xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 5d041beb4e86787b55236d9cf3259fef17423323)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 
71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                              llvm::Module &M, const llvm::DataLayout &TD,
73                              DiagnosticsEngine &diags)
74   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75     Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76     ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77     TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78     ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80     RRData(0), CFConstantStringClassRef(0),
81     ConstantStringClassRef(0), NSConstantStringType(0),
82     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83     BlockObjectAssign(0), BlockObjectDispose(0),
84     BlockDescriptorType(0), GenericBlockLiteralType(0),
85     LifetimeStartFn(0), LifetimeEndFn(0),
86     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87     SanOpts(SanitizerBlacklist.isIn(M) ?
88             SanitizerOptions::Disabled : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::Release() {
176   EmitDeferred();
177   EmitCXXGlobalInitFunc();
178   EmitCXXGlobalDtorFunc();
179   EmitCXXThreadLocalInitFunc();
180   if (ObjCRuntime)
181     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182       AddGlobalCtor(ObjCInitFunction);
183   EmitCtorList(GlobalCtors, "llvm.global_ctors");
184   EmitCtorList(GlobalDtors, "llvm.global_dtors");
185   EmitGlobalAnnotations();
186   EmitStaticExternCAliases();
187   EmitLLVMUsed();
188 
189   if (CodeGenOpts.Autolink &&
190       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
191     EmitModuleLinkOptions();
192   }
193 
194   SimplifyPersonality();
195 
196   if (getCodeGenOpts().EmitDeclMetadata)
197     EmitDeclMetadata();
198 
199   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
200     EmitCoverageFile();
201 
202   if (DebugInfo)
203     DebugInfo->finalize();
204 }
205 
206 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
207   // Make sure that this type is translated.
208   Types.UpdateCompletedType(TD);
209 }
210 
211 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
212   if (!TBAA)
213     return 0;
214   return TBAA->getTBAAInfo(QTy);
215 }
216 
217 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
218   if (!TBAA)
219     return 0;
220   return TBAA->getTBAAInfoForVTablePtr();
221 }
222 
223 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
224   if (!TBAA)
225     return 0;
226   return TBAA->getTBAAStructInfo(QTy);
227 }
228 
229 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
230   if (!TBAA)
231     return 0;
232   return TBAA->getTBAAStructTypeInfo(QTy);
233 }
234 
235 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
236                                                   llvm::MDNode *AccessN,
237                                                   uint64_t O) {
238   if (!TBAA)
239     return 0;
240   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
241 }
242 
243 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
244 /// is the same as the type. For struct-path aware TBAA, the tag
245 /// is different from the type: base type, access type and offset.
246 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
247 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
248                                         llvm::MDNode *TBAAInfo,
249                                         bool ConvertTypeToTag) {
250   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
251     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
252                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
253   else
254     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
255 }
256 
257 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
258   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
259   getDiags().Report(Context.getFullLoc(loc), diagID);
260 }
261 
262 /// ErrorUnsupported - Print out an error that codegen doesn't support the
263 /// specified stmt yet.
264 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
265                                      bool OmitOnError) {
266   if (OmitOnError && getDiags().hasErrorOccurred())
267     return;
268   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
269                                                "cannot compile this %0 yet");
270   std::string Msg = Type;
271   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
272     << Msg << S->getSourceRange();
273 }
274 
275 /// ErrorUnsupported - Print out an error that codegen doesn't support the
276 /// specified decl yet.
277 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
278                                      bool OmitOnError) {
279   if (OmitOnError && getDiags().hasErrorOccurred())
280     return;
281   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
282                                                "cannot compile this %0 yet");
283   std::string Msg = Type;
284   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
285 }
286 
287 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
288   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
289 }
290 
291 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
292                                         const NamedDecl *D) const {
293   // Internal definitions always have default visibility.
294   if (GV->hasLocalLinkage()) {
295     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
296     return;
297   }
298 
299   // Set visibility for definitions.
300   LinkageInfo LV = D->getLinkageAndVisibility();
301   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
302     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
303 }
304 
305 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
306   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
307       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
308       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
309       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
310       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
311 }
312 
313 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
314     CodeGenOptions::TLSModel M) {
315   switch (M) {
316   case CodeGenOptions::GeneralDynamicTLSModel:
317     return llvm::GlobalVariable::GeneralDynamicTLSModel;
318   case CodeGenOptions::LocalDynamicTLSModel:
319     return llvm::GlobalVariable::LocalDynamicTLSModel;
320   case CodeGenOptions::InitialExecTLSModel:
321     return llvm::GlobalVariable::InitialExecTLSModel;
322   case CodeGenOptions::LocalExecTLSModel:
323     return llvm::GlobalVariable::LocalExecTLSModel;
324   }
325   llvm_unreachable("Invalid TLS model!");
326 }
327 
328 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
329                                const VarDecl &D) const {
330   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
331 
332   llvm::GlobalVariable::ThreadLocalMode TLM;
333   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
334 
335   // Override the TLS model if it is explicitly specified.
336   if (D.hasAttr<TLSModelAttr>()) {
337     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
338     TLM = GetLLVMTLSModel(Attr->getModel());
339   }
340 
341   GV->setThreadLocalMode(TLM);
342 }
343 
344 /// Set the symbol visibility of type information (vtable and RTTI)
345 /// associated with the given type.
346 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
347                                       const CXXRecordDecl *RD,
348                                       TypeVisibilityKind TVK) const {
349   setGlobalVisibility(GV, RD);
350 
351   if (!CodeGenOpts.HiddenWeakVTables)
352     return;
353 
354   // We never want to drop the visibility for RTTI names.
355   if (TVK == TVK_ForRTTIName)
356     return;
357 
358   // We want to drop the visibility to hidden for weak type symbols.
359   // This isn't possible if there might be unresolved references
360   // elsewhere that rely on this symbol being visible.
361 
362   // This should be kept roughly in sync with setThunkVisibility
363   // in CGVTables.cpp.
364 
365   // Preconditions.
366   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
367       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
368     return;
369 
370   // Don't override an explicit visibility attribute.
371   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
372     return;
373 
374   switch (RD->getTemplateSpecializationKind()) {
375   // We have to disable the optimization if this is an EI definition
376   // because there might be EI declarations in other shared objects.
