1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenModule.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/Basic/Diagnostic.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "llvm/CallingConv.h" 27 #include "llvm/Module.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/Target/TargetData.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 34 CodeGenModule::CodeGenModule(ASTContext &C, const LangOptions &LO, 35 llvm::Module &M, const llvm::TargetData &TD, 36 Diagnostic &diags, bool GenerateDebugInfo) 37 : BlockModule(C, M, TD, Types, *this), Context(C), Features(LO), TheModule(M), 38 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 39 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 40 41 if (!Features.ObjC1) 42 Runtime = 0; 43 else if (!Features.NeXTRuntime) 44 Runtime = CreateGNUObjCRuntime(*this); 45 else if (Features.ObjCNonFragileABI) 46 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 47 else 48 Runtime = CreateMacObjCRuntime(*this); 49 50 // If debug info generation is enabled, create the CGDebugInfo object. 51 DebugInfo = GenerateDebugInfo ? new CGDebugInfo(this) : 0; 52 } 53 54 CodeGenModule::~CodeGenModule() { 55 delete Runtime; 56 delete DebugInfo; 57 } 58 59 void CodeGenModule::Release() { 60 EmitDeferred(); 61 EmitAliases(); 62 if (Runtime) 63 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 64 AddGlobalCtor(ObjCInitFunction); 65 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 66 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 67 EmitAnnotations(); 68 EmitLLVMUsed(); 69 BindRuntimeGlobals(); 70 } 71 72 void CodeGenModule::BindRuntimeGlobals() { 73 // Deal with protecting runtime function names. 74 for (unsigned i = 0, e = RuntimeGlobals.size(); i < e; ++i) { 75 llvm::GlobalValue *GV = RuntimeGlobals[i].first; 76 const std::string &Name = RuntimeGlobals[i].second; 77 78 // Discard unused runtime declarations. 79 if (GV->isDeclaration() && GV->use_empty()) { 80 GV->eraseFromParent(); 81 continue; 82 } 83 84 // See if there is a conflict against a function by setting the name and 85 // seeing if we got the desired name. 86 GV->setName(Name); 87 if (GV->isName(Name.c_str())) 88 continue; // Yep, it worked! 89 90 GV->setName(""); // Zap the bogus name until we work out the conflict. 91 llvm::GlobalValue *Conflict = TheModule.getNamedValue(Name); 92 assert(Conflict && "Must have conflicted!"); 93 94 // Decide which version to take. If the conflict is a definition 95 // we are forced to take that, otherwise assume the runtime 96 // knows best. 97 98 // FIXME: This will fail phenomenally when the conflict is the 99 // wrong type of value. Just bail on it for now. This should 100 // really reuse something inside the LLVM Linker code. 101 assert(GV->getValueID() == Conflict->getValueID() && 102 "Unable to resolve conflict between globals of different types."); 103 if (!Conflict->isDeclaration()) { 104 llvm::Value *Casted = 105 llvm::ConstantExpr::getBitCast(Conflict, GV->getType()); 106 GV->replaceAllUsesWith(Casted); 107 GV->eraseFromParent(); 108 } else { 109 GV->takeName(Conflict); 110 llvm::Value *Casted = 111 llvm::ConstantExpr::getBitCast(GV, Conflict->getType()); 112 Conflict->replaceAllUsesWith(Casted); 113 Conflict->eraseFromParent(); 114 } 115 } 116 } 117 118 /// ErrorUnsupported - Print out an error that codegen doesn't support the 119 /// specified stmt yet. 120 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 121 bool OmitOnError) { 122 if (OmitOnError && getDiags().hasErrorOccurred()) 123 return; 124 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 125 "cannot compile this %0 yet"); 126 std::string Msg = Type; 127 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 128 << Msg << S->getSourceRange(); 129 } 130 131 /// ErrorUnsupported - Print out an error that codegen doesn't support the 132 /// specified decl yet. 133 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 134 bool OmitOnError) { 135 if (OmitOnError && getDiags().hasErrorOccurred()) 136 return; 137 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 138 "cannot compile this %0 yet"); 139 std::string Msg = Type; 140 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 141 } 142 143 /// setGlobalVisibility - Set the visibility for the given LLVM 144 /// GlobalValue according to the given clang AST visibility value. 145 static void setGlobalVisibility(llvm::GlobalValue *GV, 146 VisibilityAttr::VisibilityTypes Vis) { 147 switch (Vis) { 148 default: assert(0 && "Unknown visibility!"); 149 case VisibilityAttr::DefaultVisibility: 150 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 151 break; 152 case VisibilityAttr::HiddenVisibility: 153 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 154 break; 155 case VisibilityAttr::ProtectedVisibility: 156 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 157 break; 158 } 159 } 160 161 /// \brief Retrieves the mangled name for the given declaration. 162 /// 163 /// If the given declaration requires a mangled name, returns an 164 /// const char* containing the mangled name. Otherwise, returns 165 /// the unmangled name. 166 /// 167 /// FIXME: Returning an IdentifierInfo* here is a total hack. We 168 /// really need some kind of string abstraction that either stores a 169 /// mangled name or stores an IdentifierInfo*. This will require 170 /// changes to the GlobalDeclMap, too. (I disagree, I think what we 171 /// actually need is for Sema to provide some notion of which Decls 172 /// refer to the same semantic decl. We shouldn't need to mangle the 173 /// names and see what comes out the same to figure this out. - DWD) 174 /// 175 /// FIXME: Performance here is going to be terribly until we start 176 /// caching mangled names. However, we should fix the problem above 177 /// first. 