xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 5dd34744c5c04fdbbf4d1fb3f00c2502ecc5162f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/Diagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/ConvertUTF.h"
33 #include "llvm/CallingConv.h"
34 #include "llvm/Module.h"
35 #include "llvm/Intrinsics.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/Triple.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 
45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                              llvm::Module &M, const llvm::TargetData &TD,
47                              Diagnostic &diags)
48   : BlockModule(C, M, TD, Types, *this), Context(C),
49     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52     VTables(*this), Runtime(0), ABI(0),
53     CFConstantStringClassRef(0),
54     NSConstantStringClassRef(0),
55     VMContext(M.getContext()) {
56 
57   if (!Features.ObjC1)
58     Runtime = 0;
59   else if (!Features.NeXTRuntime)
60     Runtime = CreateGNUObjCRuntime(*this);
61   else if (Features.ObjCNonFragileABI)
62     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
63   else
64     Runtime = CreateMacObjCRuntime(*this);
65 
66   if (!Features.CPlusPlus)
67     ABI = 0;
68   else createCXXABI();
69 
70   // If debug info generation is enabled, create the CGDebugInfo object.
71   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
72 }
73 
74 CodeGenModule::~CodeGenModule() {
75   delete Runtime;
76   delete ABI;
77   delete DebugInfo;
78 }
79 
80 void CodeGenModule::createObjCRuntime() {
81   if (!Features.NeXTRuntime)
82     Runtime = CreateGNUObjCRuntime(*this);
83   else if (Features.ObjCNonFragileABI)
84     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
85   else
86     Runtime = CreateMacObjCRuntime(*this);
87 }
88 
89 void CodeGenModule::createCXXABI() {
90   if (Context.Target.getCXXABI() == "microsoft")
91     ABI = CreateMicrosoftCXXABI(*this);
92   else
93     ABI = CreateItaniumCXXABI(*this);
94 }
95 
96 void CodeGenModule::Release() {
97   EmitDeferred();
98   EmitCXXGlobalInitFunc();
99   EmitCXXGlobalDtorFunc();
100   if (Runtime)
101     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
102       AddGlobalCtor(ObjCInitFunction);
103   EmitCtorList(GlobalCtors, "llvm.global_ctors");
104   EmitCtorList(GlobalDtors, "llvm.global_dtors");
105   EmitAnnotations();
106   EmitLLVMUsed();
107 }
108 
109 bool CodeGenModule::isTargetDarwin() const {
110   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
111 }
112 
113 /// ErrorUnsupported - Print out an error that codegen doesn't support the
114 /// specified stmt yet.
115 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
116                                      bool OmitOnError) {
117   if (OmitOnError && getDiags().hasErrorOccurred())
118     return;
119   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
120                                                "cannot compile this %0 yet");
121   std::string Msg = Type;
122   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
123     << Msg << S->getSourceRange();
124 }
125 
126 /// ErrorUnsupported - Print out an error that codegen doesn't support the
127 /// specified decl yet.
128 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
129                                      bool OmitOnError) {
130   if (OmitOnError && getDiags().hasErrorOccurred())
131     return;
132   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
133                                                "cannot compile this %0 yet");
134   std::string Msg = Type;
135   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
136 }
137 
138 LangOptions::VisibilityMode
139 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
140   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
141     if (VD->getStorageClass() == VarDecl::PrivateExtern)
142       return LangOptions::Hidden;
143 
144   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
145     switch (attr->getVisibility()) {
146     default: assert(0 && "Unknown visibility!");
147     case VisibilityAttr::DefaultVisibility:
148       return LangOptions::Default;
149     case VisibilityAttr::HiddenVisibility:
150       return LangOptions::Hidden;
151     case VisibilityAttr::ProtectedVisibility:
152       return LangOptions::Protected;
153     }
154   }
155 
156   if (getLangOptions().CPlusPlus) {
157     // Entities subject to an explicit instantiation declaration get default
158     // visibility.
159     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
160       if (Function->getTemplateSpecializationKind()
161                                         == TSK_ExplicitInstantiationDeclaration)
162         return LangOptions::Default;
163     } else if (const ClassTemplateSpecializationDecl *ClassSpec
164                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
165       if (ClassSpec->getSpecializationKind()
166                                         == TSK_ExplicitInstantiationDeclaration)
167         return LangOptions::Default;
168     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
169       if (Record->getTemplateSpecializationKind()
170                                         == TSK_ExplicitInstantiationDeclaration)
171         return LangOptions::Default;
172     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
173       if (Var->isStaticDataMember() &&
174           (Var->getTemplateSpecializationKind()
175                                       == TSK_ExplicitInstantiationDeclaration))
176         return LangOptions::Default;
177     }
178 
179     // If -fvisibility-inlines-hidden was provided, then inline C++ member
180     // functions get "hidden" visibility by default.
181     if (getLangOptions().InlineVisibilityHidden)
182       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
183         if (Method->isInlined())
184           return LangOptions::Hidden;
185   }
186 
187   // This decl should have the same visibility as its parent.
188   if (const DeclContext *DC = D->getDeclContext())
189     return getDeclVisibilityMode(cast<Decl>(DC));
190 
191   return getLangOptions().getVisibilityMode();
192 }
193 
194 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
195                                         const Decl *D) const {
196   // Internal definitions always have default visibility.
197   if (GV->hasLocalLinkage()) {
198     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
199     return;
200   }
201 
202   switch (getDeclVisibilityMode(D)) {
203   default: assert(0 && "Unknown visibility!");
204   case LangOptions::Default:
205     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
206   case LangOptions::Hidden:
207     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
208   case LangOptions::Protected:
209     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
210   }
211 }
212 
213 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) {
214   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
215 
216   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
217     return getMangleContext().mangleCXXCtor(D, GD.getCtorType(),
218                                             Buffer.getBuffer());
219   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
220     return getMangleContext().mangleCXXDtor(D, GD.getDtorType(),
221                                             Buffer.getBuffer());
222 
223   if (!getMangleContext().shouldMangleDeclName(ND)) {
224     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
225     Buffer.setString(ND->getNameAsCString());
226     return;
227   }
228 
229   getMangleContext().mangleName(ND, Buffer.getBuffer());
230 }
231 
232 void CodeGenModule::getMangledName(MangleBuffer &Buffer, const BlockDecl *BD) {
233   getMangleContext().mangleBlock(BD, Buffer.getBuffer());
234 }
235 
236 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
237   return getModule().getNamedValue(Name);
238 }
239 
240 /// AddGlobalCtor - Add a function to the list that will be called before
241 /// main() runs.
242 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
243   // FIXME: Type coercion of void()* types.
244   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
245 }
246 
247 /// AddGlobalDtor - Add a function to the list that will be called
248 /// when the module is unloaded.
249 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
250   // FIXME: Type coercion of void()* types.
251   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
252 }
253 
254 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
255   // Ctor function type is void()*.
256   llvm::FunctionType* CtorFTy =
257     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
258                             std::vector<const llvm::Type*>(),
259                             false);
260   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
261 
262   // Get the type of a ctor entry, { i32, void ()* }.
263   llvm::StructType* CtorStructTy =
264     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
265                           llvm::PointerType::getUnqual(CtorFTy), NULL);
266 
267   // Construct the constructor and destructor arrays.
268   std::vector<llvm::Constant*> Ctors;
269   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
270     std::vector<llvm::Constant*> S;
271     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
272                 I->second, false));
273     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
274     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
275   }
276 
277   if (!Ctors.empty()) {
278     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
279     new llvm::GlobalVariable(TheModule, AT, false,
280                              llvm::GlobalValue::AppendingLinkage,
281                              llvm::ConstantArray::get(AT, Ctors),
282                              GlobalName);
283   }
284 }
285 
286 void CodeGenModule::EmitAnnotations() {
287   if (Annotations.empty())
288     return;
289 
290   // Create a new global variable for the ConstantStruct in the Module.
