xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 5e25284dbc947781fcd3f2230bea14c48f43ec50)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/ADT/Triple.h"
54 #include "llvm/Analysis/TargetLibraryInfo.h"
55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/X86TargetParser.h"
71 #include "llvm/Support/xxhash.h"
72 
73 using namespace clang;
74 using namespace CodeGen;
75 
76 static llvm::cl::opt<bool> LimitedCoverage(
77     "limited-coverage-experimental", llvm::cl::Hidden,
78     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
79 
80 static const char AnnotationSection[] = "llvm.metadata";
81 
82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
83   switch (CGM.getContext().getCXXABIKind()) {
84   case TargetCXXABI::AppleARM64:
85   case TargetCXXABI::Fuchsia:
86   case TargetCXXABI::GenericAArch64:
87   case TargetCXXABI::GenericARM:
88   case TargetCXXABI::iOS:
89   case TargetCXXABI::WatchOS:
90   case TargetCXXABI::GenericMIPS:
91   case TargetCXXABI::GenericItanium:
92   case TargetCXXABI::WebAssembly:
93   case TargetCXXABI::XL:
94     return CreateItaniumCXXABI(CGM);
95   case TargetCXXABI::Microsoft:
96     return CreateMicrosoftCXXABI(CGM);
97   }
98 
99   llvm_unreachable("invalid C++ ABI kind");
100 }
101 
102 CodeGenModule::CodeGenModule(ASTContext &C,
103                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
104                              const HeaderSearchOptions &HSO,
105                              const PreprocessorOptions &PPO,
106                              const CodeGenOptions &CGO, llvm::Module &M,
107                              DiagnosticsEngine &diags,
108                              CoverageSourceInfo *CoverageInfo)
109     : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
110       HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
111       TheModule(M), Diags(diags), Target(C.getTargetInfo()),
112       ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
113       VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
114 
115   // Initialize the type cache.
116   llvm::LLVMContext &LLVMContext = M.getContext();
117   VoidTy = llvm::Type::getVoidTy(LLVMContext);
118   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
119   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
120   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
121   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
122   HalfTy = llvm::Type::getHalfTy(LLVMContext);
123   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
124   FloatTy = llvm::Type::getFloatTy(LLVMContext);
125   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
126   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
127   PointerAlignInBytes =
128     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
129   SizeSizeInBytes =
130     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
131   IntAlignInBytes =
132     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
133   CharTy =
134     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
135   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
136   IntPtrTy = llvm::IntegerType::get(LLVMContext,
137     C.getTargetInfo().getMaxPointerWidth());
138   Int8PtrTy = Int8Ty->getPointerTo(0);
139   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
140   const llvm::DataLayout &DL = M.getDataLayout();
141   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
142   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
143   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
144 
145   // Build C++20 Module initializers.
146   // TODO: Add Microsoft here once we know the mangling required for the
147   // initializers.
148   CXX20ModuleInits =
149       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
150                                        ItaniumMangleContext::MK_Itanium;
151 
152   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
153 
154   if (LangOpts.ObjC)
155     createObjCRuntime();
156   if (LangOpts.OpenCL)
157     createOpenCLRuntime();
158   if (LangOpts.OpenMP)
159     createOpenMPRuntime();
160   if (LangOpts.CUDA)
161     createCUDARuntime();
162   if (LangOpts.HLSL)
163     createHLSLRuntime();
164 
165   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
166   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
167       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
168     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
169                                getCXXABI().getMangleContext()));
170 
171   // If debug info or coverage generation is enabled, create the CGDebugInfo
172   // object.
173   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
174       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
175     DebugInfo.reset(new CGDebugInfo(*this));
176 
177   Block.GlobalUniqueCount = 0;
178 
179   if (C.getLangOpts().ObjC)
180     ObjCData.reset(new ObjCEntrypoints());
181 
182   if (CodeGenOpts.hasProfileClangUse()) {
183     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
184         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
185     // We're checking for profile read errors in CompilerInvocation, so if
186     // there was an error it should've already been caught. If it hasn't been
187     // somehow, trip an assertion.
188     assert(ReaderOrErr);
189     PGOReader = std::move(ReaderOrErr.get());
190   }
191 
192   // If coverage mapping generation is enabled, create the
193   // CoverageMappingModuleGen object.
194   if (CodeGenOpts.CoverageMapping)
195     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
196 
197   // Generate the module name hash here if needed.
198   if (CodeGenOpts.UniqueInternalLinkageNames &&
199       !getModule().getSourceFileName().empty()) {
200     std::string Path = getModule().getSourceFileName();
201     // Check if a path substitution is needed from the MacroPrefixMap.
202     for (const auto &Entry : LangOpts.MacroPrefixMap)
203       if (Path.rfind(Entry.first, 0) != std::string::npos) {
204         Path = Entry.second + Path.substr(Entry.first.size());
205         break;
206       }
207     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
208   }
209 }
210 
211 CodeGenModule::~CodeGenModule() {}
212 
213 void CodeGenModule::createObjCRuntime() {
214   // This is just isGNUFamily(), but we want to force implementors of
215   // new ABIs to decide how best to do this.
216   switch (LangOpts.ObjCRuntime.getKind()) {
217   case ObjCRuntime::GNUstep:
218   case ObjCRuntime::GCC:
219   case ObjCRuntime::ObjFW:
220     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
221     return;
222 
223   case ObjCRuntime::FragileMacOSX:
224   case ObjCRuntime::MacOSX:
225   case ObjCRuntime::iOS:
226   case ObjCRuntime::WatchOS:
227     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
228     return;
229   }
230   llvm_unreachable("bad runtime kind");
231 }
232 
233 void CodeGenModule::createOpenCLRuntime() {
234   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
235 }
236 
237 void CodeGenModule::createOpenMPRuntime() {
238   // Select a specialized code generation class based on the target, if any.
239   // If it does not exist use the default implementation.
240   switch (getTriple().getArch()) {
241   case llvm::Triple::nvptx:
242   case llvm::Triple::nvptx64:
243   case llvm::Triple::amdgcn:
244     assert(getLangOpts().OpenMPIsDevice &&
245            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
246     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
247     break;
248   default:
249     if (LangOpts.OpenMPSimd)
250       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
251     else
252       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
253     break;
254   }
255 }
256 
257 void CodeGenModule::createCUDARuntime() {
258   CUDARuntime.reset(CreateNVCUDARuntime(*this));
259 }
260 
261 void CodeGenModule::createHLSLRuntime() {
262   HLSLRuntime.reset(new CGHLSLRuntime(*this));
263 }
264 
265 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
266   Replacements[Name] = C;
267 }
268 
269 void CodeGenModule::applyReplacements() {
270   for (auto &I : Replacements) {
271     StringRef MangledName = I.first();
272     llvm::Constant *Replacement = I.second;
273     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
274     if (!Entry)
275       continue;
276     auto *OldF = cast<llvm::Function>(Entry);
277     auto *NewF = dyn_cast<llvm::Function>(Replacement);
278     if (!NewF) {
279       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
280         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
281       } else {
282         auto *CE = cast<llvm::ConstantExpr>(Replacement);
283         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
284                CE->getOpcode() == llvm::Instruction::GetElementPtr);
285         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
286       }
287     }
288 
289     // Replace old with new, but keep the old order.
290     OldF->replaceAllUsesWith(Replacement);
291     if (NewF) {
292       NewF->removeFromParent();
293       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
294                                                        NewF);
295     }
296     OldF->eraseFromParent();
297   }
298 }
299 
300 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
301   GlobalValReplacements.push_back(std::make_pair(GV, C));
302 }
303 
304 void CodeGenModule::applyGlobalValReplacements() {
305   for (auto &I : GlobalValReplacements) {
306     llvm::GlobalValue *GV = I.first;
307     llvm::Constant *C = I.second;
308 
309     GV->replaceAllUsesWith(C);
310     GV->eraseFromParent();
311   }
312 }
313 
314 // This is only used in aliases that we created and we know they have a
315 // linear structure.
316 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
317   const llvm::Constant *C;
318   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
319     C = GA->getAliasee();
320   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
321     C = GI->getResolver();
322   else
323     return GV;
324 
325   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
326   if (!AliaseeGV)
327     return nullptr;
328 
329   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
330   if (FinalGV == GV)
331     return nullptr;
332 
333   return FinalGV;
334 }
335 
336 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
337                                SourceLocation Location, bool IsIFunc,
338                                const llvm::GlobalValue *Alias,
339                                const llvm::GlobalValue *&GV) {
340   GV = getAliasedGlobal(Alias);
341   if (!GV) {
342     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
343     return false;
344   }
345 
346   if (GV->isDeclaration()) {
347     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
348     return false;
349   }
350 
351   if (IsIFunc) {
352     // Check resolver function type.
353     const auto *F = dyn_cast<llvm::Function>(GV);
354     if (!F) {
355       Diags.Report(Location, diag::err_alias_to_undefined)
356           << IsIFunc << IsIFunc;
357       return false;
358     }
359 
360     llvm::FunctionType *FTy = F->getFunctionType();
361     if (!FTy->getReturnType()->isPointerTy()) {
362       Diags.Report(Location, diag::err_ifunc_resolver_return);
363       return false;
364     }
365   }
366 
367   return true;
368 }
369 
370 void CodeGenModule::checkAliases() {
371   // Check if the constructed aliases are well formed. It is really unfortunate
372   // that we have to do this in CodeGen, but we only construct mangled names
373   // and aliases during codegen.
374   bool Error = false;
375   DiagnosticsEngine &Diags = getDiags();
376   for (const GlobalDecl &GD : Aliases) {
377     const auto *D = cast<ValueDecl>(GD.getDecl());
378     SourceLocation Location;
379     bool IsIFunc = D->hasAttr<IFuncAttr>();
380     if (const Attr *A = D->getDefiningAttr())
381       Location = A->getLocation();
382     else
383       llvm_unreachable("Not an alias or ifunc?");
384 
385     StringRef MangledName = getMangledName(GD);
386     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
387     const llvm::GlobalValue *GV = nullptr;
388     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
389       Error = true;
390       continue;
391     }
392 
393     llvm::Constant *Aliasee =
394         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
395                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
396 
397     llvm::GlobalValue *AliaseeGV;
398     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
399       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
400     else
401       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
402 
403     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
404       StringRef AliasSection = SA->getName();
405       if (AliasSection != AliaseeGV->getSection())
406         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
407             << AliasSection << IsIFunc << IsIFunc;
408     }
409 
410     // We have to handle alias to weak aliases in here. LLVM itself disallows
411     // this since the object semantics would not match the IL one. For
412     // compatibility with gcc we implement it by just pointing the alias
413     // to its aliasee's aliasee. We also warn, since the user is probably
414     // expecting the link to be weak.
415     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
416       if (GA->isInterposable()) {
417         Diags.Report(Location, diag::warn_alias_to_weak_alias)
418             << GV->getName() << GA->getName() << IsIFunc;
419         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
420             GA->getAliasee(), Alias->getType());
421 
422         if (IsIFunc)
423           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
424         else
425           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
426       }
427     }
428   }
429   if (!Error)
430     return;
431 
432   for (const GlobalDecl &GD : Aliases) {
433     StringRef MangledName = getMangledName(GD);
434     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
435     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
436     Alias->eraseFromParent();
437   }
438 }
439 
440 void CodeGenModule::clear() {
441   DeferredDeclsToEmit.clear();
442   EmittedDeferredDecls.clear();
443   if (OpenMPRuntime)
444     OpenMPRuntime->clear();
445 }
446 
447 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
448                                        StringRef MainFile) {
449   if (!hasDiagnostics())
450     return;
451   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
452     if (MainFile.empty())
453       MainFile = "<stdin>";
454     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
455   } else {
456     if (Mismatched > 0)
457       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
458 
459     if (Missing > 0)
460       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
461   }
462 }
463 
464 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
465                                              llvm::Module &M) {
466   if (!LO.VisibilityFromDLLStorageClass)
467     return;
468 
469   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
470       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
471   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
472       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
473   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
474       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
475   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
476       CodeGenModule::GetLLVMVisibility(
477           LO.getExternDeclNoDLLStorageClassVisibility());
478 
479   for (llvm::GlobalValue &GV : M.global_values()) {
480     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
481       continue;
482 
483     // Reset DSO locality before setting the visibility. This removes
484     // any effects that visibility options and annotations may have
485     // had on the DSO locality. Setting the visibility will implicitly set
486     // appropriate globals to DSO Local; however, this will be pessimistic
487     // w.r.t. to the normal compiler IRGen.
488     GV.setDSOLocal(false);
489 
490     if (GV.isDeclarationForLinker()) {
491       GV.setVisibility(GV.getDLLStorageClass() ==
492                                llvm::GlobalValue::DLLImportStorageClass
493                            ? ExternDeclDLLImportVisibility
494                            : ExternDeclNoDLLStorageClassVisibility);
495     } else {
496       GV.setVisibility(GV.getDLLStorageClass() ==
497                                llvm::GlobalValue::DLLExportStorageClass
498                            ? DLLExportVisibility
499                            : NoDLLStorageClassVisibility);
500     }
501 
502     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
503   }
504 }
505 
506 void CodeGenModule::Release() {
507   Module *Primary = getContext().getModuleForCodeGen();
508   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
509     EmitModuleInitializers(Primary);
510   EmitDeferred();
511   DeferredDecls.insert(EmittedDeferredDecls.begin(),
512                        EmittedDeferredDecls.end());
513   EmittedDeferredDecls.clear();
514   EmitVTablesOpportunistically();
515   applyGlobalValReplacements();
516   applyReplacements();
517   emitMultiVersionFunctions();
518   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
519     EmitCXXModuleInitFunc(Primary);
520   else
521     EmitCXXGlobalInitFunc();
522   EmitCXXGlobalCleanUpFunc();
523   registerGlobalDtorsWithAtExit();
524   EmitCXXThreadLocalInitFunc();
525   if (ObjCRuntime)
526     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
527       AddGlobalCtor(ObjCInitFunction);
528   if (Context.getLangOpts().CUDA && CUDARuntime) {
529     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
530       AddGlobalCtor(CudaCtorFunction);
531   }
532   if (OpenMPRuntime) {
533     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
534             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
535       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
536     }
537     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
538     OpenMPRuntime->clear();
539   }
540   if (PGOReader) {
541     getModule().setProfileSummary(
542         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
543         llvm::ProfileSummary::PSK_Instr);
544     if (PGOStats.hasDiagnostics())
545       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
546   }
547   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
548     return L.LexOrder < R.LexOrder;
549   });
550   EmitCtorList(GlobalCtors, "llvm.global_ctors");
551   EmitCtorList(GlobalDtors, "llvm.global_dtors");
552   EmitGlobalAnnotations();
553   EmitStaticExternCAliases();
554   checkAliases();
555   EmitDeferredUnusedCoverageMappings();
556   CodeGenPGO(*this).setValueProfilingFlag(getModule());
557   if (CoverageMapping)
558     CoverageMapping->emit();
559   if (CodeGenOpts.SanitizeCfiCrossDso) {
560     CodeGenFunction(*this).EmitCfiCheckFail();
561     CodeGenFunction(*this).EmitCfiCheckStub();
562   }
563   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
564     finalizeKCFITypes();
565   emitAtAvailableLinkGuard();
566   if (Context.getTargetInfo().getTriple().isWasm())
567     EmitMainVoidAlias();
568 
569   if (getTriple().isAMDGPU()) {
570     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
571     // preserve ASAN functions in bitcode libraries.
572     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
573       auto *FT = llvm::FunctionType::get(VoidTy, {});
574       auto *F = llvm::Function::Create(
575           FT, llvm::GlobalValue::ExternalLinkage,
576           "__amdgpu_device_library_preserve_asan_functions", &getModule());
577       auto *Var = new llvm::GlobalVariable(
578           getModule(), FT->getPointerTo(),
579           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
580           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
581           llvm::GlobalVariable::NotThreadLocal);
582       addCompilerUsedGlobal(Var);
583     }
584     // Emit amdgpu_code_object_version module flag, which is code object version
585     // times 100.
586     if (getTarget().getTargetOpts().CodeObjectVersion !=
587         TargetOptions::COV_None) {
588       getModule().addModuleFlag(llvm::Module::Error,
589                                 "amdgpu_code_object_version",
590                                 getTarget().getTargetOpts().CodeObjectVersion);
591     }
592   }
593 
594   // Emit a global array containing all external kernels or device variables
595   // used by host functions and mark it as used for CUDA/HIP. This is necessary
596   // to get kernels or device variables in archives linked in even if these
597   // kernels or device variables are only used in host functions.
598   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
599     SmallVector<llvm::Constant *, 8> UsedArray;
600     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
601       GlobalDecl GD;
602       if (auto *FD = dyn_cast<FunctionDecl>(D))
603         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
604       else
605         GD = GlobalDecl(D);
606       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
607           GetAddrOfGlobal(GD), Int8PtrTy));
608     }
609 
610     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
611 
612     auto *GV = new llvm::GlobalVariable(
613         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
614         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
615     addCompilerUsedGlobal(GV);
616   }
617 
618   emitLLVMUsed();
619   if (SanStats)
620     SanStats->finish();
621 
622   if (CodeGenOpts.Autolink &&
623       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
624     EmitModuleLinkOptions();
625   }
626 
627   // On ELF we pass the dependent library specifiers directly to the linker
628   // without manipulating them. This is in contrast to other platforms where
629   // they are mapped to a specific linker option by the compiler. This
630   // difference is a result of the greater variety of ELF linkers and the fact
631   // that ELF linkers tend to handle libraries in a more complicated fashion
632   // than on other platforms. This forces us to defer handling the dependent
633   // libs to the linker.
634   //
635   // CUDA/HIP device and host libraries are different. Currently there is no
636   // way to differentiate dependent libraries for host or device. Existing
637   // usage of #pragma comment(lib, *) is intended for host libraries on
638   // Windows. Therefore emit llvm.dependent-libraries only for host.
639   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
640     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
641     for (auto *MD : ELFDependentLibraries)
642       NMD->addOperand(MD);
643   }
644 
645   // Record mregparm value now so it is visible through rest of codegen.
646   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
647     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
648                               CodeGenOpts.NumRegisterParameters);
649 
650   if (CodeGenOpts.DwarfVersion) {
651     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
652                               CodeGenOpts.DwarfVersion);
653   }
654 
655   if (CodeGenOpts.Dwarf64)
656     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
657 
658   if (Context.getLangOpts().SemanticInterposition)
659     // Require various optimization to respect semantic interposition.
660     getModule().setSemanticInterposition(true);
661 
662   if (CodeGenOpts.EmitCodeView) {
663     // Indicate that we want CodeView in the metadata.
664     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
665   }
666   if (CodeGenOpts.CodeViewGHash) {
667     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
668   }
669   if (CodeGenOpts.ControlFlowGuard) {
670     // Function ID tables and checks for Control Flow Guard (cfguard=2).
671     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
672   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
673     // Function ID tables for Control Flow Guard (cfguard=1).
674     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
675   }
676   if (CodeGenOpts.EHContGuard) {
677     // Function ID tables for EH Continuation Guard.
678     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
679   }
680   if (Context.getLangOpts().Kernel) {
681     // Note if we are compiling with /kernel.
682     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
683   }
684   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
685     // We don't support LTO with 2 with different StrictVTablePointers
686     // FIXME: we could support it by stripping all the information introduced
687     // by StrictVTablePointers.
688 
689     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
690 
691     llvm::Metadata *Ops[2] = {
692               llvm::MDString::get(VMContext, "StrictVTablePointers"),
693               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
694                   llvm::Type::getInt32Ty(VMContext), 1))};
695 
696     getModule().addModuleFlag(llvm::Module::Require,
697                               "StrictVTablePointersRequirement",
698                               llvm::MDNode::get(VMContext, Ops));
699   }
700   if (getModuleDebugInfo())
701     // We support a single version in the linked module. The LLVM
702     // parser will drop debug info with a different version number
703     // (and warn about it, too).
704     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
705                               llvm::DEBUG_METADATA_VERSION);
706 
707   // We need to record the widths of enums and wchar_t, so that we can generate
708   // the correct build attributes in the ARM backend. wchar_size is also used by
709   // TargetLibraryInfo.
710   uint64_t WCharWidth =
711       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
712   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
713 
714   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
715   if (   Arch == llvm::Triple::arm
716       || Arch == llvm::Triple::armeb
717       || Arch == llvm::Triple::thumb
718       || Arch == llvm::Triple::thumbeb) {
719     // The minimum width of an enum in bytes
720     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
721     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
722   }
723 
724   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
725     StringRef ABIStr = Target.getABI();
726     llvm::LLVMContext &Ctx = TheModule.getContext();
727     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
728                               llvm::MDString::get(Ctx, ABIStr));
729   }
730 
731   if (CodeGenOpts.SanitizeCfiCrossDso) {
732     // Indicate that we want cross-DSO control flow integrity checks.
733     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
734   }
735 
736   if (CodeGenOpts.WholeProgramVTables) {
737     // Indicate whether VFE was enabled for this module, so that the
738     // vcall_visibility metadata added under whole program vtables is handled
739     // appropriately in the optimizer.
740     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
741                               CodeGenOpts.VirtualFunctionElimination);
742   }
743 
744   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
745     getModule().addModuleFlag(llvm::Module::Override,
746                               "CFI Canonical Jump Tables",
747                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
748   }
749 
750   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
751     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
752 
753   if (CodeGenOpts.CFProtectionReturn &&
754       Target.checkCFProtectionReturnSupported(getDiags())) {
755     // Indicate that we want to instrument return control flow protection.
756     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
757                               1);
758   }
759 
760   if (CodeGenOpts.CFProtectionBranch &&
761       Target.checkCFProtectionBranchSupported(getDiags())) {
762     // Indicate that we want to instrument branch control flow protection.
763     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
764                               1);
765   }
766 
767   if (CodeGenOpts.IBTSeal)
768     getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1);
769 
770   if (CodeGenOpts.FunctionReturnThunks)
771     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
772 
773   if (CodeGenOpts.IndirectBranchCSPrefix)
774     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
775 
776   // Add module metadata for return address signing (ignoring
777   // non-leaf/all) and stack tagging. These are actually turned on by function
778   // attributes, but we use module metadata to emit build attributes. This is
779   // needed for LTO, where the function attributes are inside bitcode
780   // serialised into a global variable by the time build attributes are
781   // emitted, so we can't access them. LTO objects could be compiled with
782   // different flags therefore module flags are set to "Min" behavior to achieve
783   // the same end result of the normal build where e.g BTI is off if any object
784   // doesn't support it.
785   if (Context.getTargetInfo().hasFeature("ptrauth") &&
786       LangOpts.getSignReturnAddressScope() !=
787           LangOptions::SignReturnAddressScopeKind::None)
788     getModule().addModuleFlag(llvm::Module::Override,
789                               "sign-return-address-buildattr", 1);
790   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
791     getModule().addModuleFlag(llvm::Module::Override,
792                               "tag-stack-memory-buildattr", 1);
793 
794   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
795       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
796       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
797       Arch == llvm::Triple::aarch64_be) {
798     if (LangOpts.BranchTargetEnforcement)
799       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
800                                 1);
801     if (LangOpts.hasSignReturnAddress())
802       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
803     if (LangOpts.isSignReturnAddressScopeAll())
804       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
805                                 1);
806     if (!LangOpts.isSignReturnAddressWithAKey())
807       getModule().addModuleFlag(llvm::Module::Min,
808                                 "sign-return-address-with-bkey", 1);
809   }
810 
811   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
812     llvm::LLVMContext &Ctx = TheModule.getContext();
813     getModule().addModuleFlag(
814         llvm::Module::Error, "MemProfProfileFilename",
815         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
816   }
817 
818   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
819     // Indicate whether __nvvm_reflect should be configured to flush denormal
820     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
821     // property.)
822     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
823                               CodeGenOpts.FP32DenormalMode.Output !=
824                                   llvm::DenormalMode::IEEE);
825   }
826 
827   if (LangOpts.EHAsynch)
828     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
829 
830   // Indicate whether this Module was compiled with -fopenmp
831   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
832     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
833   if (getLangOpts().OpenMPIsDevice)
834     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
835                               LangOpts.OpenMP);
836 
837   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
838   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
839     EmitOpenCLMetadata();
840     // Emit SPIR version.
841     if (getTriple().isSPIR()) {
842       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
843       // opencl.spir.version named metadata.
844       // C++ for OpenCL has a distinct mapping for version compatibility with
845       // OpenCL.
846       auto Version = LangOpts.getOpenCLCompatibleVersion();
847       llvm::Metadata *SPIRVerElts[] = {
848           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
849               Int32Ty, Version / 100)),
850           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
851               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
852       llvm::NamedMDNode *SPIRVerMD =
853           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
854       llvm::LLVMContext &Ctx = TheModule.getContext();
855       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
856     }
857   }
858 
859   // HLSL related end of code gen work items.
860   if (LangOpts.HLSL)
861     getHLSLRuntime().finishCodeGen();
862 
863   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
864     assert(PLevel < 3 && "Invalid PIC Level");
865     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
866     if (Context.getLangOpts().PIE)
867       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
868   }
869 
870   if (getCodeGenOpts().CodeModel.size() > 0) {
871     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
872                   .Case("tiny", llvm::CodeModel::Tiny)
873                   .Case("small", llvm::CodeModel::Small)
874                   .Case("kernel", llvm::CodeModel::Kernel)
875                   .Case("medium", llvm::CodeModel::Medium)
876                   .Case("large", llvm::CodeModel::Large)
877                   .Default(~0u);
878     if (CM != ~0u) {
879       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
880       getModule().setCodeModel(codeModel);
881     }
882   }
883 
884   if (CodeGenOpts.NoPLT)
885     getModule().setRtLibUseGOT();
886   if (CodeGenOpts.UnwindTables)
887     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
888 
889   switch (CodeGenOpts.getFramePointer()) {
890   case CodeGenOptions::FramePointerKind::None:
891     // 0 ("none") is the default.
892     break;
893   case CodeGenOptions::FramePointerKind::NonLeaf:
894     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
895     break;
896   case CodeGenOptions::FramePointerKind::All:
897     getModule().setFramePointer(llvm::FramePointerKind::All);
898     break;
899   }
900 
901   SimplifyPersonality();
902 
903   if (getCodeGenOpts().EmitDeclMetadata)
904     EmitDeclMetadata();
905 
906   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
907     EmitCoverageFile();
908 
909   if (CGDebugInfo *DI = getModuleDebugInfo())
910     DI->finalize();
911 
912   if (getCodeGenOpts().EmitVersionIdentMetadata)
913     EmitVersionIdentMetadata();
914 
915   if (!getCodeGenOpts().RecordCommandLine.empty())
916     EmitCommandLineMetadata();
917 
918   if (!getCodeGenOpts().StackProtectorGuard.empty())
919     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
920   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
921     getModule().setStackProtectorGuardReg(
922         getCodeGenOpts().StackProtectorGuardReg);
923   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
924     getModule().setStackProtectorGuardSymbol(
925         getCodeGenOpts().StackProtectorGuardSymbol);
926   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
927     getModule().setStackProtectorGuardOffset(
928         getCodeGenOpts().StackProtectorGuardOffset);
929   if (getCodeGenOpts().StackAlignment)
930     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
931   if (getCodeGenOpts().SkipRaxSetup)
932     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
933 
934   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
935 
936   EmitBackendOptionsMetadata(getCodeGenOpts());
937 
938   // If there is device offloading code embed it in the host now.