377   case TSK_ExplicitInstantiationDefinition:
378   case TSK_ExplicitInstantiationDeclaration:
379     return;
380 
381   // Every use of a non-template class's type information has to emit it.
382   case TSK_Undeclared:
383     break;
384 
385   // In theory, implicit instantiations can ignore the possibility of
386   // an explicit instantiation declaration because there necessarily
387   // must be an EI definition somewhere with default visibility.  In
388   // practice, it's possible to have an explicit instantiation for
389   // an arbitrary template class, and linkers aren't necessarily able
390   // to deal with mixed-visibility symbols.
391   case TSK_ExplicitSpecialization:
392   case TSK_ImplicitInstantiation:
393     return;
394   }
395 
396   // If there's a key function, there may be translation units
397   // that don't have the key function's definition.  But ignore
398   // this if we're emitting RTTI under -fno-rtti.
399   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
400     // FIXME: what should we do if we "lose" the key function during
401     // the emission of the file?
402     if (Context.getCurrentKeyFunction(RD))
403       return;
404   }
405 
406   // Otherwise, drop the visibility to hidden.
407   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
408   GV->setUnnamedAddr(true);
409 }
410 
411 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
412   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
413 
414   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
415   if (!Str.empty())
416     return Str;
417 
418   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
419     IdentifierInfo *II = ND->getIdentifier();
420     assert(II && "Attempt to mangle unnamed decl.");
421 
422     Str = II->getName();
423     return Str;
424   }
425 
426   SmallString<256> Buffer;
427   llvm::raw_svector_ostream Out(Buffer);
428   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
429     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
430   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
431     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
432   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
433     getCXXABI().getMangleContext().mangleBlock(BD, Out,
434       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
435   else
436     getCXXABI().getMangleContext().mangleName(ND, Out);
437 
438   // Allocate space for the mangled name.
439   Out.flush();
440   size_t Length = Buffer.size();
441   char *Name = MangledNamesAllocator.Allocate<char>(Length);
442   std::copy(Buffer.begin(), Buffer.end(), Name);
443 
444   Str = StringRef(Name, Length);
445 
446   return Str;
447 }
448 
449 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
450                                         const BlockDecl *BD) {
451   MangleContext &MangleCtx = getCXXABI().getMangleContext();
452   const Decl *D = GD.getDecl();
453   llvm::raw_svector_ostream Out(Buffer.getBuffer());
454   if (D == 0)
455     MangleCtx.mangleGlobalBlock(BD,
456       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
457   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
458     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
459   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
460     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
461   else
462     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
463 }
464 
465 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
466   return getModule().getNamedValue(Name);
467 }
468 
469 /// AddGlobalCtor - Add a function to the list that will be called before
470 /// main() runs.
471 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
472   // FIXME: Type coercion of void()* types.
473   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
474 }
475 
476 /// AddGlobalDtor - Add a function to the list that will be called
477 /// when the module is unloaded.
478 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
479   // FIXME: Type coercion of void()* types.
480   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
481 }
482 
483 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
484   // Ctor function type is void()*.
485   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
486   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
487 
488   // Get the type of a ctor entry, { i32, void ()* }.
489   llvm::StructType *CtorStructTy =
490     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
491 
492   // Construct the constructor and destructor arrays.
493   SmallVector<llvm::Constant*, 8> Ctors;
494   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
495     llvm::Constant *S[] = {
496       llvm::ConstantInt::get(Int32Ty, I->second, false),
497       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
498     };
499     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
500   }
501 
502   if (!Ctors.empty()) {
503     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
504     new llvm::GlobalVariable(TheModule, AT, false,
505                              llvm::GlobalValue::AppendingLinkage,
506                              llvm::ConstantArray::get(AT, Ctors),
507                              GlobalName);
508   }
509 }
510 
511 llvm::GlobalValue::LinkageTypes
512 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
513   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
514 
515   if (Linkage == GVA_Internal)
516     return llvm::Function::InternalLinkage;
517 
518   if (D->hasAttr<DLLExportAttr>())
519     return llvm::Function::DLLExportLinkage;
520 
521   if (D->hasAttr<WeakAttr>())
522     return llvm::Function::WeakAnyLinkage;
523 
524   // In C99 mode, 'inline' functions are guaranteed to have a strong
525   // definition somewhere else, so we can use available_externally linkage.
526   if (Linkage == GVA_C99Inline)
527     return llvm::Function::AvailableExternallyLinkage;
528 
529   // Note that Apple's kernel linker doesn't support symbol
530   // coalescing, so we need to avoid linkonce and weak linkages there.
531   // Normally, this means we just map to internal, but for explicit
532   // instantiations we'll map to external.
533 
534   // In C++, the compiler has to emit a definition in every translation unit
535   // that references the function.  We should use linkonce_odr because
536   // a) if all references in this translation unit are optimized away, we
537   // don't need to codegen it.  b) if the function persists, it needs to be
538   // merged with other definitions. c) C++ has the ODR, so we know the
539   // definition is dependable.
540   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
541     return !Context.getLangOpts().AppleKext
542              ? llvm::Function::LinkOnceODRLinkage
543              : llvm::Function::InternalLinkage;
544 
545   // An explicit instantiation of a template has weak linkage, since
546   // explicit instantiations can occur in multiple translation units
547   // and must all be equivalent. However, we are not allowed to
548   // throw away these explicit instantiations.
549   if (Linkage == GVA_ExplicitTemplateInstantiation)
550     return !Context.getLangOpts().AppleKext
551              ? llvm::Function::WeakODRLinkage
552              : llvm::Function::ExternalLinkage;
553 
554   // Otherwise, we have strong external linkage.
555   assert(Linkage == GVA_StrongExternal);
556   return llvm::Function::ExternalLinkage;
557 }
558 
559 
560 /// SetFunctionDefinitionAttributes - Set attributes for a global.
561 ///
562 /// FIXME: This is currently only done for aliases and functions, but not for
563 /// variables (these details are set in EmitGlobalVarDefinition for variables).