291   llvm::Constant *Array =
292   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
293                                                 Annotations.size()),
294                            Annotations);
295   llvm::GlobalValue *gv =
296   new llvm::GlobalVariable(TheModule, Array->getType(), false,
297                            llvm::GlobalValue::AppendingLinkage, Array,
298                            "llvm.global.annotations");
299   gv->setSection("llvm.metadata");
300 }
301 
302 static CodeGenModule::GVALinkage
303 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
304                       const LangOptions &Features) {
305   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
306 
307   Linkage L = FD->getLinkage();
308   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
309       FD->getType()->getLinkage() == UniqueExternalLinkage)
310     L = UniqueExternalLinkage;
311 
312   switch (L) {
313   case NoLinkage:
314   case InternalLinkage:
315   case UniqueExternalLinkage:
316     return CodeGenModule::GVA_Internal;
317 
318   case ExternalLinkage:
319     switch (FD->getTemplateSpecializationKind()) {
320     case TSK_Undeclared:
321     case TSK_ExplicitSpecialization:
322       External = CodeGenModule::GVA_StrongExternal;
323       break;
324 
325     case TSK_ExplicitInstantiationDefinition:
326       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
327 
328     case TSK_ExplicitInstantiationDeclaration:
329     case TSK_ImplicitInstantiation:
330       External = CodeGenModule::GVA_TemplateInstantiation;
331       break;
332     }
333   }
334 
335   if (!FD->isInlined())
336     return External;
337 
338   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
339     // GNU or C99 inline semantics. Determine whether this symbol should be
340     // externally visible.
341     if (FD->isInlineDefinitionExternallyVisible())
342       return External;
343 
344     // C99 inline semantics, where the symbol is not externally visible.
345     return CodeGenModule::GVA_C99Inline;
346   }
347 
348   // C++0x [temp.explicit]p9:
349   //   [ Note: The intent is that an inline function that is the subject of
350   //   an explicit instantiation declaration will still be implicitly
351   //   instantiated when used so that the body can be considered for
352   //   inlining, but that no out-of-line copy of the inline function would be
353   //   generated in the translation unit. -- end note ]
354   if (FD->getTemplateSpecializationKind()
355                                        == TSK_ExplicitInstantiationDeclaration)
356     return CodeGenModule::GVA_C99Inline;
357 
358   return CodeGenModule::GVA_CXXInline;
359 }
360 
361 llvm::GlobalValue::LinkageTypes
362 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
363   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
364 
365   if (Linkage == GVA_Internal) {
366     return llvm::Function::InternalLinkage;
367   } else if (D->hasAttr<DLLExportAttr>()) {
368     return llvm::Function::DLLExportLinkage;
369   } else if (D->hasAttr<WeakAttr>()) {
370     return llvm::Function::WeakAnyLinkage;
371   } else if (Linkage == GVA_C99Inline) {
372     // In C99 mode, 'inline' functions are guaranteed to have a strong
373     // definition somewhere else, so we can use available_externally linkage.
374     return llvm::Function::AvailableExternallyLinkage;
375   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
376     // In C++, the compiler has to emit a definition in every translation unit
377     // that references the function.  We should use linkonce_odr because
378     // a) if all references in this translation unit are optimized away, we
379     // don't need to codegen it.  b) if the function persists, it needs to be
380     // merged with other definitions. c) C++ has the ODR, so we know the
381     // definition is dependable.
382     return llvm::Function::LinkOnceODRLinkage;
383   } else if (Linkage == GVA_ExplicitTemplateInstantiation) {
384     // An explicit instantiation of a template has weak linkage, since
385     // explicit instantiations can occur in multiple translation units
386     // and must all be equivalent. However, we are not allowed to
387     // throw away these explicit instantiations.
388     return llvm::Function::WeakODRLinkage;
389   } else {
390     assert(Linkage == GVA_StrongExternal);
391     // Otherwise, we have strong external linkage.
392     return llvm::Function::ExternalLinkage;
393   }
394 }
395 
396 
397 /// SetFunctionDefinitionAttributes - Set attributes for a global.
398 ///
399 /// FIXME: This is currently only done for aliases and functions, but not for
400 /// variables (these details are set in EmitGlobalVarDefinition for variables).
401 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
402                                                     llvm::GlobalValue *GV) {
403   SetCommonAttributes(D, GV);
404 }
405 
406 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
407                                               const CGFunctionInfo &Info,
408                                               llvm::Function *F) {
409   unsigned CallingConv;
410   AttributeListType AttributeList;
411   ConstructAttributeList(Info, D, AttributeList, CallingConv);
412   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
413                                           AttributeList.size()));
414   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
415 }
416 
417 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
418                                                            llvm::Function *F) {
419   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
420     F->addFnAttr(llvm::Attribute::NoUnwind);
421 
422   if (D->hasAttr<AlwaysInlineAttr>())
423     F->addFnAttr(llvm::Attribute::AlwaysInline);
424 
425   if (D->hasAttr<NoInlineAttr>())
426     F->addFnAttr(llvm::Attribute::NoInline);
427 
428   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
429     F->addFnAttr(llvm::Attribute::StackProtect);
430   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
431     F->addFnAttr(llvm::Attribute::StackProtectReq);
432 
433   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
434     unsigned width = Context.Target.getCharWidth();
435     F->setAlignment(AA->getAlignment() / width);
436     while ((AA = AA->getNext<AlignedAttr>()))
437       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
438   }
439   // C++ ABI requires 2-byte alignment for member functions.
440   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
441     F->setAlignment(2);
442 }
443 
444 void CodeGenModule::SetCommonAttributes(const Decl *D,
445                                         llvm::GlobalValue *GV) {
446   setGlobalVisibility(GV, D);
447 
448   if (D->hasAttr<UsedAttr>())
449     AddUsedGlobal(GV);
450 
451   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
452     GV->setSection(SA->getName());
453 
454   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
455 }
456 
457 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
458                                                   llvm::Function *F,
459                                                   const CGFunctionInfo &FI) {
460   SetLLVMFunctionAttributes(D, FI, F);
461   SetLLVMFunctionAttributesForDefinition(D, F);
462 
463   F->setLinkage(llvm::Function::InternalLinkage);
464 
465   SetCommonAttributes(D, F);
466 }
467 
468 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
469                                           llvm::Function *F,
470                                           bool IsIncompleteFunction) {
471   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
472 
473   if (!IsIncompleteFunction)
474     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
475 
476   // Only a few attributes are set on declarations; these may later be
477   // overridden by a definition.
478 
479   if (FD->hasAttr<DLLImportAttr>()) {
480     F->setLinkage(llvm::Function::DLLImportLinkage);
481   } else if (FD->hasAttr<WeakAttr>() ||
482              FD->hasAttr<WeakImportAttr>()) {
483     // "extern_weak" is overloaded in LLVM; we probably should have
484     // separate linkage types for this.
485     F->setLinkage(llvm::Function::ExternalWeakLinkage);
486   } else {
487     F->setLinkage(llvm::Function::ExternalLinkage);
488   }
489 
490   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
491     F->setSection(SA->getName());
492 }
493 
494 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
495   assert(!GV->isDeclaration() &&
496          "Only globals with definition can force usage.");
497   LLVMUsed.push_back(GV);
498 }
499 
500 void CodeGenModule::EmitLLVMUsed() {
501   // Don't create llvm.used if there is no need.
502   if (LLVMUsed.empty())
503     return;
504 
505   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
506 
507   // Convert LLVMUsed to what ConstantArray needs.
508   std::vector<llvm::Constant*> UsedArray;
509   UsedArray.resize(LLVMUsed.size());
510   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
511     UsedArray[i] =
512      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
513                                       i8PTy);
514   }
515 
516   if (UsedArray.empty())
517     return;
518   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
519 
520   llvm::GlobalVariable *GV =
521     new llvm::GlobalVariable(getModule(), ATy, false,
522                              llvm::GlobalValue::AppendingLinkage,
523                              llvm::ConstantArray::get(ATy, UsedArray),
524                              "llvm.used");
525 
526   GV->setSection("llvm.metadata");
527 }
528 
529 void CodeGenModule::EmitDeferred() {
530   // Emit code for any potentially referenced deferred decls.  Since a
531   // previously unused static decl may become used during the generation of code
532   // for a static function, iterate until no  changes are made.