178 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 179 // In C, functions with no attributes never need to be mangled. Fastpath them. 180 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 181 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 182 return ND->getNameAsCString(); 183 } 184 185 llvm::SmallString<256> Name; 186 llvm::raw_svector_ostream Out(Name); 187 if (!mangleName(ND, Context, Out)) { 188 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 189 return ND->getNameAsCString(); 190 } 191 192 Name += '\0'; 193 return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData(); 194 } 195 196 /// AddGlobalCtor - Add a function to the list that will be called before 197 /// main() runs. 198 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 199 // FIXME: Type coercion of void()* types. 200 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 201 } 202 203 /// AddGlobalDtor - Add a function to the list that will be called 204 /// when the module is unloaded. 205 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 206 // FIXME: Type coercion of void()* types. 207 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 208 } 209 210 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 211 // Ctor function type is void()*. 212 llvm::FunctionType* CtorFTy = 213 llvm::FunctionType::get(llvm::Type::VoidTy, 214 std::vector<const llvm::Type*>(), 215 false); 216 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 217 218 // Get the type of a ctor entry, { i32, void ()* }. 219 llvm::StructType* CtorStructTy = 220 llvm::StructType::get(llvm::Type::Int32Ty, 221 llvm::PointerType::getUnqual(CtorFTy), NULL); 222 223 // Construct the constructor and destructor arrays. 224 std::vector<llvm::Constant*> Ctors; 225 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 226 std::vector<llvm::Constant*> S; 227 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 228 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 229 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 230 } 231 232 if (!Ctors.empty()) { 233 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 234 new llvm::GlobalVariable(AT, false, 235 llvm::GlobalValue::AppendingLinkage, 236 llvm::ConstantArray::get(AT, Ctors), 237 GlobalName, 238 &TheModule); 239 } 240 } 241 242 void CodeGenModule::EmitAnnotations() { 243 if (Annotations.empty()) 244 return; 245 246 // Create a new global variable for the ConstantStruct in the Module. 247 llvm::Constant *Array = 248 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 249 Annotations.size()), 250 Annotations); 251 llvm::GlobalValue *gv = 252 new llvm::GlobalVariable(Array->getType(), false, 253 llvm::GlobalValue::AppendingLinkage, Array, 254 "llvm.global.annotations", &TheModule); 255 gv->setSection("llvm.metadata"); 256 } 257 258 void CodeGenModule::SetGlobalValueAttributes(const Decl *D, 259 bool IsInternal, 260 bool IsInline, 261 llvm::GlobalValue *GV, 262 bool ForDefinition) { 263 // FIXME: Set up linkage and many other things. Note, this is a simple 264 // approximation of what we really want. 265 if (!ForDefinition) { 266 // Only a few attributes are set on declarations. 267 if (D->getAttr<DLLImportAttr>()) { 268 // The dllimport attribute is overridden by a subsequent declaration as 269 // dllexport. 270 if (!D->getAttr<DLLExportAttr>()) { 271 // dllimport attribute can be applied only to function decls, not to 272 // definitions. 273 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 274 if (!FD->getBody()) 275 GV->setLinkage(llvm::Function::DLLImportLinkage); 276 } else 277 GV->setLinkage(llvm::Function::DLLImportLinkage); 278 } 279 } else if (D->getAttr<WeakAttr>() || 280 D->getAttr<WeakImportAttr>()) { 281 // "extern_weak" is overloaded in LLVM; we probably should have 282 // separate linkage types for this. 283 GV->setLinkage(llvm::Function::ExternalWeakLinkage); 284 } 285 } else { 286 if (IsInternal) { 287 GV->setLinkage(llvm::Function::InternalLinkage); 288 } else { 289 if (D->getAttr<DLLExportAttr>()) { 290 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 291 // The dllexport attribute is ignored for undefined symbols. 292 if (FD->getBody()) 293 GV->setLinkage(llvm::Function::DLLExportLinkage); 294 } else 295 GV->setLinkage(llvm::Function::DLLExportLinkage); 296 } else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>() || 297 IsInline) 298 GV->setLinkage(llvm::Function::WeakAnyLinkage); 299 } 300 } 301 302 // FIXME: Figure out the relative priority of the attribute, 303 // -fvisibility, and private_extern. 304 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 305 setGlobalVisibility(GV, attr->getVisibility()); 306 // FIXME: else handle -fvisibility 307 308 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 309 GV->setSection(SA->getName()); 310 311 // Only add to llvm.used when we see a definition, otherwise we 312 // might add multiple times or risk the value being replaced by a 313 // subsequent RAUW. 314 if (ForDefinition) { 315 if (D->getAttr<UsedAttr>()) 316 AddUsedGlobal(GV); 317 } 318 } 319 320 void CodeGenModule::SetFunctionAttributes(const Decl *D, 321 const CGFunctionInfo &Info, 322 llvm::Function *F) { 323 AttributeListType AttributeList; 324 ConstructAttributeList(Info, D, AttributeList); 325 326 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 327 AttributeList.size())); 328 329 // Set the appropriate calling convention for the Function. 330 if (D->getAttr<FastCallAttr>()) 331 F->setCallingConv(llvm::CallingConv::X86_FastCall); 332 333 if (D->getAttr<StdCallAttr>()) 334 F->setCallingConv(llvm::CallingConv::X86_StdCall); 335 } 336 337 /// SetFunctionAttributesForDefinition - Set function attributes 338 /// specific to a function definition. 