564 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
565                                                     llvm::GlobalValue *GV) {
566   SetCommonAttributes(D, GV);
567 }
568 
569 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
570                                               const CGFunctionInfo &Info,
571                                               llvm::Function *F) {
572   unsigned CallingConv;
573   AttributeListType AttributeList;
574   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
575   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
576   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
577 }
578 
579 /// Determines whether the language options require us to model
580 /// unwind exceptions.  We treat -fexceptions as mandating this
581 /// except under the fragile ObjC ABI with only ObjC exceptions
582 /// enabled.  This means, for example, that C with -fexceptions
583 /// enables this.
584 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
585   // If exceptions are completely disabled, obviously this is false.
586   if (!LangOpts.Exceptions) return false;
587 
588   // If C++ exceptions are enabled, this is true.
589   if (LangOpts.CXXExceptions) return true;
590 
591   // If ObjC exceptions are enabled, this depends on the ABI.
592   if (LangOpts.ObjCExceptions) {
593     return LangOpts.ObjCRuntime.hasUnwindExceptions();
594   }
595 
596   return true;
597 }
598 
599 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
600                                                            llvm::Function *F) {
601   llvm::AttrBuilder B;
602 
603   if (CodeGenOpts.UnwindTables)
604     B.addAttribute(llvm::Attribute::UWTable);
605 
606   if (!hasUnwindExceptions(LangOpts))
607     B.addAttribute(llvm::Attribute::NoUnwind);
608 
609   if (D->hasAttr<NakedAttr>()) {
610     // Naked implies noinline: we should not be inlining such functions.
611     B.addAttribute(llvm::Attribute::Naked);
612     B.addAttribute(llvm::Attribute::NoInline);
613   } else if (D->hasAttr<NoInlineAttr>()) {
614     B.addAttribute(llvm::Attribute::NoInline);
615   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
616               D->hasAttr<ForceInlineAttr>()) &&
617              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
618                                               llvm::Attribute::NoInline)) {
619     // (noinline wins over always_inline, and we can't specify both in IR)
620     B.addAttribute(llvm::Attribute::AlwaysInline);
621   }
622 
623   if (D->hasAttr<ColdAttr>()) {
624     B.addAttribute(llvm::Attribute::OptimizeForSize);
625     B.addAttribute(llvm::Attribute::Cold);
626   }
627 
628   if (D->hasAttr<MinSizeAttr>())
629     B.addAttribute(llvm::Attribute::MinSize);
630 
631   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
632     B.addAttribute(llvm::Attribute::StackProtect);
633   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
634     B.addAttribute(llvm::Attribute::StackProtectReq);
635 
636   // Add sanitizer attributes if function is not blacklisted.
637   if (!SanitizerBlacklist.isIn(*F)) {
638     // When AddressSanitizer is enabled, set SanitizeAddress attribute
639     // unless __attribute__((no_sanitize_address)) is used.
640     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
641       B.addAttribute(llvm::Attribute::SanitizeAddress);
642     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
643     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
644       B.addAttribute(llvm::Attribute::SanitizeThread);
645     }
646     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
647     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
648       B.addAttribute(llvm::Attribute::SanitizeMemory);
649   }
650 
651   F->addAttributes(llvm::AttributeSet::FunctionIndex,
652                    llvm::AttributeSet::get(
653                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
654 
655   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
656     F->setUnnamedAddr(true);
657   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
658     if (MD->isVirtual())
659       F->setUnnamedAddr(true);
660 
661   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
662   if (alignment)
663     F->setAlignment(alignment);
664 
665   // C++ ABI requires 2-byte alignment for member functions.
666   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
667     F->setAlignment(2);
668 }
669 
670 void CodeGenModule::SetCommonAttributes(const Decl *D,
671                                         llvm::GlobalValue *GV) {
672   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
673     setGlobalVisibility(GV, ND);
674   else
675     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
676 
677   if (D->hasAttr<UsedAttr>())
678     AddUsedGlobal(GV);
679 
680   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
681     GV->setSection(SA->getName());
682 
683   // Alias cannot have attributes. Filter them here.
684   if (!isa<llvm::GlobalAlias>(GV))
685     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
686 }
687 
688 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
689                                                   llvm::Function *F,
690                                                   const CGFunctionInfo &FI) {
691   SetLLVMFunctionAttributes(D, FI, F);
692   SetLLVMFunctionAttributesForDefinition(D, F);
693 
694   F->setLinkage(llvm::Function::InternalLinkage);
695 
696   SetCommonAttributes(D, F);
697 }
698 
699 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
700                                           llvm::Function *F,
701                                           bool IsIncompleteFunction) {
702   if (unsigned IID = F->getIntrinsicID()) {
703     // If this is an intrinsic function, set the function's attributes
704     // to the intrinsic's attributes.
705     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
706                                                     (llvm::Intrinsic::ID)IID));
707     return;
708   }
709 
710   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
711 
712   if (!IsIncompleteFunction)
713     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
714 
715   // Only a few attributes are set on declarations; these may later be
716   // overridden by a definition.
717 
718   if (FD->hasAttr<DLLImportAttr>()) {
719     F->setLinkage(llvm::Function::DLLImportLinkage);
720   } else if (FD->hasAttr<WeakAttr>() ||
721              FD->isWeakImported()) {
722     // "extern_weak" is overloaded in LLVM; we probably should have
723     // separate linkage types for this.
724     F->setLinkage(llvm::Function::ExternalWeakLinkage);
725   } else {
726     F->setLinkage(llvm::Function::ExternalLinkage);
727 
728     LinkageInfo LV = FD->getLinkageAndVisibility();
729     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
730       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
731     }
732   }
733 
734   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
735     F->setSection(SA->getName());
736 }
737 
738 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
739   assert(!GV->isDeclaration() &&
740          "Only globals with definition can force usage.");
741   LLVMUsed.push_back(GV);
742 }
743 
744 void CodeGenModule::EmitLLVMUsed() {
745   // Don't create llvm.used if there is no need.
746   if (LLVMUsed.empty())
747     return;
748 
749   // Convert LLVMUsed to what ConstantArray needs.
