xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 5f2b1ce21ecdacdd5d16a63fd880199befe3d074)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 
71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                              llvm::Module &M, const llvm::DataLayout &TD,
73                              DiagnosticsEngine &diags)
74   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75     Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76     ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77     TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78     ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80     RRData(0), CFConstantStringClassRef(0),
81     ConstantStringClassRef(0), NSConstantStringType(0),
82     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83     BlockObjectAssign(0), BlockObjectDispose(0),
84     BlockDescriptorType(0), GenericBlockLiteralType(0),
85     LifetimeStartFn(0), LifetimeEndFn(0),
86     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87     SanOpts(SanitizerBlacklist.isIn(M) ?
88             SanitizerOptions::Disabled : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::Release() {
176   EmitDeferred();
177   EmitCXXGlobalInitFunc();
178   EmitCXXGlobalDtorFunc();
179   EmitCXXThreadLocalInitFunc();
180   if (ObjCRuntime)
181     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182       AddGlobalCtor(ObjCInitFunction);
183   EmitCtorList(GlobalCtors, "llvm.global_ctors");
184   EmitCtorList(GlobalDtors, "llvm.global_dtors");
185   EmitGlobalAnnotations();
186   EmitStaticExternCAliases();
187   EmitLLVMUsed();
188 
189   if (CodeGenOpts.Autolink &&
190       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
191     EmitModuleLinkOptions();
192   }
193 
194   SimplifyPersonality();
195 
196   if (getCodeGenOpts().EmitDeclMetadata)
197     EmitDeclMetadata();
198 
199   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
200     EmitCoverageFile();
201 
202   if (DebugInfo)
203     DebugInfo->finalize();
204 }
205 
206 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
207   // Make sure that this type is translated.
208   Types.UpdateCompletedType(TD);
209 }
210 
211 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
212   if (!TBAA)
213     return 0;
214   return TBAA->getTBAAInfo(QTy);
215 }
216 
217 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
218   if (!TBAA)
219     return 0;
220   return TBAA->getTBAAInfoForVTablePtr();
221 }
222 
223 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
224   if (!TBAA)
225     return 0;
226   return TBAA->getTBAAStructInfo(QTy);
227 }
228 
229 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
230   if (!TBAA)
231     return 0;
232   return TBAA->getTBAAStructTypeInfo(QTy);
233 }
234 
235 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
236                                                   llvm::MDNode *AccessN,
237                                                   uint64_t O) {
238   if (!TBAA)
239     return 0;
240   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
241 }
242 
243 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
244 /// is the same as the type. For struct-path aware TBAA, the tag
245 /// is different from the type: base type, access type and offset.
246 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
247 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
248                                         llvm::MDNode *TBAAInfo,
249                                         bool ConvertTypeToTag) {
250   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
251     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
252                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
253   else
254     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
255 }
256 
257 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
258   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
259   getDiags().Report(Context.getFullLoc(loc), diagID);
260 }
261 
262 /// ErrorUnsupported - Print out an error that codegen doesn't support the
263 /// specified stmt yet.
264 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
265                                      bool OmitOnError) {
266   if (OmitOnError && getDiags().hasErrorOccurred())
267     return;
268   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
269                                                "cannot compile this %0 yet");
270   std::string Msg = Type;
271   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
272     << Msg << S->getSourceRange();
273 }
274 
275 /// ErrorUnsupported - Print out an error that codegen doesn't support the
276 /// specified decl yet.
277 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
278                                      bool OmitOnError) {
279   if (OmitOnError && getDiags().hasErrorOccurred())
280     return;
281   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
282                                                "cannot compile this %0 yet");
283   std::string Msg = Type;
284   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
285 }
286 
287 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
288   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
289 }
290 
291 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
292                                         const NamedDecl *D) const {
293   // Internal definitions always have default visibility.
294   if (GV->hasLocalLinkage()) {
295     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
296     return;
297   }
298 
299   // Set visibility for definitions.
300   LinkageInfo LV = D->getLinkageAndVisibility();
301   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
302     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
303 }
304 
305 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
306   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
307       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
308       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
309       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
310       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
311 }
312 
313 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
314     CodeGenOptions::TLSModel M) {
315   switch (M) {
316   case CodeGenOptions::GeneralDynamicTLSModel:
317     return llvm::GlobalVariable::GeneralDynamicTLSModel;
318   case CodeGenOptions::LocalDynamicTLSModel:
319     return llvm::GlobalVariable::LocalDynamicTLSModel;
320   case CodeGenOptions::InitialExecTLSModel:
321     return llvm::GlobalVariable::InitialExecTLSModel;
322   case CodeGenOptions::LocalExecTLSModel:
323     return llvm::GlobalVariable::LocalExecTLSModel;
324   }
325   llvm_unreachable("Invalid TLS model!");
326 }
327 
328 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
329                                const VarDecl &D) const {
330   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
331 
332   llvm::GlobalVariable::ThreadLocalMode TLM;
333   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
334 
335   // Override the TLS model if it is explicitly specified.
336   if (D.hasAttr<TLSModelAttr>()) {
337     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
338     TLM = GetLLVMTLSModel(Attr->getModel());
339   }
340 
341   GV->setThreadLocalMode(TLM);
342 }
343 
344 /// Set the symbol visibility of type information (vtable and RTTI)
345 /// associated with the given type.
346 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
347                                       const CXXRecordDecl *RD,
348                                       TypeVisibilityKind TVK) const {
349   setGlobalVisibility(GV, RD);
350 
351   if (!CodeGenOpts.HiddenWeakVTables)
352     return;
353 
354   // We never want to drop the visibility for RTTI names.
355   if (TVK == TVK_ForRTTIName)
356     return;
357 
358   // We want to drop the visibility to hidden for weak type symbols.
359   // This isn't possible if there might be unresolved references
360   // elsewhere that rely on this symbol being visible.
361 
362   // This should be kept roughly in sync with setThunkVisibility
363   // in CGVTables.cpp.
364 
365   // Preconditions.
366   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
367       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
368     return;
369 
370   // Don't override an explicit visibility attribute.
371   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
372     return;
373 
374   switch (RD->getTemplateSpecializationKind()) {
375   // We have to disable the optimization if this is an EI definition
376   // because there might be EI declarations in other shared objects.
377   case TSK_ExplicitInstantiationDefinition:
378   case TSK_ExplicitInstantiationDeclaration:
379     return;
380 
381   // Every use of a non-template class's type information has to emit it.
382   case TSK_Undeclared:
383     break;
384 
385   // In theory, implicit instantiations can ignore the possibility of
386   // an explicit instantiation declaration because there necessarily
387   // must be an EI definition somewhere with default visibility.  In
388   // practice, it's possible to have an explicit instantiation for
389   // an arbitrary template class, and linkers aren't necessarily able
390   // to deal with mixed-visibility symbols.
391   case TSK_ExplicitSpecialization:
392   case TSK_ImplicitInstantiation:
393     return;
394   }
395 
396   // If there's a key function, there may be translation units
397   // that don't have the key function's definition.  But ignore
398   // this if we're emitting RTTI under -fno-rtti.
399   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
400     // FIXME: what should we do if we "lose" the key function during
401     // the emission of the file?
402     if (Context.getCurrentKeyFunction(RD))
403       return;
404   }
405 
406   // Otherwise, drop the visibility to hidden.
407   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
408   GV->setUnnamedAddr(true);
409 }
410 
411 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
412   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
413 
414   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
415   if (!Str.empty())
416     return Str;
417 
418   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
419     IdentifierInfo *II = ND->getIdentifier();
420     assert(II && "Attempt to mangle unnamed decl.");
421 
422     Str = II->getName();
423     return Str;
424   }
425 
426   SmallString<256> Buffer;
427   llvm::raw_svector_ostream Out(Buffer);
428   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
429     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
430   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
431     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
432   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
433     getCXXABI().getMangleContext().mangleBlock(BD, Out,
434       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
435   else
436     getCXXABI().getMangleContext().mangleName(ND, Out);
437 
438   // Allocate space for the mangled name.
439   Out.flush();
440   size_t Length = Buffer.size();
441   char *Name = MangledNamesAllocator.Allocate<char>(Length);
442   std::copy(Buffer.begin(), Buffer.end(), Name);
443 
444   Str = StringRef(Name, Length);
445 
446   return Str;
447 }
448 
449 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
450                                         const BlockDecl *BD) {
451   MangleContext &MangleCtx = getCXXABI().getMangleContext();
452   const Decl *D = GD.getDecl();
453   llvm::raw_svector_ostream Out(Buffer.getBuffer());
454   if (D == 0)
455     MangleCtx.mangleGlobalBlock(BD,
456       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
457   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
458     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
459   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
460     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
461   else
462     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
463 }
464 
465 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
466   return getModule().getNamedValue(Name);
467 }
468 
469 /// AddGlobalCtor - Add a function to the list that will be called before
470 /// main() runs.
471 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
472   // FIXME: Type coercion of void()* types.
473   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
474 }
475 
476 /// AddGlobalDtor - Add a function to the list that will be called
477 /// when the module is unloaded.
478 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
479   // FIXME: Type coercion of void()* types.
480   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
481 }
482 
483 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
484   // Ctor function type is void()*.
485   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
486   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
487 
488   // Get the type of a ctor entry, { i32, void ()* }.
489   llvm::StructType *CtorStructTy =
490     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
491 
492   // Construct the constructor and destructor arrays.
493   SmallVector<llvm::Constant*, 8> Ctors;
494   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
495     llvm::Constant *S[] = {
496       llvm::ConstantInt::get(Int32Ty, I->second, false),
497       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
498     };
499     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
500   }
501 
502   if (!Ctors.empty()) {
503     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
504     new llvm::GlobalVariable(TheModule, AT, false,
505                              llvm::GlobalValue::AppendingLinkage,
506                              llvm::ConstantArray::get(AT, Ctors),
507                              GlobalName);
508   }
509 }
510 
511 llvm::GlobalValue::LinkageTypes
512 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
513   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
514 
515   if (Linkage == GVA_Internal)
516     return llvm::Function::InternalLinkage;
517 
518   if (D->hasAttr<DLLExportAttr>())
519     return llvm::Function::DLLExportLinkage;
520 
521   if (D->hasAttr<WeakAttr>())
522     return llvm::Function::WeakAnyLinkage;
523 
524   // In C99 mode, 'inline' functions are guaranteed to have a strong
525   // definition somewhere else, so we can use available_externally linkage.
526   if (Linkage == GVA_C99Inline)
527     return llvm::Function::AvailableExternallyLinkage;
528 
529   // Note that Apple's kernel linker doesn't support symbol
530   // coalescing, so we need to avoid linkonce and weak linkages there.
531   // Normally, this means we just map to internal, but for explicit
532   // instantiations we'll map to external.
533 
534   // In C++, the compiler has to emit a definition in every translation unit
535   // that references the function.  We should use linkonce_odr because
536   // a) if all references in this translation unit are optimized away, we
537   // don't need to codegen it.  b) if the function persists, it needs to be
538   // merged with other definitions. c) C++ has the ODR, so we know the
539   // definition is dependable.
540   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
541     return !Context.getLangOpts().AppleKext
542              ? llvm::Function::LinkOnceODRLinkage
543              : llvm::Function::InternalLinkage;
544 
545   // An explicit instantiation of a template has weak linkage, since
546   // explicit instantiations can occur in multiple translation units
547   // and must all be equivalent. However, we are not allowed to
548   // throw away these explicit instantiations.
549   if (Linkage == GVA_ExplicitTemplateInstantiation)
550     return !Context.getLangOpts().AppleKext
551              ? llvm::Function::WeakODRLinkage
552              : llvm::Function::ExternalLinkage;
553 
554   // Otherwise, we have strong external linkage.