339 void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, 340 llvm::Function *F) { 341 if (isa<ObjCMethodDecl>(D)) { 342 SetGlobalValueAttributes(D, true, false, F, true); 343 } else { 344 const FunctionDecl *FD = cast<FunctionDecl>(D); 345 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 346 FD->isInline(), F, true); 347 } 348 349 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 350 F->addFnAttr(llvm::Attribute::NoUnwind); 351 352 if (D->getAttr<AlwaysInlineAttr>()) 353 F->addFnAttr(llvm::Attribute::AlwaysInline); 354 355 if (D->getAttr<NoinlineAttr>()) 356 F->addFnAttr(llvm::Attribute::NoInline); 357 } 358 359 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 360 llvm::Function *F) { 361 SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 362 363 SetFunctionAttributesForDefinition(MD, F); 364 } 365 366 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 367 llvm::Function *F) { 368 SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 369 370 SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, 371 FD->isInline(), F, false); 372 } 373 374 375 void CodeGenModule::EmitAliases() { 376 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { 377 const ValueDecl *D = Aliases[i]; 378 const AliasAttr *AA = D->getAttr<AliasAttr>(); 379 380 // This is something of a hack, if the FunctionDecl got overridden 381 // then its attributes will be moved to the new declaration. In 382 // this case the current decl has no alias attribute, but we will 383 // eventually see it. 384 if (!AA) 385 continue; 386 387 const std::string& aliaseeName = AA->getAliasee(); 388 llvm::GlobalValue *aliasee = getModule().getNamedValue(aliaseeName); 389 if (!aliasee) { 390 // FIXME: This isn't unsupported, this is just an error, which 391 // sema should catch, but... 392 ErrorUnsupported(D, "alias referencing a missing function"); 393 continue; 394 } 395 396 const char *MangledName = getMangledName(D); 397 llvm::GlobalValue *GA = 398 new llvm::GlobalAlias(aliasee->getType(), 399 llvm::Function::ExternalLinkage, 400 MangledName, aliasee, &getModule()); 401 402 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 403 if (Entry) { 404 // If we created a dummy function for this then replace it. 405 GA->takeName(Entry); 406 407 llvm::Value *Casted = 408 llvm::ConstantExpr::getBitCast(GA, Entry->getType()); 409 Entry->replaceAllUsesWith(Casted); 410 Entry->eraseFromParent(); 411 412 Entry = GA; 413 } 414 415 // Alias should never be internal or inline. 416 SetGlobalValueAttributes(D, false, false, GA, true); 417 } 418 } 419 420 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 421 assert(!GV->isDeclaration() && 422 "Only globals with definition can force usage."); 423 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 424 LLVMUsed.push_back(llvm::ConstantExpr::getBitCast(GV, i8PTy)); 425 } 426 427 void CodeGenModule::EmitLLVMUsed() { 428 // Don't create llvm.used if there is no need. 429 if (LLVMUsed.empty()) 430 return; 431 432 llvm::ArrayType *ATy = llvm::ArrayType::get(LLVMUsed[0]->getType(), 433 LLVMUsed.size()); 434 llvm::GlobalVariable *GV = 435 new llvm::GlobalVariable(ATy, false, 436 llvm::GlobalValue::AppendingLinkage, 437 llvm::ConstantArray::get(ATy, LLVMUsed), 438 "llvm.used", &getModule()); 439 440 GV->setSection("llvm.metadata"); 441 } 442 443 void CodeGenModule::EmitDeferred() { 444 // Emit code for any potentially referenced deferred decls. Since a 445 // previously unused static decl may become used during the generation of code 446 // for a static function, iterate until no changes are made. 447 while (!DeferredDeclsToEmit.empty()) { 448 const ValueDecl *D = DeferredDeclsToEmit.back(); 449 DeferredDeclsToEmit.pop_back(); 450 451 // The mangled name for the decl must have been emitted in GlobalDeclMap. 452 // Look it up to see if it was defined with a stronger definition (e.g. an 453 // extern inline function with a strong function redefinition). If so, 454 // just ignore the deferred decl. 455 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 456 assert(CGRef && "Deferred decl wasn't referenced?"); 457 458 if (!CGRef->isDeclaration()) 459 continue; 460 461 // Otherwise, emit the definition and move on to the next one. 462 EmitGlobalDefinition(D); 463 } 464 } 465 466 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 467 /// annotation information for a given GlobalValue. The annotation struct is 468 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 469 /// GlobalValue being annotated. The second field is the constant string 470 /// created from the AnnotateAttr's annotation. The third field is a constant 471 /// string containing the name of the translation unit. The fourth field is 472 /// the line number in the file of the annotated value declaration. 473 /// 474 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 475 /// appears to. 476 /// 477 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 478 const AnnotateAttr *AA, 479 unsigned LineNo) { 480 llvm::Module *M = &getModule(); 481 482 // get [N x i8] constants for the annotation string, and the filename string 483 // which are the 2nd and 3rd elements of the global annotation structure. 484 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 485 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 486 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 487 true); 488 489 // Get the two global values corresponding to the ConstantArrays we just 490 // created to hold the bytes of the strings. 491 llvm::GlobalValue *annoGV = 492 new llvm::GlobalVariable(anno->getType(), false, 493 llvm::GlobalValue::InternalLinkage, anno, 494 GV->getName() + ".str", M); 495 // translation unit name string, emitted into the llvm.metadata section. 496 llvm::GlobalValue *unitGV = 497 new llvm::GlobalVariable(unit->getType(), false, 498 llvm::GlobalValue::InternalLinkage, unit, ".str", M); 499 500 // Create the ConstantStruct that is the global annotion. 501 llvm::Constant *Fields[4] = { 502 llvm::ConstantExpr::getBitCast(GV, SBP), 503 llvm::ConstantExpr::getBitCast(annoGV, SBP), 504 llvm::ConstantExpr::getBitCast(unitGV, SBP), 505 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 506 }; 507 return llvm::ConstantStruct::get(Fields, 4, false); 508 } 509 510 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 511 // Never defer when EmitAllDecls is specified or the decl has 512 // attribute used. 513 if (Features.EmitAllDecls || Global->getAttr<UsedAttr>()) 514 return false; 515 516 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 517 // Constructors and destructors should never be deferred. 