533 
534   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
535     if (!DeferredVTables.empty()) {
536       const CXXRecordDecl *RD = DeferredVTables.back();
537       DeferredVTables.pop_back();
538       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
539       continue;
540     }
541 
542     GlobalDecl D = DeferredDeclsToEmit.back();
543     DeferredDeclsToEmit.pop_back();
544 
545     // Check to see if we've already emitted this.  This is necessary
546     // for a couple of reasons: first, decls can end up in the
547     // deferred-decls queue multiple times, and second, decls can end
548     // up with definitions in unusual ways (e.g. by an extern inline
549     // function acquiring a strong function redefinition).  Just
550     // ignore these cases.
551     //
552     // TODO: That said, looking this up multiple times is very wasteful.
553     MangleBuffer Name;
554     getMangledName(Name, D);
555     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
556     assert(CGRef && "Deferred decl wasn't referenced?");
557 
558     if (!CGRef->isDeclaration())
559       continue;
560 
561     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
562     // purposes an alias counts as a definition.
563     if (isa<llvm::GlobalAlias>(CGRef))
564       continue;
565 
566     // Otherwise, emit the definition and move on to the next one.
567     EmitGlobalDefinition(D);
568   }
569 }
570 
571 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
572 /// annotation information for a given GlobalValue.  The annotation struct is
573 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
574 /// GlobalValue being annotated.  The second field is the constant string
575 /// created from the AnnotateAttr's annotation.  The third field is a constant
576 /// string containing the name of the translation unit.  The fourth field is
577 /// the line number in the file of the annotated value declaration.
578 ///
579 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
580 ///        appears to.
581 ///
582 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
583                                                 const AnnotateAttr *AA,
584                                                 unsigned LineNo) {
585   llvm::Module *M = &getModule();
586 
587   // get [N x i8] constants for the annotation string, and the filename string
588   // which are the 2nd and 3rd elements of the global annotation structure.
589   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
590   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
591                                                   AA->getAnnotation(), true);
592   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
593                                                   M->getModuleIdentifier(),
594                                                   true);
595 
596   // Get the two global values corresponding to the ConstantArrays we just
597   // created to hold the bytes of the strings.
598   llvm::GlobalValue *annoGV =
599     new llvm::GlobalVariable(*M, anno->getType(), false,
600                              llvm::GlobalValue::PrivateLinkage, anno,
601                              GV->getName());
602   // translation unit name string, emitted into the llvm.metadata section.
603   llvm::GlobalValue *unitGV =
604     new llvm::GlobalVariable(*M, unit->getType(), false,
605                              llvm::GlobalValue::PrivateLinkage, unit,
606                              ".str");
607 
608   // Create the ConstantStruct for the global annotation.
609   llvm::Constant *Fields[4] = {
610     llvm::ConstantExpr::getBitCast(GV, SBP),
611     llvm::ConstantExpr::getBitCast(annoGV, SBP),
612     llvm::ConstantExpr::getBitCast(unitGV, SBP),
613     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
614   };
615   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
616 }
617 
618 static CodeGenModule::GVALinkage
619 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
620   // If this is a static data member, compute the kind of template
621   // specialization. Otherwise, this variable is not part of a
622   // template.
623   TemplateSpecializationKind TSK = TSK_Undeclared;
624   if (VD->isStaticDataMember())
625     TSK = VD->getTemplateSpecializationKind();
626 
627   Linkage L = VD->getLinkage();
628   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
629       VD->getType()->getLinkage() == UniqueExternalLinkage)
630     L = UniqueExternalLinkage;
631 
632   switch (L) {
633   case NoLinkage:
634   case InternalLinkage:
635   case UniqueExternalLinkage:
636     return CodeGenModule::GVA_Internal;
637 
638   case ExternalLinkage:
639     switch (TSK) {
640     case TSK_Undeclared:
641     case TSK_ExplicitSpecialization:
642       return CodeGenModule::GVA_StrongExternal;
643 
644     case TSK_ExplicitInstantiationDeclaration:
645       llvm_unreachable("Variable should not be instantiated");
646       // Fall through to treat this like any other instantiation.
647 
648     case TSK_ExplicitInstantiationDefinition:
649       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
650 
651     case TSK_ImplicitInstantiation:
652       return CodeGenModule::GVA_TemplateInstantiation;
653     }
654   }
655 
656   return CodeGenModule::GVA_StrongExternal;
657 }
658 
659 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
660   // Never defer when EmitAllDecls is specified or the decl has
661   // attribute used.
662   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
663     return false;
664 
665   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
666     // Constructors and destructors should never be deferred.
667     if (FD->hasAttr<ConstructorAttr>() ||
668         FD->hasAttr<DestructorAttr>())
669       return false;
670 
671     // The key function for a class must never be deferred.
672     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
673       const CXXRecordDecl *RD = MD->getParent();
674       if (MD->isOutOfLine() && RD->isDynamicClass()) {
675         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
676         if (KeyFunction &&
677             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
678           return false;
679       }
680     }
681 
682     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
683 
684     // static, static inline, always_inline, and extern inline functions can
685     // always be deferred.  Normal inline functions can be deferred in C99/C++.
686     // Implicit template instantiations can also be deferred in C++.
687     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
688         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
689       return true;
690     return false;
691   }
692 
693   const VarDecl *VD = cast<VarDecl>(Global);
694   assert(VD->isFileVarDecl() && "Invalid decl");
695 
696   // We never want to defer structs that have non-trivial constructors or
697   // destructors.
698 
699   // FIXME: Handle references.
700   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
701     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
702       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
703         return false;
704     }
705   }
706 
707   GVALinkage L = GetLinkageForVariable(getContext(), VD);
708   if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
709     if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context)))
710       return true;
711   }
712 
713   return false;
714 }
715 
716 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
717   const AliasAttr *AA = VD->getAttr<AliasAttr>();
718   assert(AA && "No alias?");
719 
720   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
721 
722   // See if there is already something with the target's name in the module.
723   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
724 
725   llvm::Constant *Aliasee;
726   if (isa<llvm::FunctionType>(DeclTy))
727     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
728   else
729     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
730                                     llvm::PointerType::getUnqual(DeclTy), 0);
731   if (!Entry) {
732     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
733     F->setLinkage(llvm::Function::ExternalWeakLinkage);
734     WeakRefReferences.insert(F);
735   }
736 
737   return Aliasee;
738 }
739 
740 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
741   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
742 
743   // Weak references don't produce any output by themselves.
744   if (Global->hasAttr<WeakRefAttr>())
745     return;
746 
747   // If this is an alias definition (which otherwise looks like a declaration)
748   // emit it now.
749   if (Global->hasAttr<AliasAttr>())
750     return EmitAliasDefinition(GD);
751 
752   // Ignore declarations, they will be emitted on their first use.
753   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
754     // Forward declarations are emitted lazily on first use.
755     if (!FD->isThisDeclarationADefinition())
756       return;
757   } else {
758     const VarDecl *VD = cast<VarDecl>(Global);
759     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
760 
761     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
762       return;
763   }
764 
765   // Defer code generation when possible if this is a static definition, inline
766   // function etc.  These we only want to emit if they are used.
767   if (!MayDeferGeneration(Global)) {
768     // Emit the definition if it can't be deferred.
769     EmitGlobalDefinition(GD);
770     return;
771   }
772 
773   // If the value has already been used, add it directly to the
774   // DeferredDeclsToEmit list.