750   SmallVector<llvm::Constant*, 8> UsedArray;
751   UsedArray.resize(LLVMUsed.size());
752   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
753     UsedArray[i] =
754      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
755                                     Int8PtrTy);
756   }
757 
758   if (UsedArray.empty())
759     return;
760   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
761 
762   llvm::GlobalVariable *GV =
763     new llvm::GlobalVariable(getModule(), ATy, false,
764                              llvm::GlobalValue::AppendingLinkage,
765                              llvm::ConstantArray::get(ATy, UsedArray),
766                              "llvm.used");
767 
768   GV->setSection("llvm.metadata");
769 }
770 
771 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
772   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
773   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
774 }
775 
776 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
777   llvm::SmallString<32> Opt;
778   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
779   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
780   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
781 }
782 
783 void CodeGenModule::AddDependentLib(StringRef Lib) {
784   llvm::SmallString<24> Opt;
785   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
786   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
787   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
788 }
789 
790 /// \brief Add link options implied by the given module, including modules
791 /// it depends on, using a postorder walk.
792 static void addLinkOptionsPostorder(CodeGenModule &CGM,
793                                     Module *Mod,
794                                     SmallVectorImpl<llvm::Value *> &Metadata,
795                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
796   // Import this module's parent.
797   if (Mod->Parent && Visited.insert(Mod->Parent)) {
798     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
799   }
800 
801   // Import this module's dependencies.
802   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
803     if (Visited.insert(Mod->Imports[I-1]))
804       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
805   }
806 
807   // Add linker options to link against the libraries/frameworks
808   // described by this module.
809   llvm::LLVMContext &Context = CGM.getLLVMContext();
810   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
811     // Link against a framework.  Frameworks are currently Darwin only, so we
812     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
813     if (Mod->LinkLibraries[I-1].IsFramework) {
814       llvm::Value *Args[2] = {
815         llvm::MDString::get(Context, "-framework"),
816         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
817       };
818 
819       Metadata.push_back(llvm::MDNode::get(Context, Args));
820       continue;
821     }
822 
823     // Link against a library.
824     llvm::SmallString<24> Opt;
825     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
826       Mod->LinkLibraries[I-1].Library, Opt);
827     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
828     Metadata.push_back(llvm::MDNode::get(Context, OptString));
829   }
830 }
831 
832 void CodeGenModule::EmitModuleLinkOptions() {
833   // Collect the set of all of the modules we want to visit to emit link
834   // options, which is essentially the imported modules and all of their
835   // non-explicit child modules.
836   llvm::SetVector<clang::Module *> LinkModules;
837   llvm::SmallPtrSet<clang::Module *, 16> Visited;
838   SmallVector<clang::Module *, 16> Stack;
839 
840   // Seed the stack with imported modules.
841   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
842                                                MEnd = ImportedModules.end();
843        M != MEnd; ++M) {
844     if (Visited.insert(*M))
845       Stack.push_back(*M);
846   }
847 
848   // Find all of the modules to import, making a little effort to prune
849   // non-leaf modules.
850   while (!Stack.empty()) {
851     clang::Module *Mod = Stack.back();
852     Stack.pop_back();
853 
854     bool AnyChildren = false;
855 
856     // Visit the submodules of this module.
857     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
858                                         SubEnd = Mod->submodule_end();
859          Sub != SubEnd; ++Sub) {
860       // Skip explicit children; they need to be explicitly imported to be
861       // linked against.
862       if ((*Sub)->IsExplicit)
863         continue;
864 
865       if (Visited.insert(*Sub)) {
866         Stack.push_back(*Sub);
867         AnyChildren = true;
868       }
869     }
870 
871     // We didn't find any children, so add this module to the list of
872     // modules to link against.
873     if (!AnyChildren) {
874       LinkModules.insert(Mod);
875     }
876   }
877 
878   // Add link options for all of the imported modules in reverse topological
879   // order.  We don't do anything to try to order import link flags with respect
880   // to linker options inserted by things like #pragma comment().
881   SmallVector<llvm::Value *, 16> MetadataArgs;
882   Visited.clear();
883   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
884                                                MEnd = LinkModules.end();
885        M != MEnd; ++M) {
886     if (Visited.insert(*M))
887       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
888   }
889   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
890   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
891 
892   // Add the linker options metadata flag.
893   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
894                             llvm::MDNode::get(getLLVMContext(),
895                                               LinkerOptionsMetadata));
896 }
897 
898 void CodeGenModule::EmitDeferred() {
899   // Emit code for any potentially referenced deferred decls.  Since a
900   // previously unused static decl may become used during the generation of code
901   // for a static function, iterate until no changes are made.
902 
903   while (true) {
904     if (!DeferredVTables.empty()) {
905       EmitDeferredVTables();
906 
907       // Emitting a v-table doesn't directly cause more v-tables to
908       // become deferred, although it can cause functions to be
909       // emitted that then need those v-tables.
910       assert(DeferredVTables.empty());
911     }
912 
913     // Stop if we're out of both deferred v-tables and deferred declarations.
914     if (DeferredDeclsToEmit.empty()) break;
915 
916     GlobalDecl D = DeferredDeclsToEmit.back();
917     DeferredDeclsToEmit.pop_back();
918 
919     // Check to see if we've already emitted this.  This is necessary
920     // for a couple of reasons: first, decls can end up in the
921     // deferred-decls queue multiple times, and second, decls can end
922     // up with definitions in unusual ways (e.g. by an extern inline
923     // function acquiring a strong function redefinition).  Just
924     // ignore these cases.
925     //
926     // TODO: That said, looking this up multiple times is very wasteful.
927     StringRef Name = getMangledName(D);
928     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
929     assert(CGRef && "Deferred decl wasn't referenced?");
930 
931     if (!CGRef->isDeclaration())
932       continue;
933 
934     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
935     // purposes an alias counts as a definition.
936     if (isa<llvm::GlobalAlias>(CGRef))
937       continue;
938 
939     // Otherwise, emit the definition and move on to the next one.
940     EmitGlobalDefinition(D);
941   }
942 }
943 
944 void CodeGenModule::EmitGlobalAnnotations() {
945   if (Annotations.empty())
946     return;
947 
948   // Create a new global variable for the ConstantStruct in the Module.