939   EmbedObject(&getModule(), CodeGenOpts, getDiags());
940 
941   // Set visibility from DLL storage class
942   // We do this at the end of LLVM IR generation; after any operation
943   // that might affect the DLL storage class or the visibility, and
944   // before anything that might act on these.
945   setVisibilityFromDLLStorageClass(LangOpts, getModule());
946 }
947 
948 void CodeGenModule::EmitOpenCLMetadata() {
949   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
950   // opencl.ocl.version named metadata node.
951   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
952   auto Version = LangOpts.getOpenCLCompatibleVersion();
953   llvm::Metadata *OCLVerElts[] = {
954       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
955           Int32Ty, Version / 100)),
956       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
957           Int32Ty, (Version % 100) / 10))};
958   llvm::NamedMDNode *OCLVerMD =
959       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
960   llvm::LLVMContext &Ctx = TheModule.getContext();
961   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
962 }
963 
964 void CodeGenModule::EmitBackendOptionsMetadata(
965     const CodeGenOptions CodeGenOpts) {
966   if (getTriple().isRISCV()) {
967     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
968                               CodeGenOpts.SmallDataLimit);
969   }
970 }
971 
972 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
973   // Make sure that this type is translated.
974   Types.UpdateCompletedType(TD);
975 }
976 
977 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
978   // Make sure that this type is translated.
979   Types.RefreshTypeCacheForClass(RD);
980 }
981 
982 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
983   if (!TBAA)
984     return nullptr;
985   return TBAA->getTypeInfo(QTy);
986 }
987 
988 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
989   if (!TBAA)
990     return TBAAAccessInfo();
991   if (getLangOpts().CUDAIsDevice) {
992     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
993     // access info.
994     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
995       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
996           nullptr)
997         return TBAAAccessInfo();
998     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
999       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1000           nullptr)
1001         return TBAAAccessInfo();
1002     }
1003   }
1004   return TBAA->getAccessInfo(AccessType);
1005 }
1006 
1007 TBAAAccessInfo
1008 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1009   if (!TBAA)
1010     return TBAAAccessInfo();
1011   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1012 }
1013 
1014 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1015   if (!TBAA)
1016     return nullptr;
1017   return TBAA->getTBAAStructInfo(QTy);
1018 }
1019 
1020 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1021   if (!TBAA)
1022     return nullptr;
1023   return TBAA->getBaseTypeInfo(QTy);
1024 }
1025 
1026 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1027   if (!TBAA)
1028     return nullptr;
1029   return TBAA->getAccessTagInfo(Info);
1030 }
1031 
1032 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1033                                                    TBAAAccessInfo TargetInfo) {
1034   if (!TBAA)
1035     return TBAAAccessInfo();
1036   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1037 }
1038 
1039 TBAAAccessInfo
1040 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1041                                                    TBAAAccessInfo InfoB) {
1042   if (!TBAA)
1043     return TBAAAccessInfo();
1044   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1045 }
1046 
1047 TBAAAccessInfo
1048 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1049                                               TBAAAccessInfo SrcInfo) {
1050   if (!TBAA)
1051     return TBAAAccessInfo();
1052   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1053 }
1054 
1055 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1056                                                 TBAAAccessInfo TBAAInfo) {
1057   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1058     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1059 }
1060 
1061 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1062     llvm::Instruction *I, const CXXRecordDecl *RD) {
1063   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1064                  llvm::MDNode::get(getLLVMContext(), {}));
1065 }
1066 
1067 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1068   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1069   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1070 }
1071 
1072 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1073 /// specified stmt yet.
1074 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1075   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1076                                                "cannot compile this %0 yet");
1077   std::string Msg = Type;
1078   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1079       << Msg << S->getSourceRange();
1080 }
1081 
1082 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1083 /// specified decl yet.
1084 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1085   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1086                                                "cannot compile this %0 yet");
1087   std::string Msg = Type;
1088   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1089 }
1090 
1091 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1092   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1093 }
1094 
1095 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1096                                         const NamedDecl *D) const {
1097   // Internal definitions always have default visibility.
1098   if (GV->hasLocalLinkage()) {
1099     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1100     return;
1101   }
1102   if (!D)
1103     return;
1104   // Set visibility for definitions, and for declarations if requested globally
1105   // or set explicitly.
1106   LinkageInfo LV = D->getLinkageAndVisibility();
1107   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1108     // Reject incompatible dlllstorage and visibility annotations.
1109     if (!LV.isVisibilityExplicit())
1110       return;
1111     if (GV->hasDLLExportStorageClass()) {
1112       if (LV.getVisibility() == HiddenVisibility)
1113         getDiags().Report(D->getLocation(),
1114                           diag::err_hidden_visibility_dllexport);
1115     } else if (LV.getVisibility() != DefaultVisibility) {
1116       getDiags().Report(D->getLocation(),
1117                         diag::err_non_default_visibility_dllimport);
1118     }
1119     return;
1120   }
1121 
1122   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1123       !GV->isDeclarationForLinker())
1124     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1125 }
1126 
1127 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1128                                  llvm::GlobalValue *GV) {
1129   if (GV->hasLocalLinkage())
1130     return true;
1131 
1132   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1133     return true;
1134 
1135   // DLLImport explicitly marks the GV as external.
1136   if (GV->hasDLLImportStorageClass())
1137     return false;
1138 
1139   const llvm::Triple &TT = CGM.getTriple();
1140   if (TT.isWindowsGNUEnvironment()) {
1141     // In MinGW, variables without DLLImport can still be automatically
1142     // imported from a DLL by the linker; don't mark variables that
1143     // potentially could come from another DLL as DSO local.
1144 
1145     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1146     // (and this actually happens in the public interface of libstdc++), so
1147     // such variables can't be marked as DSO local. (Native TLS variables
1148     // can't be dllimported at all, though.)
1149     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1150         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1151       return false;
1152   }
1153 
1154   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1155   // remain unresolved in the link, they can be resolved to zero, which is
1156   // outside the current DSO.
1157   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1158     return false;
1159 
1160   // Every other GV is local on COFF.
1161   // Make an exception for windows OS in the triple: Some firmware builds use
1162   // *-win32-macho triples. This (accidentally?) produced windows relocations
1163   // without GOT tables in older clang versions; Keep this behaviour.
1164   // FIXME: even thread local variables?
1165   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1166     return true;
1167 
1168   // Only handle COFF and ELF for now.
1169   if (!TT.isOSBinFormatELF())
1170     return false;
1171 
1172   // If this is not an executable, don't assume anything is local.
1173   const auto &CGOpts = CGM.getCodeGenOpts();
1174   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1175   const auto &LOpts = CGM.getLangOpts();
1176   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1177     // On ELF, if -fno-semantic-interposition is specified and the target
1178     // supports local aliases, there will be neither CC1
1179     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1180     // dso_local on the function if using a local alias is preferable (can avoid
1181     // PLT indirection).
1182     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1183       return false;
1184     return !(CGM.getLangOpts().SemanticInterposition ||
1185              CGM.getLangOpts().HalfNoSemanticInterposition);
1186   }
1187 
1188   // A definition cannot be preempted from an executable.
1189   if (!GV->isDeclarationForLinker())
1190     return true;
1191 
1192   // Most PIC code sequences that assume that a symbol is local cannot produce a
1193   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1194   // depended, it seems worth it to handle it here.
1195   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1196     return false;
1197 
1198   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1199   if (TT.isPPC64())
1200     return false;
1201 
1202   if (CGOpts.DirectAccessExternalData) {
1203     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1204     // for non-thread-local variables. If the symbol is not defined in the
1205     // executable, a copy relocation will be needed at link time. dso_local is
1206     // excluded for thread-local variables because they generally don't support
1207     // copy relocations.
1208     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1209       if (!Var->isThreadLocal())
1210         return true;
1211 
1212     // -fno-pic sets dso_local on a function declaration to allow direct
1213     // accesses when taking its address (similar to a data symbol). If the
1214     // function is not defined in the executable, a canonical PLT entry will be
1215     // needed at link time. -fno-direct-access-external-data can avoid the
1216     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1217     // it could just cause trouble without providing perceptible benefits.
1218     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1219       return true;
1220   }
1221 
1222   // If we can use copy relocations we can assume it is local.
1223 
1224   // Otherwise don't assume it is local.
1225   return false;
1226 }
1227 
1228 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1229   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1230 }
1231 
1232 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1233                                           GlobalDecl GD) const {
1234   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1235   // C++ destructors have a few C++ ABI specific special cases.
1236   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1237     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1238     return;
1239   }
1240   setDLLImportDLLExport(GV, D);
1241 }
1242 
1243 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1244                                           const NamedDecl *D) const {
1245   if (D && D->isExternallyVisible()) {
1246     if (D->hasAttr<DLLImportAttr>())
1247       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1248     else if ((D->hasAttr<DLLExportAttr>() ||
1249               shouldMapVisibilityToDLLExport(D)) &&
1250              !GV->isDeclarationForLinker())
1251       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1252   }
1253 }
1254 
1255 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1256                                     GlobalDecl GD) const {
1257   setDLLImportDLLExport(GV, GD);
1258   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1259 }
1260 
1261 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1262                                     const NamedDecl *D) const {
1263   setDLLImportDLLExport(GV, D);
1264   setGVPropertiesAux(GV, D);
1265 }
1266 
1267 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1268                                        const NamedDecl *D) const {
1269   setGlobalVisibility(GV, D);
1270   setDSOLocal(GV);
1271   GV->setPartition(CodeGenOpts.SymbolPartition);
1272 }
1273 
1274 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1275   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1276       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1277       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1278       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1279       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1280 }
1281 
1282 llvm::GlobalVariable::ThreadLocalMode
1283 CodeGenModule::GetDefaultLLVMTLSModel() const {
1284   switch (CodeGenOpts.getDefaultTLSModel()) {
1285   case CodeGenOptions::GeneralDynamicTLSModel:
1286     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1287   case CodeGenOptions::LocalDynamicTLSModel:
1288     return llvm::GlobalVariable::LocalDynamicTLSModel;
1289   case CodeGenOptions::InitialExecTLSModel:
1290     return llvm::GlobalVariable::InitialExecTLSModel;
1291   case CodeGenOptions::LocalExecTLSModel:
1292     return llvm::GlobalVariable::LocalExecTLSModel;
1293   }
1294   llvm_unreachable("Invalid TLS model!");
1295 }
1296 
1297 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1298   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1299 
1300   llvm::GlobalValue::ThreadLocalMode TLM;
1301   TLM = GetDefaultLLVMTLSModel();
1302 
1303   // Override the TLS model if it is explicitly specified.
1304   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1305     TLM = GetLLVMTLSModel(Attr->getModel());
1306   }
1307 
1308   GV->setThreadLocalMode(TLM);
1309 }
1310 
1311 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1312                                           StringRef Name) {
1313   const TargetInfo &Target = CGM.getTarget();
1314   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1315 }
1316 
1317 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1318                                                  const CPUSpecificAttr *Attr,
1319                                                  unsigned CPUIndex,
1320                                                  raw_ostream &Out) {
1321   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1322   // supported.
1323   if (Attr)
1324     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1325   else if (CGM.getTarget().supportsIFunc())
1326     Out << ".resolver";
1327 }
1328 
1329 static void AppendTargetMangling(const CodeGenModule &CGM,
1330                                  const TargetAttr *Attr, raw_ostream &Out) {
1331   if (Attr->isDefaultVersion())
1332     return;
1333 
1334   Out << '.';
1335   const TargetInfo &Target = CGM.getTarget();
1336   ParsedTargetAttr Info =
1337       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1338         // Multiversioning doesn't allow "no-${feature}", so we can
1339         // only have "+" prefixes here.
1340         assert(LHS.startswith("+") && RHS.startswith("+") &&
1341                "Features should always have a prefix.");
1342         return Target.multiVersionSortPriority(LHS.substr(1)) >
1343                Target.multiVersionSortPriority(RHS.substr(1));
1344       });
1345 
1346   bool IsFirst = true;
1347 
1348   if (!Info.Architecture.empty()) {
1349     IsFirst = false;
1350     Out << "arch_" << Info.Architecture;
1351   }
1352 
1353   for (StringRef Feat : Info.Features) {
1354     if (!IsFirst)
1355       Out << '_';
1356     IsFirst = false;
1357     Out << Feat.substr(1);
1358   }
1359 }
1360 
1361 // Returns true if GD is a function decl with internal linkage and
1362 // needs a unique suffix after the mangled name.
1363 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1364                                         CodeGenModule &CGM) {
1365   const Decl *D = GD.getDecl();
1366   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1367          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1368 }
1369 
1370 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1371                                        const TargetClonesAttr *Attr,
1372                                        unsigned VersionIndex,
1373                                        raw_ostream &Out) {
1374   Out << '.';
1375   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1376   if (FeatureStr.startswith("arch="))
1377     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1378   else
1379     Out << FeatureStr;
1380 
1381   Out << '.' << Attr->getMangledIndex(VersionIndex);
1382 }
1383 
1384 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1385                                       const NamedDecl *ND,
1386                                       bool OmitMultiVersionMangling = false) {
1387   SmallString<256> Buffer;
1388   llvm::raw_svector_ostream Out(Buffer);
1389   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1390   if (!CGM.getModuleNameHash().empty())
1391     MC.needsUniqueInternalLinkageNames();
1392   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1393   if (ShouldMangle)
1394     MC.mangleName(GD.getWithDecl(ND), Out);
1395   else {
1396     IdentifierInfo *II = ND->getIdentifier();
1397     assert(II && "Attempt to mangle unnamed decl.");
1398     const auto *FD = dyn_cast<FunctionDecl>(ND);
1399 
1400     if (FD &&
1401         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1402       Out << "__regcall3__" << II->getName();
1403     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1404                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1405       Out << "__device_stub__" << II->getName();
1406     } else {
1407       Out << II->getName();
1408     }
1409   }
1410 
1411   // Check if the module name hash should be appended for internal linkage
1412   // symbols.   This should come before multi-version target suffixes are
1413   // appended. This is to keep the name and module hash suffix of the
1414   // internal linkage function together.  The unique suffix should only be
1415   // added when name mangling is done to make sure that the final name can
1416   // be properly demangled.  For example, for C functions without prototypes,
1417   // name mangling is not done and the unique suffix should not be appeneded
1418   // then.
1419   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1420     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1421            "Hash computed when not explicitly requested");
1422     Out << CGM.getModuleNameHash();
1423   }
1424 
1425   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1426     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1427       switch (FD->getMultiVersionKind()) {
1428       case MultiVersionKind::CPUDispatch:
1429       case MultiVersionKind::CPUSpecific:
1430         AppendCPUSpecificCPUDispatchMangling(CGM,
1431                                              FD->getAttr<CPUSpecificAttr>(),
1432                                              GD.getMultiVersionIndex(), Out);
1433         break;
1434       case MultiVersionKind::Target:
1435         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1436         break;
1437       case MultiVersionKind::TargetClones:
1438         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1439                                    GD.getMultiVersionIndex(), Out);
1440         break;
1441       case MultiVersionKind::None:
1442         llvm_unreachable("None multiversion type isn't valid here");
1443       }
1444     }
1445 
1446   // Make unique name for device side static file-scope variable for HIP.
1447   if (CGM.getContext().shouldExternalize(ND) &&
1448       CGM.getLangOpts().GPURelocatableDeviceCode &&
1449       CGM.getLangOpts().CUDAIsDevice)
1450     CGM.printPostfixForExternalizedDecl(Out, ND);
1451 
1452   return std::string(Out.str());
1453 }
1454 
1455 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1456                                             const FunctionDecl *FD,
1457                                             StringRef &CurName) {
1458   if (!FD->isMultiVersion())
1459     return;
1460 
1461   // Get the name of what this would be without the 'target' attribute.  This
1462   // allows us to lookup the version that was emitted when this wasn't a
1463   // multiversion function.
1464   std::string NonTargetName =
1465       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1466   GlobalDecl OtherGD;
1467   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1468     assert(OtherGD.getCanonicalDecl()
1469                .getDecl()
1470                ->getAsFunction()
1471                ->isMultiVersion() &&
1472            "Other GD should now be a multiversioned function");
1473     // OtherFD is the version of this function that was mangled BEFORE
1474     // becoming a MultiVersion function.  It potentially needs to be updated.
1475     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1476                                       .getDecl()
1477                                       ->getAsFunction()
1478                                       ->getMostRecentDecl();
1479     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1480     // This is so that if the initial version was already the 'default'
1481     // version, we don't try to update it.
1482     if (OtherName != NonTargetName) {
1483       // Remove instead of erase, since others may have stored the StringRef
1484       // to this.
1485       const auto ExistingRecord = Manglings.find(NonTargetName);
1486       if (ExistingRecord != std::end(Manglings))
1487         Manglings.remove(&(*ExistingRecord));
1488       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1489       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1490           Result.first->first();
1491       // If this is the current decl is being created, make sure we update the name.
1492       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1493         CurName = OtherNameRef;
1494       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1495         Entry->setName(OtherName);
1496     }
1497   }
1498 }
1499 
1500 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1501   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1502 
1503   // Some ABIs don't have constructor variants.  Make sure that base and
1504   // complete constructors get mangled the same.
1505   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1506     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1507       CXXCtorType OrigCtorType = GD.getCtorType();
1508       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1509       if (OrigCtorType == Ctor_Base)
1510         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1511     }
1512   }
1513 
1514   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1515   // static device variable depends on whether the variable is referenced by
1516   // a host or device host function. Therefore the mangled name cannot be
1517   // cached.
1518   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1519     auto FoundName = MangledDeclNames.find(CanonicalGD);
1520     if (FoundName != MangledDeclNames.end())
1521       return FoundName->second;
1522   }
1523 
1524   // Keep the first result in the case of a mangling collision.
1525   const auto *ND = cast<NamedDecl>(GD.getDecl());
1526   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1527 
1528   // Ensure either we have different ABIs between host and device compilations,
1529   // says host compilation following MSVC ABI but device compilation follows
1530   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1531   // mangling should be the same after name stubbing. The later checking is
1532   // very important as the device kernel name being mangled in host-compilation
1533   // is used to resolve the device binaries to be executed. Inconsistent naming
1534   // result in undefined behavior. Even though we cannot check that naming
1535   // directly between host- and device-compilations, the host- and
1536   // device-mangling in host compilation could help catching certain ones.
1537   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1538          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1539          (getContext().getAuxTargetInfo() &&
1540           (getContext().getAuxTargetInfo()->getCXXABI() !=
1541            getContext().getTargetInfo().getCXXABI())) ||
1542          getCUDARuntime().getDeviceSideName(ND) ==
1543              getMangledNameImpl(
1544                  *this,
1545                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1546                  ND));
1547 
1548   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1549   return MangledDeclNames[CanonicalGD] = Result.first->first();
1550 }
1551 
1552 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1553                                              const BlockDecl *BD) {
1554   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1555   const Decl *D = GD.getDecl();
1556 
1557   SmallString<256> Buffer;
1558   llvm::raw_svector_ostream Out(Buffer);
1559   if (!D)
1560     MangleCtx.mangleGlobalBlock(BD,
1561       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1562   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1563     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1564   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1565     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1566   else
1567     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1568 
1569   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1570   return Result.first->first();
1571 }
1572 
1573 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1574   auto it = MangledDeclNames.begin();
1575   while (it != MangledDeclNames.end()) {
1576     if (it->second == Name)
1577       return it->first;
1578     it++;
1579   }
1580   return GlobalDecl();
1581 }
1582 
1583 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1584   return getModule().getNamedValue(Name);
1585 }
1586 
1587 /// AddGlobalCtor - Add a function to the list that will be called before
1588 /// main() runs.
1589 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1590                                   unsigned LexOrder,
1591                                   llvm::Constant *AssociatedData) {
1592   // FIXME: Type coercion of void()* types.
1593   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1594 }
1595 
1596 /// AddGlobalDtor - Add a function to the list that will be called
1597 /// when the module is unloaded.
1598 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1599                                   bool IsDtorAttrFunc) {
1600   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1601       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1602     DtorsUsingAtExit[Priority].push_back(Dtor);
1603     return;
1604   }
1605 
1606   // FIXME: Type coercion of void()* types.
1607   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1608 }
1609 
1610 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1611   if (Fns.empty()) return;
1612 
1613   // Ctor function type is void()*.
1614   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1615   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1616       TheModule.getDataLayout().getProgramAddressSpace());
1617 
1618   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1619   llvm::StructType *CtorStructTy = llvm::StructType::get(
1620       Int32Ty, CtorPFTy, VoidPtrTy);
1621 
1622   // Construct the constructor and destructor arrays.
1623   ConstantInitBuilder builder(*this);
1624   auto ctors = builder.beginArray(CtorStructTy);
1625   for (const auto &I : Fns) {
1626     auto ctor = ctors.beginStruct(CtorStructTy);
1627     ctor.addInt(Int32Ty, I.Priority);
1628     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1629     if (I.AssociatedData)
1630       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1631     else
1632       ctor.addNullPointer(VoidPtrTy);
1633     ctor.finishAndAddTo(ctors);
1634   }
1635 
1636   auto list =
1637     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1638                                 /*constant*/ false,
1639                                 llvm::GlobalValue::AppendingLinkage);
1640 
1641   // The LTO linker doesn't seem to like it when we set an alignment
1642   // on appending variables.  Take it off as a workaround.
1643   list->setAlignment(llvm::None);
1644 
1645   Fns.clear();
1646 }
1647 
1648 llvm::GlobalValue::LinkageTypes
1649 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1650   const auto *D = cast<FunctionDecl>(GD.getDecl());
1651 
1652   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1653 
1654   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1655     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1656 
1657   if (isa<CXXConstructorDecl>(D) &&
1658       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1659       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1660     // Our approach to inheriting constructors is fundamentally different from
1661     // that used by the MS ABI, so keep our inheriting constructor thunks
1662     // internal rather than trying to pick an unambiguous mangling for them.
1663     return llvm::GlobalValue::InternalLinkage;
1664   }
1665 
1666   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1667 }
1668 
1669 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1670   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1671   if (!MDS) return nullptr;
1672 
1673   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1674 }
1675 
1676 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1677   if (auto *FnType = T->getAs<FunctionProtoType>())
1678     T = getContext().getFunctionType(
1679         FnType->getReturnType(), FnType->getParamTypes(),
1680         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1681 
1682   std::string OutName;
1683   llvm::raw_string_ostream Out(OutName);
1684   getCXXABI().getMangleContext().mangleTypeName(T, Out);
1685 
1686   return llvm::ConstantInt::get(Int32Ty,
1687                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1688 }
1689 
1690 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1691                                               const CGFunctionInfo &Info,
1692                                               llvm::Function *F, bool IsThunk) {
1693   unsigned CallingConv;
1694   llvm::AttributeList PAL;
1695   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1696                          /*AttrOnCallSite=*/false, IsThunk);
1697   F->setAttributes(PAL);
1698   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1699 }
1700 
1701 static void removeImageAccessQualifier(std::string& TyName) {
1702   std::string ReadOnlyQual("__read_only");
1703   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1704   if (ReadOnlyPos != std::string::npos)
1705     // "+ 1" for the space after access qualifier.
1706     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1707   else {
1708     std::string WriteOnlyQual("__write_only");
1709     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1710     if (WriteOnlyPos != std::string::npos)
1711       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1712     else {
1713       std::string ReadWriteQual("__read_write");
1714       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1715       if (ReadWritePos != std::string::npos)
1716         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1717     }
1718   }
1719 }
1720 
1721 // Returns the address space id that should be produced to the
1722 // kernel_arg_addr_space metadata. This is always fixed to the ids
1723 // as specified in the SPIR 2.0 specification in order to differentiate
1724 // for example in clGetKernelArgInfo() implementation between the address
1725 // spaces with targets without unique mapping to the OpenCL address spaces
1726 // (basically all single AS CPUs).
1727 static unsigned ArgInfoAddressSpace(LangAS AS) {
1728   switch (AS) {
1729   case LangAS::opencl_global:
1730     return 1;
1731   case LangAS::opencl_constant:
1732     return 2;
1733   case LangAS::opencl_local:
1734     return 3;
1735   case LangAS::opencl_generic:
1736     return 4; // Not in SPIR 2.0 specs.
1737   case LangAS::opencl_global_device:
1738     return 5;
1739   case LangAS::opencl_global_host:
1740     return 6;
1741   default:
1742     return 0; // Assume private.
1743   }
1744 }
1745 
1746 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1747                                          const FunctionDecl *FD,
1748                                          CodeGenFunction *CGF) {
1749   assert(((FD && CGF) || (!FD && !CGF)) &&
1750          "Incorrect use - FD and CGF should either be both null or not!");
1751   // Create MDNodes that represent the kernel arg metadata.
1752   // Each MDNode is a list in the form of "key", N number of values which is
1753   // the same number of values as their are kernel arguments.
1754 
1755   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1756 
1757   // MDNode for the kernel argument address space qualifiers.
1758   SmallVector<llvm::Metadata *, 8> addressQuals;
1759 
1760   // MDNode for the kernel argument access qualifiers (images only).
1761   SmallVector<llvm::Metadata *, 8> accessQuals;
1762 
1763   // MDNode for the kernel argument type names.
1764   SmallVector<llvm::Metadata *, 8> argTypeNames;
1765 
1766   // MDNode for the kernel argument base type names.
1767   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1768 
1769   // MDNode for the kernel argument type qualifiers.
1770   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1771 
1772   // MDNode for the kernel argument names.
1773   SmallVector<llvm::Metadata *, 8> argNames;
1774 
1775   if (FD && CGF)
1776     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1777       const ParmVarDecl *parm = FD->getParamDecl(i);
1778       // Get argument name.
1779       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1780 
1781       if (!getLangOpts().OpenCL)
1782         continue;
1783       QualType ty = parm->getType();
1784       std::string typeQuals;
1785 
1786       // Get image and pipe access qualifier:
1787       if (ty->isImageType() || ty->isPipeType()) {
1788         const Decl *PDecl = parm;
1789         if (const auto *TD = ty->getAs<TypedefType>())
1790           PDecl = TD->getDecl();
1791         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1792         if (A && A->isWriteOnly())
1793           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1794         else if (A && A->isReadWrite())
1795           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1796         else
1797           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1798       } else
1799         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1800 
1801       auto getTypeSpelling = [&](QualType Ty) {
1802         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1803 
1804         if (Ty.isCanonical()) {
1805           StringRef typeNameRef = typeName;
1806           // Turn "unsigned type" to "utype"
1807           if (typeNameRef.consume_front("unsigned "))
1808             return std::string("u") + typeNameRef.str();
1809           if (typeNameRef.consume_front("signed "))
1810             return typeNameRef.str();
1811         }
1812 
1813         return typeName;
1814       };
1815 
1816       if (ty->isPointerType()) {
1817         QualType pointeeTy = ty->getPointeeType();
1818 
1819         // Get address qualifier.
1820         addressQuals.push_back(
1821             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1822                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1823 
1824         // Get argument type name.