555   assert(Linkage == GVA_StrongExternal);
556   return llvm::Function::ExternalLinkage;
557 }
558 
559 
560 /// SetFunctionDefinitionAttributes - Set attributes for a global.
561 ///
562 /// FIXME: This is currently only done for aliases and functions, but not for
563 /// variables (these details are set in EmitGlobalVarDefinition for variables).
564 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
565                                                     llvm::GlobalValue *GV) {
566   SetCommonAttributes(D, GV);
567 }
568 
569 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
570                                               const CGFunctionInfo &Info,
571                                               llvm::Function *F) {
572   unsigned CallingConv;
573   AttributeListType AttributeList;
574   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
575   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
576   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
577 }
578 
579 /// Determines whether the language options require us to model
580 /// unwind exceptions.  We treat -fexceptions as mandating this
581 /// except under the fragile ObjC ABI with only ObjC exceptions
582 /// enabled.  This means, for example, that C with -fexceptions
583 /// enables this.
584 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
585   // If exceptions are completely disabled, obviously this is false.
586   if (!LangOpts.Exceptions) return false;
587 
588   // If C++ exceptions are enabled, this is true.
589   if (LangOpts.CXXExceptions) return true;
590 
591   // If ObjC exceptions are enabled, this depends on the ABI.
592   if (LangOpts.ObjCExceptions) {
593     return LangOpts.ObjCRuntime.hasUnwindExceptions();
594   }
595 
596   return true;
597 }
598 
599 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
600                                                            llvm::Function *F) {
601   llvm::AttrBuilder B;
602 
603   if (CodeGenOpts.UnwindTables)
604     B.addAttribute(llvm::Attribute::UWTable);
605 
606   if (!hasUnwindExceptions(LangOpts))
607     B.addAttribute(llvm::Attribute::NoUnwind);
608 
609   if (D->hasAttr<NakedAttr>()) {
610     // Naked implies noinline: we should not be inlining such functions.
611     B.addAttribute(llvm::Attribute::Naked);
612     B.addAttribute(llvm::Attribute::NoInline);
613   } else if (D->hasAttr<NoInlineAttr>()) {
614     B.addAttribute(llvm::Attribute::NoInline);
615   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
616               D->hasAttr<ForceInlineAttr>()) &&
617              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
618                                               llvm::Attribute::NoInline)) {
619     // (noinline wins over always_inline, and we can't specify both in IR)
620     B.addAttribute(llvm::Attribute::AlwaysInline);
621   }
622 
623   if (D->hasAttr<ColdAttr>()) {
624     B.addAttribute(llvm::Attribute::OptimizeForSize);
625     B.addAttribute(llvm::Attribute::Cold);
626   }
627 
628   if (D->hasAttr<MinSizeAttr>())
629     B.addAttribute(llvm::Attribute::MinSize);
630 
631   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
632     B.addAttribute(llvm::Attribute::StackProtect);
633   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
634     B.addAttribute(llvm::Attribute::StackProtectReq);
635 
636   // Add sanitizer attributes if function is not blacklisted.
637   if (!SanitizerBlacklist.isIn(*F)) {
638     // When AddressSanitizer is enabled, set SanitizeAddress attribute
639     // unless __attribute__((no_sanitize_address)) is used.
640     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
641       B.addAttribute(llvm::Attribute::SanitizeAddress);
642     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
643     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
644       B.addAttribute(llvm::Attribute::SanitizeThread);
645     }
646     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
647     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
648       B.addAttribute(llvm::Attribute::SanitizeMemory);
649   }
650 
651   F->addAttributes(llvm::AttributeSet::FunctionIndex,
652                    llvm::AttributeSet::get(
653                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
654 
655   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
656     F->setUnnamedAddr(true);
657   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
658     if (MD->isVirtual())
659       F->setUnnamedAddr(true);
660 
661   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
662   if (alignment)
663     F->setAlignment(alignment);
664 
665   // C++ ABI requires 2-byte alignment for member functions.
666   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
667     F->setAlignment(2);
668 }
669 
670 void CodeGenModule::SetCommonAttributes(const Decl *D,
671                                         llvm::GlobalValue *GV) {
672   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
673     setGlobalVisibility(GV, ND);
674   else
675     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
676 
677   if (D->hasAttr<UsedAttr>())
678     AddUsedGlobal(GV);
679 
680   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
681     GV->setSection(SA->getName());
682 
683   // Alias cannot have attributes. Filter them here.
684   if (!isa<llvm::GlobalAlias>(GV))
685     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
686 }
687 
688 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
689                                                   llvm::Function *F,
690                                                   const CGFunctionInfo &FI) {
691   SetLLVMFunctionAttributes(D, FI, F);
692   SetLLVMFunctionAttributesForDefinition(D, F);
693 
694   F->setLinkage(llvm::Function::InternalLinkage);
695 
696   SetCommonAttributes(D, F);
697 }
698 
699 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
700                                           llvm::Function *F,
701                                           bool IsIncompleteFunction) {
702   if (unsigned IID = F->getIntrinsicID()) {
703     // If this is an intrinsic function, set the function's attributes
704     // to the intrinsic's attributes.
705     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
706                                                     (llvm::Intrinsic::ID)IID));
707     return;
708   }
709 
710   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
711 
712   if (!IsIncompleteFunction)
713     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
714 
715   // Only a few attributes are set on declarations; these may later be
716   // overridden by a definition.
717 
718   if (FD->hasAttr<DLLImportAttr>()) {
719     F->setLinkage(llvm::Function::DLLImportLinkage);
720   } else if (FD->hasAttr<WeakAttr>() ||
721              FD->isWeakImported()) {
722     // "extern_weak" is overloaded in LLVM; we probably should have
723     // separate linkage types for this.
724     F->setLinkage(llvm::Function::ExternalWeakLinkage);
725   } else {
726     F->setLinkage(llvm::Function::ExternalLinkage);
727 
728     LinkageInfo LV = FD->getLinkageAndVisibility();
729     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
730       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
731     }
732   }
733 
734   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
735     F->setSection(SA->getName());
736 }
737 
738 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
739   assert(!GV->isDeclaration() &&
740          "Only globals with definition can force usage.");
741   LLVMUsed.push_back(GV);
742 }
743 
744 void CodeGenModule::EmitLLVMUsed() {
745   // Don't create llvm.used if there is no need.
746   if (LLVMUsed.empty())
747     return;
748 
749   // Convert LLVMUsed to what ConstantArray needs.
750   SmallVector<llvm::Constant*, 8> UsedArray;
751   UsedArray.resize(LLVMUsed.size());
752   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
753     UsedArray[i] =
754      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
755                                     Int8PtrTy);
756   }
757 
758   if (UsedArray.empty())
759     return;
760   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
761 
762   llvm::GlobalVariable *GV =
763     new llvm::GlobalVariable(getModule(), ATy, false,
764                              llvm::GlobalValue::AppendingLinkage,
765                              llvm::ConstantArray::get(ATy, UsedArray),
766                              "llvm.used");
767 
768   GV->setSection("llvm.metadata");
769 }
770 
771 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
772   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
773   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
774 }
775 
776 void CodeGenModule::AddDependentLib(StringRef Lib) {
777   llvm::SmallString<24> Opt;
778   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
779   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
780   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
781 }
782 
783 /// \brief Add link options implied by the given module, including modules
784 /// it depends on, using a postorder walk.
785 static void addLinkOptionsPostorder(CodeGenModule &CGM,
786                                     Module *Mod,
787                                     SmallVectorImpl<llvm::Value *> &Metadata,
788                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
789   // Import this module's parent.
790   if (Mod->Parent && Visited.insert(Mod->Parent)) {
791     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
792   }
793 
794   // Import this module's dependencies.
795   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
796     if (Visited.insert(Mod->Imports[I-1]))
797       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
798   }
799 
800   // Add linker options to link against the libraries/frameworks
801   // described by this module.
802   llvm::LLVMContext &Context = CGM.getLLVMContext();
803   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
804     // Link against a framework.  Frameworks are currently Darwin only, so we
805     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
806     if (Mod->LinkLibraries[I-1].IsFramework) {
807       llvm::Value *Args[2] = {
808         llvm::MDString::get(Context, "-framework"),
809         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
810       };
811 
812       Metadata.push_back(llvm::MDNode::get(Context, Args));
813       continue;
814     }
815 
816     // Link against a library.
817     llvm::SmallString<24> Opt;
818     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
819       Mod->LinkLibraries[I-1].Library, Opt);
820     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
821     Metadata.push_back(llvm::MDNode::get(Context, OptString));
822   }
823 }
824 
825 void CodeGenModule::EmitModuleLinkOptions() {
826   // Collect the set of all of the modules we want to visit to emit link
827   // options, which is essentially the imported modules and all of their
828   // non-explicit child modules.
829   llvm::SetVector<clang::Module *> LinkModules;
830   llvm::SmallPtrSet<clang::Module *, 16> Visited;
831   SmallVector<clang::Module *, 16> Stack;
832 
833   // Seed the stack with imported modules.
834   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
835                                                MEnd = ImportedModules.end();
836        M != MEnd; ++M) {
837     if (Visited.insert(*M))
838       Stack.push_back(*M);
839   }
840 
841   // Find all of the modules to import, making a little effort to prune
842   // non-leaf modules.
843   while (!Stack.empty()) {
844     clang::Module *Mod = Stack.back();
845     Stack.pop_back();
846 
847     bool AnyChildren = false;
848 
849     // Visit the submodules of this module.
850     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
851                                         SubEnd = Mod->submodule_end();
852          Sub != SubEnd; ++Sub) {
853       // Skip explicit children; they need to be explicitly imported to be
854       // linked against.
855       if ((*Sub)->IsExplicit)
856         continue;
857 
858       if (Visited.insert(*Sub)) {
859         Stack.push_back(*Sub);
860         AnyChildren = true;
861       }
862     }
863 
864     // We didn't find any children, so add this module to the list of
865     // modules to link against.
866     if (!AnyChildren) {
867       LinkModules.insert(Mod);
868     }
869   }
870 
871   // Add link options for all of the imported modules in reverse topological
872   // order.  We don't do anything to try to order import link flags with respect
873   // to linker options inserted by things like #pragma comment().
874   SmallVector<llvm::Value *, 16> MetadataArgs;
875   Visited.clear();
876   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
877                                                MEnd = LinkModules.end();
878        M != MEnd; ++M) {
879     if (Visited.insert(*M))
880       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
881   }
882   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
883   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
884 
885   // Add the linker options metadata flag.
886   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
887                             llvm::MDNode::get(getLLVMContext(),
888                                               LinkerOptionsMetadata));
889 }
890 
891 void CodeGenModule::EmitDeferred() {
892   // Emit code for any potentially referenced deferred decls.  Since a
893   // previously unused static decl may become used during the generation of code
894   // for a static function, iterate until no changes are made.
895 
896   while (true) {
897     if (!DeferredVTables.empty()) {
898       EmitDeferredVTables();
899 
900       // Emitting a v-table doesn't directly cause more v-tables to
901       // become deferred, although it can cause functions to be
902       // emitted that then need those v-tables.
903       assert(DeferredVTables.empty());
904     }
905 
906     // Stop if we're out of both deferred v-tables and deferred declarations.
907     if (DeferredDeclsToEmit.empty()) break;
908 
909     GlobalDecl D = DeferredDeclsToEmit.back();
910     DeferredDeclsToEmit.pop_back();
911 
912     // Check to see if we've already emitted this.  This is necessary
913     // for a couple of reasons: first, decls can end up in the
914     // deferred-decls queue multiple times, and second, decls can end
915     // up with definitions in unusual ways (e.g. by an extern inline
916     // function acquiring a strong function redefinition).  Just
917     // ignore these cases.
918     //
919     // TODO: That said, looking this up multiple times is very wasteful.
