xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 5d07e0448e38d4be0cc7b1079d72b5e3644e941c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/CallingConv.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/ProfileSummary.h"
61 #include "llvm/ProfileData/InstrProfReader.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/Support/CRC.h"
64 #include "llvm/Support/CodeGen.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/ConvertUTF.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/TimeProfiler.h"
69 #include "llvm/Support/xxhash.h"
70 #include "llvm/TargetParser/Triple.h"
71 #include "llvm/TargetParser/X86TargetParser.h"
72 #include <optional>
73 
74 using namespace clang;
75 using namespace CodeGen;
76 
77 static llvm::cl::opt<bool> LimitedCoverage(
78     "limited-coverage-experimental", llvm::cl::Hidden,
79     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
80 
81 static const char AnnotationSection[] = "llvm.metadata";
82 
83 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
84   switch (CGM.getContext().getCXXABIKind()) {
85   case TargetCXXABI::AppleARM64:
86   case TargetCXXABI::Fuchsia:
87   case TargetCXXABI::GenericAArch64:
88   case TargetCXXABI::GenericARM:
89   case TargetCXXABI::iOS:
90   case TargetCXXABI::WatchOS:
91   case TargetCXXABI::GenericMIPS:
92   case TargetCXXABI::GenericItanium:
93   case TargetCXXABI::WebAssembly:
94   case TargetCXXABI::XL:
95     return CreateItaniumCXXABI(CGM);
96   case TargetCXXABI::Microsoft:
97     return CreateMicrosoftCXXABI(CGM);
98   }
99 
100   llvm_unreachable("invalid C++ ABI kind");
101 }
102 
103 CodeGenModule::CodeGenModule(ASTContext &C,
104                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
105                              const HeaderSearchOptions &HSO,
106                              const PreprocessorOptions &PPO,
107                              const CodeGenOptions &CGO, llvm::Module &M,
108                              DiagnosticsEngine &diags,
109                              CoverageSourceInfo *CoverageInfo)
110     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
111       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
112       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
113       VMContext(M.getContext()), Types(*this), VTables(*this),
114       SanitizerMD(new SanitizerMetadata(*this)) {
115 
116   // Initialize the type cache.
117   llvm::LLVMContext &LLVMContext = M.getContext();
118   VoidTy = llvm::Type::getVoidTy(LLVMContext);
119   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
120   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
121   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
122   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
123   HalfTy = llvm::Type::getHalfTy(LLVMContext);
124   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
125   FloatTy = llvm::Type::getFloatTy(LLVMContext);
126   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
127   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
128   PointerAlignInBytes =
129       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
130           .getQuantity();
131   SizeSizeInBytes =
132     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
133   IntAlignInBytes =
134     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
135   CharTy =
136     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
137   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
138   IntPtrTy = llvm::IntegerType::get(LLVMContext,
139     C.getTargetInfo().getMaxPointerWidth());
140   Int8PtrTy = Int8Ty->getPointerTo(0);
141   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
142   const llvm::DataLayout &DL = M.getDataLayout();
143   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
144   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
145   ConstGlobalsPtrTy = Int8Ty->getPointerTo(
146       C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
147   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
148 
149   // Build C++20 Module initializers.
150   // TODO: Add Microsoft here once we know the mangling required for the
151   // initializers.
152   CXX20ModuleInits =
153       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
154                                        ItaniumMangleContext::MK_Itanium;
155 
156   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
157 
158   if (LangOpts.ObjC)
159     createObjCRuntime();
160   if (LangOpts.OpenCL)
161     createOpenCLRuntime();
162   if (LangOpts.OpenMP)
163     createOpenMPRuntime();
164   if (LangOpts.CUDA)
165     createCUDARuntime();
166   if (LangOpts.HLSL)
167     createHLSLRuntime();
168 
169   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
170   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
171       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
172     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
173                                getCXXABI().getMangleContext()));
174 
175   // If debug info or coverage generation is enabled, create the CGDebugInfo
176   // object.
177   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
178       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
179     DebugInfo.reset(new CGDebugInfo(*this));
180 
181   Block.GlobalUniqueCount = 0;
182 
183   if (C.getLangOpts().ObjC)
184     ObjCData.reset(new ObjCEntrypoints());
185 
186   if (CodeGenOpts.hasProfileClangUse()) {
187     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
188         CodeGenOpts.ProfileInstrumentUsePath, *FS,
189         CodeGenOpts.ProfileRemappingFile);
190     // We're checking for profile read errors in CompilerInvocation, so if
191     // there was an error it should've already been caught. If it hasn't been
192     // somehow, trip an assertion.
193     assert(ReaderOrErr);
194     PGOReader = std::move(ReaderOrErr.get());
195   }
196 
197   // If coverage mapping generation is enabled, create the
198   // CoverageMappingModuleGen object.
199   if (CodeGenOpts.CoverageMapping)
200     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
201 
202   // Generate the module name hash here if needed.
203   if (CodeGenOpts.UniqueInternalLinkageNames &&
204       !getModule().getSourceFileName().empty()) {
205     std::string Path = getModule().getSourceFileName();
206     // Check if a path substitution is needed from the MacroPrefixMap.
207     for (const auto &Entry : LangOpts.MacroPrefixMap)
208       if (Path.rfind(Entry.first, 0) != std::string::npos) {
209         Path = Entry.second + Path.substr(Entry.first.size());
210         break;
211       }
212     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
213   }
214 }
215 
216 CodeGenModule::~CodeGenModule() {}
217 
218 void CodeGenModule::createObjCRuntime() {
219   // This is just isGNUFamily(), but we want to force implementors of
220   // new ABIs to decide how best to do this.
221   switch (LangOpts.ObjCRuntime.getKind()) {
222   case ObjCRuntime::GNUstep:
223   case ObjCRuntime::GCC:
224   case ObjCRuntime::ObjFW:
225     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
226     return;
227 
228   case ObjCRuntime::FragileMacOSX:
229   case ObjCRuntime::MacOSX:
230   case ObjCRuntime::iOS:
231   case ObjCRuntime::WatchOS:
232     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
233     return;
234   }
235   llvm_unreachable("bad runtime kind");
236 }
237 
238 void CodeGenModule::createOpenCLRuntime() {
239   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
240 }
241 
242 void CodeGenModule::createOpenMPRuntime() {
243   // Select a specialized code generation class based on the target, if any.
244   // If it does not exist use the default implementation.
245   switch (getTriple().getArch()) {
246   case llvm::Triple::nvptx:
247   case llvm::Triple::nvptx64:
248   case llvm::Triple::amdgcn:
249     assert(getLangOpts().OpenMPIsDevice &&
250            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
251     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
252     break;
253   default:
254     if (LangOpts.OpenMPSimd)
255       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
256     else
257       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
258     break;
259   }
260 }
261 
262 void CodeGenModule::createCUDARuntime() {
263   CUDARuntime.reset(CreateNVCUDARuntime(*this));
264 }
265 
266 void CodeGenModule::createHLSLRuntime() {
267   HLSLRuntime.reset(new CGHLSLRuntime(*this));
268 }
269 
270 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
271   Replacements[Name] = C;
272 }
273 
274 void CodeGenModule::applyReplacements() {
275   for (auto &I : Replacements) {
276     StringRef MangledName = I.first();
277     llvm::Constant *Replacement = I.second;
278     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
279     if (!Entry)
280       continue;
281     auto *OldF = cast<llvm::Function>(Entry);
282     auto *NewF = dyn_cast<llvm::Function>(Replacement);
283     if (!NewF) {
284       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
285         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
286       } else {
287         auto *CE = cast<llvm::ConstantExpr>(Replacement);
288         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
289                CE->getOpcode() == llvm::Instruction::GetElementPtr);
290         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
291       }
292     }
293 
294     // Replace old with new, but keep the old order.
295     OldF->replaceAllUsesWith(Replacement);
296     if (NewF) {
297       NewF->removeFromParent();
298       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
299                                                        NewF);
300     }
301     OldF->eraseFromParent();
302   }
303 }
304 
305 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
306   GlobalValReplacements.push_back(std::make_pair(GV, C));
307 }
308 
309 void CodeGenModule::applyGlobalValReplacements() {
310   for (auto &I : GlobalValReplacements) {
311     llvm::GlobalValue *GV = I.first;
312     llvm::Constant *C = I.second;
313 
314     GV->replaceAllUsesWith(C);
315     GV->eraseFromParent();
316   }
317 }
318 
319 // This is only used in aliases that we created and we know they have a
320 // linear structure.
321 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
322   const llvm::Constant *C;
323   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
324     C = GA->getAliasee();
325   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
326     C = GI->getResolver();
327   else
328     return GV;
329 
330   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
331   if (!AliaseeGV)
332     return nullptr;
333 
334   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
335   if (FinalGV == GV)
336     return nullptr;
337 
338   return FinalGV;
339 }
340 
341 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
342                                SourceLocation Location, bool IsIFunc,
343                                const llvm::GlobalValue *Alias,
344                                const llvm::GlobalValue *&GV) {
345   GV = getAliasedGlobal(Alias);
346   if (!GV) {
347     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
348     return false;
349   }
350 
351   if (GV->isDeclaration()) {
352     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
353     return false;
354   }
355 
356   if (IsIFunc) {
357     // Check resolver function type.
358     const auto *F = dyn_cast<llvm::Function>(GV);
359     if (!F) {
360       Diags.Report(Location, diag::err_alias_to_undefined)
361           << IsIFunc << IsIFunc;
362       return false;
363     }
364 
365     llvm::FunctionType *FTy = F->getFunctionType();
366     if (!FTy->getReturnType()->isPointerTy()) {
367       Diags.Report(Location, diag::err_ifunc_resolver_return);
368       return false;
369     }
370   }
371 
372   return true;
373 }
374 
375 void CodeGenModule::checkAliases() {
376   // Check if the constructed aliases are well formed. It is really unfortunate
377   // that we have to do this in CodeGen, but we only construct mangled names
378   // and aliases during codegen.
379   bool Error = false;
380   DiagnosticsEngine &Diags = getDiags();
381   for (const GlobalDecl &GD : Aliases) {
382     const auto *D = cast<ValueDecl>(GD.getDecl());
383     SourceLocation Location;
384     bool IsIFunc = D->hasAttr<IFuncAttr>();
385     if (const Attr *A = D->getDefiningAttr())
386       Location = A->getLocation();
387     else
388       llvm_unreachable("Not an alias or ifunc?");
389 
390     StringRef MangledName = getMangledName(GD);
391     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
392     const llvm::GlobalValue *GV = nullptr;
393     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
394       Error = true;
395       continue;
396     }
397 
398     llvm::Constant *Aliasee =
399         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
400                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
401 
402     llvm::GlobalValue *AliaseeGV;
403     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
404       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
405     else
406       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
407 
408     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
409       StringRef AliasSection = SA->getName();
410       if (AliasSection != AliaseeGV->getSection())
411         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
412             << AliasSection << IsIFunc << IsIFunc;
413     }
414 
415     // We have to handle alias to weak aliases in here. LLVM itself disallows
416     // this since the object semantics would not match the IL one. For
417     // compatibility with gcc we implement it by just pointing the alias
418     // to its aliasee's aliasee. We also warn, since the user is probably
419     // expecting the link to be weak.
420     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
421       if (GA->isInterposable()) {
422         Diags.Report(Location, diag::warn_alias_to_weak_alias)
423             << GV->getName() << GA->getName() << IsIFunc;
424         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
425             GA->getAliasee(), Alias->getType());
426 
427         if (IsIFunc)
428           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
429         else
430           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
431       }
432     }
433   }
434   if (!Error)
435     return;
436 
437   for (const GlobalDecl &GD : Aliases) {
438     StringRef MangledName = getMangledName(GD);
439     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
440     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
441     Alias->eraseFromParent();
442   }
443 }
444 
445 void CodeGenModule::clear() {
446   DeferredDeclsToEmit.clear();
447   EmittedDeferredDecls.clear();
448   if (OpenMPRuntime)
449     OpenMPRuntime->clear();
450 }
451 
452 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
453                                        StringRef MainFile) {
454   if (!hasDiagnostics())
455     return;
456   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
457     if (MainFile.empty())
458       MainFile = "<stdin>";
459     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
460   } else {
461     if (Mismatched > 0)
462       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
463 
464     if (Missing > 0)
465       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
466   }
467 }
468 
469 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
470                                              llvm::Module &M) {
471   if (!LO.VisibilityFromDLLStorageClass)
472     return;
473 
474   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
475       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
476   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
477       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
478   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
479       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
480   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
481       CodeGenModule::GetLLVMVisibility(
482           LO.getExternDeclNoDLLStorageClassVisibility());
483 
484   for (llvm::GlobalValue &GV : M.global_values()) {
485     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
486       continue;
487 
488     // Reset DSO locality before setting the visibility. This removes
489     // any effects that visibility options and annotations may have
490     // had on the DSO locality. Setting the visibility will implicitly set
491     // appropriate globals to DSO Local; however, this will be pessimistic
492     // w.r.t. to the normal compiler IRGen.
493     GV.setDSOLocal(false);
494 
495     if (GV.isDeclarationForLinker()) {
496       GV.setVisibility(GV.getDLLStorageClass() ==
497                                llvm::GlobalValue::DLLImportStorageClass
498                            ? ExternDeclDLLImportVisibility
499                            : ExternDeclNoDLLStorageClassVisibility);
500     } else {
501       GV.setVisibility(GV.getDLLStorageClass() ==
502                                llvm::GlobalValue::DLLExportStorageClass
503                            ? DLLExportVisibility
504                            : NoDLLStorageClassVisibility);
505     }
506 
507     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
508   }
509 }
510 
511 void CodeGenModule::Release() {
512   Module *Primary = getContext().getModuleForCodeGen();
513   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
514     EmitModuleInitializers(Primary);
515   EmitDeferred();
516   DeferredDecls.insert(EmittedDeferredDecls.begin(),
517                        EmittedDeferredDecls.end());
518   EmittedDeferredDecls.clear();
519   EmitVTablesOpportunistically();
520   applyGlobalValReplacements();
521   applyReplacements();
522   emitMultiVersionFunctions();
523 
524   if (Context.getLangOpts().IncrementalExtensions &&
525       GlobalTopLevelStmtBlockInFlight.first) {
526     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
527     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
528     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
529   }
530 
531   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
532     EmitCXXModuleInitFunc(Primary);
533   else
534     EmitCXXGlobalInitFunc();
535   EmitCXXGlobalCleanUpFunc();
536   registerGlobalDtorsWithAtExit();
537   EmitCXXThreadLocalInitFunc();
538   if (ObjCRuntime)
539     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
540       AddGlobalCtor(ObjCInitFunction);
541   if (Context.getLangOpts().CUDA && CUDARuntime) {
542     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
543       AddGlobalCtor(CudaCtorFunction);
544   }
545   if (OpenMPRuntime) {
546     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
547             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
548       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
549     }
550     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
551     OpenMPRuntime->clear();
552   }
553   if (PGOReader) {
554     getModule().setProfileSummary(
555         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
556         llvm::ProfileSummary::PSK_Instr);
557     if (PGOStats.hasDiagnostics())
558       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
559   }
560   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
561     return L.LexOrder < R.LexOrder;
562   });
563   EmitCtorList(GlobalCtors, "llvm.global_ctors");
564   EmitCtorList(GlobalDtors, "llvm.global_dtors");
565   EmitGlobalAnnotations();
566   EmitStaticExternCAliases();
567   checkAliases();
568   EmitDeferredUnusedCoverageMappings();
569   CodeGenPGO(*this).setValueProfilingFlag(getModule());
570   if (CoverageMapping)
571     CoverageMapping->emit();
572   if (CodeGenOpts.SanitizeCfiCrossDso) {
573     CodeGenFunction(*this).EmitCfiCheckFail();
574     CodeGenFunction(*this).EmitCfiCheckStub();
575   }
576   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
577     finalizeKCFITypes();
578   emitAtAvailableLinkGuard();
579   if (Context.getTargetInfo().getTriple().isWasm())
580     EmitMainVoidAlias();
581 
582   if (getTriple().isAMDGPU()) {
583     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
584     // preserve ASAN functions in bitcode libraries.
585     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
586       auto *FT = llvm::FunctionType::get(VoidTy, {});
587       auto *F = llvm::Function::Create(
588           FT, llvm::GlobalValue::ExternalLinkage,
589           "__amdgpu_device_library_preserve_asan_functions", &getModule());
590       auto *Var = new llvm::GlobalVariable(
591           getModule(), FT->getPointerTo(),
592           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
593           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
594           llvm::GlobalVariable::NotThreadLocal);
595       addCompilerUsedGlobal(Var);
596     }
597     // Emit amdgpu_code_object_version module flag, which is code object version
598     // times 100.
599     if (getTarget().getTargetOpts().CodeObjectVersion !=
600         TargetOptions::COV_None) {
601       getModule().addModuleFlag(llvm::Module::Error,
602                                 "amdgpu_code_object_version",
603                                 getTarget().getTargetOpts().CodeObjectVersion);
604     }
605   }
606 
607   // Emit a global array containing all external kernels or device variables
608   // used by host functions and mark it as used for CUDA/HIP. This is necessary
609   // to get kernels or device variables in archives linked in even if these
610   // kernels or device variables are only used in host functions.
611   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
612     SmallVector<llvm::Constant *, 8> UsedArray;
613     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
614       GlobalDecl GD;
615       if (auto *FD = dyn_cast<FunctionDecl>(D))
616         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
617       else
618         GD = GlobalDecl(D);
619       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
620           GetAddrOfGlobal(GD), Int8PtrTy));
621     }
622 
623     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
624 
625     auto *GV = new llvm::GlobalVariable(
626         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
627         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
628     addCompilerUsedGlobal(GV);
629   }
630 
631   emitLLVMUsed();
632   if (SanStats)
633     SanStats->finish();
634 
635   if (CodeGenOpts.Autolink &&
636       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
637     EmitModuleLinkOptions();
638   }
639 
640   // On ELF we pass the dependent library specifiers directly to the linker
641   // without manipulating them. This is in contrast to other platforms where
642   // they are mapped to a specific linker option by the compiler. This
643   // difference is a result of the greater variety of ELF linkers and the fact
644   // that ELF linkers tend to handle libraries in a more complicated fashion
645   // than on other platforms. This forces us to defer handling the dependent
646   // libs to the linker.
647   //
648   // CUDA/HIP device and host libraries are different. Currently there is no
649   // way to differentiate dependent libraries for host or device. Existing
650   // usage of #pragma comment(lib, *) is intended for host libraries on
651   // Windows. Therefore emit llvm.dependent-libraries only for host.
652   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
653     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
654     for (auto *MD : ELFDependentLibraries)
655       NMD->addOperand(MD);
656   }
657 
658   // Record mregparm value now so it is visible through rest of codegen.
659   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
660     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
661                               CodeGenOpts.NumRegisterParameters);
662 
663   if (CodeGenOpts.DwarfVersion) {
664     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
665                               CodeGenOpts.DwarfVersion);
666   }
667 
668   if (CodeGenOpts.Dwarf64)
669     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
670 
671   if (Context.getLangOpts().SemanticInterposition)
672     // Require various optimization to respect semantic interposition.
673     getModule().setSemanticInterposition(true);
674 
675   if (CodeGenOpts.EmitCodeView) {
676     // Indicate that we want CodeView in the metadata.
677     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
678   }
679   if (CodeGenOpts.CodeViewGHash) {
680     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
681   }
682   if (CodeGenOpts.ControlFlowGuard) {
683     // Function ID tables and checks for Control Flow Guard (cfguard=2).
684     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
685   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
686     // Function ID tables for Control Flow Guard (cfguard=1).
687     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
688   }
689   if (CodeGenOpts.EHContGuard) {
690     // Function ID tables for EH Continuation Guard.
691     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
692   }
693   if (Context.getLangOpts().Kernel) {
694     // Note if we are compiling with /kernel.
695     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
696   }
697   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
698     // We don't support LTO with 2 with different StrictVTablePointers
699     // FIXME: we could support it by stripping all the information introduced
700     // by StrictVTablePointers.
701 
702     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
703 
704     llvm::Metadata *Ops[2] = {
705               llvm::MDString::get(VMContext, "StrictVTablePointers"),
706               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
707                   llvm::Type::getInt32Ty(VMContext), 1))};
708 
709     getModule().addModuleFlag(llvm::Module::Require,
710                               "StrictVTablePointersRequirement",
711                               llvm::MDNode::get(VMContext, Ops));
712   }
713   if (getModuleDebugInfo())
714     // We support a single version in the linked module. The LLVM
715     // parser will drop debug info with a different version number
716     // (and warn about it, too).
717     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
718                               llvm::DEBUG_METADATA_VERSION);
719 
720   // We need to record the widths of enums and wchar_t, so that we can generate
721   // the correct build attributes in the ARM backend. wchar_size is also used by
722   // TargetLibraryInfo.
723   uint64_t WCharWidth =
724       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
725   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
726 
727   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
728   if (   Arch == llvm::Triple::arm
729       || Arch == llvm::Triple::armeb
730       || Arch == llvm::Triple::thumb
731       || Arch == llvm::Triple::thumbeb) {
732     // The minimum width of an enum in bytes
733     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
734     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
735   }
736 
737   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
738     StringRef ABIStr = Target.getABI();
739     llvm::LLVMContext &Ctx = TheModule.getContext();
740     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
741                               llvm::MDString::get(Ctx, ABIStr));
742   }
743 
744   if (CodeGenOpts.SanitizeCfiCrossDso) {
745     // Indicate that we want cross-DSO control flow integrity checks.
746     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
747   }
748 
749   if (CodeGenOpts.WholeProgramVTables) {
750     // Indicate whether VFE was enabled for this module, so that the
751     // vcall_visibility metadata added under whole program vtables is handled
752     // appropriately in the optimizer.
753     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
754                               CodeGenOpts.VirtualFunctionElimination);
755   }
756 
757   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
758     getModule().addModuleFlag(llvm::Module::Override,
759                               "CFI Canonical Jump Tables",
760                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
761   }
762 
763   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
764     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
765     // KCFI assumes patchable-function-prefix is the same for all indirectly
766     // called functions. Store the expected offset for code generation.
767     if (CodeGenOpts.PatchableFunctionEntryOffset)
768       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
769                                 CodeGenOpts.PatchableFunctionEntryOffset);
770   }
771 
772   if (CodeGenOpts.CFProtectionReturn &&
773       Target.checkCFProtectionReturnSupported(getDiags())) {
774     // Indicate that we want to instrument return control flow protection.
775     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
776                               1);
777   }
778 
779   if (CodeGenOpts.CFProtectionBranch &&
780       Target.checkCFProtectionBranchSupported(getDiags())) {
781     // Indicate that we want to instrument branch control flow protection.
782     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
783                               1);
784   }
785 
786   if (CodeGenOpts.FunctionReturnThunks)
787     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
788 
789   if (CodeGenOpts.IndirectBranchCSPrefix)
790     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
791 
792   // Add module metadata for return address signing (ignoring
793   // non-leaf/all) and stack tagging. These are actually turned on by function
794   // attributes, but we use module metadata to emit build attributes. This is
795   // needed for LTO, where the function attributes are inside bitcode
796   // serialised into a global variable by the time build attributes are
797   // emitted, so we can't access them. LTO objects could be compiled with
798   // different flags therefore module flags are set to "Min" behavior to achieve
799   // the same end result of the normal build where e.g BTI is off if any object
800   // doesn't support it.
801   if (Context.getTargetInfo().hasFeature("ptrauth") &&
802       LangOpts.getSignReturnAddressScope() !=
803           LangOptions::SignReturnAddressScopeKind::None)
804     getModule().addModuleFlag(llvm::Module::Override,
805                               "sign-return-address-buildattr", 1);
806   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
807     getModule().addModuleFlag(llvm::Module::Override,
808                               "tag-stack-memory-buildattr", 1);
809 
810   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
811       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
812       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
813       Arch == llvm::Triple::aarch64_be) {
814     if (LangOpts.BranchTargetEnforcement)
815       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
816                                 1);
817     if (LangOpts.hasSignReturnAddress())
818       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
819     if (LangOpts.isSignReturnAddressScopeAll())
820       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
821                                 1);
822     if (!LangOpts.isSignReturnAddressWithAKey())
823       getModule().addModuleFlag(llvm::Module::Min,
824                                 "sign-return-address-with-bkey", 1);
825   }
826 
827   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
828     llvm::LLVMContext &Ctx = TheModule.getContext();
829     getModule().addModuleFlag(
830         llvm::Module::Error, "MemProfProfileFilename",
831         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
832   }
833 
834   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
835     // Indicate whether __nvvm_reflect should be configured to flush denormal
836     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
837     // property.)
838     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
839                               CodeGenOpts.FP32DenormalMode.Output !=
840                                   llvm::DenormalMode::IEEE);
841   }
842 
843   if (LangOpts.EHAsynch)
844     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
845 
846   // Indicate whether this Module was compiled with -fopenmp
847   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
848     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
849   if (getLangOpts().OpenMPIsDevice)
850     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
851                               LangOpts.OpenMP);
852 
853   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
854   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
855     EmitOpenCLMetadata();
856     // Emit SPIR version.
857     if (getTriple().isSPIR()) {
858       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
859       // opencl.spir.version named metadata.
860       // C++ for OpenCL has a distinct mapping for version compatibility with
861       // OpenCL.
862       auto Version = LangOpts.getOpenCLCompatibleVersion();
863       llvm::Metadata *SPIRVerElts[] = {
864           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
865               Int32Ty, Version / 100)),
866           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
867               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
868       llvm::NamedMDNode *SPIRVerMD =
869           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
870       llvm::LLVMContext &Ctx = TheModule.getContext();
871       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
872     }
873   }
874 
875   // HLSL related end of code gen work items.
876   if (LangOpts.HLSL)
877     getHLSLRuntime().finishCodeGen();
878 
879   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
880     assert(PLevel < 3 && "Invalid PIC Level");
881     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
882     if (Context.getLangOpts().PIE)
883       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
884   }
885 
886   if (getCodeGenOpts().CodeModel.size() > 0) {
887     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
888                   .Case("tiny", llvm::CodeModel::Tiny)
889                   .Case("small", llvm::CodeModel::Small)
890                   .Case("kernel", llvm::CodeModel::Kernel)
891                   .Case("medium", llvm::CodeModel::Medium)
892                   .Case("large", llvm::CodeModel::Large)
893                   .Default(~0u);
894     if (CM != ~0u) {
895       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
896       getModule().setCodeModel(codeModel);
897     }
898   }
899 
900   if (CodeGenOpts.NoPLT)
901     getModule().setRtLibUseGOT();
902   if (CodeGenOpts.UnwindTables)
903     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
904 
905   switch (CodeGenOpts.getFramePointer()) {
906   case CodeGenOptions::FramePointerKind::None:
907     // 0 ("none") is the default.
908     break;
909   case CodeGenOptions::FramePointerKind::NonLeaf:
910     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
911     break;
912   case CodeGenOptions::FramePointerKind::All:
913     getModule().setFramePointer(llvm::FramePointerKind::All);
914     break;
915   }
916 
917   SimplifyPersonality();
918 
919   if (getCodeGenOpts().EmitDeclMetadata)
920     EmitDeclMetadata();
921 
922   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
923     EmitCoverageFile();
924 
925   if (CGDebugInfo *DI = getModuleDebugInfo())
926     DI->finalize();
927 
928   if (getCodeGenOpts().EmitVersionIdentMetadata)
929     EmitVersionIdentMetadata();
930 
931   if (!getCodeGenOpts().RecordCommandLine.empty())
932     EmitCommandLineMetadata();
933 
934   if (!getCodeGenOpts().StackProtectorGuard.empty())
935     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
936   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
937     getModule().setStackProtectorGuardReg(
938         getCodeGenOpts().StackProtectorGuardReg);
939   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
940     getModule().setStackProtectorGuardSymbol(
941         getCodeGenOpts().StackProtectorGuardSymbol);
942   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
943     getModule().setStackProtectorGuardOffset(
944         getCodeGenOpts().StackProtectorGuardOffset);
945   if (getCodeGenOpts().StackAlignment)
946     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
947   if (getCodeGenOpts().SkipRaxSetup)
948     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
949 
950   if (getContext().getTargetInfo().getMaxTLSAlign())
951     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
952                               getContext().getTargetInfo().getMaxTLSAlign());
953 
954   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
955 
956   EmitBackendOptionsMetadata(getCodeGenOpts());
957 
958   // If there is device offloading code embed it in the host now.
