExternalLinkage; 1926 } 1927 1928 /// Replace the uses of a function that was declared with a non-proto type. 1929 /// We want to silently drop extra arguments from call sites 1930 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1931 llvm::Function *newFn) { 1932 // Fast path. 1933 if (old->use_empty()) return; 1934 1935 llvm::Type *newRetTy = newFn->getReturnType(); 1936 SmallVector<llvm::Value*, 4> newArgs; 1937 1938 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1939 ui != ue; ) { 1940 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1941 llvm::User *user = *use; 1942 1943 // Recognize and replace uses of bitcasts. Most calls to 1944 // unprototyped functions will use bitcasts. 1945 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1946 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1947 replaceUsesOfNonProtoConstant(bitcast, newFn); 1948 continue; 1949 } 1950 1951 // Recognize calls to the function. 1952 llvm::CallSite callSite(user); 1953 if (!callSite) continue; 1954 if (!callSite.isCallee(use)) continue; 1955 1956 // If the return types don't match exactly, then we can't 1957 // transform this call unless it's dead. 1958 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1959 continue; 1960 1961 // Get the call site's attribute list. 1962 SmallVector<llvm::AttributeSet, 8> newAttrs; 1963 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1964 1965 // Collect any return attributes from the call. 1966 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 1967 newAttrs.push_back( 1968 llvm::AttributeSet::get(newFn->getContext(), 1969 oldAttrs.getRetAttributes())); 1970 1971 // If the function was passed too few arguments, don't transform. 1972 unsigned newNumArgs = newFn->arg_size(); 1973 if (callSite.arg_size() < newNumArgs) continue; 1974 1975 // If extra arguments were passed, we silently drop them. 1976 // If any of the types mismatch, we don't transform. 1977 unsigned argNo = 0; 1978 bool dontTransform = false; 1979 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 1980 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 1981 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 1982 dontTransform = true; 1983 break; 1984 } 1985 1986 // Add any parameter attributes. 1987 if (oldAttrs.hasAttributes(argNo + 1)) 1988 newAttrs. 1989 push_back(llvm:: 1990 AttributeSet::get(newFn->getContext(), 1991 oldAttrs.getParamAttributes(argNo + 1))); 1992 } 1993 if (dontTransform) 1994 continue; 1995 1996 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 1997 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 1998 oldAttrs.getFnAttributes())); 1999 2000 // Okay, we can transform this. Create the new call instruction and copy 2001 // over the required information. 2002 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2003 2004 llvm::CallSite newCall; 2005 if (callSite.isCall()) { 2006 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2007 callSite.getInstruction()); 2008 } else { 2009 llvm::InvokeInst *oldInvoke = 2010 cast<llvm::InvokeInst>(callSite.getInstruction()); 2011 newCall = llvm::InvokeInst::Create(newFn, 2012 oldInvoke->getNormalDest(), 2013 oldInvoke->getUnwindDest(), 2014 newArgs, "", 2015 callSite.getInstruction()); 2016 } 2017 newArgs.clear(); // for the next iteration 2018 2019 if (!newCall->getType()->isVoidTy()) 2020 newCall->takeName(callSite.getInstruction()); 2021 newCall.setAttributes( 2022 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2023 newCall.setCallingConv(callSite.getCallingConv()); 2024 2025 // Finally, remove the old call, replacing any uses with the new one. 2026 if (!callSite->use_empty()) 2027 callSite->replaceAllUsesWith(newCall.getInstruction()); 2028 2029 // Copy debug location attached to CI. 2030 if (!callSite->getDebugLoc().isUnknown()) 2031 newCall->setDebugLoc(callSite->getDebugLoc()); 2032 callSite->eraseFromParent(); 2033 } 2034 } 2035 2036 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2037 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2038 /// existing call uses of the old function in the module, this adjusts them to 2039 /// call the new function directly. 2040 /// 2041 /// This is not just a cleanup: the always_inline pass requires direct calls to 2042 /// functions to be able to inline them. If there is a bitcast in the way, it 2043 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2044 /// run at -O0. 2045 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2046 llvm::Function *NewFn) { 2047 // If we're redefining a global as a function, don't transform it. 2048 if (!isa<llvm::Function>(Old)) return; 2049 2050 replaceUsesOfNonProtoConstant(Old, NewFn); 2051 } 2052 2053 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2054 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2055 // If we have a definition, this might be a deferred decl. If the 2056 // instantiation is explicit, make sure we emit it at the end. 2057 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2058 GetAddrOfGlobalVar(VD); 2059 2060 EmitTopLevelDecl(VD); 2061 } 2062 2063 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2064 llvm::GlobalValue *GV) { 2065 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2066 2067 // Compute the function info and LLVM type. 2068 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2069 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2070 2071 // Get or create the prototype for the function. 