920     StringRef Name = getMangledName(D);
921     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
922     assert(CGRef && "Deferred decl wasn't referenced?");
923 
924     if (!CGRef->isDeclaration())
925       continue;
926 
927     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
928     // purposes an alias counts as a definition.
929     if (isa<llvm::GlobalAlias>(CGRef))
930       continue;
931 
932     // Otherwise, emit the definition and move on to the next one.
933     EmitGlobalDefinition(D);
934   }
935 }
936 
937 void CodeGenModule::EmitGlobalAnnotations() {
938   if (Annotations.empty())
939     return;
940 
941   // Create a new global variable for the ConstantStruct in the Module.
942   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
943     Annotations[0]->getType(), Annotations.size()), Annotations);
944   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
945     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
946     "llvm.global.annotations");
947   gv->setSection(AnnotationSection);
948 }
949 
950 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
951   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
952   if (i != AnnotationStrings.end())
953     return i->second;
954 
955   // Not found yet, create a new global.
956   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
957   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
958     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
959   gv->setSection(AnnotationSection);
960   gv->setUnnamedAddr(true);
961   AnnotationStrings[Str] = gv;
962   return gv;
963 }
964 
965 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
966   SourceManager &SM = getContext().getSourceManager();
967   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
968   if (PLoc.isValid())
969     return EmitAnnotationString(PLoc.getFilename());
970   return EmitAnnotationString(SM.getBufferName(Loc));
971 }
972 
973 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
974   SourceManager &SM = getContext().getSourceManager();
975   PresumedLoc PLoc = SM.getPresumedLoc(L);
976   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
977     SM.getExpansionLineNumber(L);
978   return llvm::ConstantInt::get(Int32Ty, LineNo);
979 }
980 
981 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
982                                                 const AnnotateAttr *AA,
983                                                 SourceLocation L) {
984   // Get the globals for file name, annotation, and the line number.
985   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
986                  *UnitGV = EmitAnnotationUnit(L),
987                  *LineNoCst = EmitAnnotationLineNo(L);
988 
989   // Create the ConstantStruct for the global annotation.
990   llvm::Constant *Fields[4] = {
991     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
992     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
993     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
994     LineNoCst
995   };
996   return llvm::ConstantStruct::getAnon(Fields);
997 }
998 
999 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1000                                          llvm::GlobalValue *GV) {
1001   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1002   // Get the struct elements for these annotations.
1003   for (specific_attr_iterator<AnnotateAttr>
1004        ai = D->specific_attr_begin<AnnotateAttr>(),
1005        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1006     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1007 }
1008 
1009 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1010   // Never defer when EmitAllDecls is specified.
1011   if (LangOpts.EmitAllDecls)
1012     return false;
1013 
1014   return !getContext().DeclMustBeEmitted(Global);
1015 }
1016 
1017 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1018     const CXXUuidofExpr* E) {
1019   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1020   // well-formed.
1021   StringRef Uuid;
1022   if (E->isTypeOperand())
1023     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1024   else {
1025     // Special case: __uuidof(0) means an all-zero GUID.
1026     Expr *Op = E->getExprOperand();
1027     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1028       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1029     else
1030       Uuid = "00000000-0000-0000-0000-000000000000";
1031   }
1032   std::string Name = "__uuid_" + Uuid.str();
1033 
1034   // Look for an existing global.
1035   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1036     return GV;
1037 
1038   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1039   assert(Init && "failed to initialize as constant");
1040 
1041   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1042   // first field is declared as "long", which for many targets is 8 bytes.
1043   // Those architectures are not supported. (With the MS abi, long is always 4
1044   // bytes.)
1045   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1046   if (Init->getType() != GuidType) {
1047     DiagnosticsEngine &Diags = getDiags();
1048     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1049         "__uuidof codegen is not supported on this architecture");
1050     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1051     Init = llvm::UndefValue::get(GuidType);
1052   }
1053 
1054   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1055       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1056   GV->setUnnamedAddr(true);
1057   return GV;
1058 }
1059 
1060 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1061   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1062   assert(AA && "No alias?");
1063 
1064   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1065 
1066   // See if there is already something with the target's name in the module.
1067   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1068   if (Entry) {
1069     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1070     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1071   }
1072 
1073   llvm::Constant *Aliasee;
1074   if (isa<llvm::FunctionType>(DeclTy))
1075     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1076                                       GlobalDecl(cast<FunctionDecl>(VD)),
1077                                       /*ForVTable=*/false);
1078   else
1079     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1080                                     llvm::PointerType::getUnqual(DeclTy), 0);
1081 
1082   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1083   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1084   WeakRefReferences.insert(F);
1085 
1086   return Aliasee;
1087 }
1088 
1089 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1090   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1091 
1092   // Weak references don't produce any output by themselves.
1093   if (Global->hasAttr<WeakRefAttr>())
1094     return;
1095 
1096   // If this is an alias definition (which otherwise looks like a declaration)
1097   // emit it now.
1098   if (Global->hasAttr<AliasAttr>())
1099     return EmitAliasDefinition(GD);
1100 
1101   // If this is CUDA, be selective about which declarations we emit.
1102   if (LangOpts.CUDA) {
1103     if (CodeGenOpts.CUDAIsDevice) {
1104       if (!Global->hasAttr<CUDADeviceAttr>() &&
1105           !Global->hasAttr<CUDAGlobalAttr>() &&
1106           !Global->hasAttr<CUDAConstantAttr>() &&
1107           !Global->hasAttr<CUDASharedAttr>())
1108         return;
1109     } else {
1110       if (!Global->hasAttr<CUDAHostAttr>() && (
1111             Global->hasAttr<CUDADeviceAttr>() ||
1112             Global->hasAttr<CUDAConstantAttr>() ||
1113             Global->hasAttr<CUDASharedAttr>()))
1114         return;
1115     }
1116   }
1117 
1118   // Ignore declarations, they will be emitted on their first use.
1119   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1120     // Forward declarations are emitted lazily on first use.
1121     if (!FD->doesThisDeclarationHaveABody()) {
1122       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1123         return;
1124 
1125       const FunctionDecl *InlineDefinition = 0;
1126       FD->getBody(InlineDefinition);
1127 
1128       StringRef MangledName = getMangledName(GD);
1129       DeferredDecls.erase(MangledName);
1130       EmitGlobalDefinition(InlineDefinition);
1131       return;
1132     }
1133   } else {
1134     const VarDecl *VD = cast<VarDecl>(Global);
1135     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1136 
1137     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1138       return;
1139   }
1140 
1141   // Defer code generation when possible if this is a static definition, inline
1142   // function etc.  These we only want to emit if they are used.
1143   if (!MayDeferGeneration(Global)) {
1144     // Emit the definition if it can't be deferred.
1145     EmitGlobalDefinition(GD);
1146     return;
1147   }
1148 
1149   // If we're deferring emission of a C++ variable with an
1150   // initializer, remember the order in which it appeared in the file.
1151   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1152       cast<VarDecl>(Global)->hasInit()) {
1153     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1154     CXXGlobalInits.push_back(0);
1155   }
1156 
1157   // If the value has already been used, add it directly to the
1158   // DeferredDeclsToEmit list.
1159   StringRef MangledName = getMangledName(GD);
1160   if (GetGlobalValue(MangledName))
1161     DeferredDeclsToEmit.push_back(GD);
1162   else {
1163     // Otherwise, remember that we saw a deferred decl with this name.  The
1164     // first use of the mangled name will cause it to move into
1165     // DeferredDeclsToEmit.
1166     DeferredDecls[MangledName] = GD;
1167   }
1168 }
1169 
1170 namespace {
1171   struct FunctionIsDirectlyRecursive :
1172     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1173     const StringRef Name;
1174     const Builtin::Context &BI;
1175     bool Result;
1176     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1177       Name(N), BI(C), Result(false) {
1178     }
1179     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1180 
1181     bool TraverseCallExpr(CallExpr *E) {
1182       const FunctionDecl *FD = E->getDirectCallee();
1183       if (!FD)
1184         return true;
1185       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1186       if (Attr && Name == Attr->getLabel()) {
1187         Result = true;
1188         return false;
1189       }
1190       unsigned BuiltinID = FD->getBuiltinID();
1191       if (!BuiltinID)
1192         return true;
1193       StringRef BuiltinName = BI.GetName(BuiltinID);
1194       if (BuiltinName.startswith("__builtin_") &&
1195           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1196         Result = true;
1197         return false;
1198       }
1199       return true;
1200     }
1201   };
1202 }
1203 
1204 // isTriviallyRecursive - Check if this function calls another
1205 // decl that, because of the asm attribute or the other decl being a builtin,
1206 // ends up pointing to itself.
1207 bool
1208 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1209   StringRef Name;
1210   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1211     // asm labels are a special kind of mangling we have to support.
1212     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1213     if (!Attr)
1214       return false;
1215     Name = Attr->getLabel();
1216   } else {
1217     Name = FD->getName();
1218   }
1219 
1220   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1221   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1222   return Walker.Result;
1223 }
1224 
1225 bool
1226 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1227   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1228     return true;
1229   if (CodeGenOpts.OptimizationLevel == 0 &&
1230       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1231     return false;
1232   // PR9614. Avoid cases where the source code is lying to us. An available
1233   // externally function should have an equivalent function somewhere else,
1234   // but a function that calls itself is clearly not equivalent to the real
1235   // implementation.
1236   // This happens in glibc's btowc and in some configure checks.
1237   return !isTriviallyRecursive(F);
1238 }
1239 
1240 /// If the type for the method's class was generated by
1241 /// CGDebugInfo::createContextChain(), the cache contains only a
1242 /// limited DIType without any declarations. Since EmitFunctionStart()
1243 /// needs to find the canonical declaration for each method, we need
1244 /// to construct the complete type prior to emitting the method.
1245 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1246   if (!D->isInstance())
1247     return;
1248 
1249   if (CGDebugInfo *DI = getModuleDebugInfo())
1250     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1251       const PointerType *ThisPtr =
1252         cast<PointerType>(D->getThisType(getContext()));
1253       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1254     }
1255 }
1256 
1257 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1258   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1259 
1260   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1261                                  Context.getSourceManager(),
1262                                  "Generating code for declaration");
1263 
1264   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1265     // At -O0, don't generate IR for functions with available_externally
1266     // linkage.
1267     if (!shouldEmitFunction(Function))
1268       return;
1269 
1270     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1271       CompleteDIClassType(Method);
1272       // Make sure to emit the definition(s) before we emit the thunks.
1273       // This is necessary for the generation of certain thunks.
1274       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1275         EmitCXXConstructor(CD, GD.getCtorType());
1276       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1277         EmitCXXDestructor(DD, GD.getDtorType());
1278       else
1279         EmitGlobalFunctionDefinition(GD);
1280 
1281       if (Method->isVirtual())
1282         getVTables().EmitThunks(GD);
1283 
1284       return;
1285     }
1286 
1287     return EmitGlobalFunctionDefinition(GD);
1288   }
1289 
1290   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1291     return EmitGlobalVarDefinition(VD);
1292 
1293   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1294 }
1295 
1296 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1297 /// module, create and return an llvm Function with the specified type. If there
1298 /// is something in the module with the specified name, return it potentially
1299 /// bitcasted to the right type.
1300 ///
1301 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1302 /// to set the attributes on the function when it is first created.
1303 llvm::Constant *
1304 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1305                                        llvm::Type *Ty,
1306                                        GlobalDecl D, bool ForVTable,
1307                                        llvm::AttributeSet ExtraAttrs) {
1308   // Lookup the entry, lazily creating it if necessary.
1309   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1310   if (Entry) {
1311     if (WeakRefReferences.erase(Entry)) {
1312       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1313       if (FD && !FD->hasAttr<WeakAttr>())
1314         Entry->setLinkage(llvm::Function::ExternalLinkage);
1315     }
1316 
1317     if (Entry->getType()->getElementType() == Ty)
1318       return Entry;
1319 
1320     // Make sure the result is of the correct type.
