xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 617cf8a72d2ab568bf0e84452faf4e35a322b32f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79 
80 using namespace clang;
81 using namespace CodeGen;
82 
83 static llvm::cl::opt<bool> LimitedCoverage(
84     "limited-coverage-experimental", llvm::cl::Hidden,
85     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86 
87 static const char AnnotationSection[] = "llvm.metadata";
88 
89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90   switch (CGM.getContext().getCXXABIKind()) {
91   case TargetCXXABI::AppleARM64:
92   case TargetCXXABI::Fuchsia:
93   case TargetCXXABI::GenericAArch64:
94   case TargetCXXABI::GenericARM:
95   case TargetCXXABI::iOS:
96   case TargetCXXABI::WatchOS:
97   case TargetCXXABI::GenericMIPS:
98   case TargetCXXABI::GenericItanium:
99   case TargetCXXABI::WebAssembly:
100   case TargetCXXABI::XL:
101     return CreateItaniumCXXABI(CGM);
102   case TargetCXXABI::Microsoft:
103     return CreateMicrosoftCXXABI(CGM);
104   }
105 
106   llvm_unreachable("invalid C++ ABI kind");
107 }
108 
109 static std::unique_ptr<TargetCodeGenInfo>
110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111   const TargetInfo &Target = CGM.getTarget();
112   const llvm::Triple &Triple = Target.getTriple();
113   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114 
115   switch (Triple.getArch()) {
116   default:
117     return createDefaultTargetCodeGenInfo(CGM);
118 
119   case llvm::Triple::m68k:
120     return createM68kTargetCodeGenInfo(CGM);
121   case llvm::Triple::mips:
122   case llvm::Triple::mipsel:
123     if (Triple.getOS() == llvm::Triple::NaCl)
124       return createPNaClTargetCodeGenInfo(CGM);
125     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
126 
127   case llvm::Triple::mips64:
128   case llvm::Triple::mips64el:
129     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
130 
131   case llvm::Triple::avr: {
132     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
133     // on avrtiny. For passing return value, R18~R25 are used on avr, and
134     // R22~R25 are used on avrtiny.
135     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
136     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
137     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
138   }
139 
140   case llvm::Triple::aarch64:
141   case llvm::Triple::aarch64_32:
142   case llvm::Triple::aarch64_be: {
143     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
144     if (Target.getABI() == "darwinpcs")
145       Kind = AArch64ABIKind::DarwinPCS;
146     else if (Triple.isOSWindows())
147       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
148     else if (Target.getABI() == "aapcs-soft")
149       Kind = AArch64ABIKind::AAPCSSoft;
150     else if (Target.getABI() == "pauthtest")
151       Kind = AArch64ABIKind::PAuthTest;
152 
153     return createAArch64TargetCodeGenInfo(CGM, Kind);
154   }
155 
156   case llvm::Triple::wasm32:
157   case llvm::Triple::wasm64: {
158     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
159     if (Target.getABI() == "experimental-mv")
160       Kind = WebAssemblyABIKind::ExperimentalMV;
161     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
162   }
163 
164   case llvm::Triple::arm:
165   case llvm::Triple::armeb:
166   case llvm::Triple::thumb:
167   case llvm::Triple::thumbeb: {
168     if (Triple.getOS() == llvm::Triple::Win32)
169       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
170 
171     ARMABIKind Kind = ARMABIKind::AAPCS;
172     StringRef ABIStr = Target.getABI();
173     if (ABIStr == "apcs-gnu")
174       Kind = ARMABIKind::APCS;
175     else if (ABIStr == "aapcs16")
176       Kind = ARMABIKind::AAPCS16_VFP;
177     else if (CodeGenOpts.FloatABI == "hard" ||
178              (CodeGenOpts.FloatABI != "soft" &&
179               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
180                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
181                Triple.getEnvironment() == llvm::Triple::EABIHF)))
182       Kind = ARMABIKind::AAPCS_VFP;
183 
184     return createARMTargetCodeGenInfo(CGM, Kind);
185   }
186 
187   case llvm::Triple::ppc: {
188     if (Triple.isOSAIX())
189       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
190 
191     bool IsSoftFloat =
192         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
193     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
194   }
195   case llvm::Triple::ppcle: {
196     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
197     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
198   }
199   case llvm::Triple::ppc64:
200     if (Triple.isOSAIX())
201       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
202 
203     if (Triple.isOSBinFormatELF()) {
204       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
205       if (Target.getABI() == "elfv2")
206         Kind = PPC64_SVR4_ABIKind::ELFv2;
207       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
208 
209       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
210     }
211     return createPPC64TargetCodeGenInfo(CGM);
212   case llvm::Triple::ppc64le: {
213     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
214     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
215     if (Target.getABI() == "elfv1")
216       Kind = PPC64_SVR4_ABIKind::ELFv1;
217     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
218 
219     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
220   }
221 
222   case llvm::Triple::nvptx:
223   case llvm::Triple::nvptx64:
224     return createNVPTXTargetCodeGenInfo(CGM);
225 
226   case llvm::Triple::msp430:
227     return createMSP430TargetCodeGenInfo(CGM);
228 
229   case llvm::Triple::riscv32:
230   case llvm::Triple::riscv64: {
231     StringRef ABIStr = Target.getABI();
232     unsigned XLen = Target.getPointerWidth(LangAS::Default);
233     unsigned ABIFLen = 0;
234     if (ABIStr.ends_with("f"))
235       ABIFLen = 32;
236     else if (ABIStr.ends_with("d"))
237       ABIFLen = 64;
238     bool EABI = ABIStr.ends_with("e");
239     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
240   }
241 
242   case llvm::Triple::systemz: {
243     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
244     bool HasVector = !SoftFloat && Target.getABI() == "vector";
245     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
246   }
247 
248   case llvm::Triple::tce:
249   case llvm::Triple::tcele:
250     return createTCETargetCodeGenInfo(CGM);
251 
252   case llvm::Triple::x86: {
253     bool IsDarwinVectorABI = Triple.isOSDarwin();
254     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
255 
256     if (Triple.getOS() == llvm::Triple::Win32) {
257       return createWinX86_32TargetCodeGenInfo(
258           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
259           CodeGenOpts.NumRegisterParameters);
260     }
261     return createX86_32TargetCodeGenInfo(
262         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
263         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
264   }
265 
266   case llvm::Triple::x86_64: {
267     StringRef ABI = Target.getABI();
268     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
269                                : ABI == "avx"  ? X86AVXABILevel::AVX
270                                                : X86AVXABILevel::None);
271 
272     switch (Triple.getOS()) {
273     case llvm::Triple::Win32:
274       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
275     default:
276       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
277     }
278   }
279   case llvm::Triple::hexagon:
280     return createHexagonTargetCodeGenInfo(CGM);
281   case llvm::Triple::lanai:
282     return createLanaiTargetCodeGenInfo(CGM);
283   case llvm::Triple::r600:
284     return createAMDGPUTargetCodeGenInfo(CGM);
285   case llvm::Triple::amdgcn:
286     return createAMDGPUTargetCodeGenInfo(CGM);
287   case llvm::Triple::sparc:
288     return createSparcV8TargetCodeGenInfo(CGM);
289   case llvm::Triple::sparcv9:
290     return createSparcV9TargetCodeGenInfo(CGM);
291   case llvm::Triple::xcore:
292     return createXCoreTargetCodeGenInfo(CGM);
293   case llvm::Triple::arc:
294     return createARCTargetCodeGenInfo(CGM);
295   case llvm::Triple::spir:
296   case llvm::Triple::spir64:
297     return createCommonSPIRTargetCodeGenInfo(CGM);
298   case llvm::Triple::spirv32:
299   case llvm::Triple::spirv64:
300     return createSPIRVTargetCodeGenInfo(CGM);
301   case llvm::Triple::ve:
302     return createVETargetCodeGenInfo(CGM);
303   case llvm::Triple::csky: {
304     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
305     bool hasFP64 =
306         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
307     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
308                                             : hasFP64   ? 64
309                                                         : 32);
310   }
311   case llvm::Triple::bpfeb:
312   case llvm::Triple::bpfel:
313     return createBPFTargetCodeGenInfo(CGM);
314   case llvm::Triple::loongarch32:
315   case llvm::Triple::loongarch64: {
316     StringRef ABIStr = Target.getABI();
317     unsigned ABIFRLen = 0;
318     if (ABIStr.ends_with("f"))
319       ABIFRLen = 32;
320     else if (ABIStr.ends_with("d"))
321       ABIFRLen = 64;
322     return createLoongArchTargetCodeGenInfo(
323         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
324   }
325   }
326 }
327 
328 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
329   if (!TheTargetCodeGenInfo)
330     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
331   return *TheTargetCodeGenInfo;
332 }
333 
334 CodeGenModule::CodeGenModule(ASTContext &C,
335                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
336                              const HeaderSearchOptions &HSO,
337                              const PreprocessorOptions &PPO,
338                              const CodeGenOptions &CGO, llvm::Module &M,
339                              DiagnosticsEngine &diags,
340                              CoverageSourceInfo *CoverageInfo)
341     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
342       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
343       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
344       VMContext(M.getContext()), Types(*this), VTables(*this),
345       SanitizerMD(new SanitizerMetadata(*this)) {
346 
347   // Initialize the type cache.
348   llvm::LLVMContext &LLVMContext = M.getContext();
349   VoidTy = llvm::Type::getVoidTy(LLVMContext);
350   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
351   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
352   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
353   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
354   HalfTy = llvm::Type::getHalfTy(LLVMContext);
355   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
356   FloatTy = llvm::Type::getFloatTy(LLVMContext);
357   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
358   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
359   PointerAlignInBytes =
360       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
361           .getQuantity();
362   SizeSizeInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
364   IntAlignInBytes =
365     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
366   CharTy =
367     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
368   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
369   IntPtrTy = llvm::IntegerType::get(LLVMContext,
370     C.getTargetInfo().getMaxPointerWidth());
371   Int8PtrTy = llvm::PointerType::get(LLVMContext,
372                                      C.getTargetAddressSpace(LangAS::Default));
373   const llvm::DataLayout &DL = M.getDataLayout();
374   AllocaInt8PtrTy =
375       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
376   GlobalsInt8PtrTy =
377       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
378   ConstGlobalsPtrTy = llvm::PointerType::get(
379       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
380   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
381 
382   // Build C++20 Module initializers.
383   // TODO: Add Microsoft here once we know the mangling required for the
384   // initializers.
385   CXX20ModuleInits =
386       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
387                                        ItaniumMangleContext::MK_Itanium;
388 
389   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
390 
391   if (LangOpts.ObjC)
392     createObjCRuntime();
393   if (LangOpts.OpenCL)
394     createOpenCLRuntime();
395   if (LangOpts.OpenMP)
396     createOpenMPRuntime();
397   if (LangOpts.CUDA)
398     createCUDARuntime();
399   if (LangOpts.HLSL)
400     createHLSLRuntime();
401 
402   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
403   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
404       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
405     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
406                                getLangOpts(), getCXXABI().getMangleContext()));
407 
408   // If debug info or coverage generation is enabled, create the CGDebugInfo
409   // object.
410   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
411       CodeGenOpts.CoverageNotesFile.size() ||
412       CodeGenOpts.CoverageDataFile.size())
413     DebugInfo.reset(new CGDebugInfo(*this));
414 
415   Block.GlobalUniqueCount = 0;
416 
417   if (C.getLangOpts().ObjC)
418     ObjCData.reset(new ObjCEntrypoints());
419 
420   if (CodeGenOpts.hasProfileClangUse()) {
421     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
422         CodeGenOpts.ProfileInstrumentUsePath, *FS,
423         CodeGenOpts.ProfileRemappingFile);
424     // We're checking for profile read errors in CompilerInvocation, so if
425     // there was an error it should've already been caught. If it hasn't been
426     // somehow, trip an assertion.
427     assert(ReaderOrErr);
428     PGOReader = std::move(ReaderOrErr.get());
429   }
430 
431   // If coverage mapping generation is enabled, create the
432   // CoverageMappingModuleGen object.
433   if (CodeGenOpts.CoverageMapping)
434     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
435 
436   // Generate the module name hash here if needed.
437   if (CodeGenOpts.UniqueInternalLinkageNames &&
438       !getModule().getSourceFileName().empty()) {
439     std::string Path = getModule().getSourceFileName();
440     // Check if a path substitution is needed from the MacroPrefixMap.
441     for (const auto &Entry : LangOpts.MacroPrefixMap)
442       if (Path.rfind(Entry.first, 0) != std::string::npos) {
443         Path = Entry.second + Path.substr(Entry.first.size());
444         break;
445       }
446     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
447   }
448 
449   // Record mregparm value now so it is visible through all of codegen.
450   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
451     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
452                               CodeGenOpts.NumRegisterParameters);
453 }
454 
455 CodeGenModule::~CodeGenModule() {}
456 
457 void CodeGenModule::createObjCRuntime() {
458   // This is just isGNUFamily(), but we want to force implementors of
459   // new ABIs to decide how best to do this.
460   switch (LangOpts.ObjCRuntime.getKind()) {
461   case ObjCRuntime::GNUstep:
462   case ObjCRuntime::GCC:
463   case ObjCRuntime::ObjFW:
464     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
465     return;
466 
467   case ObjCRuntime::FragileMacOSX:
468   case ObjCRuntime::MacOSX:
469   case ObjCRuntime::iOS:
470   case ObjCRuntime::WatchOS:
471     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
472     return;
473   }
474   llvm_unreachable("bad runtime kind");
475 }
476 
477 void CodeGenModule::createOpenCLRuntime() {
478   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
479 }
480 
481 void CodeGenModule::createOpenMPRuntime() {
482   // Select a specialized code generation class based on the target, if any.
483   // If it does not exist use the default implementation.
484   switch (getTriple().getArch()) {
485   case llvm::Triple::nvptx:
486   case llvm::Triple::nvptx64:
487   case llvm::Triple::amdgcn:
488     assert(getLangOpts().OpenMPIsTargetDevice &&
489            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
490     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
491     break;
492   default:
493     if (LangOpts.OpenMPSimd)
494       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
495     else
496       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
497     break;
498   }
499 }
500 
501 void CodeGenModule::createCUDARuntime() {
502   CUDARuntime.reset(CreateNVCUDARuntime(*this));
503 }
504 
505 void CodeGenModule::createHLSLRuntime() {
506   HLSLRuntime.reset(new CGHLSLRuntime(*this));
507 }
508 
509 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
510   Replacements[Name] = C;
511 }
512 
513 void CodeGenModule::applyReplacements() {
514   for (auto &I : Replacements) {
515     StringRef MangledName = I.first;
516     llvm::Constant *Replacement = I.second;
517     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
518     if (!Entry)
519       continue;
520     auto *OldF = cast<llvm::Function>(Entry);
521     auto *NewF = dyn_cast<llvm::Function>(Replacement);
522     if (!NewF) {
523       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
524         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
525       } else {
526         auto *CE = cast<llvm::ConstantExpr>(Replacement);
527         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
528                CE->getOpcode() == llvm::Instruction::GetElementPtr);
529         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
530       }
531     }
532 
533     // Replace old with new, but keep the old order.
534     OldF->replaceAllUsesWith(Replacement);
535     if (NewF) {
536       NewF->removeFromParent();
537       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
538                                                        NewF);
539     }
540     OldF->eraseFromParent();
541   }
542 }
543 
544 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
545   GlobalValReplacements.push_back(std::make_pair(GV, C));
546 }
547 
548 void CodeGenModule::applyGlobalValReplacements() {
549   for (auto &I : GlobalValReplacements) {
550     llvm::GlobalValue *GV = I.first;
551     llvm::Constant *C = I.second;
552 
553     GV->replaceAllUsesWith(C);
554     GV->eraseFromParent();
555   }
556 }
557 
558 // This is only used in aliases that we created and we know they have a
559 // linear structure.
560 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
561   const llvm::Constant *C;
562   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
563     C = GA->getAliasee();
564   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
565     C = GI->getResolver();
566   else
567     return GV;
568 
569   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
570   if (!AliaseeGV)
571     return nullptr;
572 
573   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
574   if (FinalGV == GV)
575     return nullptr;
576 
577   return FinalGV;
578 }
579 
580 static bool checkAliasedGlobal(
581     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
582     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
583     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
584     SourceRange AliasRange) {
585   GV = getAliasedGlobal(Alias);
586   if (!GV) {
587     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
588     return false;
589   }
590 
591   if (GV->hasCommonLinkage()) {
592     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
593     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
594       Diags.Report(Location, diag::err_alias_to_common);
595       return false;
596     }
597   }
598 
599   if (GV->isDeclaration()) {
600     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
601     Diags.Report(Location, diag::note_alias_requires_mangled_name)
602         << IsIFunc << IsIFunc;
603     // Provide a note if the given function is not found and exists as a
604     // mangled name.
605     for (const auto &[Decl, Name] : MangledDeclNames) {
606       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
607         if (ND->getName() == GV->getName()) {
608           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
609               << Name
610               << FixItHint::CreateReplacement(
611                      AliasRange,
612                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
613                          .str());
614         }
615       }
616     }
617     return false;
618   }
619 
620   if (IsIFunc) {
621     // Check resolver function type.
622     const auto *F = dyn_cast<llvm::Function>(GV);
623     if (!F) {
624       Diags.Report(Location, diag::err_alias_to_undefined)
625           << IsIFunc << IsIFunc;
626       return false;
627     }
628 
629     llvm::FunctionType *FTy = F->getFunctionType();
630     if (!FTy->getReturnType()->isPointerTy()) {
631       Diags.Report(Location, diag::err_ifunc_resolver_return);
632       return false;
633     }
634   }
635 
636   return true;
637 }
638 
639 // Emit a warning if toc-data attribute is requested for global variables that
640 // have aliases and remove the toc-data attribute.
641 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
642                                  const CodeGenOptions &CodeGenOpts,
643                                  DiagnosticsEngine &Diags,
644                                  SourceLocation Location) {
645   if (GVar->hasAttribute("toc-data")) {
646     auto GVId = GVar->getName();
647     // Is this a global variable specified by the user as local?
648     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
649       Diags.Report(Location, diag::warn_toc_unsupported_type)
650           << GVId << "the variable has an alias";
651     }
652     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
653     llvm::AttributeSet NewAttributes =
654         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
655     GVar->setAttributes(NewAttributes);
656   }
657 }
658 
659 void CodeGenModule::checkAliases() {
660   // Check if the constructed aliases are well formed. It is really unfortunate
661   // that we have to do this in CodeGen, but we only construct mangled names
662   // and aliases during codegen.
663   bool Error = false;
664   DiagnosticsEngine &Diags = getDiags();
665   for (const GlobalDecl &GD : Aliases) {
666     const auto *D = cast<ValueDecl>(GD.getDecl());
667     SourceLocation Location;
668     SourceRange Range;
669     bool IsIFunc = D->hasAttr<IFuncAttr>();
670     if (const Attr *A = D->getDefiningAttr()) {
671       Location = A->getLocation();
672       Range = A->getRange();
673     } else
674       llvm_unreachable("Not an alias or ifunc?");
675 
676     StringRef MangledName = getMangledName(GD);
677     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
678     const llvm::GlobalValue *GV = nullptr;
679     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
680                             MangledDeclNames, Range)) {
681       Error = true;
682       continue;
683     }
684 
685     if (getContext().getTargetInfo().getTriple().isOSAIX())
686       if (const llvm::GlobalVariable *GVar =
687               dyn_cast<const llvm::GlobalVariable>(GV))
688         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
689                              getCodeGenOpts(), Diags, Location);
690 
691     llvm::Constant *Aliasee =
692         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
693                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
694 
695     llvm::GlobalValue *AliaseeGV;
696     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
697       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
698     else
699       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
700 
701     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
702       StringRef AliasSection = SA->getName();
703       if (AliasSection != AliaseeGV->getSection())
704         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
705             << AliasSection << IsIFunc << IsIFunc;
706     }
707 
708     // We have to handle alias to weak aliases in here. LLVM itself disallows
709     // this since the object semantics would not match the IL one. For
710     // compatibility with gcc we implement it by just pointing the alias
711     // to its aliasee's aliasee. We also warn, since the user is probably
712     // expecting the link to be weak.
713     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
714       if (GA->isInterposable()) {
715         Diags.Report(Location, diag::warn_alias_to_weak_alias)
716             << GV->getName() << GA->getName() << IsIFunc;
717         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
718             GA->getAliasee(), Alias->getType());
719 
720         if (IsIFunc)
721           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
722         else
723           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
724       }
725     }
726     // ifunc resolvers are usually implemented to run before sanitizer
727     // initialization. Disable instrumentation to prevent the ordering issue.
728     if (IsIFunc)
729       cast<llvm::Function>(Aliasee)->addFnAttr(
730           llvm::Attribute::DisableSanitizerInstrumentation);
731   }
732   if (!Error)
733     return;
734 
735   for (const GlobalDecl &GD : Aliases) {
736     StringRef MangledName = getMangledName(GD);
737     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
738     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
739     Alias->eraseFromParent();
740   }
741 }
742 
743 void CodeGenModule::clear() {
744   DeferredDeclsToEmit.clear();
745   EmittedDeferredDecls.clear();
746   DeferredAnnotations.clear();
747   if (OpenMPRuntime)
748     OpenMPRuntime->clear();
749 }
750 
751 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
752                                        StringRef MainFile) {
753   if (!hasDiagnostics())
754     return;
755   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
756     if (MainFile.empty())
757       MainFile = "<stdin>";
758     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
759   } else {
760     if (Mismatched > 0)
761       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
762 
763     if (Missing > 0)
764       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
765   }
766 }
767 
768 static std::optional<llvm::GlobalValue::VisibilityTypes>
769 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
770   // Map to LLVM visibility.
771   switch (K) {
772   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
773     return std::nullopt;
774   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
775     return llvm::GlobalValue::DefaultVisibility;
776   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
777     return llvm::GlobalValue::HiddenVisibility;
778   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
779     return llvm::GlobalValue::ProtectedVisibility;
780   }
781   llvm_unreachable("unknown option value!");
782 }
783 
784 void setLLVMVisibility(llvm::GlobalValue &GV,
785                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
786   if (!V)
787     return;
788 
789   // Reset DSO locality before setting the visibility. This removes
790   // any effects that visibility options and annotations may have
791   // had on the DSO locality. Setting the visibility will implicitly set
792   // appropriate globals to DSO Local; however, this will be pessimistic
793   // w.r.t. to the normal compiler IRGen.
794   GV.setDSOLocal(false);
795   GV.setVisibility(*V);
796 }
797 
798 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
799                                              llvm::Module &M) {
800   if (!LO.VisibilityFromDLLStorageClass)
801     return;
802 
803   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
804       getLLVMVisibility(LO.getDLLExportVisibility());
805 
806   std::optional<llvm::GlobalValue::VisibilityTypes>
807       NoDLLStorageClassVisibility =
808           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
809 
810   std::optional<llvm::GlobalValue::VisibilityTypes>
811       ExternDeclDLLImportVisibility =
812           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
813 
814   std::optional<llvm::GlobalValue::VisibilityTypes>
815       ExternDeclNoDLLStorageClassVisibility =
816           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
817 
818   for (llvm::GlobalValue &GV : M.global_values()) {
819     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
820       continue;
821 
822     if (GV.isDeclarationForLinker())
823       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
824                                     llvm::GlobalValue::DLLImportStorageClass
825                                 ? ExternDeclDLLImportVisibility
826                                 : ExternDeclNoDLLStorageClassVisibility);
827     else
828       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
829                                     llvm::GlobalValue::DLLExportStorageClass
830                                 ? DLLExportVisibility
831                                 : NoDLLStorageClassVisibility);
832 
833     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
834   }
835 }
836 
837 static bool isStackProtectorOn(const LangOptions &LangOpts,
838                                const llvm::Triple &Triple,
839                                clang::LangOptions::StackProtectorMode Mode) {
840   if (Triple.isAMDGPU() || Triple.isNVPTX())
841     return false;
842   return LangOpts.getStackProtector() == Mode;
843 }
844 
845 void CodeGenModule::Release() {
846   Module *Primary = getContext().getCurrentNamedModule();
847   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
848     EmitModuleInitializers(Primary);
849   EmitDeferred();
850   DeferredDecls.insert(EmittedDeferredDecls.begin(),
851                        EmittedDeferredDecls.end());
852   EmittedDeferredDecls.clear();
853   EmitVTablesOpportunistically();
854   applyGlobalValReplacements();
855   applyReplacements();
856   emitMultiVersionFunctions();
857 
858   if (Context.getLangOpts().IncrementalExtensions &&
859       GlobalTopLevelStmtBlockInFlight.first) {
860     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
861     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
862     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
863   }
864 
865   // Module implementations are initialized the same way as a regular TU that
866   // imports one or more modules.
867   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
868     EmitCXXModuleInitFunc(Primary);
869   else
870     EmitCXXGlobalInitFunc();
871   EmitCXXGlobalCleanUpFunc();
872   registerGlobalDtorsWithAtExit();
873   EmitCXXThreadLocalInitFunc();
874   if (ObjCRuntime)
875     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
876       AddGlobalCtor(ObjCInitFunction);
877   if (Context.getLangOpts().CUDA && CUDARuntime) {
878     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
879       AddGlobalCtor(CudaCtorFunction);
880   }
881   if (OpenMPRuntime) {
882     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
883     OpenMPRuntime->clear();
884   }
885   if (PGOReader) {
886     getModule().setProfileSummary(
887         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
888         llvm::ProfileSummary::PSK_Instr);
889     if (PGOStats.hasDiagnostics())
890       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
891   }
892   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
893     return L.LexOrder < R.LexOrder;
894   });
895   EmitCtorList(GlobalCtors, "llvm.global_ctors");
896   EmitCtorList(GlobalDtors, "llvm.global_dtors");
897   EmitGlobalAnnotations();
898   EmitStaticExternCAliases();
899   checkAliases();
900   EmitDeferredUnusedCoverageMappings();
901   CodeGenPGO(*this).setValueProfilingFlag(getModule());
902   CodeGenPGO(*this).setProfileVersion(getModule());
903   if (CoverageMapping)
904     CoverageMapping->emit();
905   if (CodeGenOpts.SanitizeCfiCrossDso) {
906     CodeGenFunction(*this).EmitCfiCheckFail();
907     CodeGenFunction(*this).EmitCfiCheckStub();
908   }
909   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
910     finalizeKCFITypes();
911   emitAtAvailableLinkGuard();
912   if (Context.getTargetInfo().getTriple().isWasm())
913     EmitMainVoidAlias();
914 
915   if (getTriple().isAMDGPU() ||
916       (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
917     // Emit amdhsa_code_object_version module flag, which is code object version
918     // times 100.
919     if (getTarget().getTargetOpts().CodeObjectVersion !=
920         llvm::CodeObjectVersionKind::COV_None) {
921       getModule().addModuleFlag(llvm::Module::Error,
922                                 "amdhsa_code_object_version",
923                                 getTarget().getTargetOpts().CodeObjectVersion);
924     }
925 
926     // Currently, "-mprintf-kind" option is only supported for HIP
927     if (LangOpts.HIP) {
928       auto *MDStr = llvm::MDString::get(
929           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
930                              TargetOptions::AMDGPUPrintfKind::Hostcall)
931                                 ? "hostcall"
932                                 : "buffered");
933       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
934                                 MDStr);
935     }
936   }
937 
938   // Emit a global array containing all external kernels or device variables
939   // used by host functions and mark it as used for CUDA/HIP. This is necessary
940   // to get kernels or device variables in archives linked in even if these
941   // kernels or device variables are only used in host functions.
942   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
943     SmallVector<llvm::Constant *, 8> UsedArray;
944     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
945       GlobalDecl GD;
946       if (auto *FD = dyn_cast<FunctionDecl>(D))
947         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
948       else
949         GD = GlobalDecl(D);
950       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
951           GetAddrOfGlobal(GD), Int8PtrTy));
952     }
953 
954     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
955 
956     auto *GV = new llvm::GlobalVariable(
957         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
958         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
959     addCompilerUsedGlobal(GV);
960   }
961   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
962     // Emit a unique ID so that host and device binaries from the same
963     // compilation unit can be associated.
964     auto *GV = new llvm::GlobalVariable(
965         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
966         llvm::Constant::getNullValue(Int8Ty),
967         "__hip_cuid_" + getContext().getCUIDHash());
968     addCompilerUsedGlobal(GV);
969   }
970   emitLLVMUsed();
971   if (SanStats)
972     SanStats->finish();
973 
974   if (CodeGenOpts.Autolink &&
975       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
976     EmitModuleLinkOptions();
977   }
978 
979   // On ELF we pass the dependent library specifiers directly to the linker
980   // without manipulating them. This is in contrast to other platforms where
981   // they are mapped to a specific linker option by the compiler. This
982   // difference is a result of the greater variety of ELF linkers and the fact
983   // that ELF linkers tend to handle libraries in a more complicated fashion
984   // than on other platforms. This forces us to defer handling the dependent
985   // libs to the linker.
986   //
987   // CUDA/HIP device and host libraries are different. Currently there is no
988   // way to differentiate dependent libraries for host or device. Existing
989   // usage of #pragma comment(lib, *) is intended for host libraries on
990   // Windows. Therefore emit llvm.dependent-libraries only for host.
991   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
992     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
993     for (auto *MD : ELFDependentLibraries)
994       NMD->addOperand(MD);
995   }
996 
997   if (CodeGenOpts.DwarfVersion) {
998     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
999                               CodeGenOpts.DwarfVersion);
1000   }
1001 
1002   if (CodeGenOpts.Dwarf64)
1003     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1004 
1005   if (Context.getLangOpts().SemanticInterposition)
1006     // Require various optimization to respect semantic interposition.
1007     getModule().setSemanticInterposition(true);
1008 
1009   if (CodeGenOpts.EmitCodeView) {
1010     // Indicate that we want CodeView in the metadata.
1011     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1012   }
1013   if (CodeGenOpts.CodeViewGHash) {
1014     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1015   }
1016   if (CodeGenOpts.ControlFlowGuard) {
1017     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1018     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1019   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1020     // Function ID tables for Control Flow Guard (cfguard=1).
1021     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1022   }
1023   if (CodeGenOpts.EHContGuard) {
1024     // Function ID tables for EH Continuation Guard.
1025     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1026   }
1027   if (Context.getLangOpts().Kernel) {
1028     // Note if we are compiling with /kernel.
1029     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1030   }
1031   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1032     // We don't support LTO with 2 with different StrictVTablePointers
1033     // FIXME: we could support it by stripping all the information introduced
1034     // by StrictVTablePointers.