959   EmbedObject(&getModule(), CodeGenOpts, getDiags());
960 
961   // Set visibility from DLL storage class
962   // We do this at the end of LLVM IR generation; after any operation
963   // that might affect the DLL storage class or the visibility, and
964   // before anything that might act on these.
965   setVisibilityFromDLLStorageClass(LangOpts, getModule());
966 }
967 
968 void CodeGenModule::EmitOpenCLMetadata() {
969   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
970   // opencl.ocl.version named metadata node.
971   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
972   auto Version = LangOpts.getOpenCLCompatibleVersion();
973   llvm::Metadata *OCLVerElts[] = {
974       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
975           Int32Ty, Version / 100)),
976       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
977           Int32Ty, (Version % 100) / 10))};
978   llvm::NamedMDNode *OCLVerMD =
979       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
980   llvm::LLVMContext &Ctx = TheModule.getContext();
981   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
982 }
983 
984 void CodeGenModule::EmitBackendOptionsMetadata(
985     const CodeGenOptions CodeGenOpts) {
986   if (getTriple().isRISCV()) {
987     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
988                               CodeGenOpts.SmallDataLimit);
989   }
990 }
991 
992 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
993   // Make sure that this type is translated.
994   Types.UpdateCompletedType(TD);
995 }
996 
997 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
998   // Make sure that this type is translated.
999   Types.RefreshTypeCacheForClass(RD);
1000 }
1001 
1002 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1003   if (!TBAA)
1004     return nullptr;
1005   return TBAA->getTypeInfo(QTy);
1006 }
1007 
1008 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1009   if (!TBAA)
1010     return TBAAAccessInfo();
1011   if (getLangOpts().CUDAIsDevice) {
1012     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1013     // access info.
1014     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1015       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1016           nullptr)
1017         return TBAAAccessInfo();
1018     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1019       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1020           nullptr)
1021         return TBAAAccessInfo();
1022     }
1023   }
1024   return TBAA->getAccessInfo(AccessType);
1025 }
1026 
1027 TBAAAccessInfo
1028 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1029   if (!TBAA)
1030     return TBAAAccessInfo();
1031   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1032 }
1033 
1034 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1035   if (!TBAA)
1036     return nullptr;
1037   return TBAA->getTBAAStructInfo(QTy);
1038 }
1039 
1040 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1041   if (!TBAA)
1042     return nullptr;
1043   return TBAA->getBaseTypeInfo(QTy);
1044 }
1045 
1046 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1047   if (!TBAA)
1048     return nullptr;
1049   return TBAA->getAccessTagInfo(Info);
1050 }
1051 
1052 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1053                                                    TBAAAccessInfo TargetInfo) {
1054   if (!TBAA)
1055     return TBAAAccessInfo();
1056   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1057 }
1058 
1059 TBAAAccessInfo
1060 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1061                                                    TBAAAccessInfo InfoB) {
1062   if (!TBAA)
1063     return TBAAAccessInfo();
1064   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1065 }
1066 
1067 TBAAAccessInfo
1068 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1069                                               TBAAAccessInfo SrcInfo) {
1070   if (!TBAA)
1071     return TBAAAccessInfo();
1072   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1073 }
1074 
1075 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1076                                                 TBAAAccessInfo TBAAInfo) {
1077   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1078     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1079 }
1080 
1081 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1082     llvm::Instruction *I, const CXXRecordDecl *RD) {
1083   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1084                  llvm::MDNode::get(getLLVMContext(), {}));
1085 }
1086 
1087 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1088   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1089   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1090 }
1091 
1092 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1093 /// specified stmt yet.
1094 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1095   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1096                                                "cannot compile this %0 yet");
1097   std::string Msg = Type;
1098   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1099       << Msg << S->getSourceRange();
1100 }
1101 
1102 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1103 /// specified decl yet.
1104 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1105   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1106                                                "cannot compile this %0 yet");
1107   std::string Msg = Type;
1108   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1109 }
1110 
1111 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1112   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1113 }
1114 
1115 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1116                                         const NamedDecl *D) const {
1117   // Internal definitions always have default visibility.
1118   if (GV->hasLocalLinkage()) {
1119     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1120     return;
1121   }
1122   if (!D)
1123     return;
1124   // Set visibility for definitions, and for declarations if requested globally
1125   // or set explicitly.
1126   LinkageInfo LV = D->getLinkageAndVisibility();
1127   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1128     // Reject incompatible dlllstorage and visibility annotations.
1129     if (!LV.isVisibilityExplicit())
1130       return;
1131     if (GV->hasDLLExportStorageClass()) {
1132       if (LV.getVisibility() == HiddenVisibility)
1133         getDiags().Report(D->getLocation(),
1134                           diag::err_hidden_visibility_dllexport);
1135     } else if (LV.getVisibility() != DefaultVisibility) {
1136       getDiags().Report(D->getLocation(),
1137                         diag::err_non_default_visibility_dllimport);
1138     }
1139     return;
1140   }
1141 
1142   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1143       !GV->isDeclarationForLinker())
1144     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1145 }
1146 
1147 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1148                                  llvm::GlobalValue *GV) {
1149   if (GV->hasLocalLinkage())
1150     return true;
1151 
1152   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1153     return true;
1154 
1155   // DLLImport explicitly marks the GV as external.
1156   if (GV->hasDLLImportStorageClass())
1157     return false;
1158 
1159   const llvm::Triple &TT = CGM.getTriple();
1160   if (TT.isWindowsGNUEnvironment()) {
1161     // In MinGW, variables without DLLImport can still be automatically
1162     // imported from a DLL by the linker; don't mark variables that
1163     // potentially could come from another DLL as DSO local.
1164 
1165     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1166     // (and this actually happens in the public interface of libstdc++), so
1167     // such variables can't be marked as DSO local. (Native TLS variables
1168     // can't be dllimported at all, though.)
1169     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1170         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1171       return false;
1172   }
1173 
1174   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1175   // remain unresolved in the link, they can be resolved to zero, which is
1176   // outside the current DSO.
1177   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1178     return false;
1179 
1180   // Every other GV is local on COFF.
1181   // Make an exception for windows OS in the triple: Some firmware builds use
1182   // *-win32-macho triples. This (accidentally?) produced windows relocations
1183   // without GOT tables in older clang versions; Keep this behaviour.
1184   // FIXME: even thread local variables?
1185   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1186     return true;
1187 
1188   // Only handle COFF and ELF for now.
1189   if (!TT.isOSBinFormatELF())
1190     return false;
1191 
1192   // If this is not an executable, don't assume anything is local.
1193   const auto &CGOpts = CGM.getCodeGenOpts();
1194   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1195   const auto &LOpts = CGM.getLangOpts();
1196   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1197     // On ELF, if -fno-semantic-interposition is specified and the target
1198     // supports local aliases, there will be neither CC1
1199     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1200     // dso_local on the function if using a local alias is preferable (can avoid
1201     // PLT indirection).
1202     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1203       return false;
1204     return !(CGM.getLangOpts().SemanticInterposition ||
1205              CGM.getLangOpts().HalfNoSemanticInterposition);
1206   }
1207 
1208   // A definition cannot be preempted from an executable.
1209   if (!GV->isDeclarationForLinker())
1210     return true;
1211 
1212   // Most PIC code sequences that assume that a symbol is local cannot produce a
1213   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1214   // depended, it seems worth it to handle it here.
1215   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1216     return false;
1217 
1218   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1219   if (TT.isPPC64())
1220     return false;
1221 
1222   if (CGOpts.DirectAccessExternalData) {
1223     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1224     // for non-thread-local variables. If the symbol is not defined in the
1225     // executable, a copy relocation will be needed at link time. dso_local is
1226     // excluded for thread-local variables because they generally don't support
1227     // copy relocations.
1228     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1229       if (!Var->isThreadLocal())
1230         return true;
1231 
1232     // -fno-pic sets dso_local on a function declaration to allow direct
1233     // accesses when taking its address (similar to a data symbol). If the
1234     // function is not defined in the executable, a canonical PLT entry will be
1235     // needed at link time. -fno-direct-access-external-data can avoid the
1236     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1237     // it could just cause trouble without providing perceptible benefits.
1238     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1239       return true;
1240   }
1241 
1242   // If we can use copy relocations we can assume it is local.
1243 
1244   // Otherwise don't assume it is local.
1245   return false;
1246 }
1247 
1248 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1249   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1250 }
1251 
1252 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1253                                           GlobalDecl GD) const {
1254   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1255   // C++ destructors have a few C++ ABI specific special cases.
1256   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1257     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1258     return;
1259   }
1260   setDLLImportDLLExport(GV, D);
1261 }
1262 
1263 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1264                                           const NamedDecl *D) const {
1265   if (D && D->isExternallyVisible()) {
1266     if (D->hasAttr<DLLImportAttr>())
1267       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1268     else if ((D->hasAttr<DLLExportAttr>() ||
1269               shouldMapVisibilityToDLLExport(D)) &&
1270              !GV->isDeclarationForLinker())
1271       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1272   }
1273 }
1274 
1275 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1276                                     GlobalDecl GD) const {
1277   setDLLImportDLLExport(GV, GD);
1278   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1279 }
1280 
1281 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1282                                     const NamedDecl *D) const {
1283   setDLLImportDLLExport(GV, D);
1284   setGVPropertiesAux(GV, D);
1285 }
1286 
1287 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1288                                        const NamedDecl *D) const {
1289   setGlobalVisibility(GV, D);
1290   setDSOLocal(GV);
1291   GV->setPartition(CodeGenOpts.SymbolPartition);
1292 }
1293 
1294 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1295   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1296       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1297       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1298       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1299       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1300 }
1301 
1302 llvm::GlobalVariable::ThreadLocalMode
1303 CodeGenModule::GetDefaultLLVMTLSModel() const {
1304   switch (CodeGenOpts.getDefaultTLSModel()) {
1305   case CodeGenOptions::GeneralDynamicTLSModel:
1306     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1307   case CodeGenOptions::LocalDynamicTLSModel:
1308     return llvm::GlobalVariable::LocalDynamicTLSModel;
1309   case CodeGenOptions::InitialExecTLSModel:
1310     return llvm::GlobalVariable::InitialExecTLSModel;
1311   case CodeGenOptions::LocalExecTLSModel:
1312     return llvm::GlobalVariable::LocalExecTLSModel;
1313   }
1314   llvm_unreachable("Invalid TLS model!");
1315 }
1316 
1317 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1318   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1319 
1320   llvm::GlobalValue::ThreadLocalMode TLM;
1321   TLM = GetDefaultLLVMTLSModel();
1322 
1323   // Override the TLS model if it is explicitly specified.
1324   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1325     TLM = GetLLVMTLSModel(Attr->getModel());
1326   }
1327 
1328   GV->setThreadLocalMode(TLM);
1329 }
1330 
1331 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1332                                           StringRef Name) {
1333   const TargetInfo &Target = CGM.getTarget();
1334   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1335 }
1336 
1337 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1338                                                  const CPUSpecificAttr *Attr,
1339                                                  unsigned CPUIndex,
1340                                                  raw_ostream &Out) {
1341   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1342   // supported.
1343   if (Attr)
1344     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1345   else if (CGM.getTarget().supportsIFunc())
1346     Out << ".resolver";
1347 }
1348 
1349 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1350                                         const TargetVersionAttr *Attr,
1351                                         raw_ostream &Out) {
1352   if (Attr->isDefaultVersion())
1353     return;
1354   Out << "._";
1355   llvm::SmallVector<StringRef, 8> Feats;
1356   Attr->getFeatures(Feats);
1357   for (const auto &Feat : Feats) {
1358     Out << 'M';
1359     Out << Feat;
1360   }
1361 }
1362 
1363 static void AppendTargetMangling(const CodeGenModule &CGM,
1364                                  const TargetAttr *Attr, raw_ostream &Out) {
1365   if (Attr->isDefaultVersion())
1366     return;
1367 
1368   Out << '.';
1369   const TargetInfo &Target = CGM.getTarget();
1370   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1371   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1372     // Multiversioning doesn't allow "no-${feature}", so we can
1373     // only have "+" prefixes here.
1374     assert(LHS.startswith("+") && RHS.startswith("+") &&
1375            "Features should always have a prefix.");
1376     return Target.multiVersionSortPriority(LHS.substr(1)) >
1377            Target.multiVersionSortPriority(RHS.substr(1));
1378   });
1379 
1380   bool IsFirst = true;
1381 
1382   if (!Info.CPU.empty()) {
1383     IsFirst = false;
1384     Out << "arch_" << Info.CPU;
1385   }
1386 
1387   for (StringRef Feat : Info.Features) {
1388     if (!IsFirst)
1389       Out << '_';
1390     IsFirst = false;
1391     Out << Feat.substr(1);
1392   }
1393 }
1394 
1395 // Returns true if GD is a function decl with internal linkage and
1396 // needs a unique suffix after the mangled name.
1397 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1398                                         CodeGenModule &CGM) {
1399   const Decl *D = GD.getDecl();
1400   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1401          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1402 }
1403 
1404 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1405                                        const TargetClonesAttr *Attr,
1406                                        unsigned VersionIndex,
1407                                        raw_ostream &Out) {
1408   if (CGM.getTarget().getTriple().isAArch64()) {
1409     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1410     if (FeatureStr == "default")
1411       return;
1412     Out << "._";
1413     SmallVector<StringRef, 8> Features;
1414     FeatureStr.split(Features, "+");
1415     for (auto &Feat : Features) {
1416       Out << 'M';
1417       Out << Feat;
1418     }
1419   } else {
1420     Out << '.';
1421     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1422     if (FeatureStr.startswith("arch="))
1423       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1424     else
1425       Out << FeatureStr;
1426 
1427     Out << '.' << Attr->getMangledIndex(VersionIndex);
1428   }
1429 }
1430 
1431 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1432                                       const NamedDecl *ND,
1433                                       bool OmitMultiVersionMangling = false) {
1434   SmallString<256> Buffer;
1435   llvm::raw_svector_ostream Out(Buffer);
1436   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1437   if (!CGM.getModuleNameHash().empty())
1438     MC.needsUniqueInternalLinkageNames();
1439   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1440   if (ShouldMangle)
1441     MC.mangleName(GD.getWithDecl(ND), Out);
1442   else {
1443     IdentifierInfo *II = ND->getIdentifier();
1444     assert(II && "Attempt to mangle unnamed decl.");
1445     const auto *FD = dyn_cast<FunctionDecl>(ND);
1446 
1447     if (FD &&
1448         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1449       Out << "__regcall3__" << II->getName();
1450     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1451                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1452       Out << "__device_stub__" << II->getName();
1453     } else {
1454       Out << II->getName();
1455     }
1456   }
1457 
1458   // Check if the module name hash should be appended for internal linkage
1459   // symbols.   This should come before multi-version target suffixes are
1460   // appended. This is to keep the name and module hash suffix of the
1461   // internal linkage function together.  The unique suffix should only be
1462   // added when name mangling is done to make sure that the final name can
1463   // be properly demangled.  For example, for C functions without prototypes,
1464   // name mangling is not done and the unique suffix should not be appeneded
1465   // then.
1466   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1467     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1468            "Hash computed when not explicitly requested");
1469     Out << CGM.getModuleNameHash();
1470   }
1471 
1472   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1473     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1474       switch (FD->getMultiVersionKind()) {
1475       case MultiVersionKind::CPUDispatch:
1476       case MultiVersionKind::CPUSpecific:
1477         AppendCPUSpecificCPUDispatchMangling(CGM,
1478                                              FD->getAttr<CPUSpecificAttr>(),
1479                                              GD.getMultiVersionIndex(), Out);
1480         break;
1481       case MultiVersionKind::Target:
1482         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1483         break;
1484       case MultiVersionKind::TargetVersion:
1485         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1486         break;
1487       case MultiVersionKind::TargetClones:
1488         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1489                                    GD.getMultiVersionIndex(), Out);
1490         break;
1491       case MultiVersionKind::None:
1492         llvm_unreachable("None multiversion type isn't valid here");
1493       }
1494     }
1495 
1496   // Make unique name for device side static file-scope variable for HIP.
1497   if (CGM.getContext().shouldExternalize(ND) &&
1498       CGM.getLangOpts().GPURelocatableDeviceCode &&
1499       CGM.getLangOpts().CUDAIsDevice)
1500     CGM.printPostfixForExternalizedDecl(Out, ND);
1501 
1502   return std::string(Out.str());
1503 }
1504 
1505 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1506                                             const FunctionDecl *FD,
1507                                             StringRef &CurName) {
1508   if (!FD->isMultiVersion())
1509     return;
1510 
1511   // Get the name of what this would be without the 'target' attribute.  This
1512   // allows us to lookup the version that was emitted when this wasn't a
1513   // multiversion function.
1514   std::string NonTargetName =
1515       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1516   GlobalDecl OtherGD;
1517   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1518     assert(OtherGD.getCanonicalDecl()
1519                .getDecl()
1520                ->getAsFunction()
1521                ->isMultiVersion() &&
1522            "Other GD should now be a multiversioned function");
1523     // OtherFD is the version of this function that was mangled BEFORE
1524     // becoming a MultiVersion function.  It potentially needs to be updated.
1525     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1526                                       .getDecl()
1527                                       ->getAsFunction()
1528                                       ->getMostRecentDecl();
1529     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1530     // This is so that if the initial version was already the 'default'
1531     // version, we don't try to update it.
1532     if (OtherName != NonTargetName) {
1533       // Remove instead of erase, since others may have stored the StringRef
1534       // to this.
1535       const auto ExistingRecord = Manglings.find(NonTargetName);
1536       if (ExistingRecord != std::end(Manglings))
1537         Manglings.remove(&(*ExistingRecord));
1538       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1539       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1540           Result.first->first();
1541       // If this is the current decl is being created, make sure we update the name.
1542       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1543         CurName = OtherNameRef;
1544       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1545         Entry->setName(OtherName);
1546     }
1547   }
1548 }
1549 
1550 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1551   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1552 
1553   // Some ABIs don't have constructor variants.  Make sure that base and
1554   // complete constructors get mangled the same.
1555   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1556     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1557       CXXCtorType OrigCtorType = GD.getCtorType();
1558       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1559       if (OrigCtorType == Ctor_Base)
1560         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1561     }
1562   }
1563 
1564   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1565   // static device variable depends on whether the variable is referenced by
1566   // a host or device host function. Therefore the mangled name cannot be
1567   // cached.
1568   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1569     auto FoundName = MangledDeclNames.find(CanonicalGD);
1570     if (FoundName != MangledDeclNames.end())
1571       return FoundName->second;
1572   }
1573 
1574   // Keep the first result in the case of a mangling collision.
1575   const auto *ND = cast<NamedDecl>(GD.getDecl());
1576   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1577 
1578   // Ensure either we have different ABIs between host and device compilations,
1579   // says host compilation following MSVC ABI but device compilation follows
1580   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1581   // mangling should be the same after name stubbing. The later checking is
1582   // very important as the device kernel name being mangled in host-compilation
1583   // is used to resolve the device binaries to be executed. Inconsistent naming
1584   // result in undefined behavior. Even though we cannot check that naming
1585   // directly between host- and device-compilations, the host- and
1586   // device-mangling in host compilation could help catching certain ones.
1587   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1588          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1589          (getContext().getAuxTargetInfo() &&
1590           (getContext().getAuxTargetInfo()->getCXXABI() !=
1591            getContext().getTargetInfo().getCXXABI())) ||
1592          getCUDARuntime().getDeviceSideName(ND) ==
1593              getMangledNameImpl(
1594                  *this,
1595                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1596                  ND));
1597 
1598   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1599   return MangledDeclNames[CanonicalGD] = Result.first->first();
1600 }
1601 
1602 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1603                                              const BlockDecl *BD) {
1604   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1605   const Decl *D = GD.getDecl();
1606 
1607   SmallString<256> Buffer;
1608   llvm::raw_svector_ostream Out(Buffer);
1609   if (!D)
1610     MangleCtx.mangleGlobalBlock(BD,
1611       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1612   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1613     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1614   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1615     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1616   else
1617     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1618 
1619   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1620   return Result.first->first();
1621 }
1622 
1623 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1624   auto it = MangledDeclNames.begin();
1625   while (it != MangledDeclNames.end()) {
1626     if (it->second == Name)
1627       return it->first;
1628     it++;
1629   }
1630   return GlobalDecl();
1631 }
1632 
1633 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1634   return getModule().getNamedValue(Name);
1635 }
1636 
1637 /// AddGlobalCtor - Add a function to the list that will be called before
1638 /// main() runs.
1639 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1640                                   unsigned LexOrder,
1641                                   llvm::Constant *AssociatedData) {
1642   // FIXME: Type coercion of void()* types.
1643   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1644 }
1645 
1646 /// AddGlobalDtor - Add a function to the list that will be called
1647 /// when the module is unloaded.
1648 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1649                                   bool IsDtorAttrFunc) {
1650   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1651       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1652     DtorsUsingAtExit[Priority].push_back(Dtor);
1653     return;
1654   }
1655 
1656   // FIXME: Type coercion of void()* types.
1657   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1658 }
1659 
1660 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1661   if (Fns.empty()) return;
1662 
1663   // Ctor function type is void()*.
1664   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1665   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1666       TheModule.getDataLayout().getProgramAddressSpace());
1667 
1668   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1669   llvm::StructType *CtorStructTy = llvm::StructType::get(
1670       Int32Ty, CtorPFTy, VoidPtrTy);
1671 
1672   // Construct the constructor and destructor arrays.
1673   ConstantInitBuilder builder(*this);
1674   auto ctors = builder.beginArray(CtorStructTy);
1675   for (const auto &I : Fns) {
1676     auto ctor = ctors.beginStruct(CtorStructTy);
1677     ctor.addInt(Int32Ty, I.Priority);
1678     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1679     if (I.AssociatedData)
1680       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1681     else
1682       ctor.addNullPointer(VoidPtrTy);
1683     ctor.finishAndAddTo(ctors);
1684   }
1685 
1686   auto list =
1687     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1688                                 /*constant*/ false,
1689                                 llvm::GlobalValue::AppendingLinkage);
1690 
1691   // The LTO linker doesn't seem to like it when we set an alignment
1692   // on appending variables.  Take it off as a workaround.
1693   list->setAlignment(std::nullopt);
1694 
1695   Fns.clear();
1696 }
1697 
1698 llvm::GlobalValue::LinkageTypes
1699 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1700   const auto *D = cast<FunctionDecl>(GD.getDecl());
1701 
1702   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1703 
1704   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1705     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1706 
1707   if (isa<CXXConstructorDecl>(D) &&
1708       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1709       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1710     // Our approach to inheriting constructors is fundamentally different from
1711     // that used by the MS ABI, so keep our inheriting constructor thunks
1712     // internal rather than trying to pick an unambiguous mangling for them.
1713     return llvm::GlobalValue::InternalLinkage;
1714   }
1715 
1716   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1717 }
1718 
1719 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1720   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1721   if (!MDS) return nullptr;
1722 
1723   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1724 }
1725 
1726 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1727   if (auto *FnType = T->getAs<FunctionProtoType>())
1728     T = getContext().getFunctionType(
1729         FnType->getReturnType(), FnType->getParamTypes(),
1730         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1731 
1732   std::string OutName;
1733   llvm::raw_string_ostream Out(OutName);
1734   getCXXABI().getMangleContext().mangleTypeName(T, Out);
1735 
1736   return llvm::ConstantInt::get(Int32Ty,
1737                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1738 }
1739 
1740 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1741                                               const CGFunctionInfo &Info,
1742                                               llvm::Function *F, bool IsThunk) {
1743   unsigned CallingConv;
1744   llvm::AttributeList PAL;
1745   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1746                          /*AttrOnCallSite=*/false, IsThunk);
1747   F->setAttributes(PAL);
1748   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1749 }
1750 
1751 static void removeImageAccessQualifier(std::string& TyName) {
1752   std::string ReadOnlyQual("__read_only");
1753   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1754   if (ReadOnlyPos != std::string::npos)
1755     // "+ 1" for the space after access qualifier.
1756     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1757   else {
1758     std::string WriteOnlyQual("__write_only");
1759     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1760     if (WriteOnlyPos != std::string::npos)
1761       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1762     else {
1763       std::string ReadWriteQual("__read_write");
1764       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1765       if (ReadWritePos != std::string::npos)
1766         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1767     }
1768   }
1769 }
1770 
1771 // Returns the address space id that should be produced to the
1772 // kernel_arg_addr_space metadata. This is always fixed to the ids
1773 // as specified in the SPIR 2.0 specification in order to differentiate
1774 // for example in clGetKernelArgInfo() implementation between the address
1775 // spaces with targets without unique mapping to the OpenCL address spaces
1776 // (basically all single AS CPUs).
1777 static unsigned ArgInfoAddressSpace(LangAS AS) {
1778   switch (AS) {
1779   case LangAS::opencl_global:
1780     return 1;
1781   case LangAS::opencl_constant:
1782     return 2;
1783   case LangAS::opencl_local:
1784     return 3;
1785   case LangAS::opencl_generic:
1786     return 4; // Not in SPIR 2.0 specs.
1787   case LangAS::opencl_global_device:
1788     return 5;
1789   case LangAS::opencl_global_host:
1790     return 6;
1791   default:
1792     return 0; // Assume private.
1793   }
1794 }
1795 
1796 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1797                                          const FunctionDecl *FD,
1798                                          CodeGenFunction *CGF) {
1799   assert(((FD && CGF) || (!FD && !CGF)) &&
1800          "Incorrect use - FD and CGF should either be both null or not!");
1801   // Create MDNodes that represent the kernel arg metadata.
1802   // Each MDNode is a list in the form of "key", N number of values which is
1803   // the same number of values as their are kernel arguments.
1804 
1805   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1806 
1807   // MDNode for the kernel argument address space qualifiers.
1808   SmallVector<llvm::Metadata *, 8> addressQuals;
1809 
1810   // MDNode for the kernel argument access qualifiers (images only).
1811   SmallVector<llvm::Metadata *, 8> accessQuals;
1812 
1813   // MDNode for the kernel argument type names.
1814   SmallVector<llvm::Metadata *, 8> argTypeNames;
1815 
1816   // MDNode for the kernel argument base type names.
1817   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1818 
1819   // MDNode for the kernel argument type qualifiers.
1820   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1821 
1822   // MDNode for the kernel argument names.
1823   SmallVector<llvm::Metadata *, 8> argNames;
1824 
1825   if (FD && CGF)
1826     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1827       const ParmVarDecl *parm = FD->getParamDecl(i);
1828       // Get argument name.
1829       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1830 
1831       if (!getLangOpts().OpenCL)
1832         continue;
1833       QualType ty = parm->getType();
1834       std::string typeQuals;
1835 
1836       // Get image and pipe access qualifier:
1837       if (ty->isImageType() || ty->isPipeType()) {
1838         const Decl *PDecl = parm;
1839         if (const auto *TD = ty->getAs<TypedefType>())
1840           PDecl = TD->getDecl();
1841         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1842         if (A && A->isWriteOnly())
1843           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1844         else if (A && A->isReadWrite())
1845           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1846         else
1847           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1848       } else
1849         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1850 
1851       auto getTypeSpelling = [&](QualType Ty) {
1852         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1853 
1854         if (Ty.isCanonical()) {
1855           StringRef typeNameRef = typeName;
1856           // Turn "unsigned type" to "utype"
1857           if (typeNameRef.consume_front("unsigned "))
1858             return std::string("u") + typeNameRef.str();
1859           if (typeNameRef.consume_front("signed "))
1860             return typeNameRef.str();
1861         }
1862 
1863         return typeName;
1864       };
1865 
1866       if (ty->isPointerType()) {
1867         QualType pointeeTy = ty->getPointeeType();
1868 
1869         // Get address qualifier.