2072 llvm::Constant *Entry = 2073 GV ? GV 2074 : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2075 2076 // Strip off a bitcast if we got one back. 2077 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2078 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2079 Entry = CE->getOperand(0); 2080 } 2081 2082 if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) { 2083 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2084 return; 2085 } 2086 2087 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2088 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2089 2090 // If the types mismatch then we have to rewrite the definition. 2091 assert(OldFn->isDeclaration() && 2092 "Shouldn't replace non-declaration"); 2093 2094 // F is the Function* for the one with the wrong type, we must make a new 2095 // Function* and update everything that used F (a declaration) with the new 2096 // Function* (which will be a definition). 2097 // 2098 // This happens if there is a prototype for a function 2099 // (e.g. "int f()") and then a definition of a different type 2100 // (e.g. "int f(int x)"). Move the old function aside so that it 2101 // doesn't interfere with GetAddrOfFunction. 2102 OldFn->setName(StringRef()); 2103 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2104 2105 // This might be an implementation of a function without a 2106 // prototype, in which case, try to do special replacement of 2107 // calls which match the new prototype. The really key thing here 2108 // is that we also potentially drop arguments from the call site 2109 // so as to make a direct call, which makes the inliner happier 2110 // and suppresses a number of optimizer warnings (!) about 2111 // dropping arguments. 2112 if (!OldFn->use_empty()) { 2113 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2114 OldFn->removeDeadConstantUsers(); 2115 } 2116 2117 // Replace uses of F with the Function we will endow with a body. 2118 if (!Entry->use_empty()) { 2119 llvm::Constant *NewPtrForOldDecl = 2120 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2121 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2122 } 2123 2124 // Ok, delete the old function now, which is dead. 2125 OldFn->eraseFromParent(); 2126 2127 Entry = NewFn; 2128 } 2129 2130 // We need to set linkage and visibility on the function before 2131 // generating code for it because various parts of IR generation 2132 // want to propagate this information down (e.g. to local static 2133 // declarations). 2134 llvm::Function *Fn = cast<llvm::Function>(Entry); 2135 setFunctionLinkage(GD, Fn); 2136 2137 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2138 setGlobalVisibility(Fn, D); 2139 2140 MaybeHandleStaticInExternC(D, Fn); 2141 2142 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2143 2144 SetFunctionDefinitionAttributes(D, Fn); 2145 SetLLVMFunctionAttributesForDefinition(D, Fn); 2146 2147 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2148 AddGlobalCtor(Fn, CA->getPriority()); 2149 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2150 AddGlobalDtor(Fn, DA->getPriority()); 2151 if (D->hasAttr<AnnotateAttr>()) 2152 AddGlobalAnnotations(D, Fn); 2153 2154 llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this); 2155 if (PGOInit) 2156 AddGlobalCtor(PGOInit, 0); 2157 } 2158 2159 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2160 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2161 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2162 assert(AA && "Not an alias?"); 2163 2164 StringRef MangledName = getMangledName(GD); 2165 2166 // If there is a definition in the module, then it wins over the alias. 2167 // This is dubious, but allow it to be safe. Just ignore the alias. 2168 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2169 if (Entry && !Entry->isDeclaration()) 2170 return; 2171 2172 Aliases.push_back(GD); 2173 2174 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2175 2176 // Create a reference to the named value. This ensures that it is emitted 2177 // if a deferred decl. 2178 llvm::Constant *Aliasee; 2179 if (isa<llvm::FunctionType>(DeclTy)) 2180 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2181 /*ForVTable=*/false); 2182 else 2183 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2184 llvm::PointerType::getUnqual(DeclTy), 0); 2185 2186 // Create the new alias itself, but don't set a name yet. 2187 llvm::GlobalValue *GA = 2188 new llvm::GlobalAlias(Aliasee->getType(), 2189 llvm::Function::ExternalLinkage, 2190 "", Aliasee, &getModule()); 2191 2192 if (Entry) { 2193 assert(Entry->isDeclaration()); 2194 2195 // If there is a declaration in the module, then we had an extern followed 2196 // by the alias, as in: 2197 // extern int test6(); 2198 // ... 2199 // int test6() __attribute__((alias("test7"))); 2200 // 2201 // Remove it and replace uses of it with the alias. 2202 GA->takeName(Entry); 2203 2204 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2205 Entry->getType())); 2206 Entry->eraseFromParent(); 2207 } else { 2208 GA->setName(MangledName); 2209 } 2210 2211 // Set attributes which are particular to an alias; this is a 2212 // specialization of the attributes which may be set on a global 2213 // variable/function. 2214 if (D->hasAttr<DLLExportAttr>()) { 2215 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2216 // The dllexport attribute is ignored for undefined symbols. 