775   MangleBuffer MangledName;
776   getMangledName(MangledName, GD);
777   if (GetGlobalValue(MangledName))
778     DeferredDeclsToEmit.push_back(GD);
779   else {
780     // Otherwise, remember that we saw a deferred decl with this name.  The
781     // first use of the mangled name will cause it to move into
782     // DeferredDeclsToEmit.
783     DeferredDecls[MangledName] = GD;
784   }
785 }
786 
787 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
788   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
789 
790   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
791                                  Context.getSourceManager(),
792                                  "Generating code for declaration");
793 
794   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
795     if (Method->isVirtual())
796       getVTables().EmitThunks(GD);
797 
798   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
799     return EmitCXXConstructor(CD, GD.getCtorType());
800 
801   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
802     return EmitCXXDestructor(DD, GD.getDtorType());
803 
804   if (isa<FunctionDecl>(D))
805     return EmitGlobalFunctionDefinition(GD);
806 
807   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
808     return EmitGlobalVarDefinition(VD);
809 
810   assert(0 && "Invalid argument to EmitGlobalDefinition()");
811 }
812 
813 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
814 /// module, create and return an llvm Function with the specified type. If there
815 /// is something in the module with the specified name, return it potentially
816 /// bitcasted to the right type.
817 ///
818 /// If D is non-null, it specifies a decl that correspond to this.  This is used
819 /// to set the attributes on the function when it is first created.
820 llvm::Constant *
821 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
822                                        const llvm::Type *Ty,
823                                        GlobalDecl D) {
824   // Lookup the entry, lazily creating it if necessary.
825   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
826   if (Entry) {
827     if (WeakRefReferences.count(Entry)) {
828       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
829       if (FD && !FD->hasAttr<WeakAttr>())
830         Entry->setLinkage(llvm::Function::ExternalLinkage);
831 
832       WeakRefReferences.erase(Entry);
833     }
834 
835     if (Entry->getType()->getElementType() == Ty)
836       return Entry;
837 
838     // Make sure the result is of the correct type.
839     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
840     return llvm::ConstantExpr::getBitCast(Entry, PTy);
841   }
842 
843   // This function doesn't have a complete type (for example, the return
844   // type is an incomplete struct). Use a fake type instead, and make
845   // sure not to try to set attributes.
846   bool IsIncompleteFunction = false;
847 
848   const llvm::FunctionType *FTy;
849   if (isa<llvm::FunctionType>(Ty)) {
850     FTy = cast<llvm::FunctionType>(Ty);
851   } else {
852     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
853                                   std::vector<const llvm::Type*>(), false);
854     IsIncompleteFunction = true;
855   }
856   llvm::Function *F = llvm::Function::Create(FTy,
857                                              llvm::Function::ExternalLinkage,
858                                              MangledName, &getModule());
859   assert(F->getName() == MangledName && "name was uniqued!");
860   if (D.getDecl())
861     SetFunctionAttributes(D, F, IsIncompleteFunction);
862 
863   // This is the first use or definition of a mangled name.  If there is a
864   // deferred decl with this name, remember that we need to emit it at the end
865   // of the file.
866   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
867   if (DDI != DeferredDecls.end()) {
868     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
869     // list, and remove it from DeferredDecls (since we don't need it anymore).
870     DeferredDeclsToEmit.push_back(DDI->second);
871     DeferredDecls.erase(DDI);
872   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
873     // If this the first reference to a C++ inline function in a class, queue up
874     // the deferred function body for emission.  These are not seen as
875     // top-level declarations.
876     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
877       DeferredDeclsToEmit.push_back(D);
878     // A called constructor which has no definition or declaration need be
879     // synthesized.
880     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
881       if (CD->isImplicit()) {
882         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
883         DeferredDeclsToEmit.push_back(D);
884       }
885     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
886       if (DD->isImplicit()) {
887         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
888         DeferredDeclsToEmit.push_back(D);
889       }
890     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
891       if (MD->isCopyAssignment() && MD->isImplicit()) {
892         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
893         DeferredDeclsToEmit.push_back(D);
894       }
895     }
896   }
897 
898   // Make sure the result is of the requested type.
899   if (!IsIncompleteFunction) {
900     assert(F->getType()->getElementType() == Ty);
901     return F;
902   }
903 
904   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
905   return llvm::ConstantExpr::getBitCast(F, PTy);
906 }
907 
908 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
909 /// non-null, then this function will use the specified type if it has to
910 /// create it (this occurs when we see a definition of the function).
911 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
912                                                  const llvm::Type *Ty) {
913   // If there was no specific requested type, just convert it now.
914   if (!Ty)
915     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
916   MangleBuffer MangledName;
917   getMangledName(MangledName, GD);
918   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
919 }
920 
921 /// CreateRuntimeFunction - Create a new runtime function with the specified
922 /// type and name.
923 llvm::Constant *
924 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
925                                      llvm::StringRef Name) {
926   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
927 }
928 
929 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
930   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
931     return false;
932   if (Context.getLangOptions().CPlusPlus &&
933       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
934     // FIXME: We should do something fancier here!
935     return false;
936   }
937   return true;
938 }
939 
940 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
941 /// create and return an llvm GlobalVariable with the specified type.  If there
942 /// is something in the module with the specified name, return it potentially
943 /// bitcasted to the right type.
944 ///
945 /// If D is non-null, it specifies a decl that correspond to this.  This is used
946 /// to set the attributes on the global when it is first created.
947 llvm::Constant *
948 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
949                                      const llvm::PointerType *Ty,
950                                      const VarDecl *D) {
951   // Lookup the entry, lazily creating it if necessary.
952   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
953   if (Entry) {
954     if (WeakRefReferences.count(Entry)) {
955       if (D && !D->hasAttr<WeakAttr>())
956         Entry->setLinkage(llvm::Function::ExternalLinkage);
957 
958       WeakRefReferences.erase(Entry);
959     }
960 
961     if (Entry->getType() == Ty)
962       return Entry;
963 
964     // Make sure the result is of the correct type.
965     return llvm::ConstantExpr::getBitCast(Entry, Ty);
966   }
967 
968   // This is the first use or definition of a mangled name.  If there is a
969   // deferred decl with this name, remember that we need to emit it at the end
970   // of the file.
971   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
972   if (DDI != DeferredDecls.end()) {
973     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
974     // list, and remove it from DeferredDecls (since we don't need it anymore).
975     DeferredDeclsToEmit.push_back(DDI->second);
976     DeferredDecls.erase(DDI);
977   }
978 
979   llvm::GlobalVariable *GV =
980     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
981                              llvm::GlobalValue::ExternalLinkage,
982                              0, MangledName, 0,
983                              false, Ty->getAddressSpace());
984 
985   // Handle things which are present even on external declarations.
986   if (D) {
987     // FIXME: This code is overly simple and should be merged with other global
988     // handling.
989     GV->setConstant(DeclIsConstantGlobal(Context, D));
990 
991     // FIXME: Merge with other attribute handling code.
992     if (D->getStorageClass() == VarDecl::PrivateExtern)
993       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
994 
995     if (D->hasAttr<WeakAttr>() ||
996         D->hasAttr<WeakImportAttr>())
997       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
998 
999     GV->setThreadLocal(D->isThreadSpecified());
1000   }
1001 
1002   return GV;
1003 }
1004 
1005 
1006 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1007 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1008 /// then it will be greated with the specified type instead of whatever the
1009 /// normal requested type would be.
1010 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1011                                                   const llvm::Type *Ty) {
1012   assert(D->hasGlobalStorage() && "Not a global variable");
1013   QualType ASTTy = D->getType();
1014   if (Ty == 0)
1015     Ty = getTypes().ConvertTypeForMem(ASTTy);
1016 
1017   const llvm::PointerType *PTy =
1018     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1019 
1020   MangleBuffer MangledName;
1021   getMangledName(MangledName, D);
1022   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1023 }
1024 
1025 /// CreateRuntimeVariable - Create a new runtime global variable with the
1026 /// specified type and name.