1870         addressQuals.push_back(
1871             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1872                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1873 
1874         // Get argument type name.
1875         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1876         std::string baseTypeName =
1877             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1878         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1879         argBaseTypeNames.push_back(
1880             llvm::MDString::get(VMContext, baseTypeName));
1881 
1882         // Get argument type qualifiers:
1883         if (ty.isRestrictQualified())
1884           typeQuals = "restrict";
1885         if (pointeeTy.isConstQualified() ||
1886             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1887           typeQuals += typeQuals.empty() ? "const" : " const";
1888         if (pointeeTy.isVolatileQualified())
1889           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1890       } else {
1891         uint32_t AddrSpc = 0;
1892         bool isPipe = ty->isPipeType();
1893         if (ty->isImageType() || isPipe)
1894           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1895 
1896         addressQuals.push_back(
1897             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1898 
1899         // Get argument type name.
1900         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1901         std::string typeName = getTypeSpelling(ty);
1902         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1903 
1904         // Remove access qualifiers on images
1905         // (as they are inseparable from type in clang implementation,
1906         // but OpenCL spec provides a special query to get access qualifier
1907         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1908         if (ty->isImageType()) {
1909           removeImageAccessQualifier(typeName);
1910           removeImageAccessQualifier(baseTypeName);
1911         }
1912 
1913         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1914         argBaseTypeNames.push_back(
1915             llvm::MDString::get(VMContext, baseTypeName));
1916 
1917         if (isPipe)
1918           typeQuals = "pipe";
1919       }
1920       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1921     }
1922 
1923   if (getLangOpts().OpenCL) {
1924     Fn->setMetadata("kernel_arg_addr_space",
1925                     llvm::MDNode::get(VMContext, addressQuals));
1926     Fn->setMetadata("kernel_arg_access_qual",
1927                     llvm::MDNode::get(VMContext, accessQuals));
1928     Fn->setMetadata("kernel_arg_type",
1929                     llvm::MDNode::get(VMContext, argTypeNames));
1930     Fn->setMetadata("kernel_arg_base_type",
1931                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1932     Fn->setMetadata("kernel_arg_type_qual",
1933                     llvm::MDNode::get(VMContext, argTypeQuals));
1934   }
1935   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1936       getCodeGenOpts().HIPSaveKernelArgName)
1937     Fn->setMetadata("kernel_arg_name",
1938                     llvm::MDNode::get(VMContext, argNames));
1939 }
1940 
1941 /// Determines whether the language options require us to model
1942 /// unwind exceptions.  We treat -fexceptions as mandating this
1943 /// except under the fragile ObjC ABI with only ObjC exceptions
1944 /// enabled.  This means, for example, that C with -fexceptions
1945 /// enables this.
1946 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1947   // If exceptions are completely disabled, obviously this is false.
1948   if (!LangOpts.Exceptions) return false;
1949 
1950   // If C++ exceptions are enabled, this is true.
1951   if (LangOpts.CXXExceptions) return true;
1952 
1953   // If ObjC exceptions are enabled, this depends on the ABI.
1954   if (LangOpts.ObjCExceptions) {
1955     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1956   }
1957 
1958   return true;
1959 }
1960 
1961 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1962                                                       const CXXMethodDecl *MD) {
1963   // Check that the type metadata can ever actually be used by a call.
1964   if (!CGM.getCodeGenOpts().LTOUnit ||
1965       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1966     return false;
1967 
1968   // Only functions whose address can be taken with a member function pointer
1969   // need this sort of type metadata.
1970   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1971          !isa<CXXDestructorDecl>(MD);
1972 }
1973 
1974 std::vector<const CXXRecordDecl *>
1975 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1976   llvm::SetVector<const CXXRecordDecl *> MostBases;
1977 
1978   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1979   CollectMostBases = [&](const CXXRecordDecl *RD) {
1980     if (RD->getNumBases() == 0)
1981       MostBases.insert(RD);
1982     for (const CXXBaseSpecifier &B : RD->bases())
1983       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1984   };
1985   CollectMostBases(RD);
1986   return MostBases.takeVector();
1987 }
1988 
1989 llvm::GlobalVariable *
1990 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1991   auto It = RTTIProxyMap.find(Addr);
1992   if (It != RTTIProxyMap.end())
1993     return It->second;
1994 
1995   auto *FTRTTIProxy = new llvm::GlobalVariable(
1996       TheModule, Addr->getType(),
1997       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1998       "__llvm_rtti_proxy");
1999   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2000 
2001   RTTIProxyMap[Addr] = FTRTTIProxy;
2002   return FTRTTIProxy;
2003 }
2004 
2005 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2006                                                            llvm::Function *F) {
2007   llvm::AttrBuilder B(F->getContext());
2008 
2009   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2010     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2011 
2012   if (CodeGenOpts.StackClashProtector)
2013     B.addAttribute("probe-stack", "inline-asm");
2014 
2015   if (!hasUnwindExceptions(LangOpts))
2016     B.addAttribute(llvm::Attribute::NoUnwind);
2017 
2018   if (D && D->hasAttr<NoStackProtectorAttr>())
2019     ; // Do nothing.
2020   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2021            LangOpts.getStackProtector() == LangOptions::SSPOn)
2022     B.addAttribute(llvm::Attribute::StackProtectStrong);
2023   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
2024     B.addAttribute(llvm::Attribute::StackProtect);
2025   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
2026     B.addAttribute(llvm::Attribute::StackProtectStrong);
2027   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
2028     B.addAttribute(llvm::Attribute::StackProtectReq);
2029 
2030   if (!D) {
2031     // If we don't have a declaration to control inlining, the function isn't
2032     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2033     // disabled, mark the function as noinline.
2034     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2035         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2036       B.addAttribute(llvm::Attribute::NoInline);
2037 
2038     F->addFnAttrs(B);
2039     return;
2040   }
2041 
2042   // Track whether we need to add the optnone LLVM attribute,
2043   // starting with the default for this optimization level.
2044   bool ShouldAddOptNone =
2045       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2046   // We can't add optnone in the following cases, it won't pass the verifier.
2047   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2048   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2049 
2050   // Add optnone, but do so only if the function isn't always_inline.
2051   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2052       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2053     B.addAttribute(llvm::Attribute::OptimizeNone);
2054 
2055     // OptimizeNone implies noinline; we should not be inlining such functions.
2056     B.addAttribute(llvm::Attribute::NoInline);
2057 
2058     // We still need to handle naked functions even though optnone subsumes
2059     // much of their semantics.
2060     if (D->hasAttr<NakedAttr>())
2061       B.addAttribute(llvm::Attribute::Naked);
2062 
2063     // OptimizeNone wins over OptimizeForSize and MinSize.
2064     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2065     F->removeFnAttr(llvm::Attribute::MinSize);
2066   } else if (D->hasAttr<NakedAttr>()) {
2067     // Naked implies noinline: we should not be inlining such functions.
2068     B.addAttribute(llvm::Attribute::Naked);
2069     B.addAttribute(llvm::Attribute::NoInline);
2070   } else if (D->hasAttr<NoDuplicateAttr>()) {
2071     B.addAttribute(llvm::Attribute::NoDuplicate);
2072   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2073     // Add noinline if the function isn't always_inline.
2074     B.addAttribute(llvm::Attribute::NoInline);
2075   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2076              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2077     // (noinline wins over always_inline, and we can't specify both in IR)
2078     B.addAttribute(llvm::Attribute::AlwaysInline);
2079   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2080     // If we're not inlining, then force everything that isn't always_inline to
2081     // carry an explicit noinline attribute.
2082     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2083       B.addAttribute(llvm::Attribute::NoInline);
2084   } else {
2085     // Otherwise, propagate the inline hint attribute and potentially use its
2086     // absence to mark things as noinline.
2087     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2088       // Search function and template pattern redeclarations for inline.
2089       auto CheckForInline = [](const FunctionDecl *FD) {
2090         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2091           return Redecl->isInlineSpecified();
2092         };
2093         if (any_of(FD->redecls(), CheckRedeclForInline))
2094           return true;
2095         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2096         if (!Pattern)
2097           return false;
2098         return any_of(Pattern->redecls(), CheckRedeclForInline);
2099       };
2100       if (CheckForInline(FD)) {
2101         B.addAttribute(llvm::Attribute::InlineHint);
2102       } else if (CodeGenOpts.getInlining() ==
2103                      CodeGenOptions::OnlyHintInlining &&
2104                  !FD->isInlined() &&
2105                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2106         B.addAttribute(llvm::Attribute::NoInline);
2107       }
2108     }
2109   }
2110 
2111   // Add other optimization related attributes if we are optimizing this
2112   // function.
2113   if (!D->hasAttr<OptimizeNoneAttr>()) {
2114     if (D->hasAttr<ColdAttr>()) {
2115       if (!ShouldAddOptNone)
2116         B.addAttribute(llvm::Attribute::OptimizeForSize);
2117       B.addAttribute(llvm::Attribute::Cold);
2118     }
2119     if (D->hasAttr<HotAttr>())
2120       B.addAttribute(llvm::Attribute::Hot);
2121     if (D->hasAttr<MinSizeAttr>())
2122       B.addAttribute(llvm::Attribute::MinSize);
2123   }
2124 
2125   F->addFnAttrs(B);
2126 
2127   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2128   if (alignment)
2129     F->setAlignment(llvm::Align(alignment));
2130 
2131   if (!D->hasAttr<AlignedAttr>())
2132     if (LangOpts.FunctionAlignment)
2133       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2134 
2135   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2136   // reserve a bit for differentiating between virtual and non-virtual member
2137   // functions. If the current target's C++ ABI requires this and this is a
2138   // member function, set its alignment accordingly.
2139   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2140     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2141       F->setAlignment(llvm::Align(2));
2142   }
2143 
2144   // In the cross-dso CFI mode with canonical jump tables, we want !type
2145   // attributes on definitions only.
2146   if (CodeGenOpts.SanitizeCfiCrossDso &&
2147       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2148     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2149       // Skip available_externally functions. They won't be codegen'ed in the
2150       // current module anyway.
2151       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2152         CreateFunctionTypeMetadataForIcall(FD, F);
2153     }
2154   }
2155 
2156   // Emit type metadata on member functions for member function pointer checks.
2157   // These are only ever necessary on definitions; we're guaranteed that the
2158   // definition will be present in the LTO unit as a result of LTO visibility.
2159   auto *MD = dyn_cast<CXXMethodDecl>(D);
2160   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2161     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2162       llvm::Metadata *Id =
2163           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2164               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2165       F->addTypeMetadata(0, Id);
2166     }
2167   }
2168 }
2169 
2170 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2171                                                   llvm::Function *F) {
2172   if (D->hasAttr<StrictFPAttr>()) {
2173     llvm::AttrBuilder FuncAttrs(F->getContext());
2174     FuncAttrs.addAttribute("strictfp");
2175     F->addFnAttrs(FuncAttrs);
2176   }
2177 }
2178 
2179 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2180   const Decl *D = GD.getDecl();
2181   if (isa_and_nonnull<NamedDecl>(D))
2182     setGVProperties(GV, GD);
2183   else
2184     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2185 
2186   if (D && D->hasAttr<UsedAttr>())
2187     addUsedOrCompilerUsedGlobal(GV);
2188 
2189   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2190     const auto *VD = cast<VarDecl>(D);
2191     if (VD->getType().isConstQualified() &&
2192         VD->getStorageDuration() == SD_Static)
2193       addUsedOrCompilerUsedGlobal(GV);
2194   }
2195 }
2196 
2197 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2198                                                 llvm::AttrBuilder &Attrs) {
2199   // Add target-cpu and target-features attributes to functions. If
2200   // we have a decl for the function and it has a target attribute then
2201   // parse that and add it to the feature set.
2202   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2203   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2204   std::vector<std::string> Features;
2205   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2206   FD = FD ? FD->getMostRecentDecl() : FD;
2207   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2208   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2209   assert((!TD || !TV) && "both target_version and target specified");
2210   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2211   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2212   bool AddedAttr = false;
2213   if (TD || TV || SD || TC) {
2214     llvm::StringMap<bool> FeatureMap;
2215     getContext().getFunctionFeatureMap(FeatureMap, GD);
2216 
2217     // Produce the canonical string for this set of features.
2218     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2219       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2220 
2221     // Now add the target-cpu and target-features to the function.
2222     // While we populated the feature map above, we still need to
2223     // get and parse the target attribute so we can get the cpu for
2224     // the function.
2225     if (TD) {
2226       ParsedTargetAttr ParsedAttr =
2227           Target.parseTargetAttr(TD->getFeaturesStr());
2228       if (!ParsedAttr.CPU.empty() &&
2229           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2230         TargetCPU = ParsedAttr.CPU;
2231         TuneCPU = ""; // Clear the tune CPU.
2232       }
2233       if (!ParsedAttr.Tune.empty() &&
2234           getTarget().isValidCPUName(ParsedAttr.Tune))
2235         TuneCPU = ParsedAttr.Tune;
2236     }
2237 
2238     if (SD) {
2239       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2240       // favor this processor.
2241       TuneCPU = getTarget().getCPUSpecificTuneName(
2242           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2243     }
2244   } else {
2245     // Otherwise just add the existing target cpu and target features to the
2246     // function.
2247     Features = getTarget().getTargetOpts().Features;
2248   }
2249 
2250   if (!TargetCPU.empty()) {
2251     Attrs.addAttribute("target-cpu", TargetCPU);
2252     AddedAttr = true;
2253   }
2254   if (!TuneCPU.empty()) {
2255     Attrs.addAttribute("tune-cpu", TuneCPU);
2256     AddedAttr = true;
2257   }
2258   if (!Features.empty()) {
2259     llvm::sort(Features);
2260     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2261     AddedAttr = true;
2262   }
2263 
2264   return AddedAttr;
2265 }
2266 
2267 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2268                                           llvm::GlobalObject *GO) {
2269   const Decl *D = GD.getDecl();
2270   SetCommonAttributes(GD, GO);
2271 
2272   if (D) {
2273     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2274       if (D->hasAttr<RetainAttr>())
2275         addUsedGlobal(GV);
2276       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2277         GV->addAttribute("bss-section", SA->getName());
2278       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2279         GV->addAttribute("data-section", SA->getName());
2280       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2281         GV->addAttribute("rodata-section", SA->getName());
2282       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2283         GV->addAttribute("relro-section", SA->getName());
2284     }
2285 
2286     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2287       if (D->hasAttr<RetainAttr>())
2288         addUsedGlobal(F);
2289       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2290         if (!D->getAttr<SectionAttr>())
2291           F->addFnAttr("implicit-section-name", SA->getName());
2292 
2293       llvm::AttrBuilder Attrs(F->getContext());
2294       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2295         // We know that GetCPUAndFeaturesAttributes will always have the
2296         // newest set, since it has the newest possible FunctionDecl, so the
2297         // new ones should replace the old.
2298         llvm::AttributeMask RemoveAttrs;
2299         RemoveAttrs.addAttribute("target-cpu");
2300         RemoveAttrs.addAttribute("target-features");
2301         RemoveAttrs.addAttribute("tune-cpu");
2302         F->removeFnAttrs(RemoveAttrs);
2303         F->addFnAttrs(Attrs);
2304       }
2305     }
2306 
2307     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2308       GO->setSection(CSA->getName());
2309     else if (const auto *SA = D->getAttr<SectionAttr>())
2310       GO->setSection(SA->getName());
2311   }
2312 
2313   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2314 }
2315 
2316 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2317                                                   llvm::Function *F,
2318                                                   const CGFunctionInfo &FI) {
2319   const Decl *D = GD.getDecl();
2320   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2321   SetLLVMFunctionAttributesForDefinition(D, F);
2322 
2323   F->setLinkage(llvm::Function::InternalLinkage);
2324 
2325   setNonAliasAttributes(GD, F);
2326 }
2327 
2328 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2329   // Set linkage and visibility in case we never see a definition.
2330   LinkageInfo LV = ND->getLinkageAndVisibility();
2331   // Don't set internal linkage on declarations.
2332   // "extern_weak" is overloaded in LLVM; we probably should have
2333   // separate linkage types for this.
2334   if (isExternallyVisible(LV.getLinkage()) &&
2335       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2336     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2337 }
2338 
2339 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2340                                                        llvm::Function *F) {
2341   // Only if we are checking indirect calls.
2342   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2343     return;
2344 
2345   // Non-static class methods are handled via vtable or member function pointer
2346   // checks elsewhere.
2347   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2348     return;
2349 
2350   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2351   F->addTypeMetadata(0, MD);
2352   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2353 
2354   // Emit a hash-based bit set entry for cross-DSO calls.
2355   if (CodeGenOpts.SanitizeCfiCrossDso)
2356     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2357       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2358 }
2359 
2360 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2361   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2362     return;
2363 
2364   llvm::LLVMContext &Ctx = F->getContext();
2365   llvm::MDBuilder MDB(Ctx);
2366   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2367                  llvm::MDNode::get(
2368                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2369 }
2370 
2371 static bool allowKCFIIdentifier(StringRef Name) {
2372   // KCFI type identifier constants are only necessary for external assembly
2373   // functions, which means it's safe to skip unusual names. Subset of
2374   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2375   return llvm::all_of(Name, [](const char &C) {
2376     return llvm::isAlnum(C) || C == '_' || C == '.';
2377   });
2378 }
2379 
2380 void CodeGenModule::finalizeKCFITypes() {
2381   llvm::Module &M = getModule();
2382   for (auto &F : M.functions()) {
2383     // Remove KCFI type metadata from non-address-taken local functions.
2384     bool AddressTaken = F.hasAddressTaken();
2385     if (!AddressTaken && F.hasLocalLinkage())
2386       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2387 
2388     // Generate a constant with the expected KCFI type identifier for all
2389     // address-taken function declarations to support annotating indirectly
2390     // called assembly functions.
2391     if (!AddressTaken || !F.isDeclaration())
2392       continue;
2393 
2394     const llvm::ConstantInt *Type;
2395     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2396       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2397     else
2398       continue;
2399 
2400     StringRef Name = F.getName();
2401     if (!allowKCFIIdentifier(Name))
2402       continue;
2403 
2404     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2405                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2406                           .str();
2407     M.appendModuleInlineAsm(Asm);
2408   }
2409 }
2410 
2411 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2412                                           bool IsIncompleteFunction,
2413                                           bool IsThunk) {
2414 
2415   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2416     // If this is an intrinsic function, set the function's attributes
2417     // to the intrinsic's attributes.
2418     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2419     return;
2420   }
2421 
2422   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2423 
2424   if (!IsIncompleteFunction)
2425     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2426                               IsThunk);
2427 
2428   // Add the Returned attribute for "this", except for iOS 5 and earlier
2429   // where substantial code, including the libstdc++ dylib, was compiled with
2430   // GCC and does not actually return "this".
2431   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2432       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2433     assert(!F->arg_empty() &&
2434            F->arg_begin()->getType()
2435              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2436            "unexpected this return");
2437     F->addParamAttr(0, llvm::Attribute::Returned);
2438   }
2439 
2440   // Only a few attributes are set on declarations; these may later be
2441   // overridden by a definition.
2442 
2443   setLinkageForGV(F, FD);
2444   setGVProperties(F, FD);
2445 
2446   // Setup target-specific attributes.
2447   if (!IsIncompleteFunction && F->isDeclaration())
2448     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2449 
2450   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2451     F->setSection(CSA->getName());
2452   else if (const auto *SA = FD->getAttr<SectionAttr>())
2453      F->setSection(SA->getName());
2454 
2455   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2456     if (EA->isError())
2457       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2458     else if (EA->isWarning())
2459       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2460   }
2461 
2462   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2463   if (FD->isInlineBuiltinDeclaration()) {
2464     const FunctionDecl *FDBody;
2465     bool HasBody = FD->hasBody(FDBody);
2466     (void)HasBody;
2467     assert(HasBody && "Inline builtin declarations should always have an "
2468                       "available body!");
2469     if (shouldEmitFunction(FDBody))
2470       F->addFnAttr(llvm::Attribute::NoBuiltin);
2471   }
2472 
2473   if (FD->isReplaceableGlobalAllocationFunction()) {
2474     // A replaceable global allocation function does not act like a builtin by
2475     // default, only if it is invoked by a new-expression or delete-expression.
2476     F->addFnAttr(llvm::Attribute::NoBuiltin);
2477   }
2478 
2479   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2480     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2481   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2482     if (MD->isVirtual())
2483       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2484 
2485   // Don't emit entries for function declarations in the cross-DSO mode. This
2486   // is handled with better precision by the receiving DSO. But if jump tables
2487   // are non-canonical then we need type metadata in order to produce the local
2488   // jump table.
2489   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2490       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2491     CreateFunctionTypeMetadataForIcall(FD, F);
2492 
2493   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2494     setKCFIType(FD, F);
2495 
2496   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2497     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2498 
2499   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2500     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2501 
2502   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2503     // Annotate the callback behavior as metadata:
2504     //  - The callback callee (as argument number).
2505     //  - The callback payloads (as argument numbers).
2506     llvm::LLVMContext &Ctx = F->getContext();
2507     llvm::MDBuilder MDB(Ctx);
2508 
2509     // The payload indices are all but the first one in the encoding. The first
2510     // identifies the callback callee.
2511     int CalleeIdx = *CB->encoding_begin();
2512     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2513     F->addMetadata(llvm::LLVMContext::MD_callback,
2514                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2515                                                CalleeIdx, PayloadIndices,
2516                                                /* VarArgsArePassed */ false)}));
2517   }
2518 }
2519 
2520 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2521   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2522          "Only globals with definition can force usage.");
2523   LLVMUsed.emplace_back(GV);
2524 }
2525 
2526 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2527   assert(!GV->isDeclaration() &&
2528          "Only globals with definition can force usage.");
2529   LLVMCompilerUsed.emplace_back(GV);
2530 }
2531 
2532 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2533   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2534          "Only globals with definition can force usage.");
2535   if (getTriple().isOSBinFormatELF())
2536     LLVMCompilerUsed.emplace_back(GV);
2537   else
2538     LLVMUsed.emplace_back(GV);
2539 }
2540 
2541 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2542                      std::vector<llvm::WeakTrackingVH> &List) {
2543   // Don't create llvm.used if there is no need.
2544   if (List.empty())
2545     return;
2546 
2547   // Convert List to what ConstantArray needs.
2548   SmallVector<llvm::Constant*, 8> UsedArray;
2549   UsedArray.resize(List.size());
2550   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2551     UsedArray[i] =
2552         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2553             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2554   }
2555 
2556   if (UsedArray.empty())
2557     return;
2558   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2559 
2560   auto *GV = new llvm::GlobalVariable(
2561       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2562       llvm::ConstantArray::get(ATy, UsedArray), Name);
2563 
2564   GV->setSection("llvm.metadata");
2565 }
2566 
2567 void CodeGenModule::emitLLVMUsed() {
2568   emitUsed(*this, "llvm.used", LLVMUsed);
2569   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2570 }
2571 
2572 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2573   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2574   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2575 }
2576 
2577 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2578   llvm::SmallString<32> Opt;
2579   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2580   if (Opt.empty())
2581     return;
2582   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2583   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2584 }
2585 
2586 void CodeGenModule::AddDependentLib(StringRef Lib) {
2587   auto &C = getLLVMContext();
2588   if (getTarget().getTriple().isOSBinFormatELF()) {
2589       ELFDependentLibraries.push_back(
2590         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2591     return;
2592   }
2593 
2594   llvm::SmallString<24> Opt;
2595   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2596   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2597   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2598 }
2599 
2600 /// Add link options implied by the given module, including modules
2601 /// it depends on, using a postorder walk.
2602 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2603                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2604                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2605   // Import this module's parent.
2606   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2607     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2608   }
2609 
2610   // Import this module's dependencies.
2611   for (Module *Import : llvm::reverse(Mod->Imports)) {
2612     if (Visited.insert(Import).second)
2613       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2614   }
2615 
2616   // Add linker options to link against the libraries/frameworks
2617   // described by this module.
2618   llvm::LLVMContext &Context = CGM.getLLVMContext();
2619   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2620 
2621   // For modules that use export_as for linking, use that module
2622   // name instead.
2623   if (Mod->UseExportAsModuleLinkName)
2624     return;
2625 
2626   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2627     // Link against a framework.  Frameworks are currently Darwin only, so we
2628     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2629     if (LL.IsFramework) {
2630       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2631                                  llvm::MDString::get(Context, LL.Library)};
2632 
2633       Metadata.push_back(llvm::MDNode::get(Context, Args));
2634       continue;
2635     }
2636 
2637     // Link against a library.
2638     if (IsELF) {
2639       llvm::Metadata *Args[2] = {
2640           llvm::MDString::get(Context, "lib"),
2641           llvm::MDString::get(Context, LL.Library),
2642       };
2643       Metadata.push_back(llvm::MDNode::get(Context, Args));
2644     } else {
2645       llvm::SmallString<24> Opt;
2646       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2647       auto *OptString = llvm::MDString::get(Context, Opt);
2648       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2649     }
2650   }
2651 }
2652 
2653 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2654   // Emit the initializers in the order that sub-modules appear in the
2655   // source, first Global Module Fragments, if present.
2656   if (auto GMF = Primary->getGlobalModuleFragment()) {
2657     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2658       if (isa<ImportDecl>(D))
2659         continue;
2660       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2661       EmitTopLevelDecl(D);
2662     }
2663   }
2664   // Second any associated with the module, itself.
2665   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2666     // Skip import decls, the inits for those are called explicitly.
2667     if (isa<ImportDecl>(D))
2668       continue;
2669     EmitTopLevelDecl(D);
2670   }
2671   // Third any associated with the Privat eMOdule Fragment, if present.
2672   if (auto PMF = Primary->getPrivateModuleFragment()) {
2673     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2674       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2675       EmitTopLevelDecl(D);
2676     }
2677   }
2678 }
2679 
2680 void CodeGenModule::EmitModuleLinkOptions() {
2681   // Collect the set of all of the modules we want to visit to emit link
2682   // options, which is essentially the imported modules and all of their
2683   // non-explicit child modules.
2684   llvm::SetVector<clang::Module *> LinkModules;
2685   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2686   SmallVector<clang::Module *, 16> Stack;
2687 
2688   // Seed the stack with imported modules.
2689   for (Module *M : ImportedModules) {
2690     // Do not add any link flags when an implementation TU of a module imports
2691     // a header of that same module.
2692     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2693         !getLangOpts().isCompilingModule())
2694       continue;
2695     if (Visited.insert(M).second)
2696       Stack.push_back(M);
2697   }
2698 
2699   // Find all of the modules to import, making a little effort to prune
2700   // non-leaf modules.
2701   while (!Stack.empty()) {
2702     clang::Module *Mod = Stack.pop_back_val();
2703 
2704     bool AnyChildren = false;
2705 
2706     // Visit the submodules of this module.
2707     for (const auto &SM : Mod->submodules()) {
2708       // Skip explicit children; they need to be explicitly imported to be
2709       // linked against.
2710       if (SM->IsExplicit)
2711         continue;
2712 
2713       if (Visited.insert(SM).second) {
2714         Stack.push_back(SM);
2715         AnyChildren = true;
2716       }
2717     }
2718 
2719     // We didn't find any children, so add this module to the list of
2720     // modules to link against.
2721     if (!AnyChildren) {
2722       LinkModules.insert(Mod);
2723     }
2724   }
2725 
2726   // Add link options for all of the imported modules in reverse topological
2727   // order.  We don't do anything to try to order import link flags with respect
2728   // to linker options inserted by things like #pragma comment().
2729   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2730   Visited.clear();
2731   for (Module *M : LinkModules)
2732     if (Visited.insert(M).second)
2733       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2734   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2735   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2736 
2737   // Add the linker options metadata flag.