2217 if (FD->hasBody()) 2218 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2219 } else { 2220 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2221 } 2222 } else if (D->hasAttr<WeakAttr>() || 2223 D->hasAttr<WeakRefAttr>() || 2224 D->isWeakImported()) { 2225 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2226 } 2227 2228 SetCommonAttributes(D, GA); 2229 } 2230 2231 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2232 ArrayRef<llvm::Type*> Tys) { 2233 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2234 Tys); 2235 } 2236 2237 static llvm::StringMapEntry<llvm::Constant*> & 2238 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2239 const StringLiteral *Literal, 2240 bool TargetIsLSB, 2241 bool &IsUTF16, 2242 unsigned &StringLength) { 2243 StringRef String = Literal->getString(); 2244 unsigned NumBytes = String.size(); 2245 2246 // Check for simple case. 2247 if (!Literal->containsNonAsciiOrNull()) { 2248 StringLength = NumBytes; 2249 return Map.GetOrCreateValue(String); 2250 } 2251 2252 // Otherwise, convert the UTF8 literals into a string of shorts. 2253 IsUTF16 = true; 2254 2255 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2256 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2257 UTF16 *ToPtr = &ToBuf[0]; 2258 2259 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2260 &ToPtr, ToPtr + NumBytes, 2261 strictConversion); 2262 2263 // ConvertUTF8toUTF16 returns the length in ToPtr. 2264 StringLength = ToPtr - &ToBuf[0]; 2265 2266 // Add an explicit null. 2267 *ToPtr = 0; 2268 return Map. 2269 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2270 (StringLength + 1) * 2)); 2271 } 2272 2273 static llvm::StringMapEntry<llvm::Constant*> & 2274 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2275 const StringLiteral *Literal, 2276 unsigned &StringLength) { 2277 StringRef String = Literal->getString(); 2278 StringLength = String.size(); 2279 return Map.GetOrCreateValue(String); 2280 } 2281 2282 llvm::Constant * 2283 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2284 unsigned StringLength = 0; 2285 bool isUTF16 = false; 2286 llvm::StringMapEntry<llvm::Constant*> &Entry = 2287 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2288 getDataLayout().isLittleEndian(), 2289 isUTF16, StringLength); 2290 2291 if (llvm::Constant *C = Entry.getValue()) 2292 return C; 2293 2294 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2295 llvm::Constant *Zeros[] = { Zero, Zero }; 2296 llvm::Value *V; 2297 2298 // If we don't already have it, get __CFConstantStringClassReference. 2299 if (!CFConstantStringClassRef) { 2300 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2301 Ty = llvm::ArrayType::get(Ty, 0); 2302 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2303 "__CFConstantStringClassReference"); 2304 // Decay array -> ptr 2305 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2306 CFConstantStringClassRef = V; 2307 } 2308 else 2309 V = CFConstantStringClassRef; 2310 2311 QualType CFTy = getContext().getCFConstantStringType(); 2312 2313 llvm::StructType *STy = 2314 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2315 2316 llvm::Constant *Fields[4]; 2317 2318 // Class pointer. 2319 Fields[0] = cast<llvm::ConstantExpr>(V); 2320 2321 // Flags. 2322 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2323 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2324 llvm::ConstantInt::get(Ty, 0x07C8); 2325 2326 // String pointer. 2327 llvm::Constant *C = 0; 2328 if (isUTF16) { 2329 ArrayRef<uint16_t> Arr = 2330 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2331 const_cast<char *>(Entry.getKey().data())), 2332 Entry.getKey().size() / 2); 2333 C = llvm::ConstantDataArray::get(VMContext, Arr); 2334 } else { 2335 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2336 } 2337 2338 // Note: -fwritable-strings doesn't make the backing store strings of 2339 // CFStrings writable. (See <rdar://problem/10657500>) 2340 llvm::GlobalVariable *GV = 2341 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2342 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2343 GV->setUnnamedAddr(true); 2344 // Don't enforce the target's minimum global alignment, since the only use 2345 // of the string is via this class initializer. 2346 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2347 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2348 // that changes the section it ends in, which surprises ld64. 2349 if (isUTF16) { 2350 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2351 GV->setAlignment(Align.getQuantity()); 2352 GV->setSection("__TEXT,__ustring"); 2353 } else { 2354 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2355 GV->setAlignment(Align.getQuantity()); 2356 GV->setSection("__TEXT,__cstring,cstring_literals"); 2357 } 2358 2359 // String. 2360 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2361 2362 if (isUTF16) 2363 // Cast the UTF16 string to the correct type. 2364 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2365 2366 // String length. 2367 Ty = getTypes().ConvertType(getContext().LongTy); 2368 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2369 2370 // The struct. 2371 C = llvm::ConstantStruct::get(STy, Fields); 2372 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2373 llvm::GlobalVariable::PrivateLinkage, C, 2374 "_unnamed_cfstring_"); 2375 GV->setSection("__DATA,__cfstring"); 2376 Entry.setValue(GV); 2377 2378 return GV; 2379 } 2380 2381 llvm::Constant * 2382 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2383 unsigned StringLength = 0; 2384 llvm::StringMapEntry<llvm::Constant*> &Entry = 2385 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2386 2387 if (llvm::Constant *C = Entry.getValue()) 2388 return C; 2389 2390 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2391 llvm::Constant *Zeros[] = { Zero, Zero }; 2392 llvm::Value *V; 2393 // If we don't already have it, get _NSConstantStringClassReference. 