1027 llvm::Constant *
1028 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1029                                      llvm::StringRef Name) {
1030   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1031 }
1032 
1033 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1034   assert(!D->getInit() && "Cannot emit definite definitions here!");
1035 
1036   if (MayDeferGeneration(D)) {
1037     // If we have not seen a reference to this variable yet, place it
1038     // into the deferred declarations table to be emitted if needed
1039     // later.
1040     MangleBuffer MangledName;
1041     getMangledName(MangledName, D);
1042     if (!GetGlobalValue(MangledName)) {
1043       DeferredDecls[MangledName] = D;
1044       return;
1045     }
1046   }
1047 
1048   // The tentative definition is the only definition.
1049   EmitGlobalVarDefinition(D);
1050 }
1051 
1052 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1053   if (DefinitionRequired)
1054     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1055 }
1056 
1057 llvm::GlobalVariable::LinkageTypes
1058 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1059   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1060     return llvm::GlobalVariable::InternalLinkage;
1061 
1062   if (const CXXMethodDecl *KeyFunction
1063                                     = RD->getASTContext().getKeyFunction(RD)) {
1064     // If this class has a key function, use that to determine the linkage of
1065     // the vtable.
1066     const FunctionDecl *Def = 0;
1067     if (KeyFunction->getBody(Def))
1068       KeyFunction = cast<CXXMethodDecl>(Def);
1069 
1070     switch (KeyFunction->getTemplateSpecializationKind()) {
1071       case TSK_Undeclared:
1072       case TSK_ExplicitSpecialization:
1073         if (KeyFunction->isInlined())
1074           return llvm::GlobalVariable::WeakODRLinkage;
1075 
1076         return llvm::GlobalVariable::ExternalLinkage;
1077 
1078       case TSK_ImplicitInstantiation:
1079       case TSK_ExplicitInstantiationDefinition:
1080         return llvm::GlobalVariable::WeakODRLinkage;
1081 
1082       case TSK_ExplicitInstantiationDeclaration:
1083         // FIXME: Use available_externally linkage. However, this currently
1084         // breaks LLVM's build due to undefined symbols.
1085         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1086         return llvm::GlobalVariable::WeakODRLinkage;
1087     }
1088   }
1089 
1090   switch (RD->getTemplateSpecializationKind()) {
1091   case TSK_Undeclared:
1092   case TSK_ExplicitSpecialization:
1093   case TSK_ImplicitInstantiation:
1094   case TSK_ExplicitInstantiationDefinition:
1095     return llvm::GlobalVariable::WeakODRLinkage;
1096 
1097   case TSK_ExplicitInstantiationDeclaration:
1098     // FIXME: Use available_externally linkage. However, this currently
1099     // breaks LLVM's build due to undefined symbols.
1100     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1101     return llvm::GlobalVariable::WeakODRLinkage;
1102   }
1103 
1104   // Silence GCC warning.
1105   return llvm::GlobalVariable::WeakODRLinkage;
1106 }
1107 
1108 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1109     return CharUnits::fromQuantity(
1110       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1111 }
1112 
1113 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1114   llvm::Constant *Init = 0;
1115   QualType ASTTy = D->getType();
1116   bool NonConstInit = false;
1117 
1118   const Expr *InitExpr = D->getAnyInitializer();
1119 
1120   if (!InitExpr) {
1121     // This is a tentative definition; tentative definitions are
1122     // implicitly initialized with { 0 }.
1123     //
1124     // Note that tentative definitions are only emitted at the end of
1125     // a translation unit, so they should never have incomplete
1126     // type. In addition, EmitTentativeDefinition makes sure that we
1127     // never attempt to emit a tentative definition if a real one
1128     // exists. A use may still exists, however, so we still may need
1129     // to do a RAUW.
1130     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1131     Init = EmitNullConstant(D->getType());
1132   } else {
1133     Init = EmitConstantExpr(InitExpr, D->getType());
1134     if (!Init) {
1135       QualType T = InitExpr->getType();
1136       if (D->getType()->isReferenceType())
1137         T = D->getType();
1138 
1139       if (getLangOptions().CPlusPlus) {
1140         EmitCXXGlobalVarDeclInitFunc(D);
1141         Init = EmitNullConstant(T);
1142         NonConstInit = true;
1143       } else {
1144         ErrorUnsupported(D, "static initializer");
1145         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1146       }
1147     }
1148   }
1149 
1150   const llvm::Type* InitType = Init->getType();
1151   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1152 
1153   // Strip off a bitcast if we got one back.
1154   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1155     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1156            // all zero index gep.
1157            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1158     Entry = CE->getOperand(0);
1159   }
1160 
1161   // Entry is now either a Function or GlobalVariable.
1162   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1163 
1164   // We have a definition after a declaration with the wrong type.
1165   // We must make a new GlobalVariable* and update everything that used OldGV
1166   // (a declaration or tentative definition) with the new GlobalVariable*
1167   // (which will be a definition).
1168   //
1169   // This happens if there is a prototype for a global (e.g.
1170   // "extern int x[];") and then a definition of a different type (e.g.
1171   // "int x[10];"). This also happens when an initializer has a different type
1172   // from the type of the global (this happens with unions).
1173   if (GV == 0 ||
1174       GV->getType()->getElementType() != InitType ||
1175       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1176 
1177     // Move the old entry aside so that we'll create a new one.
1178     Entry->setName(llvm::StringRef());
1179 
1180     // Make a new global with the correct type, this is now guaranteed to work.
1181     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1182 
1183     // Replace all uses of the old global with the new global
1184     llvm::Constant *NewPtrForOldDecl =
1185         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1186     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1187 
1188     // Erase the old global, since it is no longer used.
1189     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1190   }
1191 
1192   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1193     SourceManager &SM = Context.getSourceManager();
1194     AddAnnotation(EmitAnnotateAttr(GV, AA,
1195                               SM.getInstantiationLineNumber(D->getLocation())));
1196   }
1197 
1198   GV->setInitializer(Init);
1199 
1200   // If it is safe to mark the global 'constant', do so now.
1201   GV->setConstant(false);
1202   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1203     GV->setConstant(true);
1204 
1205   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1206 
1207   // Set the llvm linkage type as appropriate.
1208   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1209   if (Linkage == GVA_Internal)
1210     GV->setLinkage(llvm::Function::InternalLinkage);
1211   else if (D->hasAttr<DLLImportAttr>())
1212     GV->setLinkage(llvm::Function::DLLImportLinkage);
1213   else if (D->hasAttr<DLLExportAttr>())
1214     GV->setLinkage(llvm::Function::DLLExportLinkage);
1215   else if (D->hasAttr<WeakAttr>()) {
1216     if (GV->isConstant())
1217       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1218     else
1219       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1220   } else if (Linkage == GVA_TemplateInstantiation ||
1221              Linkage == GVA_ExplicitTemplateInstantiation)
1222     // FIXME: It seems like we can provide more specific linkage here
1223     // (LinkOnceODR, WeakODR).
1224     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1225   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1226            !D->hasExternalStorage() && !D->getInit() &&
1227            !D->getAttr<SectionAttr>()) {
1228     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1229     // common vars aren't constant even if declared const.
1230     GV->setConstant(false);
1231   } else
1232     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1233 
1234   SetCommonAttributes(D, GV);
1235 
1236   // Emit global variable debug information.
1237   if (CGDebugInfo *DI = getDebugInfo()) {
1238     DI->setLocation(D->getLocation());
1239     DI->EmitGlobalVariable(GV, D);
1240   }
1241 }
1242 
1243 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1244 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1245 /// existing call uses of the old function in the module, this adjusts them to
1246 /// call the new function directly.
1247 ///
1248 /// This is not just a cleanup: the always_inline pass requires direct calls to
1249 /// functions to be able to inline them.  If there is a bitcast in the way, it
1250 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1251 /// run at -O0.
1252 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1253                                                       llvm::Function *NewFn) {
1254   // If we're redefining a global as a function, don't transform it.