2738   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2739   for (auto *MD : LinkerOptionsMetadata)
2740     NMD->addOperand(MD);
2741 }
2742 
2743 void CodeGenModule::EmitDeferred() {
2744   // Emit deferred declare target declarations.
2745   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2746     getOpenMPRuntime().emitDeferredTargetDecls();
2747 
2748   // Emit code for any potentially referenced deferred decls.  Since a
2749   // previously unused static decl may become used during the generation of code
2750   // for a static function, iterate until no changes are made.
2751 
2752   if (!DeferredVTables.empty()) {
2753     EmitDeferredVTables();
2754 
2755     // Emitting a vtable doesn't directly cause more vtables to
2756     // become deferred, although it can cause functions to be
2757     // emitted that then need those vtables.
2758     assert(DeferredVTables.empty());
2759   }
2760 
2761   // Emit CUDA/HIP static device variables referenced by host code only.
2762   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2763   // needed for further handling.
2764   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2765     llvm::append_range(DeferredDeclsToEmit,
2766                        getContext().CUDADeviceVarODRUsedByHost);
2767 
2768   // Stop if we're out of both deferred vtables and deferred declarations.
2769   if (DeferredDeclsToEmit.empty())
2770     return;
2771 
2772   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2773   // work, it will not interfere with this.
2774   std::vector<GlobalDecl> CurDeclsToEmit;
2775   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2776 
2777   for (GlobalDecl &D : CurDeclsToEmit) {
2778     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2779     // to get GlobalValue with exactly the type we need, not something that
2780     // might had been created for another decl with the same mangled name but
2781     // different type.
2782     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2783         GetAddrOfGlobal(D, ForDefinition));
2784 
2785     // In case of different address spaces, we may still get a cast, even with
2786     // IsForDefinition equal to true. Query mangled names table to get
2787     // GlobalValue.
2788     if (!GV)
2789       GV = GetGlobalValue(getMangledName(D));
2790 
2791     // Make sure GetGlobalValue returned non-null.
2792     assert(GV);
2793 
2794     // Check to see if we've already emitted this.  This is necessary
2795     // for a couple of reasons: first, decls can end up in the
2796     // deferred-decls queue multiple times, and second, decls can end
2797     // up with definitions in unusual ways (e.g. by an extern inline
2798     // function acquiring a strong function redefinition).  Just
2799     // ignore these cases.
2800     if (!GV->isDeclaration())
2801       continue;
2802 
2803     // If this is OpenMP, check if it is legal to emit this global normally.
2804     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2805       continue;
2806 
2807     // Otherwise, emit the definition and move on to the next one.
2808     EmitGlobalDefinition(D, GV);
2809 
2810     // If we found out that we need to emit more decls, do that recursively.
2811     // This has the advantage that the decls are emitted in a DFS and related
2812     // ones are close together, which is convenient for testing.
2813     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2814       EmitDeferred();
2815       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2816     }
2817   }
2818 }
2819 
2820 void CodeGenModule::EmitVTablesOpportunistically() {
2821   // Try to emit external vtables as available_externally if they have emitted
2822   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2823   // is not allowed to create new references to things that need to be emitted
2824   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2825 
2826   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2827          && "Only emit opportunistic vtables with optimizations");
2828 
2829   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2830     assert(getVTables().isVTableExternal(RD) &&
2831            "This queue should only contain external vtables");
2832     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2833       VTables.GenerateClassData(RD);
2834   }
2835   OpportunisticVTables.clear();
2836 }
2837 
2838 void CodeGenModule::EmitGlobalAnnotations() {
2839   if (Annotations.empty())
2840     return;
2841 
2842   // Create a new global variable for the ConstantStruct in the Module.
2843   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2844     Annotations[0]->getType(), Annotations.size()), Annotations);
2845   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2846                                       llvm::GlobalValue::AppendingLinkage,
2847                                       Array, "llvm.global.annotations");
2848   gv->setSection(AnnotationSection);
2849 }
2850 
2851 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2852   llvm::Constant *&AStr = AnnotationStrings[Str];
2853   if (AStr)
2854     return AStr;
2855 
2856   // Not found yet, create a new global.
2857   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2858   auto *gv = new llvm::GlobalVariable(
2859       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
2860       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
2861       ConstGlobalsPtrTy->getAddressSpace());
2862   gv->setSection(AnnotationSection);
2863   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2864   AStr = gv;
2865   return gv;
2866 }
2867 
2868 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2869   SourceManager &SM = getContext().getSourceManager();
2870   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2871   if (PLoc.isValid())
2872     return EmitAnnotationString(PLoc.getFilename());
2873   return EmitAnnotationString(SM.getBufferName(Loc));
2874 }
2875 
2876 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2877   SourceManager &SM = getContext().getSourceManager();
2878   PresumedLoc PLoc = SM.getPresumedLoc(L);
2879   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2880     SM.getExpansionLineNumber(L);
2881   return llvm::ConstantInt::get(Int32Ty, LineNo);
2882 }
2883 
2884 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2885   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2886   if (Exprs.empty())
2887     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
2888 
2889   llvm::FoldingSetNodeID ID;
2890   for (Expr *E : Exprs) {
2891     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2892   }
2893   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2894   if (Lookup)
2895     return Lookup;
2896 
2897   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2898   LLVMArgs.reserve(Exprs.size());
2899   ConstantEmitter ConstEmiter(*this);
2900   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2901     const auto *CE = cast<clang::ConstantExpr>(E);
2902     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2903                                     CE->getType());
2904   });
2905   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2906   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2907                                       llvm::GlobalValue::PrivateLinkage, Struct,
2908                                       ".args");
2909   GV->setSection(AnnotationSection);
2910   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2911   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2912 
2913   Lookup = Bitcasted;
2914   return Bitcasted;
2915 }
2916 
2917 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2918                                                 const AnnotateAttr *AA,
2919                                                 SourceLocation L) {
2920   // Get the globals for file name, annotation, and the line number.
2921   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2922                  *UnitGV = EmitAnnotationUnit(L),
2923                  *LineNoCst = EmitAnnotationLineNo(L),
2924                  *Args = EmitAnnotationArgs(AA);
2925 
2926   llvm::Constant *GVInGlobalsAS = GV;
2927   if (GV->getAddressSpace() !=
2928       getDataLayout().getDefaultGlobalsAddressSpace()) {
2929     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2930         GV, GV->getValueType()->getPointerTo(
2931                 getDataLayout().getDefaultGlobalsAddressSpace()));
2932   }
2933 
2934   // Create the ConstantStruct for the global annotation.
2935   llvm::Constant *Fields[] = {
2936       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2937       llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
2938       llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
2939       LineNoCst,
2940       Args,
2941   };
2942   return llvm::ConstantStruct::getAnon(Fields);
2943 }
2944 
2945 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2946                                          llvm::GlobalValue *GV) {
2947   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2948   // Get the struct elements for these annotations.
2949   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2950     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2951 }
2952 
2953 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2954                                        SourceLocation Loc) const {
2955   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2956   // NoSanitize by function name.
2957   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2958     return true;
2959   // NoSanitize by location. Check "mainfile" prefix.
2960   auto &SM = Context.getSourceManager();
2961   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2962   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2963     return true;
2964 
2965   // Check "src" prefix.
2966   if (Loc.isValid())
2967     return NoSanitizeL.containsLocation(Kind, Loc);
2968   // If location is unknown, this may be a compiler-generated function. Assume
2969   // it's located in the main file.
2970   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2971 }
2972 
2973 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2974                                        llvm::GlobalVariable *GV,
2975                                        SourceLocation Loc, QualType Ty,
2976                                        StringRef Category) const {
2977   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2978   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2979     return true;
2980   auto &SM = Context.getSourceManager();
2981   if (NoSanitizeL.containsMainFile(
2982           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2983     return true;
2984   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2985     return true;
2986 
2987   // Check global type.
2988   if (!Ty.isNull()) {
2989     // Drill down the array types: if global variable of a fixed type is
2990     // not sanitized, we also don't instrument arrays of them.
2991     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2992       Ty = AT->getElementType();
2993     Ty = Ty.getCanonicalType().getUnqualifiedType();
2994     // Only record types (classes, structs etc.) are ignored.
2995     if (Ty->isRecordType()) {
2996       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2997       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2998         return true;
2999     }
3000   }
3001   return false;
3002 }
3003 
3004 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3005                                    StringRef Category) const {
3006   const auto &XRayFilter = getContext().getXRayFilter();
3007   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3008   auto Attr = ImbueAttr::NONE;
3009   if (Loc.isValid())
3010     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3011   if (Attr == ImbueAttr::NONE)
3012     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3013   switch (Attr) {
3014   case ImbueAttr::NONE:
3015     return false;
3016   case ImbueAttr::ALWAYS:
3017     Fn->addFnAttr("function-instrument", "xray-always");
3018     break;
3019   case ImbueAttr::ALWAYS_ARG1:
3020     Fn->addFnAttr("function-instrument", "xray-always");
3021     Fn->addFnAttr("xray-log-args", "1");
3022     break;
3023   case ImbueAttr::NEVER:
3024     Fn->addFnAttr("function-instrument", "xray-never");
3025     break;
3026   }
3027   return true;
3028 }
3029 
3030 ProfileList::ExclusionType
3031 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3032                                               SourceLocation Loc) const {
3033   const auto &ProfileList = getContext().getProfileList();
3034   // If the profile list is empty, then instrument everything.
3035   if (ProfileList.isEmpty())
3036     return ProfileList::Allow;
3037   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3038   // First, check the function name.
3039   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3040     return *V;
3041   // Next, check the source location.
3042   if (Loc.isValid())
3043     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3044       return *V;
3045   // If location is unknown, this may be a compiler-generated function. Assume
3046   // it's located in the main file.
3047   auto &SM = Context.getSourceManager();
3048   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
3049     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3050       return *V;
3051   return ProfileList.getDefault(Kind);
3052 }
3053 
3054 ProfileList::ExclusionType
3055 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3056                                                  SourceLocation Loc) const {
3057   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3058   if (V != ProfileList::Allow)
3059     return V;
3060 
3061   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3062   if (NumGroups > 1) {
3063     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3064     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3065       return ProfileList::Skip;
3066   }
3067   return ProfileList::Allow;
3068 }
3069 
3070 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3071   // Never defer when EmitAllDecls is specified.
3072   if (LangOpts.EmitAllDecls)
3073     return true;
3074 
3075   if (CodeGenOpts.KeepStaticConsts) {
3076     const auto *VD = dyn_cast<VarDecl>(Global);
3077     if (VD && VD->getType().isConstQualified() &&
3078         VD->getStorageDuration() == SD_Static)
3079       return true;
3080   }
3081 
3082   return getContext().DeclMustBeEmitted(Global);
3083 }
3084 
3085 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3086   // In OpenMP 5.0 variables and function may be marked as
3087   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3088   // that they must be emitted on the host/device. To be sure we need to have
3089   // seen a declare target with an explicit mentioning of the function, we know
3090   // we have if the level of the declare target attribute is -1. Note that we
3091   // check somewhere else if we should emit this at all.
3092   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3093     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3094         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3095     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3096       return false;
3097   }
3098 
3099   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3100     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3101       // Implicit template instantiations may change linkage if they are later
3102       // explicitly instantiated, so they should not be emitted eagerly.
3103       return false;
3104   }
3105   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3106     if (Context.getInlineVariableDefinitionKind(VD) ==
3107         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3108       // A definition of an inline constexpr static data member may change
3109       // linkage later if it's redeclared outside the class.
3110       return false;
3111     if (CXX20ModuleInits && VD->getOwningModule() &&
3112         !VD->getOwningModule()->isModuleMapModule()) {
3113       // For CXX20, module-owned initializers need to be deferred, since it is
3114       // not known at this point if they will be run for the current module or
3115       // as part of the initializer for an imported one.
3116       return false;
3117     }
3118   }
3119   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3120   // codegen for global variables, because they may be marked as threadprivate.
3121   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3122       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3123       !isTypeConstant(Global->getType(), false) &&
3124       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3125     return false;
3126 
3127   return true;
3128 }
3129 
3130 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3131   StringRef Name = getMangledName(GD);
3132 
3133   // The UUID descriptor should be pointer aligned.
3134   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3135 
3136   // Look for an existing global.
3137   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3138     return ConstantAddress(GV, GV->getValueType(), Alignment);
3139 
3140   ConstantEmitter Emitter(*this);
3141   llvm::Constant *Init;
3142 
3143   APValue &V = GD->getAsAPValue();
3144   if (!V.isAbsent()) {
3145     // If possible, emit the APValue version of the initializer. In particular,
3146     // this gets the type of the constant right.
3147     Init = Emitter.emitForInitializer(
3148         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3149   } else {
3150     // As a fallback, directly construct the constant.
3151     // FIXME: This may get padding wrong under esoteric struct layout rules.
3152     // MSVC appears to create a complete type 'struct __s_GUID' that it
3153     // presumably uses to represent these constants.
3154     MSGuidDecl::Parts Parts = GD->getParts();
3155     llvm::Constant *Fields[4] = {
3156         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3157         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3158         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3159         llvm::ConstantDataArray::getRaw(
3160             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3161             Int8Ty)};
3162     Init = llvm::ConstantStruct::getAnon(Fields);
3163   }
3164 
3165   auto *GV = new llvm::GlobalVariable(
3166       getModule(), Init->getType(),
3167       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3168   if (supportsCOMDAT())
3169     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3170   setDSOLocal(GV);
3171 
3172   if (!V.isAbsent()) {
3173     Emitter.finalize(GV);
3174     return ConstantAddress(GV, GV->getValueType(), Alignment);
3175   }
3176 
3177   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3178   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3179       GV, Ty->getPointerTo(GV->getAddressSpace()));
3180   return ConstantAddress(Addr, Ty, Alignment);
3181 }
3182 
3183 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3184     const UnnamedGlobalConstantDecl *GCD) {
3185   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3186 
3187   llvm::GlobalVariable **Entry = nullptr;
3188   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3189   if (*Entry)
3190     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3191 
3192   ConstantEmitter Emitter(*this);
3193   llvm::Constant *Init;
3194 
3195   const APValue &V = GCD->getValue();
3196 
3197   assert(!V.isAbsent());
3198   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3199                                     GCD->getType());
3200 
3201   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3202                                       /*isConstant=*/true,
3203                                       llvm::GlobalValue::PrivateLinkage, Init,
3204                                       ".constant");
3205   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3206   GV->setAlignment(Alignment.getAsAlign());
3207 
3208   Emitter.finalize(GV);
3209 
3210   *Entry = GV;
3211   return ConstantAddress(GV, GV->getValueType(), Alignment);
3212 }
3213 
3214 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3215     const TemplateParamObjectDecl *TPO) {
3216   StringRef Name = getMangledName(TPO);
3217   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3218 
3219   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3220     return ConstantAddress(GV, GV->getValueType(), Alignment);
3221 
3222   ConstantEmitter Emitter(*this);
3223   llvm::Constant *Init = Emitter.emitForInitializer(
3224         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3225 
3226   if (!Init) {
3227     ErrorUnsupported(TPO, "template parameter object");
3228     return ConstantAddress::invalid();
3229   }
3230 
3231   auto *GV = new llvm::GlobalVariable(
3232       getModule(), Init->getType(),
3233       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3234   if (supportsCOMDAT())
3235     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3236   Emitter.finalize(GV);
3237 
3238   return ConstantAddress(GV, GV->getValueType(), Alignment);
3239 }
3240 
3241 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3242   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3243   assert(AA && "No alias?");
3244 
3245   CharUnits Alignment = getContext().getDeclAlign(VD);
3246   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3247 
3248   // See if there is already something with the target's name in the module.
3249   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3250   if (Entry) {
3251     unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
3252     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3253     return ConstantAddress(Ptr, DeclTy, Alignment);
3254   }
3255 
3256   llvm::Constant *Aliasee;
3257   if (isa<llvm::FunctionType>(DeclTy))
3258     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3259                                       GlobalDecl(cast<FunctionDecl>(VD)),
3260                                       /*ForVTable=*/false);
3261   else
3262     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3263                                     nullptr);
3264 
3265   auto *F = cast<llvm::GlobalValue>(Aliasee);
3266   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3267   WeakRefReferences.insert(F);
3268 
3269   return ConstantAddress(Aliasee, DeclTy, Alignment);
3270 }
3271 
3272 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3273   const auto *Global = cast<ValueDecl>(GD.getDecl());
3274 
3275   // Weak references don't produce any output by themselves.
3276   if (Global->hasAttr<WeakRefAttr>())
3277     return;
3278 
3279   // If this is an alias definition (which otherwise looks like a declaration)
3280   // emit it now.
3281   if (Global->hasAttr<AliasAttr>())
3282     return EmitAliasDefinition(GD);
3283 
3284   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3285   if (Global->hasAttr<IFuncAttr>())
3286     return emitIFuncDefinition(GD);
3287 
3288   // If this is a cpu_dispatch multiversion function, emit the resolver.
3289   if (Global->hasAttr<CPUDispatchAttr>())
3290     return emitCPUDispatchDefinition(GD);
3291 
3292   // If this is CUDA, be selective about which declarations we emit.
3293   if (LangOpts.CUDA) {
3294     if (LangOpts.CUDAIsDevice) {
3295       if (!Global->hasAttr<CUDADeviceAttr>() &&
3296           !Global->hasAttr<CUDAGlobalAttr>() &&
3297           !Global->hasAttr<CUDAConstantAttr>() &&
3298           !Global->hasAttr<CUDASharedAttr>() &&
3299           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3300           !Global->getType()->isCUDADeviceBuiltinTextureType())
3301         return;
3302     } else {
3303       // We need to emit host-side 'shadows' for all global
3304       // device-side variables because the CUDA runtime needs their
3305       // size and host-side address in order to provide access to
3306       // their device-side incarnations.
3307 
3308       // So device-only functions are the only things we skip.
3309       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3310           Global->hasAttr<CUDADeviceAttr>())
3311         return;
3312 
3313       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3314              "Expected Variable or Function");
3315     }
3316   }
3317 
3318   if (LangOpts.OpenMP) {
3319     // If this is OpenMP, check if it is legal to emit this global normally.
3320     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3321       return;
3322     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3323       if (MustBeEmitted(Global))
3324         EmitOMPDeclareReduction(DRD);
3325       return;
3326     }
3327     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3328       if (MustBeEmitted(Global))
3329         EmitOMPDeclareMapper(DMD);
3330       return;
3331     }
3332   }
3333 
3334   // Ignore declarations, they will be emitted on their first use.
3335   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3336     // Forward declarations are emitted lazily on first use.
3337     if (!FD->doesThisDeclarationHaveABody()) {
3338       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3339         return;
3340 
3341       StringRef MangledName = getMangledName(GD);
3342 
3343       // Compute the function info and LLVM type.
3344       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3345       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3346 
3347       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3348                               /*DontDefer=*/false);
3349       return;
3350     }
3351   } else {
3352     const auto *VD = cast<VarDecl>(Global);
3353     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3354     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3355         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3356       if (LangOpts.OpenMP) {
3357         // Emit declaration of the must-be-emitted declare target variable.
3358         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3359                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3360           bool UnifiedMemoryEnabled =
3361               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3362           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3363                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3364               !UnifiedMemoryEnabled) {
3365             (void)GetAddrOfGlobalVar(VD);
3366           } else {
3367             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3368                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3369                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3370                      UnifiedMemoryEnabled)) &&
3371                    "Link clause or to clause with unified memory expected.");
3372             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3373           }
3374 
3375           return;
3376         }
3377       }
3378       // If this declaration may have caused an inline variable definition to
3379       // change linkage, make sure that it's emitted.
3380       if (Context.getInlineVariableDefinitionKind(VD) ==
3381           ASTContext::InlineVariableDefinitionKind::Strong)
3382         GetAddrOfGlobalVar(VD);
3383       return;
3384     }
3385   }
3386 
3387   // Defer code generation to first use when possible, e.g. if this is an inline
3388   // function. If the global must always be emitted, do it eagerly if possible
3389   // to benefit from cache locality.
3390   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3391     // Emit the definition if it can't be deferred.
3392     EmitGlobalDefinition(GD);
3393     return;
3394   }
3395 
3396   // If we're deferring emission of a C++ variable with an
3397   // initializer, remember the order in which it appeared in the file.
3398   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3399       cast<VarDecl>(Global)->hasInit()) {
3400     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3401     CXXGlobalInits.push_back(nullptr);
3402   }
3403 
3404   StringRef MangledName = getMangledName(GD);
3405   if (GetGlobalValue(MangledName) != nullptr) {
3406     // The value has already been used and should therefore be emitted.
3407     addDeferredDeclToEmit(GD);
3408   } else if (MustBeEmitted(Global)) {
3409     // The value must be emitted, but cannot be emitted eagerly.
3410     assert(!MayBeEmittedEagerly(Global));
3411     addDeferredDeclToEmit(GD);
3412     EmittedDeferredDecls[MangledName] = GD;
3413   } else {
3414     // Otherwise, remember that we saw a deferred decl with this name.  The
3415     // first use of the mangled name will cause it to move into
3416     // DeferredDeclsToEmit.
3417     DeferredDecls[MangledName] = GD;
3418   }
3419 }
3420 
3421 // Check if T is a class type with a destructor that's not dllimport.
3422 static bool HasNonDllImportDtor(QualType T) {
3423   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3424     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3425       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3426         return true;
3427 
3428   return false;
3429 }
3430 
3431 namespace {
3432   struct FunctionIsDirectlyRecursive
3433       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3434     const StringRef Name;
3435     const Builtin::Context &BI;
3436     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3437         : Name(N), BI(C) {}
3438 
3439     bool VisitCallExpr(const CallExpr *E) {
3440       const FunctionDecl *FD = E->getDirectCallee();
3441       if (!FD)
3442         return false;
3443       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3444       if (Attr && Name == Attr->getLabel())
3445         return true;
3446       unsigned BuiltinID = FD->getBuiltinID();
3447       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3448         return false;
3449       StringRef BuiltinName = BI.getName(BuiltinID);
3450       if (BuiltinName.startswith("__builtin_") &&
3451           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3452         return true;
3453       }
3454       return false;
3455     }
3456 
3457     bool VisitStmt(const Stmt *S) {
3458       for (const Stmt *Child : S->children())
3459         if (Child && this->Visit(Child))
3460           return true;
3461       return false;
3462     }
3463   };
3464 
3465   // Make sure we're not referencing non-imported vars or functions.
3466   struct DLLImportFunctionVisitor
3467       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3468     bool SafeToInline = true;
3469 
3470     bool shouldVisitImplicitCode() const { return true; }
3471 
3472     bool VisitVarDecl(VarDecl *VD) {
3473       if (VD->getTLSKind()) {
3474         // A thread-local variable cannot be imported.
3475         SafeToInline = false;
3476         return SafeToInline;
3477       }
3478 
3479       // A variable definition might imply a destructor call.
3480       if (VD->isThisDeclarationADefinition())
3481         SafeToInline = !HasNonDllImportDtor(VD->getType());
3482 
3483       return SafeToInline;
3484     }
3485 
3486     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3487       if (const auto *D = E->getTemporary()->getDestructor())
3488         SafeToInline = D->hasAttr<DLLImportAttr>();
3489       return SafeToInline;
3490     }
3491 
3492     bool VisitDeclRefExpr(DeclRefExpr *E) {
3493       ValueDecl *VD = E->getDecl();
3494       if (isa<FunctionDecl>(VD))
3495         SafeToInline = VD->hasAttr<DLLImportAttr>();
3496       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3497         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3498       return SafeToInline;
3499     }
3500 
3501     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3502       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3503       return SafeToInline;
3504     }
3505 
3506     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3507       CXXMethodDecl *M = E->getMethodDecl();
3508       if (!M) {
3509         // Call through a pointer to member function. This is safe to inline.
3510         SafeToInline = true;
3511       } else {
3512         SafeToInline = M->hasAttr<DLLImportAttr>();
3513       }
3514       return SafeToInline;
3515     }
3516 
3517     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3518       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3519       return SafeToInline;
3520     }
3521 
3522     bool VisitCXXNewExpr(CXXNewExpr *E) {
3523       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3524       return SafeToInline;
3525     }
3526   };
3527 }
3528 
3529 // isTriviallyRecursive - Check if this function calls another
3530 // decl that, because of the asm attribute or the other decl being a builtin,
3531 // ends up pointing to itself.
3532 bool
3533 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3534   StringRef Name;
3535   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3536     // asm labels are a special kind of mangling we have to support.
3537     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3538     if (!Attr)
3539       return false;
3540     Name = Attr->getLabel();
3541   } else {
3542     Name = FD->getName();
3543   }
3544 
3545   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3546   const Stmt *Body = FD->getBody();
3547   return Body ? Walker.Visit(Body) : false;
3548 }
3549 
3550 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3551   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3552     return true;
3553   const auto *F = cast<FunctionDecl>(GD.getDecl());
3554   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3555     return false;
3556 
3557   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3558     // Check whether it would be safe to inline this dllimport function.
3559     DLLImportFunctionVisitor Visitor;
3560     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3561     if (!Visitor.SafeToInline)
3562       return false;
3563 
3564     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3565       // Implicit destructor invocations aren't captured in the AST, so the
3566       // check above can't see them. Check for them manually here.
3567       for (const Decl *Member : Dtor->getParent()->decls())
3568         if (isa<FieldDecl>(Member))
3569           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3570             return false;
3571       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3572         if (HasNonDllImportDtor(B.getType()))
3573           return false;
3574     }
3575   }
3576 
3577   // Inline builtins declaration must be emitted. They often are fortified
3578   // functions.
3579   if (F->isInlineBuiltinDeclaration())
3580     return true;
3581 
3582   // PR9614. Avoid cases where the source code is lying to us. An available
3583   // externally function should have an equivalent function somewhere else,
3584   // but a function that calls itself through asm label/`__builtin_` trickery is
3585   // clearly not equivalent to the real implementation.
3586   // This happens in glibc's btowc and in some configure checks.
3587   return !isTriviallyRecursive(F);
3588 }
3589 
3590 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3591   return CodeGenOpts.OptimizationLevel > 0;
3592 }
3593 
3594 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3595                                                        llvm::GlobalValue *GV) {
3596   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3597 
3598   if (FD->isCPUSpecificMultiVersion()) {
3599     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3600     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3601       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3602   } else if (FD->isTargetClonesMultiVersion()) {
3603     auto *Clone = FD->getAttr<TargetClonesAttr>();
3604     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3605       if (Clone->isFirstOfVersion(I))
3606         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3607     // Ensure that the resolver function is also emitted.
3608     GetOrCreateMultiVersionResolver(GD);
3609   } else
3610     EmitGlobalFunctionDefinition(GD, GV);
3611 }
3612 
3613 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3614   const auto *D = cast<ValueDecl>(GD.getDecl());
3615 
3616   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3617                                  Context.getSourceManager(),
3618                                  "Generating code for declaration");
3619 
3620   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3621     // At -O0, don't generate IR for functions with available_externally
3622     // linkage.
3623     if (!shouldEmitFunction(GD))
3624       return;
3625 
3626     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3627       std::string Name;
3628       llvm::raw_string_ostream OS(Name);
3629       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3630                                /*Qualified=*/true);
3631       return Name;
3632     });
3633 
3634     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3635       // Make sure to emit the definition(s) before we emit the thunks.
3636       // This is necessary for the generation of certain thunks.