518 if (FD->getAttr<ConstructorAttr>() || FD->getAttr<DestructorAttr>()) 519 return false; 520 521 // FIXME: What about inline, and/or extern inline? 522 if (FD->getStorageClass() != FunctionDecl::Static) 523 return false; 524 } else { 525 const VarDecl *VD = cast<VarDecl>(Global); 526 assert(VD->isFileVarDecl() && "Invalid decl"); 527 528 if (VD->getStorageClass() != VarDecl::Static) 529 return false; 530 } 531 532 return true; 533 } 534 535 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 536 // Aliases are deferred until code for everything else has been 537 // emitted. 538 if (Global->getAttr<AliasAttr>()) { 539 Aliases.push_back(Global); 540 return; 541 } 542 543 // Ignore declarations, they will be emitted on their first use. 544 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 545 // Forward declarations are emitted lazily on first use. 546 if (!FD->isThisDeclarationADefinition()) 547 return; 548 } else { 549 const VarDecl *VD = cast<VarDecl>(Global); 550 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 551 552 // Forward declarations are emitted lazily on first use. 553 if (!VD->getInit() && VD->hasExternalStorage()) 554 return; 555 } 556 557 // Defer code generation when possible if this is a static definition, inline 558 // function etc. These we only want to emit if they are used. 559 if (MayDeferGeneration(Global)) { 560 // If the value has already been used, add it directly to the 561 // DeferredDeclsToEmit list. 562 const char *MangledName = getMangledName(Global); 563 if (GlobalDeclMap.count(MangledName)) 564 DeferredDeclsToEmit.push_back(Global); 565 else { 566 // Otherwise, remember that we saw a deferred decl with this name. The 567 // first use of the mangled name will cause it to move into 568 // DeferredDeclsToEmit. 569 DeferredDecls[MangledName] = Global; 570 } 571 return; 572 } 573 574 // Otherwise emit the definition. 575 EmitGlobalDefinition(Global); 576 } 577 578 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 579 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 580 EmitGlobalFunctionDefinition(FD); 581 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 582 EmitGlobalVarDefinition(VD); 583 } else { 584 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 585 } 586 } 587 588 /// GetAddrOfFunction - Return the address of the given function. If Ty is 589 /// non-null, then this function will use the specified type if it has to 590 /// create it (this occurs when we see a definition of the function). 591 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 592 const llvm::Type *Ty) { 593 // If there was no specific requested type, just convert it now. 594 if (!Ty) 595 Ty = getTypes().ConvertType(D->getType()); 596 597 // Lookup the entry, lazily creating it if necessary. 598 const char *MangledName = getMangledName(D); 599 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 600 if (Entry) { 601 if (Entry->getType()->getElementType() == Ty) 602 return Entry; 603 604 // Make sure the result is of the correct type. 605 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 606 return llvm::ConstantExpr::getBitCast(Entry, PTy); 607 } 608 609 // This is the first use or definition of a mangled name. If there is a 610 // deferred decl with this name, remember that we need to emit it at the end 611 // of the file. 612 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 613 DeferredDecls.find(MangledName); 614 if (DDI != DeferredDecls.end()) { 615 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 616 // list, and remove it from DeferredDecls (since we don't need it anymore). 617 DeferredDeclsToEmit.push_back(DDI->second); 618 DeferredDecls.erase(DDI); 619 } 620 621 622 // This function doesn't have a complete type (for example, the return 623 // type is an incomplete struct). Use a fake type instead, and make 624 // sure not to try to set attributes. 625 bool ShouldSetAttributes = true; 626 if (!isa<llvm::FunctionType>(Ty)) { 627 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 628 std::vector<const llvm::Type*>(), false); 629 ShouldSetAttributes = false; 630 } 631 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 632 llvm::Function::ExternalLinkage, 633 MangledName, &getModule()); 634 if (ShouldSetAttributes) 635 SetFunctionAttributes(D, F); 636 Entry = F; 637 return F; 638 } 639 640 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 641 /// given global variable. If Ty is non-null and if the global doesn't exist, 642 /// then it will be greated with the specified type instead of whatever the 643 /// normal requested type would be. 644 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 645 const llvm::Type *Ty) { 646 assert(D->hasGlobalStorage() && "Not a global variable"); 647 648 QualType ASTTy = D->getType(); 649 if (Ty == 0) 650 Ty = getTypes().ConvertTypeForMem(ASTTy); 651 652 // Lookup the entry, lazily creating it if necessary. 653 const char *MangledName = getMangledName(D); 654 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 655 if (Entry) { 656 if (Entry->getType()->getElementType() == Ty && 657 Entry->getType()->getAddressSpace() == ASTTy.getAddressSpace()) 658 return Entry; 659 660 // Make sure the result is of the correct type. 661 const llvm::Type *PTy = llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 662 return llvm::ConstantExpr::getBitCast(Entry, PTy); 663 } 664 665 // This is the first use or definition of a mangled name. If there is a 666 // deferred decl with this name, remember that we need to emit it at the end 667 // of the file. 668 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 669 DeferredDecls.find(MangledName); 670 if (DDI != DeferredDecls.end()) { 671 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 672 // list, and remove it from DeferredDecls (since we don't need it anymore). 