1035 
1036     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1037 
1038     llvm::Metadata *Ops[2] = {
1039               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1040               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1041                   llvm::Type::getInt32Ty(VMContext), 1))};
1042 
1043     getModule().addModuleFlag(llvm::Module::Require,
1044                               "StrictVTablePointersRequirement",
1045                               llvm::MDNode::get(VMContext, Ops));
1046   }
1047   if (getModuleDebugInfo())
1048     // We support a single version in the linked module. The LLVM
1049     // parser will drop debug info with a different version number
1050     // (and warn about it, too).
1051     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1052                               llvm::DEBUG_METADATA_VERSION);
1053 
1054   // We need to record the widths of enums and wchar_t, so that we can generate
1055   // the correct build attributes in the ARM backend. wchar_size is also used by
1056   // TargetLibraryInfo.
1057   uint64_t WCharWidth =
1058       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1059   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1060 
1061   if (getTriple().isOSzOS()) {
1062     getModule().addModuleFlag(llvm::Module::Warning,
1063                               "zos_product_major_version",
1064                               uint32_t(CLANG_VERSION_MAJOR));
1065     getModule().addModuleFlag(llvm::Module::Warning,
1066                               "zos_product_minor_version",
1067                               uint32_t(CLANG_VERSION_MINOR));
1068     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1069                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1070     std::string ProductId = getClangVendor() + "clang";
1071     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1072                               llvm::MDString::get(VMContext, ProductId));
1073 
1074     // Record the language because we need it for the PPA2.
1075     StringRef lang_str = languageToString(
1076         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1077     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1078                               llvm::MDString::get(VMContext, lang_str));
1079 
1080     time_t TT = PreprocessorOpts.SourceDateEpoch
1081                     ? *PreprocessorOpts.SourceDateEpoch
1082                     : std::time(nullptr);
1083     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1084                               static_cast<uint64_t>(TT));
1085 
1086     // Multiple modes will be supported here.
1087     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1088                               llvm::MDString::get(VMContext, "ascii"));
1089   }
1090 
1091   llvm::Triple T = Context.getTargetInfo().getTriple();
1092   if (T.isARM() || T.isThumb()) {
1093     // The minimum width of an enum in bytes
1094     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1095     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1096   }
1097 
1098   if (T.isRISCV()) {
1099     StringRef ABIStr = Target.getABI();
1100     llvm::LLVMContext &Ctx = TheModule.getContext();
1101     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1102                               llvm::MDString::get(Ctx, ABIStr));
1103 
1104     // Add the canonical ISA string as metadata so the backend can set the ELF
1105     // attributes correctly. We use AppendUnique so LTO will keep all of the
1106     // unique ISA strings that were linked together.
1107     const std::vector<std::string> &Features =
1108         getTarget().getTargetOpts().Features;
1109     auto ParseResult =
1110         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1111     if (!errorToBool(ParseResult.takeError()))
1112       getModule().addModuleFlag(
1113           llvm::Module::AppendUnique, "riscv-isa",
1114           llvm::MDNode::get(
1115               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1116   }
1117 
1118   if (CodeGenOpts.SanitizeCfiCrossDso) {
1119     // Indicate that we want cross-DSO control flow integrity checks.
1120     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1121   }
1122 
1123   if (CodeGenOpts.WholeProgramVTables) {
1124     // Indicate whether VFE was enabled for this module, so that the
1125     // vcall_visibility metadata added under whole program vtables is handled
1126     // appropriately in the optimizer.
1127     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1128                               CodeGenOpts.VirtualFunctionElimination);
1129   }
1130 
1131   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1132     getModule().addModuleFlag(llvm::Module::Override,
1133                               "CFI Canonical Jump Tables",
1134                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1135   }
1136 
1137   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1138     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1139     // KCFI assumes patchable-function-prefix is the same for all indirectly
1140     // called functions. Store the expected offset for code generation.
1141     if (CodeGenOpts.PatchableFunctionEntryOffset)
1142       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1143                                 CodeGenOpts.PatchableFunctionEntryOffset);
1144   }
1145 
1146   if (CodeGenOpts.CFProtectionReturn &&
1147       Target.checkCFProtectionReturnSupported(getDiags())) {
1148     // Indicate that we want to instrument return control flow protection.
1149     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1150                               1);
1151   }
1152 
1153   if (CodeGenOpts.CFProtectionBranch &&
1154       Target.checkCFProtectionBranchSupported(getDiags())) {
1155     // Indicate that we want to instrument branch control flow protection.
1156     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1157                               1);
1158   }
1159 
1160   if (CodeGenOpts.FunctionReturnThunks)
1161     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1162 
1163   if (CodeGenOpts.IndirectBranchCSPrefix)
1164     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1165 
1166   // Add module metadata for return address signing (ignoring
1167   // non-leaf/all) and stack tagging. These are actually turned on by function
1168   // attributes, but we use module metadata to emit build attributes. This is
1169   // needed for LTO, where the function attributes are inside bitcode
1170   // serialised into a global variable by the time build attributes are
1171   // emitted, so we can't access them. LTO objects could be compiled with
1172   // different flags therefore module flags are set to "Min" behavior to achieve
1173   // the same end result of the normal build where e.g BTI is off if any object
1174   // doesn't support it.
1175   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1176       LangOpts.getSignReturnAddressScope() !=
1177           LangOptions::SignReturnAddressScopeKind::None)
1178     getModule().addModuleFlag(llvm::Module::Override,
1179                               "sign-return-address-buildattr", 1);
1180   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1181     getModule().addModuleFlag(llvm::Module::Override,
1182                               "tag-stack-memory-buildattr", 1);
1183 
1184   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1185     if (LangOpts.BranchTargetEnforcement)
1186       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1187                                 1);
1188     if (LangOpts.BranchProtectionPAuthLR)
1189       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1190                                 1);
1191     if (LangOpts.GuardedControlStack)
1192       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1193     if (LangOpts.hasSignReturnAddress())
1194       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1195     if (LangOpts.isSignReturnAddressScopeAll())
1196       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1197                                 1);
1198     if (!LangOpts.isSignReturnAddressWithAKey())
1199       getModule().addModuleFlag(llvm::Module::Min,
1200                                 "sign-return-address-with-bkey", 1);
1201 
1202     if (getTriple().isOSLinux()) {
1203       assert(getTriple().isOSBinFormatELF());
1204       using namespace llvm::ELF;
1205       uint64_t PAuthABIVersion =
1206           (LangOpts.PointerAuthIntrinsics
1207            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1208           (LangOpts.PointerAuthCalls
1209            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1210           (LangOpts.PointerAuthReturns
1211            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1212           (LangOpts.PointerAuthAuthTraps
1213            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1214           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1215            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1216           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1217            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1218           (LangOpts.PointerAuthInitFini
1219            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) |
1220           (LangOpts.PointerAuthInitFiniAddressDiscrimination
1221            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC);
1222       static_assert(
1223           AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC ==
1224               AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1225           "Update when new enum items are defined");
1226       if (PAuthABIVersion != 0) {
1227         getModule().addModuleFlag(llvm::Module::Error,
1228                                   "aarch64-elf-pauthabi-platform",
1229                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1230         getModule().addModuleFlag(llvm::Module::Error,
1231                                   "aarch64-elf-pauthabi-version",
1232                                   PAuthABIVersion);
1233       }
1234     }
1235   }
1236 
1237   if (CodeGenOpts.StackClashProtector)
1238     getModule().addModuleFlag(
1239         llvm::Module::Override, "probe-stack",
1240         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1241 
1242   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1243     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1244                               CodeGenOpts.StackProbeSize);
1245 
1246   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1247     llvm::LLVMContext &Ctx = TheModule.getContext();
1248     getModule().addModuleFlag(
1249         llvm::Module::Error, "MemProfProfileFilename",
1250         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1251   }
1252 
1253   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1254     // Indicate whether __nvvm_reflect should be configured to flush denormal
1255     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1256     // property.)
1257     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1258                               CodeGenOpts.FP32DenormalMode.Output !=
1259                                   llvm::DenormalMode::IEEE);
1260   }
1261 
1262   if (LangOpts.EHAsynch)
1263     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1264 
1265   // Indicate whether this Module was compiled with -fopenmp
1266   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1267     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1268   if (getLangOpts().OpenMPIsTargetDevice)
1269     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1270                               LangOpts.OpenMP);
1271 
1272   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1273   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1274     EmitOpenCLMetadata();
1275     // Emit SPIR version.
1276     if (getTriple().isSPIR()) {
1277       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1278       // opencl.spir.version named metadata.
1279       // C++ for OpenCL has a distinct mapping for version compatibility with
1280       // OpenCL.
1281       auto Version = LangOpts.getOpenCLCompatibleVersion();
1282       llvm::Metadata *SPIRVerElts[] = {
1283           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1284               Int32Ty, Version / 100)),
1285           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1286               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1287       llvm::NamedMDNode *SPIRVerMD =
1288           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1289       llvm::LLVMContext &Ctx = TheModule.getContext();
1290       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1291     }
1292   }
1293 
1294   // HLSL related end of code gen work items.
1295   if (LangOpts.HLSL)
1296     getHLSLRuntime().finishCodeGen();
1297 
1298   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1299     assert(PLevel < 3 && "Invalid PIC Level");
1300     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1301     if (Context.getLangOpts().PIE)
1302       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1303   }
1304 
1305   if (getCodeGenOpts().CodeModel.size() > 0) {
1306     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1307                   .Case("tiny", llvm::CodeModel::Tiny)
1308                   .Case("small", llvm::CodeModel::Small)
1309                   .Case("kernel", llvm::CodeModel::Kernel)
1310                   .Case("medium", llvm::CodeModel::Medium)
1311                   .Case("large", llvm::CodeModel::Large)
1312                   .Default(~0u);
1313     if (CM != ~0u) {
1314       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1315       getModule().setCodeModel(codeModel);
1316 
1317       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1318           Context.getTargetInfo().getTriple().getArch() ==
1319               llvm::Triple::x86_64) {
1320         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1321       }
1322     }
1323   }
1324 
1325   if (CodeGenOpts.NoPLT)
1326     getModule().setRtLibUseGOT();
1327   if (getTriple().isOSBinFormatELF() &&
1328       CodeGenOpts.DirectAccessExternalData !=
1329           getModule().getDirectAccessExternalData()) {
1330     getModule().setDirectAccessExternalData(
1331         CodeGenOpts.DirectAccessExternalData);
1332   }
1333   if (CodeGenOpts.UnwindTables)
1334     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1335 
1336   switch (CodeGenOpts.getFramePointer()) {
1337   case CodeGenOptions::FramePointerKind::None:
1338     // 0 ("none") is the default.
1339     break;
1340   case CodeGenOptions::FramePointerKind::Reserved:
1341     getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1342     break;
1343   case CodeGenOptions::FramePointerKind::NonLeaf:
1344     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1345     break;
1346   case CodeGenOptions::FramePointerKind::All:
1347     getModule().setFramePointer(llvm::FramePointerKind::All);
1348     break;
1349   }
1350 
1351   SimplifyPersonality();
1352 
1353   if (getCodeGenOpts().EmitDeclMetadata)
1354     EmitDeclMetadata();
1355 
1356   if (getCodeGenOpts().CoverageNotesFile.size() ||
1357       getCodeGenOpts().CoverageDataFile.size())
1358     EmitCoverageFile();
1359 
1360   if (CGDebugInfo *DI = getModuleDebugInfo())
1361     DI->finalize();
1362 
1363   if (getCodeGenOpts().EmitVersionIdentMetadata)
1364     EmitVersionIdentMetadata();
1365 
1366   if (!getCodeGenOpts().RecordCommandLine.empty())
1367     EmitCommandLineMetadata();
1368 
1369   if (!getCodeGenOpts().StackProtectorGuard.empty())
1370     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1371   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1372     getModule().setStackProtectorGuardReg(
1373         getCodeGenOpts().StackProtectorGuardReg);
1374   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1375     getModule().setStackProtectorGuardSymbol(
1376         getCodeGenOpts().StackProtectorGuardSymbol);
1377   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1378     getModule().setStackProtectorGuardOffset(
1379         getCodeGenOpts().StackProtectorGuardOffset);
1380   if (getCodeGenOpts().StackAlignment)
1381     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1382   if (getCodeGenOpts().SkipRaxSetup)
1383     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1384   if (getLangOpts().RegCall4)
1385     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1386 
1387   if (getContext().getTargetInfo().getMaxTLSAlign())
1388     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1389                               getContext().getTargetInfo().getMaxTLSAlign());
1390 
1391   getTargetCodeGenInfo().emitTargetGlobals(*this);
1392 
1393   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1394 
1395   EmitBackendOptionsMetadata(getCodeGenOpts());
1396 
1397   // If there is device offloading code embed it in the host now.
1398   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1399 
1400   // Set visibility from DLL storage class
1401   // We do this at the end of LLVM IR generation; after any operation
1402   // that might affect the DLL storage class or the visibility, and
1403   // before anything that might act on these.
1404   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1405 
1406   // Check the tail call symbols are truly undefined.
1407   if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1408     for (auto &I : MustTailCallUndefinedGlobals) {
1409       if (!I.first->isDefined())
1410         getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1411       else {
1412         StringRef MangledName = getMangledName(GlobalDecl(I.first));
1413         llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1414         if (!Entry || Entry->isWeakForLinker() ||
1415             Entry->isDeclarationForLinker())
1416           getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1417       }
1418     }
1419   }
1420 }
1421 
1422 void CodeGenModule::EmitOpenCLMetadata() {
1423   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1424   // opencl.ocl.version named metadata node.
1425   // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1426   auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1427 
1428   auto EmitVersion = [this](StringRef MDName, int Version) {
1429     llvm::Metadata *OCLVerElts[] = {
1430         llvm::ConstantAsMetadata::get(
1431             llvm::ConstantInt::get(Int32Ty, Version / 100)),
1432         llvm::ConstantAsMetadata::get(
1433             llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1434     llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1435     llvm::LLVMContext &Ctx = TheModule.getContext();
1436     OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1437   };
1438 
1439   EmitVersion("opencl.ocl.version", CLVersion);
1440   if (LangOpts.OpenCLCPlusPlus) {
1441     // In addition to the OpenCL compatible version, emit the C++ version.
1442     EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1443   }
1444 }
1445 
1446 void CodeGenModule::EmitBackendOptionsMetadata(
1447     const CodeGenOptions &CodeGenOpts) {
1448   if (getTriple().isRISCV()) {
1449     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1450                               CodeGenOpts.SmallDataLimit);
1451   }
1452 }
1453 
1454 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1455   // Make sure that this type is translated.
1456   Types.UpdateCompletedType(TD);
1457 }
1458 
1459 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1460   // Make sure that this type is translated.
1461   Types.RefreshTypeCacheForClass(RD);
1462 }
1463 
1464 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1465   if (!TBAA)
1466     return nullptr;
1467   return TBAA->getTypeInfo(QTy);
1468 }
1469 
1470 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1471   if (!TBAA)
1472     return TBAAAccessInfo();
1473   if (getLangOpts().CUDAIsDevice) {
1474     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1475     // access info.
1476     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1477       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1478           nullptr)
1479         return TBAAAccessInfo();
1480     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1481       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1482           nullptr)
1483         return TBAAAccessInfo();
1484     }
1485   }
1486   return TBAA->getAccessInfo(AccessType);
1487 }
1488 
1489 TBAAAccessInfo
1490 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1491   if (!TBAA)
1492     return TBAAAccessInfo();
1493   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1494 }
1495 
1496 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1497   if (!TBAA)
1498     return nullptr;
1499   return TBAA->getTBAAStructInfo(QTy);
1500 }
1501 
1502 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1503   if (!TBAA)
1504     return nullptr;
1505   return TBAA->getBaseTypeInfo(QTy);
1506 }
1507 
1508 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1509   if (!TBAA)
1510     return nullptr;
1511   return TBAA->getAccessTagInfo(Info);
1512 }
1513 
1514 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1515                                                    TBAAAccessInfo TargetInfo) {
1516   if (!TBAA)
1517     return TBAAAccessInfo();
1518   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1519 }
1520 
1521 TBAAAccessInfo
1522 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1523                                                    TBAAAccessInfo InfoB) {
1524   if (!TBAA)
1525     return TBAAAccessInfo();
1526   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1527 }
1528 
1529 TBAAAccessInfo
1530 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1531                                               TBAAAccessInfo SrcInfo) {
1532   if (!TBAA)
1533     return TBAAAccessInfo();
1534   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1535 }
1536 
1537 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1538                                                 TBAAAccessInfo TBAAInfo) {
1539   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1540     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1541 }
1542 
1543 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1544     llvm::Instruction *I, const CXXRecordDecl *RD) {
1545   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1546                  llvm::MDNode::get(getLLVMContext(), {}));
1547 }
1548 
1549 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1550   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1551   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1552 }
1553 
1554 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1555 /// specified stmt yet.
1556 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1557   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1558                                                "cannot compile this %0 yet");
1559   std::string Msg = Type;
1560   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1561       << Msg << S->getSourceRange();
1562 }
1563 
1564 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1565 /// specified decl yet.
1566 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1567   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1568                                                "cannot compile this %0 yet");
1569   std::string Msg = Type;
1570   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1571 }
1572 
1573 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1574   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1575 }
1576 
1577 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1578                                         const NamedDecl *D) const {
1579   // Internal definitions always have default visibility.
1580   if (GV->hasLocalLinkage()) {
1581     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1582     return;
1583   }
1584   if (!D)
1585     return;
1586 
1587   // Set visibility for definitions, and for declarations if requested globally
1588   // or set explicitly.
1589   LinkageInfo LV = D->getLinkageAndVisibility();
1590 
1591   // OpenMP declare target variables must be visible to the host so they can
1592   // be registered. We require protected visibility unless the variable has
1593   // the DT_nohost modifier and does not need to be registered.
1594   if (Context.getLangOpts().OpenMP &&
1595       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1596       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1597       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1598           OMPDeclareTargetDeclAttr::DT_NoHost &&
1599       LV.getVisibility() == HiddenVisibility) {
1600     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1601     return;
1602   }
1603 
1604   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1605     // Reject incompatible dlllstorage and visibility annotations.
1606     if (!LV.isVisibilityExplicit())
1607       return;
1608     if (GV->hasDLLExportStorageClass()) {
1609       if (LV.getVisibility() == HiddenVisibility)
1610         getDiags().Report(D->getLocation(),
1611                           diag::err_hidden_visibility_dllexport);
1612     } else if (LV.getVisibility() != DefaultVisibility) {
1613       getDiags().Report(D->getLocation(),
1614                         diag::err_non_default_visibility_dllimport);
1615     }
1616     return;
1617   }
1618 
1619   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1620       !GV->isDeclarationForLinker())
1621     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1622 }
1623 
1624 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1625                                  llvm::GlobalValue *GV) {
1626   if (GV->hasLocalLinkage())
1627     return true;
1628 
1629   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1630     return true;
1631 
1632   // DLLImport explicitly marks the GV as external.
1633   if (GV->hasDLLImportStorageClass())
1634     return false;
1635 
1636   const llvm::Triple &TT = CGM.getTriple();
1637   const auto &CGOpts = CGM.getCodeGenOpts();
1638   if (TT.isWindowsGNUEnvironment()) {
1639     // In MinGW, variables without DLLImport can still be automatically
1640     // imported from a DLL by the linker; don't mark variables that
1641     // potentially could come from another DLL as DSO local.
1642 
1643     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1644     // (and this actually happens in the public interface of libstdc++), so
1645     // such variables can't be marked as DSO local. (Native TLS variables
1646     // can't be dllimported at all, though.)
1647     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1648         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1649         CGOpts.AutoImport)
1650       return false;
1651   }
1652 
1653   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1654   // remain unresolved in the link, they can be resolved to zero, which is
1655   // outside the current DSO.
1656   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1657     return false;
1658 
1659   // Every other GV is local on COFF.
1660   // Make an exception for windows OS in the triple: Some firmware builds use
1661   // *-win32-macho triples. This (accidentally?) produced windows relocations
1662   // without GOT tables in older clang versions; Keep this behaviour.
1663   // FIXME: even thread local variables?
1664   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1665     return true;
1666 
1667   // Only handle COFF and ELF for now.
1668   if (!TT.isOSBinFormatELF())
1669     return false;
1670 
1671   // If this is not an executable, don't assume anything is local.
1672   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1673   const auto &LOpts = CGM.getLangOpts();
1674   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1675     // On ELF, if -fno-semantic-interposition is specified and the target
1676     // supports local aliases, there will be neither CC1
1677     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1678     // dso_local on the function if using a local alias is preferable (can avoid
1679     // PLT indirection).
1680     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1681       return false;
1682     return !(CGM.getLangOpts().SemanticInterposition ||
1683              CGM.getLangOpts().HalfNoSemanticInterposition);
1684   }
1685 
1686   // A definition cannot be preempted from an executable.
1687   if (!GV->isDeclarationForLinker())
1688     return true;
1689 
1690   // Most PIC code sequences that assume that a symbol is local cannot produce a
1691   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1692   // depended, it seems worth it to handle it here.
1693   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1694     return false;
1695 
1696   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1697   if (TT.isPPC64())
1698     return false;
1699 
1700   if (CGOpts.DirectAccessExternalData) {
1701     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1702     // for non-thread-local variables. If the symbol is not defined in the
1703     // executable, a copy relocation will be needed at link time. dso_local is
1704     // excluded for thread-local variables because they generally don't support
1705     // copy relocations.
1706     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1707       if (!Var->isThreadLocal())
1708         return true;
1709 
1710     // -fno-pic sets dso_local on a function declaration to allow direct
1711     // accesses when taking its address (similar to a data symbol). If the
1712     // function is not defined in the executable, a canonical PLT entry will be
1713     // needed at link time. -fno-direct-access-external-data can avoid the
1714     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1715     // it could just cause trouble without providing perceptible benefits.
1716     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1717       return true;
1718   }
1719 
1720   // If we can use copy relocations we can assume it is local.
1721 
1722   // Otherwise don't assume it is local.
1723   return false;
1724 }
1725 
1726 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1727   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1728 }
1729 
1730 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1731                                           GlobalDecl GD) const {
1732   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1733   // C++ destructors have a few C++ ABI specific special cases.
1734   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1735     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1736     return;
1737   }
1738   setDLLImportDLLExport(GV, D);
1739 }
1740 
1741 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1742                                           const NamedDecl *D) const {
1743   if (D && D->isExternallyVisible()) {
1744     if (D->hasAttr<DLLImportAttr>())
1745       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1746     else if ((D->hasAttr<DLLExportAttr>() ||
1747               shouldMapVisibilityToDLLExport(D)) &&
1748              !GV->isDeclarationForLinker())
1749       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1750   }
1751 }
1752 
1753 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1754                                     GlobalDecl GD) const {
1755   setDLLImportDLLExport(GV, GD);
1756   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1757 }
1758 
1759 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1760                                     const NamedDecl *D) const {
1761   setDLLImportDLLExport(GV, D);
1762   setGVPropertiesAux(GV, D);
1763 }
1764 
1765 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1766                                        const NamedDecl *D) const {
1767   setGlobalVisibility(GV, D);
1768   setDSOLocal(GV);
1769   GV->setPartition(CodeGenOpts.SymbolPartition);
1770 }
1771 
1772 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1773   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1774       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1775       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1776       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1777       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1778 }
1779 
1780 llvm::GlobalVariable::ThreadLocalMode
1781 CodeGenModule::GetDefaultLLVMTLSModel() const {
1782   switch (CodeGenOpts.getDefaultTLSModel()) {
1783   case CodeGenOptions::GeneralDynamicTLSModel:
1784     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1785   case CodeGenOptions::LocalDynamicTLSModel:
1786     return llvm::GlobalVariable::LocalDynamicTLSModel;
1787   case CodeGenOptions::InitialExecTLSModel:
1788     return llvm::GlobalVariable::InitialExecTLSModel;
1789   case CodeGenOptions::LocalExecTLSModel:
1790     return llvm::GlobalVariable::LocalExecTLSModel;
1791   }
1792   llvm_unreachable("Invalid TLS model!");
1793 }
1794 
1795 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1796   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1797 
1798   llvm::GlobalValue::ThreadLocalMode TLM;
1799   TLM = GetDefaultLLVMTLSModel();
1800 
1801   // Override the TLS model if it is explicitly specified.
1802   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1803     TLM = GetLLVMTLSModel(Attr->getModel());
1804   }
1805 
1806   GV->setThreadLocalMode(TLM);
1807 }
1808 
1809 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1810                                           StringRef Name) {
1811   const TargetInfo &Target = CGM.getTarget();
1812   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1813 }
1814 
1815 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1816                                                  const CPUSpecificAttr *Attr,
1817                                                  unsigned CPUIndex,
1818                                                  raw_ostream &Out) {
1819   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1820   // supported.
1821   if (Attr)
1822     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1823   else if (CGM.getTarget().supportsIFunc())
1824     Out << ".resolver";
1825 }
1826 
1827 // Returns true if GD is a function decl with internal linkage and
1828 // needs a unique suffix after the mangled name.
1829 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1830                                         CodeGenModule &CGM) {
1831   const Decl *D = GD.getDecl();
1832   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1833          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1834 }
1835 
1836 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1837                                       const NamedDecl *ND,
1838                                       bool OmitMultiVersionMangling = false) {
1839   SmallString<256> Buffer;
1840   llvm::raw_svector_ostream Out(Buffer);
1841   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1842   if (!CGM.getModuleNameHash().empty())
1843     MC.needsUniqueInternalLinkageNames();
1844   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1845   if (ShouldMangle)
1846     MC.mangleName(GD.getWithDecl(ND), Out);
1847   else {
1848     IdentifierInfo *II = ND->getIdentifier();
1849     assert(II && "Attempt to mangle unnamed decl.");
1850     const auto *FD = dyn_cast<FunctionDecl>(ND);
1851 
1852     if (FD &&
1853         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1854       if (CGM.getLangOpts().RegCall4)
1855         Out << "__regcall4__" << II->getName();
1856       else
1857         Out << "__regcall3__" << II->getName();
1858     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1859                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1860       Out << "__device_stub__" << II->getName();
1861     } else {
1862       Out << II->getName();
1863     }
1864   }
1865 
1866   // Check if the module name hash should be appended for internal linkage
1867   // symbols.   This should come before multi-version target suffixes are
1868   // appended. This is to keep the name and module hash suffix of the
1869   // internal linkage function together.  The unique suffix should only be
1870   // added when name mangling is done to make sure that the final name can
1871   // be properly demangled.  For example, for C functions without prototypes,
1872   // name mangling is not done and the unique suffix should not be appeneded
1873   // then.
1874   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1875     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1876            "Hash computed when not explicitly requested");
1877     Out << CGM.getModuleNameHash();
1878   }
1879 
1880   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1881     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1882       switch (FD->getMultiVersionKind()) {
1883       case MultiVersionKind::CPUDispatch:
1884       case MultiVersionKind::CPUSpecific:
1885         AppendCPUSpecificCPUDispatchMangling(CGM,
1886                                              FD->getAttr<CPUSpecificAttr>(),
1887                                              GD.getMultiVersionIndex(), Out);
1888         break;
1889       case MultiVersionKind::Target: {
1890         auto *Attr = FD->getAttr<TargetAttr>();
1891         assert(Attr && "Expected TargetAttr to be present "
1892                        "for attribute mangling");
1893         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1894         Info.appendAttributeMangling(Attr, Out);
1895         break;
1896       }
1897       case MultiVersionKind::TargetVersion: {
1898         auto *Attr = FD->getAttr<TargetVersionAttr>();
1899         assert(Attr && "Expected TargetVersionAttr to be present "
1900                        "for attribute mangling");
1901         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1902         Info.appendAttributeMangling(Attr, Out);
1903         break;
1904       }
1905       case MultiVersionKind::TargetClones: {
1906         auto *Attr = FD->getAttr<TargetClonesAttr>();
1907         assert(Attr && "Expected TargetClonesAttr to be present "
1908                        "for attribute mangling");
1909         unsigned Index = GD.getMultiVersionIndex();
1910         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1911         Info.appendAttributeMangling(Attr, Index, Out);
1912         break;
1913       }
1914       case MultiVersionKind::None:
1915         llvm_unreachable("None multiversion type isn't valid here");
1916       }
1917     }
1918 
1919   // Make unique name for device side static file-scope variable for HIP.
1920   if (CGM.getContext().shouldExternalize(ND) &&
1921       CGM.getLangOpts().GPURelocatableDeviceCode &&
1922       CGM.getLangOpts().CUDAIsDevice)
1923     CGM.printPostfixForExternalizedDecl(Out, ND);
1924 
1925   return std::string(Out.str());
1926 }
1927 
1928 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1929                                             const FunctionDecl *FD,
1930                                             StringRef &CurName) {
1931   if (!FD->isMultiVersion())
1932     return;
1933 
1934   // Get the name of what this would be without the 'target' attribute.  This
1935   // allows us to lookup the version that was emitted when this wasn't a
1936   // multiversion function.
1937   std::string NonTargetName =
1938       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1939   GlobalDecl OtherGD;
1940   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1941     assert(OtherGD.getCanonicalDecl()
1942                .getDecl()
1943                ->getAsFunction()
1944                ->isMultiVersion() &&
1945            "Other GD should now be a multiversioned function");
1946     // OtherFD is the version of this function that was mangled BEFORE
1947     // becoming a MultiVersion function.  It potentially needs to be updated.
1948     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1949                                       .getDecl()
1950                                       ->getAsFunction()
1951                                       ->getMostRecentDecl();
1952     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1953     // This is so that if the initial version was already the 'default'
1954     // version, we don't try to update it.
1955     if (OtherName != NonTargetName) {
1956       // Remove instead of erase, since others may have stored the StringRef
1957       // to this.
1958       const auto ExistingRecord = Manglings.find(NonTargetName);
1959       if (ExistingRecord != std::end(Manglings))
1960         Manglings.remove(&(*ExistingRecord));
1961       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1962       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1963           Result.first->first();
1964       // If this is the current decl is being created, make sure we update the name.
1965       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1966         CurName = OtherNameRef;
1967       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1968         Entry->setName(OtherName);
1969     }
1970   }
1971 }
1972 
1973 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1974   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1975 
1976   // Some ABIs don't have constructor variants.  Make sure that base and
1977   // complete constructors get mangled the same.
1978   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1979     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1980       CXXCtorType OrigCtorType = GD.getCtorType();
1981       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1982       if (OrigCtorType == Ctor_Base)
1983         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1984     }
1985   }
1986 
1987   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1988   // static device variable depends on whether the variable is referenced by
1989   // a host or device host function. Therefore the mangled name cannot be
1990   // cached.