2394 if (!ConstantStringClassRef) { 2395 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2396 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2397 llvm::Constant *GV; 2398 if (LangOpts.ObjCRuntime.isNonFragile()) { 2399 std::string str = 2400 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2401 : "OBJC_CLASS_$_" + StringClass; 2402 GV = getObjCRuntime().GetClassGlobal(str); 2403 // Make sure the result is of the correct type. 2404 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2405 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2406 ConstantStringClassRef = V; 2407 } else { 2408 std::string str = 2409 StringClass.empty() ? "_NSConstantStringClassReference" 2410 : "_" + StringClass + "ClassReference"; 2411 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2412 GV = CreateRuntimeVariable(PTy, str); 2413 // Decay array -> ptr 2414 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2415 ConstantStringClassRef = V; 2416 } 2417 } 2418 else 2419 V = ConstantStringClassRef; 2420 2421 if (!NSConstantStringType) { 2422 // Construct the type for a constant NSString. 2423 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2424 D->startDefinition(); 2425 2426 QualType FieldTypes[3]; 2427 2428 // const int *isa; 2429 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2430 // const char *str; 2431 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2432 // unsigned int length; 2433 FieldTypes[2] = Context.UnsignedIntTy; 2434 2435 // Create fields 2436 for (unsigned i = 0; i < 3; ++i) { 2437 FieldDecl *Field = FieldDecl::Create(Context, D, 2438 SourceLocation(), 2439 SourceLocation(), 0, 2440 FieldTypes[i], /*TInfo=*/0, 2441 /*BitWidth=*/0, 2442 /*Mutable=*/false, 2443 ICIS_NoInit); 2444 Field->setAccess(AS_public); 2445 D->addDecl(Field); 2446 } 2447 2448 D->completeDefinition(); 2449 QualType NSTy = Context.getTagDeclType(D); 2450 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2451 } 2452 2453 llvm::Constant *Fields[3]; 2454 2455 // Class pointer. 2456 Fields[0] = cast<llvm::ConstantExpr>(V); 2457 2458 // String pointer. 2459 llvm::Constant *C = 2460 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2461 2462 llvm::GlobalValue::LinkageTypes Linkage; 2463 bool isConstant; 2464 Linkage = llvm::GlobalValue::PrivateLinkage; 2465 isConstant = !LangOpts.WritableStrings; 2466 2467 llvm::GlobalVariable *GV = 2468 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2469 ".str"); 2470 GV->setUnnamedAddr(true); 2471 // Don't enforce the target's minimum global alignment, since the only use 2472 // of the string is via this class initializer. 2473 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2474 GV->setAlignment(Align.getQuantity()); 2475 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2476 2477 // String length. 2478 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2479 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2480 2481 // The struct. 2482 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2483 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2484 llvm::GlobalVariable::PrivateLinkage, C, 2485 "_unnamed_nsstring_"); 2486 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2487 const char *NSStringNonFragileABISection = 2488 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2489 // FIXME. Fix section. 2490 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2491 ? NSStringNonFragileABISection 2492 : NSStringSection); 2493 Entry.setValue(GV); 2494 2495 return GV; 2496 } 2497 2498 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2499 if (ObjCFastEnumerationStateType.isNull()) { 2500 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2501 D->startDefinition(); 2502 2503 QualType FieldTypes[] = { 2504 Context.UnsignedLongTy, 2505 Context.getPointerType(Context.getObjCIdType()), 2506 Context.getPointerType(Context.UnsignedLongTy), 2507 Context.getConstantArrayType(Context.UnsignedLongTy, 2508 llvm::APInt(32, 5), ArrayType::Normal, 0) 2509 }; 2510 2511 for (size_t i = 0; i < 4; ++i) { 2512 FieldDecl *Field = FieldDecl::Create(Context, 2513 D, 2514 SourceLocation(), 2515 SourceLocation(), 0, 2516 FieldTypes[i], /*TInfo=*/0, 2517 /*BitWidth=*/0, 2518 /*Mutable=*/false, 2519 ICIS_NoInit); 2520 Field->setAccess(AS_public); 2521 D->addDecl(Field); 2522 } 2523 2524 D->completeDefinition(); 2525 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2526 } 2527 2528 return ObjCFastEnumerationStateType; 2529 } 2530 2531 llvm::Constant * 2532 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2533 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2534 2535 // Don't emit it as the address of the string, emit the string data itself 2536 // as an inline array. 2537 if (E->getCharByteWidth() == 1) { 2538 SmallString<64> Str(E->getString()); 2539 2540 // Resize the string to the right size, which is indicated by its type. 2541 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2542 Str.resize(CAT->getSize().getZExtValue()); 2543 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2544 } 2545 2546 llvm::ArrayType *AType = 2547 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2548 llvm::Type *ElemTy = AType->getElementType(); 2549 unsigned NumElements = AType->getNumElements(); 2550 2551 // Wide strings have either 2-byte or 4-byte elements. 