949   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
950     Annotations[0]->getType(), Annotations.size()), Annotations);
951   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
952     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
953     "llvm.global.annotations");
954   gv->setSection(AnnotationSection);
955 }
956 
957 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
958   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
959   if (i != AnnotationStrings.end())
960     return i->second;
961 
962   // Not found yet, create a new global.
963   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
964   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
965     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
966   gv->setSection(AnnotationSection);
967   gv->setUnnamedAddr(true);
968   AnnotationStrings[Str] = gv;
969   return gv;
970 }
971 
972 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
973   SourceManager &SM = getContext().getSourceManager();
974   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
975   if (PLoc.isValid())
976     return EmitAnnotationString(PLoc.getFilename());
977   return EmitAnnotationString(SM.getBufferName(Loc));
978 }
979 
980 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
981   SourceManager &SM = getContext().getSourceManager();
982   PresumedLoc PLoc = SM.getPresumedLoc(L);
983   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
984     SM.getExpansionLineNumber(L);
985   return llvm::ConstantInt::get(Int32Ty, LineNo);
986 }
987 
988 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
989                                                 const AnnotateAttr *AA,
990                                                 SourceLocation L) {
991   // Get the globals for file name, annotation, and the line number.
992   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
993                  *UnitGV = EmitAnnotationUnit(L),
994                  *LineNoCst = EmitAnnotationLineNo(L);
995 
996   // Create the ConstantStruct for the global annotation.
997   llvm::Constant *Fields[4] = {
998     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
999     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1000     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1001     LineNoCst
1002   };
1003   return llvm::ConstantStruct::getAnon(Fields);
1004 }
1005 
1006 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1007                                          llvm::GlobalValue *GV) {
1008   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1009   // Get the struct elements for these annotations.
1010   for (specific_attr_iterator<AnnotateAttr>
1011        ai = D->specific_attr_begin<AnnotateAttr>(),
1012        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1013     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1014 }
1015 
1016 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1017   // Never defer when EmitAllDecls is specified.
1018   if (LangOpts.EmitAllDecls)
1019     return false;
1020 
1021   return !getContext().DeclMustBeEmitted(Global);
1022 }
1023 
1024 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1025     const CXXUuidofExpr* E) {
1026   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1027   // well-formed.
1028   StringRef Uuid;
1029   if (E->isTypeOperand())
1030     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1031   else {
1032     // Special case: __uuidof(0) means an all-zero GUID.
1033     Expr *Op = E->getExprOperand();
1034     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1035       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1036     else
1037       Uuid = "00000000-0000-0000-0000-000000000000";
1038   }
1039   std::string Name = "__uuid_" + Uuid.str();
1040 
1041   // Look for an existing global.
1042   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1043     return GV;
1044 
1045   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1046   assert(Init && "failed to initialize as constant");
1047 
1048   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1049   // first field is declared as "long", which for many targets is 8 bytes.
1050   // Those architectures are not supported. (With the MS abi, long is always 4
1051   // bytes.)
1052   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1053   if (Init->getType() != GuidType) {
1054     DiagnosticsEngine &Diags = getDiags();
1055     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1056         "__uuidof codegen is not supported on this architecture");
1057     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1058     Init = llvm::UndefValue::get(GuidType);
1059   }
1060 
1061   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1062       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1063   GV->setUnnamedAddr(true);
1064   return GV;
1065 }
1066 
1067 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1068   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1069   assert(AA && "No alias?");
1070 
1071   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1072 
1073   // See if there is already something with the target's name in the module.
1074   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1075   if (Entry) {
1076     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1077     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1078   }
1079 
1080   llvm::Constant *Aliasee;
1081   if (isa<llvm::FunctionType>(DeclTy))
1082     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1083                                       GlobalDecl(cast<FunctionDecl>(VD)),
1084                                       /*ForVTable=*/false);
1085   else
1086     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1087                                     llvm::PointerType::getUnqual(DeclTy), 0);
1088 
1089   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1090   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1091   WeakRefReferences.insert(F);
1092 
1093   return Aliasee;
1094 }
1095 
1096 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1097   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1098 
1099   // Weak references don't produce any output by themselves.
1100   if (Global->hasAttr<WeakRefAttr>())
1101     return;
1102 
1103   // If this is an alias definition (which otherwise looks like a declaration)
1104   // emit it now.
1105   if (Global->hasAttr<AliasAttr>())
1106     return EmitAliasDefinition(GD);
1107 
1108   // If this is CUDA, be selective about which declarations we emit.
1109   if (LangOpts.CUDA) {
1110     if (CodeGenOpts.CUDAIsDevice) {
1111       if (!Global->hasAttr<CUDADeviceAttr>() &&
1112           !Global->hasAttr<CUDAGlobalAttr>() &&
1113           !Global->hasAttr<CUDAConstantAttr>() &&
1114           !Global->hasAttr<CUDASharedAttr>())
1115         return;
1116     } else {
1117       if (!Global->hasAttr<CUDAHostAttr>() && (
1118             Global->hasAttr<CUDADeviceAttr>() ||
1119             Global->hasAttr<CUDAConstantAttr>() ||
1120             Global->hasAttr<CUDASharedAttr>()))
1121         return;
1122     }
1123   }
1124 
1125   // Ignore declarations, they will be emitted on their first use.
1126   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1127     // Forward declarations are emitted lazily on first use.
1128     if (!FD->doesThisDeclarationHaveABody()) {
1129       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1130         return;
1131 
1132       const FunctionDecl *InlineDefinition = 0;
1133       FD->getBody(InlineDefinition);
1134 
1135       StringRef MangledName = getMangledName(GD);
1136       DeferredDecls.erase(MangledName);
1137       EmitGlobalDefinition(InlineDefinition);
1138       return;
1139     }
1140   } else {
1141     const VarDecl *VD = cast<VarDecl>(Global);
1142     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1143 
1144     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1145       return;
1146   }
1147 
1148   // Defer code generation when possible if this is a static definition, inline
1149   // function etc.  These we only want to emit if they are used.
1150   if (!MayDeferGeneration(Global)) {
1151     // Emit the definition if it can't be deferred.
1152     EmitGlobalDefinition(GD);
1153     return;
1154   }
1155 
1156   // If we're deferring emission of a C++ variable with an
1157   // initializer, remember the order in which it appeared in the file.