673 DeferredDeclsToEmit.push_back(DDI->second); 674 DeferredDecls.erase(DDI); 675 } 676 677 llvm::GlobalVariable *GV = 678 new llvm::GlobalVariable(Ty, false, 679 llvm::GlobalValue::ExternalLinkage, 680 0, MangledName, &getModule(), 681 0, ASTTy.getAddressSpace()); 682 683 // Handle things which are present even on external declarations. 684 685 // FIXME: This code is overly simple and should be merged with 686 // other global handling. 687 688 GV->setConstant(D->getType().isConstant(Context)); 689 690 // FIXME: Merge with other attribute handling code. 691 692 if (D->getStorageClass() == VarDecl::PrivateExtern) 693 setGlobalVisibility(GV, VisibilityAttr::HiddenVisibility); 694 695 if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 696 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 697 698 return Entry = GV; 699 } 700 701 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 702 llvm::Constant *Init = 0; 703 QualType ASTTy = D->getType(); 704 705 if (D->getInit() == 0) { 706 // This is a tentative definition; tentative definitions are 707 // implicitly initialized with { 0 } 708 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 709 if (ASTTy->isIncompleteArrayType()) { 710 // An incomplete array is normally [ TYPE x 0 ], but we need 711 // to fix it to [ TYPE x 1 ]. 712 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 713 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 714 } 715 Init = llvm::Constant::getNullValue(InitTy); 716 } else { 717 Init = EmitConstantExpr(D->getInit()); 718 if (!Init) { 719 ErrorUnsupported(D, "static initializer"); 720 QualType T = D->getInit()->getType(); 721 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 722 } 723 } 724 725 const llvm::Type* InitType = Init->getType(); 726 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 727 728 // Strip off a bitcast if we got one back. 729 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 730 assert(CE->getOpcode() == llvm::Instruction::BitCast); 731 Entry = CE->getOperand(0); 732 } 733 734 // Entry is now either a Function or GlobalVariable. 735 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 736 737 // If we already have this global and it has an initializer, then 738 // we are in the rare situation where we emitted the defining 739 // declaration of the global and are now being asked to emit a 740 // definition which would be common. This occurs, for example, in 741 // the following situation because statics can be emitted out of 742 // order: 743 // 744 // static int x; 745 // static int *y = &x; 746 // static int x = 10; 747 // int **z = &y; 748 // 749 // Bail here so we don't blow away the definition. Note that if we 750 // can't distinguish here if we emitted a definition with a null 751 // initializer, but this case is safe. 752 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 753 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 754 return; 755 } 756 757 // We have a definition after a declaration with the wrong type. 758 // We must make a new GlobalVariable* and update everything that used OldGV 759 // (a declaration or tentative definition) with the new GlobalVariable* 760 // (which will be a definition). 761 // 762 // This happens if there is a prototype for a global (e.g. 763 // "extern int x[];") and then a definition of a different type (e.g. 764 // "int x[10];"). This also happens when an initializer has a different type 765 // from the type of the global (this happens with unions). 766 // 767 // FIXME: This also ends up happening if there's a definition followed by 768 // a tentative definition! (Although Sema rejects that construct 769 // at the moment.) 770 if (GV == 0 || 771 GV->getType()->getElementType() != InitType || 772 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 773 774 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 775 GlobalDeclMap.erase(getMangledName(D)); 776 777 // Make a new global with the correct type, this is now guaranteed to work. 778 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 779 GV->takeName(cast<llvm::GlobalValue>(Entry)); 780 781 // Replace all uses of the old global with the new global 782 llvm::Constant *NewPtrForOldDecl = 783 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 784 Entry->replaceAllUsesWith(NewPtrForOldDecl); 785 786 // Erase the old global, since it is no longer used. 787 // FIXME: What if it was attribute used? Dangling pointer from LLVMUsed. 788 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 789 } 790 791 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 792 SourceManager &SM = Context.getSourceManager(); 793 AddAnnotation(EmitAnnotateAttr(GV, AA, 794 SM.getInstantiationLineNumber(D->getLocation()))); 795 } 796 797 GV->setInitializer(Init); 798 GV->setConstant(D->getType().isConstant(Context)); 799 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 800 801 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) 802 setGlobalVisibility(GV, attr->getVisibility()); 803 // FIXME: else handle -fvisibility 804 805 // Set the llvm linkage type as appropriate. 806 if (D->getStorageClass() == VarDecl::Static) 807 GV->setLinkage(llvm::Function::InternalLinkage); 808 else if (D->getAttr<DLLImportAttr>()) 809 GV->setLinkage(llvm::Function::DLLImportLinkage); 810 else if (D->getAttr<DLLExportAttr>()) 811 GV->setLinkage(llvm::Function::DLLExportLinkage); 812 else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) 813 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 814 else { 815 // FIXME: This isn't right. This should handle common linkage and other 816 // stuff. 