2552 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2553 SmallVector<uint16_t, 32> Elements; 2554 Elements.reserve(NumElements); 2555 2556 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2557 Elements.push_back(E->getCodeUnit(i)); 2558 Elements.resize(NumElements); 2559 return llvm::ConstantDataArray::get(VMContext, Elements); 2560 } 2561 2562 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2563 SmallVector<uint32_t, 32> Elements; 2564 Elements.reserve(NumElements); 2565 2566 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2567 Elements.push_back(E->getCodeUnit(i)); 2568 Elements.resize(NumElements); 2569 return llvm::ConstantDataArray::get(VMContext, Elements); 2570 } 2571 2572 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2573 /// constant array for the given string literal. 2574 llvm::Constant * 2575 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2576 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2577 if (S->isAscii() || S->isUTF8()) { 2578 SmallString<64> Str(S->getString()); 2579 2580 // Resize the string to the right size, which is indicated by its type. 2581 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2582 Str.resize(CAT->getSize().getZExtValue()); 2583 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2584 } 2585 2586 // FIXME: the following does not memoize wide strings. 2587 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2588 llvm::GlobalVariable *GV = 2589 new llvm::GlobalVariable(getModule(),C->getType(), 2590 !LangOpts.WritableStrings, 2591 llvm::GlobalValue::PrivateLinkage, 2592 C,".str"); 2593 2594 GV->setAlignment(Align.getQuantity()); 2595 GV->setUnnamedAddr(true); 2596 return GV; 2597 } 2598 2599 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2600 /// array for the given ObjCEncodeExpr node. 2601 llvm::Constant * 2602 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2603 std::string Str; 2604 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2605 2606 return GetAddrOfConstantCString(Str); 2607 } 2608 2609 2610 /// GenerateWritableString -- Creates storage for a string literal. 2611 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2612 bool constant, 2613 CodeGenModule &CGM, 2614 const char *GlobalName, 2615 unsigned Alignment) { 2616 // Create Constant for this string literal. Don't add a '\0'. 2617 llvm::Constant *C = 2618 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2619 2620 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. 2621 unsigned AddrSpace = 0; 2622 if (CGM.getLangOpts().OpenCL) 2623 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2624 2625 // Create a global variable for this string 2626 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2627 CGM.getModule(), C->getType(), constant, 2628 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2629 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2630 GV->setAlignment(Alignment); 2631 GV->setUnnamedAddr(true); 2632 return GV; 2633 } 2634 2635 /// GetAddrOfConstantString - Returns a pointer to a character array 2636 /// containing the literal. This contents are exactly that of the 2637 /// given string, i.e. it will not be null terminated automatically; 2638 /// see GetAddrOfConstantCString. Note that whether the result is 2639 /// actually a pointer to an LLVM constant depends on 2640 /// Feature.WriteableStrings. 2641 /// 2642 /// The result has pointer to array type. 2643 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2644 const char *GlobalName, 2645 unsigned Alignment) { 2646 // Get the default prefix if a name wasn't specified. 2647 if (!GlobalName) 2648 GlobalName = ".str"; 2649 2650 if (Alignment == 0) 2651 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2652 .getQuantity(); 2653 2654 // Don't share any string literals if strings aren't constant. 2655 if (LangOpts.WritableStrings) 2656 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2657 2658 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2659 ConstantStringMap.GetOrCreateValue(Str); 2660 2661 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2662 if (Alignment > GV->getAlignment()) { 2663 GV->setAlignment(Alignment); 2664 } 2665 return GV; 2666 } 2667 2668 // Create a global variable for this. 2669 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2670 Alignment); 2671 Entry.setValue(GV); 2672 return GV; 2673 } 2674 2675 /// GetAddrOfConstantCString - Returns a pointer to a character 2676 /// array containing the literal and a terminating '\0' 2677 /// character. The result has pointer to array type. 2678 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2679 const char *GlobalName, 2680 unsigned Alignment) { 2681 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2682 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2683 } 2684 2685 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2686 const MaterializeTemporaryExpr *E, const Expr *Init) { 2687 assert((E->getStorageDuration() == SD_Static || 2688 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2689 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2690 2691 // If we're not materializing a subobject of the temporary, keep the 2692 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2693 QualType MaterializedType = Init->getType(); 2694 if (Init == E->GetTemporaryExpr()) 2695 MaterializedType = E->getType(); 2696 2697 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2698 if (Slot) 2699 return Slot; 2700 2701 // FIXME: If an externally-visible declaration extends multiple temporaries, 2702 // we need to give each temporary the same name in every translation unit (and 2703 // we also need to make the temporaries externally-visible). 