1158   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1159       cast<VarDecl>(Global)->hasInit()) {
1160     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1161     CXXGlobalInits.push_back(0);
1162   }
1163 
1164   // If the value has already been used, add it directly to the
1165   // DeferredDeclsToEmit list.
1166   StringRef MangledName = getMangledName(GD);
1167   if (GetGlobalValue(MangledName))
1168     DeferredDeclsToEmit.push_back(GD);
1169   else {
1170     // Otherwise, remember that we saw a deferred decl with this name.  The
1171     // first use of the mangled name will cause it to move into
1172     // DeferredDeclsToEmit.
1173     DeferredDecls[MangledName] = GD;
1174   }
1175 }
1176 
1177 namespace {
1178   struct FunctionIsDirectlyRecursive :
1179     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1180     const StringRef Name;
1181     const Builtin::Context &BI;
1182     bool Result;
1183     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1184       Name(N), BI(C), Result(false) {
1185     }
1186     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1187 
1188     bool TraverseCallExpr(CallExpr *E) {
1189       const FunctionDecl *FD = E->getDirectCallee();
1190       if (!FD)
1191         return true;
1192       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1193       if (Attr && Name == Attr->getLabel()) {
1194         Result = true;
1195         return false;
1196       }
1197       unsigned BuiltinID = FD->getBuiltinID();
1198       if (!BuiltinID)
1199         return true;
1200       StringRef BuiltinName = BI.GetName(BuiltinID);
1201       if (BuiltinName.startswith("__builtin_") &&
1202           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1203         Result = true;
1204         return false;
1205       }
1206       return true;
1207     }
1208   };
1209 }
1210 
1211 // isTriviallyRecursive - Check if this function calls another
1212 // decl that, because of the asm attribute or the other decl being a builtin,
1213 // ends up pointing to itself.
1214 bool
1215 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1216   StringRef Name;
1217   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1218     // asm labels are a special kind of mangling we have to support.
1219     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1220     if (!Attr)
1221       return false;
1222     Name = Attr->getLabel();
1223   } else {
1224     Name = FD->getName();
1225   }
1226 
1227   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1228   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1229   return Walker.Result;
1230 }
1231 
1232 bool
1233 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1234   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1235     return true;
1236   if (CodeGenOpts.OptimizationLevel == 0 &&
1237       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1238     return false;
1239   // PR9614. Avoid cases where the source code is lying to us. An available
1240   // externally function should have an equivalent function somewhere else,
1241   // but a function that calls itself is clearly not equivalent to the real
1242   // implementation.
1243   // This happens in glibc's btowc and in some configure checks.
1244   return !isTriviallyRecursive(F);
1245 }
1246 
1247 /// If the type for the method's class was generated by
1248 /// CGDebugInfo::createContextChain(), the cache contains only a
1249 /// limited DIType without any declarations. Since EmitFunctionStart()
1250 /// needs to find the canonical declaration for each method, we need
1251 /// to construct the complete type prior to emitting the method.
1252 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1253   if (!D->isInstance())
1254     return;
1255 
1256   if (CGDebugInfo *DI = getModuleDebugInfo())
1257     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1258       const PointerType *ThisPtr =
1259         cast<PointerType>(D->getThisType(getContext()));
1260       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1261     }
1262 }
1263 
1264 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1265   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1266 
1267   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1268                                  Context.getSourceManager(),
1269                                  "Generating code for declaration");
1270 
1271   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1272     // At -O0, don't generate IR for functions with available_externally
1273     // linkage.
1274     if (!shouldEmitFunction(Function))
1275       return;
1276 
1277     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1278       CompleteDIClassType(Method);
1279       // Make sure to emit the definition(s) before we emit the thunks.
1280       // This is necessary for the generation of certain thunks.
1281       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1282         EmitCXXConstructor(CD, GD.getCtorType());
1283       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1284         EmitCXXDestructor(DD, GD.getDtorType());
1285       else
1286         EmitGlobalFunctionDefinition(GD);
1287 
1288       if (Method->isVirtual())
1289         getVTables().EmitThunks(GD);
1290 
1291       return;
1292     }
1293 
1294     return EmitGlobalFunctionDefinition(GD);
1295   }
1296 
1297   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1298     return EmitGlobalVarDefinition(VD);
1299 
1300   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1301 }
1302 
1303 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1304 /// module, create and return an llvm Function with the specified type. If there
1305 /// is something in the module with the specified name, return it potentially
1306 /// bitcasted to the right type.
1307 ///
1308 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1309 /// to set the attributes on the function when it is first created.
1310 llvm::Constant *
1311 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1312                                        llvm::Type *Ty,
1313                                        GlobalDecl D, bool ForVTable,
1314                                        llvm::AttributeSet ExtraAttrs) {
1315   // Lookup the entry, lazily creating it if necessary.
1316   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1317   if (Entry) {
1318     if (WeakRefReferences.erase(Entry)) {
1319       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1320       if (FD && !FD->hasAttr<WeakAttr>())
1321         Entry->setLinkage(llvm::Function::ExternalLinkage);
1322     }
1323 
1324     if (Entry->getType()->getElementType() == Ty)
1325       return Entry;
1326 
1327     // Make sure the result is of the correct type.
1328     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1329   }
1330 
1331   // This function doesn't have a complete type (for example, the return
1332   // type is an incomplete struct). Use a fake type instead, and make
1333   // sure not to try to set attributes.
1334   bool IsIncompleteFunction = false;
1335 
1336   llvm::FunctionType *FTy;
1337   if (isa<llvm::FunctionType>(Ty)) {
1338     FTy = cast<llvm::FunctionType>(Ty);
1339   } else {
1340     FTy = llvm::FunctionType::get(VoidTy, false);
1341     IsIncompleteFunction = true;
1342   }
1343 
1344   llvm::Function *F = llvm::Function::Create(FTy,
1345                                              llvm::Function::ExternalLinkage,
1346                                              MangledName, &getModule());
1347   assert(F->getName() == MangledName && "name was uniqued!");
1348   if (D.getDecl())
1349     SetFunctionAttributes(D, F, IsIncompleteFunction);
1350   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1351     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1352     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1353                      llvm::AttributeSet::get(VMContext,
1354                                              llvm::AttributeSet::FunctionIndex,
1355                                              B));
1356   }
1357 
1358   // This is the first use or definition of a mangled name.  If there is a
1359   // deferred decl with this name, remember that we need to emit it at the end
1360   // of the file.