1991   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1992     auto FoundName = MangledDeclNames.find(CanonicalGD);
1993     if (FoundName != MangledDeclNames.end())
1994       return FoundName->second;
1995   }
1996 
1997   // Keep the first result in the case of a mangling collision.
1998   const auto *ND = cast<NamedDecl>(GD.getDecl());
1999   std::string MangledName = getMangledNameImpl(*this, GD, ND);
2000 
2001   // Ensure either we have different ABIs between host and device compilations,
2002   // says host compilation following MSVC ABI but device compilation follows
2003   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2004   // mangling should be the same after name stubbing. The later checking is
2005   // very important as the device kernel name being mangled in host-compilation
2006   // is used to resolve the device binaries to be executed. Inconsistent naming
2007   // result in undefined behavior. Even though we cannot check that naming
2008   // directly between host- and device-compilations, the host- and
2009   // device-mangling in host compilation could help catching certain ones.
2010   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2011          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2012          (getContext().getAuxTargetInfo() &&
2013           (getContext().getAuxTargetInfo()->getCXXABI() !=
2014            getContext().getTargetInfo().getCXXABI())) ||
2015          getCUDARuntime().getDeviceSideName(ND) ==
2016              getMangledNameImpl(
2017                  *this,
2018                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2019                  ND));
2020 
2021   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2022   return MangledDeclNames[CanonicalGD] = Result.first->first();
2023 }
2024 
2025 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2026                                              const BlockDecl *BD) {
2027   MangleContext &MangleCtx = getCXXABI().getMangleContext();
2028   const Decl *D = GD.getDecl();
2029 
2030   SmallString<256> Buffer;
2031   llvm::raw_svector_ostream Out(Buffer);
2032   if (!D)
2033     MangleCtx.mangleGlobalBlock(BD,
2034       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2035   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2036     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2037   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2038     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2039   else
2040     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2041 
2042   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2043   return Result.first->first();
2044 }
2045 
2046 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2047   auto it = MangledDeclNames.begin();
2048   while (it != MangledDeclNames.end()) {
2049     if (it->second == Name)
2050       return it->first;
2051     it++;
2052   }
2053   return GlobalDecl();
2054 }
2055 
2056 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2057   return getModule().getNamedValue(Name);
2058 }
2059 
2060 /// AddGlobalCtor - Add a function to the list that will be called before
2061 /// main() runs.
2062 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2063                                   unsigned LexOrder,
2064                                   llvm::Constant *AssociatedData) {
2065   // FIXME: Type coercion of void()* types.
2066   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2067 }
2068 
2069 /// AddGlobalDtor - Add a function to the list that will be called
2070 /// when the module is unloaded.
2071 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2072                                   bool IsDtorAttrFunc) {
2073   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2074       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2075     DtorsUsingAtExit[Priority].push_back(Dtor);
2076     return;
2077   }
2078 
2079   // FIXME: Type coercion of void()* types.
2080   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2081 }
2082 
2083 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2084   if (Fns.empty()) return;
2085 
2086   const PointerAuthSchema &InitFiniAuthSchema =
2087       getCodeGenOpts().PointerAuth.InitFiniPointers;
2088 
2089   // Ctor function type is ptr.
2090   llvm::PointerType *PtrTy = llvm::PointerType::get(
2091       getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace());
2092 
2093   // Get the type of a ctor entry, { i32, ptr, ptr }.
2094   llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy);
2095 
2096   // Construct the constructor and destructor arrays.
2097   ConstantInitBuilder Builder(*this);
2098   auto Ctors = Builder.beginArray(CtorStructTy);
2099   for (const auto &I : Fns) {
2100     auto Ctor = Ctors.beginStruct(CtorStructTy);
2101     Ctor.addInt(Int32Ty, I.Priority);
2102     if (InitFiniAuthSchema) {
2103       llvm::Constant *StorageAddress =
2104           (InitFiniAuthSchema.isAddressDiscriminated()
2105                ? llvm::ConstantExpr::getIntToPtr(
2106                      llvm::ConstantInt::get(
2107                          IntPtrTy,
2108                          llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors),
2109                      PtrTy)
2110                : nullptr);
2111       llvm::Constant *SignedCtorPtr = getConstantSignedPointer(
2112           I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress,
2113           llvm::ConstantInt::get(
2114               SizeTy, InitFiniAuthSchema.getConstantDiscrimination()));
2115       Ctor.add(SignedCtorPtr);
2116     } else {
2117       Ctor.add(I.Initializer);
2118     }
2119     if (I.AssociatedData)
2120       Ctor.add(I.AssociatedData);
2121     else
2122       Ctor.addNullPointer(PtrTy);
2123     Ctor.finishAndAddTo(Ctors);
2124   }
2125 
2126   auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2127                                           /*constant*/ false,
2128                                           llvm::GlobalValue::AppendingLinkage);
2129 
2130   // The LTO linker doesn't seem to like it when we set an alignment
2131   // on appending variables.  Take it off as a workaround.
2132   List->setAlignment(std::nullopt);
2133 
2134   Fns.clear();
2135 }
2136 
2137 llvm::GlobalValue::LinkageTypes
2138 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2139   const auto *D = cast<FunctionDecl>(GD.getDecl());
2140 
2141   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2142 
2143   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2144     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2145 
2146   return getLLVMLinkageForDeclarator(D, Linkage);
2147 }
2148 
2149 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2150   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2151   if (!MDS) return nullptr;
2152 
2153   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2154 }
2155 
2156 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2157   if (auto *FnType = T->getAs<FunctionProtoType>())
2158     T = getContext().getFunctionType(
2159         FnType->getReturnType(), FnType->getParamTypes(),
2160         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2161 
2162   std::string OutName;
2163   llvm::raw_string_ostream Out(OutName);
2164   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2165       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2166 
2167   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2168     Out << ".normalized";
2169 
2170   return llvm::ConstantInt::get(Int32Ty,
2171                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2172 }
2173 
2174 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2175                                               const CGFunctionInfo &Info,
2176                                               llvm::Function *F, bool IsThunk) {
2177   unsigned CallingConv;
2178   llvm::AttributeList PAL;
2179   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2180                          /*AttrOnCallSite=*/false, IsThunk);
2181   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2182       getTarget().getTriple().isWindowsArm64EC()) {
2183     SourceLocation Loc;
2184     if (const Decl *D = GD.getDecl())
2185       Loc = D->getLocation();
2186 
2187     Error(Loc, "__vectorcall calling convention is not currently supported");
2188   }
2189   F->setAttributes(PAL);
2190   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2191 }
2192 
2193 static void removeImageAccessQualifier(std::string& TyName) {
2194   std::string ReadOnlyQual("__read_only");
2195   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2196   if (ReadOnlyPos != std::string::npos)
2197     // "+ 1" for the space after access qualifier.
2198     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2199   else {
2200     std::string WriteOnlyQual("__write_only");
2201     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2202     if (WriteOnlyPos != std::string::npos)
2203       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2204     else {
2205       std::string ReadWriteQual("__read_write");
2206       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2207       if (ReadWritePos != std::string::npos)
2208         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2209     }
2210   }
2211 }
2212 
2213 // Returns the address space id that should be produced to the
2214 // kernel_arg_addr_space metadata. This is always fixed to the ids
2215 // as specified in the SPIR 2.0 specification in order to differentiate
2216 // for example in clGetKernelArgInfo() implementation between the address
2217 // spaces with targets without unique mapping to the OpenCL address spaces
2218 // (basically all single AS CPUs).
2219 static unsigned ArgInfoAddressSpace(LangAS AS) {
2220   switch (AS) {
2221   case LangAS::opencl_global:
2222     return 1;
2223   case LangAS::opencl_constant:
2224     return 2;
2225   case LangAS::opencl_local:
2226     return 3;
2227   case LangAS::opencl_generic:
2228     return 4; // Not in SPIR 2.0 specs.
2229   case LangAS::opencl_global_device:
2230     return 5;
2231   case LangAS::opencl_global_host:
2232     return 6;
2233   default:
2234     return 0; // Assume private.
2235   }
2236 }
2237 
2238 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2239                                          const FunctionDecl *FD,
2240                                          CodeGenFunction *CGF) {
2241   assert(((FD && CGF) || (!FD && !CGF)) &&
2242          "Incorrect use - FD and CGF should either be both null or not!");
2243   // Create MDNodes that represent the kernel arg metadata.
2244   // Each MDNode is a list in the form of "key", N number of values which is
2245   // the same number of values as their are kernel arguments.
2246 
2247   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2248 
2249   // MDNode for the kernel argument address space qualifiers.
2250   SmallVector<llvm::Metadata *, 8> addressQuals;
2251 
2252   // MDNode for the kernel argument access qualifiers (images only).
2253   SmallVector<llvm::Metadata *, 8> accessQuals;
2254 
2255   // MDNode for the kernel argument type names.
2256   SmallVector<llvm::Metadata *, 8> argTypeNames;
2257 
2258   // MDNode for the kernel argument base type names.
2259   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2260 
2261   // MDNode for the kernel argument type qualifiers.
2262   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2263 
2264   // MDNode for the kernel argument names.
2265   SmallVector<llvm::Metadata *, 8> argNames;
2266 
2267   if (FD && CGF)
2268     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2269       const ParmVarDecl *parm = FD->getParamDecl(i);
2270       // Get argument name.
2271       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2272 
2273       if (!getLangOpts().OpenCL)
2274         continue;
2275       QualType ty = parm->getType();
2276       std::string typeQuals;
2277 
2278       // Get image and pipe access qualifier:
2279       if (ty->isImageType() || ty->isPipeType()) {
2280         const Decl *PDecl = parm;
2281         if (const auto *TD = ty->getAs<TypedefType>())
2282           PDecl = TD->getDecl();
2283         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2284         if (A && A->isWriteOnly())
2285           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2286         else if (A && A->isReadWrite())
2287           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2288         else
2289           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2290       } else
2291         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2292 
2293       auto getTypeSpelling = [&](QualType Ty) {
2294         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2295 
2296         if (Ty.isCanonical()) {
2297           StringRef typeNameRef = typeName;
2298           // Turn "unsigned type" to "utype"
2299           if (typeNameRef.consume_front("unsigned "))
2300             return std::string("u") + typeNameRef.str();
2301           if (typeNameRef.consume_front("signed "))
2302             return typeNameRef.str();
2303         }
2304 
2305         return typeName;
2306       };
2307 
2308       if (ty->isPointerType()) {
2309         QualType pointeeTy = ty->getPointeeType();
2310 
2311         // Get address qualifier.
2312         addressQuals.push_back(
2313             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2314                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2315 
2316         // Get argument type name.
2317         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2318         std::string baseTypeName =
2319             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2320         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2321         argBaseTypeNames.push_back(
2322             llvm::MDString::get(VMContext, baseTypeName));
2323 
2324         // Get argument type qualifiers:
2325         if (ty.isRestrictQualified())
2326           typeQuals = "restrict";
2327         if (pointeeTy.isConstQualified() ||
2328             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2329           typeQuals += typeQuals.empty() ? "const" : " const";
2330         if (pointeeTy.isVolatileQualified())
2331           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2332       } else {
2333         uint32_t AddrSpc = 0;
2334         bool isPipe = ty->isPipeType();
2335         if (ty->isImageType() || isPipe)
2336           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2337 
2338         addressQuals.push_back(
2339             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2340 
2341         // Get argument type name.
2342         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2343         std::string typeName = getTypeSpelling(ty);
2344         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2345 
2346         // Remove access qualifiers on images
2347         // (as they are inseparable from type in clang implementation,
2348         // but OpenCL spec provides a special query to get access qualifier
2349         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2350         if (ty->isImageType()) {
2351           removeImageAccessQualifier(typeName);
2352           removeImageAccessQualifier(baseTypeName);
2353         }
2354 
2355         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2356         argBaseTypeNames.push_back(
2357             llvm::MDString::get(VMContext, baseTypeName));
2358 
2359         if (isPipe)
2360           typeQuals = "pipe";
2361       }
2362       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2363     }
2364 
2365   if (getLangOpts().OpenCL) {
2366     Fn->setMetadata("kernel_arg_addr_space",
2367                     llvm::MDNode::get(VMContext, addressQuals));
2368     Fn->setMetadata("kernel_arg_access_qual",
2369                     llvm::MDNode::get(VMContext, accessQuals));
2370     Fn->setMetadata("kernel_arg_type",
2371                     llvm::MDNode::get(VMContext, argTypeNames));
2372     Fn->setMetadata("kernel_arg_base_type",
2373                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2374     Fn->setMetadata("kernel_arg_type_qual",
2375                     llvm::MDNode::get(VMContext, argTypeQuals));
2376   }
2377   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2378       getCodeGenOpts().HIPSaveKernelArgName)
2379     Fn->setMetadata("kernel_arg_name",
2380                     llvm::MDNode::get(VMContext, argNames));
2381 }
2382 
2383 /// Determines whether the language options require us to model
2384 /// unwind exceptions.  We treat -fexceptions as mandating this
2385 /// except under the fragile ObjC ABI with only ObjC exceptions
2386 /// enabled.  This means, for example, that C with -fexceptions
2387 /// enables this.
2388 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2389   // If exceptions are completely disabled, obviously this is false.
2390   if (!LangOpts.Exceptions) return false;
2391 
2392   // If C++ exceptions are enabled, this is true.
2393   if (LangOpts.CXXExceptions) return true;
2394 
2395   // If ObjC exceptions are enabled, this depends on the ABI.
2396   if (LangOpts.ObjCExceptions) {
2397     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2398   }
2399 
2400   return true;
2401 }
2402 
2403 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2404                                                       const CXXMethodDecl *MD) {
2405   // Check that the type metadata can ever actually be used by a call.
2406   if (!CGM.getCodeGenOpts().LTOUnit ||
2407       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2408     return false;
2409 
2410   // Only functions whose address can be taken with a member function pointer
2411   // need this sort of type metadata.
2412   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2413          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2414 }
2415 
2416 SmallVector<const CXXRecordDecl *, 0>
2417 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2418   llvm::SetVector<const CXXRecordDecl *> MostBases;
2419 
2420   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2421   CollectMostBases = [&](const CXXRecordDecl *RD) {
2422     if (RD->getNumBases() == 0)
2423       MostBases.insert(RD);
2424     for (const CXXBaseSpecifier &B : RD->bases())
2425       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2426   };
2427   CollectMostBases(RD);
2428   return MostBases.takeVector();
2429 }
2430 
2431 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2432                                                            llvm::Function *F) {
2433   llvm::AttrBuilder B(F->getContext());
2434 
2435   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2436     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2437 
2438   if (CodeGenOpts.StackClashProtector)
2439     B.addAttribute("probe-stack", "inline-asm");
2440 
2441   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2442     B.addAttribute("stack-probe-size",
2443                    std::to_string(CodeGenOpts.StackProbeSize));
2444 
2445   if (!hasUnwindExceptions(LangOpts))
2446     B.addAttribute(llvm::Attribute::NoUnwind);
2447 
2448   if (D && D->hasAttr<NoStackProtectorAttr>())
2449     ; // Do nothing.
2450   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2451            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2452     B.addAttribute(llvm::Attribute::StackProtectStrong);
2453   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2454     B.addAttribute(llvm::Attribute::StackProtect);
2455   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2456     B.addAttribute(llvm::Attribute::StackProtectStrong);
2457   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2458     B.addAttribute(llvm::Attribute::StackProtectReq);
2459 
2460   if (!D) {
2461     // If we don't have a declaration to control inlining, the function isn't
2462     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2463     // disabled, mark the function as noinline.
2464     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2465         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2466       B.addAttribute(llvm::Attribute::NoInline);
2467 
2468     F->addFnAttrs(B);
2469     return;
2470   }
2471 
2472   // Handle SME attributes that apply to function definitions,
2473   // rather than to function prototypes.
2474   if (D->hasAttr<ArmLocallyStreamingAttr>())
2475     B.addAttribute("aarch64_pstate_sm_body");
2476 
2477   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2478     if (Attr->isNewZA())
2479       B.addAttribute("aarch64_new_za");
2480     if (Attr->isNewZT0())
2481       B.addAttribute("aarch64_new_zt0");
2482   }
2483 
2484   // Track whether we need to add the optnone LLVM attribute,
2485   // starting with the default for this optimization level.
2486   bool ShouldAddOptNone =
2487       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2488   // We can't add optnone in the following cases, it won't pass the verifier.
2489   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2490   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2491 
2492   // Add optnone, but do so only if the function isn't always_inline.
2493   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2494       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2495     B.addAttribute(llvm::Attribute::OptimizeNone);
2496 
2497     // OptimizeNone implies noinline; we should not be inlining such functions.
2498     B.addAttribute(llvm::Attribute::NoInline);
2499 
2500     // We still need to handle naked functions even though optnone subsumes
2501     // much of their semantics.
2502     if (D->hasAttr<NakedAttr>())
2503       B.addAttribute(llvm::Attribute::Naked);
2504 
2505     // OptimizeNone wins over OptimizeForSize and MinSize.
2506     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2507     F->removeFnAttr(llvm::Attribute::MinSize);
2508   } else if (D->hasAttr<NakedAttr>()) {
2509     // Naked implies noinline: we should not be inlining such functions.
2510     B.addAttribute(llvm::Attribute::Naked);
2511     B.addAttribute(llvm::Attribute::NoInline);
2512   } else if (D->hasAttr<NoDuplicateAttr>()) {
2513     B.addAttribute(llvm::Attribute::NoDuplicate);
2514   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2515     // Add noinline if the function isn't always_inline.
2516     B.addAttribute(llvm::Attribute::NoInline);
2517   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2518              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2519     // (noinline wins over always_inline, and we can't specify both in IR)
2520     B.addAttribute(llvm::Attribute::AlwaysInline);
2521   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2522     // If we're not inlining, then force everything that isn't always_inline to
2523     // carry an explicit noinline attribute.
2524     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2525       B.addAttribute(llvm::Attribute::NoInline);
2526   } else {
2527     // Otherwise, propagate the inline hint attribute and potentially use its
2528     // absence to mark things as noinline.
2529     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2530       // Search function and template pattern redeclarations for inline.
2531       auto CheckForInline = [](const FunctionDecl *FD) {
2532         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2533           return Redecl->isInlineSpecified();
2534         };
2535         if (any_of(FD->redecls(), CheckRedeclForInline))
2536           return true;
2537         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2538         if (!Pattern)
2539           return false;
2540         return any_of(Pattern->redecls(), CheckRedeclForInline);
2541       };
2542       if (CheckForInline(FD)) {
2543         B.addAttribute(llvm::Attribute::InlineHint);
2544       } else if (CodeGenOpts.getInlining() ==
2545                      CodeGenOptions::OnlyHintInlining &&
2546                  !FD->isInlined() &&
2547                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2548         B.addAttribute(llvm::Attribute::NoInline);
2549       }
2550     }
2551   }
2552 
2553   // Add other optimization related attributes if we are optimizing this
2554   // function.
2555   if (!D->hasAttr<OptimizeNoneAttr>()) {
2556     if (D->hasAttr<ColdAttr>()) {
2557       if (!ShouldAddOptNone)
2558         B.addAttribute(llvm::Attribute::OptimizeForSize);
2559       B.addAttribute(llvm::Attribute::Cold);
2560     }
2561     if (D->hasAttr<HotAttr>())
2562       B.addAttribute(llvm::Attribute::Hot);
2563     if (D->hasAttr<MinSizeAttr>())
2564       B.addAttribute(llvm::Attribute::MinSize);
2565   }
2566 
2567   F->addFnAttrs(B);
2568 
2569   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2570   if (alignment)
2571     F->setAlignment(llvm::Align(alignment));
2572 
2573   if (!D->hasAttr<AlignedAttr>())
2574     if (LangOpts.FunctionAlignment)
2575       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2576 
2577   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2578   // reserve a bit for differentiating between virtual and non-virtual member
2579   // functions. If the current target's C++ ABI requires this and this is a
2580   // member function, set its alignment accordingly.
2581   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2582     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2583       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2584   }
2585 
2586   // In the cross-dso CFI mode with canonical jump tables, we want !type
2587   // attributes on definitions only.
2588   if (CodeGenOpts.SanitizeCfiCrossDso &&
2589       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2590     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2591       // Skip available_externally functions. They won't be codegen'ed in the
2592       // current module anyway.
2593       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2594         CreateFunctionTypeMetadataForIcall(FD, F);
2595     }
2596   }
2597 
2598   // Emit type metadata on member functions for member function pointer checks.
2599   // These are only ever necessary on definitions; we're guaranteed that the
2600   // definition will be present in the LTO unit as a result of LTO visibility.
2601   auto *MD = dyn_cast<CXXMethodDecl>(D);
2602   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2603     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2604       llvm::Metadata *Id =
2605           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2606               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2607       F->addTypeMetadata(0, Id);
2608     }
2609   }
2610 }
2611 
2612 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2613   const Decl *D = GD.getDecl();
2614   if (isa_and_nonnull<NamedDecl>(D))
2615     setGVProperties(GV, GD);
2616   else
2617     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2618 
2619   if (D && D->hasAttr<UsedAttr>())
2620     addUsedOrCompilerUsedGlobal(GV);
2621 
2622   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2623       VD &&
2624       ((CodeGenOpts.KeepPersistentStorageVariables &&
2625         (VD->getStorageDuration() == SD_Static ||
2626          VD->getStorageDuration() == SD_Thread)) ||
2627        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2628         VD->getType().isConstQualified())))
2629     addUsedOrCompilerUsedGlobal(GV);
2630 }
2631 
2632 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2633                                                 llvm::AttrBuilder &Attrs,
2634                                                 bool SetTargetFeatures) {
2635   // Add target-cpu and target-features attributes to functions. If
2636   // we have a decl for the function and it has a target attribute then
2637   // parse that and add it to the feature set.
2638   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2639   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2640   std::vector<std::string> Features;
2641   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2642   FD = FD ? FD->getMostRecentDecl() : FD;
2643   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2644   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2645   assert((!TD || !TV) && "both target_version and target specified");
2646   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2647   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2648   bool AddedAttr = false;
2649   if (TD || TV || SD || TC) {
2650     llvm::StringMap<bool> FeatureMap;
2651     getContext().getFunctionFeatureMap(FeatureMap, GD);
2652 
2653     // Produce the canonical string for this set of features.
2654     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2655       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2656 
2657     // Now add the target-cpu and target-features to the function.
2658     // While we populated the feature map above, we still need to
2659     // get and parse the target attribute so we can get the cpu for
2660     // the function.
2661     if (TD) {
2662       ParsedTargetAttr ParsedAttr =
2663           Target.parseTargetAttr(TD->getFeaturesStr());
2664       if (!ParsedAttr.CPU.empty() &&
2665           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2666         TargetCPU = ParsedAttr.CPU;
2667         TuneCPU = ""; // Clear the tune CPU.
2668       }
2669       if (!ParsedAttr.Tune.empty() &&
2670           getTarget().isValidCPUName(ParsedAttr.Tune))
2671         TuneCPU = ParsedAttr.Tune;
2672     }
2673 
2674     if (SD) {
2675       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2676       // favor this processor.
2677       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2678     }
2679   } else {
2680     // Otherwise just add the existing target cpu and target features to the
2681     // function.
2682     Features = getTarget().getTargetOpts().Features;
2683   }
2684 
2685   if (!TargetCPU.empty()) {
2686     Attrs.addAttribute("target-cpu", TargetCPU);
2687     AddedAttr = true;
2688   }
2689   if (!TuneCPU.empty()) {
2690     Attrs.addAttribute("tune-cpu", TuneCPU);
2691     AddedAttr = true;
2692   }
2693   if (!Features.empty() && SetTargetFeatures) {
2694     llvm::erase_if(Features, [&](const std::string& F) {
2695        return getTarget().isReadOnlyFeature(F.substr(1));
2696     });
2697     llvm::sort(Features);
2698     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2699     AddedAttr = true;
2700   }
2701 
2702   return AddedAttr;
2703 }
2704 
2705 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2706                                           llvm::GlobalObject *GO) {
2707   const Decl *D = GD.getDecl();
2708   SetCommonAttributes(GD, GO);
2709 
2710   if (D) {
2711     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2712       if (D->hasAttr<RetainAttr>())
2713         addUsedGlobal(GV);
2714       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2715         GV->addAttribute("bss-section", SA->getName());
2716       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2717         GV->addAttribute("data-section", SA->getName());
2718       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2719         GV->addAttribute("rodata-section", SA->getName());
2720       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2721         GV->addAttribute("relro-section", SA->getName());
2722     }
2723 
2724     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2725       if (D->hasAttr<RetainAttr>())
2726         addUsedGlobal(F);
2727       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2728         if (!D->getAttr<SectionAttr>())
2729           F->setSection(SA->getName());
2730 
2731       llvm::AttrBuilder Attrs(F->getContext());
2732       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2733         // We know that GetCPUAndFeaturesAttributes will always have the
2734         // newest set, since it has the newest possible FunctionDecl, so the
2735         // new ones should replace the old.
2736         llvm::AttributeMask RemoveAttrs;
2737         RemoveAttrs.addAttribute("target-cpu");
2738         RemoveAttrs.addAttribute("target-features");
2739         RemoveAttrs.addAttribute("tune-cpu");
2740         F->removeFnAttrs(RemoveAttrs);
2741         F->addFnAttrs(Attrs);
2742       }
2743     }
2744 
2745     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2746       GO->setSection(CSA->getName());
2747     else if (const auto *SA = D->getAttr<SectionAttr>())
2748       GO->setSection(SA->getName());
2749   }
2750 
2751   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2752 }
2753 
2754 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2755                                                   llvm::Function *F,
2756                                                   const CGFunctionInfo &FI) {
2757   const Decl *D = GD.getDecl();
2758   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2759   SetLLVMFunctionAttributesForDefinition(D, F);
2760 
2761   F->setLinkage(llvm::Function::InternalLinkage);
2762 
2763   setNonAliasAttributes(GD, F);
2764 }
2765 
2766 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2767   // Set linkage and visibility in case we never see a definition.
2768   LinkageInfo LV = ND->getLinkageAndVisibility();
2769   // Don't set internal linkage on declarations.
2770   // "extern_weak" is overloaded in LLVM; we probably should have
2771   // separate linkage types for this.
2772   if (isExternallyVisible(LV.getLinkage()) &&
2773       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2774     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2775 }
2776 
2777 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2778                                                        llvm::Function *F) {
2779   // Only if we are checking indirect calls.
2780   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2781     return;
2782 
2783   // Non-static class methods are handled via vtable or member function pointer
2784   // checks elsewhere.
2785   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2786     return;
2787 
2788   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2789   F->addTypeMetadata(0, MD);
2790   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2791 
2792   // Emit a hash-based bit set entry for cross-DSO calls.
2793   if (CodeGenOpts.SanitizeCfiCrossDso)
2794     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2795       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2796 }
2797 
2798 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2799   llvm::LLVMContext &Ctx = F->getContext();
2800   llvm::MDBuilder MDB(Ctx);
2801   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2802                  llvm::MDNode::get(
2803                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2804 }
2805 
2806 static bool allowKCFIIdentifier(StringRef Name) {
2807   // KCFI type identifier constants are only necessary for external assembly
2808   // functions, which means it's safe to skip unusual names. Subset of
2809   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2810   return llvm::all_of(Name, [](const char &C) {
2811     return llvm::isAlnum(C) || C == '_' || C == '.';
2812   });
2813 }
2814 
2815 void CodeGenModule::finalizeKCFITypes() {
2816   llvm::Module &M = getModule();
2817   for (auto &F : M.functions()) {
2818     // Remove KCFI type metadata from non-address-taken local functions.
2819     bool AddressTaken = F.hasAddressTaken();
2820     if (!AddressTaken && F.hasLocalLinkage())
2821       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2822 
2823     // Generate a constant with the expected KCFI type identifier for all
2824     // address-taken function declarations to support annotating indirectly
2825     // called assembly functions.
2826     if (!AddressTaken || !F.isDeclaration())
2827       continue;
2828 
2829     const llvm::ConstantInt *Type;
2830     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2831       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2832     else
2833       continue;
2834 
2835     StringRef Name = F.getName();
2836     if (!allowKCFIIdentifier(Name))
2837       continue;
2838 
2839     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2840                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2841                           .str();
2842     M.appendModuleInlineAsm(Asm);
2843   }
2844 }
2845 
2846 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2847                                           bool IsIncompleteFunction,
2848                                           bool IsThunk) {
2849 
2850   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2851     // If this is an intrinsic function, set the function's attributes
2852     // to the intrinsic's attributes.
2853     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2854     return;
2855   }
2856 
2857   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2858 
2859   if (!IsIncompleteFunction)
2860     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2861                               IsThunk);
2862 
2863   // Add the Returned attribute for "this", except for iOS 5 and earlier
2864   // where substantial code, including the libstdc++ dylib, was compiled with
2865   // GCC and does not actually return "this".
2866   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2867       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2868     assert(!F->arg_empty() &&
2869            F->arg_begin()->getType()
2870              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2871            "unexpected this return");
2872     F->addParamAttr(0, llvm::Attribute::Returned);
2873   }
2874 
2875   // Only a few attributes are set on declarations; these may later be
2876   // overridden by a definition.
2877 
2878   setLinkageForGV(F, FD);
2879   setGVProperties(F, FD);
2880 
2881   // Setup target-specific attributes.
2882   if (!IsIncompleteFunction && F->isDeclaration())
2883     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2884 
2885   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2886     F->setSection(CSA->getName());
2887   else if (const auto *SA = FD->getAttr<SectionAttr>())
2888      F->setSection(SA->getName());
2889 
2890   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2891     if (EA->isError())
2892       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2893     else if (EA->isWarning())
2894       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2895   }
2896 
2897   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2898   if (FD->isInlineBuiltinDeclaration()) {
2899     const FunctionDecl *FDBody;
2900     bool HasBody = FD->hasBody(FDBody);
2901     (void)HasBody;
2902     assert(HasBody && "Inline builtin declarations should always have an "
2903                       "available body!");
2904     if (shouldEmitFunction(FDBody))
2905       F->addFnAttr(llvm::Attribute::NoBuiltin);
2906   }
2907 
2908   if (FD->isReplaceableGlobalAllocationFunction()) {
2909     // A replaceable global allocation function does not act like a builtin by
2910     // default, only if it is invoked by a new-expression or delete-expression.
