1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 106 if (LangOpts.ThreadSanitizer || 107 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 108 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 109 ABI.getMangleContext()); 110 111 // If debug info or coverage generation is enabled, create the CGDebugInfo 112 // object. 113 if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo || 114 CodeGenOpts.EmitGcovArcs || 115 CodeGenOpts.EmitGcovNotes) 116 DebugInfo = new CGDebugInfo(*this); 117 118 Block.GlobalUniqueCount = 0; 119 120 if (C.getLangOpts().ObjCAutoRefCount) 121 ARCData = new ARCEntrypoints(); 122 RRData = new RREntrypoints(); 123 } 124 125 CodeGenModule::~CodeGenModule() { 126 delete ObjCRuntime; 127 delete OpenCLRuntime; 128 delete CUDARuntime; 129 delete TheTargetCodeGenInfo; 130 delete &ABI; 131 delete TBAA; 132 delete DebugInfo; 133 delete ARCData; 134 delete RRData; 135 } 136 137 void CodeGenModule::createObjCRuntime() { 138 // This is just isGNUFamily(), but we want to force implementors of 139 // new ABIs to decide how best to do this. 140 switch (LangOpts.ObjCRuntime.getKind()) { 141 case ObjCRuntime::GNU: 142 case ObjCRuntime::FragileGNU: 143 ObjCRuntime = CreateGNUObjCRuntime(*this); 144 return; 145 146 case ObjCRuntime::FragileMacOSX: 147 case ObjCRuntime::MacOSX: 148 case ObjCRuntime::iOS: 149 ObjCRuntime = CreateMacObjCRuntime(*this); 150 return; 151 } 152 llvm_unreachable("bad runtime kind"); 153 } 154 155 void CodeGenModule::createOpenCLRuntime() { 156 OpenCLRuntime = new CGOpenCLRuntime(*this); 157 } 158 159 void CodeGenModule::createCUDARuntime() { 160 CUDARuntime = CreateNVCUDARuntime(*this); 161 } 162 163 void CodeGenModule::Release() { 164 EmitDeferred(); 165 EmitCXXGlobalInitFunc(); 166 EmitCXXGlobalDtorFunc(); 167 if (ObjCRuntime) 168 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 169 AddGlobalCtor(ObjCInitFunction); 170 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 171 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 172 EmitGlobalAnnotations(); 173 EmitLLVMUsed(); 174 175 SimplifyPersonality(); 176 177 if (getCodeGenOpts().EmitDeclMetadata) 178 EmitDeclMetadata(); 179 180 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 181 EmitCoverageFile(); 182 183 if (DebugInfo) 184 DebugInfo->finalize(); 185 } 186 187 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 188 // Make sure that this type is translated. 189 Types.UpdateCompletedType(TD); 190 } 191 192 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 193 if (!TBAA) 194 return 0; 195 return TBAA->getTBAAInfo(QTy); 196 } 197 198 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 199 if (!TBAA) 200 return 0; 201 return TBAA->getTBAAInfoForVTablePtr(); 202 } 203 204 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 205 llvm::MDNode *TBAAInfo) { 206 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 207 } 208 209 bool CodeGenModule::isTargetDarwin() const { 210 return getContext().getTargetInfo().getTriple().isOSDarwin(); 211 } 212 213 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 214 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 215 getDiags().Report(Context.getFullLoc(loc), diagID); 216 } 217 218 /// ErrorUnsupported - Print out an error that codegen doesn't support the 219 /// specified stmt yet. 220 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 221 bool OmitOnError) { 222 if (OmitOnError && getDiags().hasErrorOccurred()) 223 return; 224 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 225 "cannot compile this %0 yet"); 226 std::string Msg = Type; 227 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 228 << Msg << S->getSourceRange(); 229 } 230 231 /// ErrorUnsupported - Print out an error that codegen doesn't support the 232 /// specified decl yet. 233 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 234 bool OmitOnError) { 235 if (OmitOnError && getDiags().hasErrorOccurred()) 236 return; 237 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 238 "cannot compile this %0 yet"); 239 std::string Msg = Type; 240 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 241 } 242 243 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 244 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 245 } 246 247 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 248 const NamedDecl *D) const { 249 // Internal definitions always have default visibility. 250 if (GV->hasLocalLinkage()) { 251 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 252 return; 253 } 254 255 // Set visibility for definitions. 256 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 257 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 258 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 259 } 260 261 /// Set the symbol visibility of type information (vtable and RTTI) 262 /// associated with the given type. 263 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 264 const CXXRecordDecl *RD, 265 TypeVisibilityKind TVK) const { 266 setGlobalVisibility(GV, RD); 267 268 if (!CodeGenOpts.HiddenWeakVTables) 269 return; 270 271 // We never want to drop the visibility for RTTI names. 272 if (TVK == TVK_ForRTTIName) 273 return; 274 275 // We want to drop the visibility to hidden for weak type symbols. 276 // This isn't possible if there might be unresolved references 277 // elsewhere that rely on this symbol being visible. 278 279 // This should be kept roughly in sync with setThunkVisibility 280 // in CGVTables.cpp. 281 282 // Preconditions. 283 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 284 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 285 return; 286 287 // Don't override an explicit visibility attribute. 288 if (RD->getExplicitVisibility()) 289 return; 290 291 switch (RD->getTemplateSpecializationKind()) { 292 // We have to disable the optimization if this is an EI definition 293 // because there might be EI declarations in other shared objects. 294 case TSK_ExplicitInstantiationDefinition: 295 case TSK_ExplicitInstantiationDeclaration: 296 return; 297 298 // Every use of a non-template class's type information has to emit it. 299 case TSK_Undeclared: 300 break; 301 302 // In theory, implicit instantiations can ignore the possibility of 303 // an explicit instantiation declaration because there necessarily 304 // must be an EI definition somewhere with default visibility. In 305 // practice, it's possible to have an explicit instantiation for 306 // an arbitrary template class, and linkers aren't necessarily able 307 // to deal with mixed-visibility symbols. 308 case TSK_ExplicitSpecialization: 309 case TSK_ImplicitInstantiation: 310 if (!CodeGenOpts.HiddenWeakTemplateVTables) 311 return; 312 break; 313 } 314 315 // If there's a key function, there may be translation units 316 // that don't have the key function's definition. But ignore 317 // this if we're emitting RTTI under -fno-rtti. 318 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 319 if (Context.getKeyFunction(RD)) 320 return; 321 } 322 323 // Otherwise, drop the visibility to hidden. 324 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 325 GV->setUnnamedAddr(true); 326 } 327 328 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 329 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 330 331 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 332 if (!Str.empty()) 333 return Str; 334 335 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 336 IdentifierInfo *II = ND->getIdentifier(); 337 assert(II && "Attempt to mangle unnamed decl."); 338 339 Str = II->getName(); 340 return Str; 341 } 342 343 SmallString<256> Buffer; 344 llvm::raw_svector_ostream Out(Buffer); 345 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 346 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 347 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 348 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 349 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 350 getCXXABI().getMangleContext().mangleBlock(BD, Out); 351 else 352 getCXXABI().getMangleContext().mangleName(ND, Out); 353 354 // Allocate space for the mangled name. 355 Out.flush(); 356 size_t Length = Buffer.size(); 357 char *Name = MangledNamesAllocator.Allocate<char>(Length); 358 std::copy(Buffer.begin(), Buffer.end(), Name); 359 360 Str = StringRef(Name, Length); 361 362 return Str; 363 } 364 365 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 366 const BlockDecl *BD) { 367 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 368 const Decl *D = GD.getDecl(); 369 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 370 if (D == 0) 371 MangleCtx.mangleGlobalBlock(BD, Out); 372 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 373 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 374 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 375 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 376 else 377 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 378 } 379 380 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 381 return getModule().getNamedValue(Name); 382 } 383 384 /// AddGlobalCtor - Add a function to the list that will be called before 385 /// main() runs. 386 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 387 // FIXME: Type coercion of void()* types. 388 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 389 } 390 391 /// AddGlobalDtor - Add a function to the list that will be called 392 /// when the module is unloaded. 393 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 394 // FIXME: Type coercion of void()* types. 395 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 396 } 397 398 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 399 // Ctor function type is void()*. 400 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 401 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 402 403 // Get the type of a ctor entry, { i32, void ()* }. 404 llvm::StructType *CtorStructTy = 405 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 406 407 // Construct the constructor and destructor arrays. 408 SmallVector<llvm::Constant*, 8> Ctors; 409 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 410 llvm::Constant *S[] = { 411 llvm::ConstantInt::get(Int32Ty, I->second, false), 412 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 413 }; 414 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 415 } 416 417 if (!Ctors.empty()) { 418 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 419 new llvm::GlobalVariable(TheModule, AT, false, 420 llvm::GlobalValue::AppendingLinkage, 421 llvm::ConstantArray::get(AT, Ctors), 422 GlobalName); 423 } 424 } 425 426 llvm::GlobalValue::LinkageTypes 427 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 428 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 429 430 if (Linkage == GVA_Internal) 431 return llvm::Function::InternalLinkage; 432 433 if (D->hasAttr<DLLExportAttr>()) 434 return llvm::Function::DLLExportLinkage; 435 436 if (D->hasAttr<WeakAttr>()) 437 return llvm::Function::WeakAnyLinkage; 438 439 // In C99 mode, 'inline' functions are guaranteed to have a strong 440 // definition somewhere else, so we can use available_externally linkage. 441 if (Linkage == GVA_C99Inline) 442 return llvm::Function::AvailableExternallyLinkage; 443 444 // Note that Apple's kernel linker doesn't support symbol 445 // coalescing, so we need to avoid linkonce and weak linkages there. 446 // Normally, this means we just map to internal, but for explicit 447 // instantiations we'll map to external. 