1321     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1322   }
1323 
1324   // This function doesn't have a complete type (for example, the return
1325   // type is an incomplete struct). Use a fake type instead, and make
1326   // sure not to try to set attributes.
1327   bool IsIncompleteFunction = false;
1328 
1329   llvm::FunctionType *FTy;
1330   if (isa<llvm::FunctionType>(Ty)) {
1331     FTy = cast<llvm::FunctionType>(Ty);
1332   } else {
1333     FTy = llvm::FunctionType::get(VoidTy, false);
1334     IsIncompleteFunction = true;
1335   }
1336 
1337   llvm::Function *F = llvm::Function::Create(FTy,
1338                                              llvm::Function::ExternalLinkage,
1339                                              MangledName, &getModule());
1340   assert(F->getName() == MangledName && "name was uniqued!");
1341   if (D.getDecl())
1342     SetFunctionAttributes(D, F, IsIncompleteFunction);
1343   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1344     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1345     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1346                      llvm::AttributeSet::get(VMContext,
1347                                              llvm::AttributeSet::FunctionIndex,
1348                                              B));
1349   }
1350 
1351   // This is the first use or definition of a mangled name.  If there is a
1352   // deferred decl with this name, remember that we need to emit it at the end
1353   // of the file.
1354   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1355   if (DDI != DeferredDecls.end()) {
1356     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1357     // list, and remove it from DeferredDecls (since we don't need it anymore).
1358     DeferredDeclsToEmit.push_back(DDI->second);
1359     DeferredDecls.erase(DDI);
1360 
1361   // Otherwise, there are cases we have to worry about where we're
1362   // using a declaration for which we must emit a definition but where
1363   // we might not find a top-level definition:
1364   //   - member functions defined inline in their classes
1365   //   - friend functions defined inline in some class
1366   //   - special member functions with implicit definitions
1367   // If we ever change our AST traversal to walk into class methods,
1368   // this will be unnecessary.
1369   //
1370   // We also don't emit a definition for a function if it's going to be an entry
1371   // in a vtable, unless it's already marked as used.
1372   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1373     // Look for a declaration that's lexically in a record.
1374     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1375     FD = FD->getMostRecentDecl();
1376     do {
1377       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1378         if (FD->isImplicit() && !ForVTable) {
1379           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1380           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1381           break;
1382         } else if (FD->doesThisDeclarationHaveABody()) {
1383           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1384           break;
1385         }
1386       }
1387       FD = FD->getPreviousDecl();
1388     } while (FD);
1389   }
1390 
1391   // Make sure the result is of the requested type.
1392   if (!IsIncompleteFunction) {
1393     assert(F->getType()->getElementType() == Ty);
1394     return F;
1395   }
1396 
1397   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1398   return llvm::ConstantExpr::getBitCast(F, PTy);
1399 }
1400 
1401 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1402 /// non-null, then this function will use the specified type if it has to
1403 /// create it (this occurs when we see a definition of the function).
1404 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1405                                                  llvm::Type *Ty,
1406                                                  bool ForVTable) {
1407   // If there was no specific requested type, just convert it now.
1408   if (!Ty)
1409     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1410 
1411   StringRef MangledName = getMangledName(GD);
1412   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1413 }
1414 
1415 /// CreateRuntimeFunction - Create a new runtime function with the specified
1416 /// type and name.
1417 llvm::Constant *
1418 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1419                                      StringRef Name,
1420                                      llvm::AttributeSet ExtraAttrs) {
1421   llvm::Constant *C
1422     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1423                               ExtraAttrs);
1424   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1425     if (F->empty())
1426       F->setCallingConv(getRuntimeCC());
1427   return C;
1428 }
1429 
1430 /// isTypeConstant - Determine whether an object of this type can be emitted
1431 /// as a constant.
1432 ///
1433 /// If ExcludeCtor is true, the duration when the object's constructor runs
1434 /// will not be considered. The caller will need to verify that the object is
1435 /// not written to during its construction.
1436 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1437   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1438     return false;
1439 
1440   if (Context.getLangOpts().CPlusPlus) {
1441     if (const CXXRecordDecl *Record
1442           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1443       return ExcludeCtor && !Record->hasMutableFields() &&
1444              Record->hasTrivialDestructor();
1445   }
1446 
1447   return true;
1448 }
1449 
1450 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1451 /// create and return an llvm GlobalVariable with the specified type.  If there
1452 /// is something in the module with the specified name, return it potentially
1453 /// bitcasted to the right type.
1454 ///
1455 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1456 /// to set the attributes on the global when it is first created.
1457 llvm::Constant *
1458 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1459                                      llvm::PointerType *Ty,
1460                                      const VarDecl *D,
1461                                      bool UnnamedAddr) {
1462   // Lookup the entry, lazily creating it if necessary.
1463   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1464   if (Entry) {
1465     if (WeakRefReferences.erase(Entry)) {
1466       if (D && !D->hasAttr<WeakAttr>())
1467         Entry->setLinkage(llvm::Function::ExternalLinkage);
1468     }
1469 
1470     if (UnnamedAddr)
1471       Entry->setUnnamedAddr(true);
1472 
1473     if (Entry->getType() == Ty)
1474       return Entry;
1475 
1476     // Make sure the result is of the correct type.
1477     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1478   }
1479 
1480   // This is the first use or definition of a mangled name.  If there is a
1481   // deferred decl with this name, remember that we need to emit it at the end
1482   // of the file.
1483   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1484   if (DDI != DeferredDecls.end()) {
1485     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1486     // list, and remove it from DeferredDecls (since we don't need it anymore).
1487     DeferredDeclsToEmit.push_back(DDI->second);
1488     DeferredDecls.erase(DDI);
1489   }
1490 
1491   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1492   llvm::GlobalVariable *GV =
1493     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1494                              llvm::GlobalValue::ExternalLinkage,
1495                              0, MangledName, 0,
1496                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1497 
1498   // Handle things which are present even on external declarations.
1499   if (D) {
1500     // FIXME: This code is overly simple and should be merged with other global
1501     // handling.
1502     GV->setConstant(isTypeConstant(D->getType(), false));
1503 
1504     // Set linkage and visibility in case we never see a definition.
1505     LinkageInfo LV = D->getLinkageAndVisibility();
1506     if (LV.getLinkage() != ExternalLinkage) {
1507       // Don't set internal linkage on declarations.
1508     } else {
1509       if (D->hasAttr<DLLImportAttr>())
1510         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1511       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1512         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1513 
1514       // Set visibility on a declaration only if it's explicit.
1515       if (LV.isVisibilityExplicit())
1516         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1517     }
1518 
1519     if (D->getTLSKind()) {
1520       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1521         CXXThreadLocals.push_back(std::make_pair(D, GV));
1522       setTLSMode(GV, *D);
1523     }
1524   }
1525 
1526   if (AddrSpace != Ty->getAddressSpace())
1527     return llvm::ConstantExpr::getBitCast(GV, Ty);
1528   else
1529     return GV;
1530 }
1531 
1532 
1533 llvm::GlobalVariable *
1534 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1535                                       llvm::Type *Ty,
1536                                       llvm::GlobalValue::LinkageTypes Linkage) {
1537   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1538   llvm::GlobalVariable *OldGV = 0;
1539 
1540 
1541   if (GV) {
1542     // Check if the variable has the right type.
1543     if (GV->getType()->getElementType() == Ty)
1544       return GV;
1545 
1546     // Because C++ name mangling, the only way we can end up with an already
1547     // existing global with the same name is if it has been declared extern "C".
1548     assert(GV->isDeclaration() && "Declaration has wrong type!");
1549     OldGV = GV;
1550   }
1551 
1552   // Create a new variable.
1553   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1554                                 Linkage, 0, Name);
1555 
1556   if (OldGV) {
1557     // Replace occurrences of the old variable if needed.
1558     GV->takeName(OldGV);
1559 
1560     if (!OldGV->use_empty()) {
1561       llvm::Constant *NewPtrForOldDecl =
1562       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1563       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1564     }
1565 
1566     OldGV->eraseFromParent();
1567   }
1568 
1569   return GV;
1570 }
1571 
1572 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1573 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1574 /// then it will be created with the specified type instead of whatever the
1575 /// normal requested type would be.
1576 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1577                                                   llvm::Type *Ty) {
1578   assert(D->hasGlobalStorage() && "Not a global variable");
1579   QualType ASTTy = D->getType();
1580   if (Ty == 0)
1581     Ty = getTypes().ConvertTypeForMem(ASTTy);
1582 
1583   llvm::PointerType *PTy =
1584     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1585 
1586   StringRef MangledName = getMangledName(D);
1587   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1588 }
1589 
1590 /// CreateRuntimeVariable - Create a new runtime global variable with the
1591 /// specified type and name.
1592 llvm::Constant *
1593 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1594                                      StringRef Name) {
1595   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1596                                true);
1597 }
1598 
1599 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1600   assert(!D->getInit() && "Cannot emit definite definitions here!");
1601 
1602   if (MayDeferGeneration(D)) {
1603     // If we have not seen a reference to this variable yet, place it
1604     // into the deferred declarations table to be emitted if needed
1605     // later.
1606     StringRef MangledName = getMangledName(D);
1607     if (!GetGlobalValue(MangledName)) {
1608       DeferredDecls[MangledName] = D;
1609       return;
1610     }
1611   }
1612 
1613   // The tentative definition is the only definition.
1614   EmitGlobalVarDefinition(D);
1615 }
1616 
1617 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1618     return Context.toCharUnitsFromBits(
1619       TheDataLayout.getTypeStoreSizeInBits(Ty));
1620 }
1621 
1622 llvm::Constant *
1623 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1624                                                        const Expr *rawInit) {
1625   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1626   if (const ExprWithCleanups *withCleanups =
1627           dyn_cast<ExprWithCleanups>(rawInit)) {
1628     cleanups = withCleanups->getObjects();
1629     rawInit = withCleanups->getSubExpr();
1630   }
1631 
1632   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1633   if (!init || !init->initializesStdInitializerList() ||
1634       init->getNumInits() == 0)
1635     return 0;
1636 
1637   ASTContext &ctx = getContext();
1638   unsigned numInits = init->getNumInits();
1639   // FIXME: This check is here because we would otherwise silently miscompile
1640   // nested global std::initializer_lists. Better would be to have a real
1641   // implementation.
1642   for (unsigned i = 0; i < numInits; ++i) {
1643     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1644     if (inner && inner->initializesStdInitializerList()) {
1645       ErrorUnsupported(inner, "nested global std::initializer_list");
1646       return 0;
1647     }
1648   }
1649 
1650   // Synthesize a fake VarDecl for the array and initialize that.
1651   QualType elementType = init->getInit(0)->getType();
1652   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1653   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1654                                                 ArrayType::Normal, 0);
1655 
1656   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1657   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1658                                               arrayType, D->getLocation());
1659   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1660                                                           D->getDeclContext()),
1661                                           D->getLocStart(), D->getLocation(),
1662                                           name, arrayType, sourceInfo,
1663                                           SC_Static);
1664   backingArray->setTSCSpec(D->getTSCSpec());
1665 
1666   // Now clone the InitListExpr to initialize the array instead.
1667   // Incredible hack: we want to use the existing InitListExpr here, so we need
1668   // to tell it that it no longer initializes a std::initializer_list.
1669   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1670                         init->getNumInits());
1671   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1672                                            init->getRBraceLoc());
1673   arrayInit->setType(arrayType);
1674 
1675   if (!cleanups.empty())
1676     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1677 
1678   backingArray->setInit(arrayInit);
1679 
1680   // Emit the definition of the array.