1255   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1256   if (OldFn == 0) return;
1257 
1258   const llvm::Type *NewRetTy = NewFn->getReturnType();
1259   llvm::SmallVector<llvm::Value*, 4> ArgList;
1260 
1261   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1262        UI != E; ) {
1263     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1264     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1265     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1266     llvm::CallSite CS(CI);
1267     if (!CI || !CS.isCallee(I)) continue;
1268 
1269     // If the return types don't match exactly, and if the call isn't dead, then
1270     // we can't transform this call.
1271     if (CI->getType() != NewRetTy && !CI->use_empty())
1272       continue;
1273 
1274     // If the function was passed too few arguments, don't transform.  If extra
1275     // arguments were passed, we silently drop them.  If any of the types
1276     // mismatch, we don't transform.
1277     unsigned ArgNo = 0;
1278     bool DontTransform = false;
1279     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1280          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1281       if (CS.arg_size() == ArgNo ||
1282           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1283         DontTransform = true;
1284         break;
1285       }
1286     }
1287     if (DontTransform)
1288       continue;
1289 
1290     // Okay, we can transform this.  Create the new call instruction and copy
1291     // over the required information.
1292     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1293     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1294                                                      ArgList.end(), "", CI);
1295     ArgList.clear();
1296     if (!NewCall->getType()->isVoidTy())
1297       NewCall->takeName(CI);
1298     NewCall->setAttributes(CI->getAttributes());
1299     NewCall->setCallingConv(CI->getCallingConv());
1300 
1301     // Finally, remove the old call, replacing any uses with the new one.
1302     if (!CI->use_empty())
1303       CI->replaceAllUsesWith(NewCall);
1304 
1305     // Copy debug location attached to CI.
1306     if (!CI->getDebugLoc().isUnknown())
1307       NewCall->setDebugLoc(CI->getDebugLoc());
1308     CI->eraseFromParent();
1309   }
1310 }
1311 
1312 
1313 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1314   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1315   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1316   getMangleContext().mangleInitDiscriminator();
1317   // Get or create the prototype for the function.
1318   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1319 
1320   // Strip off a bitcast if we got one back.
1321   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1322     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1323     Entry = CE->getOperand(0);
1324   }
1325 
1326 
1327   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1328     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1329 
1330     // If the types mismatch then we have to rewrite the definition.
1331     assert(OldFn->isDeclaration() &&
1332            "Shouldn't replace non-declaration");
1333 
1334     // F is the Function* for the one with the wrong type, we must make a new
1335     // Function* and update everything that used F (a declaration) with the new
1336     // Function* (which will be a definition).
1337     //
1338     // This happens if there is a prototype for a function
1339     // (e.g. "int f()") and then a definition of a different type
1340     // (e.g. "int f(int x)").  Move the old function aside so that it
1341     // doesn't interfere with GetAddrOfFunction.
1342     OldFn->setName(llvm::StringRef());
1343     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1344 
1345     // If this is an implementation of a function without a prototype, try to
1346     // replace any existing uses of the function (which may be calls) with uses
1347     // of the new function
1348     if (D->getType()->isFunctionNoProtoType()) {
1349       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1350       OldFn->removeDeadConstantUsers();
1351     }
1352 
1353     // Replace uses of F with the Function we will endow with a body.
1354     if (!Entry->use_empty()) {
1355       llvm::Constant *NewPtrForOldDecl =
1356         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1357       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1358     }
1359 
1360     // Ok, delete the old function now, which is dead.
1361     OldFn->eraseFromParent();
1362 
1363     Entry = NewFn;
1364   }
1365 
1366   llvm::Function *Fn = cast<llvm::Function>(Entry);
1367   setFunctionLinkage(D, Fn);
1368 
1369   CodeGenFunction(*this).GenerateCode(D, Fn);
1370 
1371   SetFunctionDefinitionAttributes(D, Fn);
1372   SetLLVMFunctionAttributesForDefinition(D, Fn);
1373 
1374   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1375     AddGlobalCtor(Fn, CA->getPriority());
1376   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1377     AddGlobalDtor(Fn, DA->getPriority());
1378 }
1379 
1380 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1381   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1382   const AliasAttr *AA = D->getAttr<AliasAttr>();
1383   assert(AA && "Not an alias?");
1384 
1385   MangleBuffer MangledName;
1386   getMangledName(MangledName, GD);
1387 
1388   // If there is a definition in the module, then it wins over the alias.
1389   // This is dubious, but allow it to be safe.  Just ignore the alias.
1390   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1391   if (Entry && !Entry->isDeclaration())
1392     return;
1393 
1394   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1395 
1396   // Create a reference to the named value.  This ensures that it is emitted
1397   // if a deferred decl.
1398   llvm::Constant *Aliasee;
1399   if (isa<llvm::FunctionType>(DeclTy))
1400     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1401   else
1402     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1403                                     llvm::PointerType::getUnqual(DeclTy), 0);
1404 
1405   // Create the new alias itself, but don't set a name yet.
1406   llvm::GlobalValue *GA =
1407     new llvm::GlobalAlias(Aliasee->getType(),
1408                           llvm::Function::ExternalLinkage,
1409                           "", Aliasee, &getModule());
1410 
1411   if (Entry) {
1412     assert(Entry->isDeclaration());
1413 
1414     // If there is a declaration in the module, then we had an extern followed
1415     // by the alias, as in:
1416     //   extern int test6();
1417     //   ...
1418     //   int test6() __attribute__((alias("test7")));
1419     //
1420     // Remove it and replace uses of it with the alias.
1421     GA->takeName(Entry);
1422 
1423     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1424                                                           Entry->getType()));
1425     Entry->eraseFromParent();
1426   } else {
1427     GA->setName(MangledName.getString());
1428   }
1429 
1430   // Set attributes which are particular to an alias; this is a
1431   // specialization of the attributes which may be set on a global
1432   // variable/function.
1433   if (D->hasAttr<DLLExportAttr>()) {
1434     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1435       // The dllexport attribute is ignored for undefined symbols.
1436       if (FD->getBody())
1437         GA->setLinkage(llvm::Function::DLLExportLinkage);
1438     } else {
1439       GA->setLinkage(llvm::Function::DLLExportLinkage);
1440     }
1441   } else if (D->hasAttr<WeakAttr>() ||
1442              D->hasAttr<WeakRefAttr>() ||
1443              D->hasAttr<WeakImportAttr>()) {
1444     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1445   }
1446 
1447   SetCommonAttributes(D, GA);
1448 }
1449 
1450 /// getBuiltinLibFunction - Given a builtin id for a function like
1451 /// "__builtin_fabsf", return a Function* for "fabsf".
1452 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1453                                                   unsigned BuiltinID) {
1454   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1455           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1456          "isn't a lib fn");
1457 
1458   // Get the name, skip over the __builtin_ prefix (if necessary).
1459   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1460   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1461     Name += 10;
1462 
1463   const llvm::FunctionType *Ty =
1464     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1465 
1466   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1467 }
1468 
1469 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1470                                             unsigned NumTys) {
1471   return llvm::Intrinsic::getDeclaration(&getModule(),
1472                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1473 }
1474 
1475 
1476 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1477                                            const llvm::Type *SrcType,
1478                                            const llvm::Type *SizeType) {
1479   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1480   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1481 }
1482 
1483 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1484                                             const llvm::Type *SrcType,
1485                                             const llvm::Type *SizeType) {
1486   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1487   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1488 }
1489 
1490 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1491                                            const llvm::Type *SizeType) {
1492   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1493   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1494 }
1495 
1496 static llvm::StringMapEntry<llvm::Constant*> &
1497 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1498                          const StringLiteral *Literal,
1499                          bool TargetIsLSB,
1500                          bool &IsUTF16,
1501                          unsigned &StringLength) {
1502   unsigned NumBytes = Literal->getByteLength();
1503 
1504   // Check for simple case.