448 449 // In C++, the compiler has to emit a definition in every translation unit 450 // that references the function. We should use linkonce_odr because 451 // a) if all references in this translation unit are optimized away, we 452 // don't need to codegen it. b) if the function persists, it needs to be 453 // merged with other definitions. c) C++ has the ODR, so we know the 454 // definition is dependable. 455 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 456 return !Context.getLangOpts().AppleKext 457 ? llvm::Function::LinkOnceODRLinkage 458 : llvm::Function::InternalLinkage; 459 460 // An explicit instantiation of a template has weak linkage, since 461 // explicit instantiations can occur in multiple translation units 462 // and must all be equivalent. However, we are not allowed to 463 // throw away these explicit instantiations. 464 if (Linkage == GVA_ExplicitTemplateInstantiation) 465 return !Context.getLangOpts().AppleKext 466 ? llvm::Function::WeakODRLinkage 467 : llvm::Function::ExternalLinkage; 468 469 // Otherwise, we have strong external linkage. 470 assert(Linkage == GVA_StrongExternal); 471 return llvm::Function::ExternalLinkage; 472 } 473 474 475 /// SetFunctionDefinitionAttributes - Set attributes for a global. 476 /// 477 /// FIXME: This is currently only done for aliases and functions, but not for 478 /// variables (these details are set in EmitGlobalVarDefinition for variables). 479 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 480 llvm::GlobalValue *GV) { 481 SetCommonAttributes(D, GV); 482 } 483 484 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 485 const CGFunctionInfo &Info, 486 llvm::Function *F) { 487 unsigned CallingConv; 488 AttributeListType AttributeList; 489 ConstructAttributeList(Info, D, AttributeList, CallingConv); 490 F->setAttributes(llvm::AttrListPtr::get(AttributeList)); 491 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 492 } 493 494 /// Determines whether the language options require us to model 495 /// unwind exceptions. We treat -fexceptions as mandating this 496 /// except under the fragile ObjC ABI with only ObjC exceptions 497 /// enabled. This means, for example, that C with -fexceptions 498 /// enables this. 499 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 500 // If exceptions are completely disabled, obviously this is false. 501 if (!LangOpts.Exceptions) return false; 502 503 // If C++ exceptions are enabled, this is true. 504 if (LangOpts.CXXExceptions) return true; 505 506 // If ObjC exceptions are enabled, this depends on the ABI. 507 if (LangOpts.ObjCExceptions) { 508 if (LangOpts.ObjCRuntime.isFragile()) return false; 509 } 510 511 return true; 512 } 513 514 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 515 llvm::Function *F) { 516 if (CodeGenOpts.UnwindTables) 517 F->setHasUWTable(); 518 519 if (!hasUnwindExceptions(LangOpts)) 520 F->addFnAttr(llvm::Attribute::NoUnwind); 521 522 if (D->hasAttr<NakedAttr>()) { 523 // Naked implies noinline: we should not be inlining such functions. 524 F->addFnAttr(llvm::Attribute::Naked); 525 F->addFnAttr(llvm::Attribute::NoInline); 526 } 527 528 if (D->hasAttr<NoInlineAttr>()) 529 F->addFnAttr(llvm::Attribute::NoInline); 530 531 // (noinline wins over always_inline, and we can't specify both in IR) 532 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) && 533 !F->hasFnAttr(llvm::Attribute::NoInline)) 534 F->addFnAttr(llvm::Attribute::AlwaysInline); 535 536 // FIXME: Communicate hot and cold attributes to LLVM more directly. 537 if (D->hasAttr<ColdAttr>()) 538 F->addFnAttr(llvm::Attribute::OptimizeForSize); 539 540 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 541 F->setUnnamedAddr(true); 542 543 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 544 F->addFnAttr(llvm::Attribute::StackProtect); 545 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 546 F->addFnAttr(llvm::Attribute::StackProtectReq); 547 548 if (LangOpts.AddressSanitizer) { 549 // When AddressSanitizer is enabled, set AddressSafety attribute 550 // unless __attribute__((no_address_safety_analysis)) is used. 551 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 552 F->addFnAttr(llvm::Attribute::AddressSafety); 553 } 554 555 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 556 if (alignment) 557 F->setAlignment(alignment); 558 559 // C++ ABI requires 2-byte alignment for member functions. 560 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 561 F->setAlignment(2); 562 } 563 564 void CodeGenModule::SetCommonAttributes(const Decl *D, 565 llvm::GlobalValue *GV) { 566 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 567 setGlobalVisibility(GV, ND); 568 else 569 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 570 571 if (D->hasAttr<UsedAttr>()) 572 AddUsedGlobal(GV); 573 574 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 575 GV->setSection(SA->getName()); 576 577 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 578 } 579 580 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 581 llvm::Function *F, 582 const CGFunctionInfo &FI) { 583 SetLLVMFunctionAttributes(D, FI, F); 584 SetLLVMFunctionAttributesForDefinition(D, F); 585 586 F->setLinkage(llvm::Function::InternalLinkage); 587 588 SetCommonAttributes(D, F); 589 } 590 591 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 592 llvm::Function *F, 593 bool IsIncompleteFunction) { 594 if (unsigned IID = F->getIntrinsicID()) { 595 // If this is an intrinsic function, set the function's attributes 596 // to the intrinsic's attributes. 597 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 598 return; 599 } 600 601 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 602 603 if (!IsIncompleteFunction) 604 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 605 606 // Only a few attributes are set on declarations; these may later be 607 // overridden by a definition. 608 609 if (FD->hasAttr<DLLImportAttr>()) { 610 F->setLinkage(llvm::Function::DLLImportLinkage); 611 } else if (FD->hasAttr<WeakAttr>() || 612 FD->isWeakImported()) { 613 // "extern_weak" is overloaded in LLVM; we probably should have 614 // separate linkage types for this. 615 F->setLinkage(llvm::Function::ExternalWeakLinkage); 616 } else { 617 F->setLinkage(llvm::Function::ExternalLinkage); 618 619 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 620 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 621 F->setVisibility(GetLLVMVisibility(LV.visibility())); 622 } 623 } 624 625 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 626 F->setSection(SA->getName()); 627 } 628 629 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 630 assert(!GV->isDeclaration() && 631 "Only globals with definition can force usage."); 632 LLVMUsed.push_back(GV); 633 } 634 635 void CodeGenModule::EmitLLVMUsed() { 636 // Don't create llvm.used if there is no need. 637 if (LLVMUsed.empty()) 638 return; 639 640 // Convert LLVMUsed to what ConstantArray needs. 641 SmallVector<llvm::Constant*, 8> UsedArray; 642 UsedArray.resize(LLVMUsed.size()); 643 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 644 UsedArray[i] = 645 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 646 Int8PtrTy); 647 } 648 649 if (UsedArray.empty()) 650 return; 651 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 652 653 llvm::GlobalVariable *GV = 654 new llvm::GlobalVariable(getModule(), ATy, false, 655 llvm::GlobalValue::AppendingLinkage, 656 llvm::ConstantArray::get(ATy, UsedArray), 657 "llvm.used"); 658 659 GV->setSection("llvm.metadata"); 660 } 661 662 void CodeGenModule::EmitDeferred() { 663 // Emit code for any potentially referenced deferred decls. Since a 664 // previously unused static decl may become used during the generation of code 665 // for a static function, iterate until no changes are made. 666 667 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 668 if (!DeferredVTables.empty()) { 669 const CXXRecordDecl *RD = DeferredVTables.back(); 670 DeferredVTables.pop_back(); 671 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 672 continue; 673 } 674 675 GlobalDecl D = DeferredDeclsToEmit.back(); 676 DeferredDeclsToEmit.pop_back(); 677 678 // Check to see if we've already emitted this. This is necessary 679 // for a couple of reasons: first, decls can end up in the 680 // deferred-decls queue multiple times, and second, decls can end 681 // up with definitions in unusual ways (e.g. by an extern inline 682 // function acquiring a strong function redefinition). Just 683 // ignore these cases. 684 // 685 // TODO: That said, looking this up multiple times is very wasteful. 686 StringRef Name = getMangledName(D); 687 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 688 assert(CGRef && "Deferred decl wasn't referenced?"); 689 690 if (!CGRef->isDeclaration()) 691 continue; 692 693 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 694 // purposes an alias counts as a definition. 695 if (isa<llvm::GlobalAlias>(CGRef)) 696 continue; 697 698 // Otherwise, emit the definition and move on to the next one. 699 EmitGlobalDefinition(D); 700 } 701 } 702 703 void CodeGenModule::EmitGlobalAnnotations() { 704 if (Annotations.empty()) 705 return; 706 707 // Create a new global variable for the ConstantStruct in the Module. 708 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 709 Annotations[0]->getType(), Annotations.size()), Annotations); 710 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 711 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 712 "llvm.global.annotations"); 713 gv->setSection(AnnotationSection); 714 } 715 716 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 717 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 718 if (i != AnnotationStrings.end()) 719 return i->second; 720 721 // Not found yet, create a new global. 722 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 723 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 724 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 725 gv->setSection(AnnotationSection); 726 gv->setUnnamedAddr(true); 727 AnnotationStrings[Str] = gv; 728 return gv; 729 } 730 731 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 732 SourceManager &SM = getContext().getSourceManager(); 733 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 734 if (PLoc.isValid()) 735 return EmitAnnotationString(PLoc.getFilename()); 736 return EmitAnnotationString(SM.getBufferName(Loc)); 737 } 738 739 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 740 SourceManager &SM = getContext().getSourceManager(); 741 PresumedLoc PLoc = SM.getPresumedLoc(L); 742 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 743 SM.getExpansionLineNumber(L); 744 return llvm::ConstantInt::get(Int32Ty, LineNo); 745 } 746 747 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 748 const AnnotateAttr *AA, 749 SourceLocation L) { 750 // Get the globals for file name, annotation, and the line number. 751 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 752 *UnitGV = EmitAnnotationUnit(L), 753 *LineNoCst = EmitAnnotationLineNo(L); 754 755 // Create the ConstantStruct for the global annotation. 756 llvm::Constant *Fields[4] = { 757 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 758 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 759 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 760 LineNoCst 761 }; 762 return llvm::ConstantStruct::getAnon(Fields); 763 } 764 765 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 766 llvm::GlobalValue *GV) { 767 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 768 // Get the struct elements for these annotations. 