3637       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3638         ABI->emitCXXStructor(GD);
3639       else if (FD->isMultiVersion())
3640         EmitMultiVersionFunctionDefinition(GD, GV);
3641       else
3642         EmitGlobalFunctionDefinition(GD, GV);
3643 
3644       if (Method->isVirtual())
3645         getVTables().EmitThunks(GD);
3646 
3647       return;
3648     }
3649 
3650     if (FD->isMultiVersion())
3651       return EmitMultiVersionFunctionDefinition(GD, GV);
3652     return EmitGlobalFunctionDefinition(GD, GV);
3653   }
3654 
3655   if (const auto *VD = dyn_cast<VarDecl>(D))
3656     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3657 
3658   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3659 }
3660 
3661 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3662                                                       llvm::Function *NewFn);
3663 
3664 static unsigned
3665 TargetMVPriority(const TargetInfo &TI,
3666                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3667   unsigned Priority = 0;
3668   unsigned NumFeatures = 0;
3669   for (StringRef Feat : RO.Conditions.Features) {
3670     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3671     NumFeatures++;
3672   }
3673 
3674   if (!RO.Conditions.Architecture.empty())
3675     Priority = std::max(
3676         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3677 
3678   Priority += TI.multiVersionFeatureCost() * NumFeatures;
3679 
3680   return Priority;
3681 }
3682 
3683 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3684 // TU can forward declare the function without causing problems.  Particularly
3685 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3686 // work with internal linkage functions, so that the same function name can be
3687 // used with internal linkage in multiple TUs.
3688 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3689                                                        GlobalDecl GD) {
3690   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3691   if (FD->getFormalLinkage() == InternalLinkage)
3692     return llvm::GlobalValue::InternalLinkage;
3693   return llvm::GlobalValue::WeakODRLinkage;
3694 }
3695 
3696 void CodeGenModule::emitMultiVersionFunctions() {
3697   std::vector<GlobalDecl> MVFuncsToEmit;
3698   MultiVersionFuncs.swap(MVFuncsToEmit);
3699   for (GlobalDecl GD : MVFuncsToEmit) {
3700     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3701     assert(FD && "Expected a FunctionDecl");
3702 
3703     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3704     if (FD->isTargetMultiVersion()) {
3705       getContext().forEachMultiversionedFunctionVersion(
3706           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3707             GlobalDecl CurGD{
3708                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3709             StringRef MangledName = getMangledName(CurGD);
3710             llvm::Constant *Func = GetGlobalValue(MangledName);
3711             if (!Func) {
3712               if (CurFD->isDefined()) {
3713                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3714                 Func = GetGlobalValue(MangledName);
3715               } else {
3716                 const CGFunctionInfo &FI =
3717                     getTypes().arrangeGlobalDeclaration(GD);
3718                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3719                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3720                                          /*DontDefer=*/false, ForDefinition);
3721               }
3722               assert(Func && "This should have just been created");
3723             }
3724             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
3725               const auto *TA = CurFD->getAttr<TargetAttr>();
3726               llvm::SmallVector<StringRef, 8> Feats;
3727               TA->getAddedFeatures(Feats);
3728               Options.emplace_back(cast<llvm::Function>(Func),
3729                                    TA->getArchitecture(), Feats);
3730             } else {
3731               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
3732               llvm::SmallVector<StringRef, 8> Feats;
3733               TVA->getFeatures(Feats);
3734               Options.emplace_back(cast<llvm::Function>(Func),
3735                                    /*Architecture*/ "", Feats);
3736             }
3737           });
3738     } else if (FD->isTargetClonesMultiVersion()) {
3739       const auto *TC = FD->getAttr<TargetClonesAttr>();
3740       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3741            ++VersionIndex) {
3742         if (!TC->isFirstOfVersion(VersionIndex))
3743           continue;
3744         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3745                          VersionIndex};
3746         StringRef Version = TC->getFeatureStr(VersionIndex);
3747         StringRef MangledName = getMangledName(CurGD);
3748         llvm::Constant *Func = GetGlobalValue(MangledName);
3749         if (!Func) {
3750           if (FD->isDefined()) {
3751             EmitGlobalFunctionDefinition(CurGD, nullptr);
3752             Func = GetGlobalValue(MangledName);
3753           } else {
3754             const CGFunctionInfo &FI =
3755                 getTypes().arrangeGlobalDeclaration(CurGD);
3756             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3757             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3758                                      /*DontDefer=*/false, ForDefinition);
3759           }
3760           assert(Func && "This should have just been created");
3761         }
3762 
3763         StringRef Architecture;
3764         llvm::SmallVector<StringRef, 1> Feature;
3765 
3766         if (getTarget().getTriple().isAArch64()) {
3767           if (Version != "default") {
3768             llvm::SmallVector<StringRef, 8> VerFeats;
3769             Version.split(VerFeats, "+");
3770             for (auto &CurFeat : VerFeats)
3771               Feature.push_back(CurFeat.trim());
3772           }
3773         } else {
3774           if (Version.startswith("arch="))
3775             Architecture = Version.drop_front(sizeof("arch=") - 1);
3776           else if (Version != "default")
3777             Feature.push_back(Version);
3778         }
3779 
3780         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3781       }
3782     } else {
3783       assert(0 && "Expected a target or target_clones multiversion function");
3784       continue;
3785     }
3786 
3787     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3788     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3789       ResolverConstant = IFunc->getResolver();
3790     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3791 
3792     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3793 
3794     if (supportsCOMDAT())
3795       ResolverFunc->setComdat(
3796           getModule().getOrInsertComdat(ResolverFunc->getName()));
3797 
3798     const TargetInfo &TI = getTarget();
3799     llvm::stable_sort(
3800         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3801                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3802           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3803         });
3804     CodeGenFunction CGF(*this);
3805     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3806   }
3807 
3808   // Ensure that any additions to the deferred decls list caused by emitting a
3809   // variant are emitted.  This can happen when the variant itself is inline and
3810   // calls a function without linkage.
3811   if (!MVFuncsToEmit.empty())
3812     EmitDeferred();
3813 
3814   // Ensure that any additions to the multiversion funcs list from either the
3815   // deferred decls or the multiversion functions themselves are emitted.
3816   if (!MultiVersionFuncs.empty())
3817     emitMultiVersionFunctions();
3818 }
3819 
3820 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3821   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3822   assert(FD && "Not a FunctionDecl?");
3823   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3824   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3825   assert(DD && "Not a cpu_dispatch Function?");
3826 
3827   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3828   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3829 
3830   StringRef ResolverName = getMangledName(GD);
3831   UpdateMultiVersionNames(GD, FD, ResolverName);
3832 
3833   llvm::Type *ResolverType;
3834   GlobalDecl ResolverGD;
3835   if (getTarget().supportsIFunc()) {
3836     ResolverType = llvm::FunctionType::get(
3837         llvm::PointerType::get(DeclTy,
3838                                getTypes().getTargetAddressSpace(FD->getType())),
3839         false);
3840   }
3841   else {
3842     ResolverType = DeclTy;
3843     ResolverGD = GD;
3844   }
3845 
3846   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3847       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3848   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3849   if (supportsCOMDAT())
3850     ResolverFunc->setComdat(
3851         getModule().getOrInsertComdat(ResolverFunc->getName()));
3852 
3853   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3854   const TargetInfo &Target = getTarget();
3855   unsigned Index = 0;
3856   for (const IdentifierInfo *II : DD->cpus()) {
3857     // Get the name of the target function so we can look it up/create it.
3858     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3859                               getCPUSpecificMangling(*this, II->getName());
3860 
3861     llvm::Constant *Func = GetGlobalValue(MangledName);
3862 
3863     if (!Func) {
3864       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3865       if (ExistingDecl.getDecl() &&
3866           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3867         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3868         Func = GetGlobalValue(MangledName);
3869       } else {
3870         if (!ExistingDecl.getDecl())
3871           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3872 
3873       Func = GetOrCreateLLVMFunction(
3874           MangledName, DeclTy, ExistingDecl,
3875           /*ForVTable=*/false, /*DontDefer=*/true,
3876           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3877       }
3878     }
3879 
3880     llvm::SmallVector<StringRef, 32> Features;
3881     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3882     llvm::transform(Features, Features.begin(),
3883                     [](StringRef Str) { return Str.substr(1); });
3884     llvm::erase_if(Features, [&Target](StringRef Feat) {
3885       return !Target.validateCpuSupports(Feat);
3886     });
3887     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3888     ++Index;
3889   }
3890 
3891   llvm::stable_sort(
3892       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3893                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3894         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3895                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3896       });
3897 
3898   // If the list contains multiple 'default' versions, such as when it contains
3899   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3900   // always run on at least a 'pentium'). We do this by deleting the 'least
3901   // advanced' (read, lowest mangling letter).
3902   while (Options.size() > 1 &&
3903          llvm::X86::getCpuSupportsMask(
3904              (Options.end() - 2)->Conditions.Features) == 0) {
3905     StringRef LHSName = (Options.end() - 2)->Function->getName();
3906     StringRef RHSName = (Options.end() - 1)->Function->getName();
3907     if (LHSName.compare(RHSName) < 0)
3908       Options.erase(Options.end() - 2);
3909     else
3910       Options.erase(Options.end() - 1);
3911   }
3912 
3913   CodeGenFunction CGF(*this);
3914   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3915 
3916   if (getTarget().supportsIFunc()) {
3917     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3918     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3919 
3920     // Fix up function declarations that were created for cpu_specific before
3921     // cpu_dispatch was known
3922     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3923       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3924       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3925                                            &getModule());
3926       GI->takeName(IFunc);
3927       IFunc->replaceAllUsesWith(GI);
3928       IFunc->eraseFromParent();
3929       IFunc = GI;
3930     }
3931 
3932     std::string AliasName = getMangledNameImpl(
3933         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3934     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3935     if (!AliasFunc) {
3936       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3937                                            &getModule());
3938       SetCommonAttributes(GD, GA);
3939     }
3940   }
3941 }
3942 
3943 /// If a dispatcher for the specified mangled name is not in the module, create
3944 /// and return an llvm Function with the specified type.
3945 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3946   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3947   assert(FD && "Not a FunctionDecl?");
3948 
3949   std::string MangledName =
3950       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3951 
3952   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3953   // a separate resolver).
3954   std::string ResolverName = MangledName;
3955   if (getTarget().supportsIFunc())
3956     ResolverName += ".ifunc";
3957   else if (FD->isTargetMultiVersion())
3958     ResolverName += ".resolver";
3959 
3960   // If the resolver has already been created, just return it.
3961   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3962     return ResolverGV;
3963 
3964   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3965   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3966 
3967   // The resolver needs to be created. For target and target_clones, defer
3968   // creation until the end of the TU.
3969   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3970     MultiVersionFuncs.push_back(GD);
3971 
3972   // For cpu_specific, don't create an ifunc yet because we don't know if the
3973   // cpu_dispatch will be emitted in this translation unit.
3974   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3975     llvm::Type *ResolverType = llvm::FunctionType::get(
3976         llvm::PointerType::get(DeclTy,
3977                                getTypes().getTargetAddressSpace(FD->getType())),
3978         false);
3979     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3980         MangledName + ".resolver", ResolverType, GlobalDecl{},
3981         /*ForVTable=*/false);
3982     llvm::GlobalIFunc *GIF =
3983         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3984                                   "", Resolver, &getModule());
3985     GIF->setName(ResolverName);
3986     SetCommonAttributes(FD, GIF);
3987 
3988     return GIF;
3989   }
3990 
3991   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3992       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3993   assert(isa<llvm::GlobalValue>(Resolver) &&
3994          "Resolver should be created for the first time");
3995   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3996   return Resolver;
3997 }
3998 
3999 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4000 /// module, create and return an llvm Function with the specified type. If there
4001 /// is something in the module with the specified name, return it potentially
4002 /// bitcasted to the right type.
4003 ///
4004 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4005 /// to set the attributes on the function when it is first created.
4006 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4007     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4008     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4009     ForDefinition_t IsForDefinition) {
4010   const Decl *D = GD.getDecl();
4011 
4012   // Any attempts to use a MultiVersion function should result in retrieving
4013   // the iFunc instead. Name Mangling will handle the rest of the changes.
4014   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4015     // For the device mark the function as one that should be emitted.
4016     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
4017         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4018         !DontDefer && !IsForDefinition) {
4019       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4020         GlobalDecl GDDef;
4021         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4022           GDDef = GlobalDecl(CD, GD.getCtorType());
4023         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4024           GDDef = GlobalDecl(DD, GD.getDtorType());
4025         else
4026           GDDef = GlobalDecl(FDDef);
4027         EmitGlobal(GDDef);
4028       }
4029     }
4030 
4031     if (FD->isMultiVersion()) {
4032       UpdateMultiVersionNames(GD, FD, MangledName);
4033       if (!IsForDefinition)
4034         return GetOrCreateMultiVersionResolver(GD);
4035     }
4036   }
4037 
4038   // Lookup the entry, lazily creating it if necessary.
4039   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4040   if (Entry) {
4041     if (WeakRefReferences.erase(Entry)) {
4042       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4043       if (FD && !FD->hasAttr<WeakAttr>())
4044         Entry->setLinkage(llvm::Function::ExternalLinkage);
4045     }
4046 
4047     // Handle dropped DLL attributes.
4048     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4049         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4050       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4051       setDSOLocal(Entry);
4052     }
4053 
4054     // If there are two attempts to define the same mangled name, issue an
4055     // error.
4056     if (IsForDefinition && !Entry->isDeclaration()) {
4057       GlobalDecl OtherGD;
4058       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4059       // to make sure that we issue an error only once.
4060       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4061           (GD.getCanonicalDecl().getDecl() !=
4062            OtherGD.getCanonicalDecl().getDecl()) &&
4063           DiagnosedConflictingDefinitions.insert(GD).second) {
4064         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4065             << MangledName;
4066         getDiags().Report(OtherGD.getDecl()->getLocation(),
4067                           diag::note_previous_definition);
4068       }
4069     }
4070 
4071     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4072         (Entry->getValueType() == Ty)) {
4073       return Entry;
4074     }
4075 
4076     // Make sure the result is of the correct type.
4077     // (If function is requested for a definition, we always need to create a new
4078     // function, not just return a bitcast.)
4079     if (!IsForDefinition)
4080       return llvm::ConstantExpr::getBitCast(
4081           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4082   }
4083 
4084   // This function doesn't have a complete type (for example, the return
4085   // type is an incomplete struct). Use a fake type instead, and make
4086   // sure not to try to set attributes.
4087   bool IsIncompleteFunction = false;
4088 
4089   llvm::FunctionType *FTy;
4090   if (isa<llvm::FunctionType>(Ty)) {
4091     FTy = cast<llvm::FunctionType>(Ty);
4092   } else {
4093     FTy = llvm::FunctionType::get(VoidTy, false);
4094     IsIncompleteFunction = true;
4095   }
4096 
4097   llvm::Function *F =
4098       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4099                              Entry ? StringRef() : MangledName, &getModule());
4100 
4101   // If we already created a function with the same mangled name (but different
4102   // type) before, take its name and add it to the list of functions to be
4103   // replaced with F at the end of CodeGen.
4104   //
4105   // This happens if there is a prototype for a function (e.g. "int f()") and
4106   // then a definition of a different type (e.g. "int f(int x)").
4107   if (Entry) {
4108     F->takeName(Entry);
4109 
4110     // This might be an implementation of a function without a prototype, in
4111     // which case, try to do special replacement of calls which match the new
4112     // prototype.  The really key thing here is that we also potentially drop
4113     // arguments from the call site so as to make a direct call, which makes the
4114     // inliner happier and suppresses a number of optimizer warnings (!) about
4115     // dropping arguments.
4116     if (!Entry->use_empty()) {
4117       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4118       Entry->removeDeadConstantUsers();
4119     }
4120 
4121     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4122         F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
4123     addGlobalValReplacement(Entry, BC);
4124   }
4125 
4126   assert(F->getName() == MangledName && "name was uniqued!");
4127   if (D)
4128     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4129   if (ExtraAttrs.hasFnAttrs()) {
4130     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4131     F->addFnAttrs(B);
4132   }
4133 
4134   if (!DontDefer) {
4135     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4136     // each other bottoming out with the base dtor.  Therefore we emit non-base
4137     // dtors on usage, even if there is no dtor definition in the TU.
4138     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4139         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4140                                            GD.getDtorType()))
4141       addDeferredDeclToEmit(GD);
4142 
4143     // This is the first use or definition of a mangled name.  If there is a
4144     // deferred decl with this name, remember that we need to emit it at the end
4145     // of the file.
4146     auto DDI = DeferredDecls.find(MangledName);
4147     if (DDI != DeferredDecls.end()) {
4148       // Move the potentially referenced deferred decl to the
4149       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4150       // don't need it anymore).
4151       addDeferredDeclToEmit(DDI->second);
4152       EmittedDeferredDecls[DDI->first] = DDI->second;
4153       DeferredDecls.erase(DDI);
4154 
4155       // Otherwise, there are cases we have to worry about where we're
4156       // using a declaration for which we must emit a definition but where
4157       // we might not find a top-level definition:
4158       //   - member functions defined inline in their classes
4159       //   - friend functions defined inline in some class
4160       //   - special member functions with implicit definitions
4161       // If we ever change our AST traversal to walk into class methods,
4162       // this will be unnecessary.
4163       //
4164       // We also don't emit a definition for a function if it's going to be an
4165       // entry in a vtable, unless it's already marked as used.
4166     } else if (getLangOpts().CPlusPlus && D) {
4167       // Look for a declaration that's lexically in a record.
4168       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4169            FD = FD->getPreviousDecl()) {
4170         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4171           if (FD->doesThisDeclarationHaveABody()) {
4172             addDeferredDeclToEmit(GD.getWithDecl(FD));
4173             break;
4174           }
4175         }
4176       }
4177     }
4178   }
4179 
4180   // Make sure the result is of the requested type.
4181   if (!IsIncompleteFunction) {
4182     assert(F->getFunctionType() == Ty);
4183     return F;
4184   }
4185 
4186   return llvm::ConstantExpr::getBitCast(F,
4187                                         Ty->getPointerTo(F->getAddressSpace()));
4188 }
4189 
4190 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4191 /// non-null, then this function will use the specified type if it has to
4192 /// create it (this occurs when we see a definition of the function).
4193 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4194                                                  llvm::Type *Ty,
4195                                                  bool ForVTable,
4196                                                  bool DontDefer,
4197                                               ForDefinition_t IsForDefinition) {
4198   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4199          "consteval function should never be emitted");
4200   // If there was no specific requested type, just convert it now.
4201   if (!Ty) {
4202     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4203     Ty = getTypes().ConvertType(FD->getType());
4204   }
4205 
4206   // Devirtualized destructor calls may come through here instead of via
4207   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4208   // of the complete destructor when necessary.
4209   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4210     if (getTarget().getCXXABI().isMicrosoft() &&
4211         GD.getDtorType() == Dtor_Complete &&
4212         DD->getParent()->getNumVBases() == 0)
4213       GD = GlobalDecl(DD, Dtor_Base);
4214   }
4215 
4216   StringRef MangledName = getMangledName(GD);
4217   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4218                                     /*IsThunk=*/false, llvm::AttributeList(),
4219                                     IsForDefinition);
4220   // Returns kernel handle for HIP kernel stub function.
4221   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4222       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4223     auto *Handle = getCUDARuntime().getKernelHandle(
4224         cast<llvm::Function>(F->stripPointerCasts()), GD);
4225     if (IsForDefinition)
4226       return F;
4227     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4228   }
4229   return F;
4230 }
4231 
4232 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4233   llvm::GlobalValue *F =
4234       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4235 
4236   return llvm::ConstantExpr::getBitCast(
4237       llvm::NoCFIValue::get(F),
4238       llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace()));
4239 }
4240 
4241 static const FunctionDecl *
4242 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4243   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4244   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4245 
4246   IdentifierInfo &CII = C.Idents.get(Name);
4247   for (const auto *Result : DC->lookup(&CII))
4248     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4249       return FD;
4250 
4251   if (!C.getLangOpts().CPlusPlus)
4252     return nullptr;
4253 
4254   // Demangle the premangled name from getTerminateFn()
4255   IdentifierInfo &CXXII =
4256       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4257           ? C.Idents.get("terminate")
4258           : C.Idents.get(Name);
4259 
4260   for (const auto &N : {"__cxxabiv1", "std"}) {
4261     IdentifierInfo &NS = C.Idents.get(N);
4262     for (const auto *Result : DC->lookup(&NS)) {
4263       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4264       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4265         for (const auto *Result : LSD->lookup(&NS))
4266           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4267             break;
4268 
4269       if (ND)
4270         for (const auto *Result : ND->lookup(&CXXII))
4271           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4272             return FD;
4273     }
4274   }
4275 
4276   return nullptr;
4277 }
4278 
4279 /// CreateRuntimeFunction - Create a new runtime function with the specified
4280 /// type and name.
4281 llvm::FunctionCallee
4282 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4283                                      llvm::AttributeList ExtraAttrs, bool Local,
4284                                      bool AssumeConvergent) {
4285   if (AssumeConvergent) {
4286     ExtraAttrs =
4287         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4288   }
4289 
4290   llvm::Constant *C =
4291       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4292                               /*DontDefer=*/false, /*IsThunk=*/false,
4293                               ExtraAttrs);
4294 
4295   if (auto *F = dyn_cast<llvm::Function>(C)) {
4296     if (F->empty()) {
4297       F->setCallingConv(getRuntimeCC());
4298 
4299       // In Windows Itanium environments, try to mark runtime functions
4300       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4301       // will link their standard library statically or dynamically. Marking
4302       // functions imported when they are not imported can cause linker errors
4303       // and warnings.
4304       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4305           !getCodeGenOpts().LTOVisibilityPublicStd) {
4306         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4307         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4308           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4309           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4310         }
4311       }
4312       setDSOLocal(F);
4313     }
4314   }
4315 
4316   return {FTy, C};
4317 }
4318 
4319 /// isTypeConstant - Determine whether an object of this type can be emitted
4320 /// as a constant.
4321 ///
4322 /// If ExcludeCtor is true, the duration when the object's constructor runs
4323 /// will not be considered. The caller will need to verify that the object is
4324 /// not written to during its construction.
4325 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4326   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4327     return false;
4328 
4329   if (Context.getLangOpts().CPlusPlus) {
4330     if (const CXXRecordDecl *Record
4331           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4332       return ExcludeCtor && !Record->hasMutableFields() &&
4333              Record->hasTrivialDestructor();
4334   }
4335 
4336   return true;
4337 }
4338 
4339 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4340 /// create and return an llvm GlobalVariable with the specified type and address
4341 /// space. If there is something in the module with the specified name, return
4342 /// it potentially bitcasted to the right type.
4343 ///
4344 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4345 /// to set the attributes on the global when it is first created.
4346 ///
4347 /// If IsForDefinition is true, it is guaranteed that an actual global with
4348 /// type Ty will be returned, not conversion of a variable with the same
4349 /// mangled name but some other type.
4350 llvm::Constant *
4351 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4352                                      LangAS AddrSpace, const VarDecl *D,
4353                                      ForDefinition_t IsForDefinition) {
4354   // Lookup the entry, lazily creating it if necessary.
4355   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4356   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4357   if (Entry) {
4358     if (WeakRefReferences.erase(Entry)) {
4359       if (D && !D->hasAttr<WeakAttr>())
4360         Entry->setLinkage(llvm::Function::ExternalLinkage);
4361     }
4362 
4363     // Handle dropped DLL attributes.
4364     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4365         !shouldMapVisibilityToDLLExport(D))
4366       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4367 
4368     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4369       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4370 
4371     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4372       return Entry;
4373 
4374     // If there are two attempts to define the same mangled name, issue an
4375     // error.
4376     if (IsForDefinition && !Entry->isDeclaration()) {
4377       GlobalDecl OtherGD;
4378       const VarDecl *OtherD;
4379 
4380       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4381       // to make sure that we issue an error only once.
4382       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4383           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4384           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4385           OtherD->hasInit() &&
4386           DiagnosedConflictingDefinitions.insert(D).second) {
4387         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4388             << MangledName;
4389         getDiags().Report(OtherGD.getDecl()->getLocation(),
4390                           diag::note_previous_definition);
4391       }
4392     }
4393 
4394     // Make sure the result is of the correct type.
4395     if (Entry->getType()->getAddressSpace() != TargetAS) {
4396       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4397                                                   Ty->getPointerTo(TargetAS));
4398     }
4399 
4400     // (If global is requested for a definition, we always need to create a new
4401     // global, not just return a bitcast.)
4402     if (!IsForDefinition)
4403       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4404   }
4405 
4406   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4407 
4408   auto *GV = new llvm::GlobalVariable(
4409       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4410       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4411       getContext().getTargetAddressSpace(DAddrSpace));
4412 
4413   // If we already created a global with the same mangled name (but different
4414   // type) before, take its name and remove it from its parent.
4415   if (Entry) {
4416     GV->takeName(Entry);
4417 
4418     if (!Entry->use_empty()) {
4419       llvm::Constant *NewPtrForOldDecl =
4420           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4421       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4422     }
4423 
4424     Entry->eraseFromParent();
4425   }
4426 
4427   // This is the first use or definition of a mangled name.  If there is a
4428   // deferred decl with this name, remember that we need to emit it at the end
4429   // of the file.
4430   auto DDI = DeferredDecls.find(MangledName);
4431   if (DDI != DeferredDecls.end()) {
4432     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4433     // list, and remove it from DeferredDecls (since we don't need it anymore).
4434     addDeferredDeclToEmit(DDI->second);
4435     EmittedDeferredDecls[DDI->first] = DDI->second;
4436     DeferredDecls.erase(DDI);
4437   }
4438 
4439   // Handle things which are present even on external declarations.
4440   if (D) {
4441     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4442       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4443 
4444     // FIXME: This code is overly simple and should be merged with other global
4445     // handling.
4446     GV->setConstant(isTypeConstant(D->getType(), false));
4447 
4448     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4449 
4450     setLinkageForGV(GV, D);
4451 
4452     if (D->getTLSKind()) {
4453       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4454         CXXThreadLocals.push_back(D);
4455       setTLSMode(GV, *D);
4456     }
4457 
4458     setGVProperties(GV, D);
4459 
4460     // If required by the ABI, treat declarations of static data members with
4461     // inline initializers as definitions.
4462     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4463       EmitGlobalVarDefinition(D);
4464     }
4465 
4466     // Emit section information for extern variables.
4467     if (D->hasExternalStorage()) {
4468       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4469         GV->setSection(SA->getName());
4470     }
4471 
4472     // Handle XCore specific ABI requirements.
4473     if (getTriple().getArch() == llvm::Triple::xcore &&
4474         D->getLanguageLinkage() == CLanguageLinkage &&
4475         D->getType().isConstant(Context) &&
4476         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4477       GV->setSection(".cp.rodata");
4478 
4479     // Check if we a have a const declaration with an initializer, we may be
4480     // able to emit it as available_externally to expose it's value to the
4481     // optimizer.
4482     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4483         D->getType().isConstQualified() && !GV->hasInitializer() &&
4484         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4485       const auto *Record =
4486           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4487       bool HasMutableFields = Record && Record->hasMutableFields();
4488       if (!HasMutableFields) {
4489         const VarDecl *InitDecl;
4490         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4491         if (InitExpr) {
4492           ConstantEmitter emitter(*this);
4493           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4494           if (Init) {
4495             auto *InitType = Init->getType();
4496             if (GV->getValueType() != InitType) {
4497               // The type of the initializer does not match the definition.
4498               // This happens when an initializer has a different type from
4499               // the type of the global (because of padding at the end of a
4500               // structure for instance).
4501               GV->setName(StringRef());
4502               // Make a new global with the correct type, this is now guaranteed
4503               // to work.
4504               auto *NewGV = cast<llvm::GlobalVariable>(
4505                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4506                       ->stripPointerCasts());
4507 
4508               // Erase the old global, since it is no longer used.
4509               GV->eraseFromParent();
4510               GV = NewGV;
4511             } else {
4512               GV->setInitializer(Init);
4513               GV->setConstant(true);
4514               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4515             }
4516             emitter.finalize(GV);
4517           }
4518         }
4519       }
4520     }
4521   }
4522 
4523   if (GV->isDeclaration()) {
4524     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4525     // External HIP managed variables needed to be recorded for transformation
4526     // in both device and host compilations.