1681   EmitGlobalVarDefinition(backingArray);
1682 
1683   // Inspect the initializer list to validate it and determine its type.
1684   // FIXME: doing this every time is probably inefficient; caching would be nice
1685   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1686   RecordDecl::field_iterator field = record->field_begin();
1687   if (field == record->field_end()) {
1688     ErrorUnsupported(D, "weird std::initializer_list");
1689     return 0;
1690   }
1691   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1692   // Start pointer.
1693   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1694     ErrorUnsupported(D, "weird std::initializer_list");
1695     return 0;
1696   }
1697   ++field;
1698   if (field == record->field_end()) {
1699     ErrorUnsupported(D, "weird std::initializer_list");
1700     return 0;
1701   }
1702   bool isStartEnd = false;
1703   if (ctx.hasSameType(field->getType(), elementPtr)) {
1704     // End pointer.
1705     isStartEnd = true;
1706   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1707     ErrorUnsupported(D, "weird std::initializer_list");
1708     return 0;
1709   }
1710 
1711   // Now build an APValue representing the std::initializer_list.
1712   APValue initListValue(APValue::UninitStruct(), 0, 2);
1713   APValue &startField = initListValue.getStructField(0);
1714   APValue::LValuePathEntry startOffsetPathEntry;
1715   startOffsetPathEntry.ArrayIndex = 0;
1716   startField = APValue(APValue::LValueBase(backingArray),
1717                        CharUnits::fromQuantity(0),
1718                        llvm::makeArrayRef(startOffsetPathEntry),
1719                        /*IsOnePastTheEnd=*/false, 0);
1720 
1721   if (isStartEnd) {
1722     APValue &endField = initListValue.getStructField(1);
1723     APValue::LValuePathEntry endOffsetPathEntry;
1724     endOffsetPathEntry.ArrayIndex = numInits;
1725     endField = APValue(APValue::LValueBase(backingArray),
1726                        ctx.getTypeSizeInChars(elementType) * numInits,
1727                        llvm::makeArrayRef(endOffsetPathEntry),
1728                        /*IsOnePastTheEnd=*/true, 0);
1729   } else {
1730     APValue &sizeField = initListValue.getStructField(1);
1731     sizeField = APValue(llvm::APSInt(numElements));
1732   }
1733 
1734   // Emit the constant for the initializer_list.
1735   llvm::Constant *llvmInit =
1736       EmitConstantValueForMemory(initListValue, D->getType());
1737   assert(llvmInit && "failed to initialize as constant");
1738   return llvmInit;
1739 }
1740 
1741 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1742                                                  unsigned AddrSpace) {
1743   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1744     if (D->hasAttr<CUDAConstantAttr>())
1745       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1746     else if (D->hasAttr<CUDASharedAttr>())
1747       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1748     else
1749       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1750   }
1751 
1752   return AddrSpace;
1753 }
1754 
1755 template<typename SomeDecl>
1756 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1757                                                llvm::GlobalValue *GV) {
1758   if (!getLangOpts().CPlusPlus)
1759     return;
1760 
1761   // Must have 'used' attribute, or else inline assembly can't rely on
1762   // the name existing.
1763   if (!D->template hasAttr<UsedAttr>())
1764     return;
1765 
1766   // Must have internal linkage and an ordinary name.
1767   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1768     return;
1769 
1770   // Must be in an extern "C" context. Entities declared directly within
1771   // a record are not extern "C" even if the record is in such a context.
1772   const SomeDecl *First = D->getFirstDeclaration();
1773   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1774     return;
1775 
1776   // OK, this is an internal linkage entity inside an extern "C" linkage
1777   // specification. Make a note of that so we can give it the "expected"
1778   // mangled name if nothing else is using that name.
1779   std::pair<StaticExternCMap::iterator, bool> R =
1780       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1781 
1782   // If we have multiple internal linkage entities with the same name
1783   // in extern "C" regions, none of them gets that name.
1784   if (!R.second)
1785     R.first->second = 0;
1786 }
1787 
1788 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1789   llvm::Constant *Init = 0;
1790   QualType ASTTy = D->getType();
1791   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1792   bool NeedsGlobalCtor = false;
1793   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1794 
1795   const VarDecl *InitDecl;
1796   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1797 
1798   if (!InitExpr) {
1799     // This is a tentative definition; tentative definitions are
1800     // implicitly initialized with { 0 }.
1801     //
1802     // Note that tentative definitions are only emitted at the end of
1803     // a translation unit, so they should never have incomplete
1804     // type. In addition, EmitTentativeDefinition makes sure that we
1805     // never attempt to emit a tentative definition if a real one
1806     // exists. A use may still exists, however, so we still may need
1807     // to do a RAUW.
1808     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1809     Init = EmitNullConstant(D->getType());
1810   } else {
1811     // If this is a std::initializer_list, emit the special initializer.
1812     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1813     // An empty init list will perform zero-initialization, which happens
1814     // to be exactly what we want.
1815     // FIXME: It does so in a global constructor, which is *not* what we
1816     // want.
1817 
1818     if (!Init) {
1819       initializedGlobalDecl = GlobalDecl(D);
1820       Init = EmitConstantInit(*InitDecl);
1821     }
1822     if (!Init) {
1823       QualType T = InitExpr->getType();
1824       if (D->getType()->isReferenceType())
1825         T = D->getType();
1826 
1827       if (getLangOpts().CPlusPlus) {
1828         Init = EmitNullConstant(T);
1829         NeedsGlobalCtor = true;
1830       } else {
1831         ErrorUnsupported(D, "static initializer");
1832         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1833       }
1834     } else {
1835       // We don't need an initializer, so remove the entry for the delayed
1836       // initializer position (just in case this entry was delayed) if we
1837       // also don't need to register a destructor.
1838       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1839         DelayedCXXInitPosition.erase(D);
1840     }
1841   }
1842 
1843   llvm::Type* InitType = Init->getType();
1844   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1845 
1846   // Strip off a bitcast if we got one back.
1847   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1848     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1849            // all zero index gep.
1850            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1851     Entry = CE->getOperand(0);
1852   }
1853 
1854   // Entry is now either a Function or GlobalVariable.
1855   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1856 
1857   // We have a definition after a declaration with the wrong type.
1858   // We must make a new GlobalVariable* and update everything that used OldGV
1859   // (a declaration or tentative definition) with the new GlobalVariable*
1860   // (which will be a definition).
1861   //
1862   // This happens if there is a prototype for a global (e.g.
1863   // "extern int x[];") and then a definition of a different type (e.g.
1864   // "int x[10];"). This also happens when an initializer has a different type
1865   // from the type of the global (this happens with unions).
1866   if (GV == 0 ||
1867       GV->getType()->getElementType() != InitType ||
1868       GV->getType()->getAddressSpace() !=
1869        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1870 
1871     // Move the old entry aside so that we'll create a new one.
1872     Entry->setName(StringRef());
1873 
1874     // Make a new global with the correct type, this is now guaranteed to work.
1875     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1876 
1877     // Replace all uses of the old global with the new global
1878     llvm::Constant *NewPtrForOldDecl =
1879         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1880     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1881 
1882     // Erase the old global, since it is no longer used.
1883     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1884   }
1885 
1886   MaybeHandleStaticInExternC(D, GV);
1887 
1888   if (D->hasAttr<AnnotateAttr>())
1889     AddGlobalAnnotations(D, GV);
1890 
1891   GV->setInitializer(Init);
1892 
1893   // If it is safe to mark the global 'constant', do so now.
1894   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1895                   isTypeConstant(D->getType(), true));
1896 
1897   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1898 
1899   // Set the llvm linkage type as appropriate.
1900   llvm::GlobalValue::LinkageTypes Linkage =
1901     GetLLVMLinkageVarDefinition(D, GV);
1902   GV->setLinkage(Linkage);
1903   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1904     // common vars aren't constant even if declared const.
1905     GV->setConstant(false);
1906 
1907   SetCommonAttributes(D, GV);
1908 
1909   // Emit the initializer function if necessary.
1910   if (NeedsGlobalCtor || NeedsGlobalDtor)
1911     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1912 
1913   // If we are compiling with ASan, add metadata indicating dynamically
1914   // initialized globals.
1915   if (SanOpts.Address && NeedsGlobalCtor) {
1916     llvm::Module &M = getModule();
1917 
1918     llvm::NamedMDNode *DynamicInitializers =
1919         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1920     llvm::Value *GlobalToAdd[] = { GV };
1921     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1922     DynamicInitializers->addOperand(ThisGlobal);
1923   }
1924 
1925   // Emit global variable debug information.
1926   if (CGDebugInfo *DI = getModuleDebugInfo())
1927     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1928       DI->EmitGlobalVariable(GV, D);
1929 }
1930 
1931 llvm::GlobalValue::LinkageTypes
1932 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1933                                            llvm::GlobalVariable *GV) {
1934   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1935   if (Linkage == GVA_Internal)
1936     return llvm::Function::InternalLinkage;
1937   else if (D->hasAttr<DLLImportAttr>())
1938     return llvm::Function::DLLImportLinkage;
1939   else if (D->hasAttr<DLLExportAttr>())
1940     return llvm::Function::DLLExportLinkage;
1941   else if (D->hasAttr<SelectAnyAttr>()) {
1942     // selectany symbols are externally visible, so use weak instead of
1943     // linkonce.  MSVC optimizes away references to const selectany globals, so
1944     // all definitions should be the same and ODR linkage should be used.
1945     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1946     return llvm::GlobalVariable::WeakODRLinkage;
1947   } else if (D->hasAttr<WeakAttr>()) {
1948     if (GV->isConstant())
1949       return llvm::GlobalVariable::WeakODRLinkage;
1950     else
1951       return llvm::GlobalVariable::WeakAnyLinkage;
1952   } else if (Linkage == GVA_TemplateInstantiation ||
1953              Linkage == GVA_ExplicitTemplateInstantiation)
1954     return llvm::GlobalVariable::WeakODRLinkage;
1955   else if (!getLangOpts().CPlusPlus &&
1956            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1957              D->getAttr<CommonAttr>()) &&
1958            !D->hasExternalStorage() && !D->getInit() &&
1959            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1960            !D->getAttr<WeakImportAttr>()) {
1961     // Thread local vars aren't considered common linkage.
1962     return llvm::GlobalVariable::CommonLinkage;
1963   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1964              getTarget().getTriple().isMacOSX())
1965     // On Darwin, the backing variable for a C++11 thread_local variable always
1966     // has internal linkage; all accesses should just be calls to the
1967     // Itanium-specified entry point, which has the normal linkage of the
1968     // variable.
1969     return llvm::GlobalValue::InternalLinkage;
1970   return llvm::GlobalVariable::ExternalLinkage;
1971 }
1972 
1973 /// Replace the uses of a function that was declared with a non-proto type.
1974 /// We want to silently drop extra arguments from call sites
1975 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1976                                           llvm::Function *newFn) {
1977   // Fast path.
1978   if (old->use_empty()) return;
1979 
1980   llvm::Type *newRetTy = newFn->getReturnType();
1981   SmallVector<llvm::Value*, 4> newArgs;
1982 
1983   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1984          ui != ue; ) {
1985     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1986     llvm::User *user = *use;
1987 
1988     // Recognize and replace uses of bitcasts.  Most calls to
1989     // unprototyped functions will use bitcasts.
1990     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1991       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1992         replaceUsesOfNonProtoConstant(bitcast, newFn);
1993       continue;
1994     }
1995 
1996     // Recognize calls to the function.
1997     llvm::CallSite callSite(user);
1998     if (!callSite) continue;
1999     if (!callSite.isCallee(use)) continue;
2000 
2001     // If the return types don't match exactly, then we can't
2002     // transform this call unless it's dead.
2003     if (callSite->getType() != newRetTy && !callSite->use_empty())
2004       continue;
2005 
2006     // Get the call site's attribute list.