769 for (specific_attr_iterator<AnnotateAttr> 770 ai = D->specific_attr_begin<AnnotateAttr>(), 771 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 772 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 773 } 774 775 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 776 // Never defer when EmitAllDecls is specified. 777 if (LangOpts.EmitAllDecls) 778 return false; 779 780 return !getContext().DeclMustBeEmitted(Global); 781 } 782 783 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 784 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 785 assert(AA && "No alias?"); 786 787 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 788 789 // See if there is already something with the target's name in the module. 790 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 791 792 llvm::Constant *Aliasee; 793 if (isa<llvm::FunctionType>(DeclTy)) 794 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 795 /*ForVTable=*/false); 796 else 797 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 798 llvm::PointerType::getUnqual(DeclTy), 0); 799 if (!Entry) { 800 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 801 F->setLinkage(llvm::Function::ExternalWeakLinkage); 802 WeakRefReferences.insert(F); 803 } 804 805 return Aliasee; 806 } 807 808 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 809 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 810 811 // Weak references don't produce any output by themselves. 812 if (Global->hasAttr<WeakRefAttr>()) 813 return; 814 815 // If this is an alias definition (which otherwise looks like a declaration) 816 // emit it now. 817 if (Global->hasAttr<AliasAttr>()) 818 return EmitAliasDefinition(GD); 819 820 // If this is CUDA, be selective about which declarations we emit. 821 if (LangOpts.CUDA) { 822 if (CodeGenOpts.CUDAIsDevice) { 823 if (!Global->hasAttr<CUDADeviceAttr>() && 824 !Global->hasAttr<CUDAGlobalAttr>() && 825 !Global->hasAttr<CUDAConstantAttr>() && 826 !Global->hasAttr<CUDASharedAttr>()) 827 return; 828 } else { 829 if (!Global->hasAttr<CUDAHostAttr>() && ( 830 Global->hasAttr<CUDADeviceAttr>() || 831 Global->hasAttr<CUDAConstantAttr>() || 832 Global->hasAttr<CUDASharedAttr>())) 833 return; 834 } 835 } 836 837 // Ignore declarations, they will be emitted on their first use. 838 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 839 // Forward declarations are emitted lazily on first use. 840 if (!FD->doesThisDeclarationHaveABody()) { 841 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 842 return; 843 844 const FunctionDecl *InlineDefinition = 0; 845 FD->getBody(InlineDefinition); 846 847 StringRef MangledName = getMangledName(GD); 848 DeferredDecls.erase(MangledName); 849 EmitGlobalDefinition(InlineDefinition); 850 return; 851 } 852 } else { 853 const VarDecl *VD = cast<VarDecl>(Global); 854 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 855 856 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 857 return; 858 } 859 860 // Defer code generation when possible if this is a static definition, inline 861 // function etc. These we only want to emit if they are used. 862 if (!MayDeferGeneration(Global)) { 863 // Emit the definition if it can't be deferred. 864 EmitGlobalDefinition(GD); 865 return; 866 } 867 868 // If we're deferring emission of a C++ variable with an 869 // initializer, remember the order in which it appeared in the file. 870 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 871 cast<VarDecl>(Global)->hasInit()) { 872 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 873 CXXGlobalInits.push_back(0); 874 } 875 876 // If the value has already been used, add it directly to the 877 // DeferredDeclsToEmit list. 878 StringRef MangledName = getMangledName(GD); 879 if (GetGlobalValue(MangledName)) 880 DeferredDeclsToEmit.push_back(GD); 881 else { 882 // Otherwise, remember that we saw a deferred decl with this name. The 883 // first use of the mangled name will cause it to move into 884 // DeferredDeclsToEmit. 885 DeferredDecls[MangledName] = GD; 886 } 887 } 888 889 namespace { 890 struct FunctionIsDirectlyRecursive : 891 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 892 const StringRef Name; 893 const Builtin::Context &BI; 894 bool Result; 895 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 896 Name(N), BI(C), Result(false) { 897 } 898 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 899 900 bool TraverseCallExpr(CallExpr *E) { 901 const FunctionDecl *FD = E->getDirectCallee(); 902 if (!FD) 903 return true; 904 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 905 if (Attr && Name == Attr->getLabel()) { 906 Result = true; 907 return false; 908 } 909 unsigned BuiltinID = FD->getBuiltinID(); 910 if (!BuiltinID) 911 return true; 912 StringRef BuiltinName = BI.GetName(BuiltinID); 913 if (BuiltinName.startswith("__builtin_") && 914 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 915 Result = true; 916 return false; 917 } 918 return true; 919 } 920 }; 921 } 922 923 // isTriviallyRecursive - Check if this function calls another 924 // decl that, because of the asm attribute or the other decl being a builtin, 925 // ends up pointing to itself. 926 bool 927 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 928 StringRef Name; 929 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 930 // asm labels are a special kind of mangling we have to support. 931 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 932 if (!Attr) 933 return false; 934 Name = Attr->getLabel(); 935 } else { 936 Name = FD->getName(); 937 } 938 939 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 940 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 941 return Walker.Result; 942 } 943 944 bool 945 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 946 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 947 return true; 948 if (CodeGenOpts.OptimizationLevel == 0 && 949 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 950 return false; 951 // PR9614. Avoid cases where the source code is lying to us. An available 952 // externally function should have an equivalent function somewhere else, 953 // but a function that calls itself is clearly not equivalent to the real 954 // implementation. 955 // This happens in glibc's btowc and in some configure checks. 956 return !isTriviallyRecursive(F); 957 } 958 959 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 960 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 961 962 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 963 Context.getSourceManager(), 964 "Generating code for declaration"); 965 966 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 967 // At -O0, don't generate IR for functions with available_externally 968 // linkage. 969 if (!shouldEmitFunction(Function)) 970 return; 971 972 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 973 // Make sure to emit the definition(s) before we emit the thunks. 974 // This is necessary for the generation of certain thunks. 975 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 976 EmitCXXConstructor(CD, GD.getCtorType()); 977 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 978 EmitCXXDestructor(DD, GD.getDtorType()); 979 else 980 EmitGlobalFunctionDefinition(GD); 981 982 if (Method->isVirtual()) 983 getVTables().EmitThunks(GD); 984 985 return; 986 } 987 988 return EmitGlobalFunctionDefinition(GD); 989 } 990 991 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 992 return EmitGlobalVarDefinition(VD); 993 994 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 995 } 996 997 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 998 /// module, create and return an llvm Function with the specified type. If there 999 /// is something in the module with the specified name, return it potentially 1000 /// bitcasted to the right type. 1001 /// 1002 /// If D is non-null, it specifies a decl that correspond to this. This is used 1003 /// to set the attributes on the function when it is first created. 1004 llvm::Constant * 1005 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1006 llvm::Type *Ty, 1007 GlobalDecl D, bool ForVTable, 1008 llvm::Attributes ExtraAttrs) { 1009 // Lookup the entry, lazily creating it if necessary. 1010 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1011 if (Entry) { 1012 if (WeakRefReferences.count(Entry)) { 1013 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1014 if (FD && !FD->hasAttr<WeakAttr>()) 1015 Entry->setLinkage(llvm::Function::ExternalLinkage); 1016 1017 WeakRefReferences.erase(Entry); 1018 } 1019 1020 if (Entry->getType()->getElementType() == Ty) 1021 return Entry; 1022 1023 // Make sure the result is of the correct type. 1024 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1025 } 1026 1027 // This function doesn't have a complete type (for example, the return 1028 // type is an incomplete struct). Use a fake type instead, and make 1029 // sure not to try to set attributes. 1030 bool IsIncompleteFunction = false; 1031 1032 llvm::FunctionType *FTy; 1033 if (isa<llvm::FunctionType>(Ty)) { 1034 FTy = cast<llvm::FunctionType>(Ty); 1035 } else { 1036 FTy = llvm::FunctionType::get(VoidTy, false); 1037 IsIncompleteFunction = true; 1038 } 1039 1040 llvm::Function *F = llvm::Function::Create(FTy, 1041 llvm::Function::ExternalLinkage, 1042 MangledName, &getModule()); 1043 assert(F->getName() == MangledName && "name was uniqued!"); 1044 if (D.getDecl()) 1045 SetFunctionAttributes(D, F, IsIncompleteFunction); 1046 if (ExtraAttrs != llvm::Attribute::None) 1047 F->addFnAttr(ExtraAttrs); 1048 1049 // This is the first use or definition of a mangled name. If there is a 1050 // deferred decl with this name, remember that we need to emit it at the end 1051 // of the file. 1052 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1053 if (DDI != DeferredDecls.end()) { 1054 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1055 // list, and remove it from DeferredDecls (since we don't need it anymore). 1056 DeferredDeclsToEmit.push_back(DDI->second); 1057 DeferredDecls.erase(DDI); 1058 1059 // Otherwise, there are cases we have to worry about where we're 1060 // using a declaration for which we must emit a definition but where 1061 // we might not find a top-level definition: 1062 // - member functions defined inline in their classes 1063 // - friend functions defined inline in some class 1064 // - special member functions with implicit definitions 1065 // If we ever change our AST traversal to walk into class methods, 1066 // this will be unnecessary. 1067 // 1068 // We also don't emit a definition for a function if it's going to be an entry 1069 // in a vtable, unless it's already marked as used. 1070 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1071 // Look for a declaration that's lexically in a record. 1072 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1073 do { 1074 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1075 if (FD->isImplicit() && !ForVTable) { 1076 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1077 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1078 break; 1079 } else if (FD->doesThisDeclarationHaveABody()) { 1080 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1081 break; 1082 } 1083 } 1084 FD = FD->getPreviousDecl(); 1085 } while (FD); 1086 } 1087 1088 // Make sure the result is of the requested type. 1089 if (!IsIncompleteFunction) { 1090 assert(F->getType()->getElementType() == Ty); 1091 return F; 1092 } 1093 1094 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1095 return llvm::ConstantExpr::getBitCast(F, PTy); 1096 } 1097 1098 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1099 /// non-null, then this function will use the specified type if it has to 1100 /// create it (this occurs when we see a definition of the function). 