1825         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1826         std::string baseTypeName =
1827             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1828         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1829         argBaseTypeNames.push_back(
1830             llvm::MDString::get(VMContext, baseTypeName));
1831 
1832         // Get argument type qualifiers:
1833         if (ty.isRestrictQualified())
1834           typeQuals = "restrict";
1835         if (pointeeTy.isConstQualified() ||
1836             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1837           typeQuals += typeQuals.empty() ? "const" : " const";
1838         if (pointeeTy.isVolatileQualified())
1839           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1840       } else {
1841         uint32_t AddrSpc = 0;
1842         bool isPipe = ty->isPipeType();
1843         if (ty->isImageType() || isPipe)
1844           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1845 
1846         addressQuals.push_back(
1847             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1848 
1849         // Get argument type name.
1850         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1851         std::string typeName = getTypeSpelling(ty);
1852         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1853 
1854         // Remove access qualifiers on images
1855         // (as they are inseparable from type in clang implementation,
1856         // but OpenCL spec provides a special query to get access qualifier
1857         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1858         if (ty->isImageType()) {
1859           removeImageAccessQualifier(typeName);
1860           removeImageAccessQualifier(baseTypeName);
1861         }
1862 
1863         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1864         argBaseTypeNames.push_back(
1865             llvm::MDString::get(VMContext, baseTypeName));
1866 
1867         if (isPipe)
1868           typeQuals = "pipe";
1869       }
1870       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1871     }
1872 
1873   if (getLangOpts().OpenCL) {
1874     Fn->setMetadata("kernel_arg_addr_space",
1875                     llvm::MDNode::get(VMContext, addressQuals));
1876     Fn->setMetadata("kernel_arg_access_qual",
1877                     llvm::MDNode::get(VMContext, accessQuals));
1878     Fn->setMetadata("kernel_arg_type",
1879                     llvm::MDNode::get(VMContext, argTypeNames));
1880     Fn->setMetadata("kernel_arg_base_type",
1881                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1882     Fn->setMetadata("kernel_arg_type_qual",
1883                     llvm::MDNode::get(VMContext, argTypeQuals));
1884   }
1885   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1886       getCodeGenOpts().HIPSaveKernelArgName)
1887     Fn->setMetadata("kernel_arg_name",
1888                     llvm::MDNode::get(VMContext, argNames));
1889 }
1890 
1891 /// Determines whether the language options require us to model
1892 /// unwind exceptions.  We treat -fexceptions as mandating this
1893 /// except under the fragile ObjC ABI with only ObjC exceptions
1894 /// enabled.  This means, for example, that C with -fexceptions
1895 /// enables this.
1896 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1897   // If exceptions are completely disabled, obviously this is false.
1898   if (!LangOpts.Exceptions) return false;
1899 
1900   // If C++ exceptions are enabled, this is true.
1901   if (LangOpts.CXXExceptions) return true;
1902 
1903   // If ObjC exceptions are enabled, this depends on the ABI.
1904   if (LangOpts.ObjCExceptions) {
1905     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1906   }
1907 
1908   return true;
1909 }
1910 
1911 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1912                                                       const CXXMethodDecl *MD) {
1913   // Check that the type metadata can ever actually be used by a call.
1914   if (!CGM.getCodeGenOpts().LTOUnit ||
1915       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1916     return false;
1917 
1918   // Only functions whose address can be taken with a member function pointer
1919   // need this sort of type metadata.
1920   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1921          !isa<CXXDestructorDecl>(MD);
1922 }
1923 
1924 std::vector<const CXXRecordDecl *>
1925 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1926   llvm::SetVector<const CXXRecordDecl *> MostBases;
1927 
1928   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1929   CollectMostBases = [&](const CXXRecordDecl *RD) {
1930     if (RD->getNumBases() == 0)
1931       MostBases.insert(RD);
1932     for (const CXXBaseSpecifier &B : RD->bases())
1933       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1934   };
1935   CollectMostBases(RD);
1936   return MostBases.takeVector();
1937 }
1938 
1939 llvm::GlobalVariable *
1940 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1941   auto It = RTTIProxyMap.find(Addr);
1942   if (It != RTTIProxyMap.end())
1943     return It->second;
1944 
1945   auto *FTRTTIProxy = new llvm::GlobalVariable(
1946       TheModule, Addr->getType(),
1947       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1948       "__llvm_rtti_proxy");
1949   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1950 
1951   RTTIProxyMap[Addr] = FTRTTIProxy;
1952   return FTRTTIProxy;
1953 }
1954 
1955 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1956                                                            llvm::Function *F) {
1957   llvm::AttrBuilder B(F->getContext());
1958 
1959   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
1960     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1961 
1962   if (CodeGenOpts.StackClashProtector)
1963     B.addAttribute("probe-stack", "inline-asm");
1964 
1965   if (!hasUnwindExceptions(LangOpts))
1966     B.addAttribute(llvm::Attribute::NoUnwind);
1967 
1968   if (D && D->hasAttr<NoStackProtectorAttr>())
1969     ; // Do nothing.
1970   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
1971            LangOpts.getStackProtector() == LangOptions::SSPOn)
1972     B.addAttribute(llvm::Attribute::StackProtectStrong);
1973   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1974     B.addAttribute(llvm::Attribute::StackProtect);
1975   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1976     B.addAttribute(llvm::Attribute::StackProtectStrong);
1977   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1978     B.addAttribute(llvm::Attribute::StackProtectReq);
1979 
1980   if (!D) {
1981     // If we don't have a declaration to control inlining, the function isn't
1982     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1983     // disabled, mark the function as noinline.
1984     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1985         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1986       B.addAttribute(llvm::Attribute::NoInline);
1987 
1988     F->addFnAttrs(B);
1989     return;
1990   }
1991 
1992   // Track whether we need to add the optnone LLVM attribute,
1993   // starting with the default for this optimization level.
1994   bool ShouldAddOptNone =
1995       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1996   // We can't add optnone in the following cases, it won't pass the verifier.
1997   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1998   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1999 
2000   // Add optnone, but do so only if the function isn't always_inline.
2001   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2002       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2003     B.addAttribute(llvm::Attribute::OptimizeNone);
2004 
2005     // OptimizeNone implies noinline; we should not be inlining such functions.
2006     B.addAttribute(llvm::Attribute::NoInline);
2007 
2008     // We still need to handle naked functions even though optnone subsumes
2009     // much of their semantics.
2010     if (D->hasAttr<NakedAttr>())
2011       B.addAttribute(llvm::Attribute::Naked);
2012 
2013     // OptimizeNone wins over OptimizeForSize and MinSize.
2014     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2015     F->removeFnAttr(llvm::Attribute::MinSize);
2016   } else if (D->hasAttr<NakedAttr>()) {
2017     // Naked implies noinline: we should not be inlining such functions.
2018     B.addAttribute(llvm::Attribute::Naked);
2019     B.addAttribute(llvm::Attribute::NoInline);
2020   } else if (D->hasAttr<NoDuplicateAttr>()) {
2021     B.addAttribute(llvm::Attribute::NoDuplicate);
2022   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2023     // Add noinline if the function isn't always_inline.
2024     B.addAttribute(llvm::Attribute::NoInline);
2025   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2026              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2027     // (noinline wins over always_inline, and we can't specify both in IR)
2028     B.addAttribute(llvm::Attribute::AlwaysInline);
2029   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2030     // If we're not inlining, then force everything that isn't always_inline to
2031     // carry an explicit noinline attribute.
2032     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2033       B.addAttribute(llvm::Attribute::NoInline);
2034   } else {
2035     // Otherwise, propagate the inline hint attribute and potentially use its
2036     // absence to mark things as noinline.
2037     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2038       // Search function and template pattern redeclarations for inline.
2039       auto CheckForInline = [](const FunctionDecl *FD) {
2040         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2041           return Redecl->isInlineSpecified();
2042         };
2043         if (any_of(FD->redecls(), CheckRedeclForInline))
2044           return true;
2045         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2046         if (!Pattern)
2047           return false;
2048         return any_of(Pattern->redecls(), CheckRedeclForInline);
2049       };
2050       if (CheckForInline(FD)) {
2051         B.addAttribute(llvm::Attribute::InlineHint);
2052       } else if (CodeGenOpts.getInlining() ==
2053                      CodeGenOptions::OnlyHintInlining &&
2054                  !FD->isInlined() &&
2055                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2056         B.addAttribute(llvm::Attribute::NoInline);
2057       }
2058     }
2059   }
2060 
2061   // Add other optimization related attributes if we are optimizing this
2062   // function.
2063   if (!D->hasAttr<OptimizeNoneAttr>()) {
2064     if (D->hasAttr<ColdAttr>()) {
2065       if (!ShouldAddOptNone)
2066         B.addAttribute(llvm::Attribute::OptimizeForSize);
2067       B.addAttribute(llvm::Attribute::Cold);
2068     }
2069     if (D->hasAttr<HotAttr>())
2070       B.addAttribute(llvm::Attribute::Hot);
2071     if (D->hasAttr<MinSizeAttr>())
2072       B.addAttribute(llvm::Attribute::MinSize);
2073   }
2074 
2075   F->addFnAttrs(B);
2076 
2077   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2078   if (alignment)
2079     F->setAlignment(llvm::Align(alignment));
2080 
2081   if (!D->hasAttr<AlignedAttr>())
2082     if (LangOpts.FunctionAlignment)
2083       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2084 
2085   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2086   // reserve a bit for differentiating between virtual and non-virtual member
2087   // functions. If the current target's C++ ABI requires this and this is a
2088   // member function, set its alignment accordingly.
2089   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2090     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2091       F->setAlignment(llvm::Align(2));
2092   }
2093 
2094   // In the cross-dso CFI mode with canonical jump tables, we want !type
2095   // attributes on definitions only.
2096   if (CodeGenOpts.SanitizeCfiCrossDso &&
2097       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2098     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2099       // Skip available_externally functions. They won't be codegen'ed in the
2100       // current module anyway.
2101       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2102         CreateFunctionTypeMetadataForIcall(FD, F);
2103     }
2104   }
2105 
2106   // Emit type metadata on member functions for member function pointer checks.
2107   // These are only ever necessary on definitions; we're guaranteed that the
2108   // definition will be present in the LTO unit as a result of LTO visibility.
2109   auto *MD = dyn_cast<CXXMethodDecl>(D);
2110   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2111     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2112       llvm::Metadata *Id =
2113           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2114               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2115       F->addTypeMetadata(0, Id);
2116     }
2117   }
2118 }
2119 
2120 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2121                                                   llvm::Function *F) {
2122   if (D->hasAttr<StrictFPAttr>()) {
2123     llvm::AttrBuilder FuncAttrs(F->getContext());
2124     FuncAttrs.addAttribute("strictfp");
2125     F->addFnAttrs(FuncAttrs);
2126   }
2127 }
2128 
2129 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2130   const Decl *D = GD.getDecl();
2131   if (isa_and_nonnull<NamedDecl>(D))
2132     setGVProperties(GV, GD);
2133   else
2134     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2135 
2136   if (D && D->hasAttr<UsedAttr>())
2137     addUsedOrCompilerUsedGlobal(GV);
2138 
2139   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2140     const auto *VD = cast<VarDecl>(D);
2141     if (VD->getType().isConstQualified() &&
2142         VD->getStorageDuration() == SD_Static)
2143       addUsedOrCompilerUsedGlobal(GV);
2144   }
2145 }
2146 
2147 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2148                                                 llvm::AttrBuilder &Attrs) {
2149   // Add target-cpu and target-features attributes to functions. If
2150   // we have a decl for the function and it has a target attribute then
2151   // parse that and add it to the feature set.
2152   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2153   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2154   std::vector<std::string> Features;
2155   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2156   FD = FD ? FD->getMostRecentDecl() : FD;
2157   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2158   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2159   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2160   bool AddedAttr = false;
2161   if (TD || SD || TC) {
2162     llvm::StringMap<bool> FeatureMap;
2163     getContext().getFunctionFeatureMap(FeatureMap, GD);
2164 
2165     // Produce the canonical string for this set of features.
2166     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2167       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2168 
2169     // Now add the target-cpu and target-features to the function.
2170     // While we populated the feature map above, we still need to
2171     // get and parse the target attribute so we can get the cpu for
2172     // the function.
2173     if (TD) {
2174       ParsedTargetAttr ParsedAttr = TD->parse();
2175       if (!ParsedAttr.Architecture.empty() &&
2176           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2177         TargetCPU = ParsedAttr.Architecture;
2178         TuneCPU = ""; // Clear the tune CPU.
2179       }
2180       if (!ParsedAttr.Tune.empty() &&
2181           getTarget().isValidCPUName(ParsedAttr.Tune))
2182         TuneCPU = ParsedAttr.Tune;
2183     }
2184 
2185     if (SD) {
2186       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2187       // favor this processor.
2188       TuneCPU = getTarget().getCPUSpecificTuneName(
2189           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2190     }
2191   } else {
2192     // Otherwise just add the existing target cpu and target features to the
2193     // function.
2194     Features = getTarget().getTargetOpts().Features;
2195   }
2196 
2197   if (!TargetCPU.empty()) {
2198     Attrs.addAttribute("target-cpu", TargetCPU);
2199     AddedAttr = true;
2200   }
2201   if (!TuneCPU.empty()) {
2202     Attrs.addAttribute("tune-cpu", TuneCPU);
2203     AddedAttr = true;
2204   }
2205   if (!Features.empty()) {
2206     llvm::sort(Features);
2207     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2208     AddedAttr = true;
2209   }
2210 
2211   return AddedAttr;
2212 }
2213 
2214 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2215                                           llvm::GlobalObject *GO) {
2216   const Decl *D = GD.getDecl();
2217   SetCommonAttributes(GD, GO);
2218 
2219   if (D) {
2220     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2221       if (D->hasAttr<RetainAttr>())
2222         addUsedGlobal(GV);
2223       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2224         GV->addAttribute("bss-section", SA->getName());
2225       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2226         GV->addAttribute("data-section", SA->getName());
2227       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2228         GV->addAttribute("rodata-section", SA->getName());
2229       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2230         GV->addAttribute("relro-section", SA->getName());
2231     }
2232 
2233     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2234       if (D->hasAttr<RetainAttr>())
2235         addUsedGlobal(F);
2236       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2237         if (!D->getAttr<SectionAttr>())
2238           F->addFnAttr("implicit-section-name", SA->getName());
2239 
2240       llvm::AttrBuilder Attrs(F->getContext());
2241       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2242         // We know that GetCPUAndFeaturesAttributes will always have the
2243         // newest set, since it has the newest possible FunctionDecl, so the
2244         // new ones should replace the old.
2245         llvm::AttributeMask RemoveAttrs;
2246         RemoveAttrs.addAttribute("target-cpu");
2247         RemoveAttrs.addAttribute("target-features");
2248         RemoveAttrs.addAttribute("tune-cpu");
2249         F->removeFnAttrs(RemoveAttrs);
2250         F->addFnAttrs(Attrs);
2251       }
2252     }
2253 
2254     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2255       GO->setSection(CSA->getName());
2256     else if (const auto *SA = D->getAttr<SectionAttr>())
2257       GO->setSection(SA->getName());
2258   }
2259 
2260   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2261 }
2262 
2263 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2264                                                   llvm::Function *F,
2265                                                   const CGFunctionInfo &FI) {
2266   const Decl *D = GD.getDecl();
2267   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2268   SetLLVMFunctionAttributesForDefinition(D, F);
2269 
2270   F->setLinkage(llvm::Function::InternalLinkage);
2271 
2272   setNonAliasAttributes(GD, F);
2273 }
2274 
2275 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2276   // Set linkage and visibility in case we never see a definition.
2277   LinkageInfo LV = ND->getLinkageAndVisibility();
2278   // Don't set internal linkage on declarations.
2279   // "extern_weak" is overloaded in LLVM; we probably should have
2280   // separate linkage types for this.
2281   if (isExternallyVisible(LV.getLinkage()) &&
2282       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2283     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2284 }
2285 
2286 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2287                                                        llvm::Function *F) {
2288   // Only if we are checking indirect calls.
2289   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2290     return;
2291 
2292   // Non-static class methods are handled via vtable or member function pointer
2293   // checks elsewhere.
2294   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2295     return;
2296 
2297   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2298   F->addTypeMetadata(0, MD);
2299   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2300 
2301   // Emit a hash-based bit set entry for cross-DSO calls.
2302   if (CodeGenOpts.SanitizeCfiCrossDso)
2303     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2304       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2305 }
2306 
2307 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2308   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2309     return;
2310 
2311   llvm::LLVMContext &Ctx = F->getContext();
2312   llvm::MDBuilder MDB(Ctx);
2313   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2314                  llvm::MDNode::get(
2315                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2316 }
2317 
2318 static bool allowKCFIIdentifier(StringRef Name) {
2319   // KCFI type identifier constants are only necessary for external assembly
2320   // functions, which means it's safe to skip unusual names. Subset of
2321   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2322   return llvm::all_of(Name, [](const char &C) {
2323     return llvm::isAlnum(C) || C == '_' || C == '.';
2324   });
2325 }
2326 
2327 void CodeGenModule::finalizeKCFITypes() {
2328   llvm::Module &M = getModule();
2329   for (auto &F : M.functions()) {
2330     // Remove KCFI type metadata from non-address-taken local functions.
2331     bool AddressTaken = F.hasAddressTaken();
2332     if (!AddressTaken && F.hasLocalLinkage())
2333       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2334 
2335     // Generate a constant with the expected KCFI type identifier for all
2336     // address-taken function declarations to support annotating indirectly
2337     // called assembly functions.
2338     if (!AddressTaken || !F.isDeclaration())
2339       continue;
2340 
2341     const llvm::ConstantInt *Type;
2342     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2343       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2344     else
2345       continue;
2346 
2347     StringRef Name = F.getName();
2348     if (!allowKCFIIdentifier(Name))
2349       continue;
2350 
2351     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2352                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2353                           .str();
2354     M.appendModuleInlineAsm(Asm);
2355   }
2356 }
2357 
2358 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2359                                           bool IsIncompleteFunction,
2360                                           bool IsThunk) {
2361 
2362   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2363     // If this is an intrinsic function, set the function's attributes
2364     // to the intrinsic's attributes.
2365     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2366     return;
2367   }
2368 
2369   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2370 
2371   if (!IsIncompleteFunction)
2372     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2373                               IsThunk);
2374 
2375   // Add the Returned attribute for "this", except for iOS 5 and earlier
2376   // where substantial code, including the libstdc++ dylib, was compiled with
2377   // GCC and does not actually return "this".
2378   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2379       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2380     assert(!F->arg_empty() &&
2381            F->arg_begin()->getType()
2382              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2383            "unexpected this return");
2384     F->addParamAttr(0, llvm::Attribute::Returned);
2385   }
2386 
2387   // Only a few attributes are set on declarations; these may later be
2388   // overridden by a definition.
2389 
2390   setLinkageForGV(F, FD);
2391   setGVProperties(F, FD);
2392 
2393   // Setup target-specific attributes.
2394   if (!IsIncompleteFunction && F->isDeclaration())
2395     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2396 
2397   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2398     F->setSection(CSA->getName());
2399   else if (const auto *SA = FD->getAttr<SectionAttr>())
2400      F->setSection(SA->getName());
2401 
2402   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2403     if (EA->isError())
2404       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2405     else if (EA->isWarning())
2406       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2407   }
2408 
2409   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2410   if (FD->isInlineBuiltinDeclaration()) {
2411     const FunctionDecl *FDBody;
2412     bool HasBody = FD->hasBody(FDBody);
2413     (void)HasBody;
2414     assert(HasBody && "Inline builtin declarations should always have an "
2415                       "available body!");
2416     if (shouldEmitFunction(FDBody))
2417       F->addFnAttr(llvm::Attribute::NoBuiltin);
2418   }
2419 
2420   if (FD->isReplaceableGlobalAllocationFunction()) {
2421     // A replaceable global allocation function does not act like a builtin by
2422     // default, only if it is invoked by a new-expression or delete-expression.
2423     F->addFnAttr(llvm::Attribute::NoBuiltin);
2424   }
2425 
2426   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2427     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2428   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2429     if (MD->isVirtual())
2430       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2431 
2432   // Don't emit entries for function declarations in the cross-DSO mode. This
2433   // is handled with better precision by the receiving DSO. But if jump tables
2434   // are non-canonical then we need type metadata in order to produce the local
2435   // jump table.
2436   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2437       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2438     CreateFunctionTypeMetadataForIcall(FD, F);
2439 
2440   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2441     setKCFIType(FD, F);
2442 
2443   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2444     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2445 
2446   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2447     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2448 
2449   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2450     // Annotate the callback behavior as metadata:
2451     //  - The callback callee (as argument number).
2452     //  - The callback payloads (as argument numbers).
2453     llvm::LLVMContext &Ctx = F->getContext();
2454     llvm::MDBuilder MDB(Ctx);
2455 
2456     // The payload indices are all but the first one in the encoding. The first
2457     // identifies the callback callee.
2458     int CalleeIdx = *CB->encoding_begin();
2459     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2460     F->addMetadata(llvm::LLVMContext::MD_callback,
2461                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2462                                                CalleeIdx, PayloadIndices,
2463                                                /* VarArgsArePassed */ false)}));
2464   }
2465 }
2466 
2467 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2468   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2469          "Only globals with definition can force usage.");
2470   LLVMUsed.emplace_back(GV);
2471 }
2472 
2473 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2474   assert(!GV->isDeclaration() &&
2475          "Only globals with definition can force usage.");
2476   LLVMCompilerUsed.emplace_back(GV);
2477 }
2478 
2479 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2480   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2481          "Only globals with definition can force usage.");
2482   if (getTriple().isOSBinFormatELF())
2483     LLVMCompilerUsed.emplace_back(GV);
2484   else
2485     LLVMUsed.emplace_back(GV);
2486 }
2487 
2488 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2489                      std::vector<llvm::WeakTrackingVH> &List) {
2490   // Don't create llvm.used if there is no need.
2491   if (List.empty())
2492     return;
2493 
2494   // Convert List to what ConstantArray needs.
2495   SmallVector<llvm::Constant*, 8> UsedArray;
2496   UsedArray.resize(List.size());
2497   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2498     UsedArray[i] =
2499         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2500             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2501   }
2502 
2503   if (UsedArray.empty())
2504     return;
2505   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2506 
2507   auto *GV = new llvm::GlobalVariable(
2508       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2509       llvm::ConstantArray::get(ATy, UsedArray), Name);
2510 
2511   GV->setSection("llvm.metadata");
2512 }
2513 
2514 void CodeGenModule::emitLLVMUsed() {
2515   emitUsed(*this, "llvm.used", LLVMUsed);
2516   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2517 }
2518 
2519 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2520   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2521   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2522 }
2523 
2524 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2525   llvm::SmallString<32> Opt;
2526   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2527   if (Opt.empty())
2528     return;
2529   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2530   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2531 }
2532 
2533 void CodeGenModule::AddDependentLib(StringRef Lib) {
2534   auto &C = getLLVMContext();
2535   if (getTarget().getTriple().isOSBinFormatELF()) {
2536       ELFDependentLibraries.push_back(
2537         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2538     return;
2539   }
2540 
2541   llvm::SmallString<24> Opt;
2542   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2543   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2544   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2545 }
2546 
2547 /// Add link options implied by the given module, including modules
2548 /// it depends on, using a postorder walk.
2549 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2550                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2551                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2552   // Import this module's parent.
2553   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2554     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2555   }
2556 
2557   // Import this module's dependencies.
2558   for (Module *Import : llvm::reverse(Mod->Imports)) {
2559     if (Visited.insert(Import).second)
2560       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2561   }
2562 
2563   // Add linker options to link against the libraries/frameworks
2564   // described by this module.
2565   llvm::LLVMContext &Context = CGM.getLLVMContext();
2566   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2567 
2568   // For modules that use export_as for linking, use that module
2569   // name instead.
2570   if (Mod->UseExportAsModuleLinkName)
2571     return;
2572 
2573   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2574     // Link against a framework.  Frameworks are currently Darwin only, so we
2575     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2576     if (LL.IsFramework) {
2577       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2578                                  llvm::MDString::get(Context, LL.Library)};
2579 
2580       Metadata.push_back(llvm::MDNode::get(Context, Args));
2581       continue;
2582     }
2583 
2584     // Link against a library.
2585     if (IsELF) {
2586       llvm::Metadata *Args[2] = {
2587           llvm::MDString::get(Context, "lib"),
2588           llvm::MDString::get(Context, LL.Library),
2589       };
2590       Metadata.push_back(llvm::MDNode::get(Context, Args));
2591     } else {
2592       llvm::SmallString<24> Opt;
2593       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2594       auto *OptString = llvm::MDString::get(Context, Opt);
2595       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2596     }
2597   }
2598 }
2599 
2600 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2601   // Emit the initializers in the order that sub-modules appear in the
2602   // source, first Global Module Fragments, if present.
2603   if (auto GMF = Primary->getGlobalModuleFragment()) {
2604     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2605       if (isa<ImportDecl>(D))
2606         continue;
2607       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2608       EmitTopLevelDecl(D);
2609     }
2610   }
2611   // Second any associated with the module, itself.
2612   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2613     // Skip import decls, the inits for those are called explicitly.
2614     if (isa<ImportDecl>(D))
2615       continue;
2616     EmitTopLevelDecl(D);
2617   }
2618   // Third any associated with the Privat eMOdule Fragment, if present.
2619   if (auto PMF = Primary->getPrivateModuleFragment()) {
2620     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2621       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2622       EmitTopLevelDecl(D);
2623     }
2624   }
2625 }
2626 
2627 void CodeGenModule::EmitModuleLinkOptions() {
2628   // Collect the set of all of the modules we want to visit to emit link
2629   // options, which is essentially the imported modules and all of their
2630   // non-explicit child modules.
2631   llvm::SetVector<clang::Module *> LinkModules;
2632   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2633   SmallVector<clang::Module *, 16> Stack;
2634 
2635   // Seed the stack with imported modules.
2636   for (Module *M : ImportedModules) {
2637     // Do not add any link flags when an implementation TU of a module imports
2638     // a header of that same module.
2639     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2640         !getLangOpts().isCompilingModule())
2641       continue;
2642     if (Visited.insert(M).second)
2643       Stack.push_back(M);
2644   }
2645 
2646   // Find all of the modules to import, making a little effort to prune
2647   // non-leaf modules.
2648   while (!Stack.empty()) {
2649     clang::Module *Mod = Stack.pop_back_val();
2650 
2651     bool AnyChildren = false;
2652 
2653     // Visit the submodules of this module.
2654     for (const auto &SM : Mod->submodules()) {
2655       // Skip explicit children; they need to be explicitly imported to be
2656       // linked against.
2657       if (SM->IsExplicit)
2658         continue;
2659 
2660       if (Visited.insert(SM).second) {
2661         Stack.push_back(SM);
2662         AnyChildren = true;
2663       }
2664     }
2665 
2666     // We didn't find any children, so add this module to the list of
2667     // modules to link against.
2668     if (!AnyChildren) {
2669       LinkModules.insert(Mod);
2670     }
2671   }
2672 
2673   // Add link options for all of the imported modules in reverse topological
2674   // order.  We don't do anything to try to order import link flags with respect
2675   // to linker options inserted by things like #pragma comment().
2676   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2677   Visited.clear();
2678   for (Module *M : LinkModules)
2679     if (Visited.insert(M).second)
2680       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2681   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2682   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2683 
2684   // Add the linker options metadata flag.
2685   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2686   for (auto *MD : LinkerOptionsMetadata)
2687     NMD->addOperand(MD);
2688 }
2689 
2690 void CodeGenModule::EmitDeferred() {
2691   // Emit deferred declare target declarations.