817 switch (D->getStorageClass()) { 818 case VarDecl::Static: assert(0 && "This case handled above"); 819 case VarDecl::Auto: 820 case VarDecl::Register: 821 assert(0 && "Can't have auto or register globals"); 822 case VarDecl::None: 823 if (!D->getInit()) 824 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 825 else 826 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 827 break; 828 case VarDecl::Extern: 829 // FIXME: common 830 break; 831 832 case VarDecl::PrivateExtern: 833 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 834 // FIXME: common 835 break; 836 } 837 } 838 839 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 840 GV->setSection(SA->getName()); 841 842 if (D->getAttr<UsedAttr>()) 843 AddUsedGlobal(GV); 844 845 // Emit global variable debug information. 846 if (CGDebugInfo *DI = getDebugInfo()) { 847 DI->setLocation(D->getLocation()); 848 DI->EmitGlobalVariable(GV, D); 849 } 850 } 851 852 853 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 854 const llvm::FunctionType *Ty = 855 cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 856 857 // As a special case, make sure that definitions of K&R function 858 // "type foo()" aren't declared as varargs (which forces the backend 859 // to do unnecessary work). 860 // FIXME: what about stret() functions, this doesn't handle them!? 861 if (Ty->isVarArg() && Ty->getNumParams() == 0) 862 Ty = llvm::FunctionType::get(Ty->getReturnType(), 863 std::vector<const llvm::Type*>(), false); 864 865 // Get or create the prototype for teh function. 866 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 867 868 // Strip off a bitcast if we got one back. 869 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 870 assert(CE->getOpcode() == llvm::Instruction::BitCast); 871 Entry = CE->getOperand(0); 872 } 873 874 875 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 876 // If the types mismatch then we have to rewrite the definition. 877 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 878 "Shouldn't replace non-declaration"); 879 880 // F is the Function* for the one with the wrong type, we must make a new 881 // Function* and update everything that used F (a declaration) with the new 882 // Function* (which will be a definition). 883 // 884 // This happens if there is a prototype for a function 885 // (e.g. "int f()") and then a definition of a different type 886 // (e.g. "int f(int x)"). Start by making a new function of the 887 // correct type, RAUW, then steal the name. 888 GlobalDeclMap.erase(getMangledName(D)); 889 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 890 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 891 892 // Replace uses of F with the Function we will endow with a body. 893 llvm::Constant *NewPtrForOldDecl = 894 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 895 Entry->replaceAllUsesWith(NewPtrForOldDecl); 896 897 // Ok, delete the old function now, which is dead. 898 // FIXME: If it was attribute(used) the pointer will dangle from the 899 // LLVMUsed array! 900 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 901 902 Entry = NewFn; 903 } 904 905 llvm::Function *Fn = cast<llvm::Function>(Entry); 906 907 CodeGenFunction(*this).GenerateCode(D, Fn); 908 909 SetFunctionAttributesForDefinition(D, Fn); 910 911 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 912 AddGlobalCtor(Fn, CA->getPriority()); 913 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 914 AddGlobalDtor(Fn, DA->getPriority()); 915 } 916 917 llvm::Function * 918 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 919 const std::string &Name) { 920 llvm::Function *Fn = llvm::Function::Create(FTy, 921 llvm::Function::ExternalLinkage, 922 "", &TheModule); 923 RuntimeGlobals.push_back(std::make_pair(Fn, Name)); 924 return Fn; 925 } 926 927 llvm::GlobalVariable * 928 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 929 const std::string &Name) { 930 llvm::GlobalVariable *GV = 931 new llvm::GlobalVariable(Ty, /*Constant=*/false, 932 llvm::GlobalValue::ExternalLinkage, 933 0, "", &TheModule); 934 RuntimeGlobals.push_back(std::make_pair(GV, Name)); 935 return GV; 936 } 937 938 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 939 // Make sure that this type is translated. 940 Types.UpdateCompletedType(TD); 941 } 942 943 944 /// getBuiltinLibFunction 945 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 946 if (BuiltinID > BuiltinFunctions.size()) 947 BuiltinFunctions.resize(BuiltinID); 948 949 // Cache looked up functions. Since builtin id #0 is invalid we don't reserve 950 // a slot for it. 951 assert(BuiltinID && "Invalid Builtin ID"); 952 llvm::Value *&FunctionSlot = BuiltinFunctions[BuiltinID-1]; 953 if (FunctionSlot) 954 return FunctionSlot; 955 956 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 957 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 958 "isn't a lib fn"); 959 960 // Get the name, skip over the __builtin_ prefix (if necessary). 961 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 962 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 963 Name += 10; 964 965 // Get the type for the builtin. 966 Builtin::Context::GetBuiltinTypeError Error; 967 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 968 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 969 970 const llvm::FunctionType *Ty = 971 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 972 973 // FIXME: This has a serious problem with code like this: 974 // void abs() {} 975 // ... __builtin_abs(x); 976 // The two versions of abs will collide. The fix is for the builtin to win, 977 // and for the existing one to be turned into a constantexpr cast of the 978 // builtin. In the case where the existing one is a static function, it 979 // should just be renamed. 