1101 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1102 llvm::Type *Ty, 1103 bool ForVTable) { 1104 // If there was no specific requested type, just convert it now. 1105 if (!Ty) 1106 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1107 1108 StringRef MangledName = getMangledName(GD); 1109 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1110 } 1111 1112 /// CreateRuntimeFunction - Create a new runtime function with the specified 1113 /// type and name. 1114 llvm::Constant * 1115 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1116 StringRef Name, 1117 llvm::Attributes ExtraAttrs) { 1118 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1119 ExtraAttrs); 1120 } 1121 1122 /// isTypeConstant - Determine whether an object of this type can be emitted 1123 /// as a constant. 1124 /// 1125 /// If ExcludeCtor is true, the duration when the object's constructor runs 1126 /// will not be considered. The caller will need to verify that the object is 1127 /// not written to during its construction. 1128 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1129 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1130 return false; 1131 1132 if (Context.getLangOpts().CPlusPlus) { 1133 if (const CXXRecordDecl *Record 1134 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1135 return ExcludeCtor && !Record->hasMutableFields() && 1136 Record->hasTrivialDestructor(); 1137 } 1138 1139 return true; 1140 } 1141 1142 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1143 /// create and return an llvm GlobalVariable with the specified type. If there 1144 /// is something in the module with the specified name, return it potentially 1145 /// bitcasted to the right type. 1146 /// 1147 /// If D is non-null, it specifies a decl that correspond to this. This is used 1148 /// to set the attributes on the global when it is first created. 1149 llvm::Constant * 1150 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1151 llvm::PointerType *Ty, 1152 const VarDecl *D, 1153 bool UnnamedAddr) { 1154 // Lookup the entry, lazily creating it if necessary. 1155 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1156 if (Entry) { 1157 if (WeakRefReferences.count(Entry)) { 1158 if (D && !D->hasAttr<WeakAttr>()) 1159 Entry->setLinkage(llvm::Function::ExternalLinkage); 1160 1161 WeakRefReferences.erase(Entry); 1162 } 1163 1164 if (UnnamedAddr) 1165 Entry->setUnnamedAddr(true); 1166 1167 if (Entry->getType() == Ty) 1168 return Entry; 1169 1170 // Make sure the result is of the correct type. 1171 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1172 } 1173 1174 // This is the first use or definition of a mangled name. If there is a 1175 // deferred decl with this name, remember that we need to emit it at the end 1176 // of the file. 1177 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1178 if (DDI != DeferredDecls.end()) { 1179 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1180 // list, and remove it from DeferredDecls (since we don't need it anymore). 1181 DeferredDeclsToEmit.push_back(DDI->second); 1182 DeferredDecls.erase(DDI); 1183 } 1184 1185 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1186 llvm::GlobalVariable *GV = 1187 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1188 llvm::GlobalValue::ExternalLinkage, 1189 0, MangledName, 0, 1190 false, AddrSpace); 1191 1192 // Handle things which are present even on external declarations. 1193 if (D) { 1194 // FIXME: This code is overly simple and should be merged with other global 1195 // handling. 1196 GV->setConstant(isTypeConstant(D->getType(), false)); 1197 1198 // Set linkage and visibility in case we never see a definition. 1199 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1200 if (LV.linkage() != ExternalLinkage) { 1201 // Don't set internal linkage on declarations. 1202 } else { 1203 if (D->hasAttr<DLLImportAttr>()) 1204 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1205 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1206 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1207 1208 // Set visibility on a declaration only if it's explicit. 1209 if (LV.visibilityExplicit()) 1210 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1211 } 1212 1213 GV->setThreadLocal(D->isThreadSpecified()); 1214 } 1215 1216 if (AddrSpace != Ty->getAddressSpace()) 1217 return llvm::ConstantExpr::getBitCast(GV, Ty); 1218 else 1219 return GV; 1220 } 1221 1222 1223 llvm::GlobalVariable * 1224 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1225 llvm::Type *Ty, 1226 llvm::GlobalValue::LinkageTypes Linkage) { 1227 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1228 llvm::GlobalVariable *OldGV = 0; 1229 1230 1231 if (GV) { 1232 // Check if the variable has the right type. 1233 if (GV->getType()->getElementType() == Ty) 1234 return GV; 1235 1236 // Because C++ name mangling, the only way we can end up with an already 1237 // existing global with the same name is if it has been declared extern "C". 1238 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1239 OldGV = GV; 1240 } 1241 1242 // Create a new variable. 1243 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1244 Linkage, 0, Name); 1245 1246 if (OldGV) { 1247 // Replace occurrences of the old variable if needed. 1248 GV->takeName(OldGV); 1249 1250 if (!OldGV->use_empty()) { 1251 llvm::Constant *NewPtrForOldDecl = 1252 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1253 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1254 } 1255 1256 OldGV->eraseFromParent(); 1257 } 1258 1259 return GV; 1260 } 1261 1262 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1263 /// given global variable. If Ty is non-null and if the global doesn't exist, 1264 /// then it will be created with the specified type instead of whatever the 1265 /// normal requested type would be. 1266 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1267 llvm::Type *Ty) { 1268 assert(D->hasGlobalStorage() && "Not a global variable"); 1269 QualType ASTTy = D->getType(); 1270 if (Ty == 0) 1271 Ty = getTypes().ConvertTypeForMem(ASTTy); 1272 1273 llvm::PointerType *PTy = 1274 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1275 1276 StringRef MangledName = getMangledName(D); 1277 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1278 } 1279 1280 /// CreateRuntimeVariable - Create a new runtime global variable with the 1281 /// specified type and name. 1282 llvm::Constant * 1283 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1284 StringRef Name) { 1285 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1286 true); 1287 } 1288 1289 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1290 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1291 1292 if (MayDeferGeneration(D)) { 1293 // If we have not seen a reference to this variable yet, place it 1294 // into the deferred declarations table to be emitted if needed 1295 // later. 1296 StringRef MangledName = getMangledName(D); 1297 if (!GetGlobalValue(MangledName)) { 1298 DeferredDecls[MangledName] = D; 1299 return; 1300 } 1301 } 1302 1303 // The tentative definition is the only definition. 1304 EmitGlobalVarDefinition(D); 1305 } 1306 1307 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1308 if (DefinitionRequired) 1309 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1310 } 1311 1312 llvm::GlobalVariable::LinkageTypes 1313 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1314 if (RD->getLinkage() != ExternalLinkage) 1315 return llvm::GlobalVariable::InternalLinkage; 1316 1317 if (const CXXMethodDecl *KeyFunction 1318 = RD->getASTContext().getKeyFunction(RD)) { 1319 // If this class has a key function, use that to determine the linkage of 1320 // the vtable. 1321 const FunctionDecl *Def = 0; 1322 if (KeyFunction->hasBody(Def)) 1323 KeyFunction = cast<CXXMethodDecl>(Def); 1324 1325 switch (KeyFunction->getTemplateSpecializationKind()) { 1326 case TSK_Undeclared: 1327 case TSK_ExplicitSpecialization: 1328 // When compiling with optimizations turned on, we emit all vtables, 1329 // even if the key function is not defined in the current translation 1330 // unit. If this is the case, use available_externally linkage. 1331 if (!Def && CodeGenOpts.OptimizationLevel) 1332 return llvm::GlobalVariable::AvailableExternallyLinkage; 1333 1334 if (KeyFunction->isInlined()) 1335 return !Context.getLangOpts().AppleKext ? 1336 llvm::GlobalVariable::LinkOnceODRLinkage : 1337 llvm::Function::InternalLinkage; 1338 1339 return llvm::GlobalVariable::ExternalLinkage; 1340 1341 case TSK_ImplicitInstantiation: 1342 return !Context.getLangOpts().AppleKext ? 1343 llvm::GlobalVariable::LinkOnceODRLinkage : 1344 llvm::Function::InternalLinkage; 1345 1346 case TSK_ExplicitInstantiationDefinition: 1347 return !Context.getLangOpts().AppleKext ? 1348 llvm::GlobalVariable::WeakODRLinkage : 1349 llvm::Function::InternalLinkage; 1350 1351 case TSK_ExplicitInstantiationDeclaration: 1352 // FIXME: Use available_externally linkage. However, this currently 1353 // breaks LLVM's build due to undefined symbols. 1354 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1355 return !Context.getLangOpts().AppleKext ? 1356 llvm::GlobalVariable::LinkOnceODRLinkage : 1357 llvm::Function::InternalLinkage; 1358 } 1359 } 1360 1361 if (Context.getLangOpts().AppleKext) 1362 return llvm::Function::InternalLinkage; 1363 1364 switch (RD->getTemplateSpecializationKind()) { 1365 case TSK_Undeclared: 1366 case TSK_ExplicitSpecialization: 1367 case TSK_ImplicitInstantiation: 1368 // FIXME: Use available_externally linkage. However, this currently 1369 // breaks LLVM's build due to undefined symbols. 1370 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1371 case TSK_ExplicitInstantiationDeclaration: 1372 return llvm::GlobalVariable::LinkOnceODRLinkage; 1373 1374 case TSK_ExplicitInstantiationDefinition: 1375 return llvm::GlobalVariable::WeakODRLinkage; 1376 } 1377 1378 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1379 } 1380 1381 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1382 return Context.toCharUnitsFromBits( 1383 TheTargetData.getTypeStoreSizeInBits(Ty)); 1384 } 1385 1386 llvm::Constant * 1387 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1388 const Expr *rawInit) { 1389 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1390 if (const ExprWithCleanups *withCleanups = 1391 dyn_cast<ExprWithCleanups>(rawInit)) { 1392 cleanups = withCleanups->getObjects(); 1393 rawInit = withCleanups->getSubExpr(); 1394 } 1395 1396 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1397 if (!init || !init->initializesStdInitializerList() || 1398 init->getNumInits() == 0) 1399 return 0; 1400 1401 ASTContext &ctx = getContext(); 1402 unsigned numInits = init->getNumInits(); 1403 // FIXME: This check is here because we would otherwise silently miscompile 1404 // nested global std::initializer_lists. Better would be to have a real 1405 // implementation. 