2911     F->addFnAttr(llvm::Attribute::NoBuiltin);
2912   }
2913 
2914   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2915     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2916   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2917     if (MD->isVirtual())
2918       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2919 
2920   // Don't emit entries for function declarations in the cross-DSO mode. This
2921   // is handled with better precision by the receiving DSO. But if jump tables
2922   // are non-canonical then we need type metadata in order to produce the local
2923   // jump table.
2924   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2925       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2926     CreateFunctionTypeMetadataForIcall(FD, F);
2927 
2928   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2929     setKCFIType(FD, F);
2930 
2931   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2932     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2933 
2934   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2935     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2936 
2937   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2938     // Annotate the callback behavior as metadata:
2939     //  - The callback callee (as argument number).
2940     //  - The callback payloads (as argument numbers).
2941     llvm::LLVMContext &Ctx = F->getContext();
2942     llvm::MDBuilder MDB(Ctx);
2943 
2944     // The payload indices are all but the first one in the encoding. The first
2945     // identifies the callback callee.
2946     int CalleeIdx = *CB->encoding_begin();
2947     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2948     F->addMetadata(llvm::LLVMContext::MD_callback,
2949                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2950                                                CalleeIdx, PayloadIndices,
2951                                                /* VarArgsArePassed */ false)}));
2952   }
2953 }
2954 
2955 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2956   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2957          "Only globals with definition can force usage.");
2958   LLVMUsed.emplace_back(GV);
2959 }
2960 
2961 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2962   assert(!GV->isDeclaration() &&
2963          "Only globals with definition can force usage.");
2964   LLVMCompilerUsed.emplace_back(GV);
2965 }
2966 
2967 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2968   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2969          "Only globals with definition can force usage.");
2970   if (getTriple().isOSBinFormatELF())
2971     LLVMCompilerUsed.emplace_back(GV);
2972   else
2973     LLVMUsed.emplace_back(GV);
2974 }
2975 
2976 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2977                      std::vector<llvm::WeakTrackingVH> &List) {
2978   // Don't create llvm.used if there is no need.
2979   if (List.empty())
2980     return;
2981 
2982   // Convert List to what ConstantArray needs.
2983   SmallVector<llvm::Constant*, 8> UsedArray;
2984   UsedArray.resize(List.size());
2985   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2986     UsedArray[i] =
2987         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2988             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2989   }
2990 
2991   if (UsedArray.empty())
2992     return;
2993   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2994 
2995   auto *GV = new llvm::GlobalVariable(
2996       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2997       llvm::ConstantArray::get(ATy, UsedArray), Name);
2998 
2999   GV->setSection("llvm.metadata");
3000 }
3001 
3002 void CodeGenModule::emitLLVMUsed() {
3003   emitUsed(*this, "llvm.used", LLVMUsed);
3004   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
3005 }
3006 
3007 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
3008   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
3009   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3010 }
3011 
3012 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
3013   llvm::SmallString<32> Opt;
3014   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3015   if (Opt.empty())
3016     return;
3017   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3018   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3019 }
3020 
3021 void CodeGenModule::AddDependentLib(StringRef Lib) {
3022   auto &C = getLLVMContext();
3023   if (getTarget().getTriple().isOSBinFormatELF()) {
3024       ELFDependentLibraries.push_back(
3025         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3026     return;
3027   }
3028 
3029   llvm::SmallString<24> Opt;
3030   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3031   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3032   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3033 }
3034 
3035 /// Add link options implied by the given module, including modules
3036 /// it depends on, using a postorder walk.
3037 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3038                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
3039                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
3040   // Import this module's parent.
3041   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3042     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3043   }
3044 
3045   // Import this module's dependencies.
3046   for (Module *Import : llvm::reverse(Mod->Imports)) {
3047     if (Visited.insert(Import).second)
3048       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3049   }
3050 
3051   // Add linker options to link against the libraries/frameworks
3052   // described by this module.
3053   llvm::LLVMContext &Context = CGM.getLLVMContext();
3054   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3055 
3056   // For modules that use export_as for linking, use that module
3057   // name instead.
3058   if (Mod->UseExportAsModuleLinkName)
3059     return;
3060 
3061   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3062     // Link against a framework.  Frameworks are currently Darwin only, so we
3063     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3064     if (LL.IsFramework) {
3065       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3066                                  llvm::MDString::get(Context, LL.Library)};
3067 
3068       Metadata.push_back(llvm::MDNode::get(Context, Args));
3069       continue;
3070     }
3071 
3072     // Link against a library.
3073     if (IsELF) {
3074       llvm::Metadata *Args[2] = {
3075           llvm::MDString::get(Context, "lib"),
3076           llvm::MDString::get(Context, LL.Library),
3077       };
3078       Metadata.push_back(llvm::MDNode::get(Context, Args));
3079     } else {
3080       llvm::SmallString<24> Opt;
3081       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3082       auto *OptString = llvm::MDString::get(Context, Opt);
3083       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3084     }
3085   }
3086 }
3087 
3088 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3089   assert(Primary->isNamedModuleUnit() &&
3090          "We should only emit module initializers for named modules.");
3091 
3092   // Emit the initializers in the order that sub-modules appear in the
3093   // source, first Global Module Fragments, if present.
3094   if (auto GMF = Primary->getGlobalModuleFragment()) {
3095     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3096       if (isa<ImportDecl>(D))
3097         continue;
3098       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3099       EmitTopLevelDecl(D);
3100     }
3101   }
3102   // Second any associated with the module, itself.
3103   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3104     // Skip import decls, the inits for those are called explicitly.
3105     if (isa<ImportDecl>(D))
3106       continue;
3107     EmitTopLevelDecl(D);
3108   }
3109   // Third any associated with the Privat eMOdule Fragment, if present.
3110   if (auto PMF = Primary->getPrivateModuleFragment()) {
3111     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3112       // Skip import decls, the inits for those are called explicitly.
3113       if (isa<ImportDecl>(D))
3114         continue;
3115       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3116       EmitTopLevelDecl(D);
3117     }
3118   }
3119 }
3120 
3121 void CodeGenModule::EmitModuleLinkOptions() {
3122   // Collect the set of all of the modules we want to visit to emit link
3123   // options, which is essentially the imported modules and all of their
3124   // non-explicit child modules.
3125   llvm::SetVector<clang::Module *> LinkModules;
3126   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3127   SmallVector<clang::Module *, 16> Stack;
3128 
3129   // Seed the stack with imported modules.
3130   for (Module *M : ImportedModules) {
3131     // Do not add any link flags when an implementation TU of a module imports
3132     // a header of that same module.
3133     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3134         !getLangOpts().isCompilingModule())
3135       continue;
3136     if (Visited.insert(M).second)
3137       Stack.push_back(M);
3138   }
3139 
3140   // Find all of the modules to import, making a little effort to prune
3141   // non-leaf modules.
3142   while (!Stack.empty()) {
3143     clang::Module *Mod = Stack.pop_back_val();
3144 
3145     bool AnyChildren = false;
3146 
3147     // Visit the submodules of this module.
3148     for (const auto &SM : Mod->submodules()) {
3149       // Skip explicit children; they need to be explicitly imported to be
3150       // linked against.
3151       if (SM->IsExplicit)
3152         continue;
3153 
3154       if (Visited.insert(SM).second) {
3155         Stack.push_back(SM);
3156         AnyChildren = true;
3157       }
3158     }
3159 
3160     // We didn't find any children, so add this module to the list of
3161     // modules to link against.
3162     if (!AnyChildren) {
3163       LinkModules.insert(Mod);
3164     }
3165   }
3166 
3167   // Add link options for all of the imported modules in reverse topological
3168   // order.  We don't do anything to try to order import link flags with respect
3169   // to linker options inserted by things like #pragma comment().
3170   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3171   Visited.clear();
3172   for (Module *M : LinkModules)
3173     if (Visited.insert(M).second)
3174       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3175   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3176   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3177 
3178   // Add the linker options metadata flag.
3179   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3180   for (auto *MD : LinkerOptionsMetadata)
3181     NMD->addOperand(MD);
3182 }
3183 
3184 void CodeGenModule::EmitDeferred() {
3185   // Emit deferred declare target declarations.
3186   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3187     getOpenMPRuntime().emitDeferredTargetDecls();
3188 
3189   // Emit code for any potentially referenced deferred decls.  Since a
3190   // previously unused static decl may become used during the generation of code
3191   // for a static function, iterate until no changes are made.
3192 
3193   if (!DeferredVTables.empty()) {
3194     EmitDeferredVTables();
3195 
3196     // Emitting a vtable doesn't directly cause more vtables to
3197     // become deferred, although it can cause functions to be
3198     // emitted that then need those vtables.
3199     assert(DeferredVTables.empty());
3200   }
3201 
3202   // Emit CUDA/HIP static device variables referenced by host code only.
3203   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3204   // needed for further handling.
3205   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3206     llvm::append_range(DeferredDeclsToEmit,
3207                        getContext().CUDADeviceVarODRUsedByHost);
3208 
3209   // Stop if we're out of both deferred vtables and deferred declarations.
3210   if (DeferredDeclsToEmit.empty())
3211     return;
3212 
3213   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3214   // work, it will not interfere with this.
3215   std::vector<GlobalDecl> CurDeclsToEmit;
3216   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3217 
3218   for (GlobalDecl &D : CurDeclsToEmit) {
3219     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3220     // to get GlobalValue with exactly the type we need, not something that
3221     // might had been created for another decl with the same mangled name but
3222     // different type.
3223     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3224         GetAddrOfGlobal(D, ForDefinition));
3225 
3226     // In case of different address spaces, we may still get a cast, even with
3227     // IsForDefinition equal to true. Query mangled names table to get
3228     // GlobalValue.
3229     if (!GV)
3230       GV = GetGlobalValue(getMangledName(D));
3231 
3232     // Make sure GetGlobalValue returned non-null.
3233     assert(GV);
3234 
3235     // Check to see if we've already emitted this.  This is necessary
3236     // for a couple of reasons: first, decls can end up in the
3237     // deferred-decls queue multiple times, and second, decls can end
3238     // up with definitions in unusual ways (e.g. by an extern inline
3239     // function acquiring a strong function redefinition).  Just
3240     // ignore these cases.
3241     if (!GV->isDeclaration())
3242       continue;
3243 
3244     // If this is OpenMP, check if it is legal to emit this global normally.
3245     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3246       continue;
3247 
3248     // Otherwise, emit the definition and move on to the next one.
3249     EmitGlobalDefinition(D, GV);
3250 
3251     // If we found out that we need to emit more decls, do that recursively.
3252     // This has the advantage that the decls are emitted in a DFS and related
3253     // ones are close together, which is convenient for testing.
3254     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3255       EmitDeferred();
3256       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3257     }
3258   }
3259 }
3260 
3261 void CodeGenModule::EmitVTablesOpportunistically() {
3262   // Try to emit external vtables as available_externally if they have emitted
3263   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3264   // is not allowed to create new references to things that need to be emitted
3265   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3266 
3267   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3268          && "Only emit opportunistic vtables with optimizations");
3269 
3270   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3271     assert(getVTables().isVTableExternal(RD) &&
3272            "This queue should only contain external vtables");
3273     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3274       VTables.GenerateClassData(RD);
3275   }
3276   OpportunisticVTables.clear();
3277 }
3278 
3279 void CodeGenModule::EmitGlobalAnnotations() {
3280   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3281     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3282     if (GV)
3283       AddGlobalAnnotations(VD, GV);
3284   }
3285   DeferredAnnotations.clear();
3286 
3287   if (Annotations.empty())
3288     return;
3289 
3290   // Create a new global variable for the ConstantStruct in the Module.
3291   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3292     Annotations[0]->getType(), Annotations.size()), Annotations);
3293   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3294                                       llvm::GlobalValue::AppendingLinkage,
3295                                       Array, "llvm.global.annotations");
3296   gv->setSection(AnnotationSection);
3297 }
3298 
3299 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3300   llvm::Constant *&AStr = AnnotationStrings[Str];
3301   if (AStr)
3302     return AStr;
3303 
3304   // Not found yet, create a new global.
3305   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3306   auto *gv = new llvm::GlobalVariable(
3307       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3308       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3309       ConstGlobalsPtrTy->getAddressSpace());
3310   gv->setSection(AnnotationSection);
3311   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3312   AStr = gv;
3313   return gv;
3314 }
3315 
3316 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3317   SourceManager &SM = getContext().getSourceManager();
3318   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3319   if (PLoc.isValid())
3320     return EmitAnnotationString(PLoc.getFilename());
3321   return EmitAnnotationString(SM.getBufferName(Loc));
3322 }
3323 
3324 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3325   SourceManager &SM = getContext().getSourceManager();
3326   PresumedLoc PLoc = SM.getPresumedLoc(L);
3327   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3328     SM.getExpansionLineNumber(L);
3329   return llvm::ConstantInt::get(Int32Ty, LineNo);
3330 }
3331 
3332 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3333   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3334   if (Exprs.empty())
3335     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3336 
3337   llvm::FoldingSetNodeID ID;
3338   for (Expr *E : Exprs) {
3339     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3340   }
3341   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3342   if (Lookup)
3343     return Lookup;
3344 
3345   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3346   LLVMArgs.reserve(Exprs.size());
3347   ConstantEmitter ConstEmiter(*this);
3348   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3349     const auto *CE = cast<clang::ConstantExpr>(E);
3350     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3351                                     CE->getType());
3352   });
3353   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3354   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3355                                       llvm::GlobalValue::PrivateLinkage, Struct,
3356                                       ".args");
3357   GV->setSection(AnnotationSection);
3358   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3359 
3360   Lookup = GV;
3361   return GV;
3362 }
3363 
3364 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3365                                                 const AnnotateAttr *AA,
3366                                                 SourceLocation L) {
3367   // Get the globals for file name, annotation, and the line number.
3368   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3369                  *UnitGV = EmitAnnotationUnit(L),
3370                  *LineNoCst = EmitAnnotationLineNo(L),
3371                  *Args = EmitAnnotationArgs(AA);
3372 
3373   llvm::Constant *GVInGlobalsAS = GV;
3374   if (GV->getAddressSpace() !=
3375       getDataLayout().getDefaultGlobalsAddressSpace()) {
3376     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3377         GV,
3378         llvm::PointerType::get(
3379             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3380   }
3381 
3382   // Create the ConstantStruct for the global annotation.
3383   llvm::Constant *Fields[] = {
3384       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3385   };
3386   return llvm::ConstantStruct::getAnon(Fields);
3387 }
3388 
3389 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3390                                          llvm::GlobalValue *GV) {
3391   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3392   // Get the struct elements for these annotations.
3393   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3394     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3395 }
3396 
3397 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3398                                        SourceLocation Loc) const {
3399   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3400   // NoSanitize by function name.
3401   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3402     return true;
3403   // NoSanitize by location. Check "mainfile" prefix.
3404   auto &SM = Context.getSourceManager();
3405   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3406   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3407     return true;
3408 
3409   // Check "src" prefix.
3410   if (Loc.isValid())
3411     return NoSanitizeL.containsLocation(Kind, Loc);
3412   // If location is unknown, this may be a compiler-generated function. Assume
3413   // it's located in the main file.
3414   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3415 }
3416 
3417 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3418                                        llvm::GlobalVariable *GV,
3419                                        SourceLocation Loc, QualType Ty,
3420                                        StringRef Category) const {
3421   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3422   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3423     return true;
3424   auto &SM = Context.getSourceManager();
3425   if (NoSanitizeL.containsMainFile(
3426           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3427           Category))
3428     return true;
3429   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3430     return true;
3431 
3432   // Check global type.
3433   if (!Ty.isNull()) {
3434     // Drill down the array types: if global variable of a fixed type is
3435     // not sanitized, we also don't instrument arrays of them.
3436     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3437       Ty = AT->getElementType();
3438     Ty = Ty.getCanonicalType().getUnqualifiedType();
3439     // Only record types (classes, structs etc.) are ignored.
3440     if (Ty->isRecordType()) {
3441       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3442       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3443         return true;
3444     }
3445   }
3446   return false;
3447 }
3448 
3449 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3450                                    StringRef Category) const {
3451   const auto &XRayFilter = getContext().getXRayFilter();
3452   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3453   auto Attr = ImbueAttr::NONE;
3454   if (Loc.isValid())
3455     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3456   if (Attr == ImbueAttr::NONE)
3457     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3458   switch (Attr) {
3459   case ImbueAttr::NONE:
3460     return false;
3461   case ImbueAttr::ALWAYS:
3462     Fn->addFnAttr("function-instrument", "xray-always");
3463     break;
3464   case ImbueAttr::ALWAYS_ARG1:
3465     Fn->addFnAttr("function-instrument", "xray-always");
3466     Fn->addFnAttr("xray-log-args", "1");
3467     break;
3468   case ImbueAttr::NEVER:
3469     Fn->addFnAttr("function-instrument", "xray-never");
3470     break;
3471   }
3472   return true;
3473 }
3474 
3475 ProfileList::ExclusionType
3476 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3477                                               SourceLocation Loc) const {
3478   const auto &ProfileList = getContext().getProfileList();
3479   // If the profile list is empty, then instrument everything.
3480   if (ProfileList.isEmpty())
3481     return ProfileList::Allow;
3482   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3483   // First, check the function name.
3484   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3485     return *V;
3486   // Next, check the source location.
3487   if (Loc.isValid())
3488     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3489       return *V;
3490   // If location is unknown, this may be a compiler-generated function. Assume
3491   // it's located in the main file.
3492   auto &SM = Context.getSourceManager();
3493   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3494     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3495       return *V;
3496   return ProfileList.getDefault(Kind);
3497 }
3498 
3499 ProfileList::ExclusionType
3500 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3501                                                  SourceLocation Loc) const {
3502   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3503   if (V != ProfileList::Allow)
3504     return V;
3505 
3506   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3507   if (NumGroups > 1) {
3508     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3509     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3510       return ProfileList::Skip;
3511   }
3512   return ProfileList::Allow;
3513 }
3514 
3515 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3516   // Never defer when EmitAllDecls is specified.
3517   if (LangOpts.EmitAllDecls)
3518     return true;
3519 
3520   const auto *VD = dyn_cast<VarDecl>(Global);
3521   if (VD &&
3522       ((CodeGenOpts.KeepPersistentStorageVariables &&
3523         (VD->getStorageDuration() == SD_Static ||
3524          VD->getStorageDuration() == SD_Thread)) ||
3525        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3526         VD->getType().isConstQualified())))
3527     return true;
3528 
3529   return getContext().DeclMustBeEmitted(Global);
3530 }
3531 
3532 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3533   // In OpenMP 5.0 variables and function may be marked as
3534   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3535   // that they must be emitted on the host/device. To be sure we need to have
3536   // seen a declare target with an explicit mentioning of the function, we know
3537   // we have if the level of the declare target attribute is -1. Note that we
3538   // check somewhere else if we should emit this at all.
3539   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3540     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3541         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3542     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3543       return false;
3544   }
3545 
3546   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3547     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3548       // Implicit template instantiations may change linkage if they are later
3549       // explicitly instantiated, so they should not be emitted eagerly.
3550       return false;
3551     // Defer until all versions have been semantically checked.
3552     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3553       return false;
3554   }
3555   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3556     if (Context.getInlineVariableDefinitionKind(VD) ==
3557         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3558       // A definition of an inline constexpr static data member may change
3559       // linkage later if it's redeclared outside the class.
3560       return false;
3561     if (CXX20ModuleInits && VD->getOwningModule() &&
3562         !VD->getOwningModule()->isModuleMapModule()) {
3563       // For CXX20, module-owned initializers need to be deferred, since it is
3564       // not known at this point if they will be run for the current module or
3565       // as part of the initializer for an imported one.
3566       return false;
3567     }
3568   }
3569   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3570   // codegen for global variables, because they may be marked as threadprivate.
3571   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3572       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3573       !Global->getType().isConstantStorage(getContext(), false, false) &&
3574       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3575     return false;
3576 
3577   return true;
3578 }
3579 
3580 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3581   StringRef Name = getMangledName(GD);
3582 
3583   // The UUID descriptor should be pointer aligned.
3584   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3585 
3586   // Look for an existing global.
3587   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3588     return ConstantAddress(GV, GV->getValueType(), Alignment);
3589 
3590   ConstantEmitter Emitter(*this);
3591   llvm::Constant *Init;
3592 
3593   APValue &V = GD->getAsAPValue();
3594   if (!V.isAbsent()) {
3595     // If possible, emit the APValue version of the initializer. In particular,
3596     // this gets the type of the constant right.
3597     Init = Emitter.emitForInitializer(
3598         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3599   } else {
3600     // As a fallback, directly construct the constant.
3601     // FIXME: This may get padding wrong under esoteric struct layout rules.
3602     // MSVC appears to create a complete type 'struct __s_GUID' that it
3603     // presumably uses to represent these constants.
3604     MSGuidDecl::Parts Parts = GD->getParts();
3605     llvm::Constant *Fields[4] = {
3606         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3607         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3608         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3609         llvm::ConstantDataArray::getRaw(
3610             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3611             Int8Ty)};
3612     Init = llvm::ConstantStruct::getAnon(Fields);
3613   }
3614 
3615   auto *GV = new llvm::GlobalVariable(
3616       getModule(), Init->getType(),
3617       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3618   if (supportsCOMDAT())
3619     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3620   setDSOLocal(GV);
3621 
3622   if (!V.isAbsent()) {
3623     Emitter.finalize(GV);
3624     return ConstantAddress(GV, GV->getValueType(), Alignment);
3625   }
3626 
3627   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3628   return ConstantAddress(GV, Ty, Alignment);
3629 }
3630 
3631 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3632     const UnnamedGlobalConstantDecl *GCD) {
3633   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3634 
3635   llvm::GlobalVariable **Entry = nullptr;
3636   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3637   if (*Entry)
3638     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3639 
3640   ConstantEmitter Emitter(*this);
3641   llvm::Constant *Init;
3642 
3643   const APValue &V = GCD->getValue();
3644 
3645   assert(!V.isAbsent());
3646   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3647                                     GCD->getType());
3648 
3649   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3650                                       /*isConstant=*/true,
3651                                       llvm::GlobalValue::PrivateLinkage, Init,
3652                                       ".constant");
3653   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3654   GV->setAlignment(Alignment.getAsAlign());
3655 
3656   Emitter.finalize(GV);
3657 
3658   *Entry = GV;
3659   return ConstantAddress(GV, GV->getValueType(), Alignment);
3660 }
3661 
3662 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3663     const TemplateParamObjectDecl *TPO) {
3664   StringRef Name = getMangledName(TPO);
3665   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3666 
3667   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3668     return ConstantAddress(GV, GV->getValueType(), Alignment);
3669 
3670   ConstantEmitter Emitter(*this);
3671   llvm::Constant *Init = Emitter.emitForInitializer(
3672         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3673 
3674   if (!Init) {
3675     ErrorUnsupported(TPO, "template parameter object");
3676     return ConstantAddress::invalid();
3677   }
3678 
3679   llvm::GlobalValue::LinkageTypes Linkage =
3680       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3681           ? llvm::GlobalValue::LinkOnceODRLinkage
3682           : llvm::GlobalValue::InternalLinkage;
3683   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3684                                       /*isConstant=*/true, Linkage, Init, Name);
3685   setGVProperties(GV, TPO);
3686   if (supportsCOMDAT())
3687     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3688   Emitter.finalize(GV);
3689 
3690     return ConstantAddress(GV, GV->getValueType(), Alignment);
3691 }
3692 
3693 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3694   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3695   assert(AA && "No alias?");
3696 
3697   CharUnits Alignment = getContext().getDeclAlign(VD);
3698   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3699 
3700   // See if there is already something with the target's name in the module.
3701   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3702   if (Entry)
3703     return ConstantAddress(Entry, DeclTy, Alignment);
3704 
3705   llvm::Constant *Aliasee;
3706   if (isa<llvm::FunctionType>(DeclTy))
3707     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3708                                       GlobalDecl(cast<FunctionDecl>(VD)),
3709                                       /*ForVTable=*/false);
3710   else
3711     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3712                                     nullptr);
3713 
3714   auto *F = cast<llvm::GlobalValue>(Aliasee);
3715   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3716   WeakRefReferences.insert(F);
3717 
3718   return ConstantAddress(Aliasee, DeclTy, Alignment);
3719 }
3720 
3721 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3722   if (!D)
3723     return false;
3724   if (auto *A = D->getAttr<AttrT>())
3725     return A->isImplicit();
3726   return D->isImplicit();
3727 }
3728 
3729 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3730   assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3731   // We need to emit host-side 'shadows' for all global
3732   // device-side variables because the CUDA runtime needs their
3733   // size and host-side address in order to provide access to
3734   // their device-side incarnations.
3735   return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3736          Global->hasAttr<CUDAConstantAttr>() ||
3737          Global->hasAttr<CUDASharedAttr>() ||
3738          Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3739          Global->getType()->isCUDADeviceBuiltinTextureType();
3740 }
3741 
3742 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3743   const auto *Global = cast<ValueDecl>(GD.getDecl());
3744 
3745   // Weak references don't produce any output by themselves.
3746   if (Global->hasAttr<WeakRefAttr>())
3747     return;
3748 
3749   // If this is an alias definition (which otherwise looks like a declaration)
3750   // emit it now.
3751   if (Global->hasAttr<AliasAttr>())
3752     return EmitAliasDefinition(GD);
3753 
3754   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3755   if (Global->hasAttr<IFuncAttr>())
3756     return emitIFuncDefinition(GD);
3757 
3758   // If this is a cpu_dispatch multiversion function, emit the resolver.
3759   if (Global->hasAttr<CPUDispatchAttr>())
3760     return emitCPUDispatchDefinition(GD);
3761 
3762   // If this is CUDA, be selective about which declarations we emit.
3763   // Non-constexpr non-lambda implicit host device functions are not emitted
3764   // unless they are used on device side.
3765   if (LangOpts.CUDA) {
3766     assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3767            "Expected Variable or Function");
3768     if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3769       if (!shouldEmitCUDAGlobalVar(VD))
3770         return;
3771     } else if (LangOpts.CUDAIsDevice) {
3772       const auto *FD = dyn_cast<FunctionDecl>(Global);
3773       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3774            (LangOpts.OffloadImplicitHostDeviceTemplates &&
3775             hasImplicitAttr<CUDAHostAttr>(FD) &&
3776             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3777             !isLambdaCallOperator(FD) &&
3778             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3779           !Global->hasAttr<CUDAGlobalAttr>() &&
3780           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3781             !Global->hasAttr<CUDAHostAttr>()))
3782         return;
3783       // Device-only functions are the only things we skip.
3784     } else if (!Global->hasAttr<CUDAHostAttr>() &&
3785                Global->hasAttr<CUDADeviceAttr>())
3786       return;
3787   }
3788 
3789   if (LangOpts.OpenMP) {
3790     // If this is OpenMP, check if it is legal to emit this global normally.
3791     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3792       return;
3793     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3794       if (MustBeEmitted(Global))
3795         EmitOMPDeclareReduction(DRD);
3796       return;
3797     }
3798     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3799       if (MustBeEmitted(Global))
3800         EmitOMPDeclareMapper(DMD);
3801       return;
3802     }
3803   }
3804 
3805   // Ignore declarations, they will be emitted on their first use.
3806   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3807     // Update deferred annotations with the latest declaration if the function
3808     // function was already used or defined.
3809     if (FD->hasAttr<AnnotateAttr>()) {
3810       StringRef MangledName = getMangledName(GD);
3811       if (GetGlobalValue(MangledName))
3812         DeferredAnnotations[MangledName] = FD;
3813     }
3814 
3815     // Forward declarations are emitted lazily on first use.
3816     if (!FD->doesThisDeclarationHaveABody()) {
3817       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3818           (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3819         return;
3820 
3821       StringRef MangledName = getMangledName(GD);
3822 
3823       // Compute the function info and LLVM type.
3824       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3825       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3826 
3827       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3828                               /*DontDefer=*/false);
3829       return;
3830     }
3831   } else {
3832     const auto *VD = cast<VarDecl>(Global);
3833     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3834     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3835         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3836       if (LangOpts.OpenMP) {
3837         // Emit declaration of the must-be-emitted declare target variable.
3838         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3839                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3840 
3841           // If this variable has external storage and doesn't require special
3842           // link handling we defer to its canonical definition.
3843           if (VD->hasExternalStorage() &&
3844               Res != OMPDeclareTargetDeclAttr::MT_Link)
3845             return;
3846 
3847           bool UnifiedMemoryEnabled =
3848               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3849           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3850                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3851               !UnifiedMemoryEnabled) {
3852             (void)GetAddrOfGlobalVar(VD);
3853           } else {
3854             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3855                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3856                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3857                      UnifiedMemoryEnabled)) &&
3858                    "Link clause or to clause with unified memory expected.");
3859             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3860           }
3861 
3862           return;
3863         }
3864       }
3865       // If this declaration may have caused an inline variable definition to
3866       // change linkage, make sure that it's emitted.
3867       if (Context.getInlineVariableDefinitionKind(VD) ==
3868           ASTContext::InlineVariableDefinitionKind::Strong)
3869         GetAddrOfGlobalVar(VD);
3870       return;
3871     }
3872   }
3873 
3874   // Defer code generation to first use when possible, e.g. if this is an inline
3875   // function. If the global must always be emitted, do it eagerly if possible
3876   // to benefit from cache locality.
3877   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3878     // Emit the definition if it can't be deferred.
3879     EmitGlobalDefinition(GD);
3880     addEmittedDeferredDecl(GD);
3881     return;
3882   }
3883 
3884   // If we're deferring emission of a C++ variable with an
3885   // initializer, remember the order in which it appeared in the file.
3886   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3887       cast<VarDecl>(Global)->hasInit()) {
3888     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3889     CXXGlobalInits.push_back(nullptr);
3890   }
3891 
3892   StringRef MangledName = getMangledName(GD);
3893   if (GetGlobalValue(MangledName) != nullptr) {
3894     // The value has already been used and should therefore be emitted.
3895     addDeferredDeclToEmit(GD);
3896   } else if (MustBeEmitted(Global)) {
3897     // The value must be emitted, but cannot be emitted eagerly.
3898     assert(!MayBeEmittedEagerly(Global));
3899     addDeferredDeclToEmit(GD);
3900   } else {
3901     // Otherwise, remember that we saw a deferred decl with this name.  The
3902     // first use of the mangled name will cause it to move into
3903     // DeferredDeclsToEmit.
3904     DeferredDecls[MangledName] = GD;
3905   }
3906 }
3907 
3908 // Check if T is a class type with a destructor that's not dllimport.