4527     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4528         D->hasExternalStorage())
4529       getCUDARuntime().handleVarRegistration(D, *GV);
4530   }
4531 
4532   if (D)
4533     SanitizerMD->reportGlobal(GV, *D);
4534 
4535   LangAS ExpectedAS =
4536       D ? D->getType().getAddressSpace()
4537         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4538   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4539   if (DAddrSpace != ExpectedAS) {
4540     return getTargetCodeGenInfo().performAddrSpaceCast(
4541         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4542   }
4543 
4544   return GV;
4545 }
4546 
4547 llvm::Constant *
4548 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4549   const Decl *D = GD.getDecl();
4550 
4551   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4552     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4553                                 /*DontDefer=*/false, IsForDefinition);
4554 
4555   if (isa<CXXMethodDecl>(D)) {
4556     auto FInfo =
4557         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4558     auto Ty = getTypes().GetFunctionType(*FInfo);
4559     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4560                              IsForDefinition);
4561   }
4562 
4563   if (isa<FunctionDecl>(D)) {
4564     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4565     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4566     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4567                              IsForDefinition);
4568   }
4569 
4570   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4571 }
4572 
4573 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4574     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4575     llvm::Align Alignment) {
4576   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4577   llvm::GlobalVariable *OldGV = nullptr;
4578 
4579   if (GV) {
4580     // Check if the variable has the right type.
4581     if (GV->getValueType() == Ty)
4582       return GV;
4583 
4584     // Because C++ name mangling, the only way we can end up with an already
4585     // existing global with the same name is if it has been declared extern "C".
4586     assert(GV->isDeclaration() && "Declaration has wrong type!");
4587     OldGV = GV;
4588   }
4589 
4590   // Create a new variable.
4591   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4592                                 Linkage, nullptr, Name);
4593 
4594   if (OldGV) {
4595     // Replace occurrences of the old variable if needed.
4596     GV->takeName(OldGV);
4597 
4598     if (!OldGV->use_empty()) {
4599       llvm::Constant *NewPtrForOldDecl =
4600       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4601       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4602     }
4603 
4604     OldGV->eraseFromParent();
4605   }
4606 
4607   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4608       !GV->hasAvailableExternallyLinkage())
4609     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4610 
4611   GV->setAlignment(Alignment);
4612 
4613   return GV;
4614 }
4615 
4616 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4617 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4618 /// then it will be created with the specified type instead of whatever the
4619 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4620 /// that an actual global with type Ty will be returned, not conversion of a
4621 /// variable with the same mangled name but some other type.
4622 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4623                                                   llvm::Type *Ty,
4624                                            ForDefinition_t IsForDefinition) {
4625   assert(D->hasGlobalStorage() && "Not a global variable");
4626   QualType ASTTy = D->getType();
4627   if (!Ty)
4628     Ty = getTypes().ConvertTypeForMem(ASTTy);
4629 
4630   StringRef MangledName = getMangledName(D);
4631   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4632                                IsForDefinition);
4633 }
4634 
4635 /// CreateRuntimeVariable - Create a new runtime global variable with the
4636 /// specified type and name.
4637 llvm::Constant *
4638 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4639                                      StringRef Name) {
4640   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4641                                                        : LangAS::Default;
4642   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4643   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4644   return Ret;
4645 }
4646 
4647 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4648   assert(!D->getInit() && "Cannot emit definite definitions here!");
4649 
4650   StringRef MangledName = getMangledName(D);
4651   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4652 
4653   // We already have a definition, not declaration, with the same mangled name.
4654   // Emitting of declaration is not required (and actually overwrites emitted
4655   // definition).
4656   if (GV && !GV->isDeclaration())
4657     return;
4658 
4659   // If we have not seen a reference to this variable yet, place it into the
4660   // deferred declarations table to be emitted if needed later.
4661   if (!MustBeEmitted(D) && !GV) {
4662       DeferredDecls[MangledName] = D;
4663       return;
4664   }
4665 
4666   // The tentative definition is the only definition.
4667   EmitGlobalVarDefinition(D);
4668 }
4669 
4670 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4671   EmitExternalVarDeclaration(D);
4672 }
4673 
4674 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4675   return Context.toCharUnitsFromBits(
4676       getDataLayout().getTypeStoreSizeInBits(Ty));
4677 }
4678 
4679 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4680   if (LangOpts.OpenCL) {
4681     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4682     assert(AS == LangAS::opencl_global ||
4683            AS == LangAS::opencl_global_device ||
4684            AS == LangAS::opencl_global_host ||
4685            AS == LangAS::opencl_constant ||
4686            AS == LangAS::opencl_local ||
4687            AS >= LangAS::FirstTargetAddressSpace);
4688     return AS;
4689   }
4690 
4691   if (LangOpts.SYCLIsDevice &&
4692       (!D || D->getType().getAddressSpace() == LangAS::Default))
4693     return LangAS::sycl_global;
4694 
4695   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4696     if (D) {
4697       if (D->hasAttr<CUDAConstantAttr>())
4698         return LangAS::cuda_constant;
4699       if (D->hasAttr<CUDASharedAttr>())
4700         return LangAS::cuda_shared;
4701       if (D->hasAttr<CUDADeviceAttr>())
4702         return LangAS::cuda_device;
4703       if (D->getType().isConstQualified())
4704         return LangAS::cuda_constant;
4705     }
4706     return LangAS::cuda_device;
4707   }
4708 
4709   if (LangOpts.OpenMP) {
4710     LangAS AS;
4711     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4712       return AS;
4713   }
4714   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4715 }
4716 
4717 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4718   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4719   if (LangOpts.OpenCL)
4720     return LangAS::opencl_constant;
4721   if (LangOpts.SYCLIsDevice)
4722     return LangAS::sycl_global;
4723   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4724     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4725     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4726     // with OpVariable instructions with Generic storage class which is not
4727     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4728     // UniformConstant storage class is not viable as pointers to it may not be
4729     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4730     return LangAS::cuda_device;
4731   if (auto AS = getTarget().getConstantAddressSpace())
4732     return *AS;
4733   return LangAS::Default;
4734 }
4735 
4736 // In address space agnostic languages, string literals are in default address
4737 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4738 // emitted in constant address space in LLVM IR. To be consistent with other
4739 // parts of AST, string literal global variables in constant address space
4740 // need to be casted to default address space before being put into address
4741 // map and referenced by other part of CodeGen.
4742 // In OpenCL, string literals are in constant address space in AST, therefore
4743 // they should not be casted to default address space.
4744 static llvm::Constant *
4745 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4746                                        llvm::GlobalVariable *GV) {
4747   llvm::Constant *Cast = GV;
4748   if (!CGM.getLangOpts().OpenCL) {
4749     auto AS = CGM.GetGlobalConstantAddressSpace();
4750     if (AS != LangAS::Default)
4751       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4752           CGM, GV, AS, LangAS::Default,
4753           GV->getValueType()->getPointerTo(
4754               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4755   }
4756   return Cast;
4757 }
4758 
4759 template<typename SomeDecl>
4760 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4761                                                llvm::GlobalValue *GV) {
4762   if (!getLangOpts().CPlusPlus)
4763     return;
4764 
4765   // Must have 'used' attribute, or else inline assembly can't rely on
4766   // the name existing.
4767   if (!D->template hasAttr<UsedAttr>())
4768     return;
4769 
4770   // Must have internal linkage and an ordinary name.
4771   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4772     return;
4773 
4774   // Must be in an extern "C" context. Entities declared directly within
4775   // a record are not extern "C" even if the record is in such a context.
4776   const SomeDecl *First = D->getFirstDecl();
4777   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4778     return;
4779 
4780   // OK, this is an internal linkage entity inside an extern "C" linkage
4781   // specification. Make a note of that so we can give it the "expected"
4782   // mangled name if nothing else is using that name.
4783   std::pair<StaticExternCMap::iterator, bool> R =
4784       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4785 
4786   // If we have multiple internal linkage entities with the same name
4787   // in extern "C" regions, none of them gets that name.
4788   if (!R.second)
4789     R.first->second = nullptr;
4790 }
4791 
4792 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4793   if (!CGM.supportsCOMDAT())
4794     return false;
4795 
4796   if (D.hasAttr<SelectAnyAttr>())
4797     return true;
4798 
4799   GVALinkage Linkage;
4800   if (auto *VD = dyn_cast<VarDecl>(&D))
4801     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4802   else
4803     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4804 
4805   switch (Linkage) {
4806   case GVA_Internal:
4807   case GVA_AvailableExternally:
4808   case GVA_StrongExternal:
4809     return false;
4810   case GVA_DiscardableODR:
4811   case GVA_StrongODR:
4812     return true;
4813   }
4814   llvm_unreachable("No such linkage");
4815 }
4816 
4817 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4818                                           llvm::GlobalObject &GO) {
4819   if (!shouldBeInCOMDAT(*this, D))
4820     return;
4821   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4822 }
4823 
4824 /// Pass IsTentative as true if you want to create a tentative definition.
4825 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4826                                             bool IsTentative) {
4827   // OpenCL global variables of sampler type are translated to function calls,
4828   // therefore no need to be translated.
4829   QualType ASTTy = D->getType();
4830   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4831     return;
4832 
4833   // If this is OpenMP device, check if it is legal to emit this global
4834   // normally.
4835   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4836       OpenMPRuntime->emitTargetGlobalVariable(D))
4837     return;
4838 
4839   llvm::TrackingVH<llvm::Constant> Init;
4840   bool NeedsGlobalCtor = false;
4841   // Whether the definition of the variable is available externally.
4842   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
4843   // since this is the job for its original source.
4844   bool IsDefinitionAvailableExternally =
4845       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
4846   bool NeedsGlobalDtor =
4847       !IsDefinitionAvailableExternally &&
4848       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4849 
4850   const VarDecl *InitDecl;
4851   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4852 
4853   std::optional<ConstantEmitter> emitter;
4854 
4855   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4856   // as part of their declaration."  Sema has already checked for
4857   // error cases, so we just need to set Init to UndefValue.
4858   bool IsCUDASharedVar =
4859       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4860   // Shadows of initialized device-side global variables are also left
4861   // undefined.
4862   // Managed Variables should be initialized on both host side and device side.
4863   bool IsCUDAShadowVar =
4864       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4865       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4866        D->hasAttr<CUDASharedAttr>());
4867   bool IsCUDADeviceShadowVar =
4868       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4869       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4870        D->getType()->isCUDADeviceBuiltinTextureType());
4871   if (getLangOpts().CUDA &&
4872       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4873     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4874   else if (D->hasAttr<LoaderUninitializedAttr>())
4875     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4876   else if (!InitExpr) {
4877     // This is a tentative definition; tentative definitions are
4878     // implicitly initialized with { 0 }.
4879     //
4880     // Note that tentative definitions are only emitted at the end of
4881     // a translation unit, so they should never have incomplete
4882     // type. In addition, EmitTentativeDefinition makes sure that we
4883     // never attempt to emit a tentative definition if a real one
4884     // exists. A use may still exists, however, so we still may need
4885     // to do a RAUW.
4886     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4887     Init = EmitNullConstant(D->getType());
4888   } else {
4889     initializedGlobalDecl = GlobalDecl(D);
4890     emitter.emplace(*this);
4891     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4892     if (!Initializer) {
4893       QualType T = InitExpr->getType();
4894       if (D->getType()->isReferenceType())
4895         T = D->getType();
4896 
4897       if (getLangOpts().CPlusPlus) {
4898         if (InitDecl->hasFlexibleArrayInit(getContext()))
4899           ErrorUnsupported(D, "flexible array initializer");
4900         Init = EmitNullConstant(T);
4901 
4902         if (!IsDefinitionAvailableExternally)
4903           NeedsGlobalCtor = true;
4904       } else {
4905         ErrorUnsupported(D, "static initializer");
4906         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4907       }
4908     } else {
4909       Init = Initializer;
4910       // We don't need an initializer, so remove the entry for the delayed
4911       // initializer position (just in case this entry was delayed) if we
4912       // also don't need to register a destructor.
4913       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4914         DelayedCXXInitPosition.erase(D);
4915 
4916 #ifndef NDEBUG
4917       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4918                           InitDecl->getFlexibleArrayInitChars(getContext());
4919       CharUnits CstSize = CharUnits::fromQuantity(
4920           getDataLayout().getTypeAllocSize(Init->getType()));
4921       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4922 #endif
4923     }
4924   }
4925 
4926   llvm::Type* InitType = Init->getType();
4927   llvm::Constant *Entry =
4928       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4929 
4930   // Strip off pointer casts if we got them.
4931   Entry = Entry->stripPointerCasts();
4932 
4933   // Entry is now either a Function or GlobalVariable.
4934   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4935 
4936   // We have a definition after a declaration with the wrong type.
4937   // We must make a new GlobalVariable* and update everything that used OldGV
4938   // (a declaration or tentative definition) with the new GlobalVariable*
4939   // (which will be a definition).
4940   //
4941   // This happens if there is a prototype for a global (e.g.
4942   // "extern int x[];") and then a definition of a different type (e.g.
4943   // "int x[10];"). This also happens when an initializer has a different type
4944   // from the type of the global (this happens with unions).
4945   if (!GV || GV->getValueType() != InitType ||
4946       GV->getType()->getAddressSpace() !=
4947           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4948 
4949     // Move the old entry aside so that we'll create a new one.
4950     Entry->setName(StringRef());
4951 
4952     // Make a new global with the correct type, this is now guaranteed to work.
4953     GV = cast<llvm::GlobalVariable>(
4954         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4955             ->stripPointerCasts());
4956 
4957     // Replace all uses of the old global with the new global
4958     llvm::Constant *NewPtrForOldDecl =
4959         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4960                                                              Entry->getType());
4961     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4962 
4963     // Erase the old global, since it is no longer used.
4964     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4965   }
4966 
4967   MaybeHandleStaticInExternC(D, GV);
4968 
4969   if (D->hasAttr<AnnotateAttr>())
4970     AddGlobalAnnotations(D, GV);
4971 
4972   // Set the llvm linkage type as appropriate.
4973   llvm::GlobalValue::LinkageTypes Linkage =
4974       getLLVMLinkageVarDefinition(D, GV->isConstant());
4975 
4976   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4977   // the device. [...]"
4978   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4979   // __device__, declares a variable that: [...]
4980   // Is accessible from all the threads within the grid and from the host
4981   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4982   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4983   if (GV && LangOpts.CUDA) {
4984     if (LangOpts.CUDAIsDevice) {
4985       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4986           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4987            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4988            D->getType()->isCUDADeviceBuiltinTextureType()))
4989         GV->setExternallyInitialized(true);
4990     } else {
4991       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4992     }
4993     getCUDARuntime().handleVarRegistration(D, *GV);
4994   }
4995 
4996   GV->setInitializer(Init);
4997   if (emitter)
4998     emitter->finalize(GV);
4999 
5000   // If it is safe to mark the global 'constant', do so now.
5001   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5002                   isTypeConstant(D->getType(), true));
5003 
5004   // If it is in a read-only section, mark it 'constant'.
5005   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5006     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5007     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5008       GV->setConstant(true);
5009   }
5010 
5011   CharUnits AlignVal = getContext().getDeclAlign(D);
5012   // Check for alignment specifed in an 'omp allocate' directive.
5013   if (std::optional<CharUnits> AlignValFromAllocate =
5014           getOMPAllocateAlignment(D))
5015     AlignVal = *AlignValFromAllocate;
5016   GV->setAlignment(AlignVal.getAsAlign());
5017 
5018   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5019   // function is only defined alongside the variable, not also alongside
5020   // callers. Normally, all accesses to a thread_local go through the
5021   // thread-wrapper in order to ensure initialization has occurred, underlying
5022   // variable will never be used other than the thread-wrapper, so it can be
5023   // converted to internal linkage.
5024   //
5025   // However, if the variable has the 'constinit' attribute, it _can_ be
5026   // referenced directly, without calling the thread-wrapper, so the linkage
5027   // must not be changed.
5028   //
5029   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5030   // weak or linkonce, the de-duplication semantics are important to preserve,
5031   // so we don't change the linkage.
5032   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5033       Linkage == llvm::GlobalValue::ExternalLinkage &&
5034       Context.getTargetInfo().getTriple().isOSDarwin() &&
5035       !D->hasAttr<ConstInitAttr>())
5036     Linkage = llvm::GlobalValue::InternalLinkage;
5037 
5038   GV->setLinkage(Linkage);
5039   if (D->hasAttr<DLLImportAttr>())
5040     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5041   else if (D->hasAttr<DLLExportAttr>())
5042     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5043   else
5044     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5045 
5046   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5047     // common vars aren't constant even if declared const.
5048     GV->setConstant(false);
5049     // Tentative definition of global variables may be initialized with
5050     // non-zero null pointers. In this case they should have weak linkage
5051     // since common linkage must have zero initializer and must not have
5052     // explicit section therefore cannot have non-zero initial value.
5053     if (!GV->getInitializer()->isNullValue())
5054       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5055   }
5056 
5057   setNonAliasAttributes(D, GV);
5058 
5059   if (D->getTLSKind() && !GV->isThreadLocal()) {
5060     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5061       CXXThreadLocals.push_back(D);
5062     setTLSMode(GV, *D);
5063   }
5064 
5065   maybeSetTrivialComdat(*D, *GV);
5066 
5067   // Emit the initializer function if necessary.
5068   if (NeedsGlobalCtor || NeedsGlobalDtor)
5069     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5070 
5071   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5072 
5073   // Emit global variable debug information.
5074   if (CGDebugInfo *DI = getModuleDebugInfo())
5075     if (getCodeGenOpts().hasReducedDebugInfo())
5076       DI->EmitGlobalVariable(GV, D);
5077 }
5078 
5079 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5080   if (CGDebugInfo *DI = getModuleDebugInfo())
5081     if (getCodeGenOpts().hasReducedDebugInfo()) {
5082       QualType ASTTy = D->getType();
5083       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5084       llvm::Constant *GV =
5085           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5086       DI->EmitExternalVariable(
5087           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5088     }
5089 }
5090 
5091 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5092                                       CodeGenModule &CGM, const VarDecl *D,
5093                                       bool NoCommon) {
5094   // Don't give variables common linkage if -fno-common was specified unless it
5095   // was overridden by a NoCommon attribute.
5096   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5097     return true;
5098 
5099   // C11 6.9.2/2:
5100   //   A declaration of an identifier for an object that has file scope without
5101   //   an initializer, and without a storage-class specifier or with the
5102   //   storage-class specifier static, constitutes a tentative definition.
5103   if (D->getInit() || D->hasExternalStorage())
5104     return true;
5105 
5106   // A variable cannot be both common and exist in a section.
5107   if (D->hasAttr<SectionAttr>())
5108     return true;
5109 
5110   // A variable cannot be both common and exist in a section.
5111   // We don't try to determine which is the right section in the front-end.
5112   // If no specialized section name is applicable, it will resort to default.
5113   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5114       D->hasAttr<PragmaClangDataSectionAttr>() ||
5115       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5116       D->hasAttr<PragmaClangRodataSectionAttr>())
5117     return true;
5118 
5119   // Thread local vars aren't considered common linkage.
5120   if (D->getTLSKind())
5121     return true;
5122 
5123   // Tentative definitions marked with WeakImportAttr are true definitions.
5124   if (D->hasAttr<WeakImportAttr>())
5125     return true;
5126 
5127   // A variable cannot be both common and exist in a comdat.
5128   if (shouldBeInCOMDAT(CGM, *D))
5129     return true;
5130 
5131   // Declarations with a required alignment do not have common linkage in MSVC
5132   // mode.
5133   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5134     if (D->hasAttr<AlignedAttr>())
5135       return true;
5136     QualType VarType = D->getType();
5137     if (Context.isAlignmentRequired(VarType))
5138       return true;
5139 
5140     if (const auto *RT = VarType->getAs<RecordType>()) {
5141       const RecordDecl *RD = RT->getDecl();
5142       for (const FieldDecl *FD : RD->fields()) {
5143         if (FD->isBitField())
5144           continue;
5145         if (FD->hasAttr<AlignedAttr>())
5146           return true;
5147         if (Context.isAlignmentRequired(FD->getType()))
5148           return true;
5149       }
5150     }
5151   }
5152 
5153   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5154   // common symbols, so symbols with greater alignment requirements cannot be
5155   // common.
5156   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5157   // alignments for common symbols via the aligncomm directive, so this
5158   // restriction only applies to MSVC environments.
5159   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5160       Context.getTypeAlignIfKnown(D->getType()) >
5161           Context.toBits(CharUnits::fromQuantity(32)))
5162     return true;
5163 
5164   return false;
5165 }
5166 
5167 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5168     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5169   if (Linkage == GVA_Internal)
5170     return llvm::Function::InternalLinkage;
5171 
5172   if (D->hasAttr<WeakAttr>())
5173     return llvm::GlobalVariable::WeakAnyLinkage;
5174 
5175   if (const auto *FD = D->getAsFunction())
5176     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5177       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5178 
5179   // We are guaranteed to have a strong definition somewhere else,
5180   // so we can use available_externally linkage.
5181   if (Linkage == GVA_AvailableExternally)
5182     return llvm::GlobalValue::AvailableExternallyLinkage;
5183 
5184   // Note that Apple's kernel linker doesn't support symbol
5185   // coalescing, so we need to avoid linkonce and weak linkages there.
5186   // Normally, this means we just map to internal, but for explicit
5187   // instantiations we'll map to external.
5188 
5189   // In C++, the compiler has to emit a definition in every translation unit
5190   // that references the function.  We should use linkonce_odr because
5191   // a) if all references in this translation unit are optimized away, we
5192   // don't need to codegen it.  b) if the function persists, it needs to be
5193   // merged with other definitions. c) C++ has the ODR, so we know the
5194   // definition is dependable.
5195   if (Linkage == GVA_DiscardableODR)
5196     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5197                                             : llvm::Function::InternalLinkage;
5198 
5199   // An explicit instantiation of a template has weak linkage, since
5200   // explicit instantiations can occur in multiple translation units
5201   // and must all be equivalent. However, we are not allowed to
5202   // throw away these explicit instantiations.
5203   //
5204   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5205   // so say that CUDA templates are either external (for kernels) or internal.
5206   // This lets llvm perform aggressive inter-procedural optimizations. For
5207   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5208   // therefore we need to follow the normal linkage paradigm.
5209   if (Linkage == GVA_StrongODR) {
5210     if (getLangOpts().AppleKext)
5211       return llvm::Function::ExternalLinkage;
5212     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5213         !getLangOpts().GPURelocatableDeviceCode)
5214       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5215                                           : llvm::Function::InternalLinkage;
5216     return llvm::Function::WeakODRLinkage;
5217   }
5218 
5219   // C++ doesn't have tentative definitions and thus cannot have common
5220   // linkage.
5221   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5222       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5223                                  CodeGenOpts.NoCommon))
5224     return llvm::GlobalVariable::CommonLinkage;
5225 
5226   // selectany symbols are externally visible, so use weak instead of
5227   // linkonce.  MSVC optimizes away references to const selectany globals, so
5228   // all definitions should be the same and ODR linkage should be used.
5229   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5230   if (D->hasAttr<SelectAnyAttr>())
5231     return llvm::GlobalVariable::WeakODRLinkage;
5232 
5233   // Otherwise, we have strong external linkage.
5234   assert(Linkage == GVA_StrongExternal);
5235   return llvm::GlobalVariable::ExternalLinkage;
5236 }
5237 
5238 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5239     const VarDecl *VD, bool IsConstant) {
5240   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5241   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5242 }
5243 
5244 /// Replace the uses of a function that was declared with a non-proto type.
5245 /// We want to silently drop extra arguments from call sites
5246 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5247                                           llvm::Function *newFn) {
5248   // Fast path.
5249   if (old->use_empty()) return;
5250 
5251   llvm::Type *newRetTy = newFn->getReturnType();
5252   SmallVector<llvm::Value*, 4> newArgs;
5253 
5254   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5255          ui != ue; ) {
5256     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5257     llvm::User *user = use->getUser();
5258 
5259     // Recognize and replace uses of bitcasts.  Most calls to
5260     // unprototyped functions will use bitcasts.
5261     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5262       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5263         replaceUsesOfNonProtoConstant(bitcast, newFn);
5264       continue;
5265     }
5266 
5267     // Recognize calls to the function.
5268     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5269     if (!callSite) continue;
5270     if (!callSite->isCallee(&*use))
5271       continue;
5272 
5273     // If the return types don't match exactly, then we can't
5274     // transform this call unless it's dead.
5275     if (callSite->getType() != newRetTy && !callSite->use_empty())
5276       continue;
5277 
5278     // Get the call site's attribute list.
5279     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5280     llvm::AttributeList oldAttrs = callSite->getAttributes();
5281 
5282     // If the function was passed too few arguments, don't transform.
5283     unsigned newNumArgs = newFn->arg_size();
5284     if (callSite->arg_size() < newNumArgs)
5285       continue;
5286 
5287     // If extra arguments were passed, we silently drop them.
5288     // If any of the types mismatch, we don't transform.
5289     unsigned argNo = 0;
5290     bool dontTransform = false;
5291     for (llvm::Argument &A : newFn->args()) {
5292       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5293         dontTransform = true;
5294         break;
5295       }
5296 
5297       // Add any parameter attributes.
5298       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5299       argNo++;
5300     }
5301     if (dontTransform)
5302       continue;
5303 
5304     // Okay, we can transform this.  Create the new call instruction and copy
5305     // over the required information.
5306     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5307 
5308     // Copy over any operand bundles.
5309     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5310     callSite->getOperandBundlesAsDefs(newBundles);
5311 
5312     llvm::CallBase *newCall;
5313     if (isa<llvm::CallInst>(callSite)) {
5314       newCall =
5315           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5316     } else {
5317       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5318       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5319                                          oldInvoke->getUnwindDest(), newArgs,
5320                                          newBundles, "", callSite);
5321     }
5322     newArgs.clear(); // for the next iteration
5323 
5324     if (!newCall->getType()->isVoidTy())
5325       newCall->takeName(callSite);
5326     newCall->setAttributes(
5327         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5328                                  oldAttrs.getRetAttrs(), newArgAttrs));
5329     newCall->setCallingConv(callSite->getCallingConv());
5330 
5331     // Finally, remove the old call, replacing any uses with the new one.
5332     if (!callSite->use_empty())
5333       callSite->replaceAllUsesWith(newCall);
5334 
5335     // Copy debug location attached to CI.
5336     if (callSite->getDebugLoc())
5337       newCall->setDebugLoc(callSite->getDebugLoc());
5338 
5339     callSite->eraseFromParent();
5340   }
5341 }
5342 
5343 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5344 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5345 /// existing call uses of the old function in the module, this adjusts them to
5346 /// call the new function directly.
5347 ///
5348 /// This is not just a cleanup: the always_inline pass requires direct calls to
5349 /// functions to be able to inline them.  If there is a bitcast in the way, it
5350 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5351 /// run at -O0.
5352 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5353                                                       llvm::Function *NewFn) {
5354   // If we're redefining a global as a function, don't transform it.
5355   if (!isa<llvm::Function>(Old)) return;
5356 
5357   replaceUsesOfNonProtoConstant(Old, NewFn);
5358 }
5359 
5360 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5361   auto DK = VD->isThisDeclarationADefinition();
5362   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5363     return;
5364 
5365   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5366   // If we have a definition, this might be a deferred decl. If the
5367   // instantiation is explicit, make sure we emit it at the end.
5368   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5369     GetAddrOfGlobalVar(VD);
5370 
5371   EmitTopLevelDecl(VD);
5372 }
5373 
5374 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5375                                                  llvm::GlobalValue *GV) {
5376   const auto *D = cast<FunctionDecl>(GD.getDecl());
5377 
5378   // Compute the function info and LLVM type.
5379   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5380   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5381 
5382   // Get or create the prototype for the function.
5383   if (!GV || (GV->getValueType() != Ty))
5384     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5385                                                    /*DontDefer=*/true,
5386                                                    ForDefinition));
5387 
5388   // Already emitted.