1406 for (unsigned i = 0; i < numInits; ++i) { 1407 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1408 if (inner && inner->initializesStdInitializerList()) { 1409 ErrorUnsupported(inner, "nested global std::initializer_list"); 1410 return 0; 1411 } 1412 } 1413 1414 // Synthesize a fake VarDecl for the array and initialize that. 1415 QualType elementType = init->getInit(0)->getType(); 1416 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1417 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1418 ArrayType::Normal, 0); 1419 1420 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1421 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1422 arrayType, D->getLocation()); 1423 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1424 D->getDeclContext()), 1425 D->getLocStart(), D->getLocation(), 1426 name, arrayType, sourceInfo, 1427 SC_Static, SC_Static); 1428 1429 // Now clone the InitListExpr to initialize the array instead. 1430 // Incredible hack: we want to use the existing InitListExpr here, so we need 1431 // to tell it that it no longer initializes a std::initializer_list. 1432 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), 1433 const_cast<InitListExpr*>(init)->getInits(), 1434 init->getNumInits(), 1435 init->getRBraceLoc()); 1436 arrayInit->setType(arrayType); 1437 1438 if (!cleanups.empty()) 1439 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1440 1441 backingArray->setInit(arrayInit); 1442 1443 // Emit the definition of the array. 1444 EmitGlobalVarDefinition(backingArray); 1445 1446 // Inspect the initializer list to validate it and determine its type. 1447 // FIXME: doing this every time is probably inefficient; caching would be nice 1448 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1449 RecordDecl::field_iterator field = record->field_begin(); 1450 if (field == record->field_end()) { 1451 ErrorUnsupported(D, "weird std::initializer_list"); 1452 return 0; 1453 } 1454 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1455 // Start pointer. 1456 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1457 ErrorUnsupported(D, "weird std::initializer_list"); 1458 return 0; 1459 } 1460 ++field; 1461 if (field == record->field_end()) { 1462 ErrorUnsupported(D, "weird std::initializer_list"); 1463 return 0; 1464 } 1465 bool isStartEnd = false; 1466 if (ctx.hasSameType(field->getType(), elementPtr)) { 1467 // End pointer. 1468 isStartEnd = true; 1469 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1470 ErrorUnsupported(D, "weird std::initializer_list"); 1471 return 0; 1472 } 1473 1474 // Now build an APValue representing the std::initializer_list. 1475 APValue initListValue(APValue::UninitStruct(), 0, 2); 1476 APValue &startField = initListValue.getStructField(0); 1477 APValue::LValuePathEntry startOffsetPathEntry; 1478 startOffsetPathEntry.ArrayIndex = 0; 1479 startField = APValue(APValue::LValueBase(backingArray), 1480 CharUnits::fromQuantity(0), 1481 llvm::makeArrayRef(startOffsetPathEntry), 1482 /*IsOnePastTheEnd=*/false, 0); 1483 1484 if (isStartEnd) { 1485 APValue &endField = initListValue.getStructField(1); 1486 APValue::LValuePathEntry endOffsetPathEntry; 1487 endOffsetPathEntry.ArrayIndex = numInits; 1488 endField = APValue(APValue::LValueBase(backingArray), 1489 ctx.getTypeSizeInChars(elementType) * numInits, 1490 llvm::makeArrayRef(endOffsetPathEntry), 1491 /*IsOnePastTheEnd=*/true, 0); 1492 } else { 1493 APValue &sizeField = initListValue.getStructField(1); 1494 sizeField = APValue(llvm::APSInt(numElements)); 1495 } 1496 1497 // Emit the constant for the initializer_list. 1498 llvm::Constant *llvmInit = 1499 EmitConstantValueForMemory(initListValue, D->getType()); 1500 assert(llvmInit && "failed to initialize as constant"); 1501 return llvmInit; 1502 } 1503 1504 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1505 unsigned AddrSpace) { 1506 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1507 if (D->hasAttr<CUDAConstantAttr>()) 1508 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1509 else if (D->hasAttr<CUDASharedAttr>()) 1510 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1511 else 1512 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1513 } 1514 1515 return AddrSpace; 1516 } 1517 1518 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1519 llvm::Constant *Init = 0; 1520 QualType ASTTy = D->getType(); 1521 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1522 bool NeedsGlobalCtor = false; 1523 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1524 1525 const VarDecl *InitDecl; 1526 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1527 1528 if (!InitExpr) { 1529 // This is a tentative definition; tentative definitions are 1530 // implicitly initialized with { 0 }. 1531 // 1532 // Note that tentative definitions are only emitted at the end of 1533 // a translation unit, so they should never have incomplete 1534 // type. In addition, EmitTentativeDefinition makes sure that we 1535 // never attempt to emit a tentative definition if a real one 1536 // exists. A use may still exists, however, so we still may need 1537 // to do a RAUW. 1538 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1539 Init = EmitNullConstant(D->getType()); 1540 } else { 1541 // If this is a std::initializer_list, emit the special initializer. 1542 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1543 // An empty init list will perform zero-initialization, which happens 1544 // to be exactly what we want. 1545 // FIXME: It does so in a global constructor, which is *not* what we 1546 // want. 1547 1548 if (!Init) 1549 Init = EmitConstantInit(*InitDecl); 1550 if (!Init) { 1551 QualType T = InitExpr->getType(); 1552 if (D->getType()->isReferenceType()) 1553 T = D->getType(); 1554 1555 if (getLangOpts().CPlusPlus) { 1556 Init = EmitNullConstant(T); 1557 NeedsGlobalCtor = true; 1558 } else { 1559 ErrorUnsupported(D, "static initializer"); 1560 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1561 } 1562 } else { 1563 // We don't need an initializer, so remove the entry for the delayed 1564 // initializer position (just in case this entry was delayed) if we 1565 // also don't need to register a destructor. 1566 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1567 DelayedCXXInitPosition.erase(D); 1568 } 1569 } 1570 1571 llvm::Type* InitType = Init->getType(); 1572 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1573 1574 // Strip off a bitcast if we got one back. 1575 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1576 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1577 // all zero index gep. 1578 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1579 Entry = CE->getOperand(0); 1580 } 1581 1582 // Entry is now either a Function or GlobalVariable. 1583 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1584 1585 // We have a definition after a declaration with the wrong type. 1586 // We must make a new GlobalVariable* and update everything that used OldGV 1587 // (a declaration or tentative definition) with the new GlobalVariable* 1588 // (which will be a definition). 1589 // 1590 // This happens if there is a prototype for a global (e.g. 1591 // "extern int x[];") and then a definition of a different type (e.g. 1592 // "int x[10];"). This also happens when an initializer has a different type 1593 // from the type of the global (this happens with unions). 1594 if (GV == 0 || 1595 GV->getType()->getElementType() != InitType || 1596 GV->getType()->getAddressSpace() != 1597 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1598 1599 // Move the old entry aside so that we'll create a new one. 1600 Entry->setName(StringRef()); 1601 1602 // Make a new global with the correct type, this is now guaranteed to work. 1603 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1604 1605 // Replace all uses of the old global with the new global 1606 llvm::Constant *NewPtrForOldDecl = 1607 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1608 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1609 1610 // Erase the old global, since it is no longer used. 1611 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1612 } 1613 1614 if (D->hasAttr<AnnotateAttr>()) 1615 AddGlobalAnnotations(D, GV); 1616 1617 GV->setInitializer(Init); 1618 1619 // If it is safe to mark the global 'constant', do so now. 1620 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1621 isTypeConstant(D->getType(), true)); 1622 1623 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1624 1625 // Set the llvm linkage type as appropriate. 1626 llvm::GlobalValue::LinkageTypes Linkage = 1627 GetLLVMLinkageVarDefinition(D, GV); 1628 GV->setLinkage(Linkage); 1629 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1630 // common vars aren't constant even if declared const. 1631 GV->setConstant(false); 1632 1633 SetCommonAttributes(D, GV); 1634 1635 // Emit the initializer function if necessary. 1636 if (NeedsGlobalCtor || NeedsGlobalDtor) 1637 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1638 1639 // Emit global variable debug information. 1640 if (CGDebugInfo *DI = getModuleDebugInfo()) 1641 if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) 1642 DI->EmitGlobalVariable(GV, D); 1643 } 1644 1645 llvm::GlobalValue::LinkageTypes 1646 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1647 llvm::GlobalVariable *GV) { 1648 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1649 if (Linkage == GVA_Internal) 1650 return llvm::Function::InternalLinkage; 1651 else if (D->hasAttr<DLLImportAttr>()) 1652 return llvm::Function::DLLImportLinkage; 1653 else if (D->hasAttr<DLLExportAttr>()) 1654 return llvm::Function::DLLExportLinkage; 1655 else if (D->hasAttr<WeakAttr>()) { 1656 if (GV->isConstant()) 1657 return llvm::GlobalVariable::WeakODRLinkage; 1658 else 1659 return llvm::GlobalVariable::WeakAnyLinkage; 1660 } else if (Linkage == GVA_TemplateInstantiation || 1661 Linkage == GVA_ExplicitTemplateInstantiation) 1662 return llvm::GlobalVariable::WeakODRLinkage; 1663 else if (!getLangOpts().CPlusPlus && 1664 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1665 D->getAttr<CommonAttr>()) && 1666 !D->hasExternalStorage() && !D->getInit() && 1667 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1668 !D->getAttr<WeakImportAttr>()) { 1669 // Thread local vars aren't considered common linkage. 1670 return llvm::GlobalVariable::CommonLinkage; 1671 } 1672 return llvm::GlobalVariable::ExternalLinkage; 1673 } 1674 1675 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1676 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1677 /// existing call uses of the old function in the module, this adjusts them to 1678 /// call the new function directly. 1679 /// 1680 /// This is not just a cleanup: the always_inline pass requires direct calls to 1681 /// functions to be able to inline them. If there is a bitcast in the way, it 1682 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1683 /// run at -O0. 1684 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1685 llvm::Function *NewFn) { 1686 // If we're redefining a global as a function, don't transform it. 1687 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1688 if (OldFn == 0) return; 1689 1690 llvm::Type *NewRetTy = NewFn->getReturnType(); 1691 SmallVector<llvm::Value*, 4> ArgList; 1692 1693 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1694 UI != E; ) { 1695 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1696 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1697 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1698 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1699 llvm::CallSite CS(CI); 1700 if (!CI || !CS.isCallee(I)) continue; 1701 1702 // If the return types don't match exactly, and if the call isn't dead, then 1703 // we can't transform this call. 1704 if (CI->getType() != NewRetTy && !CI->use_empty()) 1705 continue; 1706 1707 // Get the attribute list. 1708 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1709 llvm::AttrListPtr AttrList = CI->getAttributes(); 1710 1711 // Get any return attributes. 