3909 static bool HasNonDllImportDtor(QualType T) {
3910   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3911     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3912       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3913         return true;
3914 
3915   return false;
3916 }
3917 
3918 namespace {
3919   struct FunctionIsDirectlyRecursive
3920       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3921     const StringRef Name;
3922     const Builtin::Context &BI;
3923     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3924         : Name(N), BI(C) {}
3925 
3926     bool VisitCallExpr(const CallExpr *E) {
3927       const FunctionDecl *FD = E->getDirectCallee();
3928       if (!FD)
3929         return false;
3930       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3931       if (Attr && Name == Attr->getLabel())
3932         return true;
3933       unsigned BuiltinID = FD->getBuiltinID();
3934       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3935         return false;
3936       StringRef BuiltinName = BI.getName(BuiltinID);
3937       if (BuiltinName.starts_with("__builtin_") &&
3938           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3939         return true;
3940       }
3941       return false;
3942     }
3943 
3944     bool VisitStmt(const Stmt *S) {
3945       for (const Stmt *Child : S->children())
3946         if (Child && this->Visit(Child))
3947           return true;
3948       return false;
3949     }
3950   };
3951 
3952   // Make sure we're not referencing non-imported vars or functions.
3953   struct DLLImportFunctionVisitor
3954       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3955     bool SafeToInline = true;
3956 
3957     bool shouldVisitImplicitCode() const { return true; }
3958 
3959     bool VisitVarDecl(VarDecl *VD) {
3960       if (VD->getTLSKind()) {
3961         // A thread-local variable cannot be imported.
3962         SafeToInline = false;
3963         return SafeToInline;
3964       }
3965 
3966       // A variable definition might imply a destructor call.
3967       if (VD->isThisDeclarationADefinition())
3968         SafeToInline = !HasNonDllImportDtor(VD->getType());
3969 
3970       return SafeToInline;
3971     }
3972 
3973     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3974       if (const auto *D = E->getTemporary()->getDestructor())
3975         SafeToInline = D->hasAttr<DLLImportAttr>();
3976       return SafeToInline;
3977     }
3978 
3979     bool VisitDeclRefExpr(DeclRefExpr *E) {
3980       ValueDecl *VD = E->getDecl();
3981       if (isa<FunctionDecl>(VD))
3982         SafeToInline = VD->hasAttr<DLLImportAttr>();
3983       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3984         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3985       return SafeToInline;
3986     }
3987 
3988     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3989       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3990       return SafeToInline;
3991     }
3992 
3993     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3994       CXXMethodDecl *M = E->getMethodDecl();
3995       if (!M) {
3996         // Call through a pointer to member function. This is safe to inline.
3997         SafeToInline = true;
3998       } else {
3999         SafeToInline = M->hasAttr<DLLImportAttr>();
4000       }
4001       return SafeToInline;
4002     }
4003 
4004     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
4005       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
4006       return SafeToInline;
4007     }
4008 
4009     bool VisitCXXNewExpr(CXXNewExpr *E) {
4010       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
4011       return SafeToInline;
4012     }
4013   };
4014 }
4015 
4016 // isTriviallyRecursive - Check if this function calls another
4017 // decl that, because of the asm attribute or the other decl being a builtin,
4018 // ends up pointing to itself.
4019 bool
4020 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4021   StringRef Name;
4022   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4023     // asm labels are a special kind of mangling we have to support.
4024     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4025     if (!Attr)
4026       return false;
4027     Name = Attr->getLabel();
4028   } else {
4029     Name = FD->getName();
4030   }
4031 
4032   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4033   const Stmt *Body = FD->getBody();
4034   return Body ? Walker.Visit(Body) : false;
4035 }
4036 
4037 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4038   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4039     return true;
4040 
4041   const auto *F = cast<FunctionDecl>(GD.getDecl());
4042   // Inline builtins declaration must be emitted. They often are fortified
4043   // functions.
4044   if (F->isInlineBuiltinDeclaration())
4045     return true;
4046 
4047   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4048     return false;
4049 
4050   // We don't import function bodies from other named module units since that
4051   // behavior may break ABI compatibility of the current unit.
4052   if (const Module *M = F->getOwningModule();
4053       M && M->getTopLevelModule()->isNamedModule() &&
4054       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4055     // There are practices to mark template member function as always-inline
4056     // and mark the template as extern explicit instantiation but not give
4057     // the definition for member function. So we have to emit the function
4058     // from explicitly instantiation with always-inline.
4059     //
4060     // See https://github.com/llvm/llvm-project/issues/86893 for details.
4061     //
4062     // TODO: Maybe it is better to give it a warning if we call a non-inline
4063     // function from other module units which is marked as always-inline.
4064     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4065       return false;
4066     }
4067   }
4068 
4069   if (F->hasAttr<NoInlineAttr>())
4070     return false;
4071 
4072   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4073     // Check whether it would be safe to inline this dllimport function.
4074     DLLImportFunctionVisitor Visitor;
4075     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4076     if (!Visitor.SafeToInline)
4077       return false;
4078 
4079     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4080       // Implicit destructor invocations aren't captured in the AST, so the
4081       // check above can't see them. Check for them manually here.
4082       for (const Decl *Member : Dtor->getParent()->decls())
4083         if (isa<FieldDecl>(Member))
4084           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4085             return false;
4086       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4087         if (HasNonDllImportDtor(B.getType()))
4088           return false;
4089     }
4090   }
4091 
4092   // PR9614. Avoid cases where the source code is lying to us. An available
4093   // externally function should have an equivalent function somewhere else,
4094   // but a function that calls itself through asm label/`__builtin_` trickery is
4095   // clearly not equivalent to the real implementation.
4096   // This happens in glibc's btowc and in some configure checks.
4097   return !isTriviallyRecursive(F);
4098 }
4099 
4100 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4101   return CodeGenOpts.OptimizationLevel > 0;
4102 }
4103 
4104 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4105                                                        llvm::GlobalValue *GV) {
4106   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4107 
4108   if (FD->isCPUSpecificMultiVersion()) {
4109     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4110     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4111       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4112   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4113     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4114       // AArch64 favors the default target version over the clone if any.
4115       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4116           TC->isFirstOfVersion(I))
4117         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4118     // Ensure that the resolver function is also emitted.
4119     GetOrCreateMultiVersionResolver(GD);
4120   } else
4121     EmitGlobalFunctionDefinition(GD, GV);
4122 
4123   // Defer the resolver emission until we can reason whether the TU
4124   // contains a default target version implementation.
4125   if (FD->isTargetVersionMultiVersion())
4126     AddDeferredMultiVersionResolverToEmit(GD);
4127 }
4128 
4129 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4130   const auto *D = cast<ValueDecl>(GD.getDecl());
4131 
4132   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4133                                  Context.getSourceManager(),
4134                                  "Generating code for declaration");
4135 
4136   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4137     // At -O0, don't generate IR for functions with available_externally
4138     // linkage.
4139     if (!shouldEmitFunction(GD))
4140       return;
4141 
4142     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4143       std::string Name;
4144       llvm::raw_string_ostream OS(Name);
4145       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4146                                /*Qualified=*/true);
4147       return Name;
4148     });
4149 
4150     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4151       // Make sure to emit the definition(s) before we emit the thunks.
4152       // This is necessary for the generation of certain thunks.
4153       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4154         ABI->emitCXXStructor(GD);
4155       else if (FD->isMultiVersion())
4156         EmitMultiVersionFunctionDefinition(GD, GV);
4157       else
4158         EmitGlobalFunctionDefinition(GD, GV);
4159 
4160       if (Method->isVirtual())
4161         getVTables().EmitThunks(GD);
4162 
4163       return;
4164     }
4165 
4166     if (FD->isMultiVersion())
4167       return EmitMultiVersionFunctionDefinition(GD, GV);
4168     return EmitGlobalFunctionDefinition(GD, GV);
4169   }
4170 
4171   if (const auto *VD = dyn_cast<VarDecl>(D))
4172     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4173 
4174   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4175 }
4176 
4177 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4178                                                       llvm::Function *NewFn);
4179 
4180 static unsigned
4181 TargetMVPriority(const TargetInfo &TI,
4182                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4183   unsigned Priority = 0;
4184   unsigned NumFeatures = 0;
4185   for (StringRef Feat : RO.Conditions.Features) {
4186     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4187     NumFeatures++;
4188   }
4189 
4190   if (!RO.Conditions.Architecture.empty())
4191     Priority = std::max(
4192         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4193 
4194   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4195 
4196   return Priority;
4197 }
4198 
4199 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4200 // TU can forward declare the function without causing problems.  Particularly
4201 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4202 // work with internal linkage functions, so that the same function name can be
4203 // used with internal linkage in multiple TUs.
4204 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4205                                                        GlobalDecl GD) {
4206   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4207   if (FD->getFormalLinkage() == Linkage::Internal)
4208     return llvm::GlobalValue::InternalLinkage;
4209   return llvm::GlobalValue::WeakODRLinkage;
4210 }
4211 
4212 void CodeGenModule::emitMultiVersionFunctions() {
4213   std::vector<GlobalDecl> MVFuncsToEmit;
4214   MultiVersionFuncs.swap(MVFuncsToEmit);
4215   for (GlobalDecl GD : MVFuncsToEmit) {
4216     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4217     assert(FD && "Expected a FunctionDecl");
4218 
4219     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4220       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4221       StringRef MangledName = getMangledName(CurGD);
4222       llvm::Constant *Func = GetGlobalValue(MangledName);
4223       if (!Func) {
4224         if (Decl->isDefined()) {
4225           EmitGlobalFunctionDefinition(CurGD, nullptr);
4226           Func = GetGlobalValue(MangledName);
4227         } else {
4228           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4229           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4230           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4231                                    /*DontDefer=*/false, ForDefinition);
4232         }
4233         assert(Func && "This should have just been created");
4234       }
4235       return cast<llvm::Function>(Func);
4236     };
4237 
4238     // For AArch64, a resolver is only emitted if a function marked with
4239     // target_version("default")) or target_clones() is present and defined
4240     // in this TU. For other architectures it is always emitted.
4241     bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4242     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4243 
4244     getContext().forEachMultiversionedFunctionVersion(
4245         FD, [&](const FunctionDecl *CurFD) {
4246           llvm::SmallVector<StringRef, 8> Feats;
4247           bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4248 
4249           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4250             TA->getAddedFeatures(Feats);
4251             llvm::Function *Func = createFunction(CurFD);
4252             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4253           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4254             if (TVA->isDefaultVersion() && IsDefined)
4255               ShouldEmitResolver = true;
4256             TVA->getFeatures(Feats);
4257             llvm::Function *Func = createFunction(CurFD);
4258             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4259           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4260             if (IsDefined)
4261               ShouldEmitResolver = true;
4262             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4263               if (!TC->isFirstOfVersion(I))
4264                 continue;
4265 
4266               llvm::Function *Func = createFunction(CurFD, I);
4267               StringRef Architecture;
4268               Feats.clear();
4269               if (getTarget().getTriple().isAArch64())
4270                 TC->getFeatures(Feats, I);
4271               else {
4272                 StringRef Version = TC->getFeatureStr(I);
4273                 if (Version.starts_with("arch="))
4274                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4275                 else if (Version != "default")
4276                   Feats.push_back(Version);
4277               }
4278               Options.emplace_back(Func, Architecture, Feats);
4279             }
4280           } else
4281             llvm_unreachable("unexpected MultiVersionKind");
4282         });
4283 
4284     if (!ShouldEmitResolver)
4285       continue;
4286 
4287     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4288     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4289       ResolverConstant = IFunc->getResolver();
4290       if (FD->isTargetClonesMultiVersion() &&
4291           !getTarget().getTriple().isAArch64()) {
4292         std::string MangledName = getMangledNameImpl(
4293             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4294         if (!GetGlobalValue(MangledName + ".ifunc")) {
4295           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4296           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4297           // In prior versions of Clang, the mangling for ifuncs incorrectly
4298           // included an .ifunc suffix. This alias is generated for backward
4299           // compatibility. It is deprecated, and may be removed in the future.
4300           auto *Alias = llvm::GlobalAlias::create(
4301               DeclTy, 0, getMultiversionLinkage(*this, GD),
4302               MangledName + ".ifunc", IFunc, &getModule());
4303           SetCommonAttributes(FD, Alias);
4304         }
4305       }
4306     }
4307     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4308 
4309     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4310 
4311     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4312       ResolverFunc->setComdat(
4313           getModule().getOrInsertComdat(ResolverFunc->getName()));
4314 
4315     const TargetInfo &TI = getTarget();
4316     llvm::stable_sort(
4317         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4318                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4319           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4320         });
4321     CodeGenFunction CGF(*this);
4322     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4323   }
4324 
4325   // Ensure that any additions to the deferred decls list caused by emitting a
4326   // variant are emitted.  This can happen when the variant itself is inline and
4327   // calls a function without linkage.
4328   if (!MVFuncsToEmit.empty())
4329     EmitDeferred();
4330 
4331   // Ensure that any additions to the multiversion funcs list from either the
4332   // deferred decls or the multiversion functions themselves are emitted.
4333   if (!MultiVersionFuncs.empty())
4334     emitMultiVersionFunctions();
4335 }
4336 
4337 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4338                                    llvm::Constant *New) {
4339   assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4340   New->takeName(Old);
4341   Old->replaceAllUsesWith(New);
4342   Old->eraseFromParent();
4343 }
4344 
4345 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4346   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4347   assert(FD && "Not a FunctionDecl?");
4348   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4349   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4350   assert(DD && "Not a cpu_dispatch Function?");
4351 
4352   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4353   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4354 
4355   StringRef ResolverName = getMangledName(GD);
4356   UpdateMultiVersionNames(GD, FD, ResolverName);
4357 
4358   llvm::Type *ResolverType;
4359   GlobalDecl ResolverGD;
4360   if (getTarget().supportsIFunc()) {
4361     ResolverType = llvm::FunctionType::get(
4362         llvm::PointerType::get(DeclTy,
4363                                getTypes().getTargetAddressSpace(FD->getType())),
4364         false);
4365   }
4366   else {
4367     ResolverType = DeclTy;
4368     ResolverGD = GD;
4369   }
4370 
4371   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4372       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4373   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4374   if (supportsCOMDAT())
4375     ResolverFunc->setComdat(
4376         getModule().getOrInsertComdat(ResolverFunc->getName()));
4377 
4378   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4379   const TargetInfo &Target = getTarget();
4380   unsigned Index = 0;
4381   for (const IdentifierInfo *II : DD->cpus()) {
4382     // Get the name of the target function so we can look it up/create it.
4383     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4384                               getCPUSpecificMangling(*this, II->getName());
4385 
4386     llvm::Constant *Func = GetGlobalValue(MangledName);
4387 
4388     if (!Func) {
4389       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4390       if (ExistingDecl.getDecl() &&
4391           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4392         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4393         Func = GetGlobalValue(MangledName);
4394       } else {
4395         if (!ExistingDecl.getDecl())
4396           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4397 
4398       Func = GetOrCreateLLVMFunction(
4399           MangledName, DeclTy, ExistingDecl,
4400           /*ForVTable=*/false, /*DontDefer=*/true,
4401           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4402       }
4403     }
4404 
4405     llvm::SmallVector<StringRef, 32> Features;
4406     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4407     llvm::transform(Features, Features.begin(),
4408                     [](StringRef Str) { return Str.substr(1); });
4409     llvm::erase_if(Features, [&Target](StringRef Feat) {
4410       return !Target.validateCpuSupports(Feat);
4411     });
4412     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4413     ++Index;
4414   }
4415 
4416   llvm::stable_sort(
4417       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4418                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4419         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4420                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4421       });
4422 
4423   // If the list contains multiple 'default' versions, such as when it contains
4424   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4425   // always run on at least a 'pentium'). We do this by deleting the 'least
4426   // advanced' (read, lowest mangling letter).
4427   while (Options.size() > 1 &&
4428          llvm::all_of(llvm::X86::getCpuSupportsMask(
4429                           (Options.end() - 2)->Conditions.Features),
4430                       [](auto X) { return X == 0; })) {
4431     StringRef LHSName = (Options.end() - 2)->Function->getName();
4432     StringRef RHSName = (Options.end() - 1)->Function->getName();
4433     if (LHSName.compare(RHSName) < 0)
4434       Options.erase(Options.end() - 2);
4435     else
4436       Options.erase(Options.end() - 1);
4437   }
4438 
4439   CodeGenFunction CGF(*this);
4440   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4441 
4442   if (getTarget().supportsIFunc()) {
4443     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4444     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4445 
4446     // Fix up function declarations that were created for cpu_specific before
4447     // cpu_dispatch was known
4448     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4449       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4450                                            &getModule());
4451       replaceDeclarationWith(IFunc, GI);
4452       IFunc = GI;
4453     }
4454 
4455     std::string AliasName = getMangledNameImpl(
4456         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4457     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4458     if (!AliasFunc) {
4459       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4460                                            &getModule());
4461       SetCommonAttributes(GD, GA);
4462     }
4463   }
4464 }
4465 
4466 /// Adds a declaration to the list of multi version functions if not present.
4467 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4468   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4469   assert(FD && "Not a FunctionDecl?");
4470 
4471   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4472     std::string MangledName =
4473         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4474     if (!DeferredResolversToEmit.insert(MangledName).second)
4475       return;
4476   }
4477   MultiVersionFuncs.push_back(GD);
4478 }
4479 
4480 /// If a dispatcher for the specified mangled name is not in the module, create
4481 /// and return it. The dispatcher is either an llvm Function with the specified
4482 /// type, or a global ifunc.
4483 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4484   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4485   assert(FD && "Not a FunctionDecl?");
4486 
4487   std::string MangledName =
4488       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4489 
4490   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4491   // a separate resolver).
4492   std::string ResolverName = MangledName;
4493   if (getTarget().supportsIFunc()) {
4494     switch (FD->getMultiVersionKind()) {
4495     case MultiVersionKind::None:
4496       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4497     case MultiVersionKind::Target:
4498     case MultiVersionKind::CPUSpecific:
4499     case MultiVersionKind::CPUDispatch:
4500       ResolverName += ".ifunc";
4501       break;
4502     case MultiVersionKind::TargetClones:
4503     case MultiVersionKind::TargetVersion:
4504       break;
4505     }
4506   } else if (FD->isTargetMultiVersion()) {
4507     ResolverName += ".resolver";
4508   }
4509 
4510   // If the resolver has already been created, just return it. This lookup may
4511   // yield a function declaration instead of a resolver on AArch64. That is
4512   // because we didn't know whether a resolver will be generated when we first
4513   // encountered a use of the symbol named after this resolver. Therefore,
4514   // targets which support ifuncs should not return here unless we actually
4515   // found an ifunc.
4516   llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4517   if (ResolverGV &&
4518       (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc()))
4519     return ResolverGV;
4520 
4521   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4522   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4523 
4524   // The resolver needs to be created. For target and target_clones, defer
4525   // creation until the end of the TU.
4526   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4527     AddDeferredMultiVersionResolverToEmit(GD);
4528 
4529   // For cpu_specific, don't create an ifunc yet because we don't know if the
4530   // cpu_dispatch will be emitted in this translation unit.
4531   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4532     llvm::Type *ResolverType = llvm::FunctionType::get(
4533         llvm::PointerType::get(DeclTy,
4534                                getTypes().getTargetAddressSpace(FD->getType())),
4535         false);
4536     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4537         MangledName + ".resolver", ResolverType, GlobalDecl{},
4538         /*ForVTable=*/false);
4539     llvm::GlobalIFunc *GIF =
4540         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4541                                   "", Resolver, &getModule());
4542     GIF->setName(ResolverName);
4543     SetCommonAttributes(FD, GIF);
4544     if (ResolverGV)
4545       replaceDeclarationWith(ResolverGV, GIF);
4546     return GIF;
4547   }
4548 
4549   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4550       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4551   assert(isa<llvm::GlobalValue>(Resolver) &&
4552          "Resolver should be created for the first time");
4553   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4554   if (ResolverGV)
4555     replaceDeclarationWith(ResolverGV, Resolver);
4556   return Resolver;
4557 }
4558 
4559 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4560                                            const llvm::GlobalValue *GV) const {
4561   auto SC = GV->getDLLStorageClass();
4562   if (SC == llvm::GlobalValue::DefaultStorageClass)
4563     return false;
4564   const Decl *MRD = D->getMostRecentDecl();
4565   return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4566             !MRD->hasAttr<DLLImportAttr>()) ||
4567            (SC == llvm::GlobalValue::DLLExportStorageClass &&
4568             !MRD->hasAttr<DLLExportAttr>())) &&
4569           !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4570 }
4571 
4572 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4573 /// module, create and return an llvm Function with the specified type. If there
4574 /// is something in the module with the specified name, return it potentially
4575 /// bitcasted to the right type.
4576 ///
4577 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4578 /// to set the attributes on the function when it is first created.
4579 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4580     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4581     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4582     ForDefinition_t IsForDefinition) {
4583   const Decl *D = GD.getDecl();
4584 
4585   std::string NameWithoutMultiVersionMangling;
4586   // Any attempts to use a MultiVersion function should result in retrieving
4587   // the iFunc instead. Name Mangling will handle the rest of the changes.
4588   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4589     // For the device mark the function as one that should be emitted.
4590     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4591         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4592         !DontDefer && !IsForDefinition) {
4593       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4594         GlobalDecl GDDef;
4595         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4596           GDDef = GlobalDecl(CD, GD.getCtorType());
4597         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4598           GDDef = GlobalDecl(DD, GD.getDtorType());
4599         else
4600           GDDef = GlobalDecl(FDDef);
4601         EmitGlobal(GDDef);
4602       }
4603     }
4604 
4605     if (FD->isMultiVersion()) {
4606       UpdateMultiVersionNames(GD, FD, MangledName);
4607       if (!IsForDefinition) {
4608         // On AArch64 we do not immediatelly emit an ifunc resolver when a
4609         // function is used. Instead we defer the emission until we see a
4610         // default definition. In the meantime we just reference the symbol
4611         // without FMV mangling (it may or may not be replaced later).
4612         if (getTarget().getTriple().isAArch64()) {
4613           AddDeferredMultiVersionResolverToEmit(GD);
4614           NameWithoutMultiVersionMangling = getMangledNameImpl(
4615               *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4616         } else
4617           return GetOrCreateMultiVersionResolver(GD);
4618       }
4619     }
4620   }
4621 
4622   if (!NameWithoutMultiVersionMangling.empty())
4623     MangledName = NameWithoutMultiVersionMangling;
4624 
4625   // Lookup the entry, lazily creating it if necessary.
4626   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4627   if (Entry) {
4628     if (WeakRefReferences.erase(Entry)) {
4629       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4630       if (FD && !FD->hasAttr<WeakAttr>())
4631         Entry->setLinkage(llvm::Function::ExternalLinkage);
4632     }
4633 
4634     // Handle dropped DLL attributes.
4635     if (D && shouldDropDLLAttribute(D, Entry)) {
4636       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4637       setDSOLocal(Entry);
4638     }
4639 
4640     // If there are two attempts to define the same mangled name, issue an
4641     // error.
4642     if (IsForDefinition && !Entry->isDeclaration()) {
4643       GlobalDecl OtherGD;
4644       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4645       // to make sure that we issue an error only once.
4646       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4647           (GD.getCanonicalDecl().getDecl() !=
4648            OtherGD.getCanonicalDecl().getDecl()) &&
4649           DiagnosedConflictingDefinitions.insert(GD).second) {
4650         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4651             << MangledName;
4652         getDiags().Report(OtherGD.getDecl()->getLocation(),
4653                           diag::note_previous_definition);
4654       }
4655     }
4656 
4657     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4658         (Entry->getValueType() == Ty)) {
4659       return Entry;
4660     }
4661 
4662     // Make sure the result is of the correct type.
4663     // (If function is requested for a definition, we always need to create a new
4664     // function, not just return a bitcast.)
4665     if (!IsForDefinition)
4666       return Entry;
4667   }
4668 
4669   // This function doesn't have a complete type (for example, the return
4670   // type is an incomplete struct). Use a fake type instead, and make
4671   // sure not to try to set attributes.
4672   bool IsIncompleteFunction = false;
4673 
4674   llvm::FunctionType *FTy;
4675   if (isa<llvm::FunctionType>(Ty)) {
4676     FTy = cast<llvm::FunctionType>(Ty);
4677   } else {
4678     FTy = llvm::FunctionType::get(VoidTy, false);
4679     IsIncompleteFunction = true;
4680   }
4681 
4682   llvm::Function *F =
4683       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4684                              Entry ? StringRef() : MangledName, &getModule());
4685 
4686   // Store the declaration associated with this function so it is potentially
4687   // updated by further declarations or definitions and emitted at the end.
4688   if (D && D->hasAttr<AnnotateAttr>())
4689     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4690 
4691   // If we already created a function with the same mangled name (but different
4692   // type) before, take its name and add it to the list of functions to be
4693   // replaced with F at the end of CodeGen.
4694   //
4695   // This happens if there is a prototype for a function (e.g. "int f()") and
4696   // then a definition of a different type (e.g. "int f(int x)").
4697   if (Entry) {
4698     F->takeName(Entry);
4699 
4700     // This might be an implementation of a function without a prototype, in
4701     // which case, try to do special replacement of calls which match the new
4702     // prototype.  The really key thing here is that we also potentially drop
4703     // arguments from the call site so as to make a direct call, which makes the
4704     // inliner happier and suppresses a number of optimizer warnings (!) about
4705     // dropping arguments.
4706     if (!Entry->use_empty()) {
4707       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4708       Entry->removeDeadConstantUsers();
4709     }
4710 
4711     addGlobalValReplacement(Entry, F);
4712   }
4713 
4714   assert(F->getName() == MangledName && "name was uniqued!");
4715   if (D)
4716     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4717   if (ExtraAttrs.hasFnAttrs()) {
4718     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4719     F->addFnAttrs(B);
4720   }
4721 
4722   if (!DontDefer) {
4723     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4724     // each other bottoming out with the base dtor.  Therefore we emit non-base
4725     // dtors on usage, even if there is no dtor definition in the TU.
4726     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4727         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4728                                            GD.getDtorType()))
4729       addDeferredDeclToEmit(GD);
4730 
4731     // This is the first use or definition of a mangled name.  If there is a
4732     // deferred decl with this name, remember that we need to emit it at the end
4733     // of the file.
4734     auto DDI = DeferredDecls.find(MangledName);
4735     if (DDI != DeferredDecls.end()) {
4736       // Move the potentially referenced deferred decl to the
4737       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4738       // don't need it anymore).
4739       addDeferredDeclToEmit(DDI->second);
4740       DeferredDecls.erase(DDI);
4741 
4742       // Otherwise, there are cases we have to worry about where we're
4743       // using a declaration for which we must emit a definition but where
4744       // we might not find a top-level definition:
4745       //   - member functions defined inline in their classes
4746       //   - friend functions defined inline in some class
4747       //   - special member functions with implicit definitions
4748       // If we ever change our AST traversal to walk into class methods,
4749       // this will be unnecessary.
4750       //
4751       // We also don't emit a definition for a function if it's going to be an
4752       // entry in a vtable, unless it's already marked as used.
4753     } else if (getLangOpts().CPlusPlus && D) {
4754       // Look for a declaration that's lexically in a record.
4755       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4756            FD = FD->getPreviousDecl()) {
4757         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4758           if (FD->doesThisDeclarationHaveABody()) {
4759             addDeferredDeclToEmit(GD.getWithDecl(FD));
4760             break;
4761           }
4762         }
4763       }
4764     }
4765   }
4766 
4767   // Make sure the result is of the requested type.
4768   if (!IsIncompleteFunction) {
4769     assert(F->getFunctionType() == Ty);
4770     return F;
4771   }
4772 
4773   return F;
4774 }
4775 
4776 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4777 /// non-null, then this function will use the specified type if it has to
4778 /// create it (this occurs when we see a definition of the function).
4779 llvm::Constant *
4780 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4781                                  bool DontDefer,
4782                                  ForDefinition_t IsForDefinition) {
4783   // If there was no specific requested type, just convert it now.
4784   if (!Ty) {
4785     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4786     Ty = getTypes().ConvertType(FD->getType());
4787   }
4788 
4789   // Devirtualized destructor calls may come through here instead of via
4790   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4791   // of the complete destructor when necessary.
4792   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4793     if (getTarget().getCXXABI().isMicrosoft() &&
4794         GD.getDtorType() == Dtor_Complete &&
4795         DD->getParent()->getNumVBases() == 0)
4796       GD = GlobalDecl(DD, Dtor_Base);
4797   }
4798 
4799   StringRef MangledName = getMangledName(GD);
4800   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4801                                     /*IsThunk=*/false, llvm::AttributeList(),
4802                                     IsForDefinition);
4803   // Returns kernel handle for HIP kernel stub function.
4804   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4805       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4806     auto *Handle = getCUDARuntime().getKernelHandle(
4807         cast<llvm::Function>(F->stripPointerCasts()), GD);
4808     if (IsForDefinition)
4809       return F;
4810     return Handle;
4811   }
4812   return F;
4813 }
4814 
4815 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4816   llvm::GlobalValue *F =
4817       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4818 
4819   return llvm::NoCFIValue::get(F);
4820 }
4821 
4822 static const FunctionDecl *
4823 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4824   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4825   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4826 
4827   IdentifierInfo &CII = C.Idents.get(Name);
4828   for (const auto *Result : DC->lookup(&CII))
4829     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4830       return FD;
4831 
4832   if (!C.getLangOpts().CPlusPlus)
4833     return nullptr;
4834 
4835   // Demangle the premangled name from getTerminateFn()
4836   IdentifierInfo &CXXII =
4837       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4838           ? C.Idents.get("terminate")
4839           : C.Idents.get(Name);
4840 
4841   for (const auto &N : {"__cxxabiv1", "std"}) {
4842     IdentifierInfo &NS = C.Idents.get(N);
4843     for (const auto *Result : DC->lookup(&NS)) {
4844       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4845       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4846         for (const auto *Result : LSD->lookup(&NS))
4847           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4848             break;
4849 
4850       if (ND)
4851         for (const auto *Result : ND->lookup(&CXXII))
4852           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4853             return FD;
4854     }
4855   }
4856 
4857   return nullptr;
4858 }
4859 
4860 /// CreateRuntimeFunction - Create a new runtime function with the specified
4861 /// type and name.
4862 llvm::FunctionCallee
4863 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4864                                      llvm::AttributeList ExtraAttrs, bool Local,
4865                                      bool AssumeConvergent) {
4866   if (AssumeConvergent) {
4867     ExtraAttrs =
4868         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4869   }
4870 
4871   llvm::Constant *C =
4872       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4873                               /*DontDefer=*/false, /*IsThunk=*/false,
4874                               ExtraAttrs);
4875 
4876   if (auto *F = dyn_cast<llvm::Function>(C)) {
4877     if (F->empty()) {
4878       F->setCallingConv(getRuntimeCC());
4879 
4880       // In Windows Itanium environments, try to mark runtime functions
4881       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4882       // will link their standard library statically or dynamically. Marking
4883       // functions imported when they are not imported can cause linker errors
4884       // and warnings.