5389   if (!GV->isDeclaration())
5390     return;
5391 
5392   // We need to set linkage and visibility on the function before
5393   // generating code for it because various parts of IR generation
5394   // want to propagate this information down (e.g. to local static
5395   // declarations).
5396   auto *Fn = cast<llvm::Function>(GV);
5397   setFunctionLinkage(GD, Fn);
5398 
5399   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5400   setGVProperties(Fn, GD);
5401 
5402   MaybeHandleStaticInExternC(D, Fn);
5403 
5404   maybeSetTrivialComdat(*D, *Fn);
5405 
5406   // Set CodeGen attributes that represent floating point environment.
5407   setLLVMFunctionFEnvAttributes(D, Fn);
5408 
5409   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5410 
5411   setNonAliasAttributes(GD, Fn);
5412   SetLLVMFunctionAttributesForDefinition(D, Fn);
5413 
5414   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5415     AddGlobalCtor(Fn, CA->getPriority());
5416   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5417     AddGlobalDtor(Fn, DA->getPriority(), true);
5418   if (D->hasAttr<AnnotateAttr>())
5419     AddGlobalAnnotations(D, Fn);
5420 }
5421 
5422 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5423   const auto *D = cast<ValueDecl>(GD.getDecl());
5424   const AliasAttr *AA = D->getAttr<AliasAttr>();
5425   assert(AA && "Not an alias?");
5426 
5427   StringRef MangledName = getMangledName(GD);
5428 
5429   if (AA->getAliasee() == MangledName) {
5430     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5431     return;
5432   }
5433 
5434   // If there is a definition in the module, then it wins over the alias.
5435   // This is dubious, but allow it to be safe.  Just ignore the alias.
5436   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5437   if (Entry && !Entry->isDeclaration())
5438     return;
5439 
5440   Aliases.push_back(GD);
5441 
5442   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5443 
5444   // Create a reference to the named value.  This ensures that it is emitted
5445   // if a deferred decl.
5446   llvm::Constant *Aliasee;
5447   llvm::GlobalValue::LinkageTypes LT;
5448   if (isa<llvm::FunctionType>(DeclTy)) {
5449     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5450                                       /*ForVTable=*/false);
5451     LT = getFunctionLinkage(GD);
5452   } else {
5453     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5454                                     /*D=*/nullptr);
5455     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5456       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5457     else
5458       LT = getFunctionLinkage(GD);
5459   }
5460 
5461   // Create the new alias itself, but don't set a name yet.
5462   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5463   auto *GA =
5464       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5465 
5466   if (Entry) {
5467     if (GA->getAliasee() == Entry) {
5468       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5469       return;
5470     }
5471 
5472     assert(Entry->isDeclaration());
5473 
5474     // If there is a declaration in the module, then we had an extern followed
5475     // by the alias, as in:
5476     //   extern int test6();
5477     //   ...
5478     //   int test6() __attribute__((alias("test7")));
5479     //
5480     // Remove it and replace uses of it with the alias.
5481     GA->takeName(Entry);
5482 
5483     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5484                                                           Entry->getType()));
5485     Entry->eraseFromParent();
5486   } else {
5487     GA->setName(MangledName);
5488   }
5489 
5490   // Set attributes which are particular to an alias; this is a
5491   // specialization of the attributes which may be set on a global
5492   // variable/function.
5493   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5494       D->isWeakImported()) {
5495     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5496   }
5497 
5498   if (const auto *VD = dyn_cast<VarDecl>(D))
5499     if (VD->getTLSKind())
5500       setTLSMode(GA, *VD);
5501 
5502   SetCommonAttributes(GD, GA);
5503 
5504   // Emit global alias debug information.
5505   if (isa<VarDecl>(D))
5506     if (CGDebugInfo *DI = getModuleDebugInfo())
5507       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5508 }
5509 
5510 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5511   const auto *D = cast<ValueDecl>(GD.getDecl());
5512   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5513   assert(IFA && "Not an ifunc?");
5514 
5515   StringRef MangledName = getMangledName(GD);
5516 
5517   if (IFA->getResolver() == MangledName) {
5518     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5519     return;
5520   }
5521 
5522   // Report an error if some definition overrides ifunc.
5523   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5524   if (Entry && !Entry->isDeclaration()) {
5525     GlobalDecl OtherGD;
5526     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5527         DiagnosedConflictingDefinitions.insert(GD).second) {
5528       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5529           << MangledName;
5530       Diags.Report(OtherGD.getDecl()->getLocation(),
5531                    diag::note_previous_definition);
5532     }
5533     return;
5534   }
5535 
5536   Aliases.push_back(GD);
5537 
5538   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5539   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5540   llvm::Constant *Resolver =
5541       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5542                               /*ForVTable=*/false);
5543   llvm::GlobalIFunc *GIF =
5544       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5545                                 "", Resolver, &getModule());
5546   if (Entry) {
5547     if (GIF->getResolver() == Entry) {
5548       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5549       return;
5550     }
5551     assert(Entry->isDeclaration());
5552 
5553     // If there is a declaration in the module, then we had an extern followed
5554     // by the ifunc, as in:
5555     //   extern int test();
5556     //   ...
5557     //   int test() __attribute__((ifunc("resolver")));
5558     //
5559     // Remove it and replace uses of it with the ifunc.
5560     GIF->takeName(Entry);
5561 
5562     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5563                                                           Entry->getType()));
5564     Entry->eraseFromParent();
5565   } else
5566     GIF->setName(MangledName);
5567 
5568   SetCommonAttributes(GD, GIF);
5569 }
5570 
5571 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5572                                             ArrayRef<llvm::Type*> Tys) {
5573   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5574                                          Tys);
5575 }
5576 
5577 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5578 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5579                          const StringLiteral *Literal, bool TargetIsLSB,
5580                          bool &IsUTF16, unsigned &StringLength) {
5581   StringRef String = Literal->getString();
5582   unsigned NumBytes = String.size();
5583 
5584   // Check for simple case.
5585   if (!Literal->containsNonAsciiOrNull()) {
5586     StringLength = NumBytes;
5587     return *Map.insert(std::make_pair(String, nullptr)).first;
5588   }
5589 
5590   // Otherwise, convert the UTF8 literals into a string of shorts.
5591   IsUTF16 = true;
5592 
5593   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5594   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5595   llvm::UTF16 *ToPtr = &ToBuf[0];
5596 
5597   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5598                                  ToPtr + NumBytes, llvm::strictConversion);
5599 
5600   // ConvertUTF8toUTF16 returns the length in ToPtr.
5601   StringLength = ToPtr - &ToBuf[0];
5602 
5603   // Add an explicit null.
5604   *ToPtr = 0;
5605   return *Map.insert(std::make_pair(
5606                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5607                                    (StringLength + 1) * 2),
5608                          nullptr)).first;
5609 }
5610 
5611 ConstantAddress
5612 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5613   unsigned StringLength = 0;
5614   bool isUTF16 = false;
5615   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5616       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5617                                getDataLayout().isLittleEndian(), isUTF16,
5618                                StringLength);
5619 
5620   if (auto *C = Entry.second)
5621     return ConstantAddress(
5622         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5623 
5624   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5625   llvm::Constant *Zeros[] = { Zero, Zero };
5626 
5627   const ASTContext &Context = getContext();
5628   const llvm::Triple &Triple = getTriple();
5629 
5630   const auto CFRuntime = getLangOpts().CFRuntime;
5631   const bool IsSwiftABI =
5632       static_cast<unsigned>(CFRuntime) >=
5633       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5634   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5635 
5636   // If we don't already have it, get __CFConstantStringClassReference.
5637   if (!CFConstantStringClassRef) {
5638     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5639     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5640     Ty = llvm::ArrayType::get(Ty, 0);
5641 
5642     switch (CFRuntime) {
5643     default: break;
5644     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5645     case LangOptions::CoreFoundationABI::Swift5_0:
5646       CFConstantStringClassName =
5647           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5648                               : "$s10Foundation19_NSCFConstantStringCN";
5649       Ty = IntPtrTy;
5650       break;
5651     case LangOptions::CoreFoundationABI::Swift4_2:
5652       CFConstantStringClassName =
5653           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5654                               : "$S10Foundation19_NSCFConstantStringCN";
5655       Ty = IntPtrTy;
5656       break;
5657     case LangOptions::CoreFoundationABI::Swift4_1:
5658       CFConstantStringClassName =
5659           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5660                               : "__T010Foundation19_NSCFConstantStringCN";
5661       Ty = IntPtrTy;
5662       break;
5663     }
5664 
5665     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5666 
5667     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5668       llvm::GlobalValue *GV = nullptr;
5669 
5670       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5671         IdentifierInfo &II = Context.Idents.get(GV->getName());
5672         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5673         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5674 
5675         const VarDecl *VD = nullptr;
5676         for (const auto *Result : DC->lookup(&II))
5677           if ((VD = dyn_cast<VarDecl>(Result)))
5678             break;
5679 
5680         if (Triple.isOSBinFormatELF()) {
5681           if (!VD)
5682             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5683         } else {
5684           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5685           if (!VD || !VD->hasAttr<DLLExportAttr>())
5686             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5687           else
5688             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5689         }
5690 
5691         setDSOLocal(GV);
5692       }
5693     }
5694 
5695     // Decay array -> ptr
5696     CFConstantStringClassRef =
5697         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5698                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5699   }
5700 
5701   QualType CFTy = Context.getCFConstantStringType();
5702 
5703   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5704 
5705   ConstantInitBuilder Builder(*this);
5706   auto Fields = Builder.beginStruct(STy);
5707 
5708   // Class pointer.
5709   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5710 
5711   // Flags.
5712   if (IsSwiftABI) {
5713     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5714     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5715   } else {
5716     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5717   }
5718 
5719   // String pointer.
5720   llvm::Constant *C = nullptr;
5721   if (isUTF16) {
5722     auto Arr = llvm::ArrayRef(
5723         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5724         Entry.first().size() / 2);
5725     C = llvm::ConstantDataArray::get(VMContext, Arr);
5726   } else {
5727     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5728   }
5729 
5730   // Note: -fwritable-strings doesn't make the backing store strings of
5731   // CFStrings writable. (See <rdar://problem/10657500>)
5732   auto *GV =
5733       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5734                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5735   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5736   // Don't enforce the target's minimum global alignment, since the only use
5737   // of the string is via this class initializer.
5738   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5739                             : Context.getTypeAlignInChars(Context.CharTy);
5740   GV->setAlignment(Align.getAsAlign());
5741 
5742   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5743   // Without it LLVM can merge the string with a non unnamed_addr one during
5744   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5745   if (Triple.isOSBinFormatMachO())
5746     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5747                            : "__TEXT,__cstring,cstring_literals");
5748   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5749   // the static linker to adjust permissions to read-only later on.
5750   else if (Triple.isOSBinFormatELF())
5751     GV->setSection(".rodata");
5752 
5753   // String.
5754   llvm::Constant *Str =
5755       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5756 
5757   if (isUTF16)
5758     // Cast the UTF16 string to the correct type.
5759     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5760   Fields.add(Str);
5761 
5762   // String length.
5763   llvm::IntegerType *LengthTy =
5764       llvm::IntegerType::get(getModule().getContext(),
5765                              Context.getTargetInfo().getLongWidth());
5766   if (IsSwiftABI) {
5767     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5768         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5769       LengthTy = Int32Ty;
5770     else
5771       LengthTy = IntPtrTy;
5772   }
5773   Fields.addInt(LengthTy, StringLength);
5774 
5775   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5776   // properly aligned on 32-bit platforms.
5777   CharUnits Alignment =
5778       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5779 
5780   // The struct.
5781   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5782                                     /*isConstant=*/false,
5783                                     llvm::GlobalVariable::PrivateLinkage);
5784   GV->addAttribute("objc_arc_inert");
5785   switch (Triple.getObjectFormat()) {
5786   case llvm::Triple::UnknownObjectFormat:
5787     llvm_unreachable("unknown file format");
5788   case llvm::Triple::DXContainer:
5789   case llvm::Triple::GOFF:
5790   case llvm::Triple::SPIRV:
5791   case llvm::Triple::XCOFF:
5792     llvm_unreachable("unimplemented");
5793   case llvm::Triple::COFF:
5794   case llvm::Triple::ELF:
5795   case llvm::Triple::Wasm:
5796     GV->setSection("cfstring");
5797     break;
5798   case llvm::Triple::MachO:
5799     GV->setSection("__DATA,__cfstring");
5800     break;
5801   }
5802   Entry.second = GV;
5803 
5804   return ConstantAddress(GV, GV->getValueType(), Alignment);
5805 }
5806 
5807 bool CodeGenModule::getExpressionLocationsEnabled() const {
5808   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5809 }
5810 
5811 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5812   if (ObjCFastEnumerationStateType.isNull()) {
5813     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5814     D->startDefinition();
5815 
5816     QualType FieldTypes[] = {
5817       Context.UnsignedLongTy,
5818       Context.getPointerType(Context.getObjCIdType()),
5819       Context.getPointerType(Context.UnsignedLongTy),
5820       Context.getConstantArrayType(Context.UnsignedLongTy,
5821                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5822     };
5823 
5824     for (size_t i = 0; i < 4; ++i) {
5825       FieldDecl *Field = FieldDecl::Create(Context,
5826                                            D,
5827                                            SourceLocation(),
5828                                            SourceLocation(), nullptr,
5829                                            FieldTypes[i], /*TInfo=*/nullptr,
5830                                            /*BitWidth=*/nullptr,
5831                                            /*Mutable=*/false,
5832                                            ICIS_NoInit);
5833       Field->setAccess(AS_public);
5834       D->addDecl(Field);
5835     }
5836 
5837     D->completeDefinition();
5838     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5839   }
5840 
5841   return ObjCFastEnumerationStateType;
5842 }
5843 
5844 llvm::Constant *
5845 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5846   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5847 
5848   // Don't emit it as the address of the string, emit the string data itself
5849   // as an inline array.
5850   if (E->getCharByteWidth() == 1) {
5851     SmallString<64> Str(E->getString());
5852 
5853     // Resize the string to the right size, which is indicated by its type.
5854     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5855     Str.resize(CAT->getSize().getZExtValue());
5856     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5857   }
5858 
5859   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5860   llvm::Type *ElemTy = AType->getElementType();
5861   unsigned NumElements = AType->getNumElements();
5862 
5863   // Wide strings have either 2-byte or 4-byte elements.
5864   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5865     SmallVector<uint16_t, 32> Elements;
5866     Elements.reserve(NumElements);
5867 
5868     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5869       Elements.push_back(E->getCodeUnit(i));
5870     Elements.resize(NumElements);
5871     return llvm::ConstantDataArray::get(VMContext, Elements);
5872   }
5873 
5874   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5875   SmallVector<uint32_t, 32> Elements;
5876   Elements.reserve(NumElements);
5877 
5878   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5879     Elements.push_back(E->getCodeUnit(i));
5880   Elements.resize(NumElements);
5881   return llvm::ConstantDataArray::get(VMContext, Elements);
5882 }
5883 
5884 static llvm::GlobalVariable *
5885 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5886                       CodeGenModule &CGM, StringRef GlobalName,
5887                       CharUnits Alignment) {
5888   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5889       CGM.GetGlobalConstantAddressSpace());
5890 
5891   llvm::Module &M = CGM.getModule();
5892   // Create a global variable for this string
5893   auto *GV = new llvm::GlobalVariable(
5894       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5895       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5896   GV->setAlignment(Alignment.getAsAlign());
5897   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5898   if (GV->isWeakForLinker()) {
5899     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5900     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5901   }
5902   CGM.setDSOLocal(GV);
5903 
5904   return GV;
5905 }
5906 
5907 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5908 /// constant array for the given string literal.
5909 ConstantAddress
5910 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5911                                                   StringRef Name) {
5912   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5913 
5914   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5915   llvm::GlobalVariable **Entry = nullptr;
5916   if (!LangOpts.WritableStrings) {
5917     Entry = &ConstantStringMap[C];
5918     if (auto GV = *Entry) {
5919       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5920         GV->setAlignment(Alignment.getAsAlign());
5921       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5922                              GV->getValueType(), Alignment);
5923     }
5924   }
5925 
5926   SmallString<256> MangledNameBuffer;
5927   StringRef GlobalVariableName;
5928   llvm::GlobalValue::LinkageTypes LT;
5929 
5930   // Mangle the string literal if that's how the ABI merges duplicate strings.
5931   // Don't do it if they are writable, since we don't want writes in one TU to
5932   // affect strings in another.
5933   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5934       !LangOpts.WritableStrings) {
5935     llvm::raw_svector_ostream Out(MangledNameBuffer);
5936     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5937     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5938     GlobalVariableName = MangledNameBuffer;
5939   } else {
5940     LT = llvm::GlobalValue::PrivateLinkage;
5941     GlobalVariableName = Name;
5942   }
5943 
5944   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5945 
5946   CGDebugInfo *DI = getModuleDebugInfo();
5947   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5948     DI->AddStringLiteralDebugInfo(GV, S);
5949 
5950   if (Entry)
5951     *Entry = GV;
5952 
5953   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5954 
5955   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5956                          GV->getValueType(), Alignment);
5957 }
5958 
5959 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5960 /// array for the given ObjCEncodeExpr node.
5961 ConstantAddress
5962 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5963   std::string Str;
5964   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5965 
5966   return GetAddrOfConstantCString(Str);
5967 }
5968 
5969 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5970 /// the literal and a terminating '\0' character.
5971 /// The result has pointer to array type.
5972 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5973     const std::string &Str, const char *GlobalName) {
5974   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5975   CharUnits Alignment =
5976     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5977 
5978   llvm::Constant *C =
5979       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5980 
5981   // Don't share any string literals if strings aren't constant.
5982   llvm::GlobalVariable **Entry = nullptr;
5983   if (!LangOpts.WritableStrings) {
5984     Entry = &ConstantStringMap[C];
5985     if (auto GV = *Entry) {
5986       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5987         GV->setAlignment(Alignment.getAsAlign());
5988       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5989                              GV->getValueType(), Alignment);
5990     }
5991   }
5992 
5993   // Get the default prefix if a name wasn't specified.
5994   if (!GlobalName)
5995     GlobalName = ".str";
5996   // Create a global variable for this.
5997   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5998                                   GlobalName, Alignment);
5999   if (Entry)
6000     *Entry = GV;
6001 
6002   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6003                          GV->getValueType(), Alignment);
6004 }
6005 
6006 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6007     const MaterializeTemporaryExpr *E, const Expr *Init) {
6008   assert((E->getStorageDuration() == SD_Static ||
6009           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6010   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6011 
6012   // If we're not materializing a subobject of the temporary, keep the
6013   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6014   QualType MaterializedType = Init->getType();
6015   if (Init == E->getSubExpr())
6016     MaterializedType = E->getType();
6017 
6018   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6019 
6020   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6021   if (!InsertResult.second) {
6022     // We've seen this before: either we already created it or we're in the
6023     // process of doing so.
6024     if (!InsertResult.first->second) {
6025       // We recursively re-entered this function, probably during emission of
6026       // the initializer. Create a placeholder. We'll clean this up in the
6027       // outer call, at the end of this function.
6028       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6029       InsertResult.first->second = new llvm::GlobalVariable(
6030           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6031           nullptr);
6032     }
6033     return ConstantAddress(InsertResult.first->second,
6034                            llvm::cast<llvm::GlobalVariable>(
6035                                InsertResult.first->second->stripPointerCasts())
6036                                ->getValueType(),
6037                            Align);
6038   }
6039 
6040   // FIXME: If an externally-visible declaration extends multiple temporaries,
6041   // we need to give each temporary the same name in every translation unit (and
6042   // we also need to make the temporaries externally-visible).
6043   SmallString<256> Name;
6044   llvm::raw_svector_ostream Out(Name);
6045   getCXXABI().getMangleContext().mangleReferenceTemporary(
6046       VD, E->getManglingNumber(), Out);
6047 
6048   APValue *Value = nullptr;
6049   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6050     // If the initializer of the extending declaration is a constant
6051     // initializer, we should have a cached constant initializer for this
6052     // temporary. Note that this might have a different value from the value
6053     // computed by evaluating the initializer if the surrounding constant
6054     // expression modifies the temporary.
6055     Value = E->getOrCreateValue(false);
6056   }
6057 
6058   // Try evaluating it now, it might have a constant initializer.
6059   Expr::EvalResult EvalResult;
6060   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6061       !EvalResult.hasSideEffects())
6062     Value = &EvalResult.Val;
6063 
6064   LangAS AddrSpace =
6065       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6066 
6067   std::optional<ConstantEmitter> emitter;
6068   llvm::Constant *InitialValue = nullptr;
6069   bool Constant = false;
6070   llvm::Type *Type;
6071   if (Value) {
6072     // The temporary has a constant initializer, use it.
6073     emitter.emplace(*this);
6074     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6075                                                MaterializedType);
6076     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
6077     Type = InitialValue->getType();
6078   } else {
6079     // No initializer, the initialization will be provided when we
6080     // initialize the declaration which performed lifetime extension.
6081     Type = getTypes().ConvertTypeForMem(MaterializedType);
6082   }
6083 
6084   // Create a global variable for this lifetime-extended temporary.
6085   llvm::GlobalValue::LinkageTypes Linkage =
6086       getLLVMLinkageVarDefinition(VD, Constant);
6087   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6088     const VarDecl *InitVD;
6089     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6090         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6091       // Temporaries defined inside a class get linkonce_odr linkage because the
6092       // class can be defined in multiple translation units.
6093       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6094     } else {
6095       // There is no need for this temporary to have external linkage if the
6096       // VarDecl has external linkage.
6097       Linkage = llvm::GlobalVariable::InternalLinkage;
6098     }
6099   }
6100   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6101   auto *GV = new llvm::GlobalVariable(
6102       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6103       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6104   if (emitter) emitter->finalize(GV);
6105   // Don't assign dllimport or dllexport to local linkage globals.
6106   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6107     setGVProperties(GV, VD);
6108     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6109       // The reference temporary should never be dllexport.
6110       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6111   }
6112   GV->setAlignment(Align.getAsAlign());
6113   if (supportsCOMDAT() && GV->isWeakForLinker())
6114     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6115   if (VD->getTLSKind())
6116     setTLSMode(GV, *VD);
6117   llvm::Constant *CV = GV;
6118   if (AddrSpace != LangAS::Default)
6119     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6120         *this, GV, AddrSpace, LangAS::Default,
6121         Type->getPointerTo(
6122             getContext().getTargetAddressSpace(LangAS::Default)));
6123 
6124   // Update the map with the new temporary. If we created a placeholder above,
6125   // replace it with the new global now.
6126   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6127   if (Entry) {
6128     Entry->replaceAllUsesWith(
6129         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6130     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6131   }
6132   Entry = CV;
6133 
6134   return ConstantAddress(CV, Type, Align);
6135 }
6136 
6137 /// EmitObjCPropertyImplementations - Emit information for synthesized
6138 /// properties for an implementation.
6139 void CodeGenModule::EmitObjCPropertyImplementations(const
6140                                                     ObjCImplementationDecl *D) {
6141   for (const auto *PID : D->property_impls()) {
6142     // Dynamic is just for type-checking.
6143     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6144       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6145 
6146       // Determine which methods need to be implemented, some may have
6147       // been overridden. Note that ::isPropertyAccessor is not the method
6148       // we want, that just indicates if the decl came from a
6149       // property. What we want to know is if the method is defined in
6150       // this implementation.
6151       auto *Getter = PID->getGetterMethodDecl();
6152       if (!Getter || Getter->isSynthesizedAccessorStub())
6153         CodeGenFunction(*this).GenerateObjCGetter(
6154             const_cast<ObjCImplementationDecl *>(D), PID);
6155       auto *Setter = PID->getSetterMethodDecl();
6156       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6157         CodeGenFunction(*this).GenerateObjCSetter(
6158                                  const_cast<ObjCImplementationDecl *>(D), PID);
6159     }
6160   }
6161 }
6162 
6163 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6164   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6165   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6166        ivar; ivar = ivar->getNextIvar())
6167     if (ivar->getType().isDestructedType())
6168       return true;
6169 
6170   return false;
6171 }
6172 
6173 static bool AllTrivialInitializers(CodeGenModule &CGM,
6174                                    ObjCImplementationDecl *D) {
6175   CodeGenFunction CGF(CGM);
6176   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6177        E = D->init_end(); B != E; ++B) {
6178     CXXCtorInitializer *CtorInitExp = *B;
6179     Expr *Init = CtorInitExp->getInit();
6180     if (!CGF.isTrivialInitializer(Init))
6181       return false;
6182   }
6183   return true;
6184 }
6185 
6186 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6187 /// for an implementation.
6188 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6189   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6190   if (needsDestructMethod(D)) {
6191     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6192     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6193     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6194         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6195         getContext().VoidTy, nullptr, D,
6196         /*isInstance=*/true, /*isVariadic=*/false,
6197         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6198         /*isImplicitlyDeclared=*/true,
6199         /*isDefined=*/false, ObjCMethodDecl::Required);
6200     D->addInstanceMethod(DTORMethod);
6201     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6202     D->setHasDestructors(true);
6203   }
6204 
6205   // If the implementation doesn't have any ivar initializers, we don't need
6206   // a .cxx_construct.
6207   if (D->getNumIvarInitializers() == 0 ||
6208       AllTrivialInitializers(*this, D))
6209     return;
6210 
6211   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6212   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6213   // The constructor returns 'self'.
6214   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6215       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6216       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6217       /*isVariadic=*/false,
6218       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6219       /*isImplicitlyDeclared=*/true,
6220       /*isDefined=*/false, ObjCMethodDecl::Required);
6221   D->addInstanceMethod(CTORMethod);
6222   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6223   D->setHasNonZeroConstructors(true);
6224 }
6225 
6226 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6227 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6228   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6229       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6230     ErrorUnsupported(LSD, "linkage spec");
6231     return;
6232   }
6233 
6234   EmitDeclContext(LSD);
6235 }
6236 
6237 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6238   std::unique_ptr<CodeGenFunction> &CurCGF =
6239       GlobalTopLevelStmtBlockInFlight.first;
6240 
6241   // We emitted a top-level stmt but after it there is initialization.
6242   // Stop squashing the top-level stmts into a single function.
6243   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6244     CurCGF->FinishFunction(D->getEndLoc());
6245     CurCGF = nullptr;
6246   }
6247 
6248   if (!CurCGF) {
6249     // void __stmts__N(void)
6250     // FIXME: Ask the ABI name mangler to pick a name.
6251     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6252     FunctionArgList Args;
6253     QualType RetTy = getContext().VoidTy;
6254     const CGFunctionInfo &FnInfo =
6255         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6256     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6257     llvm::Function *Fn = llvm::Function::Create(
6258         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6259 
6260     CurCGF.reset(new CodeGenFunction(*this));
6261     GlobalTopLevelStmtBlockInFlight.second = D;
6262     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6263                           D->getBeginLoc(), D->getBeginLoc());
6264     CXXGlobalInits.push_back(Fn);
6265   }
6266 
6267   CurCGF->EmitStmt(D->getStmt());
6268 }
6269 
6270 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6271   for (auto *I : DC->decls()) {
6272     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6273     // are themselves considered "top-level", so EmitTopLevelDecl on an
6274     // ObjCImplDecl does not recursively visit them. We need to do that in
6275     // case they're nested inside another construct (LinkageSpecDecl /
6276     // ExportDecl) that does stop them from being considered "top-level".
6277     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6278       for (auto *M : OID->methods())
6279         EmitTopLevelDecl(M);
6280     }
6281 
6282     EmitTopLevelDecl(I);
6283   }
6284 }
6285 
6286 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6287 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6288   // Ignore dependent declarations.
6289   if (D->isTemplated())
6290     return;
6291 
6292   // Consteval function shouldn't be emitted.
6293   if (auto *FD = dyn_cast<FunctionDecl>(D))
6294     if (FD->isConsteval())
6295       return;
6296 
6297   switch (D->getKind()) {
6298   case Decl::CXXConversion:
6299   case Decl::CXXMethod:
6300   case Decl::Function:
6301     EmitGlobal(cast<FunctionDecl>(D));
6302     // Always provide some coverage mapping
6303     // even for the functions that aren't emitted.