1712 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1713 1714 // Add the return attributes. 1715 if (RAttrs) 1716 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1717 1718 // If the function was passed too few arguments, don't transform. If extra 1719 // arguments were passed, we silently drop them. If any of the types 1720 // mismatch, we don't transform. 1721 unsigned ArgNo = 0; 1722 bool DontTransform = false; 1723 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1724 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1725 if (CS.arg_size() == ArgNo || 1726 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1727 DontTransform = true; 1728 break; 1729 } 1730 1731 // Add any parameter attributes. 1732 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1733 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1734 } 1735 if (DontTransform) 1736 continue; 1737 1738 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1739 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1740 1741 // Okay, we can transform this. Create the new call instruction and copy 1742 // over the required information. 1743 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1744 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1745 ArgList.clear(); 1746 if (!NewCall->getType()->isVoidTy()) 1747 NewCall->takeName(CI); 1748 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec)); 1749 NewCall->setCallingConv(CI->getCallingConv()); 1750 1751 // Finally, remove the old call, replacing any uses with the new one. 1752 if (!CI->use_empty()) 1753 CI->replaceAllUsesWith(NewCall); 1754 1755 // Copy debug location attached to CI. 1756 if (!CI->getDebugLoc().isUnknown()) 1757 NewCall->setDebugLoc(CI->getDebugLoc()); 1758 CI->eraseFromParent(); 1759 } 1760 } 1761 1762 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1763 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1764 // If we have a definition, this might be a deferred decl. If the 1765 // instantiation is explicit, make sure we emit it at the end. 1766 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1767 GetAddrOfGlobalVar(VD); 1768 } 1769 1770 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1771 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1772 1773 // Compute the function info and LLVM type. 1774 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1775 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1776 1777 // Get or create the prototype for the function. 1778 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1779 1780 // Strip off a bitcast if we got one back. 1781 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1782 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1783 Entry = CE->getOperand(0); 1784 } 1785 1786 1787 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1788 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1789 1790 // If the types mismatch then we have to rewrite the definition. 1791 assert(OldFn->isDeclaration() && 1792 "Shouldn't replace non-declaration"); 1793 1794 // F is the Function* for the one with the wrong type, we must make a new 1795 // Function* and update everything that used F (a declaration) with the new 1796 // Function* (which will be a definition). 1797 // 1798 // This happens if there is a prototype for a function 1799 // (e.g. "int f()") and then a definition of a different type 1800 // (e.g. "int f(int x)"). Move the old function aside so that it 1801 // doesn't interfere with GetAddrOfFunction. 1802 OldFn->setName(StringRef()); 1803 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1804 1805 // If this is an implementation of a function without a prototype, try to 1806 // replace any existing uses of the function (which may be calls) with uses 1807 // of the new function 1808 if (D->getType()->isFunctionNoProtoType()) { 1809 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1810 OldFn->removeDeadConstantUsers(); 1811 } 1812 1813 // Replace uses of F with the Function we will endow with a body. 1814 if (!Entry->use_empty()) { 1815 llvm::Constant *NewPtrForOldDecl = 1816 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1817 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1818 } 1819 1820 // Ok, delete the old function now, which is dead. 1821 OldFn->eraseFromParent(); 1822 1823 Entry = NewFn; 1824 } 1825 1826 // We need to set linkage and visibility on the function before 1827 // generating code for it because various parts of IR generation 1828 // want to propagate this information down (e.g. to local static 1829 // declarations). 1830 llvm::Function *Fn = cast<llvm::Function>(Entry); 1831 setFunctionLinkage(D, Fn); 1832 1833 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1834 setGlobalVisibility(Fn, D); 1835 1836 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1837 1838 SetFunctionDefinitionAttributes(D, Fn); 1839 SetLLVMFunctionAttributesForDefinition(D, Fn); 1840 1841 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1842 AddGlobalCtor(Fn, CA->getPriority()); 1843 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1844 AddGlobalDtor(Fn, DA->getPriority()); 1845 if (D->hasAttr<AnnotateAttr>()) 1846 AddGlobalAnnotations(D, Fn); 1847 } 1848 1849 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1850 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1851 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1852 assert(AA && "Not an alias?"); 1853 1854 StringRef MangledName = getMangledName(GD); 1855 1856 // If there is a definition in the module, then it wins over the alias. 1857 // This is dubious, but allow it to be safe. Just ignore the alias. 1858 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1859 if (Entry && !Entry->isDeclaration()) 1860 return; 1861 1862 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1863 1864 // Create a reference to the named value. This ensures that it is emitted 1865 // if a deferred decl. 1866 llvm::Constant *Aliasee; 1867 if (isa<llvm::FunctionType>(DeclTy)) 1868 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1869 /*ForVTable=*/false); 1870 else 1871 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1872 llvm::PointerType::getUnqual(DeclTy), 0); 1873 1874 // Create the new alias itself, but don't set a name yet. 1875 llvm::GlobalValue *GA = 1876 new llvm::GlobalAlias(Aliasee->getType(), 1877 llvm::Function::ExternalLinkage, 1878 "", Aliasee, &getModule()); 1879 1880 if (Entry) { 1881 assert(Entry->isDeclaration()); 1882 1883 // If there is a declaration in the module, then we had an extern followed 1884 // by the alias, as in: 1885 // extern int test6(); 1886 // ... 1887 // int test6() __attribute__((alias("test7"))); 1888 // 1889 // Remove it and replace uses of it with the alias. 1890 GA->takeName(Entry); 1891 1892 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1893 Entry->getType())); 1894 Entry->eraseFromParent(); 1895 } else { 1896 GA->setName(MangledName); 1897 } 1898 1899 // Set attributes which are particular to an alias; this is a 1900 // specialization of the attributes which may be set on a global 1901 // variable/function. 1902 if (D->hasAttr<DLLExportAttr>()) { 1903 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1904 // The dllexport attribute is ignored for undefined symbols. 1905 if (FD->hasBody()) 1906 GA->setLinkage(llvm::Function::DLLExportLinkage); 1907 } else { 1908 GA->setLinkage(llvm::Function::DLLExportLinkage); 1909 } 1910 } else if (D->hasAttr<WeakAttr>() || 1911 D->hasAttr<WeakRefAttr>() || 1912 D->isWeakImported()) { 1913 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1914 } 1915 1916 SetCommonAttributes(D, GA); 1917 } 1918 1919 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1920 ArrayRef<llvm::Type*> Tys) { 1921 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1922 Tys); 1923 } 1924 1925 static llvm::StringMapEntry<llvm::Constant*> & 1926 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1927 const StringLiteral *Literal, 1928 bool TargetIsLSB, 1929 bool &IsUTF16, 1930 unsigned &StringLength) { 1931 StringRef String = Literal->getString(); 1932 unsigned NumBytes = String.size(); 1933 1934 // Check for simple case. 1935 if (!Literal->containsNonAsciiOrNull()) { 1936 StringLength = NumBytes; 1937 return Map.GetOrCreateValue(String); 1938 } 1939 1940 // Otherwise, convert the UTF8 literals into a string of shorts. 1941 IsUTF16 = true; 1942 1943 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 1944 const UTF8 *FromPtr = (UTF8 *)String.data(); 1945 UTF16 *ToPtr = &ToBuf[0]; 1946 1947 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1948 &ToPtr, ToPtr + NumBytes, 1949 strictConversion); 1950 1951 // ConvertUTF8toUTF16 returns the length in ToPtr. 1952 StringLength = ToPtr - &ToBuf[0]; 1953 1954 // Add an explicit null. 1955 *ToPtr = 0; 1956 return Map. 1957 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 1958 (StringLength + 1) * 2)); 1959 } 1960 1961 static llvm::StringMapEntry<llvm::Constant*> & 1962 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1963 const StringLiteral *Literal, 1964 unsigned &StringLength) { 1965 StringRef String = Literal->getString(); 1966 StringLength = String.size(); 1967 return Map.GetOrCreateValue(String); 1968 } 1969 1970 llvm::Constant * 1971 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1972 unsigned StringLength = 0; 1973 bool isUTF16 = false; 1974 llvm::StringMapEntry<llvm::Constant*> &Entry = 1975 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1976 getTargetData().isLittleEndian(), 1977 isUTF16, StringLength); 1978 1979 if (llvm::Constant *C = Entry.getValue()) 1980 return C; 1981 1982 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 1983 llvm::Constant *Zeros[] = { Zero, Zero }; 1984 1985 // If we don't already have it, get __CFConstantStringClassReference. 1986 if (!CFConstantStringClassRef) { 1987 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1988 Ty = llvm::ArrayType::get(Ty, 0); 1989 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1990 "__CFConstantStringClassReference"); 1991 // Decay array -> ptr 1992 CFConstantStringClassRef = 1993 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1994 } 1995 1996 QualType CFTy = getContext().getCFConstantStringType(); 1997 1998 llvm::StructType *STy = 1999 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2000 2001 llvm::Constant *Fields[4]; 2002 2003 // Class pointer. 2004 Fields[0] = CFConstantStringClassRef; 2005 2006 // Flags. 2007 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2008 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2009 llvm::ConstantInt::get(Ty, 0x07C8); 2010 2011 // String pointer. 2012 llvm::Constant *C = 0; 2013 if (isUTF16) { 2014 ArrayRef<uint16_t> Arr = 2015 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 2016 Entry.getKey().size() / 2); 2017 C = llvm::ConstantDataArray::get(VMContext, Arr); 2018 } else { 2019 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2020 } 2021 2022 llvm::GlobalValue::LinkageTypes Linkage; 2023 if (isUTF16) 2024 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2025 Linkage = llvm::GlobalValue::InternalLinkage; 2026 else 2027 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2028 // when using private linkage. It is not clear if this is a bug in ld 2029 // or a reasonable new restriction. 