2692   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2693     getOpenMPRuntime().emitDeferredTargetDecls();
2694 
2695   // Emit code for any potentially referenced deferred decls.  Since a
2696   // previously unused static decl may become used during the generation of code
2697   // for a static function, iterate until no changes are made.
2698 
2699   if (!DeferredVTables.empty()) {
2700     EmitDeferredVTables();
2701 
2702     // Emitting a vtable doesn't directly cause more vtables to
2703     // become deferred, although it can cause functions to be
2704     // emitted that then need those vtables.
2705     assert(DeferredVTables.empty());
2706   }
2707 
2708   // Emit CUDA/HIP static device variables referenced by host code only.
2709   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2710   // needed for further handling.
2711   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2712     llvm::append_range(DeferredDeclsToEmit,
2713                        getContext().CUDADeviceVarODRUsedByHost);
2714 
2715   // Stop if we're out of both deferred vtables and deferred declarations.
2716   if (DeferredDeclsToEmit.empty())
2717     return;
2718 
2719   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2720   // work, it will not interfere with this.
2721   std::vector<GlobalDecl> CurDeclsToEmit;
2722   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2723 
2724   for (GlobalDecl &D : CurDeclsToEmit) {
2725     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2726     // to get GlobalValue with exactly the type we need, not something that
2727     // might had been created for another decl with the same mangled name but
2728     // different type.
2729     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2730         GetAddrOfGlobal(D, ForDefinition));
2731 
2732     // In case of different address spaces, we may still get a cast, even with
2733     // IsForDefinition equal to true. Query mangled names table to get
2734     // GlobalValue.
2735     if (!GV)
2736       GV = GetGlobalValue(getMangledName(D));
2737 
2738     // Make sure GetGlobalValue returned non-null.
2739     assert(GV);
2740 
2741     // Check to see if we've already emitted this.  This is necessary
2742     // for a couple of reasons: first, decls can end up in the
2743     // deferred-decls queue multiple times, and second, decls can end
2744     // up with definitions in unusual ways (e.g. by an extern inline
2745     // function acquiring a strong function redefinition).  Just
2746     // ignore these cases.
2747     if (!GV->isDeclaration())
2748       continue;
2749 
2750     // If this is OpenMP, check if it is legal to emit this global normally.
2751     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2752       continue;
2753 
2754     // Otherwise, emit the definition and move on to the next one.
2755     EmitGlobalDefinition(D, GV);
2756 
2757     // If we found out that we need to emit more decls, do that recursively.
2758     // This has the advantage that the decls are emitted in a DFS and related
2759     // ones are close together, which is convenient for testing.
2760     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2761       EmitDeferred();
2762       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2763     }
2764   }
2765 }
2766 
2767 void CodeGenModule::EmitVTablesOpportunistically() {
2768   // Try to emit external vtables as available_externally if they have emitted
2769   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2770   // is not allowed to create new references to things that need to be emitted
2771   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2772 
2773   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2774          && "Only emit opportunistic vtables with optimizations");
2775 
2776   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2777     assert(getVTables().isVTableExternal(RD) &&
2778            "This queue should only contain external vtables");
2779     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2780       VTables.GenerateClassData(RD);
2781   }
2782   OpportunisticVTables.clear();
2783 }
2784 
2785 void CodeGenModule::EmitGlobalAnnotations() {
2786   if (Annotations.empty())
2787     return;
2788 
2789   // Create a new global variable for the ConstantStruct in the Module.
2790   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2791     Annotations[0]->getType(), Annotations.size()), Annotations);
2792   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2793                                       llvm::GlobalValue::AppendingLinkage,
2794                                       Array, "llvm.global.annotations");
2795   gv->setSection(AnnotationSection);
2796 }
2797 
2798 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2799   llvm::Constant *&AStr = AnnotationStrings[Str];
2800   if (AStr)
2801     return AStr;
2802 
2803   // Not found yet, create a new global.
2804   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2805   auto *gv =
2806       new llvm::GlobalVariable(getModule(), s->getType(), true,
2807                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2808   gv->setSection(AnnotationSection);
2809   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2810   AStr = gv;
2811   return gv;
2812 }
2813 
2814 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2815   SourceManager &SM = getContext().getSourceManager();
2816   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2817   if (PLoc.isValid())
2818     return EmitAnnotationString(PLoc.getFilename());
2819   return EmitAnnotationString(SM.getBufferName(Loc));
2820 }
2821 
2822 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2823   SourceManager &SM = getContext().getSourceManager();
2824   PresumedLoc PLoc = SM.getPresumedLoc(L);
2825   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2826     SM.getExpansionLineNumber(L);
2827   return llvm::ConstantInt::get(Int32Ty, LineNo);
2828 }
2829 
2830 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2831   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2832   if (Exprs.empty())
2833     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2834 
2835   llvm::FoldingSetNodeID ID;
2836   for (Expr *E : Exprs) {
2837     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2838   }
2839   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2840   if (Lookup)
2841     return Lookup;
2842 
2843   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2844   LLVMArgs.reserve(Exprs.size());
2845   ConstantEmitter ConstEmiter(*this);
2846   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2847     const auto *CE = cast<clang::ConstantExpr>(E);
2848     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2849                                     CE->getType());
2850   });
2851   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2852   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2853                                       llvm::GlobalValue::PrivateLinkage, Struct,
2854                                       ".args");
2855   GV->setSection(AnnotationSection);
2856   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2857   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2858 
2859   Lookup = Bitcasted;
2860   return Bitcasted;
2861 }
2862 
2863 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2864                                                 const AnnotateAttr *AA,
2865                                                 SourceLocation L) {
2866   // Get the globals for file name, annotation, and the line number.
2867   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2868                  *UnitGV = EmitAnnotationUnit(L),
2869                  *LineNoCst = EmitAnnotationLineNo(L),
2870                  *Args = EmitAnnotationArgs(AA);
2871 
2872   llvm::Constant *GVInGlobalsAS = GV;
2873   if (GV->getAddressSpace() !=
2874       getDataLayout().getDefaultGlobalsAddressSpace()) {
2875     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2876         GV, GV->getValueType()->getPointerTo(
2877                 getDataLayout().getDefaultGlobalsAddressSpace()));
2878   }
2879 
2880   // Create the ConstantStruct for the global annotation.
2881   llvm::Constant *Fields[] = {
2882       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2883       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2884       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2885       LineNoCst,
2886       Args,
2887   };
2888   return llvm::ConstantStruct::getAnon(Fields);
2889 }
2890 
2891 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2892                                          llvm::GlobalValue *GV) {
2893   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2894   // Get the struct elements for these annotations.
2895   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2896     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2897 }
2898 
2899 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2900                                        SourceLocation Loc) const {
2901   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2902   // NoSanitize by function name.
2903   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2904     return true;
2905   // NoSanitize by location. Check "mainfile" prefix.
2906   auto &SM = Context.getSourceManager();
2907   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2908   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2909     return true;
2910 
2911   // Check "src" prefix.
2912   if (Loc.isValid())
2913     return NoSanitizeL.containsLocation(Kind, Loc);
2914   // If location is unknown, this may be a compiler-generated function. Assume
2915   // it's located in the main file.
2916   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2917 }
2918 
2919 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2920                                        llvm::GlobalVariable *GV,
2921                                        SourceLocation Loc, QualType Ty,
2922                                        StringRef Category) const {
2923   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2924   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2925     return true;
2926   auto &SM = Context.getSourceManager();
2927   if (NoSanitizeL.containsMainFile(
2928           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2929     return true;
2930   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2931     return true;
2932 
2933   // Check global type.
2934   if (!Ty.isNull()) {
2935     // Drill down the array types: if global variable of a fixed type is
2936     // not sanitized, we also don't instrument arrays of them.
2937     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2938       Ty = AT->getElementType();
2939     Ty = Ty.getCanonicalType().getUnqualifiedType();
2940     // Only record types (classes, structs etc.) are ignored.
2941     if (Ty->isRecordType()) {
2942       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2943       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2944         return true;
2945     }
2946   }
2947   return false;
2948 }
2949 
2950 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2951                                    StringRef Category) const {
2952   const auto &XRayFilter = getContext().getXRayFilter();
2953   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2954   auto Attr = ImbueAttr::NONE;
2955   if (Loc.isValid())
2956     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2957   if (Attr == ImbueAttr::NONE)
2958     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2959   switch (Attr) {
2960   case ImbueAttr::NONE:
2961     return false;
2962   case ImbueAttr::ALWAYS:
2963     Fn->addFnAttr("function-instrument", "xray-always");
2964     break;
2965   case ImbueAttr::ALWAYS_ARG1:
2966     Fn->addFnAttr("function-instrument", "xray-always");
2967     Fn->addFnAttr("xray-log-args", "1");
2968     break;
2969   case ImbueAttr::NEVER:
2970     Fn->addFnAttr("function-instrument", "xray-never");
2971     break;
2972   }
2973   return true;
2974 }
2975 
2976 ProfileList::ExclusionType
2977 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
2978                                               SourceLocation Loc) const {
2979   const auto &ProfileList = getContext().getProfileList();
2980   // If the profile list is empty, then instrument everything.
2981   if (ProfileList.isEmpty())
2982     return ProfileList::Allow;
2983   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2984   // First, check the function name.
2985   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
2986     return *V;
2987   // Next, check the source location.
2988   if (Loc.isValid())
2989     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
2990       return *V;
2991   // If location is unknown, this may be a compiler-generated function. Assume
2992   // it's located in the main file.
2993   auto &SM = Context.getSourceManager();
2994   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
2995     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
2996       return *V;
2997   return ProfileList.getDefault(Kind);
2998 }
2999 
3000 ProfileList::ExclusionType
3001 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3002                                                  SourceLocation Loc) const {
3003   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3004   if (V != ProfileList::Allow)
3005     return V;
3006 
3007   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3008   if (NumGroups > 1) {
3009     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3010     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3011       return ProfileList::Skip;
3012   }
3013   return ProfileList::Allow;
3014 }
3015 
3016 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3017   // Never defer when EmitAllDecls is specified.
3018   if (LangOpts.EmitAllDecls)
3019     return true;
3020 
3021   if (CodeGenOpts.KeepStaticConsts) {
3022     const auto *VD = dyn_cast<VarDecl>(Global);
3023     if (VD && VD->getType().isConstQualified() &&
3024         VD->getStorageDuration() == SD_Static)
3025       return true;
3026   }
3027 
3028   return getContext().DeclMustBeEmitted(Global);
3029 }
3030 
3031 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3032   // In OpenMP 5.0 variables and function may be marked as
3033   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3034   // that they must be emitted on the host/device. To be sure we need to have
3035   // seen a declare target with an explicit mentioning of the function, we know
3036   // we have if the level of the declare target attribute is -1. Note that we
3037   // check somewhere else if we should emit this at all.
3038   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3039     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3040         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3041     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3042       return false;
3043   }
3044 
3045   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3046     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3047       // Implicit template instantiations may change linkage if they are later
3048       // explicitly instantiated, so they should not be emitted eagerly.
3049       return false;
3050   }
3051   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3052     if (Context.getInlineVariableDefinitionKind(VD) ==
3053         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3054       // A definition of an inline constexpr static data member may change
3055       // linkage later if it's redeclared outside the class.
3056       return false;
3057     if (CXX20ModuleInits && VD->getOwningModule() &&
3058         !VD->getOwningModule()->isModuleMapModule()) {
3059       // For CXX20, module-owned initializers need to be deferred, since it is
3060       // not known at this point if they will be run for the current module or
3061       // as part of the initializer for an imported one.
3062       return false;
3063     }
3064   }
3065   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3066   // codegen for global variables, because they may be marked as threadprivate.
3067   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3068       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3069       !isTypeConstant(Global->getType(), false) &&
3070       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3071     return false;
3072 
3073   return true;
3074 }
3075 
3076 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3077   StringRef Name = getMangledName(GD);
3078 
3079   // The UUID descriptor should be pointer aligned.
3080   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3081 
3082   // Look for an existing global.
3083   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3084     return ConstantAddress(GV, GV->getValueType(), Alignment);
3085 
3086   ConstantEmitter Emitter(*this);
3087   llvm::Constant *Init;
3088 
3089   APValue &V = GD->getAsAPValue();
3090   if (!V.isAbsent()) {
3091     // If possible, emit the APValue version of the initializer. In particular,
3092     // this gets the type of the constant right.
3093     Init = Emitter.emitForInitializer(
3094         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3095   } else {
3096     // As a fallback, directly construct the constant.
3097     // FIXME: This may get padding wrong under esoteric struct layout rules.
3098     // MSVC appears to create a complete type 'struct __s_GUID' that it
3099     // presumably uses to represent these constants.
3100     MSGuidDecl::Parts Parts = GD->getParts();
3101     llvm::Constant *Fields[4] = {
3102         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3103         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3104         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3105         llvm::ConstantDataArray::getRaw(
3106             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3107             Int8Ty)};
3108     Init = llvm::ConstantStruct::getAnon(Fields);
3109   }
3110 
3111   auto *GV = new llvm::GlobalVariable(
3112       getModule(), Init->getType(),
3113       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3114   if (supportsCOMDAT())
3115     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3116   setDSOLocal(GV);
3117 
3118   if (!V.isAbsent()) {
3119     Emitter.finalize(GV);
3120     return ConstantAddress(GV, GV->getValueType(), Alignment);
3121   }
3122 
3123   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3124   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3125       GV, Ty->getPointerTo(GV->getAddressSpace()));
3126   return ConstantAddress(Addr, Ty, Alignment);
3127 }
3128 
3129 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3130     const UnnamedGlobalConstantDecl *GCD) {
3131   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3132 
3133   llvm::GlobalVariable **Entry = nullptr;
3134   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3135   if (*Entry)
3136     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3137 
3138   ConstantEmitter Emitter(*this);
3139   llvm::Constant *Init;
3140 
3141   const APValue &V = GCD->getValue();
3142 
3143   assert(!V.isAbsent());
3144   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3145                                     GCD->getType());
3146 
3147   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3148                                       /*isConstant=*/true,
3149                                       llvm::GlobalValue::PrivateLinkage, Init,
3150                                       ".constant");
3151   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3152   GV->setAlignment(Alignment.getAsAlign());
3153 
3154   Emitter.finalize(GV);
3155 
3156   *Entry = GV;
3157   return ConstantAddress(GV, GV->getValueType(), Alignment);
3158 }
3159 
3160 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3161     const TemplateParamObjectDecl *TPO) {
3162   StringRef Name = getMangledName(TPO);
3163   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3164 
3165   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3166     return ConstantAddress(GV, GV->getValueType(), Alignment);
3167 
3168   ConstantEmitter Emitter(*this);
3169   llvm::Constant *Init = Emitter.emitForInitializer(
3170         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3171 
3172   if (!Init) {
3173     ErrorUnsupported(TPO, "template parameter object");
3174     return ConstantAddress::invalid();
3175   }
3176 
3177   auto *GV = new llvm::GlobalVariable(
3178       getModule(), Init->getType(),
3179       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3180   if (supportsCOMDAT())
3181     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3182   Emitter.finalize(GV);
3183 
3184   return ConstantAddress(GV, GV->getValueType(), Alignment);
3185 }
3186 
3187 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3188   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3189   assert(AA && "No alias?");
3190 
3191   CharUnits Alignment = getContext().getDeclAlign(VD);
3192   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3193 
3194   // See if there is already something with the target's name in the module.
3195   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3196   if (Entry) {
3197     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3198     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3199     return ConstantAddress(Ptr, DeclTy, Alignment);
3200   }
3201 
3202   llvm::Constant *Aliasee;
3203   if (isa<llvm::FunctionType>(DeclTy))
3204     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3205                                       GlobalDecl(cast<FunctionDecl>(VD)),
3206                                       /*ForVTable=*/false);
3207   else
3208     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3209                                     nullptr);
3210 
3211   auto *F = cast<llvm::GlobalValue>(Aliasee);
3212   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3213   WeakRefReferences.insert(F);
3214 
3215   return ConstantAddress(Aliasee, DeclTy, Alignment);
3216 }
3217 
3218 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3219   const auto *Global = cast<ValueDecl>(GD.getDecl());
3220 
3221   // Weak references don't produce any output by themselves.
3222   if (Global->hasAttr<WeakRefAttr>())
3223     return;
3224 
3225   // If this is an alias definition (which otherwise looks like a declaration)
3226   // emit it now.
3227   if (Global->hasAttr<AliasAttr>())
3228     return EmitAliasDefinition(GD);
3229 
3230   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3231   if (Global->hasAttr<IFuncAttr>())
3232     return emitIFuncDefinition(GD);
3233 
3234   // If this is a cpu_dispatch multiversion function, emit the resolver.
3235   if (Global->hasAttr<CPUDispatchAttr>())
3236     return emitCPUDispatchDefinition(GD);
3237 
3238   // If this is CUDA, be selective about which declarations we emit.
3239   if (LangOpts.CUDA) {
3240     if (LangOpts.CUDAIsDevice) {
3241       if (!Global->hasAttr<CUDADeviceAttr>() &&
3242           !Global->hasAttr<CUDAGlobalAttr>() &&
3243           !Global->hasAttr<CUDAConstantAttr>() &&
3244           !Global->hasAttr<CUDASharedAttr>() &&
3245           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3246           !Global->getType()->isCUDADeviceBuiltinTextureType())
3247         return;
3248     } else {
3249       // We need to emit host-side 'shadows' for all global
3250       // device-side variables because the CUDA runtime needs their
3251       // size and host-side address in order to provide access to
3252       // their device-side incarnations.
3253 
3254       // So device-only functions are the only things we skip.
3255       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3256           Global->hasAttr<CUDADeviceAttr>())
3257         return;
3258 
3259       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3260              "Expected Variable or Function");
3261     }
3262   }
3263 
3264   if (LangOpts.OpenMP) {
3265     // If this is OpenMP, check if it is legal to emit this global normally.
3266     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3267       return;
3268     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3269       if (MustBeEmitted(Global))
3270         EmitOMPDeclareReduction(DRD);
3271       return;
3272     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3273       if (MustBeEmitted(Global))
3274         EmitOMPDeclareMapper(DMD);
3275       return;
3276     }
3277   }
3278 
3279   // Ignore declarations, they will be emitted on their first use.
3280   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3281     // Forward declarations are emitted lazily on first use.
3282     if (!FD->doesThisDeclarationHaveABody()) {
3283       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3284         return;
3285 
3286       StringRef MangledName = getMangledName(GD);
3287 
3288       // Compute the function info and LLVM type.
3289       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3290       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3291 
3292       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3293                               /*DontDefer=*/false);
3294       return;
3295     }
3296   } else {
3297     const auto *VD = cast<VarDecl>(Global);
3298     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3299     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3300         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3301       if (LangOpts.OpenMP) {
3302         // Emit declaration of the must-be-emitted declare target variable.
3303         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3304                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3305           bool UnifiedMemoryEnabled =
3306               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3307           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3308               !UnifiedMemoryEnabled) {
3309             (void)GetAddrOfGlobalVar(VD);
3310           } else {
3311             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3312                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3313                      UnifiedMemoryEnabled)) &&
3314                    "Link clause or to clause with unified memory expected.");
3315             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3316           }
3317 
3318           return;
3319         }
3320       }
3321       // If this declaration may have caused an inline variable definition to
3322       // change linkage, make sure that it's emitted.
3323       if (Context.getInlineVariableDefinitionKind(VD) ==
3324           ASTContext::InlineVariableDefinitionKind::Strong)
3325         GetAddrOfGlobalVar(VD);
3326       return;
3327     }
3328   }
3329 
3330   // Defer code generation to first use when possible, e.g. if this is an inline
3331   // function. If the global must always be emitted, do it eagerly if possible
3332   // to benefit from cache locality.
3333   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3334     // Emit the definition if it can't be deferred.
3335     EmitGlobalDefinition(GD);
3336     return;
3337   }
3338 
3339   // If we're deferring emission of a C++ variable with an
3340   // initializer, remember the order in which it appeared in the file.
3341   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3342       cast<VarDecl>(Global)->hasInit()) {
3343     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3344     CXXGlobalInits.push_back(nullptr);
3345   }
3346 
3347   StringRef MangledName = getMangledName(GD);
3348   if (GetGlobalValue(MangledName) != nullptr) {
3349     // The value has already been used and should therefore be emitted.
3350     addDeferredDeclToEmit(GD);
3351   } else if (MustBeEmitted(Global)) {
3352     // The value must be emitted, but cannot be emitted eagerly.
3353     assert(!MayBeEmittedEagerly(Global));
3354     addDeferredDeclToEmit(GD);
3355     EmittedDeferredDecls[MangledName] = GD;
3356   } else {
3357     // Otherwise, remember that we saw a deferred decl with this name.  The
3358     // first use of the mangled name will cause it to move into
3359     // DeferredDeclsToEmit.
3360     DeferredDecls[MangledName] = GD;
3361   }
3362 }
3363 
3364 // Check if T is a class type with a destructor that's not dllimport.
3365 static bool HasNonDllImportDtor(QualType T) {
3366   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3367     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3368       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3369         return true;
3370 
3371   return false;
3372 }
3373 
3374 namespace {
3375   struct FunctionIsDirectlyRecursive
3376       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3377     const StringRef Name;
3378     const Builtin::Context &BI;
3379     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3380         : Name(N), BI(C) {}
3381 
3382     bool VisitCallExpr(const CallExpr *E) {
3383       const FunctionDecl *FD = E->getDirectCallee();
3384       if (!FD)
3385         return false;
3386       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3387       if (Attr && Name == Attr->getLabel())
3388         return true;
3389       unsigned BuiltinID = FD->getBuiltinID();
3390       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3391         return false;
3392       StringRef BuiltinName = BI.getName(BuiltinID);
3393       if (BuiltinName.startswith("__builtin_") &&
3394           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3395         return true;
3396       }
3397       return false;
3398     }
3399 
3400     bool VisitStmt(const Stmt *S) {
3401       for (const Stmt *Child : S->children())
3402         if (Child && this->Visit(Child))
3403           return true;
3404       return false;
3405     }
3406   };
3407 
3408   // Make sure we're not referencing non-imported vars or functions.
3409   struct DLLImportFunctionVisitor
3410       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3411     bool SafeToInline = true;
3412 
3413     bool shouldVisitImplicitCode() const { return true; }
3414 
3415     bool VisitVarDecl(VarDecl *VD) {
3416       if (VD->getTLSKind()) {
3417         // A thread-local variable cannot be imported.
3418         SafeToInline = false;
3419         return SafeToInline;
3420       }
3421 
3422       // A variable definition might imply a destructor call.
3423       if (VD->isThisDeclarationADefinition())
3424         SafeToInline = !HasNonDllImportDtor(VD->getType());
3425 
3426       return SafeToInline;
3427     }
3428 
3429     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3430       if (const auto *D = E->getTemporary()->getDestructor())
3431         SafeToInline = D->hasAttr<DLLImportAttr>();
3432       return SafeToInline;
3433     }
3434 
3435     bool VisitDeclRefExpr(DeclRefExpr *E) {
3436       ValueDecl *VD = E->getDecl();
3437       if (isa<FunctionDecl>(VD))
3438         SafeToInline = VD->hasAttr<DLLImportAttr>();
3439       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3440         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3441       return SafeToInline;
3442     }
3443 
3444     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3445       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3446       return SafeToInline;
3447     }
3448 
3449     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3450       CXXMethodDecl *M = E->getMethodDecl();
3451       if (!M) {
3452         // Call through a pointer to member function. This is safe to inline.
3453         SafeToInline = true;
3454       } else {
3455         SafeToInline = M->hasAttr<DLLImportAttr>();
3456       }
3457       return SafeToInline;
3458     }
3459 
3460     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3461       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3462       return SafeToInline;
3463     }
3464 
3465     bool VisitCXXNewExpr(CXXNewExpr *E) {
3466       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3467       return SafeToInline;
3468     }
3469   };
3470 }
3471 
3472 // isTriviallyRecursive - Check if this function calls another
3473 // decl that, because of the asm attribute or the other decl being a builtin,
3474 // ends up pointing to itself.
3475 bool
3476 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3477   StringRef Name;
3478   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3479     // asm labels are a special kind of mangling we have to support.
3480     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3481     if (!Attr)
3482       return false;
3483     Name = Attr->getLabel();
3484   } else {
3485     Name = FD->getName();
3486   }
3487 
3488   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3489   const Stmt *Body = FD->getBody();
3490   return Body ? Walker.Visit(Body) : false;
3491 }
3492 
3493 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3494   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3495     return true;
3496   const auto *F = cast<FunctionDecl>(GD.getDecl());
3497   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3498     return false;
3499 
3500   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3501     // Check whether it would be safe to inline this dllimport function.
3502     DLLImportFunctionVisitor Visitor;
3503     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3504     if (!Visitor.SafeToInline)
3505       return false;
3506 
3507     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3508       // Implicit destructor invocations aren't captured in the AST, so the
3509       // check above can't see them. Check for them manually here.
3510       for (const Decl *Member : Dtor->getParent()->decls())
3511         if (isa<FieldDecl>(Member))
3512           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3513             return false;
3514       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3515         if (HasNonDllImportDtor(B.getType()))
3516           return false;
3517     }
3518   }
3519 
3520   // Inline builtins declaration must be emitted. They often are fortified
3521   // functions.
3522   if (F->isInlineBuiltinDeclaration())
3523     return true;
3524 
3525   // PR9614. Avoid cases where the source code is lying to us. An available
3526   // externally function should have an equivalent function somewhere else,
3527   // but a function that calls itself through asm label/`__builtin_` trickery is
3528   // clearly not equivalent to the real implementation.
3529   // This happens in glibc's btowc and in some configure checks.
3530   return !isTriviallyRecursive(F);
3531 }
3532 
3533 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3534   return CodeGenOpts.OptimizationLevel > 0;
3535 }
3536 
3537 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3538                                                        llvm::GlobalValue *GV) {
3539   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3540 
3541   if (FD->isCPUSpecificMultiVersion()) {
3542     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3543     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3544       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3545   } else if (FD->isTargetClonesMultiVersion()) {
3546     auto *Clone = FD->getAttr<TargetClonesAttr>();
3547     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3548       if (Clone->isFirstOfVersion(I))
3549         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3550     // Ensure that the resolver function is also emitted.
3551     GetOrCreateMultiVersionResolver(GD);
3552   } else
3553     EmitGlobalFunctionDefinition(GD, GV);
3554 }
3555 
3556 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3557   const auto *D = cast<ValueDecl>(GD.getDecl());
3558 
3559   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3560                                  Context.getSourceManager(),
3561                                  "Generating code for declaration");
3562 
3563   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3564     // At -O0, don't generate IR for functions with available_externally
3565     // linkage.
3566     if (!shouldEmitFunction(GD))
3567       return;
3568 
3569     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3570       std::string Name;
3571       llvm::raw_string_ostream OS(Name);
3572       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3573                                /*Qualified=*/true);
3574       return Name;
3575     });
3576 
3577     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3578       // Make sure to emit the definition(s) before we emit the thunks.
3579       // This is necessary for the generation of certain thunks.