2007     SmallVector<llvm::AttributeSet, 8> newAttrs;
2008     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2009 
2010     // Collect any return attributes from the call.
2011     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2012       newAttrs.push_back(
2013         llvm::AttributeSet::get(newFn->getContext(),
2014                                 oldAttrs.getRetAttributes()));
2015 
2016     // If the function was passed too few arguments, don't transform.
2017     unsigned newNumArgs = newFn->arg_size();
2018     if (callSite.arg_size() < newNumArgs) continue;
2019 
2020     // If extra arguments were passed, we silently drop them.
2021     // If any of the types mismatch, we don't transform.
2022     unsigned argNo = 0;
2023     bool dontTransform = false;
2024     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2025            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2026       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2027         dontTransform = true;
2028         break;
2029       }
2030 
2031       // Add any parameter attributes.
2032       if (oldAttrs.hasAttributes(argNo + 1))
2033         newAttrs.
2034           push_back(llvm::
2035                     AttributeSet::get(newFn->getContext(),
2036                                       oldAttrs.getParamAttributes(argNo + 1)));
2037     }
2038     if (dontTransform)
2039       continue;
2040 
2041     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2042       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2043                                                  oldAttrs.getFnAttributes()));
2044 
2045     // Okay, we can transform this.  Create the new call instruction and copy
2046     // over the required information.
2047     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2048 
2049     llvm::CallSite newCall;
2050     if (callSite.isCall()) {
2051       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2052                                        callSite.getInstruction());
2053     } else {
2054       llvm::InvokeInst *oldInvoke =
2055         cast<llvm::InvokeInst>(callSite.getInstruction());
2056       newCall = llvm::InvokeInst::Create(newFn,
2057                                          oldInvoke->getNormalDest(),
2058                                          oldInvoke->getUnwindDest(),
2059                                          newArgs, "",
2060                                          callSite.getInstruction());
2061     }
2062     newArgs.clear(); // for the next iteration
2063 
2064     if (!newCall->getType()->isVoidTy())
2065       newCall->takeName(callSite.getInstruction());
2066     newCall.setAttributes(
2067                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2068     newCall.setCallingConv(callSite.getCallingConv());
2069 
2070     // Finally, remove the old call, replacing any uses with the new one.
2071     if (!callSite->use_empty())
2072       callSite->replaceAllUsesWith(newCall.getInstruction());
2073 
2074     // Copy debug location attached to CI.
2075     if (!callSite->getDebugLoc().isUnknown())
2076       newCall->setDebugLoc(callSite->getDebugLoc());
2077     callSite->eraseFromParent();
2078   }
2079 }
2080 
2081 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2082 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2083 /// existing call uses of the old function in the module, this adjusts them to
2084 /// call the new function directly.
2085 ///
2086 /// This is not just a cleanup: the always_inline pass requires direct calls to
2087 /// functions to be able to inline them.  If there is a bitcast in the way, it
2088 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2089 /// run at -O0.
2090 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2091                                                       llvm::Function *NewFn) {
2092   // If we're redefining a global as a function, don't transform it.
2093   if (!isa<llvm::Function>(Old)) return;
2094 
2095   replaceUsesOfNonProtoConstant(Old, NewFn);
2096 }
2097 
2098 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2099   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2100   // If we have a definition, this might be a deferred decl. If the
2101   // instantiation is explicit, make sure we emit it at the end.
2102   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2103     GetAddrOfGlobalVar(VD);
2104 
2105   EmitTopLevelDecl(VD);
2106 }
2107 
2108 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2109   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2110 
2111   // Compute the function info and LLVM type.
2112   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2113   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2114 
2115   // Get or create the prototype for the function.
2116   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2117 
2118   // Strip off a bitcast if we got one back.
2119   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2120     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2121     Entry = CE->getOperand(0);
2122   }
2123 
2124 
2125   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2126     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2127 
2128     // If the types mismatch then we have to rewrite the definition.
2129     assert(OldFn->isDeclaration() &&
2130            "Shouldn't replace non-declaration");
2131 
2132     // F is the Function* for the one with the wrong type, we must make a new
2133     // Function* and update everything that used F (a declaration) with the new
2134     // Function* (which will be a definition).
2135     //
2136     // This happens if there is a prototype for a function
2137     // (e.g. "int f()") and then a definition of a different type
2138     // (e.g. "int f(int x)").  Move the old function aside so that it
2139     // doesn't interfere with GetAddrOfFunction.
2140     OldFn->setName(StringRef());
2141     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2142 
2143     // This might be an implementation of a function without a
2144     // prototype, in which case, try to do special replacement of
2145     // calls which match the new prototype.  The really key thing here
2146     // is that we also potentially drop arguments from the call site
2147     // so as to make a direct call, which makes the inliner happier
2148     // and suppresses a number of optimizer warnings (!) about
2149     // dropping arguments.
2150     if (!OldFn->use_empty()) {
2151       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2152       OldFn->removeDeadConstantUsers();
2153     }
2154 
2155     // Replace uses of F with the Function we will endow with a body.
2156     if (!Entry->use_empty()) {
2157       llvm::Constant *NewPtrForOldDecl =
2158         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2159       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2160     }
2161 
2162     // Ok, delete the old function now, which is dead.
2163     OldFn->eraseFromParent();
2164 
2165     Entry = NewFn;
2166   }
2167 
2168   // We need to set linkage and visibility on the function before
2169   // generating code for it because various parts of IR generation
2170   // want to propagate this information down (e.g. to local static
2171   // declarations).
2172   llvm::Function *Fn = cast<llvm::Function>(Entry);
2173   setFunctionLinkage(D, Fn);
2174 
2175   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2176   setGlobalVisibility(Fn, D);
2177 
2178   MaybeHandleStaticInExternC(D, Fn);
2179 
2180   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2181 
2182   SetFunctionDefinitionAttributes(D, Fn);
2183   SetLLVMFunctionAttributesForDefinition(D, Fn);
2184 
2185   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2186     AddGlobalCtor(Fn, CA->getPriority());
2187   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2188     AddGlobalDtor(Fn, DA->getPriority());
2189   if (D->hasAttr<AnnotateAttr>())
2190     AddGlobalAnnotations(D, Fn);
2191 }
2192 
2193 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2194   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2195   const AliasAttr *AA = D->getAttr<AliasAttr>();
2196   assert(AA && "Not an alias?");
2197 
2198   StringRef MangledName = getMangledName(GD);
2199 
2200   // If there is a definition in the module, then it wins over the alias.
2201   // This is dubious, but allow it to be safe.  Just ignore the alias.
2202   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2203   if (Entry && !Entry->isDeclaration())
2204     return;
2205 
2206   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2207 
2208   // Create a reference to the named value.  This ensures that it is emitted
2209   // if a deferred decl.
2210   llvm::Constant *Aliasee;
2211   if (isa<llvm::FunctionType>(DeclTy))
2212     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2213                                       /*ForVTable=*/false);
2214   else
2215     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2216                                     llvm::PointerType::getUnqual(DeclTy), 0);
2217 
2218   // Create the new alias itself, but don't set a name yet.
2219   llvm::GlobalValue *GA =
2220     new llvm::GlobalAlias(Aliasee->getType(),
2221                           llvm::Function::ExternalLinkage,
2222                           "", Aliasee, &getModule());
2223 
2224   if (Entry) {
2225     assert(Entry->isDeclaration());
2226 
2227     // If there is a declaration in the module, then we had an extern followed
2228     // by the alias, as in:
2229     //   extern int test6();
2230     //   ...
2231     //   int test6() __attribute__((alias("test7")));
2232     //
2233     // Remove it and replace uses of it with the alias.
2234     GA->takeName(Entry);
2235 
2236     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2237                                                           Entry->getType()));
2238     Entry->eraseFromParent();
2239   } else {
2240     GA->setName(MangledName);
2241   }
2242 
2243   // Set attributes which are particular to an alias; this is a
2244   // specialization of the attributes which may be set on a global
2245   // variable/function.
2246   if (D->hasAttr<DLLExportAttr>()) {
2247     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2248       // The dllexport attribute is ignored for undefined symbols.
2249       if (FD->hasBody())
2250         GA->setLinkage(llvm::Function::DLLExportLinkage);
2251     } else {
2252       GA->setLinkage(llvm::Function::DLLExportLinkage);
2253     }
2254   } else if (D->hasAttr<WeakAttr>() ||
2255              D->hasAttr<WeakRefAttr>() ||
2256              D->isWeakImported()) {
2257     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2258   }
2259 
2260   SetCommonAttributes(D, GA);
2261 }
2262 
2263 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2264                                             ArrayRef<llvm::Type*> Tys) {
2265   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2266                                          Tys);
2267 }
2268 
2269 static llvm::StringMapEntry<llvm::Constant*> &
2270 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2271                          const StringLiteral *Literal,
2272                          bool TargetIsLSB,
2273                          bool &IsUTF16,
2274                          unsigned &StringLength) {
2275   StringRef String = Literal->getString();
2276   unsigned NumBytes = String.size();
2277 
2278   // Check for simple case.
2279   if (!Literal->containsNonAsciiOrNull()) {
2280     StringLength = NumBytes;
2281     return Map.GetOrCreateValue(String);
2282   }
2283 
2284   // Otherwise, convert the UTF8 literals into a string of shorts.
2285   IsUTF16 = true;
2286 
2287   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2288   const UTF8 *FromPtr = (const UTF8 *)String.data();
2289   UTF16 *ToPtr = &ToBuf[0];
2290 
2291   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2292                            &ToPtr, ToPtr + NumBytes,
2293                            strictConversion);
2294 
2295   // ConvertUTF8toUTF16 returns the length in ToPtr.
2296   StringLength = ToPtr - &ToBuf[0];
2297 
2298   // Add an explicit null.
2299   *ToPtr = 0;
2300   return Map.
2301     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2302                                (StringLength + 1) * 2));
2303 }
2304 
2305 static llvm::StringMapEntry<llvm::Constant*> &
2306 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2307                        const StringLiteral *Literal,
2308                        unsigned &StringLength) {
2309   StringRef String = Literal->getString();
2310   StringLength = String.size();
2311   return Map.GetOrCreateValue(String);
2312 }
2313 
2314 llvm::Constant *
2315 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2316   unsigned StringLength = 0;
2317   bool isUTF16 = false;
2318   llvm::StringMapEntry<llvm::Constant*> &Entry =
2319     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2320                              getDataLayout().isLittleEndian(),
2321                              isUTF16, StringLength);
2322 
2323   if (llvm::Constant *C = Entry.getValue())
2324     return C;
2325 
2326   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2327   llvm::Constant *Zeros[] = { Zero, Zero };
2328   llvm::Value *V;
2329 
2330   // If we don't already have it, get __CFConstantStringClassReference.
2331   if (!CFConstantStringClassRef) {
2332     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2333     Ty = llvm::ArrayType::get(Ty, 0);
2334     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2335                                            "__CFConstantStringClassReference");
2336     // Decay array -> ptr
2337     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2338     CFConstantStringClassRef = V;
2339   }
2340   else
2341     V = CFConstantStringClassRef;
2342 
2343   QualType CFTy = getContext().getCFConstantStringType();
2344 
2345   llvm::StructType *STy =
2346     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2347 
2348   llvm::Constant *Fields[4];
2349 
2350   // Class pointer.
2351   Fields[0] = cast<llvm::ConstantExpr>(V);
2352 
2353   // Flags.
2354   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2355   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2356     llvm::ConstantInt::get(Ty, 0x07C8);
2357 
2358   // String pointer.