4885       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4886           !getCodeGenOpts().LTOVisibilityPublicStd) {
4887         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4888         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4889           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4890           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4891         }
4892       }
4893       setDSOLocal(F);
4894       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4895       // of trying to approximate the attributes using the LLVM function
4896       // signature. This requires revising the API of CreateRuntimeFunction().
4897       markRegisterParameterAttributes(F);
4898     }
4899   }
4900 
4901   return {FTy, C};
4902 }
4903 
4904 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4905 /// create and return an llvm GlobalVariable with the specified type and address
4906 /// space. If there is something in the module with the specified name, return
4907 /// it potentially bitcasted to the right type.
4908 ///
4909 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4910 /// to set the attributes on the global when it is first created.
4911 ///
4912 /// If IsForDefinition is true, it is guaranteed that an actual global with
4913 /// type Ty will be returned, not conversion of a variable with the same
4914 /// mangled name but some other type.
4915 llvm::Constant *
4916 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4917                                      LangAS AddrSpace, const VarDecl *D,
4918                                      ForDefinition_t IsForDefinition) {
4919   // Lookup the entry, lazily creating it if necessary.
4920   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4921   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4922   if (Entry) {
4923     if (WeakRefReferences.erase(Entry)) {
4924       if (D && !D->hasAttr<WeakAttr>())
4925         Entry->setLinkage(llvm::Function::ExternalLinkage);
4926     }
4927 
4928     // Handle dropped DLL attributes.
4929     if (D && shouldDropDLLAttribute(D, Entry))
4930       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4931 
4932     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4933       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4934 
4935     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4936       return Entry;
4937 
4938     // If there are two attempts to define the same mangled name, issue an
4939     // error.
4940     if (IsForDefinition && !Entry->isDeclaration()) {
4941       GlobalDecl OtherGD;
4942       const VarDecl *OtherD;
4943 
4944       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4945       // to make sure that we issue an error only once.
4946       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4947           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4948           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4949           OtherD->hasInit() &&
4950           DiagnosedConflictingDefinitions.insert(D).second) {
4951         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4952             << MangledName;
4953         getDiags().Report(OtherGD.getDecl()->getLocation(),
4954                           diag::note_previous_definition);
4955       }
4956     }
4957 
4958     // Make sure the result is of the correct type.
4959     if (Entry->getType()->getAddressSpace() != TargetAS)
4960       return llvm::ConstantExpr::getAddrSpaceCast(
4961           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4962 
4963     // (If global is requested for a definition, we always need to create a new
4964     // global, not just return a bitcast.)
4965     if (!IsForDefinition)
4966       return Entry;
4967   }
4968 
4969   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4970 
4971   auto *GV = new llvm::GlobalVariable(
4972       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4973       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4974       getContext().getTargetAddressSpace(DAddrSpace));
4975 
4976   // If we already created a global with the same mangled name (but different
4977   // type) before, take its name and remove it from its parent.
4978   if (Entry) {
4979     GV->takeName(Entry);
4980 
4981     if (!Entry->use_empty()) {
4982       Entry->replaceAllUsesWith(GV);
4983     }
4984 
4985     Entry->eraseFromParent();
4986   }
4987 
4988   // This is the first use or definition of a mangled name.  If there is a
4989   // deferred decl with this name, remember that we need to emit it at the end
4990   // of the file.
4991   auto DDI = DeferredDecls.find(MangledName);
4992   if (DDI != DeferredDecls.end()) {
4993     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4994     // list, and remove it from DeferredDecls (since we don't need it anymore).
4995     addDeferredDeclToEmit(DDI->second);
4996     DeferredDecls.erase(DDI);
4997   }
4998 
4999   // Handle things which are present even on external declarations.
5000   if (D) {
5001     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
5002       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
5003 
5004     // FIXME: This code is overly simple and should be merged with other global
5005     // handling.
5006     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
5007 
5008     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
5009 
5010     setLinkageForGV(GV, D);
5011 
5012     if (D->getTLSKind()) {
5013       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5014         CXXThreadLocals.push_back(D);
5015       setTLSMode(GV, *D);
5016     }
5017 
5018     setGVProperties(GV, D);
5019 
5020     // If required by the ABI, treat declarations of static data members with
5021     // inline initializers as definitions.
5022     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5023       EmitGlobalVarDefinition(D);
5024     }
5025 
5026     // Emit section information for extern variables.
5027     if (D->hasExternalStorage()) {
5028       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5029         GV->setSection(SA->getName());
5030     }
5031 
5032     // Handle XCore specific ABI requirements.
5033     if (getTriple().getArch() == llvm::Triple::xcore &&
5034         D->getLanguageLinkage() == CLanguageLinkage &&
5035         D->getType().isConstant(Context) &&
5036         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5037       GV->setSection(".cp.rodata");
5038 
5039     // Handle code model attribute
5040     if (const auto *CMA = D->getAttr<CodeModelAttr>())
5041       GV->setCodeModel(CMA->getModel());
5042 
5043     // Check if we a have a const declaration with an initializer, we may be
5044     // able to emit it as available_externally to expose it's value to the
5045     // optimizer.
5046     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5047         D->getType().isConstQualified() && !GV->hasInitializer() &&
5048         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5049       const auto *Record =
5050           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5051       bool HasMutableFields = Record && Record->hasMutableFields();
5052       if (!HasMutableFields) {
5053         const VarDecl *InitDecl;
5054         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5055         if (InitExpr) {
5056           ConstantEmitter emitter(*this);
5057           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5058           if (Init) {
5059             auto *InitType = Init->getType();
5060             if (GV->getValueType() != InitType) {
5061               // The type of the initializer does not match the definition.
5062               // This happens when an initializer has a different type from
5063               // the type of the global (because of padding at the end of a
5064               // structure for instance).
5065               GV->setName(StringRef());
5066               // Make a new global with the correct type, this is now guaranteed
5067               // to work.
5068               auto *NewGV = cast<llvm::GlobalVariable>(
5069                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5070                       ->stripPointerCasts());
5071 
5072               // Erase the old global, since it is no longer used.
5073               GV->eraseFromParent();
5074               GV = NewGV;
5075             } else {
5076               GV->setInitializer(Init);
5077               GV->setConstant(true);
5078               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5079             }
5080             emitter.finalize(GV);
5081           }
5082         }
5083       }
5084     }
5085   }
5086 
5087   if (D &&
5088       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5089     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5090     // External HIP managed variables needed to be recorded for transformation
5091     // in both device and host compilations.
5092     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5093         D->hasExternalStorage())
5094       getCUDARuntime().handleVarRegistration(D, *GV);
5095   }
5096 
5097   if (D)
5098     SanitizerMD->reportGlobal(GV, *D);
5099 
5100   LangAS ExpectedAS =
5101       D ? D->getType().getAddressSpace()
5102         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5103   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5104   if (DAddrSpace != ExpectedAS) {
5105     return getTargetCodeGenInfo().performAddrSpaceCast(
5106         *this, GV, DAddrSpace, ExpectedAS,
5107         llvm::PointerType::get(getLLVMContext(), TargetAS));
5108   }
5109 
5110   return GV;
5111 }
5112 
5113 llvm::Constant *
5114 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5115   const Decl *D = GD.getDecl();
5116 
5117   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5118     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5119                                 /*DontDefer=*/false, IsForDefinition);
5120 
5121   if (isa<CXXMethodDecl>(D)) {
5122     auto FInfo =
5123         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5124     auto Ty = getTypes().GetFunctionType(*FInfo);
5125     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5126                              IsForDefinition);
5127   }
5128 
5129   if (isa<FunctionDecl>(D)) {
5130     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5131     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5132     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5133                              IsForDefinition);
5134   }
5135 
5136   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5137 }
5138 
5139 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5140     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5141     llvm::Align Alignment) {
5142   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5143   llvm::GlobalVariable *OldGV = nullptr;
5144 
5145   if (GV) {
5146     // Check if the variable has the right type.
5147     if (GV->getValueType() == Ty)
5148       return GV;
5149 
5150     // Because C++ name mangling, the only way we can end up with an already
5151     // existing global with the same name is if it has been declared extern "C".
5152     assert(GV->isDeclaration() && "Declaration has wrong type!");
5153     OldGV = GV;
5154   }
5155 
5156   // Create a new variable.
5157   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5158                                 Linkage, nullptr, Name);
5159 
5160   if (OldGV) {
5161     // Replace occurrences of the old variable if needed.
5162     GV->takeName(OldGV);
5163 
5164     if (!OldGV->use_empty()) {
5165       OldGV->replaceAllUsesWith(GV);
5166     }
5167 
5168     OldGV->eraseFromParent();
5169   }
5170 
5171   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5172       !GV->hasAvailableExternallyLinkage())
5173     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5174 
5175   GV->setAlignment(Alignment);
5176 
5177   return GV;
5178 }
5179 
5180 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5181 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5182 /// then it will be created with the specified type instead of whatever the
5183 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5184 /// that an actual global with type Ty will be returned, not conversion of a
5185 /// variable with the same mangled name but some other type.
5186 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5187                                                   llvm::Type *Ty,
5188                                            ForDefinition_t IsForDefinition) {
5189   assert(D->hasGlobalStorage() && "Not a global variable");
5190   QualType ASTTy = D->getType();
5191   if (!Ty)
5192     Ty = getTypes().ConvertTypeForMem(ASTTy);
5193 
5194   StringRef MangledName = getMangledName(D);
5195   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5196                                IsForDefinition);
5197 }
5198 
5199 /// CreateRuntimeVariable - Create a new runtime global variable with the
5200 /// specified type and name.
5201 llvm::Constant *
5202 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5203                                      StringRef Name) {
5204   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5205                                                        : LangAS::Default;
5206   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5207   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5208   return Ret;
5209 }
5210 
5211 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5212   assert(!D->getInit() && "Cannot emit definite definitions here!");
5213 
5214   StringRef MangledName = getMangledName(D);
5215   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5216 
5217   // We already have a definition, not declaration, with the same mangled name.
5218   // Emitting of declaration is not required (and actually overwrites emitted
5219   // definition).
5220   if (GV && !GV->isDeclaration())
5221     return;
5222 
5223   // If we have not seen a reference to this variable yet, place it into the
5224   // deferred declarations table to be emitted if needed later.
5225   if (!MustBeEmitted(D) && !GV) {
5226       DeferredDecls[MangledName] = D;
5227       return;
5228   }
5229 
5230   // The tentative definition is the only definition.
5231   EmitGlobalVarDefinition(D);
5232 }
5233 
5234 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5235   if (auto const *V = dyn_cast<const VarDecl>(D))
5236     EmitExternalVarDeclaration(V);
5237   if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5238     EmitExternalFunctionDeclaration(FD);
5239 }
5240 
5241 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5242   return Context.toCharUnitsFromBits(
5243       getDataLayout().getTypeStoreSizeInBits(Ty));
5244 }
5245 
5246 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5247   if (LangOpts.OpenCL) {
5248     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5249     assert(AS == LangAS::opencl_global ||
5250            AS == LangAS::opencl_global_device ||
5251            AS == LangAS::opencl_global_host ||
5252            AS == LangAS::opencl_constant ||
5253            AS == LangAS::opencl_local ||
5254            AS >= LangAS::FirstTargetAddressSpace);
5255     return AS;
5256   }
5257 
5258   if (LangOpts.SYCLIsDevice &&
5259       (!D || D->getType().getAddressSpace() == LangAS::Default))
5260     return LangAS::sycl_global;
5261 
5262   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5263     if (D) {
5264       if (D->hasAttr<CUDAConstantAttr>())
5265         return LangAS::cuda_constant;
5266       if (D->hasAttr<CUDASharedAttr>())
5267         return LangAS::cuda_shared;
5268       if (D->hasAttr<CUDADeviceAttr>())
5269         return LangAS::cuda_device;
5270       if (D->getType().isConstQualified())
5271         return LangAS::cuda_constant;
5272     }
5273     return LangAS::cuda_device;
5274   }
5275 
5276   if (LangOpts.OpenMP) {
5277     LangAS AS;
5278     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5279       return AS;
5280   }
5281   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5282 }
5283 
5284 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5285   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5286   if (LangOpts.OpenCL)
5287     return LangAS::opencl_constant;
5288   if (LangOpts.SYCLIsDevice)
5289     return LangAS::sycl_global;
5290   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5291     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5292     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5293     // with OpVariable instructions with Generic storage class which is not
5294     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5295     // UniformConstant storage class is not viable as pointers to it may not be
5296     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5297     return LangAS::cuda_device;
5298   if (auto AS = getTarget().getConstantAddressSpace())
5299     return *AS;
5300   return LangAS::Default;
5301 }
5302 
5303 // In address space agnostic languages, string literals are in default address
5304 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5305 // emitted in constant address space in LLVM IR. To be consistent with other
5306 // parts of AST, string literal global variables in constant address space
5307 // need to be casted to default address space before being put into address
5308 // map and referenced by other part of CodeGen.
5309 // In OpenCL, string literals are in constant address space in AST, therefore
5310 // they should not be casted to default address space.
5311 static llvm::Constant *
5312 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5313                                        llvm::GlobalVariable *GV) {
5314   llvm::Constant *Cast = GV;
5315   if (!CGM.getLangOpts().OpenCL) {
5316     auto AS = CGM.GetGlobalConstantAddressSpace();
5317     if (AS != LangAS::Default)
5318       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5319           CGM, GV, AS, LangAS::Default,
5320           llvm::PointerType::get(
5321               CGM.getLLVMContext(),
5322               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5323   }
5324   return Cast;
5325 }
5326 
5327 template<typename SomeDecl>
5328 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5329                                                llvm::GlobalValue *GV) {
5330   if (!getLangOpts().CPlusPlus)
5331     return;
5332 
5333   // Must have 'used' attribute, or else inline assembly can't rely on
5334   // the name existing.
5335   if (!D->template hasAttr<UsedAttr>())
5336     return;
5337 
5338   // Must have internal linkage and an ordinary name.
5339   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5340     return;
5341 
5342   // Must be in an extern "C" context. Entities declared directly within
5343   // a record are not extern "C" even if the record is in such a context.
5344   const SomeDecl *First = D->getFirstDecl();
5345   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5346     return;
5347 
5348   // OK, this is an internal linkage entity inside an extern "C" linkage
5349   // specification. Make a note of that so we can give it the "expected"
5350   // mangled name if nothing else is using that name.
5351   std::pair<StaticExternCMap::iterator, bool> R =
5352       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5353 
5354   // If we have multiple internal linkage entities with the same name
5355   // in extern "C" regions, none of them gets that name.
5356   if (!R.second)
5357     R.first->second = nullptr;
5358 }
5359 
5360 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5361   if (!CGM.supportsCOMDAT())
5362     return false;
5363 
5364   if (D.hasAttr<SelectAnyAttr>())
5365     return true;
5366 
5367   GVALinkage Linkage;
5368   if (auto *VD = dyn_cast<VarDecl>(&D))
5369     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5370   else
5371     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5372 
5373   switch (Linkage) {
5374   case GVA_Internal:
5375   case GVA_AvailableExternally:
5376   case GVA_StrongExternal:
5377     return false;
5378   case GVA_DiscardableODR:
5379   case GVA_StrongODR:
5380     return true;
5381   }
5382   llvm_unreachable("No such linkage");
5383 }
5384 
5385 bool CodeGenModule::supportsCOMDAT() const {
5386   return getTriple().supportsCOMDAT();
5387 }
5388 
5389 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5390                                           llvm::GlobalObject &GO) {
5391   if (!shouldBeInCOMDAT(*this, D))
5392     return;
5393   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5394 }
5395 
5396 /// Pass IsTentative as true if you want to create a tentative definition.
5397 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5398                                             bool IsTentative) {
5399   // OpenCL global variables of sampler type are translated to function calls,
5400   // therefore no need to be translated.
5401   QualType ASTTy = D->getType();
5402   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5403     return;
5404 
5405   // If this is OpenMP device, check if it is legal to emit this global
5406   // normally.
5407   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5408       OpenMPRuntime->emitTargetGlobalVariable(D))
5409     return;
5410 
5411   llvm::TrackingVH<llvm::Constant> Init;
5412   bool NeedsGlobalCtor = false;
5413   // Whether the definition of the variable is available externally.
5414   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5415   // since this is the job for its original source.
5416   bool IsDefinitionAvailableExternally =
5417       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5418   bool NeedsGlobalDtor =
5419       !IsDefinitionAvailableExternally &&
5420       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5421 
5422   // It is helpless to emit the definition for an available_externally variable
5423   // which can't be marked as const.
5424   // We don't need to check if it needs global ctor or dtor. See the above
5425   // comment for ideas.
5426   if (IsDefinitionAvailableExternally &&
5427       (!D->hasConstantInitialization() ||
5428        // TODO: Update this when we have interface to check constexpr
5429        // destructor.
5430        D->needsDestruction(getContext()) ||
5431        !D->getType().isConstantStorage(getContext(), true, true)))
5432     return;
5433 
5434   const VarDecl *InitDecl;
5435   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5436 
5437   std::optional<ConstantEmitter> emitter;
5438 
5439   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5440   // as part of their declaration."  Sema has already checked for
5441   // error cases, so we just need to set Init to UndefValue.
5442   bool IsCUDASharedVar =
5443       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5444   // Shadows of initialized device-side global variables are also left
5445   // undefined.
5446   // Managed Variables should be initialized on both host side and device side.
5447   bool IsCUDAShadowVar =
5448       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5449       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5450        D->hasAttr<CUDASharedAttr>());
5451   bool IsCUDADeviceShadowVar =
5452       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5453       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5454        D->getType()->isCUDADeviceBuiltinTextureType());
5455   if (getLangOpts().CUDA &&
5456       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5457     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5458   else if (D->hasAttr<LoaderUninitializedAttr>())
5459     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5460   else if (!InitExpr) {
5461     // This is a tentative definition; tentative definitions are
5462     // implicitly initialized with { 0 }.
5463     //
5464     // Note that tentative definitions are only emitted at the end of
5465     // a translation unit, so they should never have incomplete
5466     // type. In addition, EmitTentativeDefinition makes sure that we
5467     // never attempt to emit a tentative definition if a real one
5468     // exists. A use may still exists, however, so we still may need
5469     // to do a RAUW.
5470     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5471     Init = EmitNullConstant(D->getType());
5472   } else {
5473     initializedGlobalDecl = GlobalDecl(D);
5474     emitter.emplace(*this);
5475     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5476     if (!Initializer) {
5477       QualType T = InitExpr->getType();
5478       if (D->getType()->isReferenceType())
5479         T = D->getType();
5480 
5481       if (getLangOpts().CPlusPlus) {
5482         if (InitDecl->hasFlexibleArrayInit(getContext()))
5483           ErrorUnsupported(D, "flexible array initializer");
5484         Init = EmitNullConstant(T);
5485 
5486         if (!IsDefinitionAvailableExternally)
5487           NeedsGlobalCtor = true;
5488       } else {
5489         ErrorUnsupported(D, "static initializer");
5490         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5491       }
5492     } else {
5493       Init = Initializer;
5494       // We don't need an initializer, so remove the entry for the delayed
5495       // initializer position (just in case this entry was delayed) if we
5496       // also don't need to register a destructor.
5497       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5498         DelayedCXXInitPosition.erase(D);
5499 
5500 #ifndef NDEBUG
5501       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5502                           InitDecl->getFlexibleArrayInitChars(getContext());
5503       CharUnits CstSize = CharUnits::fromQuantity(
5504           getDataLayout().getTypeAllocSize(Init->getType()));
5505       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5506 #endif
5507     }
5508   }
5509 
5510   llvm::Type* InitType = Init->getType();
5511   llvm::Constant *Entry =
5512       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5513 
5514   // Strip off pointer casts if we got them.
5515   Entry = Entry->stripPointerCasts();
5516 
5517   // Entry is now either a Function or GlobalVariable.
5518   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5519 
5520   // We have a definition after a declaration with the wrong type.
5521   // We must make a new GlobalVariable* and update everything that used OldGV
5522   // (a declaration or tentative definition) with the new GlobalVariable*
5523   // (which will be a definition).
5524   //
5525   // This happens if there is a prototype for a global (e.g.
5526   // "extern int x[];") and then a definition of a different type (e.g.
5527   // "int x[10];"). This also happens when an initializer has a different type
5528   // from the type of the global (this happens with unions).
5529   if (!GV || GV->getValueType() != InitType ||
5530       GV->getType()->getAddressSpace() !=
5531           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5532 
5533     // Move the old entry aside so that we'll create a new one.
5534     Entry->setName(StringRef());
5535 
5536     // Make a new global with the correct type, this is now guaranteed to work.
5537     GV = cast<llvm::GlobalVariable>(
5538         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5539             ->stripPointerCasts());
5540 
5541     // Replace all uses of the old global with the new global
5542     llvm::Constant *NewPtrForOldDecl =
5543         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5544                                                              Entry->getType());
5545     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5546 
5547     // Erase the old global, since it is no longer used.
5548     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5549   }
5550 
5551   MaybeHandleStaticInExternC(D, GV);
5552 
5553   if (D->hasAttr<AnnotateAttr>())
5554     AddGlobalAnnotations(D, GV);
5555 
5556   // Set the llvm linkage type as appropriate.
5557   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5558 
5559   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5560   // the device. [...]"
5561   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5562   // __device__, declares a variable that: [...]
5563   // Is accessible from all the threads within the grid and from the host
5564   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5565   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5566   if (LangOpts.CUDA) {
5567     if (LangOpts.CUDAIsDevice) {
5568       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5569           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5570            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5571            D->getType()->isCUDADeviceBuiltinTextureType()))
5572         GV->setExternallyInitialized(true);
5573     } else {
5574       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5575     }
5576     getCUDARuntime().handleVarRegistration(D, *GV);
5577   }
5578 
5579   GV->setInitializer(Init);
5580   if (emitter)
5581     emitter->finalize(GV);
5582 
5583   // If it is safe to mark the global 'constant', do so now.
5584   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5585                   D->getType().isConstantStorage(getContext(), true, true));
5586 
5587   // If it is in a read-only section, mark it 'constant'.
5588   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5589     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5590     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5591       GV->setConstant(true);
5592   }
5593 
5594   CharUnits AlignVal = getContext().getDeclAlign(D);
5595   // Check for alignment specifed in an 'omp allocate' directive.
5596   if (std::optional<CharUnits> AlignValFromAllocate =
5597           getOMPAllocateAlignment(D))
5598     AlignVal = *AlignValFromAllocate;
5599   GV->setAlignment(AlignVal.getAsAlign());
5600 
5601   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5602   // function is only defined alongside the variable, not also alongside
5603   // callers. Normally, all accesses to a thread_local go through the
5604   // thread-wrapper in order to ensure initialization has occurred, underlying
5605   // variable will never be used other than the thread-wrapper, so it can be
5606   // converted to internal linkage.
5607   //
5608   // However, if the variable has the 'constinit' attribute, it _can_ be
5609   // referenced directly, without calling the thread-wrapper, so the linkage
5610   // must not be changed.
5611   //
5612   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5613   // weak or linkonce, the de-duplication semantics are important to preserve,
5614   // so we don't change the linkage.
5615   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5616       Linkage == llvm::GlobalValue::ExternalLinkage &&
5617       Context.getTargetInfo().getTriple().isOSDarwin() &&
5618       !D->hasAttr<ConstInitAttr>())
5619     Linkage = llvm::GlobalValue::InternalLinkage;
5620 
5621   GV->setLinkage(Linkage);
5622   if (D->hasAttr<DLLImportAttr>())
5623     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5624   else if (D->hasAttr<DLLExportAttr>())
5625     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5626   else
5627     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5628 
5629   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5630     // common vars aren't constant even if declared const.
5631     GV->setConstant(false);
5632     // Tentative definition of global variables may be initialized with
5633     // non-zero null pointers. In this case they should have weak linkage
5634     // since common linkage must have zero initializer and must not have
5635     // explicit section therefore cannot have non-zero initial value.
5636     if (!GV->getInitializer()->isNullValue())
5637       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5638   }
5639 
5640   setNonAliasAttributes(D, GV);
5641 
5642   if (D->getTLSKind() && !GV->isThreadLocal()) {
5643     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5644       CXXThreadLocals.push_back(D);
5645     setTLSMode(GV, *D);
5646   }
5647 
5648   maybeSetTrivialComdat(*D, *GV);
5649 
5650   // Emit the initializer function if necessary.
5651   if (NeedsGlobalCtor || NeedsGlobalDtor)
5652     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5653 
5654   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5655 
5656   // Emit global variable debug information.
5657   if (CGDebugInfo *DI = getModuleDebugInfo())
5658     if (getCodeGenOpts().hasReducedDebugInfo())
5659       DI->EmitGlobalVariable(GV, D);
5660 }
5661 
5662 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5663   if (CGDebugInfo *DI = getModuleDebugInfo())
5664     if (getCodeGenOpts().hasReducedDebugInfo()) {
5665       QualType ASTTy = D->getType();
5666       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5667       llvm::Constant *GV =
5668           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5669       DI->EmitExternalVariable(
5670           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5671     }
5672 }
5673 
5674 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5675   if (CGDebugInfo *DI = getModuleDebugInfo())
5676     if (getCodeGenOpts().hasReducedDebugInfo()) {
5677       auto *Ty = getTypes().ConvertType(FD->getType());
5678       StringRef MangledName = getMangledName(FD);
5679       auto *Fn = cast<llvm::Function>(
5680           GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5681       if (!Fn->getSubprogram())
5682         DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5683     }
5684 }
5685 
5686 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5687                                       CodeGenModule &CGM, const VarDecl *D,
5688                                       bool NoCommon) {
5689   // Don't give variables common linkage if -fno-common was specified unless it
5690   // was overridden by a NoCommon attribute.
5691   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5692     return true;
5693 
5694   // C11 6.9.2/2:
5695   //   A declaration of an identifier for an object that has file scope without
5696   //   an initializer, and without a storage-class specifier or with the
5697   //   storage-class specifier static, constitutes a tentative definition.
5698   if (D->getInit() || D->hasExternalStorage())
5699     return true;
5700 
5701   // A variable cannot be both common and exist in a section.
5702   if (D->hasAttr<SectionAttr>())
5703     return true;
5704 
5705   // A variable cannot be both common and exist in a section.
5706   // We don't try to determine which is the right section in the front-end.
5707   // If no specialized section name is applicable, it will resort to default.
5708   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5709       D->hasAttr<PragmaClangDataSectionAttr>() ||
5710       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5711       D->hasAttr<PragmaClangRodataSectionAttr>())
5712     return true;
5713 
5714   // Thread local vars aren't considered common linkage.
5715   if (D->getTLSKind())
5716     return true;
5717 
5718   // Tentative definitions marked with WeakImportAttr are true definitions.
5719   if (D->hasAttr<WeakImportAttr>())
5720     return true;
5721 
5722   // A variable cannot be both common and exist in a comdat.
5723   if (shouldBeInCOMDAT(CGM, *D))
5724     return true;
5725 
5726   // Declarations with a required alignment do not have common linkage in MSVC
5727   // mode.
5728   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5729     if (D->hasAttr<AlignedAttr>())
5730       return true;
5731     QualType VarType = D->getType();
5732     if (Context.isAlignmentRequired(VarType))
5733       return true;
5734 
5735     if (const auto *RT = VarType->getAs<RecordType>()) {
5736       const RecordDecl *RD = RT->getDecl();
5737       for (const FieldDecl *FD : RD->fields()) {
5738         if (FD->isBitField())
5739           continue;
5740         if (FD->hasAttr<AlignedAttr>())
5741           return true;
5742         if (Context.isAlignmentRequired(FD->getType()))
5743           return true;
5744       }
5745     }
5746   }
5747 
5748   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5749   // common symbols, so symbols with greater alignment requirements cannot be
5750   // common.
5751   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5752   // alignments for common symbols via the aligncomm directive, so this
5753   // restriction only applies to MSVC environments.
5754   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5755       Context.getTypeAlignIfKnown(D->getType()) >
5756           Context.toBits(CharUnits::fromQuantity(32)))
5757     return true;
5758 
5759   return false;
5760 }
5761 
5762 llvm::GlobalValue::LinkageTypes
5763 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5764                                            GVALinkage Linkage) {
5765   if (Linkage == GVA_Internal)
5766     return llvm::Function::InternalLinkage;
5767 
5768   if (D->hasAttr<WeakAttr>())
5769     return llvm::GlobalVariable::WeakAnyLinkage;
5770 
5771   if (const auto *FD = D->getAsFunction())
5772     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5773       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5774 
5775   // We are guaranteed to have a strong definition somewhere else,
5776   // so we can use available_externally linkage.
5777   if (Linkage == GVA_AvailableExternally)
5778     return llvm::GlobalValue::AvailableExternallyLinkage;
5779 
5780   // Note that Apple's kernel linker doesn't support symbol
5781   // coalescing, so we need to avoid linkonce and weak linkages there.
5782   // Normally, this means we just map to internal, but for explicit
5783   // instantiations we'll map to external.
5784 
5785   // In C++, the compiler has to emit a definition in every translation unit
5786   // that references the function.  We should use linkonce_odr because
5787   // a) if all references in this translation unit are optimized away, we
5788   // don't need to codegen it.  b) if the function persists, it needs to be
5789   // merged with other definitions. c) C++ has the ODR, so we know the
5790   // definition is dependable.
5791   if (Linkage == GVA_DiscardableODR)
5792     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5793                                             : llvm::Function::InternalLinkage;
5794 
5795   // An explicit instantiation of a template has weak linkage, since
5796   // explicit instantiations can occur in multiple translation units
5797   // and must all be equivalent. However, we are not allowed to
5798   // throw away these explicit instantiations.
5799   //
5800   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5801   // so say that CUDA templates are either external (for kernels) or internal.
5802   // This lets llvm perform aggressive inter-procedural optimizations. For
5803   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5804   // therefore we need to follow the normal linkage paradigm.
5805   if (Linkage == GVA_StrongODR) {
5806     if (getLangOpts().AppleKext)
5807       return llvm::Function::ExternalLinkage;
5808     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5809         !getLangOpts().GPURelocatableDeviceCode)
5810       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5811                                           : llvm::Function::InternalLinkage;
5812     return llvm::Function::WeakODRLinkage;
5813   }
5814 
5815   // C++ doesn't have tentative definitions and thus cannot have common
5816   // linkage.