1505   if (!Literal->containsNonAsciiOrNull()) {
1506     StringLength = NumBytes;
1507     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1508                                                 StringLength));
1509   }
1510 
1511   // Otherwise, convert the UTF8 literals into a byte string.
1512   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1513   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1514   UTF16 *ToPtr = &ToBuf[0];
1515 
1516   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1517                                                &ToPtr, ToPtr + NumBytes,
1518                                                strictConversion);
1519 
1520   // Check for conversion failure.
1521   if (Result != conversionOK) {
1522     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1523     // this duplicate code.
1524     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1525     StringLength = NumBytes;
1526     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1527                                                 StringLength));
1528   }
1529 
1530   // ConvertUTF8toUTF16 returns the length in ToPtr.
1531   StringLength = ToPtr - &ToBuf[0];
1532 
1533   // Render the UTF-16 string into a byte array and convert to the target byte
1534   // order.
1535   //
1536   // FIXME: This isn't something we should need to do here.
1537   llvm::SmallString<128> AsBytes;
1538   AsBytes.reserve(StringLength * 2);
1539   for (unsigned i = 0; i != StringLength; ++i) {
1540     unsigned short Val = ToBuf[i];
1541     if (TargetIsLSB) {
1542       AsBytes.push_back(Val & 0xFF);
1543       AsBytes.push_back(Val >> 8);
1544     } else {
1545       AsBytes.push_back(Val >> 8);
1546       AsBytes.push_back(Val & 0xFF);
1547     }
1548   }
1549   // Append one extra null character, the second is automatically added by our
1550   // caller.
1551   AsBytes.push_back(0);
1552 
1553   IsUTF16 = true;
1554   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1555 }
1556 
1557 llvm::Constant *
1558 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1559   unsigned StringLength = 0;
1560   bool isUTF16 = false;
1561   llvm::StringMapEntry<llvm::Constant*> &Entry =
1562     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1563                              getTargetData().isLittleEndian(),
1564                              isUTF16, StringLength);
1565 
1566   if (llvm::Constant *C = Entry.getValue())
1567     return C;
1568 
1569   llvm::Constant *Zero =
1570       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1571   llvm::Constant *Zeros[] = { Zero, Zero };
1572 
1573   // If we don't already have it, get __CFConstantStringClassReference.
1574   if (!CFConstantStringClassRef) {
1575     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1576     Ty = llvm::ArrayType::get(Ty, 0);
1577     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1578                                            "__CFConstantStringClassReference");
1579     // Decay array -> ptr
1580     CFConstantStringClassRef =
1581       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1582   }
1583 
1584   QualType CFTy = getContext().getCFConstantStringType();
1585 
1586   const llvm::StructType *STy =
1587     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1588 
1589   std::vector<llvm::Constant*> Fields(4);
1590 
1591   // Class pointer.
1592   Fields[0] = CFConstantStringClassRef;
1593 
1594   // Flags.
1595   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1596   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1597     llvm::ConstantInt::get(Ty, 0x07C8);
1598 
1599   // String pointer.
1600   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1601 
1602   llvm::GlobalValue::LinkageTypes Linkage;
1603   bool isConstant;
1604   if (isUTF16) {
1605     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1606     Linkage = llvm::GlobalValue::InternalLinkage;
1607     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1608     // does make plain ascii ones writable.
1609     isConstant = true;
1610   } else {
1611     Linkage = llvm::GlobalValue::PrivateLinkage;
1612     isConstant = !Features.WritableStrings;
1613   }
1614 
1615   llvm::GlobalVariable *GV =
1616     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1617                              ".str");
1618   if (isUTF16) {
1619     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1620     GV->setAlignment(Align.getQuantity());
1621   }
1622   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1623 
1624   // String length.
1625   Ty = getTypes().ConvertType(getContext().LongTy);
1626   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1627 
1628   // The struct.
1629   C = llvm::ConstantStruct::get(STy, Fields);
1630   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1631                                 llvm::GlobalVariable::PrivateLinkage, C,
1632                                 "_unnamed_cfstring_");
1633   if (const char *Sect = getContext().Target.getCFStringSection())
1634     GV->setSection(Sect);
1635   Entry.setValue(GV);
1636 
1637   return GV;
1638 }
1639 
1640 llvm::Constant *
1641 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1642   unsigned StringLength = 0;
1643   bool isUTF16 = false;
1644   llvm::StringMapEntry<llvm::Constant*> &Entry =
1645     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1646                              getTargetData().isLittleEndian(),
1647                              isUTF16, StringLength);
1648 
1649   if (llvm::Constant *C = Entry.getValue())
1650     return C;
1651 
1652   llvm::Constant *Zero =
1653   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1654   llvm::Constant *Zeros[] = { Zero, Zero };
1655 
1656   // If we don't already have it, get _NSConstantStringClassReference.
1657   if (!NSConstantStringClassRef) {
1658     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1659     Ty = llvm::ArrayType::get(Ty, 0);
1660     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1661                                         Features.ObjCNonFragileABI ?
1662                                         "OBJC_CLASS_$_NSConstantString" :
1663                                         "_NSConstantStringClassReference");
1664     // Decay array -> ptr
1665     NSConstantStringClassRef =
1666       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1667   }
1668 
1669   QualType NSTy = getContext().getNSConstantStringType();
1670 
1671   const llvm::StructType *STy =
1672   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1673 
1674   std::vector<llvm::Constant*> Fields(3);
1675 
1676   // Class pointer.
1677   Fields[0] = NSConstantStringClassRef;
1678 
1679   // String pointer.
1680   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1681 
1682   llvm::GlobalValue::LinkageTypes Linkage;
1683   bool isConstant;
1684   if (isUTF16) {
1685     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1686     Linkage = llvm::GlobalValue::InternalLinkage;
1687     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1688     // does make plain ascii ones writable.
1689     isConstant = true;
1690   } else {
1691     Linkage = llvm::GlobalValue::PrivateLinkage;
1692     isConstant = !Features.WritableStrings;
1693   }
1694 
1695   llvm::GlobalVariable *GV =
1696   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1697                            ".str");
1698   if (isUTF16) {
1699     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1700     GV->setAlignment(Align.getQuantity());
1701   }
1702   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1703 
1704   // String length.
1705   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1706   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1707 
1708   // The struct.
1709   C = llvm::ConstantStruct::get(STy, Fields);
1710   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1711                                 llvm::GlobalVariable::PrivateLinkage, C,
1712                                 "_unnamed_nsstring_");
1713   // FIXME. Fix section.
1714   if (const char *Sect =
1715         Features.ObjCNonFragileABI
1716           ? getContext().Target.getNSStringNonFragileABISection()
1717           : getContext().Target.getNSStringSection())
1718     GV->setSection(Sect);
1719   Entry.setValue(GV);
1720 
1721   return GV;
1722 }
1723 
1724 /// GetStringForStringLiteral - Return the appropriate bytes for a
1725 /// string literal, properly padded to match the literal type.
1726 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1727   const char *StrData = E->getStrData();
1728   unsigned Len = E->getByteLength();
1729 
1730   const ConstantArrayType *CAT =
1731     getContext().getAsConstantArrayType(E->getType());
1732   assert(CAT && "String isn't pointer or array!");
1733 
1734   // Resize the string to the right size.
1735   std::string Str(StrData, StrData+Len);
1736   uint64_t RealLen = CAT->getSize().getZExtValue();
1737 
1738   if (E->isWide())
1739     RealLen *= getContext().Target.getWCharWidth()/8;
1740 
1741   Str.resize(RealLen, '\0');
1742 
1743   return Str;
1744 }
1745 
1746 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1747 /// constant array for the given string literal.
1748 llvm::Constant *
1749 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1750   // FIXME: This can be more efficient.
1751   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1752   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1753   if (S->isWide()) {
1754     llvm::Type *DestTy =
1755         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1756     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1757   }
1758   return C;
1759 }
1760 
1761 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1762 /// array for the given ObjCEncodeExpr node.