3580       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3581         ABI->emitCXXStructor(GD);
3582       else if (FD->isMultiVersion())
3583         EmitMultiVersionFunctionDefinition(GD, GV);
3584       else
3585         EmitGlobalFunctionDefinition(GD, GV);
3586 
3587       if (Method->isVirtual())
3588         getVTables().EmitThunks(GD);
3589 
3590       return;
3591     }
3592 
3593     if (FD->isMultiVersion())
3594       return EmitMultiVersionFunctionDefinition(GD, GV);
3595     return EmitGlobalFunctionDefinition(GD, GV);
3596   }
3597 
3598   if (const auto *VD = dyn_cast<VarDecl>(D))
3599     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3600 
3601   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3602 }
3603 
3604 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3605                                                       llvm::Function *NewFn);
3606 
3607 static unsigned
3608 TargetMVPriority(const TargetInfo &TI,
3609                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3610   unsigned Priority = 0;
3611   for (StringRef Feat : RO.Conditions.Features)
3612     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3613 
3614   if (!RO.Conditions.Architecture.empty())
3615     Priority = std::max(
3616         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3617   return Priority;
3618 }
3619 
3620 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3621 // TU can forward declare the function without causing problems.  Particularly
3622 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3623 // work with internal linkage functions, so that the same function name can be
3624 // used with internal linkage in multiple TUs.
3625 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3626                                                        GlobalDecl GD) {
3627   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3628   if (FD->getFormalLinkage() == InternalLinkage)
3629     return llvm::GlobalValue::InternalLinkage;
3630   return llvm::GlobalValue::WeakODRLinkage;
3631 }
3632 
3633 void CodeGenModule::emitMultiVersionFunctions() {
3634   std::vector<GlobalDecl> MVFuncsToEmit;
3635   MultiVersionFuncs.swap(MVFuncsToEmit);
3636   for (GlobalDecl GD : MVFuncsToEmit) {
3637     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3638     assert(FD && "Expected a FunctionDecl");
3639 
3640     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3641     if (FD->isTargetMultiVersion()) {
3642       getContext().forEachMultiversionedFunctionVersion(
3643           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3644             GlobalDecl CurGD{
3645                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3646             StringRef MangledName = getMangledName(CurGD);
3647             llvm::Constant *Func = GetGlobalValue(MangledName);
3648             if (!Func) {
3649               if (CurFD->isDefined()) {
3650                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3651                 Func = GetGlobalValue(MangledName);
3652               } else {
3653                 const CGFunctionInfo &FI =
3654                     getTypes().arrangeGlobalDeclaration(GD);
3655                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3656                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3657                                          /*DontDefer=*/false, ForDefinition);
3658               }
3659               assert(Func && "This should have just been created");
3660             }
3661 
3662             const auto *TA = CurFD->getAttr<TargetAttr>();
3663             llvm::SmallVector<StringRef, 8> Feats;
3664             TA->getAddedFeatures(Feats);
3665 
3666             Options.emplace_back(cast<llvm::Function>(Func),
3667                                  TA->getArchitecture(), Feats);
3668           });
3669     } else if (FD->isTargetClonesMultiVersion()) {
3670       const auto *TC = FD->getAttr<TargetClonesAttr>();
3671       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3672            ++VersionIndex) {
3673         if (!TC->isFirstOfVersion(VersionIndex))
3674           continue;
3675         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3676                          VersionIndex};
3677         StringRef Version = TC->getFeatureStr(VersionIndex);
3678         StringRef MangledName = getMangledName(CurGD);
3679         llvm::Constant *Func = GetGlobalValue(MangledName);
3680         if (!Func) {
3681           if (FD->isDefined()) {
3682             EmitGlobalFunctionDefinition(CurGD, nullptr);
3683             Func = GetGlobalValue(MangledName);
3684           } else {
3685             const CGFunctionInfo &FI =
3686                 getTypes().arrangeGlobalDeclaration(CurGD);
3687             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3688             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3689                                      /*DontDefer=*/false, ForDefinition);
3690           }
3691           assert(Func && "This should have just been created");
3692         }
3693 
3694         StringRef Architecture;
3695         llvm::SmallVector<StringRef, 1> Feature;
3696 
3697         if (Version.startswith("arch="))
3698           Architecture = Version.drop_front(sizeof("arch=") - 1);
3699         else if (Version != "default")
3700           Feature.push_back(Version);
3701 
3702         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3703       }
3704     } else {
3705       assert(0 && "Expected a target or target_clones multiversion function");
3706       continue;
3707     }
3708 
3709     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3710     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3711       ResolverConstant = IFunc->getResolver();
3712     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3713 
3714     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3715 
3716     if (supportsCOMDAT())
3717       ResolverFunc->setComdat(
3718           getModule().getOrInsertComdat(ResolverFunc->getName()));
3719 
3720     const TargetInfo &TI = getTarget();
3721     llvm::stable_sort(
3722         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3723                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3724           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3725         });
3726     CodeGenFunction CGF(*this);
3727     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3728   }
3729 
3730   // Ensure that any additions to the deferred decls list caused by emitting a
3731   // variant are emitted.  This can happen when the variant itself is inline and
3732   // calls a function without linkage.
3733   if (!MVFuncsToEmit.empty())
3734     EmitDeferred();
3735 
3736   // Ensure that any additions to the multiversion funcs list from either the
3737   // deferred decls or the multiversion functions themselves are emitted.
3738   if (!MultiVersionFuncs.empty())
3739     emitMultiVersionFunctions();
3740 }
3741 
3742 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3743   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3744   assert(FD && "Not a FunctionDecl?");
3745   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3746   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3747   assert(DD && "Not a cpu_dispatch Function?");
3748 
3749   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3750   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3751 
3752   StringRef ResolverName = getMangledName(GD);
3753   UpdateMultiVersionNames(GD, FD, ResolverName);
3754 
3755   llvm::Type *ResolverType;
3756   GlobalDecl ResolverGD;
3757   if (getTarget().supportsIFunc()) {
3758     ResolverType = llvm::FunctionType::get(
3759         llvm::PointerType::get(DeclTy,
3760                                Context.getTargetAddressSpace(FD->getType())),
3761         false);
3762   }
3763   else {
3764     ResolverType = DeclTy;
3765     ResolverGD = GD;
3766   }
3767 
3768   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3769       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3770   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3771   if (supportsCOMDAT())
3772     ResolverFunc->setComdat(
3773         getModule().getOrInsertComdat(ResolverFunc->getName()));
3774 
3775   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3776   const TargetInfo &Target = getTarget();
3777   unsigned Index = 0;
3778   for (const IdentifierInfo *II : DD->cpus()) {
3779     // Get the name of the target function so we can look it up/create it.
3780     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3781                               getCPUSpecificMangling(*this, II->getName());
3782 
3783     llvm::Constant *Func = GetGlobalValue(MangledName);
3784 
3785     if (!Func) {
3786       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3787       if (ExistingDecl.getDecl() &&
3788           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3789         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3790         Func = GetGlobalValue(MangledName);
3791       } else {
3792         if (!ExistingDecl.getDecl())
3793           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3794 
3795       Func = GetOrCreateLLVMFunction(
3796           MangledName, DeclTy, ExistingDecl,
3797           /*ForVTable=*/false, /*DontDefer=*/true,
3798           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3799       }
3800     }
3801 
3802     llvm::SmallVector<StringRef, 32> Features;
3803     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3804     llvm::transform(Features, Features.begin(),
3805                     [](StringRef Str) { return Str.substr(1); });
3806     llvm::erase_if(Features, [&Target](StringRef Feat) {
3807       return !Target.validateCpuSupports(Feat);
3808     });
3809     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3810     ++Index;
3811   }
3812 
3813   llvm::stable_sort(
3814       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3815                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3816         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3817                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3818       });
3819 
3820   // If the list contains multiple 'default' versions, such as when it contains
3821   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3822   // always run on at least a 'pentium'). We do this by deleting the 'least
3823   // advanced' (read, lowest mangling letter).
3824   while (Options.size() > 1 &&
3825          llvm::X86::getCpuSupportsMask(
3826              (Options.end() - 2)->Conditions.Features) == 0) {
3827     StringRef LHSName = (Options.end() - 2)->Function->getName();
3828     StringRef RHSName = (Options.end() - 1)->Function->getName();
3829     if (LHSName.compare(RHSName) < 0)
3830       Options.erase(Options.end() - 2);
3831     else
3832       Options.erase(Options.end() - 1);
3833   }
3834 
3835   CodeGenFunction CGF(*this);
3836   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3837 
3838   if (getTarget().supportsIFunc()) {
3839     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3840     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3841 
3842     // Fix up function declarations that were created for cpu_specific before
3843     // cpu_dispatch was known
3844     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3845       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3846       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3847                                            &getModule());
3848       GI->takeName(IFunc);
3849       IFunc->replaceAllUsesWith(GI);
3850       IFunc->eraseFromParent();
3851       IFunc = GI;
3852     }
3853 
3854     std::string AliasName = getMangledNameImpl(
3855         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3856     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3857     if (!AliasFunc) {
3858       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3859                                            &getModule());
3860       SetCommonAttributes(GD, GA);
3861     }
3862   }
3863 }
3864 
3865 /// If a dispatcher for the specified mangled name is not in the module, create
3866 /// and return an llvm Function with the specified type.
3867 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3868   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3869   assert(FD && "Not a FunctionDecl?");
3870 
3871   std::string MangledName =
3872       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3873 
3874   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3875   // a separate resolver).
3876   std::string ResolverName = MangledName;
3877   if (getTarget().supportsIFunc())
3878     ResolverName += ".ifunc";
3879   else if (FD->isTargetMultiVersion())
3880     ResolverName += ".resolver";
3881 
3882   // If the resolver has already been created, just return it.
3883   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3884     return ResolverGV;
3885 
3886   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3887   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3888 
3889   // The resolver needs to be created. For target and target_clones, defer
3890   // creation until the end of the TU.
3891   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3892     MultiVersionFuncs.push_back(GD);
3893 
3894   // For cpu_specific, don't create an ifunc yet because we don't know if the
3895   // cpu_dispatch will be emitted in this translation unit.
3896   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3897     llvm::Type *ResolverType = llvm::FunctionType::get(
3898         llvm::PointerType::get(
3899             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3900         false);
3901     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3902         MangledName + ".resolver", ResolverType, GlobalDecl{},
3903         /*ForVTable=*/false);
3904     llvm::GlobalIFunc *GIF =
3905         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3906                                   "", Resolver, &getModule());
3907     GIF->setName(ResolverName);
3908     SetCommonAttributes(FD, GIF);
3909 
3910     return GIF;
3911   }
3912 
3913   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3914       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3915   assert(isa<llvm::GlobalValue>(Resolver) &&
3916          "Resolver should be created for the first time");
3917   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3918   return Resolver;
3919 }
3920 
3921 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3922 /// module, create and return an llvm Function with the specified type. If there
3923 /// is something in the module with the specified name, return it potentially
3924 /// bitcasted to the right type.
3925 ///
3926 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3927 /// to set the attributes on the function when it is first created.
3928 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3929     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3930     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3931     ForDefinition_t IsForDefinition) {
3932   const Decl *D = GD.getDecl();
3933 
3934   // Any attempts to use a MultiVersion function should result in retrieving
3935   // the iFunc instead. Name Mangling will handle the rest of the changes.
3936   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3937     // For the device mark the function as one that should be emitted.
3938     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3939         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3940         !DontDefer && !IsForDefinition) {
3941       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3942         GlobalDecl GDDef;
3943         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3944           GDDef = GlobalDecl(CD, GD.getCtorType());
3945         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3946           GDDef = GlobalDecl(DD, GD.getDtorType());
3947         else
3948           GDDef = GlobalDecl(FDDef);
3949         EmitGlobal(GDDef);
3950       }
3951     }
3952 
3953     if (FD->isMultiVersion()) {
3954       UpdateMultiVersionNames(GD, FD, MangledName);
3955       if (!IsForDefinition)
3956         return GetOrCreateMultiVersionResolver(GD);
3957     }
3958   }
3959 
3960   // Lookup the entry, lazily creating it if necessary.
3961   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3962   if (Entry) {
3963     if (WeakRefReferences.erase(Entry)) {
3964       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3965       if (FD && !FD->hasAttr<WeakAttr>())
3966         Entry->setLinkage(llvm::Function::ExternalLinkage);
3967     }
3968 
3969     // Handle dropped DLL attributes.
3970     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3971         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3972       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3973       setDSOLocal(Entry);
3974     }
3975 
3976     // If there are two attempts to define the same mangled name, issue an
3977     // error.
3978     if (IsForDefinition && !Entry->isDeclaration()) {
3979       GlobalDecl OtherGD;
3980       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3981       // to make sure that we issue an error only once.
3982       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3983           (GD.getCanonicalDecl().getDecl() !=
3984            OtherGD.getCanonicalDecl().getDecl()) &&
3985           DiagnosedConflictingDefinitions.insert(GD).second) {
3986         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3987             << MangledName;
3988         getDiags().Report(OtherGD.getDecl()->getLocation(),
3989                           diag::note_previous_definition);
3990       }
3991     }
3992 
3993     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3994         (Entry->getValueType() == Ty)) {
3995       return Entry;
3996     }
3997 
3998     // Make sure the result is of the correct type.
3999     // (If function is requested for a definition, we always need to create a new
4000     // function, not just return a bitcast.)
4001     if (!IsForDefinition)
4002       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
4003   }
4004 
4005   // This function doesn't have a complete type (for example, the return
4006   // type is an incomplete struct). Use a fake type instead, and make
4007   // sure not to try to set attributes.
4008   bool IsIncompleteFunction = false;
4009 
4010   llvm::FunctionType *FTy;
4011   if (isa<llvm::FunctionType>(Ty)) {
4012     FTy = cast<llvm::FunctionType>(Ty);
4013   } else {
4014     FTy = llvm::FunctionType::get(VoidTy, false);
4015     IsIncompleteFunction = true;
4016   }
4017 
4018   llvm::Function *F =
4019       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4020                              Entry ? StringRef() : MangledName, &getModule());
4021 
4022   // If we already created a function with the same mangled name (but different
4023   // type) before, take its name and add it to the list of functions to be
4024   // replaced with F at the end of CodeGen.
4025   //
4026   // This happens if there is a prototype for a function (e.g. "int f()") and
4027   // then a definition of a different type (e.g. "int f(int x)").
4028   if (Entry) {
4029     F->takeName(Entry);
4030 
4031     // This might be an implementation of a function without a prototype, in
4032     // which case, try to do special replacement of calls which match the new
4033     // prototype.  The really key thing here is that we also potentially drop
4034     // arguments from the call site so as to make a direct call, which makes the
4035     // inliner happier and suppresses a number of optimizer warnings (!) about
4036     // dropping arguments.
4037     if (!Entry->use_empty()) {
4038       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4039       Entry->removeDeadConstantUsers();
4040     }
4041 
4042     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4043         F, Entry->getValueType()->getPointerTo());
4044     addGlobalValReplacement(Entry, BC);
4045   }
4046 
4047   assert(F->getName() == MangledName && "name was uniqued!");
4048   if (D)
4049     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4050   if (ExtraAttrs.hasFnAttrs()) {
4051     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4052     F->addFnAttrs(B);
4053   }
4054 
4055   if (!DontDefer) {
4056     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4057     // each other bottoming out with the base dtor.  Therefore we emit non-base
4058     // dtors on usage, even if there is no dtor definition in the TU.
4059     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4060         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4061                                            GD.getDtorType()))
4062       addDeferredDeclToEmit(GD);
4063 
4064     // This is the first use or definition of a mangled name.  If there is a
4065     // deferred decl with this name, remember that we need to emit it at the end
4066     // of the file.
4067     auto DDI = DeferredDecls.find(MangledName);
4068     if (DDI != DeferredDecls.end()) {
4069       // Move the potentially referenced deferred decl to the
4070       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4071       // don't need it anymore).
4072       addDeferredDeclToEmit(DDI->second);
4073       EmittedDeferredDecls[DDI->first] = DDI->second;
4074       DeferredDecls.erase(DDI);
4075 
4076       // Otherwise, there are cases we have to worry about where we're
4077       // using a declaration for which we must emit a definition but where
4078       // we might not find a top-level definition:
4079       //   - member functions defined inline in their classes
4080       //   - friend functions defined inline in some class
4081       //   - special member functions with implicit definitions
4082       // If we ever change our AST traversal to walk into class methods,
4083       // this will be unnecessary.
4084       //
4085       // We also don't emit a definition for a function if it's going to be an
4086       // entry in a vtable, unless it's already marked as used.
4087     } else if (getLangOpts().CPlusPlus && D) {
4088       // Look for a declaration that's lexically in a record.
4089       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4090            FD = FD->getPreviousDecl()) {
4091         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4092           if (FD->doesThisDeclarationHaveABody()) {
4093             addDeferredDeclToEmit(GD.getWithDecl(FD));
4094             break;
4095           }
4096         }
4097       }
4098     }
4099   }
4100 
4101   // Make sure the result is of the requested type.
4102   if (!IsIncompleteFunction) {
4103     assert(F->getFunctionType() == Ty);
4104     return F;
4105   }
4106 
4107   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
4108   return llvm::ConstantExpr::getBitCast(F, PTy);
4109 }
4110 
4111 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4112 /// non-null, then this function will use the specified type if it has to
4113 /// create it (this occurs when we see a definition of the function).
4114 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4115                                                  llvm::Type *Ty,
4116                                                  bool ForVTable,
4117                                                  bool DontDefer,
4118                                               ForDefinition_t IsForDefinition) {
4119   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4120          "consteval function should never be emitted");
4121   // If there was no specific requested type, just convert it now.
4122   if (!Ty) {
4123     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4124     Ty = getTypes().ConvertType(FD->getType());
4125   }
4126 
4127   // Devirtualized destructor calls may come through here instead of via
4128   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4129   // of the complete destructor when necessary.
4130   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4131     if (getTarget().getCXXABI().isMicrosoft() &&
4132         GD.getDtorType() == Dtor_Complete &&
4133         DD->getParent()->getNumVBases() == 0)
4134       GD = GlobalDecl(DD, Dtor_Base);
4135   }
4136 
4137   StringRef MangledName = getMangledName(GD);
4138   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4139                                     /*IsThunk=*/false, llvm::AttributeList(),
4140                                     IsForDefinition);
4141   // Returns kernel handle for HIP kernel stub function.
4142   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4143       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4144     auto *Handle = getCUDARuntime().getKernelHandle(
4145         cast<llvm::Function>(F->stripPointerCasts()), GD);
4146     if (IsForDefinition)
4147       return F;
4148     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4149   }
4150   return F;
4151 }
4152 
4153 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4154   llvm::GlobalValue *F =
4155       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4156 
4157   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4158                                         llvm::Type::getInt8PtrTy(VMContext));
4159 }
4160 
4161 static const FunctionDecl *
4162 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4163   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4164   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4165 
4166   IdentifierInfo &CII = C.Idents.get(Name);
4167   for (const auto *Result : DC->lookup(&CII))
4168     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4169       return FD;
4170 
4171   if (!C.getLangOpts().CPlusPlus)
4172     return nullptr;
4173 
4174   // Demangle the premangled name from getTerminateFn()
4175   IdentifierInfo &CXXII =
4176       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4177           ? C.Idents.get("terminate")
4178           : C.Idents.get(Name);
4179 
4180   for (const auto &N : {"__cxxabiv1", "std"}) {
4181     IdentifierInfo &NS = C.Idents.get(N);
4182     for (const auto *Result : DC->lookup(&NS)) {
4183       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4184       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4185         for (const auto *Result : LSD->lookup(&NS))
4186           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4187             break;
4188 
4189       if (ND)
4190         for (const auto *Result : ND->lookup(&CXXII))
4191           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4192             return FD;
4193     }
4194   }
4195 
4196   return nullptr;
4197 }
4198 
4199 /// CreateRuntimeFunction - Create a new runtime function with the specified
4200 /// type and name.
4201 llvm::FunctionCallee
4202 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4203                                      llvm::AttributeList ExtraAttrs, bool Local,
4204                                      bool AssumeConvergent) {
4205   if (AssumeConvergent) {
4206     ExtraAttrs =
4207         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4208   }
4209 
4210   llvm::Constant *C =
4211       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4212                               /*DontDefer=*/false, /*IsThunk=*/false,
4213                               ExtraAttrs);
4214 
4215   if (auto *F = dyn_cast<llvm::Function>(C)) {
4216     if (F->empty()) {
4217       F->setCallingConv(getRuntimeCC());
4218 
4219       // In Windows Itanium environments, try to mark runtime functions
4220       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4221       // will link their standard library statically or dynamically. Marking
4222       // functions imported when they are not imported can cause linker errors
4223       // and warnings.
4224       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4225           !getCodeGenOpts().LTOVisibilityPublicStd) {
4226         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4227         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4228           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4229           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4230         }
4231       }
4232       setDSOLocal(F);
4233     }
4234   }
4235 
4236   return {FTy, C};
4237 }
4238 
4239 /// isTypeConstant - Determine whether an object of this type can be emitted
4240 /// as a constant.
4241 ///
4242 /// If ExcludeCtor is true, the duration when the object's constructor runs
4243 /// will not be considered. The caller will need to verify that the object is
4244 /// not written to during its construction.
4245 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4246   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4247     return false;
4248 
4249   if (Context.getLangOpts().CPlusPlus) {
4250     if (const CXXRecordDecl *Record
4251           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4252       return ExcludeCtor && !Record->hasMutableFields() &&
4253              Record->hasTrivialDestructor();
4254   }
4255 
4256   return true;
4257 }
4258 
4259 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4260 /// create and return an llvm GlobalVariable with the specified type and address
4261 /// space. If there is something in the module with the specified name, return
4262 /// it potentially bitcasted to the right type.
4263 ///
4264 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4265 /// to set the attributes on the global when it is first created.
4266 ///
4267 /// If IsForDefinition is true, it is guaranteed that an actual global with
4268 /// type Ty will be returned, not conversion of a variable with the same
4269 /// mangled name but some other type.
4270 llvm::Constant *
4271 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4272                                      LangAS AddrSpace, const VarDecl *D,
4273                                      ForDefinition_t IsForDefinition) {
4274   // Lookup the entry, lazily creating it if necessary.
4275   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4276   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4277   if (Entry) {
4278     if (WeakRefReferences.erase(Entry)) {
4279       if (D && !D->hasAttr<WeakAttr>())
4280         Entry->setLinkage(llvm::Function::ExternalLinkage);
4281     }
4282 
4283     // Handle dropped DLL attributes.
4284     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4285         !shouldMapVisibilityToDLLExport(D))
4286       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4287 
4288     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4289       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4290 
4291     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4292       return Entry;
4293 
4294     // If there are two attempts to define the same mangled name, issue an
4295     // error.
4296     if (IsForDefinition && !Entry->isDeclaration()) {
4297       GlobalDecl OtherGD;
4298       const VarDecl *OtherD;
4299 
4300       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4301       // to make sure that we issue an error only once.
4302       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4303           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4304           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4305           OtherD->hasInit() &&
4306           DiagnosedConflictingDefinitions.insert(D).second) {
4307         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4308             << MangledName;
4309         getDiags().Report(OtherGD.getDecl()->getLocation(),
4310                           diag::note_previous_definition);
4311       }
4312     }
4313 
4314     // Make sure the result is of the correct type.
4315     if (Entry->getType()->getAddressSpace() != TargetAS) {
4316       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4317                                                   Ty->getPointerTo(TargetAS));
4318     }
4319 
4320     // (If global is requested for a definition, we always need to create a new
4321     // global, not just return a bitcast.)
4322     if (!IsForDefinition)
4323       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4324   }
4325 
4326   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4327 
4328   auto *GV = new llvm::GlobalVariable(
4329       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4330       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4331       getContext().getTargetAddressSpace(DAddrSpace));
4332 
4333   // If we already created a global with the same mangled name (but different
4334   // type) before, take its name and remove it from its parent.
4335   if (Entry) {
4336     GV->takeName(Entry);
4337 
4338     if (!Entry->use_empty()) {
4339       llvm::Constant *NewPtrForOldDecl =
4340           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4341       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4342     }
4343 
4344     Entry->eraseFromParent();
4345   }
4346 
4347   // This is the first use or definition of a mangled name.  If there is a
4348   // deferred decl with this name, remember that we need to emit it at the end
4349   // of the file.
4350   auto DDI = DeferredDecls.find(MangledName);
4351   if (DDI != DeferredDecls.end()) {
4352     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4353     // list, and remove it from DeferredDecls (since we don't need it anymore).
4354     addDeferredDeclToEmit(DDI->second);
4355     EmittedDeferredDecls[DDI->first] = DDI->second;
4356     DeferredDecls.erase(DDI);
4357   }
4358 
4359   // Handle things which are present even on external declarations.
4360   if (D) {
4361     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4362       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4363 
4364     // FIXME: This code is overly simple and should be merged with other global
4365     // handling.
4366     GV->setConstant(isTypeConstant(D->getType(), false));
4367 
4368     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4369 
4370     setLinkageForGV(GV, D);
4371 
4372     if (D->getTLSKind()) {
4373       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4374         CXXThreadLocals.push_back(D);
4375       setTLSMode(GV, *D);
4376     }
4377 
4378     setGVProperties(GV, D);
4379 
4380     // If required by the ABI, treat declarations of static data members with
4381     // inline initializers as definitions.
4382     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4383       EmitGlobalVarDefinition(D);
4384     }
4385 
4386     // Emit section information for extern variables.
4387     if (D->hasExternalStorage()) {
4388       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4389         GV->setSection(SA->getName());
4390     }
4391 
4392     // Handle XCore specific ABI requirements.
4393     if (getTriple().getArch() == llvm::Triple::xcore &&
4394         D->getLanguageLinkage() == CLanguageLinkage &&
4395         D->getType().isConstant(Context) &&
4396         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4397       GV->setSection(".cp.rodata");
4398 
4399     // Check if we a have a const declaration with an initializer, we may be
4400     // able to emit it as available_externally to expose it's value to the
4401     // optimizer.
4402     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4403         D->getType().isConstQualified() && !GV->hasInitializer() &&
4404         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4405       const auto *Record =
4406           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4407       bool HasMutableFields = Record && Record->hasMutableFields();
4408       if (!HasMutableFields) {
4409         const VarDecl *InitDecl;
4410         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4411         if (InitExpr) {
4412           ConstantEmitter emitter(*this);
4413           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4414           if (Init) {
4415             auto *InitType = Init->getType();
4416             if (GV->getValueType() != InitType) {
4417               // The type of the initializer does not match the definition.
4418               // This happens when an initializer has a different type from
4419               // the type of the global (because of padding at the end of a
4420               // structure for instance).
4421               GV->setName(StringRef());
4422               // Make a new global with the correct type, this is now guaranteed
4423               // to work.
4424               auto *NewGV = cast<llvm::GlobalVariable>(
4425                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4426                       ->stripPointerCasts());
4427 
4428               // Erase the old global, since it is no longer used.
4429               GV->eraseFromParent();
4430               GV = NewGV;
4431             } else {
4432               GV->setInitializer(Init);
4433               GV->setConstant(true);
4434               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4435             }
4436             emitter.finalize(GV);
4437           }
4438         }
4439       }
4440     }
4441   }
4442 
4443   if (GV->isDeclaration()) {
4444     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4445     // External HIP managed variables needed to be recorded for transformation
4446     // in both device and host compilations.