5817   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5818       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5819                                  CodeGenOpts.NoCommon))
5820     return llvm::GlobalVariable::CommonLinkage;
5821 
5822   // selectany symbols are externally visible, so use weak instead of
5823   // linkonce.  MSVC optimizes away references to const selectany globals, so
5824   // all definitions should be the same and ODR linkage should be used.
5825   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5826   if (D->hasAttr<SelectAnyAttr>())
5827     return llvm::GlobalVariable::WeakODRLinkage;
5828 
5829   // Otherwise, we have strong external linkage.
5830   assert(Linkage == GVA_StrongExternal);
5831   return llvm::GlobalVariable::ExternalLinkage;
5832 }
5833 
5834 llvm::GlobalValue::LinkageTypes
5835 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5836   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5837   return getLLVMLinkageForDeclarator(VD, Linkage);
5838 }
5839 
5840 /// Replace the uses of a function that was declared with a non-proto type.
5841 /// We want to silently drop extra arguments from call sites
5842 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5843                                           llvm::Function *newFn) {
5844   // Fast path.
5845   if (old->use_empty())
5846     return;
5847 
5848   llvm::Type *newRetTy = newFn->getReturnType();
5849   SmallVector<llvm::Value *, 4> newArgs;
5850 
5851   SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5852 
5853   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5854        ui != ue; ui++) {
5855     llvm::User *user = ui->getUser();
5856 
5857     // Recognize and replace uses of bitcasts.  Most calls to
5858     // unprototyped functions will use bitcasts.
5859     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5860       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5861         replaceUsesOfNonProtoConstant(bitcast, newFn);
5862       continue;
5863     }
5864 
5865     // Recognize calls to the function.
5866     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5867     if (!callSite)
5868       continue;
5869     if (!callSite->isCallee(&*ui))
5870       continue;
5871 
5872     // If the return types don't match exactly, then we can't
5873     // transform this call unless it's dead.
5874     if (callSite->getType() != newRetTy && !callSite->use_empty())
5875       continue;
5876 
5877     // Get the call site's attribute list.
5878     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5879     llvm::AttributeList oldAttrs = callSite->getAttributes();
5880 
5881     // If the function was passed too few arguments, don't transform.
5882     unsigned newNumArgs = newFn->arg_size();
5883     if (callSite->arg_size() < newNumArgs)
5884       continue;
5885 
5886     // If extra arguments were passed, we silently drop them.
5887     // If any of the types mismatch, we don't transform.
5888     unsigned argNo = 0;
5889     bool dontTransform = false;
5890     for (llvm::Argument &A : newFn->args()) {
5891       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5892         dontTransform = true;
5893         break;
5894       }
5895 
5896       // Add any parameter attributes.
5897       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5898       argNo++;
5899     }
5900     if (dontTransform)
5901       continue;
5902 
5903     // Okay, we can transform this.  Create the new call instruction and copy
5904     // over the required information.
5905     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5906 
5907     // Copy over any operand bundles.
5908     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5909     callSite->getOperandBundlesAsDefs(newBundles);
5910 
5911     llvm::CallBase *newCall;
5912     if (isa<llvm::CallInst>(callSite)) {
5913       newCall =
5914           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5915     } else {
5916       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5917       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5918                                          oldInvoke->getUnwindDest(), newArgs,
5919                                          newBundles, "", callSite);
5920     }
5921     newArgs.clear(); // for the next iteration
5922 
5923     if (!newCall->getType()->isVoidTy())
5924       newCall->takeName(callSite);
5925     newCall->setAttributes(
5926         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5927                                  oldAttrs.getRetAttrs(), newArgAttrs));
5928     newCall->setCallingConv(callSite->getCallingConv());
5929 
5930     // Finally, remove the old call, replacing any uses with the new one.
5931     if (!callSite->use_empty())
5932       callSite->replaceAllUsesWith(newCall);
5933 
5934     // Copy debug location attached to CI.
5935     if (callSite->getDebugLoc())
5936       newCall->setDebugLoc(callSite->getDebugLoc());
5937 
5938     callSitesToBeRemovedFromParent.push_back(callSite);
5939   }
5940 
5941   for (auto *callSite : callSitesToBeRemovedFromParent) {
5942     callSite->eraseFromParent();
5943   }
5944 }
5945 
5946 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5947 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5948 /// existing call uses of the old function in the module, this adjusts them to
5949 /// call the new function directly.
5950 ///
5951 /// This is not just a cleanup: the always_inline pass requires direct calls to
5952 /// functions to be able to inline them.  If there is a bitcast in the way, it
5953 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5954 /// run at -O0.
5955 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5956                                                       llvm::Function *NewFn) {
5957   // If we're redefining a global as a function, don't transform it.
5958   if (!isa<llvm::Function>(Old)) return;
5959 
5960   replaceUsesOfNonProtoConstant(Old, NewFn);
5961 }
5962 
5963 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5964   auto DK = VD->isThisDeclarationADefinition();
5965   if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
5966       (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
5967     return;
5968 
5969   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5970   // If we have a definition, this might be a deferred decl. If the
5971   // instantiation is explicit, make sure we emit it at the end.
5972   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5973     GetAddrOfGlobalVar(VD);
5974 
5975   EmitTopLevelDecl(VD);
5976 }
5977 
5978 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5979                                                  llvm::GlobalValue *GV) {
5980   const auto *D = cast<FunctionDecl>(GD.getDecl());
5981 
5982   // Compute the function info and LLVM type.
5983   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5984   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5985 
5986   // Get or create the prototype for the function.
5987   if (!GV || (GV->getValueType() != Ty))
5988     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5989                                                    /*DontDefer=*/true,
5990                                                    ForDefinition));
5991 
5992   // Already emitted.
5993   if (!GV->isDeclaration())
5994     return;
5995 
5996   // We need to set linkage and visibility on the function before
5997   // generating code for it because various parts of IR generation
5998   // want to propagate this information down (e.g. to local static
5999   // declarations).
6000   auto *Fn = cast<llvm::Function>(GV);
6001   setFunctionLinkage(GD, Fn);
6002 
6003   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
6004   setGVProperties(Fn, GD);
6005 
6006   MaybeHandleStaticInExternC(D, Fn);
6007 
6008   maybeSetTrivialComdat(*D, *Fn);
6009 
6010   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6011 
6012   setNonAliasAttributes(GD, Fn);
6013   SetLLVMFunctionAttributesForDefinition(D, Fn);
6014 
6015   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6016     AddGlobalCtor(Fn, CA->getPriority());
6017   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6018     AddGlobalDtor(Fn, DA->getPriority(), true);
6019   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6020     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6021 }
6022 
6023 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6024   const auto *D = cast<ValueDecl>(GD.getDecl());
6025   const AliasAttr *AA = D->getAttr<AliasAttr>();
6026   assert(AA && "Not an alias?");
6027 
6028   StringRef MangledName = getMangledName(GD);
6029 
6030   if (AA->getAliasee() == MangledName) {
6031     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6032     return;
6033   }
6034 
6035   // If there is a definition in the module, then it wins over the alias.
6036   // This is dubious, but allow it to be safe.  Just ignore the alias.
6037   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6038   if (Entry && !Entry->isDeclaration())
6039     return;
6040 
6041   Aliases.push_back(GD);
6042 
6043   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6044 
6045   // Create a reference to the named value.  This ensures that it is emitted
6046   // if a deferred decl.
6047   llvm::Constant *Aliasee;
6048   llvm::GlobalValue::LinkageTypes LT;
6049   if (isa<llvm::FunctionType>(DeclTy)) {
6050     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6051                                       /*ForVTable=*/false);
6052     LT = getFunctionLinkage(GD);
6053   } else {
6054     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6055                                     /*D=*/nullptr);
6056     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6057       LT = getLLVMLinkageVarDefinition(VD);
6058     else
6059       LT = getFunctionLinkage(GD);
6060   }
6061 
6062   // Create the new alias itself, but don't set a name yet.
6063   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6064   auto *GA =
6065       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6066 
6067   if (Entry) {
6068     if (GA->getAliasee() == Entry) {
6069       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6070       return;
6071     }
6072 
6073     assert(Entry->isDeclaration());
6074 
6075     // If there is a declaration in the module, then we had an extern followed
6076     // by the alias, as in:
6077     //   extern int test6();
6078     //   ...
6079     //   int test6() __attribute__((alias("test7")));
6080     //
6081     // Remove it and replace uses of it with the alias.
6082     GA->takeName(Entry);
6083 
6084     Entry->replaceAllUsesWith(GA);
6085     Entry->eraseFromParent();
6086   } else {
6087     GA->setName(MangledName);
6088   }
6089 
6090   // Set attributes which are particular to an alias; this is a
6091   // specialization of the attributes which may be set on a global
6092   // variable/function.
6093   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6094       D->isWeakImported()) {
6095     GA->setLinkage(llvm::Function::WeakAnyLinkage);
6096   }
6097 
6098   if (const auto *VD = dyn_cast<VarDecl>(D))
6099     if (VD->getTLSKind())
6100       setTLSMode(GA, *VD);
6101 
6102   SetCommonAttributes(GD, GA);
6103 
6104   // Emit global alias debug information.
6105   if (isa<VarDecl>(D))
6106     if (CGDebugInfo *DI = getModuleDebugInfo())
6107       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6108 }
6109 
6110 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6111   const auto *D = cast<ValueDecl>(GD.getDecl());
6112   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6113   assert(IFA && "Not an ifunc?");
6114 
6115   StringRef MangledName = getMangledName(GD);
6116 
6117   if (IFA->getResolver() == MangledName) {
6118     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6119     return;
6120   }
6121 
6122   // Report an error if some definition overrides ifunc.
6123   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6124   if (Entry && !Entry->isDeclaration()) {
6125     GlobalDecl OtherGD;
6126     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6127         DiagnosedConflictingDefinitions.insert(GD).second) {
6128       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6129           << MangledName;
6130       Diags.Report(OtherGD.getDecl()->getLocation(),
6131                    diag::note_previous_definition);
6132     }
6133     return;
6134   }
6135 
6136   Aliases.push_back(GD);
6137 
6138   // The resolver might not be visited yet. Specify a dummy non-function type to
6139   // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6140   // was emitted) or the whole function will be replaced (if the resolver has
6141   // not been emitted).
6142   llvm::Constant *Resolver =
6143       GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6144                               /*ForVTable=*/false);
6145   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6146   llvm::GlobalIFunc *GIF =
6147       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
6148                                 "", Resolver, &getModule());
6149   if (Entry) {
6150     if (GIF->getResolver() == Entry) {
6151       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6152       return;
6153     }
6154     assert(Entry->isDeclaration());
6155 
6156     // If there is a declaration in the module, then we had an extern followed
6157     // by the ifunc, as in:
6158     //   extern int test();
6159     //   ...
6160     //   int test() __attribute__((ifunc("resolver")));
6161     //
6162     // Remove it and replace uses of it with the ifunc.
6163     GIF->takeName(Entry);
6164 
6165     Entry->replaceAllUsesWith(GIF);
6166     Entry->eraseFromParent();
6167   } else
6168     GIF->setName(MangledName);
6169   SetCommonAttributes(GD, GIF);
6170 }
6171 
6172 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6173                                             ArrayRef<llvm::Type*> Tys) {
6174   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6175                                          Tys);
6176 }
6177 
6178 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6179 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6180                          const StringLiteral *Literal, bool TargetIsLSB,
6181                          bool &IsUTF16, unsigned &StringLength) {
6182   StringRef String = Literal->getString();
6183   unsigned NumBytes = String.size();
6184 
6185   // Check for simple case.
6186   if (!Literal->containsNonAsciiOrNull()) {
6187     StringLength = NumBytes;
6188     return *Map.insert(std::make_pair(String, nullptr)).first;
6189   }
6190 
6191   // Otherwise, convert the UTF8 literals into a string of shorts.
6192   IsUTF16 = true;
6193 
6194   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6195   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6196   llvm::UTF16 *ToPtr = &ToBuf[0];
6197 
6198   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6199                                  ToPtr + NumBytes, llvm::strictConversion);
6200 
6201   // ConvertUTF8toUTF16 returns the length in ToPtr.
6202   StringLength = ToPtr - &ToBuf[0];
6203 
6204   // Add an explicit null.
6205   *ToPtr = 0;
6206   return *Map.insert(std::make_pair(
6207                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6208                                    (StringLength + 1) * 2),
6209                          nullptr)).first;
6210 }
6211 
6212 ConstantAddress
6213 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6214   unsigned StringLength = 0;
6215   bool isUTF16 = false;
6216   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6217       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6218                                getDataLayout().isLittleEndian(), isUTF16,
6219                                StringLength);
6220 
6221   if (auto *C = Entry.second)
6222     return ConstantAddress(
6223         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6224 
6225   const ASTContext &Context = getContext();
6226   const llvm::Triple &Triple = getTriple();
6227 
6228   const auto CFRuntime = getLangOpts().CFRuntime;
6229   const bool IsSwiftABI =
6230       static_cast<unsigned>(CFRuntime) >=
6231       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6232   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6233 
6234   // If we don't already have it, get __CFConstantStringClassReference.
6235   if (!CFConstantStringClassRef) {
6236     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6237     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6238     Ty = llvm::ArrayType::get(Ty, 0);
6239 
6240     switch (CFRuntime) {
6241     default: break;
6242     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6243     case LangOptions::CoreFoundationABI::Swift5_0:
6244       CFConstantStringClassName =
6245           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6246                               : "$s10Foundation19_NSCFConstantStringCN";
6247       Ty = IntPtrTy;
6248       break;
6249     case LangOptions::CoreFoundationABI::Swift4_2:
6250       CFConstantStringClassName =
6251           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6252                               : "$S10Foundation19_NSCFConstantStringCN";
6253       Ty = IntPtrTy;
6254       break;
6255     case LangOptions::CoreFoundationABI::Swift4_1:
6256       CFConstantStringClassName =
6257           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6258                               : "__T010Foundation19_NSCFConstantStringCN";
6259       Ty = IntPtrTy;
6260       break;
6261     }
6262 
6263     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6264 
6265     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6266       llvm::GlobalValue *GV = nullptr;
6267 
6268       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6269         IdentifierInfo &II = Context.Idents.get(GV->getName());
6270         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6271         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6272 
6273         const VarDecl *VD = nullptr;
6274         for (const auto *Result : DC->lookup(&II))
6275           if ((VD = dyn_cast<VarDecl>(Result)))
6276             break;
6277 
6278         if (Triple.isOSBinFormatELF()) {
6279           if (!VD)
6280             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6281         } else {
6282           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6283           if (!VD || !VD->hasAttr<DLLExportAttr>())
6284             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6285           else
6286             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6287         }
6288 
6289         setDSOLocal(GV);
6290       }
6291     }
6292 
6293     // Decay array -> ptr
6294     CFConstantStringClassRef =
6295         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6296   }
6297 
6298   QualType CFTy = Context.getCFConstantStringType();
6299 
6300   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6301 
6302   ConstantInitBuilder Builder(*this);
6303   auto Fields = Builder.beginStruct(STy);
6304 
6305   // Class pointer.
6306   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6307 
6308   // Flags.
6309   if (IsSwiftABI) {
6310     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6311     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6312   } else {
6313     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6314   }
6315 
6316   // String pointer.
6317   llvm::Constant *C = nullptr;
6318   if (isUTF16) {
6319     auto Arr = llvm::ArrayRef(
6320         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6321         Entry.first().size() / 2);
6322     C = llvm::ConstantDataArray::get(VMContext, Arr);
6323   } else {
6324     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6325   }
6326 
6327   // Note: -fwritable-strings doesn't make the backing store strings of
6328   // CFStrings writable.
6329   auto *GV =
6330       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6331                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6332   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6333   // Don't enforce the target's minimum global alignment, since the only use
6334   // of the string is via this class initializer.
6335   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6336                             : Context.getTypeAlignInChars(Context.CharTy);
6337   GV->setAlignment(Align.getAsAlign());
6338 
6339   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6340   // Without it LLVM can merge the string with a non unnamed_addr one during
6341   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6342   if (Triple.isOSBinFormatMachO())
6343     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6344                            : "__TEXT,__cstring,cstring_literals");
6345   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6346   // the static linker to adjust permissions to read-only later on.
6347   else if (Triple.isOSBinFormatELF())
6348     GV->setSection(".rodata");
6349 
6350   // String.
6351   Fields.add(GV);
6352 
6353   // String length.
6354   llvm::IntegerType *LengthTy =
6355       llvm::IntegerType::get(getModule().getContext(),
6356                              Context.getTargetInfo().getLongWidth());
6357   if (IsSwiftABI) {
6358     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6359         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6360       LengthTy = Int32Ty;
6361     else
6362       LengthTy = IntPtrTy;
6363   }
6364   Fields.addInt(LengthTy, StringLength);
6365 
6366   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6367   // properly aligned on 32-bit platforms.
6368   CharUnits Alignment =
6369       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6370 
6371   // The struct.
6372   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6373                                     /*isConstant=*/false,
6374                                     llvm::GlobalVariable::PrivateLinkage);
6375   GV->addAttribute("objc_arc_inert");
6376   switch (Triple.getObjectFormat()) {
6377   case llvm::Triple::UnknownObjectFormat:
6378     llvm_unreachable("unknown file format");
6379   case llvm::Triple::DXContainer:
6380   case llvm::Triple::GOFF:
6381   case llvm::Triple::SPIRV:
6382   case llvm::Triple::XCOFF:
6383     llvm_unreachable("unimplemented");
6384   case llvm::Triple::COFF:
6385   case llvm::Triple::ELF:
6386   case llvm::Triple::Wasm:
6387     GV->setSection("cfstring");
6388     break;
6389   case llvm::Triple::MachO:
6390     GV->setSection("__DATA,__cfstring");
6391     break;
6392   }
6393   Entry.second = GV;
6394 
6395   return ConstantAddress(GV, GV->getValueType(), Alignment);
6396 }
6397 
6398 bool CodeGenModule::getExpressionLocationsEnabled() const {
6399   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6400 }
6401 
6402 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6403   if (ObjCFastEnumerationStateType.isNull()) {
6404     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6405     D->startDefinition();
6406 
6407     QualType FieldTypes[] = {
6408         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6409         Context.getPointerType(Context.UnsignedLongTy),
6410         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6411                                      nullptr, ArraySizeModifier::Normal, 0)};
6412 
6413     for (size_t i = 0; i < 4; ++i) {
6414       FieldDecl *Field = FieldDecl::Create(Context,
6415                                            D,
6416                                            SourceLocation(),
6417                                            SourceLocation(), nullptr,
6418                                            FieldTypes[i], /*TInfo=*/nullptr,
6419                                            /*BitWidth=*/nullptr,
6420                                            /*Mutable=*/false,
6421                                            ICIS_NoInit);
6422       Field->setAccess(AS_public);
6423       D->addDecl(Field);
6424     }
6425 
6426     D->completeDefinition();
6427     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6428   }
6429 
6430   return ObjCFastEnumerationStateType;
6431 }
6432 
6433 llvm::Constant *
6434 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6435   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6436 
6437   // Don't emit it as the address of the string, emit the string data itself
6438   // as an inline array.
6439   if (E->getCharByteWidth() == 1) {
6440     SmallString<64> Str(E->getString());
6441 
6442     // Resize the string to the right size, which is indicated by its type.
6443     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6444     assert(CAT && "String literal not of constant array type!");
6445     Str.resize(CAT->getZExtSize());
6446     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6447   }
6448 
6449   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6450   llvm::Type *ElemTy = AType->getElementType();
6451   unsigned NumElements = AType->getNumElements();
6452 
6453   // Wide strings have either 2-byte or 4-byte elements.
6454   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6455     SmallVector<uint16_t, 32> Elements;
6456     Elements.reserve(NumElements);
6457 
6458     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6459       Elements.push_back(E->getCodeUnit(i));
6460     Elements.resize(NumElements);
6461     return llvm::ConstantDataArray::get(VMContext, Elements);
6462   }
6463 
6464   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6465   SmallVector<uint32_t, 32> Elements;
6466   Elements.reserve(NumElements);
6467 
6468   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6469     Elements.push_back(E->getCodeUnit(i));
6470   Elements.resize(NumElements);
6471   return llvm::ConstantDataArray::get(VMContext, Elements);
6472 }
6473 
6474 static llvm::GlobalVariable *
6475 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6476                       CodeGenModule &CGM, StringRef GlobalName,
6477                       CharUnits Alignment) {
6478   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6479       CGM.GetGlobalConstantAddressSpace());
6480 
6481   llvm::Module &M = CGM.getModule();
6482   // Create a global variable for this string
6483   auto *GV = new llvm::GlobalVariable(
6484       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6485       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6486   GV->setAlignment(Alignment.getAsAlign());
6487   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6488   if (GV->isWeakForLinker()) {
6489     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6490     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6491   }
6492   CGM.setDSOLocal(GV);
6493 
6494   return GV;
6495 }
6496 
6497 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6498 /// constant array for the given string literal.
6499 ConstantAddress
6500 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6501                                                   StringRef Name) {
6502   CharUnits Alignment =
6503       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6504 
6505   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6506   llvm::GlobalVariable **Entry = nullptr;
6507   if (!LangOpts.WritableStrings) {
6508     Entry = &ConstantStringMap[C];
6509     if (auto GV = *Entry) {
6510       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6511         GV->setAlignment(Alignment.getAsAlign());
6512       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6513                              GV->getValueType(), Alignment);
6514     }
6515   }
6516 
6517   SmallString<256> MangledNameBuffer;
6518   StringRef GlobalVariableName;
6519   llvm::GlobalValue::LinkageTypes LT;
6520 
6521   // Mangle the string literal if that's how the ABI merges duplicate strings.
6522   // Don't do it if they are writable, since we don't want writes in one TU to
6523   // affect strings in another.
6524   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6525       !LangOpts.WritableStrings) {
6526     llvm::raw_svector_ostream Out(MangledNameBuffer);
6527     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6528     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6529     GlobalVariableName = MangledNameBuffer;
6530   } else {
6531     LT = llvm::GlobalValue::PrivateLinkage;
6532     GlobalVariableName = Name;
6533   }
6534 
6535   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6536 
6537   CGDebugInfo *DI = getModuleDebugInfo();
6538   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6539     DI->AddStringLiteralDebugInfo(GV, S);
6540 
6541   if (Entry)
6542     *Entry = GV;
6543 
6544   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6545 
6546   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6547                          GV->getValueType(), Alignment);
6548 }
6549 
6550 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6551 /// array for the given ObjCEncodeExpr node.
6552 ConstantAddress
6553 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6554   std::string Str;
6555   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6556 
6557   return GetAddrOfConstantCString(Str);
6558 }
6559 
6560 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6561 /// the literal and a terminating '\0' character.
6562 /// The result has pointer to array type.
6563 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6564     const std::string &Str, const char *GlobalName) {
6565   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6566   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6567       getContext().CharTy, /*VD=*/nullptr);
6568 
6569   llvm::Constant *C =
6570       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6571 
6572   // Don't share any string literals if strings aren't constant.
6573   llvm::GlobalVariable **Entry = nullptr;
6574   if (!LangOpts.WritableStrings) {
6575     Entry = &ConstantStringMap[C];
6576     if (auto GV = *Entry) {
6577       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6578         GV->setAlignment(Alignment.getAsAlign());
6579       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6580                              GV->getValueType(), Alignment);
6581     }
6582   }
6583 
6584   // Get the default prefix if a name wasn't specified.
6585   if (!GlobalName)
6586     GlobalName = ".str";
6587   // Create a global variable for this.
6588   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6589                                   GlobalName, Alignment);
6590   if (Entry)
6591     *Entry = GV;
6592 
6593   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6594                          GV->getValueType(), Alignment);
6595 }
6596 
6597 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6598     const MaterializeTemporaryExpr *E, const Expr *Init) {
6599   assert((E->getStorageDuration() == SD_Static ||
6600           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6601   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6602 
6603   // If we're not materializing a subobject of the temporary, keep the
6604   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6605   QualType MaterializedType = Init->getType();
6606   if (Init == E->getSubExpr())
6607     MaterializedType = E->getType();
6608 
6609   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6610 
6611   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6612   if (!InsertResult.second) {
6613     // We've seen this before: either we already created it or we're in the
6614     // process of doing so.
6615     if (!InsertResult.first->second) {
6616       // We recursively re-entered this function, probably during emission of
6617       // the initializer. Create a placeholder. We'll clean this up in the
6618       // outer call, at the end of this function.
6619       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6620       InsertResult.first->second = new llvm::GlobalVariable(
6621           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6622           nullptr);
6623     }
6624     return ConstantAddress(InsertResult.first->second,
6625                            llvm::cast<llvm::GlobalVariable>(
6626                                InsertResult.first->second->stripPointerCasts())
6627                                ->getValueType(),
6628                            Align);
6629   }
6630 
6631   // FIXME: If an externally-visible declaration extends multiple temporaries,
6632   // we need to give each temporary the same name in every translation unit (and
6633   // we also need to make the temporaries externally-visible).
6634   SmallString<256> Name;
6635   llvm::raw_svector_ostream Out(Name);
6636   getCXXABI().getMangleContext().mangleReferenceTemporary(
6637       VD, E->getManglingNumber(), Out);
6638 
6639   APValue *Value = nullptr;
6640   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6641     // If the initializer of the extending declaration is a constant
6642     // initializer, we should have a cached constant initializer for this
6643     // temporary. Note that this might have a different value from the value
6644     // computed by evaluating the initializer if the surrounding constant
6645     // expression modifies the temporary.
6646     Value = E->getOrCreateValue(false);
6647   }
6648 
6649   // Try evaluating it now, it might have a constant initializer.
6650   Expr::EvalResult EvalResult;
6651   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6652       !EvalResult.hasSideEffects())
6653     Value = &EvalResult.Val;
6654 
6655   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6656 
6657   std::optional<ConstantEmitter> emitter;
6658   llvm::Constant *InitialValue = nullptr;
6659   bool Constant = false;
6660   llvm::Type *Type;
6661   if (Value) {
6662     // The temporary has a constant initializer, use it.
6663     emitter.emplace(*this);
6664     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6665                                                MaterializedType);
6666     Constant =
6667         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6668                                            /*ExcludeDtor*/ false);
6669     Type = InitialValue->getType();
6670   } else {
6671     // No initializer, the initialization will be provided when we
6672     // initialize the declaration which performed lifetime extension.
6673     Type = getTypes().ConvertTypeForMem(MaterializedType);
6674   }
6675 
6676   // Create a global variable for this lifetime-extended temporary.
6677   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6678   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6679     const VarDecl *InitVD;
6680     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6681         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6682       // Temporaries defined inside a class get linkonce_odr linkage because the
6683       // class can be defined in multiple translation units.
6684       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6685     } else {
6686       // There is no need for this temporary to have external linkage if the
6687       // VarDecl has external linkage.
6688       Linkage = llvm::GlobalVariable::InternalLinkage;
6689     }
6690   }
6691   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6692   auto *GV = new llvm::GlobalVariable(
6693       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6694       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6695   if (emitter) emitter->finalize(GV);
6696   // Don't assign dllimport or dllexport to local linkage globals.
6697   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6698     setGVProperties(GV, VD);
6699     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6700       // The reference temporary should never be dllexport.
6701       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6702   }
6703   GV->setAlignment(Align.getAsAlign());
6704   if (supportsCOMDAT() && GV->isWeakForLinker())
6705     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6706   if (VD->getTLSKind())
6707     setTLSMode(GV, *VD);
6708   llvm::Constant *CV = GV;
6709   if (AddrSpace != LangAS::Default)
6710     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6711         *this, GV, AddrSpace, LangAS::Default,
6712         llvm::PointerType::get(
6713             getLLVMContext(),
6714             getContext().getTargetAddressSpace(LangAS::Default)));
6715 
6716   // Update the map with the new temporary. If we created a placeholder above,
6717   // replace it with the new global now.
6718   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6719   if (Entry) {
6720     Entry->replaceAllUsesWith(CV);
6721     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6722   }
6723   Entry = CV;
6724 
6725   return ConstantAddress(CV, Type, Align);
6726 }
6727 
6728 /// EmitObjCPropertyImplementations - Emit information for synthesized
6729 /// properties for an implementation.
6730 void CodeGenModule::EmitObjCPropertyImplementations(const
6731                                                     ObjCImplementationDecl *D) {
6732   for (const auto *PID : D->property_impls()) {
6733     // Dynamic is just for type-checking.
6734     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6735       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6736 
6737       // Determine which methods need to be implemented, some may have
6738       // been overridden. Note that ::isPropertyAccessor is not the method
6739       // we want, that just indicates if the decl came from a
6740       // property. What we want to know is if the method is defined in
6741       // this implementation.
6742       auto *Getter = PID->getGetterMethodDecl();
6743       if (!Getter || Getter->isSynthesizedAccessorStub())
6744         CodeGenFunction(*this).GenerateObjCGetter(
6745             const_cast<ObjCImplementationDecl *>(D), PID);
6746       auto *Setter = PID->getSetterMethodDecl();
6747       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6748         CodeGenFunction(*this).GenerateObjCSetter(
6749                                  const_cast<ObjCImplementationDecl *>(D), PID);
6750     }
6751   }
6752 }
6753 
6754 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6755   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6756   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6757        ivar; ivar = ivar->getNextIvar())
6758     if (ivar->getType().isDestructedType())
6759       return true;
6760 
6761   return false;
6762 }
6763 
6764 static bool AllTrivialInitializers(CodeGenModule &CGM,
6765                                    ObjCImplementationDecl *D) {
6766   CodeGenFunction CGF(CGM);
6767   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6768        E = D->init_end(); B != E; ++B) {
6769     CXXCtorInitializer *CtorInitExp = *B;
6770     Expr *Init = CtorInitExp->getInit();
6771     if (!CGF.isTrivialInitializer(Init))
6772       return false;
6773   }
6774   return true;
6775 }
6776 
6777 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6778 /// for an implementation.
6779 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6780   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6781   if (needsDestructMethod(D)) {
6782     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6783     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6784     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6785         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6786         getContext().VoidTy, nullptr, D,
6787         /*isInstance=*/true, /*isVariadic=*/false,
6788         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6789         /*isImplicitlyDeclared=*/true,
6790         /*isDefined=*/false, ObjCImplementationControl::Required);
6791     D->addInstanceMethod(DTORMethod);
6792     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6793     D->setHasDestructors(true);
6794   }
6795 
6796   // If the implementation doesn't have any ivar initializers, we don't need
6797   // a .cxx_construct.