2359   llvm::Constant *C = 0;
2360   if (isUTF16) {
2361     ArrayRef<uint16_t> Arr =
2362       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2363                                      const_cast<char *>(Entry.getKey().data())),
2364                                    Entry.getKey().size() / 2);
2365     C = llvm::ConstantDataArray::get(VMContext, Arr);
2366   } else {
2367     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2368   }
2369 
2370   llvm::GlobalValue::LinkageTypes Linkage;
2371   if (isUTF16)
2372     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2373     Linkage = llvm::GlobalValue::InternalLinkage;
2374   else
2375     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2376     // when using private linkage. It is not clear if this is a bug in ld
2377     // or a reasonable new restriction.
2378     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2379 
2380   // Note: -fwritable-strings doesn't make the backing store strings of
2381   // CFStrings writable. (See <rdar://problem/10657500>)
2382   llvm::GlobalVariable *GV =
2383     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2384                              Linkage, C, ".str");
2385   GV->setUnnamedAddr(true);
2386   // Don't enforce the target's minimum global alignment, since the only use
2387   // of the string is via this class initializer.
2388   if (isUTF16) {
2389     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2390     GV->setAlignment(Align.getQuantity());
2391   } else {
2392     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2393     GV->setAlignment(Align.getQuantity());
2394   }
2395 
2396   // String.
2397   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2398 
2399   if (isUTF16)
2400     // Cast the UTF16 string to the correct type.
2401     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2402 
2403   // String length.
2404   Ty = getTypes().ConvertType(getContext().LongTy);
2405   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2406 
2407   // The struct.
2408   C = llvm::ConstantStruct::get(STy, Fields);
2409   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2410                                 llvm::GlobalVariable::PrivateLinkage, C,
2411                                 "_unnamed_cfstring_");
2412   if (const char *Sect = getTarget().getCFStringSection())
2413     GV->setSection(Sect);
2414   Entry.setValue(GV);
2415 
2416   return GV;
2417 }
2418 
2419 static RecordDecl *
2420 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2421                  DeclContext *DC, IdentifierInfo *Id) {
2422   SourceLocation Loc;
2423   if (Ctx.getLangOpts().CPlusPlus)
2424     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2425   else
2426     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2427 }
2428 
2429 llvm::Constant *
2430 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2431   unsigned StringLength = 0;
2432   llvm::StringMapEntry<llvm::Constant*> &Entry =
2433     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2434 
2435   if (llvm::Constant *C = Entry.getValue())
2436     return C;
2437 
2438   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2439   llvm::Constant *Zeros[] = { Zero, Zero };
2440   llvm::Value *V;
2441   // If we don't already have it, get _NSConstantStringClassReference.
2442   if (!ConstantStringClassRef) {
2443     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2444     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2445     llvm::Constant *GV;
2446     if (LangOpts.ObjCRuntime.isNonFragile()) {
2447       std::string str =
2448         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2449                             : "OBJC_CLASS_$_" + StringClass;
2450       GV = getObjCRuntime().GetClassGlobal(str);
2451       // Make sure the result is of the correct type.
2452       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2453       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2454       ConstantStringClassRef = V;
2455     } else {
2456       std::string str =
2457         StringClass.empty() ? "_NSConstantStringClassReference"
2458                             : "_" + StringClass + "ClassReference";
2459       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2460       GV = CreateRuntimeVariable(PTy, str);
2461       // Decay array -> ptr
2462       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2463       ConstantStringClassRef = V;
2464     }
2465   }
2466   else
2467     V = ConstantStringClassRef;
2468 
2469   if (!NSConstantStringType) {
2470     // Construct the type for a constant NSString.
2471     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2472                                      Context.getTranslationUnitDecl(),
2473                                    &Context.Idents.get("__builtin_NSString"));
2474     D->startDefinition();
2475 
2476     QualType FieldTypes[3];
2477 
2478     // const int *isa;
2479     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2480     // const char *str;
2481     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2482     // unsigned int length;
2483     FieldTypes[2] = Context.UnsignedIntTy;
2484 
2485     // Create fields
2486     for (unsigned i = 0; i < 3; ++i) {
2487       FieldDecl *Field = FieldDecl::Create(Context, D,
2488                                            SourceLocation(),
2489                                            SourceLocation(), 0,
2490                                            FieldTypes[i], /*TInfo=*/0,
2491                                            /*BitWidth=*/0,
2492                                            /*Mutable=*/false,
2493                                            ICIS_NoInit);
2494       Field->setAccess(AS_public);
2495       D->addDecl(Field);
2496     }
2497 
2498     D->completeDefinition();
2499     QualType NSTy = Context.getTagDeclType(D);
2500     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2501   }
2502 
2503   llvm::Constant *Fields[3];
2504 
2505   // Class pointer.
2506   Fields[0] = cast<llvm::ConstantExpr>(V);
2507 
2508   // String pointer.
2509   llvm::Constant *C =
2510     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2511 
2512   llvm::GlobalValue::LinkageTypes Linkage;
2513   bool isConstant;
2514   Linkage = llvm::GlobalValue::PrivateLinkage;
2515   isConstant = !LangOpts.WritableStrings;
2516 
2517   llvm::GlobalVariable *GV =
2518   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2519                            ".str");
2520   GV->setUnnamedAddr(true);
2521   // Don't enforce the target's minimum global alignment, since the only use
2522   // of the string is via this class initializer.
2523   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2524   GV->setAlignment(Align.getQuantity());
2525   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2526 
2527   // String length.
2528   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2529   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2530 
2531   // The struct.
2532   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2533   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2534                                 llvm::GlobalVariable::PrivateLinkage, C,
2535                                 "_unnamed_nsstring_");
2536   // FIXME. Fix section.
2537   if (const char *Sect =
2538         LangOpts.ObjCRuntime.isNonFragile()
2539           ? getTarget().getNSStringNonFragileABISection()
2540           : getTarget().getNSStringSection())
2541     GV->setSection(Sect);
2542   Entry.setValue(GV);
2543 
2544   return GV;
2545 }
2546 
2547 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2548   if (ObjCFastEnumerationStateType.isNull()) {
2549     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2550                                      Context.getTranslationUnitDecl(),
2551                       &Context.Idents.get("__objcFastEnumerationState"));
2552     D->startDefinition();
2553 
2554     QualType FieldTypes[] = {
2555       Context.UnsignedLongTy,
2556       Context.getPointerType(Context.getObjCIdType()),
2557       Context.getPointerType(Context.UnsignedLongTy),
2558       Context.getConstantArrayType(Context.UnsignedLongTy,
2559                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2560     };
2561 
2562     for (size_t i = 0; i < 4; ++i) {
2563       FieldDecl *Field = FieldDecl::Create(Context,
2564                                            D,
2565                                            SourceLocation(),
2566                                            SourceLocation(), 0,
2567                                            FieldTypes[i], /*TInfo=*/0,
2568                                            /*BitWidth=*/0,
2569                                            /*Mutable=*/false,
2570                                            ICIS_NoInit);
2571       Field->setAccess(AS_public);
2572       D->addDecl(Field);
2573     }
2574 
2575     D->completeDefinition();
2576     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2577   }
2578 
2579   return ObjCFastEnumerationStateType;
2580 }
2581 
2582 llvm::Constant *
2583 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2584   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2585 
2586   // Don't emit it as the address of the string, emit the string data itself
2587   // as an inline array.
2588   if (E->getCharByteWidth() == 1) {
2589     SmallString<64> Str(E->getString());
2590 
2591     // Resize the string to the right size, which is indicated by its type.
2592     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2593     Str.resize(CAT->getSize().getZExtValue());
2594     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2595   }
2596 
2597   llvm::ArrayType *AType =
2598     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2599   llvm::Type *ElemTy = AType->getElementType();
2600   unsigned NumElements = AType->getNumElements();
2601 
2602   // Wide strings have either 2-byte or 4-byte elements.
2603   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2604     SmallVector<uint16_t, 32> Elements;
2605     Elements.reserve(NumElements);
2606 
2607     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2608       Elements.push_back(E->getCodeUnit(i));
2609     Elements.resize(NumElements);
2610     return llvm::ConstantDataArray::get(VMContext, Elements);
2611   }
2612 
2613   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2614   SmallVector<uint32_t, 32> Elements;
2615   Elements.reserve(NumElements);
2616 
2617   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2618     Elements.push_back(E->getCodeUnit(i));
2619   Elements.resize(NumElements);
2620   return llvm::ConstantDataArray::get(VMContext, Elements);
2621 }
2622 
2623 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2624 /// constant array for the given string literal.
2625 llvm::Constant *
2626 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2627   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2628   if (S->isAscii() || S->isUTF8()) {
2629     SmallString<64> Str(S->getString());
2630 
2631     // Resize the string to the right size, which is indicated by its type.
2632     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2633     Str.resize(CAT->getSize().getZExtValue());
2634     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2635   }
2636 
2637   // FIXME: the following does not memoize wide strings.
2638   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2639   llvm::GlobalVariable *GV =
2640     new llvm::GlobalVariable(getModule(),C->getType(),
2641                              !LangOpts.WritableStrings,
2642                              llvm::GlobalValue::PrivateLinkage,
2643                              C,".str");
2644 
2645   GV->setAlignment(Align.getQuantity());
2646   GV->setUnnamedAddr(true);
2647   return GV;
2648 }
2649 
2650 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2651 /// array for the given ObjCEncodeExpr node.
2652 llvm::Constant *
2653 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2654   std::string Str;
2655   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2656 
2657   return GetAddrOfConstantCString(Str);
2658 }
2659 
2660 
2661 /// GenerateWritableString -- Creates storage for a string literal.
2662 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2663                                              bool constant,
2664                                              CodeGenModule &CGM,
2665                                              const char *GlobalName,
2666                                              unsigned Alignment) {
2667   // Create Constant for this string literal. Don't add a '\0'.
2668   llvm::Constant *C =
2669       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2670 
2671   // Create a global variable for this string
2672   llvm::GlobalVariable *GV =
2673     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2674                              llvm::GlobalValue::PrivateLinkage,
2675                              C, GlobalName);
2676   GV->setAlignment(Alignment);
2677   GV->setUnnamedAddr(true);
2678   return GV;
2679 }
2680 
2681 /// GetAddrOfConstantString - Returns a pointer to a character array
2682 /// containing the literal. This contents are exactly that of the
2683 /// given string, i.e. it will not be null terminated automatically;
2684 /// see GetAddrOfConstantCString. Note that whether the result is
2685 /// actually a pointer to an LLVM constant depends on
2686 /// Feature.WriteableStrings.
2687 ///
2688 /// The result has pointer to array type.
2689 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2690                                                        const char *GlobalName,
2691                                                        unsigned Alignment) {
2692   // Get the default prefix if a name wasn't specified.
2693   if (!GlobalName)
2694     GlobalName = ".str";
2695 
2696   if (Alignment == 0)
2697     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2698       .getQuantity();
2699 
2700   // Don't share any string literals if strings aren't constant.
2701   if (LangOpts.WritableStrings)
2702     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2703 
2704   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2705     ConstantStringMap.GetOrCreateValue(Str);
2706 
2707   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2708     if (Alignment > GV->getAlignment()) {
2709       GV->setAlignment(Alignment);
2710     }
2711     return GV;
2712   }
2713 
2714   // Create a global variable for this.
2715   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2716                                                    Alignment);
2717   Entry.setValue(GV);
2718   return GV;
2719 }
2720 
2721 /// GetAddrOfConstantCString - Returns a pointer to a character
2722 /// array containing the literal and a terminating '\0'
2723 /// character. The result has pointer to array type.
2724 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2725                                                         const char *GlobalName,
2726                                                         unsigned Alignment) {
2727   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2728   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2729 }
2730 
2731 /// EmitObjCPropertyImplementations - Emit information for synthesized
2732 /// properties for an implementation.