4447     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4448         D->hasExternalStorage())
4449       getCUDARuntime().handleVarRegistration(D, *GV);
4450   }
4451 
4452   if (D)
4453     SanitizerMD->reportGlobal(GV, *D);
4454 
4455   LangAS ExpectedAS =
4456       D ? D->getType().getAddressSpace()
4457         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4458   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4459   if (DAddrSpace != ExpectedAS) {
4460     return getTargetCodeGenInfo().performAddrSpaceCast(
4461         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4462   }
4463 
4464   return GV;
4465 }
4466 
4467 llvm::Constant *
4468 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4469   const Decl *D = GD.getDecl();
4470 
4471   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4472     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4473                                 /*DontDefer=*/false, IsForDefinition);
4474 
4475   if (isa<CXXMethodDecl>(D)) {
4476     auto FInfo =
4477         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4478     auto Ty = getTypes().GetFunctionType(*FInfo);
4479     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4480                              IsForDefinition);
4481   }
4482 
4483   if (isa<FunctionDecl>(D)) {
4484     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4485     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4486     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4487                              IsForDefinition);
4488   }
4489 
4490   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4491 }
4492 
4493 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4494     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4495     unsigned Alignment) {
4496   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4497   llvm::GlobalVariable *OldGV = nullptr;
4498 
4499   if (GV) {
4500     // Check if the variable has the right type.
4501     if (GV->getValueType() == Ty)
4502       return GV;
4503 
4504     // Because C++ name mangling, the only way we can end up with an already
4505     // existing global with the same name is if it has been declared extern "C".
4506     assert(GV->isDeclaration() && "Declaration has wrong type!");
4507     OldGV = GV;
4508   }
4509 
4510   // Create a new variable.
4511   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4512                                 Linkage, nullptr, Name);
4513 
4514   if (OldGV) {
4515     // Replace occurrences of the old variable if needed.
4516     GV->takeName(OldGV);
4517 
4518     if (!OldGV->use_empty()) {
4519       llvm::Constant *NewPtrForOldDecl =
4520       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4521       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4522     }
4523 
4524     OldGV->eraseFromParent();
4525   }
4526 
4527   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4528       !GV->hasAvailableExternallyLinkage())
4529     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4530 
4531   GV->setAlignment(llvm::MaybeAlign(Alignment));
4532 
4533   return GV;
4534 }
4535 
4536 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4537 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4538 /// then it will be created with the specified type instead of whatever the
4539 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4540 /// that an actual global with type Ty will be returned, not conversion of a
4541 /// variable with the same mangled name but some other type.
4542 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4543                                                   llvm::Type *Ty,
4544                                            ForDefinition_t IsForDefinition) {
4545   assert(D->hasGlobalStorage() && "Not a global variable");
4546   QualType ASTTy = D->getType();
4547   if (!Ty)
4548     Ty = getTypes().ConvertTypeForMem(ASTTy);
4549 
4550   StringRef MangledName = getMangledName(D);
4551   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4552                                IsForDefinition);
4553 }
4554 
4555 /// CreateRuntimeVariable - Create a new runtime global variable with the
4556 /// specified type and name.
4557 llvm::Constant *
4558 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4559                                      StringRef Name) {
4560   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4561                                                        : LangAS::Default;
4562   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4563   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4564   return Ret;
4565 }
4566 
4567 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4568   assert(!D->getInit() && "Cannot emit definite definitions here!");
4569 
4570   StringRef MangledName = getMangledName(D);
4571   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4572 
4573   // We already have a definition, not declaration, with the same mangled name.
4574   // Emitting of declaration is not required (and actually overwrites emitted
4575   // definition).
4576   if (GV && !GV->isDeclaration())
4577     return;
4578 
4579   // If we have not seen a reference to this variable yet, place it into the
4580   // deferred declarations table to be emitted if needed later.
4581   if (!MustBeEmitted(D) && !GV) {
4582       DeferredDecls[MangledName] = D;
4583       return;
4584   }
4585 
4586   // The tentative definition is the only definition.
4587   EmitGlobalVarDefinition(D);
4588 }
4589 
4590 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4591   EmitExternalVarDeclaration(D);
4592 }
4593 
4594 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4595   return Context.toCharUnitsFromBits(
4596       getDataLayout().getTypeStoreSizeInBits(Ty));
4597 }
4598 
4599 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4600   if (LangOpts.OpenCL) {
4601     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4602     assert(AS == LangAS::opencl_global ||
4603            AS == LangAS::opencl_global_device ||
4604            AS == LangAS::opencl_global_host ||
4605            AS == LangAS::opencl_constant ||
4606            AS == LangAS::opencl_local ||
4607            AS >= LangAS::FirstTargetAddressSpace);
4608     return AS;
4609   }
4610 
4611   if (LangOpts.SYCLIsDevice &&
4612       (!D || D->getType().getAddressSpace() == LangAS::Default))
4613     return LangAS::sycl_global;
4614 
4615   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4616     if (D && D->hasAttr<CUDAConstantAttr>())
4617       return LangAS::cuda_constant;
4618     else if (D && D->hasAttr<CUDASharedAttr>())
4619       return LangAS::cuda_shared;
4620     else if (D && D->hasAttr<CUDADeviceAttr>())
4621       return LangAS::cuda_device;
4622     else if (D && D->getType().isConstQualified())
4623       return LangAS::cuda_constant;
4624     else
4625       return LangAS::cuda_device;
4626   }
4627 
4628   if (LangOpts.OpenMP) {
4629     LangAS AS;
4630     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4631       return AS;
4632   }
4633   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4634 }
4635 
4636 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4637   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4638   if (LangOpts.OpenCL)
4639     return LangAS::opencl_constant;
4640   if (LangOpts.SYCLIsDevice)
4641     return LangAS::sycl_global;
4642   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4643     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4644     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4645     // with OpVariable instructions with Generic storage class which is not
4646     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4647     // UniformConstant storage class is not viable as pointers to it may not be
4648     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4649     return LangAS::cuda_device;
4650   if (auto AS = getTarget().getConstantAddressSpace())
4651     return *AS;
4652   return LangAS::Default;
4653 }
4654 
4655 // In address space agnostic languages, string literals are in default address
4656 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4657 // emitted in constant address space in LLVM IR. To be consistent with other
4658 // parts of AST, string literal global variables in constant address space
4659 // need to be casted to default address space before being put into address
4660 // map and referenced by other part of CodeGen.
4661 // In OpenCL, string literals are in constant address space in AST, therefore
4662 // they should not be casted to default address space.
4663 static llvm::Constant *
4664 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4665                                        llvm::GlobalVariable *GV) {
4666   llvm::Constant *Cast = GV;
4667   if (!CGM.getLangOpts().OpenCL) {
4668     auto AS = CGM.GetGlobalConstantAddressSpace();
4669     if (AS != LangAS::Default)
4670       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4671           CGM, GV, AS, LangAS::Default,
4672           GV->getValueType()->getPointerTo(
4673               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4674   }
4675   return Cast;
4676 }
4677 
4678 template<typename SomeDecl>
4679 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4680                                                llvm::GlobalValue *GV) {
4681   if (!getLangOpts().CPlusPlus)
4682     return;
4683 
4684   // Must have 'used' attribute, or else inline assembly can't rely on
4685   // the name existing.
4686   if (!D->template hasAttr<UsedAttr>())
4687     return;
4688 
4689   // Must have internal linkage and an ordinary name.
4690   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4691     return;
4692 
4693   // Must be in an extern "C" context. Entities declared directly within
4694   // a record are not extern "C" even if the record is in such a context.
4695   const SomeDecl *First = D->getFirstDecl();
4696   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4697     return;
4698 
4699   // OK, this is an internal linkage entity inside an extern "C" linkage
4700   // specification. Make a note of that so we can give it the "expected"
4701   // mangled name if nothing else is using that name.
4702   std::pair<StaticExternCMap::iterator, bool> R =
4703       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4704 
4705   // If we have multiple internal linkage entities with the same name
4706   // in extern "C" regions, none of them gets that name.
4707   if (!R.second)
4708     R.first->second = nullptr;
4709 }
4710 
4711 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4712   if (!CGM.supportsCOMDAT())
4713     return false;
4714 
4715   if (D.hasAttr<SelectAnyAttr>())
4716     return true;
4717 
4718   GVALinkage Linkage;
4719   if (auto *VD = dyn_cast<VarDecl>(&D))
4720     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4721   else
4722     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4723 
4724   switch (Linkage) {
4725   case GVA_Internal:
4726   case GVA_AvailableExternally:
4727   case GVA_StrongExternal:
4728     return false;
4729   case GVA_DiscardableODR:
4730   case GVA_StrongODR:
4731     return true;
4732   }
4733   llvm_unreachable("No such linkage");
4734 }
4735 
4736 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4737                                           llvm::GlobalObject &GO) {
4738   if (!shouldBeInCOMDAT(*this, D))
4739     return;
4740   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4741 }
4742 
4743 /// Pass IsTentative as true if you want to create a tentative definition.
4744 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4745                                             bool IsTentative) {
4746   // OpenCL global variables of sampler type are translated to function calls,
4747   // therefore no need to be translated.
4748   QualType ASTTy = D->getType();
4749   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4750     return;
4751 
4752   // If this is OpenMP device, check if it is legal to emit this global
4753   // normally.
4754   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4755       OpenMPRuntime->emitTargetGlobalVariable(D))
4756     return;
4757 
4758   llvm::TrackingVH<llvm::Constant> Init;
4759   bool NeedsGlobalCtor = false;
4760   bool NeedsGlobalDtor =
4761       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4762 
4763   const VarDecl *InitDecl;
4764   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4765 
4766   Optional<ConstantEmitter> emitter;
4767 
4768   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4769   // as part of their declaration."  Sema has already checked for
4770   // error cases, so we just need to set Init to UndefValue.
4771   bool IsCUDASharedVar =
4772       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4773   // Shadows of initialized device-side global variables are also left
4774   // undefined.
4775   // Managed Variables should be initialized on both host side and device side.
4776   bool IsCUDAShadowVar =
4777       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4778       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4779        D->hasAttr<CUDASharedAttr>());
4780   bool IsCUDADeviceShadowVar =
4781       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4782       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4783        D->getType()->isCUDADeviceBuiltinTextureType());
4784   if (getLangOpts().CUDA &&
4785       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4786     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4787   else if (D->hasAttr<LoaderUninitializedAttr>())
4788     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4789   else if (!InitExpr) {
4790     // This is a tentative definition; tentative definitions are
4791     // implicitly initialized with { 0 }.
4792     //
4793     // Note that tentative definitions are only emitted at the end of
4794     // a translation unit, so they should never have incomplete
4795     // type. In addition, EmitTentativeDefinition makes sure that we
4796     // never attempt to emit a tentative definition if a real one
4797     // exists. A use may still exists, however, so we still may need
4798     // to do a RAUW.
4799     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4800     Init = EmitNullConstant(D->getType());
4801   } else {
4802     initializedGlobalDecl = GlobalDecl(D);
4803     emitter.emplace(*this);
4804     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4805     if (!Initializer) {
4806       QualType T = InitExpr->getType();
4807       if (D->getType()->isReferenceType())
4808         T = D->getType();
4809 
4810       if (getLangOpts().CPlusPlus) {
4811         if (InitDecl->hasFlexibleArrayInit(getContext()))
4812           ErrorUnsupported(D, "flexible array initializer");
4813         Init = EmitNullConstant(T);
4814         NeedsGlobalCtor = true;
4815       } else {
4816         ErrorUnsupported(D, "static initializer");
4817         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4818       }
4819     } else {
4820       Init = Initializer;
4821       // We don't need an initializer, so remove the entry for the delayed
4822       // initializer position (just in case this entry was delayed) if we
4823       // also don't need to register a destructor.
4824       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4825         DelayedCXXInitPosition.erase(D);
4826 
4827 #ifndef NDEBUG
4828       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4829                           InitDecl->getFlexibleArrayInitChars(getContext());
4830       CharUnits CstSize = CharUnits::fromQuantity(
4831           getDataLayout().getTypeAllocSize(Init->getType()));
4832       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4833 #endif
4834     }
4835   }
4836 
4837   llvm::Type* InitType = Init->getType();
4838   llvm::Constant *Entry =
4839       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4840 
4841   // Strip off pointer casts if we got them.
4842   Entry = Entry->stripPointerCasts();
4843 
4844   // Entry is now either a Function or GlobalVariable.
4845   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4846 
4847   // We have a definition after a declaration with the wrong type.
4848   // We must make a new GlobalVariable* and update everything that used OldGV
4849   // (a declaration or tentative definition) with the new GlobalVariable*
4850   // (which will be a definition).
4851   //
4852   // This happens if there is a prototype for a global (e.g.
4853   // "extern int x[];") and then a definition of a different type (e.g.
4854   // "int x[10];"). This also happens when an initializer has a different type
4855   // from the type of the global (this happens with unions).
4856   if (!GV || GV->getValueType() != InitType ||
4857       GV->getType()->getAddressSpace() !=
4858           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4859 
4860     // Move the old entry aside so that we'll create a new one.
4861     Entry->setName(StringRef());
4862 
4863     // Make a new global with the correct type, this is now guaranteed to work.
4864     GV = cast<llvm::GlobalVariable>(
4865         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4866             ->stripPointerCasts());
4867 
4868     // Replace all uses of the old global with the new global
4869     llvm::Constant *NewPtrForOldDecl =
4870         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4871                                                              Entry->getType());
4872     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4873 
4874     // Erase the old global, since it is no longer used.
4875     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4876   }
4877 
4878   MaybeHandleStaticInExternC(D, GV);
4879 
4880   if (D->hasAttr<AnnotateAttr>())
4881     AddGlobalAnnotations(D, GV);
4882 
4883   // Set the llvm linkage type as appropriate.
4884   llvm::GlobalValue::LinkageTypes Linkage =
4885       getLLVMLinkageVarDefinition(D, GV->isConstant());
4886 
4887   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4888   // the device. [...]"
4889   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4890   // __device__, declares a variable that: [...]
4891   // Is accessible from all the threads within the grid and from the host
4892   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4893   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4894   if (GV && LangOpts.CUDA) {
4895     if (LangOpts.CUDAIsDevice) {
4896       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4897           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4898            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4899            D->getType()->isCUDADeviceBuiltinTextureType()))
4900         GV->setExternallyInitialized(true);
4901     } else {
4902       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4903     }
4904     getCUDARuntime().handleVarRegistration(D, *GV);
4905   }
4906 
4907   GV->setInitializer(Init);
4908   if (emitter)
4909     emitter->finalize(GV);
4910 
4911   // If it is safe to mark the global 'constant', do so now.
4912   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4913                   isTypeConstant(D->getType(), true));
4914 
4915   // If it is in a read-only section, mark it 'constant'.
4916   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4917     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4918     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4919       GV->setConstant(true);
4920   }
4921 
4922   CharUnits AlignVal = getContext().getDeclAlign(D);
4923   // Check for alignment specifed in an 'omp allocate' directive.
4924   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4925           getOMPAllocateAlignment(D))
4926     AlignVal = *AlignValFromAllocate;
4927   GV->setAlignment(AlignVal.getAsAlign());
4928 
4929   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4930   // function is only defined alongside the variable, not also alongside
4931   // callers. Normally, all accesses to a thread_local go through the
4932   // thread-wrapper in order to ensure initialization has occurred, underlying
4933   // variable will never be used other than the thread-wrapper, so it can be
4934   // converted to internal linkage.
4935   //
4936   // However, if the variable has the 'constinit' attribute, it _can_ be
4937   // referenced directly, without calling the thread-wrapper, so the linkage
4938   // must not be changed.
4939   //
4940   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4941   // weak or linkonce, the de-duplication semantics are important to preserve,
4942   // so we don't change the linkage.
4943   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4944       Linkage == llvm::GlobalValue::ExternalLinkage &&
4945       Context.getTargetInfo().getTriple().isOSDarwin() &&
4946       !D->hasAttr<ConstInitAttr>())
4947     Linkage = llvm::GlobalValue::InternalLinkage;
4948 
4949   GV->setLinkage(Linkage);
4950   if (D->hasAttr<DLLImportAttr>())
4951     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4952   else if (D->hasAttr<DLLExportAttr>())
4953     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4954   else
4955     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4956 
4957   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4958     // common vars aren't constant even if declared const.
4959     GV->setConstant(false);
4960     // Tentative definition of global variables may be initialized with
4961     // non-zero null pointers. In this case they should have weak linkage
4962     // since common linkage must have zero initializer and must not have
4963     // explicit section therefore cannot have non-zero initial value.
4964     if (!GV->getInitializer()->isNullValue())
4965       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4966   }
4967 
4968   setNonAliasAttributes(D, GV);
4969 
4970   if (D->getTLSKind() && !GV->isThreadLocal()) {
4971     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4972       CXXThreadLocals.push_back(D);
4973     setTLSMode(GV, *D);
4974   }
4975 
4976   maybeSetTrivialComdat(*D, *GV);
4977 
4978   // Emit the initializer function if necessary.
4979   if (NeedsGlobalCtor || NeedsGlobalDtor)
4980     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4981 
4982   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4983 
4984   // Emit global variable debug information.
4985   if (CGDebugInfo *DI = getModuleDebugInfo())
4986     if (getCodeGenOpts().hasReducedDebugInfo())
4987       DI->EmitGlobalVariable(GV, D);
4988 }
4989 
4990 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4991   if (CGDebugInfo *DI = getModuleDebugInfo())
4992     if (getCodeGenOpts().hasReducedDebugInfo()) {
4993       QualType ASTTy = D->getType();
4994       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4995       llvm::Constant *GV =
4996           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4997       DI->EmitExternalVariable(
4998           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4999     }
5000 }
5001 
5002 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5003                                       CodeGenModule &CGM, const VarDecl *D,
5004                                       bool NoCommon) {
5005   // Don't give variables common linkage if -fno-common was specified unless it
5006   // was overridden by a NoCommon attribute.
5007   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5008     return true;
5009 
5010   // C11 6.9.2/2:
5011   //   A declaration of an identifier for an object that has file scope without
5012   //   an initializer, and without a storage-class specifier or with the
5013   //   storage-class specifier static, constitutes a tentative definition.
5014   if (D->getInit() || D->hasExternalStorage())
5015     return true;
5016 
5017   // A variable cannot be both common and exist in a section.
5018   if (D->hasAttr<SectionAttr>())
5019     return true;
5020 
5021   // A variable cannot be both common and exist in a section.
5022   // We don't try to determine which is the right section in the front-end.
5023   // If no specialized section name is applicable, it will resort to default.
5024   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5025       D->hasAttr<PragmaClangDataSectionAttr>() ||
5026       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5027       D->hasAttr<PragmaClangRodataSectionAttr>())
5028     return true;
5029 
5030   // Thread local vars aren't considered common linkage.
5031   if (D->getTLSKind())
5032     return true;
5033 
5034   // Tentative definitions marked with WeakImportAttr are true definitions.
5035   if (D->hasAttr<WeakImportAttr>())
5036     return true;
5037 
5038   // A variable cannot be both common and exist in a comdat.
5039   if (shouldBeInCOMDAT(CGM, *D))
5040     return true;
5041 
5042   // Declarations with a required alignment do not have common linkage in MSVC
5043   // mode.
5044   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5045     if (D->hasAttr<AlignedAttr>())
5046       return true;
5047     QualType VarType = D->getType();
5048     if (Context.isAlignmentRequired(VarType))
5049       return true;
5050 
5051     if (const auto *RT = VarType->getAs<RecordType>()) {
5052       const RecordDecl *RD = RT->getDecl();
5053       for (const FieldDecl *FD : RD->fields()) {
5054         if (FD->isBitField())
5055           continue;
5056         if (FD->hasAttr<AlignedAttr>())
5057           return true;
5058         if (Context.isAlignmentRequired(FD->getType()))
5059           return true;
5060       }
5061     }
5062   }
5063 
5064   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5065   // common symbols, so symbols with greater alignment requirements cannot be
5066   // common.
5067   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5068   // alignments for common symbols via the aligncomm directive, so this
5069   // restriction only applies to MSVC environments.
5070   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5071       Context.getTypeAlignIfKnown(D->getType()) >
5072           Context.toBits(CharUnits::fromQuantity(32)))
5073     return true;
5074 
5075   return false;
5076 }
5077 
5078 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5079     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5080   if (Linkage == GVA_Internal)
5081     return llvm::Function::InternalLinkage;
5082 
5083   if (D->hasAttr<WeakAttr>())
5084     return llvm::GlobalVariable::WeakAnyLinkage;
5085 
5086   if (const auto *FD = D->getAsFunction())
5087     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5088       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5089 
5090   // We are guaranteed to have a strong definition somewhere else,
5091   // so we can use available_externally linkage.
5092   if (Linkage == GVA_AvailableExternally)
5093     return llvm::GlobalValue::AvailableExternallyLinkage;
5094 
5095   // Note that Apple's kernel linker doesn't support symbol
5096   // coalescing, so we need to avoid linkonce and weak linkages there.
5097   // Normally, this means we just map to internal, but for explicit
5098   // instantiations we'll map to external.
5099 
5100   // In C++, the compiler has to emit a definition in every translation unit
5101   // that references the function.  We should use linkonce_odr because
5102   // a) if all references in this translation unit are optimized away, we
5103   // don't need to codegen it.  b) if the function persists, it needs to be
5104   // merged with other definitions. c) C++ has the ODR, so we know the
5105   // definition is dependable.
5106   if (Linkage == GVA_DiscardableODR)
5107     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5108                                             : llvm::Function::InternalLinkage;
5109 
5110   // An explicit instantiation of a template has weak linkage, since
5111   // explicit instantiations can occur in multiple translation units
5112   // and must all be equivalent. However, we are not allowed to
5113   // throw away these explicit instantiations.
5114   //
5115   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5116   // so say that CUDA templates are either external (for kernels) or internal.
5117   // This lets llvm perform aggressive inter-procedural optimizations. For
5118   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5119   // therefore we need to follow the normal linkage paradigm.
5120   if (Linkage == GVA_StrongODR) {
5121     if (getLangOpts().AppleKext)
5122       return llvm::Function::ExternalLinkage;
5123     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5124         !getLangOpts().GPURelocatableDeviceCode)
5125       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5126                                           : llvm::Function::InternalLinkage;
5127     return llvm::Function::WeakODRLinkage;
5128   }
5129 
5130   // C++ doesn't have tentative definitions and thus cannot have common
5131   // linkage.
5132   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5133       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5134                                  CodeGenOpts.NoCommon))
5135     return llvm::GlobalVariable::CommonLinkage;
5136 
5137   // selectany symbols are externally visible, so use weak instead of
5138   // linkonce.  MSVC optimizes away references to const selectany globals, so
5139   // all definitions should be the same and ODR linkage should be used.
5140   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5141   if (D->hasAttr<SelectAnyAttr>())
5142     return llvm::GlobalVariable::WeakODRLinkage;
5143 
5144   // Otherwise, we have strong external linkage.
5145   assert(Linkage == GVA_StrongExternal);
5146   return llvm::GlobalVariable::ExternalLinkage;
5147 }
5148 
5149 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5150     const VarDecl *VD, bool IsConstant) {
5151   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5152   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5153 }
5154 
5155 /// Replace the uses of a function that was declared with a non-proto type.
5156 /// We want to silently drop extra arguments from call sites
5157 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5158                                           llvm::Function *newFn) {
5159   // Fast path.
5160   if (old->use_empty()) return;
5161 
5162   llvm::Type *newRetTy = newFn->getReturnType();
5163   SmallVector<llvm::Value*, 4> newArgs;
5164 
5165   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5166          ui != ue; ) {
5167     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5168     llvm::User *user = use->getUser();
5169 
5170     // Recognize and replace uses of bitcasts.  Most calls to
5171     // unprototyped functions will use bitcasts.
5172     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5173       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5174         replaceUsesOfNonProtoConstant(bitcast, newFn);
5175       continue;
5176     }
5177 
5178     // Recognize calls to the function.
5179     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5180     if (!callSite) continue;
5181     if (!callSite->isCallee(&*use))
5182       continue;
5183 
5184     // If the return types don't match exactly, then we can't
5185     // transform this call unless it's dead.
5186     if (callSite->getType() != newRetTy && !callSite->use_empty())
5187       continue;
5188 
5189     // Get the call site's attribute list.
5190     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5191     llvm::AttributeList oldAttrs = callSite->getAttributes();
5192 
5193     // If the function was passed too few arguments, don't transform.
5194     unsigned newNumArgs = newFn->arg_size();
5195     if (callSite->arg_size() < newNumArgs)
5196       continue;
5197 
5198     // If extra arguments were passed, we silently drop them.
5199     // If any of the types mismatch, we don't transform.
5200     unsigned argNo = 0;
5201     bool dontTransform = false;
5202     for (llvm::Argument &A : newFn->args()) {
5203       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5204         dontTransform = true;
5205         break;
5206       }
5207 
5208       // Add any parameter attributes.
5209       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5210       argNo++;
5211     }
5212     if (dontTransform)
5213       continue;
5214 
5215     // Okay, we can transform this.  Create the new call instruction and copy
5216     // over the required information.
5217     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5218 
5219     // Copy over any operand bundles.
5220     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5221     callSite->getOperandBundlesAsDefs(newBundles);
5222 
5223     llvm::CallBase *newCall;
5224     if (isa<llvm::CallInst>(callSite)) {
5225       newCall =
5226           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5227     } else {
5228       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5229       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5230                                          oldInvoke->getUnwindDest(), newArgs,
5231                                          newBundles, "", callSite);
5232     }
5233     newArgs.clear(); // for the next iteration
5234 
5235     if (!newCall->getType()->isVoidTy())
5236       newCall->takeName(callSite);
5237     newCall->setAttributes(
5238         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5239                                  oldAttrs.getRetAttrs(), newArgAttrs));
5240     newCall->setCallingConv(callSite->getCallingConv());
5241 
5242     // Finally, remove the old call, replacing any uses with the new one.
5243     if (!callSite->use_empty())
5244       callSite->replaceAllUsesWith(newCall);
5245 
5246     // Copy debug location attached to CI.
5247     if (callSite->getDebugLoc())
5248       newCall->setDebugLoc(callSite->getDebugLoc());
5249 
5250     callSite->eraseFromParent();
5251   }
5252 }
5253 
5254 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5255 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5256 /// existing call uses of the old function in the module, this adjusts them to
5257 /// call the new function directly.
5258 ///
5259 /// This is not just a cleanup: the always_inline pass requires direct calls to
5260 /// functions to be able to inline them.  If there is a bitcast in the way, it
5261 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5262 /// run at -O0.
5263 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5264                                                       llvm::Function *NewFn) {
5265   // If we're redefining a global as a function, don't transform it.
5266   if (!isa<llvm::Function>(Old)) return;
5267 
5268   replaceUsesOfNonProtoConstant(Old, NewFn);
5269 }
5270 
5271 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5272   auto DK = VD->isThisDeclarationADefinition();
5273   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5274     return;
5275 
5276   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5277   // If we have a definition, this might be a deferred decl. If the
5278   // instantiation is explicit, make sure we emit it at the end.
5279   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5280     GetAddrOfGlobalVar(VD);
5281 
5282   EmitTopLevelDecl(VD);
5283 }
5284 
5285 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5286                                                  llvm::GlobalValue *GV) {
5287   const auto *D = cast<FunctionDecl>(GD.getDecl());
5288 
5289   // Compute the function info and LLVM type.
5290   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5291   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5292 
5293   // Get or create the prototype for the function.
5294   if (!GV || (GV->getValueType() != Ty))
5295     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5296                                                    /*DontDefer=*/true,
5297                                                    ForDefinition));
5298 
5299   // Already emitted.