6798   if (D->getNumIvarInitializers() == 0 ||
6799       AllTrivialInitializers(*this, D))
6800     return;
6801 
6802   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6803   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6804   // The constructor returns 'self'.
6805   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6806       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6807       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6808       /*isVariadic=*/false,
6809       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6810       /*isImplicitlyDeclared=*/true,
6811       /*isDefined=*/false, ObjCImplementationControl::Required);
6812   D->addInstanceMethod(CTORMethod);
6813   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6814   D->setHasNonZeroConstructors(true);
6815 }
6816 
6817 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6818 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6819   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6820       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6821     ErrorUnsupported(LSD, "linkage spec");
6822     return;
6823   }
6824 
6825   EmitDeclContext(LSD);
6826 }
6827 
6828 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6829   // Device code should not be at top level.
6830   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6831     return;
6832 
6833   std::unique_ptr<CodeGenFunction> &CurCGF =
6834       GlobalTopLevelStmtBlockInFlight.first;
6835 
6836   // We emitted a top-level stmt but after it there is initialization.
6837   // Stop squashing the top-level stmts into a single function.
6838   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6839     CurCGF->FinishFunction(D->getEndLoc());
6840     CurCGF = nullptr;
6841   }
6842 
6843   if (!CurCGF) {
6844     // void __stmts__N(void)
6845     // FIXME: Ask the ABI name mangler to pick a name.
6846     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6847     FunctionArgList Args;
6848     QualType RetTy = getContext().VoidTy;
6849     const CGFunctionInfo &FnInfo =
6850         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6851     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6852     llvm::Function *Fn = llvm::Function::Create(
6853         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6854 
6855     CurCGF.reset(new CodeGenFunction(*this));
6856     GlobalTopLevelStmtBlockInFlight.second = D;
6857     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6858                           D->getBeginLoc(), D->getBeginLoc());
6859     CXXGlobalInits.push_back(Fn);
6860   }
6861 
6862   CurCGF->EmitStmt(D->getStmt());
6863 }
6864 
6865 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6866   for (auto *I : DC->decls()) {
6867     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6868     // are themselves considered "top-level", so EmitTopLevelDecl on an
6869     // ObjCImplDecl does not recursively visit them. We need to do that in
6870     // case they're nested inside another construct (LinkageSpecDecl /
6871     // ExportDecl) that does stop them from being considered "top-level".
6872     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6873       for (auto *M : OID->methods())
6874         EmitTopLevelDecl(M);
6875     }
6876 
6877     EmitTopLevelDecl(I);
6878   }
6879 }
6880 
6881 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6882 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6883   // Ignore dependent declarations.
6884   if (D->isTemplated())
6885     return;
6886 
6887   // Consteval function shouldn't be emitted.
6888   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6889     return;
6890 
6891   switch (D->getKind()) {
6892   case Decl::CXXConversion:
6893   case Decl::CXXMethod:
6894   case Decl::Function:
6895     EmitGlobal(cast<FunctionDecl>(D));
6896     // Always provide some coverage mapping
6897     // even for the functions that aren't emitted.
6898     AddDeferredUnusedCoverageMapping(D);
6899     break;
6900 
6901   case Decl::CXXDeductionGuide:
6902     // Function-like, but does not result in code emission.
6903     break;
6904 
6905   case Decl::Var:
6906   case Decl::Decomposition:
6907   case Decl::VarTemplateSpecialization:
6908     EmitGlobal(cast<VarDecl>(D));
6909     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6910       for (auto *B : DD->bindings())
6911         if (auto *HD = B->getHoldingVar())
6912           EmitGlobal(HD);
6913     break;
6914 
6915   // Indirect fields from global anonymous structs and unions can be
6916   // ignored; only the actual variable requires IR gen support.
6917   case Decl::IndirectField:
6918     break;
6919 
6920   // C++ Decls
6921   case Decl::Namespace:
6922     EmitDeclContext(cast<NamespaceDecl>(D));
6923     break;
6924   case Decl::ClassTemplateSpecialization: {
6925     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6926     if (CGDebugInfo *DI = getModuleDebugInfo())
6927       if (Spec->getSpecializationKind() ==
6928               TSK_ExplicitInstantiationDefinition &&
6929           Spec->hasDefinition())
6930         DI->completeTemplateDefinition(*Spec);
6931   } [[fallthrough]];
6932   case Decl::CXXRecord: {
6933     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6934     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6935       if (CRD->hasDefinition())
6936         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6937       if (auto *ES = D->getASTContext().getExternalSource())
6938         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6939           DI->completeUnusedClass(*CRD);
6940     }
6941     // Emit any static data members, they may be definitions.
6942     for (auto *I : CRD->decls())
6943       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6944         EmitTopLevelDecl(I);
6945     break;
6946   }
6947     // No code generation needed.
6948   case Decl::UsingShadow:
6949   case Decl::ClassTemplate:
6950   case Decl::VarTemplate:
6951   case Decl::Concept:
6952   case Decl::VarTemplatePartialSpecialization:
6953   case Decl::FunctionTemplate:
6954   case Decl::TypeAliasTemplate:
6955   case Decl::Block:
6956   case Decl::Empty:
6957   case Decl::Binding:
6958     break;
6959   case Decl::Using:          // using X; [C++]
6960     if (CGDebugInfo *DI = getModuleDebugInfo())
6961         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6962     break;
6963   case Decl::UsingEnum: // using enum X; [C++]
6964     if (CGDebugInfo *DI = getModuleDebugInfo())
6965       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6966     break;
6967   case Decl::NamespaceAlias:
6968     if (CGDebugInfo *DI = getModuleDebugInfo())
6969         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6970     break;
6971   case Decl::UsingDirective: // using namespace X; [C++]
6972     if (CGDebugInfo *DI = getModuleDebugInfo())
6973       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6974     break;
6975   case Decl::CXXConstructor:
6976     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6977     break;
6978   case Decl::CXXDestructor:
6979     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6980     break;
6981 
6982   case Decl::StaticAssert:
6983     // Nothing to do.
6984     break;
6985 
6986   // Objective-C Decls
6987 
6988   // Forward declarations, no (immediate) code generation.
6989   case Decl::ObjCInterface:
6990   case Decl::ObjCCategory:
6991     break;
6992 
6993   case Decl::ObjCProtocol: {
6994     auto *Proto = cast<ObjCProtocolDecl>(D);
6995     if (Proto->isThisDeclarationADefinition())
6996       ObjCRuntime->GenerateProtocol(Proto);
6997     break;
6998   }
6999 
7000   case Decl::ObjCCategoryImpl:
7001     // Categories have properties but don't support synthesize so we
7002     // can ignore them here.
7003     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
7004     break;
7005 
7006   case Decl::ObjCImplementation: {
7007     auto *OMD = cast<ObjCImplementationDecl>(D);
7008     EmitObjCPropertyImplementations(OMD);
7009     EmitObjCIvarInitializations(OMD);
7010     ObjCRuntime->GenerateClass(OMD);
7011     // Emit global variable debug information.
7012     if (CGDebugInfo *DI = getModuleDebugInfo())
7013       if (getCodeGenOpts().hasReducedDebugInfo())
7014         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7015             OMD->getClassInterface()), OMD->getLocation());
7016     break;
7017   }
7018   case Decl::ObjCMethod: {
7019     auto *OMD = cast<ObjCMethodDecl>(D);
7020     // If this is not a prototype, emit the body.
7021     if (OMD->getBody())
7022       CodeGenFunction(*this).GenerateObjCMethod(OMD);
7023     break;
7024   }
7025   case Decl::ObjCCompatibleAlias:
7026     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7027     break;
7028 
7029   case Decl::PragmaComment: {
7030     const auto *PCD = cast<PragmaCommentDecl>(D);
7031     switch (PCD->getCommentKind()) {
7032     case PCK_Unknown:
7033       llvm_unreachable("unexpected pragma comment kind");
7034     case PCK_Linker:
7035       AppendLinkerOptions(PCD->getArg());
7036       break;
7037     case PCK_Lib:
7038         AddDependentLib(PCD->getArg());
7039       break;
7040     case PCK_Compiler:
7041     case PCK_ExeStr:
7042     case PCK_User:
7043       break; // We ignore all of these.
7044     }
7045     break;
7046   }
7047 
7048   case Decl::PragmaDetectMismatch: {
7049     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7050     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7051     break;
7052   }
7053 
7054   case Decl::LinkageSpec:
7055     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7056     break;
7057 
7058   case Decl::FileScopeAsm: {
7059     // File-scope asm is ignored during device-side CUDA compilation.
7060     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7061       break;
7062     // File-scope asm is ignored during device-side OpenMP compilation.
7063     if (LangOpts.OpenMPIsTargetDevice)
7064       break;
7065     // File-scope asm is ignored during device-side SYCL compilation.
7066     if (LangOpts.SYCLIsDevice)
7067       break;
7068     auto *AD = cast<FileScopeAsmDecl>(D);
7069     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7070     break;
7071   }
7072 
7073   case Decl::TopLevelStmt:
7074     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7075     break;
7076 
7077   case Decl::Import: {
7078     auto *Import = cast<ImportDecl>(D);
7079 
7080     // If we've already imported this module, we're done.
7081     if (!ImportedModules.insert(Import->getImportedModule()))
7082       break;
7083 
7084     // Emit debug information for direct imports.
7085     if (!Import->getImportedOwningModule()) {
7086       if (CGDebugInfo *DI = getModuleDebugInfo())
7087         DI->EmitImportDecl(*Import);
7088     }
7089 
7090     // For C++ standard modules we are done - we will call the module
7091     // initializer for imported modules, and that will likewise call those for
7092     // any imports it has.
7093     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
7094         !Import->getImportedOwningModule()->isModuleMapModule())
7095       break;
7096 
7097     // For clang C++ module map modules the initializers for sub-modules are
7098     // emitted here.
7099 
7100     // Find all of the submodules and emit the module initializers.
7101     llvm::SmallPtrSet<clang::Module *, 16> Visited;
7102     SmallVector<clang::Module *, 16> Stack;
7103     Visited.insert(Import->getImportedModule());
7104     Stack.push_back(Import->getImportedModule());
7105 
7106     while (!Stack.empty()) {
7107       clang::Module *Mod = Stack.pop_back_val();
7108       if (!EmittedModuleInitializers.insert(Mod).second)
7109         continue;
7110 
7111       for (auto *D : Context.getModuleInitializers(Mod))
7112         EmitTopLevelDecl(D);
7113 
7114       // Visit the submodules of this module.
7115       for (auto *Submodule : Mod->submodules()) {
7116         // Skip explicit children; they need to be explicitly imported to emit
7117         // the initializers.
7118         if (Submodule->IsExplicit)
7119           continue;
7120 
7121         if (Visited.insert(Submodule).second)
7122           Stack.push_back(Submodule);
7123       }
7124     }
7125     break;
7126   }
7127 
7128   case Decl::Export:
7129     EmitDeclContext(cast<ExportDecl>(D));
7130     break;
7131 
7132   case Decl::OMPThreadPrivate:
7133     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7134     break;
7135 
7136   case Decl::OMPAllocate:
7137     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7138     break;
7139 
7140   case Decl::OMPDeclareReduction:
7141     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7142     break;
7143 
7144   case Decl::OMPDeclareMapper:
7145     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7146     break;
7147 
7148   case Decl::OMPRequires:
7149     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7150     break;
7151 
7152   case Decl::Typedef:
7153   case Decl::TypeAlias: // using foo = bar; [C++11]
7154     if (CGDebugInfo *DI = getModuleDebugInfo())
7155       DI->EmitAndRetainType(
7156           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7157     break;
7158 
7159   case Decl::Record:
7160     if (CGDebugInfo *DI = getModuleDebugInfo())
7161       if (cast<RecordDecl>(D)->getDefinition())
7162         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7163     break;
7164 
7165   case Decl::Enum:
7166     if (CGDebugInfo *DI = getModuleDebugInfo())
7167       if (cast<EnumDecl>(D)->getDefinition())
7168         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7169     break;
7170 
7171   case Decl::HLSLBuffer:
7172     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7173     break;
7174 
7175   default:
7176     // Make sure we handled everything we should, every other kind is a
7177     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7178     // function. Need to recode Decl::Kind to do that easily.
7179     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7180     break;
7181   }
7182 }
7183 
7184 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7185   // Do we need to generate coverage mapping?
7186   if (!CodeGenOpts.CoverageMapping)
7187     return;
7188   switch (D->getKind()) {
7189   case Decl::CXXConversion:
7190   case Decl::CXXMethod:
7191   case Decl::Function:
7192   case Decl::ObjCMethod:
7193   case Decl::CXXConstructor:
7194   case Decl::CXXDestructor: {
7195     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7196       break;
7197     SourceManager &SM = getContext().getSourceManager();
7198     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7199       break;
7200     if (!llvm::coverage::SystemHeadersCoverage &&
7201         SM.isInSystemHeader(D->getBeginLoc()))
7202       break;
7203     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7204     break;
7205   }
7206   default:
7207     break;
7208   };
7209 }
7210 
7211 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7212   // Do we need to generate coverage mapping?
7213   if (!CodeGenOpts.CoverageMapping)
7214     return;
7215   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7216     if (Fn->isTemplateInstantiation())
7217       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7218   }
7219   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7220 }
7221 
7222 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7223   // We call takeVector() here to avoid use-after-free.
7224   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7225   // we deserialize function bodies to emit coverage info for them, and that
7226   // deserializes more declarations. How should we handle that case?
7227   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7228     if (!Entry.second)
7229       continue;
7230     const Decl *D = Entry.first;
7231     switch (D->getKind()) {
7232     case Decl::CXXConversion:
7233     case Decl::CXXMethod:
7234     case Decl::Function:
7235     case Decl::ObjCMethod: {
7236       CodeGenPGO PGO(*this);
7237       GlobalDecl GD(cast<FunctionDecl>(D));
7238       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7239                                   getFunctionLinkage(GD));
7240       break;
7241     }
7242     case Decl::CXXConstructor: {
7243       CodeGenPGO PGO(*this);
7244       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7245       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7246                                   getFunctionLinkage(GD));
7247       break;
7248     }
7249     case Decl::CXXDestructor: {
7250       CodeGenPGO PGO(*this);
7251       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7252       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7253                                   getFunctionLinkage(GD));
7254       break;
7255     }
7256     default:
7257       break;
7258     };
7259   }
7260 }
7261 
7262 void CodeGenModule::EmitMainVoidAlias() {
7263   // In order to transition away from "__original_main" gracefully, emit an
7264   // alias for "main" in the no-argument case so that libc can detect when
7265   // new-style no-argument main is in used.
7266   if (llvm::Function *F = getModule().getFunction("main")) {
7267     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7268         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7269       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7270       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7271     }
7272   }
7273 }
7274 
7275 /// Turns the given pointer into a constant.
7276 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7277                                           const void *Ptr) {
7278   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7279   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7280   return llvm::ConstantInt::get(i64, PtrInt);
7281 }
7282 
7283 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7284                                    llvm::NamedMDNode *&GlobalMetadata,
7285                                    GlobalDecl D,
7286                                    llvm::GlobalValue *Addr) {
7287   if (!GlobalMetadata)
7288     GlobalMetadata =
7289       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7290 
7291   // TODO: should we report variant information for ctors/dtors?
7292   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7293                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7294                                CGM.getLLVMContext(), D.getDecl()))};
7295   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7296 }
7297 
7298 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7299                                                  llvm::GlobalValue *CppFunc) {
7300   // Store the list of ifuncs we need to replace uses in.
7301   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7302   // List of ConstantExprs that we should be able to delete when we're done
7303   // here.
7304   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7305 
7306   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7307   if (Elem == CppFunc)
7308     return false;
7309 
7310   // First make sure that all users of this are ifuncs (or ifuncs via a
7311   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7312   // later.
7313   for (llvm::User *User : Elem->users()) {
7314     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7315     // ifunc directly. In any other case, just give up, as we don't know what we
7316     // could break by changing those.
7317     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7318       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7319         return false;
7320 
7321       for (llvm::User *CEUser : ConstExpr->users()) {
7322         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7323           IFuncs.push_back(IFunc);
7324         } else {
7325           return false;
7326         }
7327       }
7328       CEs.push_back(ConstExpr);
7329     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7330       IFuncs.push_back(IFunc);
7331     } else {
7332       // This user is one we don't know how to handle, so fail redirection. This
7333       // will result in an ifunc retaining a resolver name that will ultimately
7334       // fail to be resolved to a defined function.
7335       return false;
7336     }
7337   }
7338 
7339   // Now we know this is a valid case where we can do this alias replacement, we
7340   // need to remove all of the references to Elem (and the bitcasts!) so we can
7341   // delete it.
7342   for (llvm::GlobalIFunc *IFunc : IFuncs)
7343     IFunc->setResolver(nullptr);
7344   for (llvm::ConstantExpr *ConstExpr : CEs)
7345     ConstExpr->destroyConstant();
7346 
7347   // We should now be out of uses for the 'old' version of this function, so we
7348   // can erase it as well.
7349   Elem->eraseFromParent();
7350 
7351   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7352     // The type of the resolver is always just a function-type that returns the
7353     // type of the IFunc, so create that here. If the type of the actual
7354     // resolver doesn't match, it just gets bitcast to the right thing.
7355     auto *ResolverTy =
7356         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7357     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7358         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7359     IFunc->setResolver(Resolver);
7360   }
7361   return true;
7362 }
7363 
7364 /// For each function which is declared within an extern "C" region and marked
7365 /// as 'used', but has internal linkage, create an alias from the unmangled
7366 /// name to the mangled name if possible. People expect to be able to refer
7367 /// to such functions with an unmangled name from inline assembly within the
7368 /// same translation unit.
7369 void CodeGenModule::EmitStaticExternCAliases() {
7370   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7371     return;
7372   for (auto &I : StaticExternCValues) {
7373     const IdentifierInfo *Name = I.first;
7374     llvm::GlobalValue *Val = I.second;
7375 
7376     // If Val is null, that implies there were multiple declarations that each
7377     // had a claim to the unmangled name. In this case, generation of the alias
7378     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7379     if (!Val)
7380       break;
7381 
7382     llvm::GlobalValue *ExistingElem =
7383         getModule().getNamedValue(Name->getName());
7384 
7385     // If there is either not something already by this name, or we were able to
7386     // replace all uses from IFuncs, create the alias.
7387     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7388       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7389   }
7390 }
7391 
7392 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7393                                              GlobalDecl &Result) const {
7394   auto Res = Manglings.find(MangledName);
7395   if (Res == Manglings.end())
7396     return false;
7397   Result = Res->getValue();
7398   return true;
7399 }
7400 
7401 /// Emits metadata nodes associating all the global values in the
7402 /// current module with the Decls they came from.  This is useful for
7403 /// projects using IR gen as a subroutine.
7404 ///
7405 /// Since there's currently no way to associate an MDNode directly
7406 /// with an llvm::GlobalValue, we create a global named metadata
7407 /// with the name 'clang.global.decl.ptrs'.
7408 void CodeGenModule::EmitDeclMetadata() {
7409   llvm::NamedMDNode *GlobalMetadata = nullptr;
7410 
7411   for (auto &I : MangledDeclNames) {
7412     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7413     // Some mangled names don't necessarily have an associated GlobalValue
7414     // in this module, e.g. if we mangled it for DebugInfo.
7415     if (Addr)
7416       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7417   }
7418 }
7419 
7420 /// Emits metadata nodes for all the local variables in the current
7421 /// function.
7422 void CodeGenFunction::EmitDeclMetadata() {
7423   if (LocalDeclMap.empty()) return;
7424 
7425   llvm::LLVMContext &Context = getLLVMContext();
7426 
7427   // Find the unique metadata ID for this name.
7428   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7429 
7430   llvm::NamedMDNode *GlobalMetadata = nullptr;
7431 
7432   for (auto &I : LocalDeclMap) {
7433     const Decl *D = I.first;
7434     llvm::Value *Addr = I.second.emitRawPointer(*this);
7435     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7436       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7437       Alloca->setMetadata(
7438           DeclPtrKind, llvm::MDNode::get(
7439                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7440     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7441       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7442       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7443     }
7444   }
7445 }
7446 
7447 void CodeGenModule::EmitVersionIdentMetadata() {
7448   llvm::NamedMDNode *IdentMetadata =
7449     TheModule.getOrInsertNamedMetadata("llvm.ident");
7450   std::string Version = getClangFullVersion();
7451   llvm::LLVMContext &Ctx = TheModule.getContext();
7452 
7453   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7454   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7455 }
7456 
7457 void CodeGenModule::EmitCommandLineMetadata() {
7458   llvm::NamedMDNode *CommandLineMetadata =
7459     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7460   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7461   llvm::LLVMContext &Ctx = TheModule.getContext();
7462 
7463   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7464   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7465 }
7466 
7467 void CodeGenModule::EmitCoverageFile() {
7468   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7469   if (!CUNode)
7470     return;
7471 
7472   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7473   llvm::LLVMContext &Ctx = TheModule.getContext();
7474   auto *CoverageDataFile =
7475       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7476   auto *CoverageNotesFile =
7477       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7478   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7479     llvm::MDNode *CU = CUNode->getOperand(i);
7480     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7481     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7482   }
7483 }
7484 
7485 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7486                                                        bool ForEH) {
7487   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7488   // FIXME: should we even be calling this method if RTTI is disabled
7489   // and it's not for EH?
7490   if (!shouldEmitRTTI(ForEH))
7491     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7492 
7493   if (ForEH && Ty->isObjCObjectPointerType() &&
7494       LangOpts.ObjCRuntime.isGNUFamily())
7495     return ObjCRuntime->GetEHType(Ty);
7496 
7497   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7498 }
7499 
7500 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7501   // Do not emit threadprivates in simd-only mode.
7502   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7503     return;
7504   for (auto RefExpr : D->varlist()) {
7505     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7506     bool PerformInit =
7507         VD->getAnyInitializer() &&
7508         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7509                                                         /*ForRef=*/false);
7510 
7511     Address Addr(GetAddrOfGlobalVar(VD),
7512                  getTypes().ConvertTypeForMem(VD->getType()),
7513                  getContext().getDeclAlign(VD));
7514     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7515             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7516       CXXGlobalInits.push_back(InitFunction);
7517   }
7518 }
7519 
7520 llvm::Metadata *
7521 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7522                                             StringRef Suffix) {
7523   if (auto *FnType = T->getAs<FunctionProtoType>())
7524     T = getContext().getFunctionType(
7525         FnType->getReturnType(), FnType->getParamTypes(),
7526         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7527 
7528   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7529   if (InternalId)
7530     return InternalId;
7531 
7532   if (isExternallyVisible(T->getLinkage())) {
7533     std::string OutName;
7534     llvm::raw_string_ostream Out(OutName);
7535     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7536         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7537 
7538     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7539       Out << ".normalized";
7540 
7541     Out << Suffix;
7542 
7543     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7544   } else {
7545     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7546                                            llvm::ArrayRef<llvm::Metadata *>());
7547   }
7548 
7549   return InternalId;
7550 }
7551 
7552 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7553   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7554 }
7555 
7556 llvm::Metadata *
7557 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7558   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7559 }
7560 
7561 // Generalize pointer types to a void pointer with the qualifiers of the
7562 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7563 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7564 // 'void *'.
7565 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7566   if (!Ty->isPointerType())
7567     return Ty;
7568 
7569   return Ctx.getPointerType(
7570       QualType(Ctx.VoidTy).withCVRQualifiers(
7571           Ty->getPointeeType().getCVRQualifiers()));
7572 }
7573 
7574 // Apply type generalization to a FunctionType's return and argument types
7575 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7576   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7577     SmallVector<QualType, 8> GeneralizedParams;
7578     for (auto &Param : FnType->param_types())
7579       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7580 
7581     return Ctx.getFunctionType(
7582         GeneralizeType(Ctx, FnType->getReturnType()),
7583         GeneralizedParams, FnType->getExtProtoInfo());
7584   }
7585 
7586   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7587     return Ctx.getFunctionNoProtoType(
7588         GeneralizeType(Ctx, FnType->getReturnType()));
7589 
7590   llvm_unreachable("Encountered unknown FunctionType");
7591 }
7592 
7593 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7594   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7595                                       GeneralizedMetadataIdMap, ".generalized");
7596 }
7597 
7598 /// Returns whether this module needs the "all-vtables" type identifier.
7599 bool CodeGenModule::NeedAllVtablesTypeId() const {
7600   // Returns true if at least one of vtable-based CFI checkers is enabled and
7601   // is not in the trapping mode.
7602   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7603            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7604           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7605            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7606           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7607            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7608           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7609            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7610 }
7611 
7612 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7613                                           CharUnits Offset,
7614                                           const CXXRecordDecl *RD) {
7615   llvm::Metadata *MD =
7616       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7617   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7618 
7619   if (CodeGenOpts.SanitizeCfiCrossDso)
7620     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7621       VTable->addTypeMetadata(Offset.getQuantity(),
7622                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7623 
7624   if (NeedAllVtablesTypeId()) {
7625     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7626     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7627   }
7628 }
7629 
7630 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7631   if (!SanStats)
7632     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7633 
7634   return *SanStats;
7635 }
7636 
7637 llvm::Value *
7638 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7639                                                   CodeGenFunction &CGF) {
7640   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7641   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7642   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7643   auto *Call = CGF.EmitRuntimeCall(
7644       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7645   return Call;
7646 }
7647 
7648 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7649     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7650   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7651                                  /* forPointeeType= */ true);
7652 }
7653 
7654 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7655                                                  LValueBaseInfo *BaseInfo,
7656                                                  TBAAAccessInfo *TBAAInfo,
7657                                                  bool forPointeeType) {
7658   if (TBAAInfo)
7659     *TBAAInfo = getTBAAAccessInfo(T);
7660 
7661   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7662   // that doesn't return the information we need to compute BaseInfo.
7663 
7664   // Honor alignment typedef attributes even on incomplete types.
7665   // We also honor them straight for C++ class types, even as pointees;
7666   // there's an expressivity gap here.
7667   if (auto TT = T->getAs<TypedefType>()) {
7668     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7669       if (BaseInfo)
7670         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7671       return getContext().toCharUnitsFromBits(Align);
7672     }
7673   }
7674 
7675   bool AlignForArray = T->isArrayType();
7676 
7677   // Analyze the base element type, so we don't get confused by incomplete
7678   // array types.
7679   T = getContext().getBaseElementType(T);
7680 
7681   if (T->isIncompleteType()) {
7682     // We could try to replicate the logic from
7683     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7684     // type is incomplete, so it's impossible to test. We could try to reuse
7685     // getTypeAlignIfKnown, but that doesn't return the information we need
7686     // to set BaseInfo.  So just ignore the possibility that the alignment is
7687     // greater than one.
7688     if (BaseInfo)
7689       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7690     return CharUnits::One();
7691   }
7692 
7693   if (BaseInfo)
7694     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7695 
7696   CharUnits Alignment;
7697   const CXXRecordDecl *RD;
7698   if (T.getQualifiers().hasUnaligned()) {
7699     Alignment = CharUnits::One();
7700   } else if (forPointeeType && !AlignForArray &&
7701              (RD = T->getAsCXXRecordDecl())) {
7702     // For C++ class pointees, we don't know whether we're pointing at a
7703     // base or a complete object, so we generally need to use the
7704     // non-virtual alignment.
7705     Alignment = getClassPointerAlignment(RD);
7706   } else {
7707     Alignment = getContext().getTypeAlignInChars(T);
7708   }
7709 
7710   // Cap to the global maximum type alignment unless the alignment
7711   // was somehow explicit on the type.
7712   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7713     if (Alignment.getQuantity() > MaxAlign &&
7714         !getContext().isAlignmentRequired(T))
7715       Alignment = CharUnits::fromQuantity(MaxAlign);
7716   }
7717   return Alignment;
7718 }
7719 
7720 bool CodeGenModule::stopAutoInit() {
7721   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7722   if (StopAfter) {
7723     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7724     // used
7725     if (NumAutoVarInit >= StopAfter) {
7726       return true;
7727     }
7728     if (!NumAutoVarInit) {
7729       unsigned DiagID = getDiags().getCustomDiagID(
7730           DiagnosticsEngine::Warning,
7731           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7732           "number of times ftrivial-auto-var-init=%1 gets applied.");
7733       getDiags().Report(DiagID)
7734           << StopAfter
7735           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7736                       LangOptions::TrivialAutoVarInitKind::Zero
7737                   ? "zero"
7738                   : "pattern");
7739     }
7740     ++NumAutoVarInit;
7741   }
7742   return false;
7743 }
7744 
7745 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7746                                                     const Decl *D) const {
7747   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7748   // postfix beginning with '.' since the symbol name can be demangled.
7749   if (LangOpts.HIP)
7750     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7751   else
7752     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7753 
7754   // If the CUID is not specified we try to generate a unique postfix.
7755   if (getLangOpts().CUID.empty()) {
7756     SourceManager &SM = getContext().getSourceManager();
7757     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7758     assert(PLoc.isValid() && "Source location is expected to be valid.");
7759 
7760     // Get the hash of the user defined macros.
7761     llvm::MD5 Hash;
7762     llvm::MD5::MD5Result Result;
7763     for (const auto &Arg : PreprocessorOpts.Macros)
7764       Hash.update(Arg.first);
7765     Hash.final(Result);
7766 
7767     // Get the UniqueID for the file containing the decl.
7768     llvm::sys::fs::UniqueID ID;
7769     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7770       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7771       assert(PLoc.isValid() && "Source location is expected to be valid.");
7772       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7773         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7774             << PLoc.getFilename() << EC.message();
7775     }
7776     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7777        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7778   } else {
7779     OS << getContext().getCUIDHash();
7780   }
7781 }
7782 
7783 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7784   assert(DeferredDeclsToEmit.empty() &&
7785          "Should have emitted all decls deferred to emit.");
7786   assert(NewBuilder->DeferredDecls.empty() &&
7787          "Newly created module should not have deferred decls");
7788   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7789   assert(EmittedDeferredDecls.empty() &&
7790          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7791 
7792   assert(NewBuilder->DeferredVTables.empty() &&
7793          "Newly created module should not have deferred vtables");
7794   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7795 
7796   assert(NewBuilder->MangledDeclNames.empty() &&
7797          "Newly created module should not have mangled decl names");
7798   assert(NewBuilder->Manglings.empty() &&
7799          "Newly created module should not have manglings");
7800   NewBuilder->Manglings = std::move(Manglings);
7801 
7802   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7803 
7804   NewBuilder->TBAA = std::move(TBAA);
7805 
7806   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7807 }
7808