2733 void CodeGenModule::EmitObjCPropertyImplementations(const
2734                                                     ObjCImplementationDecl *D) {
2735   for (ObjCImplementationDecl::propimpl_iterator
2736          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2737     ObjCPropertyImplDecl *PID = *i;
2738 
2739     // Dynamic is just for type-checking.
2740     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2741       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2742 
2743       // Determine which methods need to be implemented, some may have
2744       // been overridden. Note that ::isPropertyAccessor is not the method
2745       // we want, that just indicates if the decl came from a
2746       // property. What we want to know is if the method is defined in
2747       // this implementation.
2748       if (!D->getInstanceMethod(PD->getGetterName()))
2749         CodeGenFunction(*this).GenerateObjCGetter(
2750                                  const_cast<ObjCImplementationDecl *>(D), PID);
2751       if (!PD->isReadOnly() &&
2752           !D->getInstanceMethod(PD->getSetterName()))
2753         CodeGenFunction(*this).GenerateObjCSetter(
2754                                  const_cast<ObjCImplementationDecl *>(D), PID);
2755     }
2756   }
2757 }
2758 
2759 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2760   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2761   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2762        ivar; ivar = ivar->getNextIvar())
2763     if (ivar->getType().isDestructedType())
2764       return true;
2765 
2766   return false;
2767 }
2768 
2769 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2770 /// for an implementation.
2771 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2772   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2773   if (needsDestructMethod(D)) {
2774     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2775     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2776     ObjCMethodDecl *DTORMethod =
2777       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2778                              cxxSelector, getContext().VoidTy, 0, D,
2779                              /*isInstance=*/true, /*isVariadic=*/false,
2780                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2781                              /*isDefined=*/false, ObjCMethodDecl::Required);
2782     D->addInstanceMethod(DTORMethod);
2783     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2784     D->setHasDestructors(true);
2785   }
2786 
2787   // If the implementation doesn't have any ivar initializers, we don't need
2788   // a .cxx_construct.
2789   if (D->getNumIvarInitializers() == 0)
2790     return;
2791 
2792   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2793   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2794   // The constructor returns 'self'.
2795   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2796                                                 D->getLocation(),
2797                                                 D->getLocation(),
2798                                                 cxxSelector,
2799                                                 getContext().getObjCIdType(), 0,
2800                                                 D, /*isInstance=*/true,
2801                                                 /*isVariadic=*/false,
2802                                                 /*isPropertyAccessor=*/true,
2803                                                 /*isImplicitlyDeclared=*/true,
2804                                                 /*isDefined=*/false,
2805                                                 ObjCMethodDecl::Required);
2806   D->addInstanceMethod(CTORMethod);
2807   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2808   D->setHasNonZeroConstructors(true);
2809 }
2810 
2811 /// EmitNamespace - Emit all declarations in a namespace.
2812 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2813   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2814        I != E; ++I)
2815     EmitTopLevelDecl(*I);
2816 }
2817 
2818 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2819 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2820   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2821       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2822     ErrorUnsupported(LSD, "linkage spec");
2823     return;
2824   }
2825 
2826   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2827        I != E; ++I) {
2828     // Meta-data for ObjC class includes references to implemented methods.
2829     // Generate class's method definitions first.
2830     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2831       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2832            MEnd = OID->meth_end();
2833            M != MEnd; ++M)
2834         EmitTopLevelDecl(*M);
2835     }
2836     EmitTopLevelDecl(*I);
2837   }
2838 }
2839 
2840 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2841 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2842   // If an error has occurred, stop code generation, but continue
2843   // parsing and semantic analysis (to ensure all warnings and errors
2844   // are emitted).
2845   if (Diags.hasErrorOccurred())
2846     return;
2847 
2848   // Ignore dependent declarations.
2849   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2850     return;
2851 
2852   switch (D->getKind()) {
2853   case Decl::CXXConversion:
2854   case Decl::CXXMethod:
2855   case Decl::Function:
2856     // Skip function templates
2857     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2858         cast<FunctionDecl>(D)->isLateTemplateParsed())
2859       return;
2860 
2861     EmitGlobal(cast<FunctionDecl>(D));
2862     break;
2863 
2864   case Decl::Var:
2865     EmitGlobal(cast<VarDecl>(D));
2866     break;
2867 
2868   // Indirect fields from global anonymous structs and unions can be
2869   // ignored; only the actual variable requires IR gen support.
2870   case Decl::IndirectField:
2871     break;
2872 
2873   // C++ Decls
2874   case Decl::Namespace:
2875     EmitNamespace(cast<NamespaceDecl>(D));
2876     break;
2877     // No code generation needed.
2878   case Decl::UsingShadow:
2879   case Decl::Using:
2880   case Decl::ClassTemplate:
2881   case Decl::FunctionTemplate:
2882   case Decl::TypeAliasTemplate:
2883   case Decl::Block:
2884   case Decl::Empty:
2885     break;
2886   case Decl::NamespaceAlias:
2887     if (CGDebugInfo *DI = getModuleDebugInfo())
2888         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2889     return;
2890   case Decl::UsingDirective: // using namespace X; [C++]
2891     if (CGDebugInfo *DI = getModuleDebugInfo())
2892       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2893     return;
2894   case Decl::CXXConstructor:
2895     // Skip function templates
2896     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2897         cast<FunctionDecl>(D)->isLateTemplateParsed())
2898       return;
2899 
2900     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2901     break;
2902   case Decl::CXXDestructor:
2903     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2904       return;
2905     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2906     break;
2907 
2908   case Decl::StaticAssert:
2909     // Nothing to do.
2910     break;
2911 
2912   // Objective-C Decls
2913 
2914   // Forward declarations, no (immediate) code generation.
2915   case Decl::ObjCInterface:
2916   case Decl::ObjCCategory:
2917     break;
2918 
2919   case Decl::ObjCProtocol: {
2920     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2921     if (Proto->isThisDeclarationADefinition())
2922       ObjCRuntime->GenerateProtocol(Proto);
2923     break;
2924   }
2925 
2926   case Decl::ObjCCategoryImpl:
2927     // Categories have properties but don't support synthesize so we
2928     // can ignore them here.
2929     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2930     break;
2931 
2932   case Decl::ObjCImplementation: {
2933     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2934     EmitObjCPropertyImplementations(OMD);
2935     EmitObjCIvarInitializations(OMD);
2936     ObjCRuntime->GenerateClass(OMD);
2937     // Emit global variable debug information.
2938     if (CGDebugInfo *DI = getModuleDebugInfo())
2939       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2940         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2941             OMD->getClassInterface()), OMD->getLocation());
2942     break;
2943   }
2944   case Decl::ObjCMethod: {
2945     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2946     // If this is not a prototype, emit the body.
2947     if (OMD->getBody())
2948       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2949     break;
2950   }
2951   case Decl::ObjCCompatibleAlias:
2952     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2953     break;
2954 
2955   case Decl::LinkageSpec:
2956     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2957     break;
2958 
2959   case Decl::FileScopeAsm: {
2960     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2961     StringRef AsmString = AD->getAsmString()->getString();
2962 
2963     const std::string &S = getModule().getModuleInlineAsm();
2964     if (S.empty())
2965       getModule().setModuleInlineAsm(AsmString);
2966     else if (S.end()[-1] == '\n')
2967       getModule().setModuleInlineAsm(S + AsmString.str());
2968     else
2969       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2970     break;
2971   }
2972 
2973   case Decl::Import: {
2974     ImportDecl *Import = cast<ImportDecl>(D);
2975 
2976     // Ignore import declarations that come from imported modules.
2977     if (clang::Module *Owner = Import->getOwningModule()) {
2978       if (getLangOpts().CurrentModule.empty() ||
2979           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2980         break;
2981     }
2982 
2983     ImportedModules.insert(Import->getImportedModule());
2984     break;
2985  }
2986 
2987   default:
2988     // Make sure we handled everything we should, every other kind is a
2989     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2990     // function. Need to recode Decl::Kind to do that easily.
2991     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2992   }
2993 }
2994 
2995 /// Turns the given pointer into a constant.
2996 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2997                                           const void *Ptr) {
2998   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2999   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3000   return llvm::ConstantInt::get(i64, PtrInt);
3001 }
3002 
3003 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3004                                    llvm::NamedMDNode *&GlobalMetadata,
3005                                    GlobalDecl D,
3006                                    llvm::GlobalValue *Addr) {
3007   if (!GlobalMetadata)
3008     GlobalMetadata =
3009       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3010 
3011   // TODO: should we report variant information for ctors/dtors?
3012   llvm::Value *Ops[] = {
3013     Addr,
3014     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3015   };
3016   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3017 }
3018 
3019 /// For each function which is declared within an extern "C" region and marked
3020 /// as 'used', but has internal linkage, create an alias from the unmangled
3021 /// name to the mangled name if possible. People expect to be able to refer
3022 /// to such functions with an unmangled name from inline assembly within the
3023 /// same translation unit.
3024 void CodeGenModule::EmitStaticExternCAliases() {
3025   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3026                                   E = StaticExternCValues.end();
3027        I != E; ++I) {
3028     IdentifierInfo *Name = I->first;
3029     llvm::GlobalValue *Val = I->second;
3030     if (Val && !getModule().getNamedValue(Name->getName()))
3031       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3032                                           Name->getName(), Val, &getModule()));
3033   }
3034 }
3035 
3036 /// Emits metadata nodes associating all the global values in the
3037 /// current module with the Decls they came from.  This is useful for
3038 /// projects using IR gen as a subroutine.
3039 ///
3040 /// Since there's currently no way to associate an MDNode directly
3041 /// with an llvm::GlobalValue, we create a global named metadata
3042 /// with the name 'clang.global.decl.ptrs'.
3043 void CodeGenModule::EmitDeclMetadata() {
3044   llvm::NamedMDNode *GlobalMetadata = 0;
3045 
3046   // StaticLocalDeclMap
3047   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3048          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3049        I != E; ++I) {
3050     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3051     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3052   }
3053 }
3054 
3055 /// Emits metadata nodes for all the local variables in the current
3056 /// function.
3057 void CodeGenFunction::EmitDeclMetadata() {
3058   if (LocalDeclMap.empty()) return;
3059 
3060   llvm::LLVMContext &Context = getLLVMContext();
3061 
3062   // Find the unique metadata ID for this name.
3063   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3064 
3065   llvm::NamedMDNode *GlobalMetadata = 0;
3066 
3067   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3068          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3069     const Decl *D = I->first;
3070     llvm::Value *Addr = I->second;
3071 
3072     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3073       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3074       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3075     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3076       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3077       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3078     }
3079   }
3080 }
3081 
3082 void CodeGenModule::EmitCoverageFile() {
3083   if (!getCodeGenOpts().CoverageFile.empty()) {
3084     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3085       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3086       llvm::LLVMContext &Ctx = TheModule.getContext();
3087       llvm::MDString *CoverageFile =
3088           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3089       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3090         llvm::MDNode *CU = CUNode->getOperand(i);
3091         llvm::Value *node[] = { CoverageFile, CU };
3092         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3093         GCov->addOperand(N);
3094       }
3095     }
3096   }
3097 }
3098 
3099 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3100                                                      QualType GuidType) {
3101   // Sema has checked that all uuid strings are of the form
3102   // "12345678-1234-1234-1234-1234567890ab".
3103   assert(Uuid.size() == 36);
3104   const char *Uuidstr = Uuid.data();
3105   for (int i = 0; i < 36; ++i) {
3106     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3107     else                                         assert(isHexDigit(Uuidstr[i]));
3108   }
3109 
3110   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3111   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3112   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3113   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3114 
3115   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3116   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3117   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3118   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3119   APValue& Arr = InitStruct.getStructField(3);
3120   Arr = APValue(APValue::UninitArray(), 8, 8);
3121   for (int t = 0; t < 8; ++t)
3122     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3123           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3124 
3125   return EmitConstantValue(InitStruct, GuidType);
3126 }
3127