2704 SmallString<256> Name; 2705 llvm::raw_svector_ostream Out(Name); 2706 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2707 Out.flush(); 2708 2709 APValue *Value = 0; 2710 if (E->getStorageDuration() == SD_Static) { 2711 // We might have a cached constant initializer for this temporary. Note 2712 // that this might have a different value from the value computed by 2713 // evaluating the initializer if the surrounding constant expression 2714 // modifies the temporary. 2715 Value = getContext().getMaterializedTemporaryValue(E, false); 2716 if (Value && Value->isUninit()) 2717 Value = 0; 2718 } 2719 2720 // Try evaluating it now, it might have a constant initializer. 2721 Expr::EvalResult EvalResult; 2722 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2723 !EvalResult.hasSideEffects()) 2724 Value = &EvalResult.Val; 2725 2726 llvm::Constant *InitialValue = 0; 2727 bool Constant = false; 2728 llvm::Type *Type; 2729 if (Value) { 2730 // The temporary has a constant initializer, use it. 2731 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2732 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2733 Type = InitialValue->getType(); 2734 } else { 2735 // No initializer, the initialization will be provided when we 2736 // initialize the declaration which performed lifetime extension. 2737 Type = getTypes().ConvertTypeForMem(MaterializedType); 2738 } 2739 2740 // Create a global variable for this lifetime-extended temporary. 2741 llvm::GlobalVariable *GV = 2742 new llvm::GlobalVariable(getModule(), Type, Constant, 2743 llvm::GlobalValue::PrivateLinkage, 2744 InitialValue, Name.c_str()); 2745 GV->setAlignment( 2746 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2747 if (VD->getTLSKind()) 2748 setTLSMode(GV, *VD); 2749 Slot = GV; 2750 return GV; 2751 } 2752 2753 /// EmitObjCPropertyImplementations - Emit information for synthesized 2754 /// properties for an implementation. 2755 void CodeGenModule::EmitObjCPropertyImplementations(const 2756 ObjCImplementationDecl *D) { 2757 for (ObjCImplementationDecl::propimpl_iterator 2758 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2759 ObjCPropertyImplDecl *PID = *i; 2760 2761 // Dynamic is just for type-checking. 2762 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2763 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2764 2765 // Determine which methods need to be implemented, some may have 2766 // been overridden. Note that ::isPropertyAccessor is not the method 2767 // we want, that just indicates if the decl came from a 2768 // property. What we want to know is if the method is defined in 2769 // this implementation. 2770 if (!D->getInstanceMethod(PD->getGetterName())) 2771 CodeGenFunction(*this).GenerateObjCGetter( 2772 const_cast<ObjCImplementationDecl *>(D), PID); 2773 if (!PD->isReadOnly() && 2774 !D->getInstanceMethod(PD->getSetterName())) 2775 CodeGenFunction(*this).GenerateObjCSetter( 2776 const_cast<ObjCImplementationDecl *>(D), PID); 2777 } 2778 } 2779 } 2780 2781 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2782 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2783 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2784 ivar; ivar = ivar->getNextIvar()) 2785 if (ivar->getType().isDestructedType()) 2786 return true; 2787 2788 return false; 2789 } 2790 2791 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2792 /// for an implementation. 2793 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2794 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2795 if (needsDestructMethod(D)) { 2796 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2797 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2798 ObjCMethodDecl *DTORMethod = 2799 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2800 cxxSelector, getContext().VoidTy, 0, D, 2801 /*isInstance=*/true, /*isVariadic=*/false, 2802 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2803 /*isDefined=*/false, ObjCMethodDecl::Required); 2804 D->addInstanceMethod(DTORMethod); 2805 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2806 D->setHasDestructors(true); 2807 } 2808 2809 // If the implementation doesn't have any ivar initializers, we don't need 2810 // a .cxx_construct. 2811 if (D->getNumIvarInitializers() == 0) 2812 return; 2813 2814 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2815 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2816 // The constructor returns 'self'. 2817 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2818 D->getLocation(), 2819 D->getLocation(), 2820 cxxSelector, 2821 getContext().getObjCIdType(), 0, 2822 D, /*isInstance=*/true, 2823 /*isVariadic=*/false, 2824 /*isPropertyAccessor=*/true, 2825 /*isImplicitlyDeclared=*/true, 2826 /*isDefined=*/false, 2827 ObjCMethodDecl::Required); 2828 D->addInstanceMethod(CTORMethod); 2829 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2830 D->setHasNonZeroConstructors(true); 2831 } 2832 2833 /// EmitNamespace - Emit all declarations in a namespace. 2834 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2835 for (auto *I : ND->decls()) { 2836 if (const auto *VD = dyn_cast<VarDecl>(I)) 2837 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2838 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2839 continue; 2840 EmitTopLevelDecl(I); 2841 } 2842 } 2843 2844 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2845 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2846 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2847 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2848 ErrorUnsupported(LSD, "linkage spec"); 2849 return; 2850 } 2851 2852 for (auto *I : LSD->decls()) { 2853 // Meta-data for ObjC class includes references to implemented methods. 