1361   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1362   if (DDI != DeferredDecls.end()) {
1363     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1364     // list, and remove it from DeferredDecls (since we don't need it anymore).
1365     DeferredDeclsToEmit.push_back(DDI->second);
1366     DeferredDecls.erase(DDI);
1367 
1368   // Otherwise, there are cases we have to worry about where we're
1369   // using a declaration for which we must emit a definition but where
1370   // we might not find a top-level definition:
1371   //   - member functions defined inline in their classes
1372   //   - friend functions defined inline in some class
1373   //   - special member functions with implicit definitions
1374   // If we ever change our AST traversal to walk into class methods,
1375   // this will be unnecessary.
1376   //
1377   // We also don't emit a definition for a function if it's going to be an entry
1378   // in a vtable, unless it's already marked as used.
1379   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1380     // Look for a declaration that's lexically in a record.
1381     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1382     FD = FD->getMostRecentDecl();
1383     do {
1384       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1385         if (FD->isImplicit() && !ForVTable) {
1386           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1387           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1388           break;
1389         } else if (FD->doesThisDeclarationHaveABody()) {
1390           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1391           break;
1392         }
1393       }
1394       FD = FD->getPreviousDecl();
1395     } while (FD);
1396   }
1397 
1398   // Make sure the result is of the requested type.
1399   if (!IsIncompleteFunction) {
1400     assert(F->getType()->getElementType() == Ty);
1401     return F;
1402   }
1403 
1404   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1405   return llvm::ConstantExpr::getBitCast(F, PTy);
1406 }
1407 
1408 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1409 /// non-null, then this function will use the specified type if it has to
1410 /// create it (this occurs when we see a definition of the function).
1411 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1412                                                  llvm::Type *Ty,
1413                                                  bool ForVTable) {
1414   // If there was no specific requested type, just convert it now.
1415   if (!Ty)
1416     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1417 
1418   StringRef MangledName = getMangledName(GD);
1419   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1420 }
1421 
1422 /// CreateRuntimeFunction - Create a new runtime function with the specified
1423 /// type and name.
1424 llvm::Constant *
1425 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1426                                      StringRef Name,
1427                                      llvm::AttributeSet ExtraAttrs) {
1428   llvm::Constant *C
1429     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1430                               ExtraAttrs);
1431   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1432     if (F->empty())
1433       F->setCallingConv(getRuntimeCC());
1434   return C;
1435 }
1436 
1437 /// isTypeConstant - Determine whether an object of this type can be emitted
1438 /// as a constant.
1439 ///
1440 /// If ExcludeCtor is true, the duration when the object's constructor runs
1441 /// will not be considered. The caller will need to verify that the object is
1442 /// not written to during its construction.
1443 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1444   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1445     return false;
1446 
1447   if (Context.getLangOpts().CPlusPlus) {
1448     if (const CXXRecordDecl *Record
1449           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1450       return ExcludeCtor && !Record->hasMutableFields() &&
1451              Record->hasTrivialDestructor();
1452   }
1453 
1454   return true;
1455 }
1456 
1457 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1458 /// create and return an llvm GlobalVariable with the specified type.  If there
1459 /// is something in the module with the specified name, return it potentially
1460 /// bitcasted to the right type.
1461 ///
1462 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1463 /// to set the attributes on the global when it is first created.
1464 llvm::Constant *
1465 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1466                                      llvm::PointerType *Ty,
1467                                      const VarDecl *D,
1468                                      bool UnnamedAddr) {
1469   // Lookup the entry, lazily creating it if necessary.
1470   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1471   if (Entry) {
1472     if (WeakRefReferences.erase(Entry)) {
1473       if (D && !D->hasAttr<WeakAttr>())
1474         Entry->setLinkage(llvm::Function::ExternalLinkage);
1475     }
1476 
1477     if (UnnamedAddr)
1478       Entry->setUnnamedAddr(true);
1479 
1480     if (Entry->getType() == Ty)
1481       return Entry;
1482 
1483     // Make sure the result is of the correct type.
1484     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1485   }
1486 
1487   // This is the first use or definition of a mangled name.  If there is a
1488   // deferred decl with this name, remember that we need to emit it at the end
1489   // of the file.
1490   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1491   if (DDI != DeferredDecls.end()) {
1492     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1493     // list, and remove it from DeferredDecls (since we don't need it anymore).
1494     DeferredDeclsToEmit.push_back(DDI->second);
1495     DeferredDecls.erase(DDI);
1496   }
1497 
1498   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1499   llvm::GlobalVariable *GV =
1500     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1501                              llvm::GlobalValue::ExternalLinkage,
1502                              0, MangledName, 0,
1503                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1504 
1505   // Handle things which are present even on external declarations.
1506   if (D) {
1507     // FIXME: This code is overly simple and should be merged with other global
1508     // handling.
1509     GV->setConstant(isTypeConstant(D->getType(), false));
1510 
1511     // Set linkage and visibility in case we never see a definition.
1512     LinkageInfo LV = D->getLinkageAndVisibility();
1513     if (LV.getLinkage() != ExternalLinkage) {
1514       // Don't set internal linkage on declarations.
1515     } else {
1516       if (D->hasAttr<DLLImportAttr>())
1517         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1518       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1519         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1520 
1521       // Set visibility on a declaration only if it's explicit.
1522       if (LV.isVisibilityExplicit())
1523         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1524     }
1525 
1526     if (D->getTLSKind()) {
1527       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1528         CXXThreadLocals.push_back(std::make_pair(D, GV));
1529       setTLSMode(GV, *D);
1530     }
1531   }
1532 
1533   if (AddrSpace != Ty->getAddressSpace())
1534     return llvm::ConstantExpr::getBitCast(GV, Ty);
1535   else
1536     return GV;
1537 }
1538 
1539 
1540 llvm::GlobalVariable *
1541 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1542                                       llvm::Type *Ty,
1543                                       llvm::GlobalValue::LinkageTypes Linkage) {
1544   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1545   llvm::GlobalVariable *OldGV = 0;
1546 
1547 
1548   if (GV) {
1549     // Check if the variable has the right type.