1763 llvm::Constant *
1764 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1765   std::string Str;
1766   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1767 
1768   return GetAddrOfConstantCString(Str);
1769 }
1770 
1771 
1772 /// GenerateWritableString -- Creates storage for a string literal.
1773 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1774                                              bool constant,
1775                                              CodeGenModule &CGM,
1776                                              const char *GlobalName) {
1777   // Create Constant for this string literal. Don't add a '\0'.
1778   llvm::Constant *C =
1779       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1780 
1781   // Create a global variable for this string
1782   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1783                                   llvm::GlobalValue::PrivateLinkage,
1784                                   C, GlobalName);
1785 }
1786 
1787 /// GetAddrOfConstantString - Returns a pointer to a character array
1788 /// containing the literal. This contents are exactly that of the
1789 /// given string, i.e. it will not be null terminated automatically;
1790 /// see GetAddrOfConstantCString. Note that whether the result is
1791 /// actually a pointer to an LLVM constant depends on
1792 /// Feature.WriteableStrings.
1793 ///
1794 /// The result has pointer to array type.
1795 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1796                                                        const char *GlobalName) {
1797   bool IsConstant = !Features.WritableStrings;
1798 
1799   // Get the default prefix if a name wasn't specified.
1800   if (!GlobalName)
1801     GlobalName = ".str";
1802 
1803   // Don't share any string literals if strings aren't constant.
1804   if (!IsConstant)
1805     return GenerateStringLiteral(str, false, *this, GlobalName);
1806 
1807   llvm::StringMapEntry<llvm::Constant *> &Entry =
1808     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1809 
1810   if (Entry.getValue())
1811     return Entry.getValue();
1812 
1813   // Create a global variable for this.
1814   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1815   Entry.setValue(C);
1816   return C;
1817 }
1818 
1819 /// GetAddrOfConstantCString - Returns a pointer to a character
1820 /// array containing the literal and a terminating '\-'
1821 /// character. The result has pointer to array type.
1822 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1823                                                         const char *GlobalName){
1824   return GetAddrOfConstantString(str + '\0', GlobalName);
1825 }
1826 
1827 /// EmitObjCPropertyImplementations - Emit information for synthesized
1828 /// properties for an implementation.
1829 void CodeGenModule::EmitObjCPropertyImplementations(const
1830                                                     ObjCImplementationDecl *D) {
1831   for (ObjCImplementationDecl::propimpl_iterator
1832          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1833     ObjCPropertyImplDecl *PID = *i;
1834 
1835     // Dynamic is just for type-checking.
1836     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1837       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1838 
1839       // Determine which methods need to be implemented, some may have
1840       // been overridden. Note that ::isSynthesized is not the method
1841       // we want, that just indicates if the decl came from a
1842       // property. What we want to know is if the method is defined in
1843       // this implementation.
1844       if (!D->getInstanceMethod(PD->getGetterName()))
1845         CodeGenFunction(*this).GenerateObjCGetter(
1846                                  const_cast<ObjCImplementationDecl *>(D), PID);
1847       if (!PD->isReadOnly() &&
1848           !D->getInstanceMethod(PD->getSetterName()))
1849         CodeGenFunction(*this).GenerateObjCSetter(
1850                                  const_cast<ObjCImplementationDecl *>(D), PID);
1851     }
1852   }
1853 }
1854 
1855 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1856 /// for an implementation.
1857 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1858   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1859     return;
1860   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1861   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1862   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1863   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1864   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1865                                                   D->getLocation(),
1866                                                   D->getLocation(), cxxSelector,
1867                                                   getContext().VoidTy, 0,
1868                                                   DC, true, false, true,
1869                                                   ObjCMethodDecl::Required);
1870   D->addInstanceMethod(DTORMethod);
1871   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1872 
1873   II = &getContext().Idents.get(".cxx_construct");
1874   cxxSelector = getContext().Selectors.getSelector(0, &II);
1875   // The constructor returns 'self'.
1876   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1877                                                 D->getLocation(),
1878                                                 D->getLocation(), cxxSelector,
1879                                                 getContext().getObjCIdType(), 0,
1880                                                 DC, true, false, true,
1881                                                 ObjCMethodDecl::Required);
1882   D->addInstanceMethod(CTORMethod);
1883   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1884 
1885 
1886 }
1887 
1888 /// EmitNamespace - Emit all declarations in a namespace.
1889 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1890   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1891        I != E; ++I)
1892     EmitTopLevelDecl(*I);
1893 }
1894 
1895 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1896 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1897   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1898       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1899     ErrorUnsupported(LSD, "linkage spec");
1900     return;
1901   }
1902 
1903   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1904        I != E; ++I)
1905     EmitTopLevelDecl(*I);
1906 }
1907 
1908 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1909 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1910   // If an error has occurred, stop code generation, but continue
1911   // parsing and semantic analysis (to ensure all warnings and errors
1912   // are emitted).
1913   if (Diags.hasErrorOccurred())
1914     return;
1915 
1916   // Ignore dependent declarations.
1917   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1918     return;
1919 
1920   switch (D->getKind()) {
1921   case Decl::CXXConversion:
1922   case Decl::CXXMethod:
1923   case Decl::Function:
1924     // Skip function templates
1925     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1926       return;
1927 
1928     EmitGlobal(cast<FunctionDecl>(D));
1929     break;
1930 
1931   case Decl::Var:
1932     EmitGlobal(cast<VarDecl>(D));
1933     break;
1934 
1935   // C++ Decls
1936   case Decl::Namespace:
1937     EmitNamespace(cast<NamespaceDecl>(D));
1938     break;
1939     // No code generation needed.
1940   case Decl::UsingShadow:
1941   case Decl::Using:
1942   case Decl::UsingDirective:
1943   case Decl::ClassTemplate:
1944   case Decl::FunctionTemplate:
1945   case Decl::NamespaceAlias:
1946     break;
1947   case Decl::CXXConstructor:
1948     // Skip function templates
1949     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1950       return;
1951 
1952     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1953     break;
1954   case Decl::CXXDestructor:
1955     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1956     break;
1957 
1958   case Decl::StaticAssert:
1959     // Nothing to do.
1960     break;
1961 
1962   // Objective-C Decls
1963 
1964   // Forward declarations, no (immediate) code generation.
1965   case Decl::ObjCClass:
1966   case Decl::ObjCForwardProtocol:
1967   case Decl::ObjCCategory:
1968   case Decl::ObjCInterface:
1969     break;
1970 
1971   case Decl::ObjCProtocol:
1972     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1973     break;
1974 
1975   case Decl::ObjCCategoryImpl:
1976     // Categories have properties but don't support synthesize so we
1977     // can ignore them here.
1978     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1979     break;
1980 
1981   case Decl::ObjCImplementation: {
1982     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1983     EmitObjCPropertyImplementations(OMD);
1984     EmitObjCIvarInitializations(OMD);
1985     Runtime->GenerateClass(OMD);
1986     break;
1987   }
1988   case Decl::ObjCMethod: {
1989     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1990     // If this is not a prototype, emit the body.
1991     if (OMD->getBody())
1992       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1993     break;
1994   }
1995   case Decl::ObjCCompatibleAlias:
1996     // compatibility-alias is a directive and has no code gen.
1997     break;
1998 
1999   case Decl::LinkageSpec:
2000     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2001     break;
2002 
2003   case Decl::FileScopeAsm: {
2004     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2005     llvm::StringRef AsmString = AD->getAsmString()->getString();
2006 
2007     const std::string &S = getModule().getModuleInlineAsm();
2008     if (S.empty())
2009       getModule().setModuleInlineAsm(AsmString);
2010     else
2011       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2012     break;
2013   }
2014 
2015   default:
2016     // Make sure we handled everything we should, every other kind is a
2017     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2018     // function. Need to recode Decl::Kind to do that easily.
2019     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2020   }
2021 }
2022