2030 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2031 2032 // Note: -fwritable-strings doesn't make the backing store strings of 2033 // CFStrings writable. (See <rdar://problem/10657500>) 2034 llvm::GlobalVariable *GV = 2035 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2036 Linkage, C, ".str"); 2037 GV->setUnnamedAddr(true); 2038 if (isUTF16) { 2039 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2040 GV->setAlignment(Align.getQuantity()); 2041 } else { 2042 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2043 GV->setAlignment(Align.getQuantity()); 2044 } 2045 2046 // String. 2047 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2048 2049 if (isUTF16) 2050 // Cast the UTF16 string to the correct type. 2051 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2052 2053 // String length. 2054 Ty = getTypes().ConvertType(getContext().LongTy); 2055 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2056 2057 // The struct. 2058 C = llvm::ConstantStruct::get(STy, Fields); 2059 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2060 llvm::GlobalVariable::PrivateLinkage, C, 2061 "_unnamed_cfstring_"); 2062 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2063 GV->setSection(Sect); 2064 Entry.setValue(GV); 2065 2066 return GV; 2067 } 2068 2069 static RecordDecl * 2070 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2071 DeclContext *DC, IdentifierInfo *Id) { 2072 SourceLocation Loc; 2073 if (Ctx.getLangOpts().CPlusPlus) 2074 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2075 else 2076 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2077 } 2078 2079 llvm::Constant * 2080 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2081 unsigned StringLength = 0; 2082 llvm::StringMapEntry<llvm::Constant*> &Entry = 2083 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2084 2085 if (llvm::Constant *C = Entry.getValue()) 2086 return C; 2087 2088 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2089 llvm::Constant *Zeros[] = { Zero, Zero }; 2090 2091 // If we don't already have it, get _NSConstantStringClassReference. 2092 if (!ConstantStringClassRef) { 2093 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2094 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2095 llvm::Constant *GV; 2096 if (LangOpts.ObjCRuntime.isNonFragile()) { 2097 std::string str = 2098 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2099 : "OBJC_CLASS_$_" + StringClass; 2100 GV = getObjCRuntime().GetClassGlobal(str); 2101 // Make sure the result is of the correct type. 2102 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2103 ConstantStringClassRef = 2104 llvm::ConstantExpr::getBitCast(GV, PTy); 2105 } else { 2106 std::string str = 2107 StringClass.empty() ? "_NSConstantStringClassReference" 2108 : "_" + StringClass + "ClassReference"; 2109 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2110 GV = CreateRuntimeVariable(PTy, str); 2111 // Decay array -> ptr 2112 ConstantStringClassRef = 2113 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2114 } 2115 } 2116 2117 if (!NSConstantStringType) { 2118 // Construct the type for a constant NSString. 2119 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2120 Context.getTranslationUnitDecl(), 2121 &Context.Idents.get("__builtin_NSString")); 2122 D->startDefinition(); 2123 2124 QualType FieldTypes[3]; 2125 2126 // const int *isa; 2127 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2128 // const char *str; 2129 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2130 // unsigned int length; 2131 FieldTypes[2] = Context.UnsignedIntTy; 2132 2133 // Create fields 2134 for (unsigned i = 0; i < 3; ++i) { 2135 FieldDecl *Field = FieldDecl::Create(Context, D, 2136 SourceLocation(), 2137 SourceLocation(), 0, 2138 FieldTypes[i], /*TInfo=*/0, 2139 /*BitWidth=*/0, 2140 /*Mutable=*/false, 2141 ICIS_NoInit); 2142 Field->setAccess(AS_public); 2143 D->addDecl(Field); 2144 } 2145 2146 D->completeDefinition(); 2147 QualType NSTy = Context.getTagDeclType(D); 2148 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2149 } 2150 2151 llvm::Constant *Fields[3]; 2152 2153 // Class pointer. 2154 Fields[0] = ConstantStringClassRef; 2155 2156 // String pointer. 2157 llvm::Constant *C = 2158 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2159 2160 llvm::GlobalValue::LinkageTypes Linkage; 2161 bool isConstant; 2162 Linkage = llvm::GlobalValue::PrivateLinkage; 2163 isConstant = !LangOpts.WritableStrings; 2164 2165 llvm::GlobalVariable *GV = 2166 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2167 ".str"); 2168 GV->setUnnamedAddr(true); 2169 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2170 GV->setAlignment(Align.getQuantity()); 2171 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2172 2173 // String length. 2174 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2175 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2176 2177 // The struct. 2178 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2179 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2180 llvm::GlobalVariable::PrivateLinkage, C, 2181 "_unnamed_nsstring_"); 2182 // FIXME. Fix section. 2183 if (const char *Sect = 2184 LangOpts.ObjCRuntime.isNonFragile() 2185 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2186 : getContext().getTargetInfo().getNSStringSection()) 2187 GV->setSection(Sect); 2188 Entry.setValue(GV); 2189 2190 return GV; 2191 } 2192 2193 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2194 if (ObjCFastEnumerationStateType.isNull()) { 2195 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2196 Context.getTranslationUnitDecl(), 2197 &Context.Idents.get("__objcFastEnumerationState")); 2198 D->startDefinition(); 2199 2200 QualType FieldTypes[] = { 2201 Context.UnsignedLongTy, 2202 Context.getPointerType(Context.getObjCIdType()), 2203 Context.getPointerType(Context.UnsignedLongTy), 2204 Context.getConstantArrayType(Context.UnsignedLongTy, 2205 llvm::APInt(32, 5), ArrayType::Normal, 0) 2206 }; 2207 2208 for (size_t i = 0; i < 4; ++i) { 2209 FieldDecl *Field = FieldDecl::Create(Context, 2210 D, 2211 SourceLocation(), 2212 SourceLocation(), 0, 2213 FieldTypes[i], /*TInfo=*/0, 2214 /*BitWidth=*/0, 2215 /*Mutable=*/false, 2216 ICIS_NoInit); 2217 Field->setAccess(AS_public); 2218 D->addDecl(Field); 2219 } 2220 2221 D->completeDefinition(); 2222 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2223 } 2224 2225 return ObjCFastEnumerationStateType; 2226 } 2227 2228 llvm::Constant * 2229 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2230 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2231 2232 // Don't emit it as the address of the string, emit the string data itself 2233 // as an inline array. 2234 if (E->getCharByteWidth() == 1) { 2235 SmallString<64> Str(E->getString()); 2236 2237 // Resize the string to the right size, which is indicated by its type. 2238 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2239 Str.resize(CAT->getSize().getZExtValue()); 2240 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2241 } 2242 2243 llvm::ArrayType *AType = 2244 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2245 llvm::Type *ElemTy = AType->getElementType(); 2246 unsigned NumElements = AType->getNumElements(); 2247 2248 // Wide strings have either 2-byte or 4-byte elements. 2249 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2250 SmallVector<uint16_t, 32> Elements; 2251 Elements.reserve(NumElements); 2252 2253 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2254 Elements.push_back(E->getCodeUnit(i)); 2255 Elements.resize(NumElements); 2256 return llvm::ConstantDataArray::get(VMContext, Elements); 2257 } 2258 2259 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2260 SmallVector<uint32_t, 32> Elements; 2261 Elements.reserve(NumElements); 2262 2263 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2264 Elements.push_back(E->getCodeUnit(i)); 2265 Elements.resize(NumElements); 2266 return llvm::ConstantDataArray::get(VMContext, Elements); 2267 } 2268 2269 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2270 /// constant array for the given string literal. 2271 llvm::Constant * 2272 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2273 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2274 if (S->isAscii() || S->isUTF8()) { 2275 SmallString<64> Str(S->getString()); 2276 2277 // Resize the string to the right size, which is indicated by its type. 2278 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2279 Str.resize(CAT->getSize().getZExtValue()); 2280 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2281 } 2282 2283 // FIXME: the following does not memoize wide strings. 2284 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2285 llvm::GlobalVariable *GV = 2286 new llvm::GlobalVariable(getModule(),C->getType(), 2287 !LangOpts.WritableStrings, 2288 llvm::GlobalValue::PrivateLinkage, 2289 C,".str"); 2290 2291 GV->setAlignment(Align.getQuantity()); 2292 GV->setUnnamedAddr(true); 2293 return GV; 2294 } 2295 2296 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2297 /// array for the given ObjCEncodeExpr node. 2298 llvm::Constant * 2299 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2300 std::string Str; 2301 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2302 2303 return GetAddrOfConstantCString(Str); 2304 } 2305 2306 2307 /// GenerateWritableString -- Creates storage for a string literal. 2308 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2309 bool constant, 2310 CodeGenModule &CGM, 2311 const char *GlobalName, 2312 unsigned Alignment) { 2313 // Create Constant for this string literal. Don't add a '\0'. 2314 llvm::Constant *C = 2315 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2316 2317 // Create a global variable for this string 2318 llvm::GlobalVariable *GV = 2319 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2320 llvm::GlobalValue::PrivateLinkage, 2321 C, GlobalName); 2322 GV->setAlignment(Alignment); 2323 GV->setUnnamedAddr(true); 2324 return GV; 2325 } 2326 2327 /// GetAddrOfConstantString - Returns a pointer to a character array 2328 /// containing the literal. This contents are exactly that of the 2329 /// given string, i.e. it will not be null terminated automatically; 2330 /// see GetAddrOfConstantCString. Note that whether the result is 2331 /// actually a pointer to an LLVM constant depends on 2332 /// Feature.WriteableStrings. 2333 /// 2334 /// The result has pointer to array type. 2335 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2336 const char *GlobalName, 2337 unsigned Alignment) { 2338 // Get the default prefix if a name wasn't specified. 2339 if (!GlobalName) 2340 GlobalName = ".str"; 2341 2342 // Don't share any string literals if strings aren't constant. 2343 if (LangOpts.WritableStrings) 2344 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2345 2346 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2347 ConstantStringMap.GetOrCreateValue(Str); 2348 2349 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2350 if (Alignment > GV->getAlignment()) { 2351 GV->setAlignment(Alignment); 2352 } 2353 return GV; 2354 } 2355 2356 // Create a global variable for this. 2357 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2358 Alignment); 2359 Entry.setValue(GV); 2360 return GV; 2361 } 2362 2363 /// GetAddrOfConstantCString - Returns a pointer to a character 2364 /// array containing the literal and a terminating '\0' 2365 /// character. The result has pointer to array type. 2366 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2367 const char *GlobalName, 2368 unsigned Alignment) { 2369 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2370 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2371 } 2372 2373 /// EmitObjCPropertyImplementations - Emit information for synthesized 2374 /// properties for an implementation. 