6304     AddDeferredUnusedCoverageMapping(D);
6305     break;
6306 
6307   case Decl::CXXDeductionGuide:
6308     // Function-like, but does not result in code emission.
6309     break;
6310 
6311   case Decl::Var:
6312   case Decl::Decomposition:
6313   case Decl::VarTemplateSpecialization:
6314     EmitGlobal(cast<VarDecl>(D));
6315     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6316       for (auto *B : DD->bindings())
6317         if (auto *HD = B->getHoldingVar())
6318           EmitGlobal(HD);
6319     break;
6320 
6321   // Indirect fields from global anonymous structs and unions can be
6322   // ignored; only the actual variable requires IR gen support.
6323   case Decl::IndirectField:
6324     break;
6325 
6326   // C++ Decls
6327   case Decl::Namespace:
6328     EmitDeclContext(cast<NamespaceDecl>(D));
6329     break;
6330   case Decl::ClassTemplateSpecialization: {
6331     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6332     if (CGDebugInfo *DI = getModuleDebugInfo())
6333       if (Spec->getSpecializationKind() ==
6334               TSK_ExplicitInstantiationDefinition &&
6335           Spec->hasDefinition())
6336         DI->completeTemplateDefinition(*Spec);
6337   } [[fallthrough]];
6338   case Decl::CXXRecord: {
6339     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6340     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6341       if (CRD->hasDefinition())
6342         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6343       if (auto *ES = D->getASTContext().getExternalSource())
6344         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6345           DI->completeUnusedClass(*CRD);
6346     }
6347     // Emit any static data members, they may be definitions.
6348     for (auto *I : CRD->decls())
6349       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6350         EmitTopLevelDecl(I);
6351     break;
6352   }
6353     // No code generation needed.
6354   case Decl::UsingShadow:
6355   case Decl::ClassTemplate:
6356   case Decl::VarTemplate:
6357   case Decl::Concept:
6358   case Decl::VarTemplatePartialSpecialization:
6359   case Decl::FunctionTemplate:
6360   case Decl::TypeAliasTemplate:
6361   case Decl::Block:
6362   case Decl::Empty:
6363   case Decl::Binding:
6364     break;
6365   case Decl::Using:          // using X; [C++]
6366     if (CGDebugInfo *DI = getModuleDebugInfo())
6367         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6368     break;
6369   case Decl::UsingEnum: // using enum X; [C++]
6370     if (CGDebugInfo *DI = getModuleDebugInfo())
6371       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6372     break;
6373   case Decl::NamespaceAlias:
6374     if (CGDebugInfo *DI = getModuleDebugInfo())
6375         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6376     break;
6377   case Decl::UsingDirective: // using namespace X; [C++]
6378     if (CGDebugInfo *DI = getModuleDebugInfo())
6379       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6380     break;
6381   case Decl::CXXConstructor:
6382     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6383     break;
6384   case Decl::CXXDestructor:
6385     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6386     break;
6387 
6388   case Decl::StaticAssert:
6389     // Nothing to do.
6390     break;
6391 
6392   // Objective-C Decls
6393 
6394   // Forward declarations, no (immediate) code generation.
6395   case Decl::ObjCInterface:
6396   case Decl::ObjCCategory:
6397     break;
6398 
6399   case Decl::ObjCProtocol: {
6400     auto *Proto = cast<ObjCProtocolDecl>(D);
6401     if (Proto->isThisDeclarationADefinition())
6402       ObjCRuntime->GenerateProtocol(Proto);
6403     break;
6404   }
6405 
6406   case Decl::ObjCCategoryImpl:
6407     // Categories have properties but don't support synthesize so we
6408     // can ignore them here.
6409     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6410     break;
6411 
6412   case Decl::ObjCImplementation: {
6413     auto *OMD = cast<ObjCImplementationDecl>(D);
6414     EmitObjCPropertyImplementations(OMD);
6415     EmitObjCIvarInitializations(OMD);
6416     ObjCRuntime->GenerateClass(OMD);
6417     // Emit global variable debug information.
6418     if (CGDebugInfo *DI = getModuleDebugInfo())
6419       if (getCodeGenOpts().hasReducedDebugInfo())
6420         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6421             OMD->getClassInterface()), OMD->getLocation());
6422     break;
6423   }
6424   case Decl::ObjCMethod: {
6425     auto *OMD = cast<ObjCMethodDecl>(D);
6426     // If this is not a prototype, emit the body.
6427     if (OMD->getBody())
6428       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6429     break;
6430   }
6431   case Decl::ObjCCompatibleAlias:
6432     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6433     break;
6434 
6435   case Decl::PragmaComment: {
6436     const auto *PCD = cast<PragmaCommentDecl>(D);
6437     switch (PCD->getCommentKind()) {
6438     case PCK_Unknown:
6439       llvm_unreachable("unexpected pragma comment kind");
6440     case PCK_Linker:
6441       AppendLinkerOptions(PCD->getArg());
6442       break;
6443     case PCK_Lib:
6444         AddDependentLib(PCD->getArg());
6445       break;
6446     case PCK_Compiler:
6447     case PCK_ExeStr:
6448     case PCK_User:
6449       break; // We ignore all of these.
6450     }
6451     break;
6452   }
6453 
6454   case Decl::PragmaDetectMismatch: {
6455     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6456     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6457     break;
6458   }
6459 
6460   case Decl::LinkageSpec:
6461     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6462     break;
6463 
6464   case Decl::FileScopeAsm: {
6465     // File-scope asm is ignored during device-side CUDA compilation.
6466     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6467       break;
6468     // File-scope asm is ignored during device-side OpenMP compilation.
6469     if (LangOpts.OpenMPIsDevice)
6470       break;
6471     // File-scope asm is ignored during device-side SYCL compilation.
6472     if (LangOpts.SYCLIsDevice)
6473       break;
6474     auto *AD = cast<FileScopeAsmDecl>(D);
6475     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6476     break;
6477   }
6478 
6479   case Decl::TopLevelStmt:
6480     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6481     break;
6482 
6483   case Decl::Import: {
6484     auto *Import = cast<ImportDecl>(D);
6485 
6486     // If we've already imported this module, we're done.
6487     if (!ImportedModules.insert(Import->getImportedModule()))
6488       break;
6489 
6490     // Emit debug information for direct imports.
6491     if (!Import->getImportedOwningModule()) {
6492       if (CGDebugInfo *DI = getModuleDebugInfo())
6493         DI->EmitImportDecl(*Import);
6494     }
6495 
6496     // For C++ standard modules we are done - we will call the module
6497     // initializer for imported modules, and that will likewise call those for
6498     // any imports it has.
6499     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6500         !Import->getImportedOwningModule()->isModuleMapModule())
6501       break;
6502 
6503     // For clang C++ module map modules the initializers for sub-modules are
6504     // emitted here.
6505 
6506     // Find all of the submodules and emit the module initializers.
6507     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6508     SmallVector<clang::Module *, 16> Stack;
6509     Visited.insert(Import->getImportedModule());
6510     Stack.push_back(Import->getImportedModule());
6511 
6512     while (!Stack.empty()) {
6513       clang::Module *Mod = Stack.pop_back_val();
6514       if (!EmittedModuleInitializers.insert(Mod).second)
6515         continue;
6516 
6517       for (auto *D : Context.getModuleInitializers(Mod))
6518         EmitTopLevelDecl(D);
6519 
6520       // Visit the submodules of this module.
6521       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6522                                              SubEnd = Mod->submodule_end();
6523            Sub != SubEnd; ++Sub) {
6524         // Skip explicit children; they need to be explicitly imported to emit
6525         // the initializers.
6526         if ((*Sub)->IsExplicit)
6527           continue;
6528 
6529         if (Visited.insert(*Sub).second)
6530           Stack.push_back(*Sub);
6531       }
6532     }
6533     break;
6534   }
6535 
6536   case Decl::Export:
6537     EmitDeclContext(cast<ExportDecl>(D));
6538     break;
6539 
6540   case Decl::OMPThreadPrivate:
6541     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6542     break;
6543 
6544   case Decl::OMPAllocate:
6545     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6546     break;
6547 
6548   case Decl::OMPDeclareReduction:
6549     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6550     break;
6551 
6552   case Decl::OMPDeclareMapper:
6553     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6554     break;
6555 
6556   case Decl::OMPRequires:
6557     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6558     break;
6559 
6560   case Decl::Typedef:
6561   case Decl::TypeAlias: // using foo = bar; [C++11]
6562     if (CGDebugInfo *DI = getModuleDebugInfo())
6563       DI->EmitAndRetainType(
6564           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6565     break;
6566 
6567   case Decl::Record:
6568     if (CGDebugInfo *DI = getModuleDebugInfo())
6569       if (cast<RecordDecl>(D)->getDefinition())
6570         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6571     break;
6572 
6573   case Decl::Enum:
6574     if (CGDebugInfo *DI = getModuleDebugInfo())
6575       if (cast<EnumDecl>(D)->getDefinition())
6576         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6577     break;
6578 
6579   case Decl::HLSLBuffer:
6580     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6581     break;
6582 
6583   default:
6584     // Make sure we handled everything we should, every other kind is a
6585     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6586     // function. Need to recode Decl::Kind to do that easily.
6587     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6588     break;
6589   }
6590 }
6591 
6592 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6593   // Do we need to generate coverage mapping?
6594   if (!CodeGenOpts.CoverageMapping)
6595     return;
6596   switch (D->getKind()) {
6597   case Decl::CXXConversion:
6598   case Decl::CXXMethod:
6599   case Decl::Function:
6600   case Decl::ObjCMethod:
6601   case Decl::CXXConstructor:
6602   case Decl::CXXDestructor: {
6603     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6604       break;
6605     SourceManager &SM = getContext().getSourceManager();
6606     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6607       break;
6608     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6609     if (I == DeferredEmptyCoverageMappingDecls.end())
6610       DeferredEmptyCoverageMappingDecls[D] = true;
6611     break;
6612   }
6613   default:
6614     break;
6615   };
6616 }
6617 
6618 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6619   // Do we need to generate coverage mapping?
6620   if (!CodeGenOpts.CoverageMapping)
6621     return;
6622   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6623     if (Fn->isTemplateInstantiation())
6624       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6625   }
6626   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6627   if (I == DeferredEmptyCoverageMappingDecls.end())
6628     DeferredEmptyCoverageMappingDecls[D] = false;
6629   else
6630     I->second = false;
6631 }
6632 
6633 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6634   // We call takeVector() here to avoid use-after-free.
6635   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6636   // we deserialize function bodies to emit coverage info for them, and that
6637   // deserializes more declarations. How should we handle that case?
6638   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6639     if (!Entry.second)
6640       continue;
6641     const Decl *D = Entry.first;
6642     switch (D->getKind()) {
6643     case Decl::CXXConversion:
6644     case Decl::CXXMethod:
6645     case Decl::Function:
6646     case Decl::ObjCMethod: {
6647       CodeGenPGO PGO(*this);
6648       GlobalDecl GD(cast<FunctionDecl>(D));
6649       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6650                                   getFunctionLinkage(GD));
6651       break;
6652     }
6653     case Decl::CXXConstructor: {
6654       CodeGenPGO PGO(*this);
6655       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6656       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6657                                   getFunctionLinkage(GD));
6658       break;
6659     }
6660     case Decl::CXXDestructor: {
6661       CodeGenPGO PGO(*this);
6662       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6663       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6664                                   getFunctionLinkage(GD));
6665       break;
6666     }
6667     default:
6668       break;
6669     };
6670   }
6671 }
6672 
6673 void CodeGenModule::EmitMainVoidAlias() {
6674   // In order to transition away from "__original_main" gracefully, emit an
6675   // alias for "main" in the no-argument case so that libc can detect when
6676   // new-style no-argument main is in used.
6677   if (llvm::Function *F = getModule().getFunction("main")) {
6678     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6679         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6680       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6681       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6682     }
6683   }
6684 }
6685 
6686 /// Turns the given pointer into a constant.
6687 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6688                                           const void *Ptr) {
6689   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6690   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6691   return llvm::ConstantInt::get(i64, PtrInt);
6692 }
6693 
6694 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6695                                    llvm::NamedMDNode *&GlobalMetadata,
6696                                    GlobalDecl D,
6697                                    llvm::GlobalValue *Addr) {
6698   if (!GlobalMetadata)
6699     GlobalMetadata =
6700       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6701 
6702   // TODO: should we report variant information for ctors/dtors?
6703   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6704                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6705                                CGM.getLLVMContext(), D.getDecl()))};
6706   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6707 }
6708 
6709 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6710                                                  llvm::GlobalValue *CppFunc) {
6711   // Store the list of ifuncs we need to replace uses in.
6712   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6713   // List of ConstantExprs that we should be able to delete when we're done
6714   // here.
6715   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6716 
6717   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6718   if (Elem == CppFunc)
6719     return false;
6720 
6721   // First make sure that all users of this are ifuncs (or ifuncs via a
6722   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6723   // later.
6724   for (llvm::User *User : Elem->users()) {
6725     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6726     // ifunc directly. In any other case, just give up, as we don't know what we
6727     // could break by changing those.
6728     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6729       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6730         return false;
6731 
6732       for (llvm::User *CEUser : ConstExpr->users()) {
6733         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6734           IFuncs.push_back(IFunc);
6735         } else {
6736           return false;
6737         }
6738       }
6739       CEs.push_back(ConstExpr);
6740     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6741       IFuncs.push_back(IFunc);
6742     } else {
6743       // This user is one we don't know how to handle, so fail redirection. This
6744       // will result in an ifunc retaining a resolver name that will ultimately
6745       // fail to be resolved to a defined function.
6746       return false;
6747     }
6748   }
6749 
6750   // Now we know this is a valid case where we can do this alias replacement, we
6751   // need to remove all of the references to Elem (and the bitcasts!) so we can
6752   // delete it.
6753   for (llvm::GlobalIFunc *IFunc : IFuncs)
6754     IFunc->setResolver(nullptr);
6755   for (llvm::ConstantExpr *ConstExpr : CEs)
6756     ConstExpr->destroyConstant();
6757 
6758   // We should now be out of uses for the 'old' version of this function, so we
6759   // can erase it as well.
6760   Elem->eraseFromParent();
6761 
6762   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6763     // The type of the resolver is always just a function-type that returns the
6764     // type of the IFunc, so create that here. If the type of the actual
6765     // resolver doesn't match, it just gets bitcast to the right thing.
6766     auto *ResolverTy =
6767         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6768     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6769         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6770     IFunc->setResolver(Resolver);
6771   }
6772   return true;
6773 }
6774 
6775 /// For each function which is declared within an extern "C" region and marked
6776 /// as 'used', but has internal linkage, create an alias from the unmangled
6777 /// name to the mangled name if possible. People expect to be able to refer
6778 /// to such functions with an unmangled name from inline assembly within the
6779 /// same translation unit.
6780 void CodeGenModule::EmitStaticExternCAliases() {
6781   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6782     return;
6783   for (auto &I : StaticExternCValues) {
6784     IdentifierInfo *Name = I.first;
6785     llvm::GlobalValue *Val = I.second;
6786 
6787     // If Val is null, that implies there were multiple declarations that each
6788     // had a claim to the unmangled name. In this case, generation of the alias
6789     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6790     if (!Val)
6791       break;
6792 
6793     llvm::GlobalValue *ExistingElem =
6794         getModule().getNamedValue(Name->getName());
6795 
6796     // If there is either not something already by this name, or we were able to
6797     // replace all uses from IFuncs, create the alias.
6798     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6799       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6800   }
6801 }
6802 
6803 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6804                                              GlobalDecl &Result) const {
6805   auto Res = Manglings.find(MangledName);
6806   if (Res == Manglings.end())
6807     return false;
6808   Result = Res->getValue();
6809   return true;
6810 }
6811 
6812 /// Emits metadata nodes associating all the global values in the
6813 /// current module with the Decls they came from.  This is useful for
6814 /// projects using IR gen as a subroutine.
6815 ///
6816 /// Since there's currently no way to associate an MDNode directly
6817 /// with an llvm::GlobalValue, we create a global named metadata
6818 /// with the name 'clang.global.decl.ptrs'.
6819 void CodeGenModule::EmitDeclMetadata() {
6820   llvm::NamedMDNode *GlobalMetadata = nullptr;
6821 
6822   for (auto &I : MangledDeclNames) {
6823     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6824     // Some mangled names don't necessarily have an associated GlobalValue
6825     // in this module, e.g. if we mangled it for DebugInfo.
6826     if (Addr)
6827       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6828   }
6829 }
6830 
6831 /// Emits metadata nodes for all the local variables in the current
6832 /// function.
6833 void CodeGenFunction::EmitDeclMetadata() {
6834   if (LocalDeclMap.empty()) return;
6835 
6836   llvm::LLVMContext &Context = getLLVMContext();
6837 
6838   // Find the unique metadata ID for this name.
6839   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6840 
6841   llvm::NamedMDNode *GlobalMetadata = nullptr;
6842 
6843   for (auto &I : LocalDeclMap) {
6844     const Decl *D = I.first;
6845     llvm::Value *Addr = I.second.getPointer();
6846     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6847       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6848       Alloca->setMetadata(
6849           DeclPtrKind, llvm::MDNode::get(
6850                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6851     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6852       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6853       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6854     }
6855   }
6856 }
6857 
6858 void CodeGenModule::EmitVersionIdentMetadata() {
6859   llvm::NamedMDNode *IdentMetadata =
6860     TheModule.getOrInsertNamedMetadata("llvm.ident");
6861   std::string Version = getClangFullVersion();
6862   llvm::LLVMContext &Ctx = TheModule.getContext();
6863 
6864   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6865   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6866 }
6867 
6868 void CodeGenModule::EmitCommandLineMetadata() {
6869   llvm::NamedMDNode *CommandLineMetadata =
6870     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6871   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6872   llvm::LLVMContext &Ctx = TheModule.getContext();
6873 
6874   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6875   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6876 }
6877 
6878 void CodeGenModule::EmitCoverageFile() {
6879   if (getCodeGenOpts().CoverageDataFile.empty() &&
6880       getCodeGenOpts().CoverageNotesFile.empty())
6881     return;
6882 
6883   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6884   if (!CUNode)
6885     return;
6886 
6887   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6888   llvm::LLVMContext &Ctx = TheModule.getContext();
6889   auto *CoverageDataFile =
6890       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6891   auto *CoverageNotesFile =
6892       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6893   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6894     llvm::MDNode *CU = CUNode->getOperand(i);
6895     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6896     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6897   }
6898 }
6899 
6900 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6901                                                        bool ForEH) {
6902   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6903   // FIXME: should we even be calling this method if RTTI is disabled
6904   // and it's not for EH?
6905   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6906       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6907        getTriple().isNVPTX()))
6908     return llvm::Constant::getNullValue(Int8PtrTy);
6909 
6910   if (ForEH && Ty->isObjCObjectPointerType() &&
6911       LangOpts.ObjCRuntime.isGNUFamily())
6912     return ObjCRuntime->GetEHType(Ty);
6913 
6914   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6915 }
6916 
6917 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6918   // Do not emit threadprivates in simd-only mode.
6919   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6920     return;
6921   for (auto RefExpr : D->varlists()) {
6922     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6923     bool PerformInit =
6924         VD->getAnyInitializer() &&
6925         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6926                                                         /*ForRef=*/false);
6927 
6928     Address Addr(GetAddrOfGlobalVar(VD),
6929                  getTypes().ConvertTypeForMem(VD->getType()),
6930                  getContext().getDeclAlign(VD));
6931     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6932             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6933       CXXGlobalInits.push_back(InitFunction);
6934   }
6935 }
6936 
6937 llvm::Metadata *
6938 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6939                                             StringRef Suffix) {
6940   if (auto *FnType = T->getAs<FunctionProtoType>())
6941     T = getContext().getFunctionType(
6942         FnType->getReturnType(), FnType->getParamTypes(),
6943         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6944 
6945   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6946   if (InternalId)
6947     return InternalId;
6948 
6949   if (isExternallyVisible(T->getLinkage())) {
6950     std::string OutName;
6951     llvm::raw_string_ostream Out(OutName);
6952     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6953     Out << Suffix;
6954 
6955     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6956   } else {
6957     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6958                                            llvm::ArrayRef<llvm::Metadata *>());
6959   }
6960 
6961   return InternalId;
6962 }
6963 
6964 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6965   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6966 }
6967 
6968 llvm::Metadata *
6969 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6970   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6971 }
6972 
6973 // Generalize pointer types to a void pointer with the qualifiers of the
6974 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6975 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6976 // 'void *'.
6977 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6978   if (!Ty->isPointerType())
6979     return Ty;
6980 
6981   return Ctx.getPointerType(
6982       QualType(Ctx.VoidTy).withCVRQualifiers(
6983           Ty->getPointeeType().getCVRQualifiers()));
6984 }
6985 
6986 // Apply type generalization to a FunctionType's return and argument types
6987 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6988   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6989     SmallVector<QualType, 8> GeneralizedParams;
6990     for (auto &Param : FnType->param_types())
6991       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6992 
6993     return Ctx.getFunctionType(
6994         GeneralizeType(Ctx, FnType->getReturnType()),
6995         GeneralizedParams, FnType->getExtProtoInfo());
6996   }
6997 
6998   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6999     return Ctx.getFunctionNoProtoType(
7000         GeneralizeType(Ctx, FnType->getReturnType()));
7001 
7002   llvm_unreachable("Encountered unknown FunctionType");
7003 }
7004 
7005 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7006   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7007                                       GeneralizedMetadataIdMap, ".generalized");
7008 }
7009 
7010 /// Returns whether this module needs the "all-vtables" type identifier.
7011 bool CodeGenModule::NeedAllVtablesTypeId() const {
7012   // Returns true if at least one of vtable-based CFI checkers is enabled and
7013   // is not in the trapping mode.
7014   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7015            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7016           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7017            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7018           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7019            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7020           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7021            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7022 }
7023 
7024 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7025                                           CharUnits Offset,
7026                                           const CXXRecordDecl *RD) {
7027   llvm::Metadata *MD =
7028       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7029   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7030 
7031   if (CodeGenOpts.SanitizeCfiCrossDso)
7032     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7033       VTable->addTypeMetadata(Offset.getQuantity(),
7034                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7035 
7036   if (NeedAllVtablesTypeId()) {
7037     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7038     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7039   }
7040 }
7041 
7042 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7043   if (!SanStats)
7044     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7045 
7046   return *SanStats;
7047 }
7048 
7049 llvm::Value *
7050 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7051                                                   CodeGenFunction &CGF) {
7052   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7053   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7054   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7055   auto *Call = CGF.EmitRuntimeCall(
7056       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7057   return Call;
7058 }
7059 
7060 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7061     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7062   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7063                                  /* forPointeeType= */ true);
7064 }
7065 
7066 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7067                                                  LValueBaseInfo *BaseInfo,
7068                                                  TBAAAccessInfo *TBAAInfo,
7069                                                  bool forPointeeType) {
7070   if (TBAAInfo)
7071     *TBAAInfo = getTBAAAccessInfo(T);
7072 
7073   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7074   // that doesn't return the information we need to compute BaseInfo.
7075 
7076   // Honor alignment typedef attributes even on incomplete types.
7077   // We also honor them straight for C++ class types, even as pointees;
7078   // there's an expressivity gap here.
7079   if (auto TT = T->getAs<TypedefType>()) {
7080     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7081       if (BaseInfo)
7082         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7083       return getContext().toCharUnitsFromBits(Align);
7084     }
7085   }
7086 
7087   bool AlignForArray = T->isArrayType();
7088 
7089   // Analyze the base element type, so we don't get confused by incomplete
7090   // array types.
7091   T = getContext().getBaseElementType(T);
7092 
7093   if (T->isIncompleteType()) {
7094     // We could try to replicate the logic from
7095     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7096     // type is incomplete, so it's impossible to test. We could try to reuse
7097     // getTypeAlignIfKnown, but that doesn't return the information we need
7098     // to set BaseInfo.  So just ignore the possibility that the alignment is
7099     // greater than one.
7100     if (BaseInfo)
7101       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7102     return CharUnits::One();
7103   }
7104 
7105   if (BaseInfo)
7106     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7107 
7108   CharUnits Alignment;
7109   const CXXRecordDecl *RD;
7110   if (T.getQualifiers().hasUnaligned()) {
7111     Alignment = CharUnits::One();
7112   } else if (forPointeeType && !AlignForArray &&
7113              (RD = T->getAsCXXRecordDecl())) {
7114     // For C++ class pointees, we don't know whether we're pointing at a
7115     // base or a complete object, so we generally need to use the
7116     // non-virtual alignment.
7117     Alignment = getClassPointerAlignment(RD);
7118   } else {
7119     Alignment = getContext().getTypeAlignInChars(T);
7120   }
7121 
7122   // Cap to the global maximum type alignment unless the alignment
7123   // was somehow explicit on the type.
7124   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7125     if (Alignment.getQuantity() > MaxAlign &&
7126         !getContext().isAlignmentRequired(T))
7127       Alignment = CharUnits::fromQuantity(MaxAlign);
7128   }
7129   return Alignment;
7130 }
7131 
7132 bool CodeGenModule::stopAutoInit() {
7133   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7134   if (StopAfter) {
7135     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7136     // used
7137     if (NumAutoVarInit >= StopAfter) {
7138       return true;
7139     }
7140     if (!NumAutoVarInit) {
7141       unsigned DiagID = getDiags().getCustomDiagID(
7142           DiagnosticsEngine::Warning,
7143           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7144           "number of times ftrivial-auto-var-init=%1 gets applied.");
7145       getDiags().Report(DiagID)
7146           << StopAfter
7147           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7148                       LangOptions::TrivialAutoVarInitKind::Zero
7149                   ? "zero"
7150                   : "pattern");
7151     }
7152     ++NumAutoVarInit;
7153   }
7154   return false;
7155 }
7156 
7157 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7158                                                     const Decl *D) const {
7159   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7160   // postfix beginning with '.' since the symbol name can be demangled.
7161   if (LangOpts.HIP)
7162     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7163   else
7164     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7165 
7166   // If the CUID is not specified we try to generate a unique postfix.
7167   if (getLangOpts().CUID.empty()) {
7168     SourceManager &SM = getContext().getSourceManager();
7169     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7170     assert(PLoc.isValid() && "Source location is expected to be valid.");
7171 
7172     // Get the hash of the user defined macros.
7173     llvm::MD5 Hash;
7174     llvm::MD5::MD5Result Result;
7175     for (const auto &Arg : PreprocessorOpts.Macros)
7176       Hash.update(Arg.first);
7177     Hash.final(Result);
7178 
7179     // Get the UniqueID for the file containing the decl.
7180     llvm::sys::fs::UniqueID ID;
7181     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7182       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7183       assert(PLoc.isValid() && "Source location is expected to be valid.");
7184       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7185         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7186             << PLoc.getFilename() << EC.message();
7187     }
7188     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7189        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7190   } else {
7191     OS << getContext().getCUIDHash();
7192   }
7193 }
7194 
7195 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7196   assert(DeferredDeclsToEmit.empty() &&
7197          "Should have emitted all decls deferred to emit.");
7198   assert(NewBuilder->DeferredDecls.empty() &&
7199          "Newly created module should not have deferred decls");
7200   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7201 
7202   assert(NewBuilder->DeferredVTables.empty() &&
7203          "Newly created module should not have deferred vtables");
7204   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7205 
7206   assert(NewBuilder->MangledDeclNames.empty() &&
7207          "Newly created module should not have mangled decl names");
7208   assert(NewBuilder->Manglings.empty() &&
7209          "Newly created module should not have manglings");
7210   NewBuilder->Manglings = std::move(Manglings);
7211 
7212   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
7213   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7214 
7215   NewBuilder->TBAA = std::move(TBAA);
7216 
7217   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7218          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7219 
7220   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7221 
7222   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7223 }
7224