2854 // Generate class's method definitions first. 2855 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 2856 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2857 MEnd = OID->meth_end(); 2858 M != MEnd; ++M) 2859 EmitTopLevelDecl(*M); 2860 } 2861 EmitTopLevelDecl(I); 2862 } 2863 } 2864 2865 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2866 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2867 // Ignore dependent declarations. 2868 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2869 return; 2870 2871 switch (D->getKind()) { 2872 case Decl::CXXConversion: 2873 case Decl::CXXMethod: 2874 case Decl::Function: 2875 // Skip function templates 2876 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2877 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2878 return; 2879 2880 EmitGlobal(cast<FunctionDecl>(D)); 2881 break; 2882 2883 case Decl::Var: 2884 // Skip variable templates 2885 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2886 return; 2887 case Decl::VarTemplateSpecialization: 2888 EmitGlobal(cast<VarDecl>(D)); 2889 break; 2890 2891 // Indirect fields from global anonymous structs and unions can be 2892 // ignored; only the actual variable requires IR gen support. 2893 case Decl::IndirectField: 2894 break; 2895 2896 // C++ Decls 2897 case Decl::Namespace: 2898 EmitNamespace(cast<NamespaceDecl>(D)); 2899 break; 2900 // No code generation needed. 2901 case Decl::UsingShadow: 2902 case Decl::ClassTemplate: 2903 case Decl::VarTemplate: 2904 case Decl::VarTemplatePartialSpecialization: 2905 case Decl::FunctionTemplate: 2906 case Decl::TypeAliasTemplate: 2907 case Decl::Block: 2908 case Decl::Empty: 2909 break; 2910 case Decl::Using: // using X; [C++] 2911 if (CGDebugInfo *DI = getModuleDebugInfo()) 2912 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 2913 return; 2914 case Decl::NamespaceAlias: 2915 if (CGDebugInfo *DI = getModuleDebugInfo()) 2916 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2917 return; 2918 case Decl::UsingDirective: // using namespace X; [C++] 2919 if (CGDebugInfo *DI = getModuleDebugInfo()) 2920 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2921 return; 2922 case Decl::CXXConstructor: 2923 // Skip function templates 2924 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2925 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2926 return; 2927 2928 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2929 break; 2930 case Decl::CXXDestructor: 2931 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2932 return; 2933 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2934 break; 2935 2936 case Decl::StaticAssert: 2937 // Nothing to do. 2938 break; 2939 2940 // Objective-C Decls 2941 2942 // Forward declarations, no (immediate) code generation. 2943 case Decl::ObjCInterface: 2944 case Decl::ObjCCategory: 2945 break; 2946 2947 case Decl::ObjCProtocol: { 2948 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2949 if (Proto->isThisDeclarationADefinition()) 2950 ObjCRuntime->GenerateProtocol(Proto); 2951 break; 2952 } 2953 2954 case Decl::ObjCCategoryImpl: 2955 // Categories have properties but don't support synthesize so we 2956 // can ignore them here. 2957 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2958 break; 2959 2960 case Decl::ObjCImplementation: { 2961 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2962 EmitObjCPropertyImplementations(OMD); 2963 EmitObjCIvarInitializations(OMD); 2964 ObjCRuntime->GenerateClass(OMD); 2965 // Emit global variable debug information. 2966 if (CGDebugInfo *DI = getModuleDebugInfo()) 2967 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2968 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 2969 OMD->getClassInterface()), OMD->getLocation()); 2970 break; 2971 } 2972 case Decl::ObjCMethod: { 2973 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2974 // If this is not a prototype, emit the body. 2975 if (OMD->getBody()) 2976 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2977 break; 2978 } 2979 case Decl::ObjCCompatibleAlias: 2980 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2981 break; 2982 2983 case Decl::LinkageSpec: 2984 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2985 break; 2986 2987 case Decl::FileScopeAsm: { 2988 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2989 StringRef AsmString = AD->getAsmString()->getString(); 2990 2991 const std::string &S = getModule().getModuleInlineAsm(); 2992 if (S.empty()) 2993 getModule().setModuleInlineAsm(AsmString); 2994 else if (S.end()[-1] == '\n') 2995 getModule().setModuleInlineAsm(S + AsmString.str()); 2996 else 2997 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2998 break; 2999 } 3000 3001 case Decl::Import: { 3002 ImportDecl *Import = cast<ImportDecl>(D); 3003 3004 // Ignore import declarations that come from imported modules. 3005 if (clang::Module *Owner = Import->getOwningModule()) { 3006 if (getLangOpts().CurrentModule.empty() || 3007 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3008 break; 3009 } 3010 3011 ImportedModules.insert(Import->getImportedModule()); 3012 break; 3013 } 3014 3015 case Decl::ClassTemplateSpecialization: { 3016 const ClassTemplateSpecializationDecl *Spec = 3017 cast<ClassTemplateSpecializationDecl>(D); 3018 if (DebugInfo && 3019 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3020 DebugInfo->completeTemplateDefinition(*Spec); 3021 } 3022 3023 default: 3024 // Make sure we handled everything we should, every other kind is a 3025 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3026 // function. Need to recode Decl::Kind to do that easily. 