5300   if (!GV->isDeclaration())
5301     return;
5302 
5303   // We need to set linkage and visibility on the function before
5304   // generating code for it because various parts of IR generation
5305   // want to propagate this information down (e.g. to local static
5306   // declarations).
5307   auto *Fn = cast<llvm::Function>(GV);
5308   setFunctionLinkage(GD, Fn);
5309 
5310   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5311   setGVProperties(Fn, GD);
5312 
5313   MaybeHandleStaticInExternC(D, Fn);
5314 
5315   maybeSetTrivialComdat(*D, *Fn);
5316 
5317   // Set CodeGen attributes that represent floating point environment.
5318   setLLVMFunctionFEnvAttributes(D, Fn);
5319 
5320   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5321 
5322   setNonAliasAttributes(GD, Fn);
5323   SetLLVMFunctionAttributesForDefinition(D, Fn);
5324 
5325   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5326     AddGlobalCtor(Fn, CA->getPriority());
5327   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5328     AddGlobalDtor(Fn, DA->getPriority(), true);
5329   if (D->hasAttr<AnnotateAttr>())
5330     AddGlobalAnnotations(D, Fn);
5331 }
5332 
5333 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5334   const auto *D = cast<ValueDecl>(GD.getDecl());
5335   const AliasAttr *AA = D->getAttr<AliasAttr>();
5336   assert(AA && "Not an alias?");
5337 
5338   StringRef MangledName = getMangledName(GD);
5339 
5340   if (AA->getAliasee() == MangledName) {
5341     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5342     return;
5343   }
5344 
5345   // If there is a definition in the module, then it wins over the alias.
5346   // This is dubious, but allow it to be safe.  Just ignore the alias.
5347   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5348   if (Entry && !Entry->isDeclaration())
5349     return;
5350 
5351   Aliases.push_back(GD);
5352 
5353   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5354 
5355   // Create a reference to the named value.  This ensures that it is emitted
5356   // if a deferred decl.
5357   llvm::Constant *Aliasee;
5358   llvm::GlobalValue::LinkageTypes LT;
5359   if (isa<llvm::FunctionType>(DeclTy)) {
5360     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5361                                       /*ForVTable=*/false);
5362     LT = getFunctionLinkage(GD);
5363   } else {
5364     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5365                                     /*D=*/nullptr);
5366     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5367       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5368     else
5369       LT = getFunctionLinkage(GD);
5370   }
5371 
5372   // Create the new alias itself, but don't set a name yet.
5373   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5374   auto *GA =
5375       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5376 
5377   if (Entry) {
5378     if (GA->getAliasee() == Entry) {
5379       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5380       return;
5381     }
5382 
5383     assert(Entry->isDeclaration());
5384 
5385     // If there is a declaration in the module, then we had an extern followed
5386     // by the alias, as in:
5387     //   extern int test6();
5388     //   ...
5389     //   int test6() __attribute__((alias("test7")));
5390     //
5391     // Remove it and replace uses of it with the alias.
5392     GA->takeName(Entry);
5393 
5394     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5395                                                           Entry->getType()));
5396     Entry->eraseFromParent();
5397   } else {
5398     GA->setName(MangledName);
5399   }
5400 
5401   // Set attributes which are particular to an alias; this is a
5402   // specialization of the attributes which may be set on a global
5403   // variable/function.
5404   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5405       D->isWeakImported()) {
5406     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5407   }
5408 
5409   if (const auto *VD = dyn_cast<VarDecl>(D))
5410     if (VD->getTLSKind())
5411       setTLSMode(GA, *VD);
5412 
5413   SetCommonAttributes(GD, GA);
5414 
5415   // Emit global alias debug information.
5416   if (isa<VarDecl>(D))
5417     if (CGDebugInfo *DI = getModuleDebugInfo())
5418       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5419 }
5420 
5421 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5422   const auto *D = cast<ValueDecl>(GD.getDecl());
5423   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5424   assert(IFA && "Not an ifunc?");
5425 
5426   StringRef MangledName = getMangledName(GD);
5427 
5428   if (IFA->getResolver() == MangledName) {
5429     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5430     return;
5431   }
5432 
5433   // Report an error if some definition overrides ifunc.
5434   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5435   if (Entry && !Entry->isDeclaration()) {
5436     GlobalDecl OtherGD;
5437     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5438         DiagnosedConflictingDefinitions.insert(GD).second) {
5439       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5440           << MangledName;
5441       Diags.Report(OtherGD.getDecl()->getLocation(),
5442                    diag::note_previous_definition);
5443     }
5444     return;
5445   }
5446 
5447   Aliases.push_back(GD);
5448 
5449   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5450   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5451   llvm::Constant *Resolver =
5452       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5453                               /*ForVTable=*/false);
5454   llvm::GlobalIFunc *GIF =
5455       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5456                                 "", Resolver, &getModule());
5457   if (Entry) {
5458     if (GIF->getResolver() == Entry) {
5459       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5460       return;
5461     }
5462     assert(Entry->isDeclaration());
5463 
5464     // If there is a declaration in the module, then we had an extern followed
5465     // by the ifunc, as in:
5466     //   extern int test();
5467     //   ...
5468     //   int test() __attribute__((ifunc("resolver")));
5469     //
5470     // Remove it and replace uses of it with the ifunc.
5471     GIF->takeName(Entry);
5472 
5473     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5474                                                           Entry->getType()));
5475     Entry->eraseFromParent();
5476   } else
5477     GIF->setName(MangledName);
5478 
5479   SetCommonAttributes(GD, GIF);
5480 }
5481 
5482 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5483                                             ArrayRef<llvm::Type*> Tys) {
5484   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5485                                          Tys);
5486 }
5487 
5488 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5489 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5490                          const StringLiteral *Literal, bool TargetIsLSB,
5491                          bool &IsUTF16, unsigned &StringLength) {
5492   StringRef String = Literal->getString();
5493   unsigned NumBytes = String.size();
5494 
5495   // Check for simple case.
5496   if (!Literal->containsNonAsciiOrNull()) {
5497     StringLength = NumBytes;
5498     return *Map.insert(std::make_pair(String, nullptr)).first;
5499   }
5500 
5501   // Otherwise, convert the UTF8 literals into a string of shorts.
5502   IsUTF16 = true;
5503 
5504   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5505   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5506   llvm::UTF16 *ToPtr = &ToBuf[0];
5507 
5508   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5509                                  ToPtr + NumBytes, llvm::strictConversion);
5510 
5511   // ConvertUTF8toUTF16 returns the length in ToPtr.
5512   StringLength = ToPtr - &ToBuf[0];
5513 
5514   // Add an explicit null.
5515   *ToPtr = 0;
5516   return *Map.insert(std::make_pair(
5517                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5518                                    (StringLength + 1) * 2),
5519                          nullptr)).first;
5520 }
5521 
5522 ConstantAddress
5523 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5524   unsigned StringLength = 0;
5525   bool isUTF16 = false;
5526   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5527       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5528                                getDataLayout().isLittleEndian(), isUTF16,
5529                                StringLength);
5530 
5531   if (auto *C = Entry.second)
5532     return ConstantAddress(
5533         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5534 
5535   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5536   llvm::Constant *Zeros[] = { Zero, Zero };
5537 
5538   const ASTContext &Context = getContext();
5539   const llvm::Triple &Triple = getTriple();
5540 
5541   const auto CFRuntime = getLangOpts().CFRuntime;
5542   const bool IsSwiftABI =
5543       static_cast<unsigned>(CFRuntime) >=
5544       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5545   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5546 
5547   // If we don't already have it, get __CFConstantStringClassReference.
5548   if (!CFConstantStringClassRef) {
5549     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5550     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5551     Ty = llvm::ArrayType::get(Ty, 0);
5552 
5553     switch (CFRuntime) {
5554     default: break;
5555     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5556     case LangOptions::CoreFoundationABI::Swift5_0:
5557       CFConstantStringClassName =
5558           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5559                               : "$s10Foundation19_NSCFConstantStringCN";
5560       Ty = IntPtrTy;
5561       break;
5562     case LangOptions::CoreFoundationABI::Swift4_2:
5563       CFConstantStringClassName =
5564           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5565                               : "$S10Foundation19_NSCFConstantStringCN";
5566       Ty = IntPtrTy;
5567       break;
5568     case LangOptions::CoreFoundationABI::Swift4_1:
5569       CFConstantStringClassName =
5570           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5571                               : "__T010Foundation19_NSCFConstantStringCN";
5572       Ty = IntPtrTy;
5573       break;
5574     }
5575 
5576     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5577 
5578     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5579       llvm::GlobalValue *GV = nullptr;
5580 
5581       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5582         IdentifierInfo &II = Context.Idents.get(GV->getName());
5583         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5584         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5585 
5586         const VarDecl *VD = nullptr;
5587         for (const auto *Result : DC->lookup(&II))
5588           if ((VD = dyn_cast<VarDecl>(Result)))
5589             break;
5590 
5591         if (Triple.isOSBinFormatELF()) {
5592           if (!VD)
5593             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5594         } else {
5595           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5596           if (!VD || !VD->hasAttr<DLLExportAttr>())
5597             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5598           else
5599             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5600         }
5601 
5602         setDSOLocal(GV);
5603       }
5604     }
5605 
5606     // Decay array -> ptr
5607     CFConstantStringClassRef =
5608         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5609                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5610   }
5611 
5612   QualType CFTy = Context.getCFConstantStringType();
5613 
5614   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5615 
5616   ConstantInitBuilder Builder(*this);
5617   auto Fields = Builder.beginStruct(STy);
5618 
5619   // Class pointer.
5620   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5621 
5622   // Flags.
5623   if (IsSwiftABI) {
5624     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5625     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5626   } else {
5627     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5628   }
5629 
5630   // String pointer.
5631   llvm::Constant *C = nullptr;
5632   if (isUTF16) {
5633     auto Arr = llvm::makeArrayRef(
5634         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5635         Entry.first().size() / 2);
5636     C = llvm::ConstantDataArray::get(VMContext, Arr);
5637   } else {
5638     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5639   }
5640 
5641   // Note: -fwritable-strings doesn't make the backing store strings of
5642   // CFStrings writable. (See <rdar://problem/10657500>)
5643   auto *GV =
5644       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5645                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5646   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5647   // Don't enforce the target's minimum global alignment, since the only use
5648   // of the string is via this class initializer.
5649   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5650                             : Context.getTypeAlignInChars(Context.CharTy);
5651   GV->setAlignment(Align.getAsAlign());
5652 
5653   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5654   // Without it LLVM can merge the string with a non unnamed_addr one during
5655   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5656   if (Triple.isOSBinFormatMachO())
5657     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5658                            : "__TEXT,__cstring,cstring_literals");
5659   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5660   // the static linker to adjust permissions to read-only later on.
5661   else if (Triple.isOSBinFormatELF())
5662     GV->setSection(".rodata");
5663 
5664   // String.
5665   llvm::Constant *Str =
5666       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5667 
5668   if (isUTF16)
5669     // Cast the UTF16 string to the correct type.
5670     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5671   Fields.add(Str);
5672 
5673   // String length.
5674   llvm::IntegerType *LengthTy =
5675       llvm::IntegerType::get(getModule().getContext(),
5676                              Context.getTargetInfo().getLongWidth());
5677   if (IsSwiftABI) {
5678     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5679         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5680       LengthTy = Int32Ty;
5681     else
5682       LengthTy = IntPtrTy;
5683   }
5684   Fields.addInt(LengthTy, StringLength);
5685 
5686   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5687   // properly aligned on 32-bit platforms.
5688   CharUnits Alignment =
5689       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5690 
5691   // The struct.
5692   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5693                                     /*isConstant=*/false,
5694                                     llvm::GlobalVariable::PrivateLinkage);
5695   GV->addAttribute("objc_arc_inert");
5696   switch (Triple.getObjectFormat()) {
5697   case llvm::Triple::UnknownObjectFormat:
5698     llvm_unreachable("unknown file format");
5699   case llvm::Triple::DXContainer:
5700   case llvm::Triple::GOFF:
5701   case llvm::Triple::SPIRV:
5702   case llvm::Triple::XCOFF:
5703     llvm_unreachable("unimplemented");
5704   case llvm::Triple::COFF:
5705   case llvm::Triple::ELF:
5706   case llvm::Triple::Wasm:
5707     GV->setSection("cfstring");
5708     break;
5709   case llvm::Triple::MachO:
5710     GV->setSection("__DATA,__cfstring");
5711     break;
5712   }
5713   Entry.second = GV;
5714 
5715   return ConstantAddress(GV, GV->getValueType(), Alignment);
5716 }
5717 
5718 bool CodeGenModule::getExpressionLocationsEnabled() const {
5719   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5720 }
5721 
5722 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5723   if (ObjCFastEnumerationStateType.isNull()) {
5724     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5725     D->startDefinition();
5726 
5727     QualType FieldTypes[] = {
5728       Context.UnsignedLongTy,
5729       Context.getPointerType(Context.getObjCIdType()),
5730       Context.getPointerType(Context.UnsignedLongTy),
5731       Context.getConstantArrayType(Context.UnsignedLongTy,
5732                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5733     };
5734 
5735     for (size_t i = 0; i < 4; ++i) {
5736       FieldDecl *Field = FieldDecl::Create(Context,
5737                                            D,
5738                                            SourceLocation(),
5739                                            SourceLocation(), nullptr,
5740                                            FieldTypes[i], /*TInfo=*/nullptr,
5741                                            /*BitWidth=*/nullptr,
5742                                            /*Mutable=*/false,
5743                                            ICIS_NoInit);
5744       Field->setAccess(AS_public);
5745       D->addDecl(Field);
5746     }
5747 
5748     D->completeDefinition();
5749     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5750   }
5751 
5752   return ObjCFastEnumerationStateType;
5753 }
5754 
5755 llvm::Constant *
5756 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5757   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5758 
5759   // Don't emit it as the address of the string, emit the string data itself
5760   // as an inline array.
5761   if (E->getCharByteWidth() == 1) {
5762     SmallString<64> Str(E->getString());
5763 
5764     // Resize the string to the right size, which is indicated by its type.
5765     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5766     Str.resize(CAT->getSize().getZExtValue());
5767     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5768   }
5769 
5770   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5771   llvm::Type *ElemTy = AType->getElementType();
5772   unsigned NumElements = AType->getNumElements();
5773 
5774   // Wide strings have either 2-byte or 4-byte elements.
5775   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5776     SmallVector<uint16_t, 32> Elements;
5777     Elements.reserve(NumElements);
5778 
5779     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5780       Elements.push_back(E->getCodeUnit(i));
5781     Elements.resize(NumElements);
5782     return llvm::ConstantDataArray::get(VMContext, Elements);
5783   }
5784 
5785   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5786   SmallVector<uint32_t, 32> Elements;
5787   Elements.reserve(NumElements);
5788 
5789   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5790     Elements.push_back(E->getCodeUnit(i));
5791   Elements.resize(NumElements);
5792   return llvm::ConstantDataArray::get(VMContext, Elements);
5793 }
5794 
5795 static llvm::GlobalVariable *
5796 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5797                       CodeGenModule &CGM, StringRef GlobalName,
5798                       CharUnits Alignment) {
5799   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5800       CGM.GetGlobalConstantAddressSpace());
5801 
5802   llvm::Module &M = CGM.getModule();
5803   // Create a global variable for this string
5804   auto *GV = new llvm::GlobalVariable(
5805       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5806       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5807   GV->setAlignment(Alignment.getAsAlign());
5808   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5809   if (GV->isWeakForLinker()) {
5810     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5811     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5812   }
5813   CGM.setDSOLocal(GV);
5814 
5815   return GV;
5816 }
5817 
5818 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5819 /// constant array for the given string literal.
5820 ConstantAddress
5821 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5822                                                   StringRef Name) {
5823   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5824 
5825   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5826   llvm::GlobalVariable **Entry = nullptr;
5827   if (!LangOpts.WritableStrings) {
5828     Entry = &ConstantStringMap[C];
5829     if (auto GV = *Entry) {
5830       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5831         GV->setAlignment(Alignment.getAsAlign());
5832       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5833                              GV->getValueType(), Alignment);
5834     }
5835   }
5836 
5837   SmallString<256> MangledNameBuffer;
5838   StringRef GlobalVariableName;
5839   llvm::GlobalValue::LinkageTypes LT;
5840 
5841   // Mangle the string literal if that's how the ABI merges duplicate strings.
5842   // Don't do it if they are writable, since we don't want writes in one TU to
5843   // affect strings in another.
5844   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5845       !LangOpts.WritableStrings) {
5846     llvm::raw_svector_ostream Out(MangledNameBuffer);
5847     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5848     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5849     GlobalVariableName = MangledNameBuffer;
5850   } else {
5851     LT = llvm::GlobalValue::PrivateLinkage;
5852     GlobalVariableName = Name;
5853   }
5854 
5855   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5856 
5857   CGDebugInfo *DI = getModuleDebugInfo();
5858   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5859     DI->AddStringLiteralDebugInfo(GV, S);
5860 
5861   if (Entry)
5862     *Entry = GV;
5863 
5864   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5865 
5866   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5867                          GV->getValueType(), Alignment);
5868 }
5869 
5870 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5871 /// array for the given ObjCEncodeExpr node.
5872 ConstantAddress
5873 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5874   std::string Str;
5875   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5876 
5877   return GetAddrOfConstantCString(Str);
5878 }
5879 
5880 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5881 /// the literal and a terminating '\0' character.
5882 /// The result has pointer to array type.
5883 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5884     const std::string &Str, const char *GlobalName) {
5885   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5886   CharUnits Alignment =
5887     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5888 
5889   llvm::Constant *C =
5890       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5891 
5892   // Don't share any string literals if strings aren't constant.
5893   llvm::GlobalVariable **Entry = nullptr;
5894   if (!LangOpts.WritableStrings) {
5895     Entry = &ConstantStringMap[C];
5896     if (auto GV = *Entry) {
5897       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5898         GV->setAlignment(Alignment.getAsAlign());
5899       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5900                              GV->getValueType(), Alignment);
5901     }
5902   }
5903 
5904   // Get the default prefix if a name wasn't specified.
5905   if (!GlobalName)
5906     GlobalName = ".str";
5907   // Create a global variable for this.
5908   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5909                                   GlobalName, Alignment);
5910   if (Entry)
5911     *Entry = GV;
5912 
5913   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5914                          GV->getValueType(), Alignment);
5915 }
5916 
5917 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5918     const MaterializeTemporaryExpr *E, const Expr *Init) {
5919   assert((E->getStorageDuration() == SD_Static ||
5920           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5921   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5922 
5923   // If we're not materializing a subobject of the temporary, keep the
5924   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5925   QualType MaterializedType = Init->getType();
5926   if (Init == E->getSubExpr())
5927     MaterializedType = E->getType();
5928 
5929   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5930 
5931   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5932   if (!InsertResult.second) {
5933     // We've seen this before: either we already created it or we're in the
5934     // process of doing so.
5935     if (!InsertResult.first->second) {
5936       // We recursively re-entered this function, probably during emission of
5937       // the initializer. Create a placeholder. We'll clean this up in the
5938       // outer call, at the end of this function.
5939       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5940       InsertResult.first->second = new llvm::GlobalVariable(
5941           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5942           nullptr);
5943     }
5944     return ConstantAddress(InsertResult.first->second,
5945                            llvm::cast<llvm::GlobalVariable>(
5946                                InsertResult.first->second->stripPointerCasts())
5947                                ->getValueType(),
5948                            Align);
5949   }
5950 
5951   // FIXME: If an externally-visible declaration extends multiple temporaries,
5952   // we need to give each temporary the same name in every translation unit (and
5953   // we also need to make the temporaries externally-visible).
5954   SmallString<256> Name;
5955   llvm::raw_svector_ostream Out(Name);
5956   getCXXABI().getMangleContext().mangleReferenceTemporary(
5957       VD, E->getManglingNumber(), Out);
5958 
5959   APValue *Value = nullptr;
5960   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5961     // If the initializer of the extending declaration is a constant
5962     // initializer, we should have a cached constant initializer for this
5963     // temporary. Note that this might have a different value from the value
5964     // computed by evaluating the initializer if the surrounding constant
5965     // expression modifies the temporary.
5966     Value = E->getOrCreateValue(false);
5967   }
5968 
5969   // Try evaluating it now, it might have a constant initializer.
5970   Expr::EvalResult EvalResult;
5971   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5972       !EvalResult.hasSideEffects())
5973     Value = &EvalResult.Val;
5974 
5975   LangAS AddrSpace =
5976       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5977 
5978   Optional<ConstantEmitter> emitter;
5979   llvm::Constant *InitialValue = nullptr;
5980   bool Constant = false;
5981   llvm::Type *Type;
5982   if (Value) {
5983     // The temporary has a constant initializer, use it.
5984     emitter.emplace(*this);
5985     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5986                                                MaterializedType);
5987     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5988     Type = InitialValue->getType();
5989   } else {
5990     // No initializer, the initialization will be provided when we
5991     // initialize the declaration which performed lifetime extension.
5992     Type = getTypes().ConvertTypeForMem(MaterializedType);
5993   }
5994 
5995   // Create a global variable for this lifetime-extended temporary.
5996   llvm::GlobalValue::LinkageTypes Linkage =
5997       getLLVMLinkageVarDefinition(VD, Constant);
5998   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5999     const VarDecl *InitVD;
6000     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6001         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6002       // Temporaries defined inside a class get linkonce_odr linkage because the
6003       // class can be defined in multiple translation units.
6004       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6005     } else {
6006       // There is no need for this temporary to have external linkage if the
6007       // VarDecl has external linkage.
6008       Linkage = llvm::GlobalVariable::InternalLinkage;
6009     }
6010   }
6011   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6012   auto *GV = new llvm::GlobalVariable(
6013       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6014       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6015   if (emitter) emitter->finalize(GV);
6016   setGVProperties(GV, VD);
6017   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6018     // The reference temporary should never be dllexport.
6019     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6020   GV->setAlignment(Align.getAsAlign());
6021   if (supportsCOMDAT() && GV->isWeakForLinker())
6022     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6023   if (VD->getTLSKind())
6024     setTLSMode(GV, *VD);
6025   llvm::Constant *CV = GV;
6026   if (AddrSpace != LangAS::Default)
6027     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6028         *this, GV, AddrSpace, LangAS::Default,
6029         Type->getPointerTo(
6030             getContext().getTargetAddressSpace(LangAS::Default)));
6031 
6032   // Update the map with the new temporary. If we created a placeholder above,
6033   // replace it with the new global now.
6034   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6035   if (Entry) {
6036     Entry->replaceAllUsesWith(
6037         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6038     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6039   }
6040   Entry = CV;
6041 
6042   return ConstantAddress(CV, Type, Align);
6043 }
6044 
6045 /// EmitObjCPropertyImplementations - Emit information for synthesized
6046 /// properties for an implementation.
6047 void CodeGenModule::EmitObjCPropertyImplementations(const
6048                                                     ObjCImplementationDecl *D) {
6049   for (const auto *PID : D->property_impls()) {
6050     // Dynamic is just for type-checking.
6051     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6052       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6053 
6054       // Determine which methods need to be implemented, some may have
6055       // been overridden. Note that ::isPropertyAccessor is not the method
6056       // we want, that just indicates if the decl came from a
6057       // property. What we want to know is if the method is defined in
6058       // this implementation.
6059       auto *Getter = PID->getGetterMethodDecl();
6060       if (!Getter || Getter->isSynthesizedAccessorStub())
6061         CodeGenFunction(*this).GenerateObjCGetter(
6062             const_cast<ObjCImplementationDecl *>(D), PID);
6063       auto *Setter = PID->getSetterMethodDecl();
6064       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6065         CodeGenFunction(*this).GenerateObjCSetter(
6066                                  const_cast<ObjCImplementationDecl *>(D), PID);
6067     }
6068   }
6069 }
6070 
6071 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6072   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6073   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6074        ivar; ivar = ivar->getNextIvar())
6075     if (ivar->getType().isDestructedType())
6076       return true;
6077 
6078   return false;
6079 }
6080 
6081 static bool AllTrivialInitializers(CodeGenModule &CGM,
6082                                    ObjCImplementationDecl *D) {
6083   CodeGenFunction CGF(CGM);
6084   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6085        E = D->init_end(); B != E; ++B) {
6086     CXXCtorInitializer *CtorInitExp = *B;
6087     Expr *Init = CtorInitExp->getInit();
6088     if (!CGF.isTrivialInitializer(Init))
6089       return false;
6090   }
6091   return true;
6092 }
6093 
6094 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6095 /// for an implementation.
6096 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6097   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6098   if (needsDestructMethod(D)) {
6099     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6100     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6101     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6102         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6103         getContext().VoidTy, nullptr, D,
6104         /*isInstance=*/true, /*isVariadic=*/false,
6105         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6106         /*isImplicitlyDeclared=*/true,
6107         /*isDefined=*/false, ObjCMethodDecl::Required);
6108     D->addInstanceMethod(DTORMethod);
6109     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6110     D->setHasDestructors(true);
6111   }
6112 
6113   // If the implementation doesn't have any ivar initializers, we don't need
6114   // a .cxx_construct.
6115   if (D->getNumIvarInitializers() == 0 ||
6116       AllTrivialInitializers(*this, D))
6117     return;
6118 
6119   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6120   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6121   // The constructor returns 'self'.
6122   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6123       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6124       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6125       /*isVariadic=*/false,
6126       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6127       /*isImplicitlyDeclared=*/true,
6128       /*isDefined=*/false, ObjCMethodDecl::Required);
6129   D->addInstanceMethod(CTORMethod);
6130   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6131   D->setHasNonZeroConstructors(true);
6132 }
6133 
6134 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6135 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6136   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6137       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6138     ErrorUnsupported(LSD, "linkage spec");
6139     return;
6140   }
6141 
6142   EmitDeclContext(LSD);
6143 }
6144 
6145 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6146   for (auto *I : DC->decls()) {
6147     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6148     // are themselves considered "top-level", so EmitTopLevelDecl on an
6149     // ObjCImplDecl does not recursively visit them. We need to do that in
6150     // case they're nested inside another construct (LinkageSpecDecl /
6151     // ExportDecl) that does stop them from being considered "top-level".
6152     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6153       for (auto *M : OID->methods())
6154         EmitTopLevelDecl(M);
6155     }
6156 
6157     EmitTopLevelDecl(I);
6158   }
6159 }
6160 
6161 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6162 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6163   // Ignore dependent declarations.
6164   if (D->isTemplated())
6165     return;
6166 
6167   // Consteval function shouldn't be emitted.
6168   if (auto *FD = dyn_cast<FunctionDecl>(D))
6169     if (FD->isConsteval())
6170       return;
6171 
6172   switch (D->getKind()) {
6173   case Decl::CXXConversion:
6174   case Decl::CXXMethod:
6175   case Decl::Function:
6176     EmitGlobal(cast<FunctionDecl>(D));
6177     // Always provide some coverage mapping
6178     // even for the functions that aren't emitted.
6179     AddDeferredUnusedCoverageMapping(D);
6180     break;
6181 
6182   case Decl::CXXDeductionGuide:
6183     // Function-like, but does not result in code emission.