980 if (llvm::Function *Existing = getModule().getFunction(Name)) { 981 if (Existing->getFunctionType() == Ty && Existing->hasExternalLinkage()) 982 return FunctionSlot = Existing; 983 assert(Existing == 0 && "FIXME: Name collision"); 984 } 985 986 llvm::GlobalValue *&ExistingFn = 987 GlobalDeclMap[getContext().Idents.get(Name).getName()]; 988 assert(!ExistingFn && "Asking for the same builtin multiple times?"); 989 990 // FIXME: param attributes for sext/zext etc. 991 return FunctionSlot = ExistingFn = 992 llvm::Function::Create(Ty, llvm::Function::ExternalLinkage, Name, 993 &getModule()); 994 } 995 996 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 997 unsigned NumTys) { 998 return llvm::Intrinsic::getDeclaration(&getModule(), 999 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1000 } 1001 1002 llvm::Function *CodeGenModule::getMemCpyFn() { 1003 if (MemCpyFn) return MemCpyFn; 1004 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1005 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1006 } 1007 1008 llvm::Function *CodeGenModule::getMemMoveFn() { 1009 if (MemMoveFn) return MemMoveFn; 1010 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1011 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1012 } 1013 1014 llvm::Function *CodeGenModule::getMemSetFn() { 1015 if (MemSetFn) return MemSetFn; 1016 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1017 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1018 } 1019 1020 static void appendFieldAndPadding(CodeGenModule &CGM, 1021 std::vector<llvm::Constant*>& Fields, 1022 FieldDecl *FieldD, FieldDecl *NextFieldD, 1023 llvm::Constant* Field, 1024 RecordDecl* RD, const llvm::StructType *STy) { 1025 // Append the field. 1026 Fields.push_back(Field); 1027 1028 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1029 1030 int NextStructFieldNo; 1031 if (!NextFieldD) { 1032 NextStructFieldNo = STy->getNumElements(); 1033 } else { 1034 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1035 } 1036 1037 // Append padding 1038 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1039 llvm::Constant *C = 1040 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1041 1042 Fields.push_back(C); 1043 } 1044 } 1045 1046 // We still need to work out the details of handling UTF-16. 1047 // See: <rdr://2996215> 1048 llvm::Constant *CodeGenModule:: 1049 GetAddrOfConstantCFString(const std::string &str) { 1050 llvm::StringMapEntry<llvm::Constant *> &Entry = 1051 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1052 1053 if (Entry.getValue()) 1054 return Entry.getValue(); 1055 1056 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1057 llvm::Constant *Zeros[] = { Zero, Zero }; 1058 1059 if (!CFConstantStringClassRef) { 1060 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1061 Ty = llvm::ArrayType::get(Ty, 0); 1062 1063 // FIXME: This is fairly broken if 1064 // __CFConstantStringClassReference is already defined, in that it 1065 // will get renamed and the user will most likely see an opaque 1066 // error message. This is a general issue with relying on 1067 // particular names. 1068 llvm::GlobalVariable *GV = 1069 new llvm::GlobalVariable(Ty, false, 1070 llvm::GlobalVariable::ExternalLinkage, 0, 1071 "__CFConstantStringClassReference", 1072 &getModule()); 1073 1074 // Decay array -> ptr 1075 CFConstantStringClassRef = 1076 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1077 } 1078 1079 QualType CFTy = getContext().getCFConstantStringType(); 1080 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1081 1082 const llvm::StructType *STy = 1083 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1084 1085 std::vector<llvm::Constant*> Fields; 1086 RecordDecl::field_iterator Field = CFRD->field_begin(); 1087 1088 // Class pointer. 1089 FieldDecl *CurField = *Field++; 1090 FieldDecl *NextField = *Field++; 1091 appendFieldAndPadding(*this, Fields, CurField, NextField, 1092 CFConstantStringClassRef, CFRD, STy); 1093 1094 // Flags. 1095 CurField = NextField; 1096 NextField = *Field++; 1097 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1098 appendFieldAndPadding(*this, Fields, CurField, NextField, 1099 llvm::ConstantInt::get(Ty, 0x07C8), CFRD, STy); 1100 1101 // String pointer. 1102 CurField = NextField; 1103 NextField = *Field++; 1104 llvm::Constant *C = llvm::ConstantArray::get(str); 1105 C = new llvm::GlobalVariable(C->getType(), true, 1106 llvm::GlobalValue::InternalLinkage, 1107 C, ".str", &getModule()); 1108 appendFieldAndPadding(*this, Fields, CurField, NextField, 1109 llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2), 1110 CFRD, STy); 1111 1112 // String length. 1113 CurField = NextField; 1114 NextField = 0; 1115 Ty = getTypes().ConvertType(getContext().LongTy); 1116 appendFieldAndPadding(*this, Fields, CurField, NextField, 1117 llvm::ConstantInt::get(Ty, str.length()), CFRD, STy); 1118 1119 // The struct. 1120 C = llvm::ConstantStruct::get(STy, Fields); 1121 llvm::GlobalVariable *GV = 1122 new llvm::GlobalVariable(C->getType(), true, 1123 llvm::GlobalVariable::InternalLinkage, 1124 C, "", &getModule()); 1125 1126 GV->setSection("__DATA,__cfstring"); 1127 Entry.setValue(GV); 1128 1129 return GV; 1130 } 1131 1132 /// GetStringForStringLiteral - Return the appropriate bytes for a 1133 /// string literal, properly padded to match the literal type. 1134 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1135 const char *StrData = E->getStrData(); 1136 unsigned Len = E->getByteLength(); 1137 1138 const ConstantArrayType *CAT = 1139 getContext().getAsConstantArrayType(E->getType()); 1140 assert(CAT && "String isn't pointer or array!"); 1141 1142 // Resize the string to the right size. 1143 std::string Str(StrData, StrData+Len); 1144 uint64_t RealLen = CAT->getSize().getZExtValue(); 1145 1146 if (E->isWide()) 1147 RealLen *= getContext().Target.getWCharWidth()/8; 1148 1149 Str.resize(RealLen, '\0'); 1150 1151 return Str; 1152 } 1153 1154 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1155 /// constant array for the given string literal. 1156 llvm::Constant * 1157 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1158 // FIXME: This can be more efficient. 1159 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1160 } 1161 1162 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1163 /// array for the given ObjCEncodeExpr node. 1164 llvm::Constant * 1165 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1166 std::string Str; 1167 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1168 1169 return GetAddrOfConstantCString(Str); 1170 } 1171 1172 1173 /// GenerateWritableString -- Creates storage for a string literal. 