3027 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3028 } 3029 } 3030 3031 /// Turns the given pointer into a constant. 3032 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3033 const void *Ptr) { 3034 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3035 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3036 return llvm::ConstantInt::get(i64, PtrInt); 3037 } 3038 3039 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3040 llvm::NamedMDNode *&GlobalMetadata, 3041 GlobalDecl D, 3042 llvm::GlobalValue *Addr) { 3043 if (!GlobalMetadata) 3044 GlobalMetadata = 3045 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3046 3047 // TODO: should we report variant information for ctors/dtors? 3048 llvm::Value *Ops[] = { 3049 Addr, 3050 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3051 }; 3052 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3053 } 3054 3055 /// For each function which is declared within an extern "C" region and marked 3056 /// as 'used', but has internal linkage, create an alias from the unmangled 3057 /// name to the mangled name if possible. People expect to be able to refer 3058 /// to such functions with an unmangled name from inline assembly within the 3059 /// same translation unit. 3060 void CodeGenModule::EmitStaticExternCAliases() { 3061 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3062 E = StaticExternCValues.end(); 3063 I != E; ++I) { 3064 IdentifierInfo *Name = I->first; 3065 llvm::GlobalValue *Val = I->second; 3066 if (Val && !getModule().getNamedValue(Name->getName())) 3067 addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3068 Name->getName(), Val, &getModule())); 3069 } 3070 } 3071 3072 /// Emits metadata nodes associating all the global values in the 3073 /// current module with the Decls they came from. This is useful for 3074 /// projects using IR gen as a subroutine. 3075 /// 3076 /// Since there's currently no way to associate an MDNode directly 3077 /// with an llvm::GlobalValue, we create a global named metadata 3078 /// with the name 'clang.global.decl.ptrs'. 3079 void CodeGenModule::EmitDeclMetadata() { 3080 llvm::NamedMDNode *GlobalMetadata = 0; 3081 3082 // StaticLocalDeclMap 3083 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3084 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3085 I != E; ++I) { 3086 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3087 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3088 } 3089 } 3090 3091 /// Emits metadata nodes for all the local variables in the current 3092 /// function. 3093 void CodeGenFunction::EmitDeclMetadata() { 3094 if (LocalDeclMap.empty()) return; 3095 3096 llvm::LLVMContext &Context = getLLVMContext(); 3097 3098 // Find the unique metadata ID for this name. 3099 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3100 3101 llvm::NamedMDNode *GlobalMetadata = 0; 3102 3103 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3104 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3105 const Decl *D = I->first; 3106 llvm::Value *Addr = I->second; 3107 3108 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3109 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3110 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3111 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3112 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3113 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3114 } 3115 } 3116 } 3117 3118 void CodeGenModule::EmitVersionIdentMetadata() { 3119 llvm::NamedMDNode *IdentMetadata = 3120 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3121 std::string Version = getClangFullVersion(); 3122 llvm::LLVMContext &Ctx = TheModule.getContext(); 3123 3124 llvm::Value *IdentNode[] = { 3125 llvm::MDString::get(Ctx, Version) 3126 }; 3127 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3128 } 3129 3130 void CodeGenModule::EmitCoverageFile() { 3131 if (!getCodeGenOpts().CoverageFile.empty()) { 3132 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3133 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3134 llvm::LLVMContext &Ctx = TheModule.getContext(); 3135 llvm::MDString *CoverageFile = 3136 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3137 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3138 llvm::MDNode *CU = CUNode->getOperand(i); 3139 llvm::Value *node[] = { CoverageFile, CU }; 3140 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3141 GCov->addOperand(N); 3142 } 3143 } 3144 } 3145 } 3146 3147 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3148 QualType GuidType) { 3149 // Sema has checked that all uuid strings are of the form 3150 // "12345678-1234-1234-1234-1234567890ab". 3151 assert(Uuid.size() == 36); 3152 for (unsigned i = 0; i < 36; ++i) { 3153 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3154 else assert(isHexDigit(Uuid[i])); 3155 } 3156 3157 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3158 3159 llvm::Constant *Field3[8]; 3160 for (unsigned Idx = 0; Idx < 8; ++Idx) 3161 Field3[Idx] = llvm::ConstantInt::get( 3162 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3163 3164 llvm::Constant *Fields[4] = { 3165 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3166 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3167 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3168 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3169 }; 3170 3171 return llvm::ConstantStruct::getAnon(Fields); 3172 } 3173