6184     break;
6185 
6186   case Decl::Var:
6187   case Decl::Decomposition:
6188   case Decl::VarTemplateSpecialization:
6189     EmitGlobal(cast<VarDecl>(D));
6190     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6191       for (auto *B : DD->bindings())
6192         if (auto *HD = B->getHoldingVar())
6193           EmitGlobal(HD);
6194     break;
6195 
6196   // Indirect fields from global anonymous structs and unions can be
6197   // ignored; only the actual variable requires IR gen support.
6198   case Decl::IndirectField:
6199     break;
6200 
6201   // C++ Decls
6202   case Decl::Namespace:
6203     EmitDeclContext(cast<NamespaceDecl>(D));
6204     break;
6205   case Decl::ClassTemplateSpecialization: {
6206     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6207     if (CGDebugInfo *DI = getModuleDebugInfo())
6208       if (Spec->getSpecializationKind() ==
6209               TSK_ExplicitInstantiationDefinition &&
6210           Spec->hasDefinition())
6211         DI->completeTemplateDefinition(*Spec);
6212   } [[fallthrough]];
6213   case Decl::CXXRecord: {
6214     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6215     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6216       if (CRD->hasDefinition())
6217         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6218       if (auto *ES = D->getASTContext().getExternalSource())
6219         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6220           DI->completeUnusedClass(*CRD);
6221     }
6222     // Emit any static data members, they may be definitions.
6223     for (auto *I : CRD->decls())
6224       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6225         EmitTopLevelDecl(I);
6226     break;
6227   }
6228     // No code generation needed.
6229   case Decl::UsingShadow:
6230   case Decl::ClassTemplate:
6231   case Decl::VarTemplate:
6232   case Decl::Concept:
6233   case Decl::VarTemplatePartialSpecialization:
6234   case Decl::FunctionTemplate:
6235   case Decl::TypeAliasTemplate:
6236   case Decl::Block:
6237   case Decl::Empty:
6238   case Decl::Binding:
6239     break;
6240   case Decl::Using:          // using X; [C++]
6241     if (CGDebugInfo *DI = getModuleDebugInfo())
6242         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6243     break;
6244   case Decl::UsingEnum: // using enum X; [C++]
6245     if (CGDebugInfo *DI = getModuleDebugInfo())
6246       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6247     break;
6248   case Decl::NamespaceAlias:
6249     if (CGDebugInfo *DI = getModuleDebugInfo())
6250         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6251     break;
6252   case Decl::UsingDirective: // using namespace X; [C++]
6253     if (CGDebugInfo *DI = getModuleDebugInfo())
6254       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6255     break;
6256   case Decl::CXXConstructor:
6257     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6258     break;
6259   case Decl::CXXDestructor:
6260     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6261     break;
6262 
6263   case Decl::StaticAssert:
6264     // Nothing to do.
6265     break;
6266 
6267   // Objective-C Decls
6268 
6269   // Forward declarations, no (immediate) code generation.
6270   case Decl::ObjCInterface:
6271   case Decl::ObjCCategory:
6272     break;
6273 
6274   case Decl::ObjCProtocol: {
6275     auto *Proto = cast<ObjCProtocolDecl>(D);
6276     if (Proto->isThisDeclarationADefinition())
6277       ObjCRuntime->GenerateProtocol(Proto);
6278     break;
6279   }
6280 
6281   case Decl::ObjCCategoryImpl:
6282     // Categories have properties but don't support synthesize so we
6283     // can ignore them here.
6284     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6285     break;
6286 
6287   case Decl::ObjCImplementation: {
6288     auto *OMD = cast<ObjCImplementationDecl>(D);
6289     EmitObjCPropertyImplementations(OMD);
6290     EmitObjCIvarInitializations(OMD);
6291     ObjCRuntime->GenerateClass(OMD);
6292     // Emit global variable debug information.
6293     if (CGDebugInfo *DI = getModuleDebugInfo())
6294       if (getCodeGenOpts().hasReducedDebugInfo())
6295         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6296             OMD->getClassInterface()), OMD->getLocation());
6297     break;
6298   }
6299   case Decl::ObjCMethod: {
6300     auto *OMD = cast<ObjCMethodDecl>(D);
6301     // If this is not a prototype, emit the body.
6302     if (OMD->getBody())
6303       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6304     break;
6305   }
6306   case Decl::ObjCCompatibleAlias:
6307     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6308     break;
6309 
6310   case Decl::PragmaComment: {
6311     const auto *PCD = cast<PragmaCommentDecl>(D);
6312     switch (PCD->getCommentKind()) {
6313     case PCK_Unknown:
6314       llvm_unreachable("unexpected pragma comment kind");
6315     case PCK_Linker:
6316       AppendLinkerOptions(PCD->getArg());
6317       break;
6318     case PCK_Lib:
6319         AddDependentLib(PCD->getArg());
6320       break;
6321     case PCK_Compiler:
6322     case PCK_ExeStr:
6323     case PCK_User:
6324       break; // We ignore all of these.
6325     }
6326     break;
6327   }
6328 
6329   case Decl::PragmaDetectMismatch: {
6330     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6331     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6332     break;
6333   }
6334 
6335   case Decl::LinkageSpec:
6336     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6337     break;
6338 
6339   case Decl::FileScopeAsm: {
6340     // File-scope asm is ignored during device-side CUDA compilation.
6341     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6342       break;
6343     // File-scope asm is ignored during device-side OpenMP compilation.
6344     if (LangOpts.OpenMPIsDevice)
6345       break;
6346     // File-scope asm is ignored during device-side SYCL compilation.
6347     if (LangOpts.SYCLIsDevice)
6348       break;
6349     auto *AD = cast<FileScopeAsmDecl>(D);
6350     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6351     break;
6352   }
6353 
6354   case Decl::Import: {
6355     auto *Import = cast<ImportDecl>(D);
6356 
6357     // If we've already imported this module, we're done.
6358     if (!ImportedModules.insert(Import->getImportedModule()))
6359       break;
6360 
6361     // Emit debug information for direct imports.
6362     if (!Import->getImportedOwningModule()) {
6363       if (CGDebugInfo *DI = getModuleDebugInfo())
6364         DI->EmitImportDecl(*Import);
6365     }
6366 
6367     // For C++ standard modules we are done - we will call the module
6368     // initializer for imported modules, and that will likewise call those for
6369     // any imports it has.
6370     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6371         !Import->getImportedOwningModule()->isModuleMapModule())
6372       break;
6373 
6374     // For clang C++ module map modules the initializers for sub-modules are
6375     // emitted here.
6376 
6377     // Find all of the submodules and emit the module initializers.
6378     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6379     SmallVector<clang::Module *, 16> Stack;
6380     Visited.insert(Import->getImportedModule());
6381     Stack.push_back(Import->getImportedModule());
6382 
6383     while (!Stack.empty()) {
6384       clang::Module *Mod = Stack.pop_back_val();
6385       if (!EmittedModuleInitializers.insert(Mod).second)
6386         continue;
6387 
6388       for (auto *D : Context.getModuleInitializers(Mod))
6389         EmitTopLevelDecl(D);
6390 
6391       // Visit the submodules of this module.
6392       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6393                                              SubEnd = Mod->submodule_end();
6394            Sub != SubEnd; ++Sub) {
6395         // Skip explicit children; they need to be explicitly imported to emit
6396         // the initializers.
6397         if ((*Sub)->IsExplicit)
6398           continue;
6399 
6400         if (Visited.insert(*Sub).second)
6401           Stack.push_back(*Sub);
6402       }
6403     }
6404     break;
6405   }
6406 
6407   case Decl::Export:
6408     EmitDeclContext(cast<ExportDecl>(D));
6409     break;
6410 
6411   case Decl::OMPThreadPrivate:
6412     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6413     break;
6414 
6415   case Decl::OMPAllocate:
6416     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6417     break;
6418 
6419   case Decl::OMPDeclareReduction:
6420     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6421     break;
6422 
6423   case Decl::OMPDeclareMapper:
6424     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6425     break;
6426 
6427   case Decl::OMPRequires:
6428     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6429     break;
6430 
6431   case Decl::Typedef:
6432   case Decl::TypeAlias: // using foo = bar; [C++11]
6433     if (CGDebugInfo *DI = getModuleDebugInfo())
6434       DI->EmitAndRetainType(
6435           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6436     break;
6437 
6438   case Decl::Record:
6439     if (CGDebugInfo *DI = getModuleDebugInfo())
6440       if (cast<RecordDecl>(D)->getDefinition())
6441         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6442     break;
6443 
6444   case Decl::Enum:
6445     if (CGDebugInfo *DI = getModuleDebugInfo())
6446       if (cast<EnumDecl>(D)->getDefinition())
6447         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6448     break;
6449 
6450   default:
6451     // Make sure we handled everything we should, every other kind is a
6452     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6453     // function. Need to recode Decl::Kind to do that easily.
6454     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6455     break;
6456   }
6457 }
6458 
6459 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6460   // Do we need to generate coverage mapping?
6461   if (!CodeGenOpts.CoverageMapping)
6462     return;
6463   switch (D->getKind()) {
6464   case Decl::CXXConversion:
6465   case Decl::CXXMethod:
6466   case Decl::Function:
6467   case Decl::ObjCMethod:
6468   case Decl::CXXConstructor:
6469   case Decl::CXXDestructor: {
6470     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6471       break;
6472     SourceManager &SM = getContext().getSourceManager();
6473     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6474       break;
6475     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6476     if (I == DeferredEmptyCoverageMappingDecls.end())
6477       DeferredEmptyCoverageMappingDecls[D] = true;
6478     break;
6479   }
6480   default:
6481     break;
6482   };
6483 }
6484 
6485 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6486   // Do we need to generate coverage mapping?
6487   if (!CodeGenOpts.CoverageMapping)
6488     return;
6489   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6490     if (Fn->isTemplateInstantiation())
6491       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6492   }
6493   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6494   if (I == DeferredEmptyCoverageMappingDecls.end())
6495     DeferredEmptyCoverageMappingDecls[D] = false;
6496   else
6497     I->second = false;
6498 }
6499 
6500 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6501   // We call takeVector() here to avoid use-after-free.
6502   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6503   // we deserialize function bodies to emit coverage info for them, and that
6504   // deserializes more declarations. How should we handle that case?
6505   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6506     if (!Entry.second)
6507       continue;
6508     const Decl *D = Entry.first;
6509     switch (D->getKind()) {
6510     case Decl::CXXConversion:
6511     case Decl::CXXMethod:
6512     case Decl::Function:
6513     case Decl::ObjCMethod: {
6514       CodeGenPGO PGO(*this);
6515       GlobalDecl GD(cast<FunctionDecl>(D));
6516       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6517                                   getFunctionLinkage(GD));
6518       break;
6519     }
6520     case Decl::CXXConstructor: {
6521       CodeGenPGO PGO(*this);
6522       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6523       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6524                                   getFunctionLinkage(GD));
6525       break;
6526     }
6527     case Decl::CXXDestructor: {
6528       CodeGenPGO PGO(*this);
6529       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6530       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6531                                   getFunctionLinkage(GD));
6532       break;
6533     }
6534     default:
6535       break;
6536     };
6537   }
6538 }
6539 
6540 void CodeGenModule::EmitMainVoidAlias() {
6541   // In order to transition away from "__original_main" gracefully, emit an
6542   // alias for "main" in the no-argument case so that libc can detect when
6543   // new-style no-argument main is in used.
6544   if (llvm::Function *F = getModule().getFunction("main")) {
6545     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6546         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6547       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6548       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6549     }
6550   }
6551 }
6552 
6553 /// Turns the given pointer into a constant.
6554 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6555                                           const void *Ptr) {
6556   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6557   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6558   return llvm::ConstantInt::get(i64, PtrInt);
6559 }
6560 
6561 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6562                                    llvm::NamedMDNode *&GlobalMetadata,
6563                                    GlobalDecl D,
6564                                    llvm::GlobalValue *Addr) {
6565   if (!GlobalMetadata)
6566     GlobalMetadata =
6567       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6568 
6569   // TODO: should we report variant information for ctors/dtors?
6570   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6571                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6572                                CGM.getLLVMContext(), D.getDecl()))};
6573   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6574 }
6575 
6576 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6577                                                  llvm::GlobalValue *CppFunc) {
6578   // Store the list of ifuncs we need to replace uses in.
6579   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6580   // List of ConstantExprs that we should be able to delete when we're done
6581   // here.
6582   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6583 
6584   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6585   if (Elem == CppFunc)
6586     return false;
6587 
6588   // First make sure that all users of this are ifuncs (or ifuncs via a
6589   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6590   // later.
6591   for (llvm::User *User : Elem->users()) {
6592     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6593     // ifunc directly. In any other case, just give up, as we don't know what we
6594     // could break by changing those.
6595     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6596       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6597         return false;
6598 
6599       for (llvm::User *CEUser : ConstExpr->users()) {
6600         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6601           IFuncs.push_back(IFunc);
6602         } else {
6603           return false;
6604         }
6605       }
6606       CEs.push_back(ConstExpr);
6607     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6608       IFuncs.push_back(IFunc);
6609     } else {
6610       // This user is one we don't know how to handle, so fail redirection. This
6611       // will result in an ifunc retaining a resolver name that will ultimately
6612       // fail to be resolved to a defined function.
6613       return false;
6614     }
6615   }
6616 
6617   // Now we know this is a valid case where we can do this alias replacement, we
6618   // need to remove all of the references to Elem (and the bitcasts!) so we can
6619   // delete it.
6620   for (llvm::GlobalIFunc *IFunc : IFuncs)
6621     IFunc->setResolver(nullptr);
6622   for (llvm::ConstantExpr *ConstExpr : CEs)
6623     ConstExpr->destroyConstant();
6624 
6625   // We should now be out of uses for the 'old' version of this function, so we
6626   // can erase it as well.
6627   Elem->eraseFromParent();
6628 
6629   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6630     // The type of the resolver is always just a function-type that returns the
6631     // type of the IFunc, so create that here. If the type of the actual
6632     // resolver doesn't match, it just gets bitcast to the right thing.
6633     auto *ResolverTy =
6634         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6635     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6636         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6637     IFunc->setResolver(Resolver);
6638   }
6639   return true;
6640 }
6641 
6642 /// For each function which is declared within an extern "C" region and marked
6643 /// as 'used', but has internal linkage, create an alias from the unmangled
6644 /// name to the mangled name if possible. People expect to be able to refer
6645 /// to such functions with an unmangled name from inline assembly within the
6646 /// same translation unit.
6647 void CodeGenModule::EmitStaticExternCAliases() {
6648   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6649     return;
6650   for (auto &I : StaticExternCValues) {
6651     IdentifierInfo *Name = I.first;
6652     llvm::GlobalValue *Val = I.second;
6653 
6654     // If Val is null, that implies there were multiple declarations that each
6655     // had a claim to the unmangled name. In this case, generation of the alias
6656     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6657     if (!Val)
6658       break;
6659 
6660     llvm::GlobalValue *ExistingElem =
6661         getModule().getNamedValue(Name->getName());
6662 
6663     // If there is either not something already by this name, or we were able to
6664     // replace all uses from IFuncs, create the alias.
6665     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6666       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6667   }
6668 }
6669 
6670 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6671                                              GlobalDecl &Result) const {
6672   auto Res = Manglings.find(MangledName);
6673   if (Res == Manglings.end())
6674     return false;
6675   Result = Res->getValue();
6676   return true;
6677 }
6678 
6679 /// Emits metadata nodes associating all the global values in the
6680 /// current module with the Decls they came from.  This is useful for
6681 /// projects using IR gen as a subroutine.
6682 ///
6683 /// Since there's currently no way to associate an MDNode directly
6684 /// with an llvm::GlobalValue, we create a global named metadata
6685 /// with the name 'clang.global.decl.ptrs'.
6686 void CodeGenModule::EmitDeclMetadata() {
6687   llvm::NamedMDNode *GlobalMetadata = nullptr;
6688 
6689   for (auto &I : MangledDeclNames) {
6690     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6691     // Some mangled names don't necessarily have an associated GlobalValue
6692     // in this module, e.g. if we mangled it for DebugInfo.
6693     if (Addr)
6694       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6695   }
6696 }
6697 
6698 /// Emits metadata nodes for all the local variables in the current
6699 /// function.
6700 void CodeGenFunction::EmitDeclMetadata() {
6701   if (LocalDeclMap.empty()) return;
6702 
6703   llvm::LLVMContext &Context = getLLVMContext();
6704 
6705   // Find the unique metadata ID for this name.
6706   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6707 
6708   llvm::NamedMDNode *GlobalMetadata = nullptr;
6709 
6710   for (auto &I : LocalDeclMap) {
6711     const Decl *D = I.first;
6712     llvm::Value *Addr = I.second.getPointer();
6713     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6714       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6715       Alloca->setMetadata(
6716           DeclPtrKind, llvm::MDNode::get(
6717                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6718     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6719       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6720       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6721     }
6722   }
6723 }
6724 
6725 void CodeGenModule::EmitVersionIdentMetadata() {
6726   llvm::NamedMDNode *IdentMetadata =
6727     TheModule.getOrInsertNamedMetadata("llvm.ident");
6728   std::string Version = getClangFullVersion();
6729   llvm::LLVMContext &Ctx = TheModule.getContext();
6730 
6731   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6732   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6733 }
6734 
6735 void CodeGenModule::EmitCommandLineMetadata() {
6736   llvm::NamedMDNode *CommandLineMetadata =
6737     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6738   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6739   llvm::LLVMContext &Ctx = TheModule.getContext();
6740 
6741   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6742   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6743 }
6744 
6745 void CodeGenModule::EmitCoverageFile() {
6746   if (getCodeGenOpts().CoverageDataFile.empty() &&
6747       getCodeGenOpts().CoverageNotesFile.empty())
6748     return;
6749 
6750   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6751   if (!CUNode)
6752     return;
6753 
6754   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6755   llvm::LLVMContext &Ctx = TheModule.getContext();
6756   auto *CoverageDataFile =
6757       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6758   auto *CoverageNotesFile =
6759       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6760   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6761     llvm::MDNode *CU = CUNode->getOperand(i);
6762     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6763     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6764   }
6765 }
6766 
6767 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6768                                                        bool ForEH) {
6769   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6770   // FIXME: should we even be calling this method if RTTI is disabled
6771   // and it's not for EH?
6772   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6773       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6774        getTriple().isNVPTX()))
6775     return llvm::Constant::getNullValue(Int8PtrTy);
6776 
6777   if (ForEH && Ty->isObjCObjectPointerType() &&
6778       LangOpts.ObjCRuntime.isGNUFamily())
6779     return ObjCRuntime->GetEHType(Ty);
6780 
6781   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6782 }
6783 
6784 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6785   // Do not emit threadprivates in simd-only mode.
6786   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6787     return;
6788   for (auto RefExpr : D->varlists()) {
6789     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6790     bool PerformInit =
6791         VD->getAnyInitializer() &&
6792         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6793                                                         /*ForRef=*/false);
6794 
6795     Address Addr(GetAddrOfGlobalVar(VD),
6796                  getTypes().ConvertTypeForMem(VD->getType()),
6797                  getContext().getDeclAlign(VD));
6798     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6799             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6800       CXXGlobalInits.push_back(InitFunction);
6801   }
6802 }
6803 
6804 llvm::Metadata *
6805 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6806                                             StringRef Suffix) {
6807   if (auto *FnType = T->getAs<FunctionProtoType>())
6808     T = getContext().getFunctionType(
6809         FnType->getReturnType(), FnType->getParamTypes(),
6810         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6811 
6812   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6813   if (InternalId)
6814     return InternalId;
6815 
6816   if (isExternallyVisible(T->getLinkage())) {
6817     std::string OutName;
6818     llvm::raw_string_ostream Out(OutName);
6819     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6820     Out << Suffix;
6821 
6822     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6823   } else {
6824     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6825                                            llvm::ArrayRef<llvm::Metadata *>());
6826   }
6827 
6828   return InternalId;
6829 }
6830 
6831 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6832   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6833 }
6834 
6835 llvm::Metadata *
6836 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6837   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6838 }
6839 
6840 // Generalize pointer types to a void pointer with the qualifiers of the
6841 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6842 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6843 // 'void *'.
6844 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6845   if (!Ty->isPointerType())
6846     return Ty;
6847 
6848   return Ctx.getPointerType(
6849       QualType(Ctx.VoidTy).withCVRQualifiers(
6850           Ty->getPointeeType().getCVRQualifiers()));
6851 }
6852 
6853 // Apply type generalization to a FunctionType's return and argument types
6854 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6855   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6856     SmallVector<QualType, 8> GeneralizedParams;
6857     for (auto &Param : FnType->param_types())
6858       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6859 
6860     return Ctx.getFunctionType(
6861         GeneralizeType(Ctx, FnType->getReturnType()),
6862         GeneralizedParams, FnType->getExtProtoInfo());
6863   }
6864 
6865   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6866     return Ctx.getFunctionNoProtoType(
6867         GeneralizeType(Ctx, FnType->getReturnType()));
6868 
6869   llvm_unreachable("Encountered unknown FunctionType");
6870 }
6871 
6872 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6873   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6874                                       GeneralizedMetadataIdMap, ".generalized");
6875 }
6876 
6877 /// Returns whether this module needs the "all-vtables" type identifier.
6878 bool CodeGenModule::NeedAllVtablesTypeId() const {
6879   // Returns true if at least one of vtable-based CFI checkers is enabled and
6880   // is not in the trapping mode.
6881   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6882            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6883           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6884            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6885           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6886            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6887           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6888            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6889 }
6890 
6891 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6892                                           CharUnits Offset,
6893                                           const CXXRecordDecl *RD) {
6894   llvm::Metadata *MD =
6895       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6896   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6897 
6898   if (CodeGenOpts.SanitizeCfiCrossDso)
6899     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6900       VTable->addTypeMetadata(Offset.getQuantity(),
6901                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6902 
6903   if (NeedAllVtablesTypeId()) {
6904     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6905     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6906   }
6907 }
6908 
6909 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6910   if (!SanStats)
6911     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6912 
6913   return *SanStats;
6914 }
6915 
6916 llvm::Value *
6917 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6918                                                   CodeGenFunction &CGF) {
6919   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6920   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6921   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6922   auto *Call = CGF.EmitRuntimeCall(
6923       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6924   return Call;
6925 }
6926 
6927 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6928     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6929   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6930                                  /* forPointeeType= */ true);
6931 }
6932 
6933 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6934                                                  LValueBaseInfo *BaseInfo,
6935                                                  TBAAAccessInfo *TBAAInfo,
6936                                                  bool forPointeeType) {
6937   if (TBAAInfo)
6938     *TBAAInfo = getTBAAAccessInfo(T);
6939 
6940   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6941   // that doesn't return the information we need to compute BaseInfo.
6942 
6943   // Honor alignment typedef attributes even on incomplete types.
6944   // We also honor them straight for C++ class types, even as pointees;
6945   // there's an expressivity gap here.
6946   if (auto TT = T->getAs<TypedefType>()) {
6947     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6948       if (BaseInfo)
6949         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6950       return getContext().toCharUnitsFromBits(Align);
6951     }
6952   }
6953 
6954   bool AlignForArray = T->isArrayType();
6955 
6956   // Analyze the base element type, so we don't get confused by incomplete
6957   // array types.
6958   T = getContext().getBaseElementType(T);
6959 
6960   if (T->isIncompleteType()) {
6961     // We could try to replicate the logic from
6962     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6963     // type is incomplete, so it's impossible to test. We could try to reuse
6964     // getTypeAlignIfKnown, but that doesn't return the information we need
6965     // to set BaseInfo.  So just ignore the possibility that the alignment is
6966     // greater than one.
6967     if (BaseInfo)
6968       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6969     return CharUnits::One();
6970   }
6971 
6972   if (BaseInfo)
6973     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6974 
6975   CharUnits Alignment;
6976   const CXXRecordDecl *RD;
6977   if (T.getQualifiers().hasUnaligned()) {
6978     Alignment = CharUnits::One();
6979   } else if (forPointeeType && !AlignForArray &&
6980              (RD = T->getAsCXXRecordDecl())) {
6981     // For C++ class pointees, we don't know whether we're pointing at a
6982     // base or a complete object, so we generally need to use the
6983     // non-virtual alignment.
6984     Alignment = getClassPointerAlignment(RD);
6985   } else {
6986     Alignment = getContext().getTypeAlignInChars(T);
6987   }
6988 
6989   // Cap to the global maximum type alignment unless the alignment
6990   // was somehow explicit on the type.
6991   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6992     if (Alignment.getQuantity() > MaxAlign &&
6993         !getContext().isAlignmentRequired(T))
6994       Alignment = CharUnits::fromQuantity(MaxAlign);
6995   }
6996   return Alignment;
6997 }
6998 
6999 bool CodeGenModule::stopAutoInit() {
7000   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7001   if (StopAfter) {
7002     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7003     // used
7004     if (NumAutoVarInit >= StopAfter) {
7005       return true;
7006     }
7007     if (!NumAutoVarInit) {
7008       unsigned DiagID = getDiags().getCustomDiagID(
7009           DiagnosticsEngine::Warning,
7010           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7011           "number of times ftrivial-auto-var-init=%1 gets applied.");
7012       getDiags().Report(DiagID)
7013           << StopAfter
7014           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7015                       LangOptions::TrivialAutoVarInitKind::Zero
7016                   ? "zero"
7017                   : "pattern");
7018     }
7019     ++NumAutoVarInit;
7020   }
7021   return false;
7022 }
7023 
7024 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7025                                                     const Decl *D) const {
7026   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7027   // postfix beginning with '.' since the symbol name can be demangled.
7028   if (LangOpts.HIP)
7029     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7030   else
7031     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7032 
7033   // If the CUID is not specified we try to generate a unique postfix.
7034   if (getLangOpts().CUID.empty()) {
7035     SourceManager &SM = getContext().getSourceManager();
7036     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7037     assert(PLoc.isValid() && "Source location is expected to be valid.");
7038 
7039     // Get the hash of the user defined macros.
7040     llvm::MD5 Hash;
7041     llvm::MD5::MD5Result Result;
7042     for (const auto &Arg : PreprocessorOpts.Macros)
7043       Hash.update(Arg.first);
7044     Hash.final(Result);
7045 
7046     // Get the UniqueID for the file containing the decl.
7047     llvm::sys::fs::UniqueID ID;
7048     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7049       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7050       assert(PLoc.isValid() && "Source location is expected to be valid.");
7051       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7052         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7053             << PLoc.getFilename() << EC.message();
7054     }
7055     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7056        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7057   } else {
7058     OS << getContext().getCUIDHash();
7059   }
7060 }
7061 
7062 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7063   assert(DeferredDeclsToEmit.empty() &&
7064          "Should have emitted all decls deferred to emit.");
7065   assert(NewBuilder->DeferredDecls.empty() &&
7066          "Newly created module should not have deferred decls");
7067   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7068 
7069   assert(NewBuilder->DeferredVTables.empty() &&
7070          "Newly created module should not have deferred vtables");
7071   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7072 
7073   assert(NewBuilder->MangledDeclNames.empty() &&
7074          "Newly created module should not have mangled decl names");
7075   assert(NewBuilder->Manglings.empty() &&
7076          "Newly created module should not have manglings");
7077   NewBuilder->Manglings = std::move(Manglings);
7078 
7079   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
7080   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7081 
7082   NewBuilder->TBAA = std::move(TBAA);
7083 
7084   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7085          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7086 
7087   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7088 
7089   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7090 }
7091