1174 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1175 bool constant, 1176 CodeGenModule &CGM, 1177 const char *GlobalName) { 1178 // Create Constant for this string literal. Don't add a '\0'. 1179 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1180 1181 // Create a global variable for this string 1182 return new llvm::GlobalVariable(C->getType(), constant, 1183 llvm::GlobalValue::InternalLinkage, 1184 C, GlobalName ? GlobalName : ".str", 1185 &CGM.getModule()); 1186 } 1187 1188 /// GetAddrOfConstantString - Returns a pointer to a character array 1189 /// containing the literal. This contents are exactly that of the 1190 /// given string, i.e. it will not be null terminated automatically; 1191 /// see GetAddrOfConstantCString. Note that whether the result is 1192 /// actually a pointer to an LLVM constant depends on 1193 /// Feature.WriteableStrings. 1194 /// 1195 /// The result has pointer to array type. 1196 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1197 const char *GlobalName) { 1198 // Don't share any string literals if writable-strings is turned on. 1199 if (Features.WritableStrings) 1200 return GenerateStringLiteral(str, false, *this, GlobalName); 1201 1202 llvm::StringMapEntry<llvm::Constant *> &Entry = 1203 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1204 1205 if (Entry.getValue()) 1206 return Entry.getValue(); 1207 1208 // Create a global variable for this. 1209 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1210 Entry.setValue(C); 1211 return C; 1212 } 1213 1214 /// GetAddrOfConstantCString - Returns a pointer to a character 1215 /// array containing the literal and a terminating '\-' 1216 /// character. The result has pointer to array type. 1217 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1218 const char *GlobalName){ 1219 return GetAddrOfConstantString(str + '\0', GlobalName); 1220 } 1221 1222 /// EmitObjCPropertyImplementations - Emit information for synthesized 1223 /// properties for an implementation. 1224 void CodeGenModule::EmitObjCPropertyImplementations(const 1225 ObjCImplementationDecl *D) { 1226 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1227 e = D->propimpl_end(); i != e; ++i) { 1228 ObjCPropertyImplDecl *PID = *i; 1229 1230 // Dynamic is just for type-checking. 1231 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1232 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1233 1234 // Determine which methods need to be implemented, some may have 1235 // been overridden. Note that ::isSynthesized is not the method 1236 // we want, that just indicates if the decl came from a 1237 // property. What we want to know is if the method is defined in 1238 // this implementation. 1239 if (!D->getInstanceMethod(PD->getGetterName())) 1240 CodeGenFunction(*this).GenerateObjCGetter( 1241 const_cast<ObjCImplementationDecl *>(D), PID); 1242 if (!PD->isReadOnly() && 1243 !D->getInstanceMethod(PD->getSetterName())) 1244 CodeGenFunction(*this).GenerateObjCSetter( 1245 const_cast<ObjCImplementationDecl *>(D), PID); 1246 } 1247 } 1248 } 1249 1250 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1251 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1252 // If an error has occurred, stop code generation, but continue 1253 // parsing and semantic analysis (to ensure all warnings and errors 1254 // are emitted). 1255 if (Diags.hasErrorOccurred()) 1256 return; 1257 1258 switch (D->getKind()) { 1259 case Decl::Function: 1260 case Decl::Var: 1261 EmitGlobal(cast<ValueDecl>(D)); 1262 break; 1263 1264 case Decl::Namespace: 1265 ErrorUnsupported(D, "namespace"); 1266 break; 1267 1268 // Objective-C Decls 1269 1270 // Forward declarations, no (immediate) code generation. 1271 case Decl::ObjCClass: 1272 case Decl::ObjCForwardProtocol: 1273 case Decl::ObjCCategory: 1274 case Decl::ObjCInterface: 1275 break; 1276 1277 case Decl::ObjCProtocol: 1278 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1279 break; 1280 1281 case Decl::ObjCCategoryImpl: 1282 // Categories have properties but don't support synthesize so we 1283 // can ignore them here. 1284 1285 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1286 break; 1287 1288 case Decl::ObjCImplementation: { 1289 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1290 EmitObjCPropertyImplementations(OMD); 1291 Runtime->GenerateClass(OMD); 1292 break; 1293 } 1294 case Decl::ObjCMethod: { 1295 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1296 // If this is not a prototype, emit the body. 1297 if (OMD->getBody()) 1298 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1299 break; 1300 } 1301 case Decl::ObjCCompatibleAlias: 1302 // compatibility-alias is a directive and has no code gen. 1303 break; 1304 1305 case Decl::LinkageSpec: { 1306 LinkageSpecDecl *LSD = cast<LinkageSpecDecl>(D); 1307 if (LSD->getLanguage() == LinkageSpecDecl::lang_cxx) 1308 ErrorUnsupported(LSD, "linkage spec"); 1309 // FIXME: implement C++ linkage, C linkage works mostly by C 1310 // language reuse already. 1311 break; 1312 } 1313 1314 case Decl::FileScopeAsm: { 1315 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1316 std::string AsmString(AD->getAsmString()->getStrData(), 1317 AD->getAsmString()->getByteLength()); 1318 1319 const std::string &S = getModule().getModuleInlineAsm(); 1320 if (S.empty()) 1321 getModule().setModuleInlineAsm(AsmString); 1322 else 1323 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1324 break; 1325 } 1326 1327 default: 1328 // Make sure we handled everything we should, every other kind is 1329 // a non-top-level decl. FIXME: Would be nice to have an 1330 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1331 // that easily. 1332 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1333 } 1334 } 1335