2375 void CodeGenModule::EmitObjCPropertyImplementations(const 2376 ObjCImplementationDecl *D) { 2377 for (ObjCImplementationDecl::propimpl_iterator 2378 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2379 ObjCPropertyImplDecl *PID = *i; 2380 2381 // Dynamic is just for type-checking. 2382 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2383 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2384 2385 // Determine which methods need to be implemented, some may have 2386 // been overridden. Note that ::isSynthesized is not the method 2387 // we want, that just indicates if the decl came from a 2388 // property. What we want to know is if the method is defined in 2389 // this implementation. 2390 if (!D->getInstanceMethod(PD->getGetterName())) 2391 CodeGenFunction(*this).GenerateObjCGetter( 2392 const_cast<ObjCImplementationDecl *>(D), PID); 2393 if (!PD->isReadOnly() && 2394 !D->getInstanceMethod(PD->getSetterName())) 2395 CodeGenFunction(*this).GenerateObjCSetter( 2396 const_cast<ObjCImplementationDecl *>(D), PID); 2397 } 2398 } 2399 } 2400 2401 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2402 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2403 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2404 ivar; ivar = ivar->getNextIvar()) 2405 if (ivar->getType().isDestructedType()) 2406 return true; 2407 2408 return false; 2409 } 2410 2411 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2412 /// for an implementation. 2413 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2414 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2415 if (needsDestructMethod(D)) { 2416 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2417 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2418 ObjCMethodDecl *DTORMethod = 2419 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2420 cxxSelector, getContext().VoidTy, 0, D, 2421 /*isInstance=*/true, /*isVariadic=*/false, 2422 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2423 /*isDefined=*/false, ObjCMethodDecl::Required); 2424 D->addInstanceMethod(DTORMethod); 2425 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2426 D->setHasCXXStructors(true); 2427 } 2428 2429 // If the implementation doesn't have any ivar initializers, we don't need 2430 // a .cxx_construct. 2431 if (D->getNumIvarInitializers() == 0) 2432 return; 2433 2434 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2435 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2436 // The constructor returns 'self'. 2437 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2438 D->getLocation(), 2439 D->getLocation(), 2440 cxxSelector, 2441 getContext().getObjCIdType(), 0, 2442 D, /*isInstance=*/true, 2443 /*isVariadic=*/false, 2444 /*isSynthesized=*/true, 2445 /*isImplicitlyDeclared=*/true, 2446 /*isDefined=*/false, 2447 ObjCMethodDecl::Required); 2448 D->addInstanceMethod(CTORMethod); 2449 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2450 D->setHasCXXStructors(true); 2451 } 2452 2453 /// EmitNamespace - Emit all declarations in a namespace. 2454 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2455 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2456 I != E; ++I) 2457 EmitTopLevelDecl(*I); 2458 } 2459 2460 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2461 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2462 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2463 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2464 ErrorUnsupported(LSD, "linkage spec"); 2465 return; 2466 } 2467 2468 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2469 I != E; ++I) 2470 EmitTopLevelDecl(*I); 2471 } 2472 2473 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2474 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2475 // If an error has occurred, stop code generation, but continue 2476 // parsing and semantic analysis (to ensure all warnings and errors 2477 // are emitted). 2478 if (Diags.hasErrorOccurred()) 2479 return; 2480 2481 // Ignore dependent declarations. 2482 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2483 return; 2484 2485 switch (D->getKind()) { 2486 case Decl::CXXConversion: 2487 case Decl::CXXMethod: 2488 case Decl::Function: 2489 // Skip function templates 2490 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2491 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2492 return; 2493 2494 EmitGlobal(cast<FunctionDecl>(D)); 2495 break; 2496 2497 case Decl::Var: 2498 EmitGlobal(cast<VarDecl>(D)); 2499 break; 2500 2501 // Indirect fields from global anonymous structs and unions can be 2502 // ignored; only the actual variable requires IR gen support. 2503 case Decl::IndirectField: 2504 break; 2505 2506 // C++ Decls 2507 case Decl::Namespace: 2508 EmitNamespace(cast<NamespaceDecl>(D)); 2509 break; 2510 // No code generation needed. 2511 case Decl::UsingShadow: 2512 case Decl::Using: 2513 case Decl::UsingDirective: 2514 case Decl::ClassTemplate: 2515 case Decl::FunctionTemplate: 2516 case Decl::TypeAliasTemplate: 2517 case Decl::NamespaceAlias: 2518 case Decl::Block: 2519 case Decl::Import: 2520 break; 2521 case Decl::CXXConstructor: 2522 // Skip function templates 2523 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2524 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2525 return; 2526 2527 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2528 break; 2529 case Decl::CXXDestructor: 2530 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2531 return; 2532 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2533 break; 2534 2535 case Decl::StaticAssert: 2536 // Nothing to do. 2537 break; 2538 2539 // Objective-C Decls 2540 2541 // Forward declarations, no (immediate) code generation. 2542 case Decl::ObjCInterface: 2543 break; 2544 2545 case Decl::ObjCCategory: { 2546 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2547 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2548 Context.ResetObjCLayout(CD->getClassInterface()); 2549 break; 2550 } 2551 2552 case Decl::ObjCProtocol: { 2553 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2554 if (Proto->isThisDeclarationADefinition()) 2555 ObjCRuntime->GenerateProtocol(Proto); 2556 break; 2557 } 2558 2559 case Decl::ObjCCategoryImpl: 2560 // Categories have properties but don't support synthesize so we 2561 // can ignore them here. 2562 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2563 break; 2564 2565 case Decl::ObjCImplementation: { 2566 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2567 if (LangOpts.ObjCRuntime.isNonFragile() && OMD->hasSynthBitfield()) 2568 Context.ResetObjCLayout(OMD->getClassInterface()); 2569 EmitObjCPropertyImplementations(OMD); 2570 EmitObjCIvarInitializations(OMD); 2571 ObjCRuntime->GenerateClass(OMD); 2572 // Emit global variable debug information. 2573 if (CGDebugInfo *DI = getModuleDebugInfo()) 2574 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()), 2575 OMD->getLocation()); 2576 2577 break; 2578 } 2579 case Decl::ObjCMethod: { 2580 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2581 // If this is not a prototype, emit the body. 2582 if (OMD->getBody()) 2583 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2584 break; 2585 } 2586 case Decl::ObjCCompatibleAlias: 2587 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2588 break; 2589 2590 case Decl::LinkageSpec: 2591 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2592 break; 2593 2594 case Decl::FileScopeAsm: { 2595 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2596 StringRef AsmString = AD->getAsmString()->getString(); 2597 2598 const std::string &S = getModule().getModuleInlineAsm(); 2599 if (S.empty()) 2600 getModule().setModuleInlineAsm(AsmString); 2601 else if (*--S.end() == '\n') 2602 getModule().setModuleInlineAsm(S + AsmString.str()); 2603 else 2604 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2605 break; 2606 } 2607 2608 default: 2609 // Make sure we handled everything we should, every other kind is a 2610 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2611 // function. Need to recode Decl::Kind to do that easily. 2612 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2613 } 2614 } 2615 2616 /// Turns the given pointer into a constant. 2617 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2618 const void *Ptr) { 2619 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2620 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2621 return llvm::ConstantInt::get(i64, PtrInt); 2622 } 2623 2624 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2625 llvm::NamedMDNode *&GlobalMetadata, 2626 GlobalDecl D, 2627 llvm::GlobalValue *Addr) { 2628 if (!GlobalMetadata) 2629 GlobalMetadata = 2630 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2631 2632 // TODO: should we report variant information for ctors/dtors? 2633 llvm::Value *Ops[] = { 2634 Addr, 2635 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2636 }; 2637 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2638 } 2639 2640 /// Emits metadata nodes associating all the global values in the 2641 /// current module with the Decls they came from. This is useful for 2642 /// projects using IR gen as a subroutine. 2643 /// 2644 /// Since there's currently no way to associate an MDNode directly 2645 /// with an llvm::GlobalValue, we create a global named metadata 2646 /// with the name 'clang.global.decl.ptrs'. 2647 void CodeGenModule::EmitDeclMetadata() { 2648 llvm::NamedMDNode *GlobalMetadata = 0; 2649 2650 // StaticLocalDeclMap 2651 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2652 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2653 I != E; ++I) { 2654 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2655 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2656 } 2657 } 2658 2659 /// Emits metadata nodes for all the local variables in the current 2660 /// function. 2661 void CodeGenFunction::EmitDeclMetadata() { 2662 if (LocalDeclMap.empty()) return; 2663 2664 llvm::LLVMContext &Context = getLLVMContext(); 2665 2666 // Find the unique metadata ID for this name. 2667 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2668 2669 llvm::NamedMDNode *GlobalMetadata = 0; 2670 2671 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2672 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2673 const Decl *D = I->first; 2674 llvm::Value *Addr = I->second; 2675 2676 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2677 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2678 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2679 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2680 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2681 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2682 } 2683 } 2684 } 2685 2686 void CodeGenModule::EmitCoverageFile() { 2687 if (!getCodeGenOpts().CoverageFile.empty()) { 2688 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2689 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2690 llvm::LLVMContext &Ctx = TheModule.getContext(); 2691 llvm::MDString *CoverageFile = 2692 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2693 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2694 llvm::MDNode *CU = CUNode->getOperand(i); 2695 llvm::Value *node[] = { CoverageFile, CU }; 2696 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2697 GCov->addOperand(N); 2698 } 2699 } 2700 } 2701 } 2702