1550     if (GV->getType()->getElementType() == Ty)
1551       return GV;
1552 
1553     // Because C++ name mangling, the only way we can end up with an already
1554     // existing global with the same name is if it has been declared extern "C".
1555     assert(GV->isDeclaration() && "Declaration has wrong type!");
1556     OldGV = GV;
1557   }
1558 
1559   // Create a new variable.
1560   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1561                                 Linkage, 0, Name);
1562 
1563   if (OldGV) {
1564     // Replace occurrences of the old variable if needed.
1565     GV->takeName(OldGV);
1566 
1567     if (!OldGV->use_empty()) {
1568       llvm::Constant *NewPtrForOldDecl =
1569       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1570       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1571     }
1572 
1573     OldGV->eraseFromParent();
1574   }
1575 
1576   return GV;
1577 }
1578 
1579 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1580 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1581 /// then it will be created with the specified type instead of whatever the
1582 /// normal requested type would be.
1583 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1584                                                   llvm::Type *Ty) {
1585   assert(D->hasGlobalStorage() && "Not a global variable");
1586   QualType ASTTy = D->getType();
1587   if (Ty == 0)
1588     Ty = getTypes().ConvertTypeForMem(ASTTy);
1589 
1590   llvm::PointerType *PTy =
1591     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1592 
1593   StringRef MangledName = getMangledName(D);
1594   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1595 }
1596 
1597 /// CreateRuntimeVariable - Create a new runtime global variable with the
1598 /// specified type and name.
1599 llvm::Constant *
1600 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1601                                      StringRef Name) {
1602   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1603                                true);
1604 }
1605 
1606 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1607   assert(!D->getInit() && "Cannot emit definite definitions here!");
1608 
1609   if (MayDeferGeneration(D)) {
1610     // If we have not seen a reference to this variable yet, place it
1611     // into the deferred declarations table to be emitted if needed
1612     // later.
1613     StringRef MangledName = getMangledName(D);
1614     if (!GetGlobalValue(MangledName)) {
1615       DeferredDecls[MangledName] = D;
1616       return;
1617     }
1618   }
1619 
1620   // The tentative definition is the only definition.
1621   EmitGlobalVarDefinition(D);
1622 }
1623 
1624 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1625     return Context.toCharUnitsFromBits(
1626       TheDataLayout.getTypeStoreSizeInBits(Ty));
1627 }
1628 
1629 llvm::Constant *
1630 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1631                                                        const Expr *rawInit) {
1632   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1633   if (const ExprWithCleanups *withCleanups =
1634           dyn_cast<ExprWithCleanups>(rawInit)) {
1635     cleanups = withCleanups->getObjects();
1636     rawInit = withCleanups->getSubExpr();
1637   }
1638 
1639   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1640   if (!init || !init->initializesStdInitializerList() ||
1641       init->getNumInits() == 0)
1642     return 0;
1643 
1644   ASTContext &ctx = getContext();
1645   unsigned numInits = init->getNumInits();
1646   // FIXME: This check is here because we would otherwise silently miscompile
1647   // nested global std::initializer_lists. Better would be to have a real
1648   // implementation.
1649   for (unsigned i = 0; i < numInits; ++i) {
1650     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1651     if (inner && inner->initializesStdInitializerList()) {
1652       ErrorUnsupported(inner, "nested global std::initializer_list");
1653       return 0;
1654     }
1655   }
1656 
1657   // Synthesize a fake VarDecl for the array and initialize that.
1658   QualType elementType = init->getInit(0)->getType();
1659   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1660   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1661                                                 ArrayType::Normal, 0);
1662 
1663   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1664   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1665                                               arrayType, D->getLocation());
1666   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1667                                                           D->getDeclContext()),
1668                                           D->getLocStart(), D->getLocation(),
1669                                           name, arrayType, sourceInfo,
1670                                           SC_Static);
1671   backingArray->setTSCSpec(D->getTSCSpec());
1672 
1673   // Now clone the InitListExpr to initialize the array instead.
1674   // Incredible hack: we want to use the existing InitListExpr here, so we need
1675   // to tell it that it no longer initializes a std::initializer_list.
1676   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1677                         init->getNumInits());
1678   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1679                                            init->getRBraceLoc());
1680   arrayInit->setType(arrayType);
1681 
1682   if (!cleanups.empty())
1683     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1684 
1685   backingArray->setInit(arrayInit);
1686 
1687   // Emit the definition of the array.
1688   EmitGlobalVarDefinition(backingArray);
1689 
1690   // Inspect the initializer list to validate it and determine its type.
1691   // FIXME: doing this every time is probably inefficient; caching would be nice
1692   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1693   RecordDecl::field_iterator field = record->field_begin();
1694   if (field == record->field_end()) {
1695     ErrorUnsupported(D, "weird std::initializer_list");
1696     return 0;
1697   }
1698   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1699   // Start pointer.
1700   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1701     ErrorUnsupported(D, "weird std::initializer_list");
1702     return 0;
1703   }
1704   ++field;
1705   if (field == record->field_end()) {
1706     ErrorUnsupported(D, "weird std::initializer_list");
1707     return 0;
1708   }
1709   bool isStartEnd = false;
1710   if (ctx.hasSameType(field->getType(), elementPtr)) {
1711     // End pointer.
1712     isStartEnd = true;
1713   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1714     ErrorUnsupported(D, "weird std::initializer_list");
1715     return 0;
1716   }
1717 
1718   // Now build an APValue representing the std::initializer_list.
1719   APValue initListValue(APValue::UninitStruct(), 0, 2);
1720   APValue &startField = initListValue.getStructField(0);
1721   APValue::LValuePathEntry startOffsetPathEntry;
1722   startOffsetPathEntry.ArrayIndex = 0;
1723   startField = APValue(APValue::LValueBase(backingArray),
1724                        CharUnits::fromQuantity(0),
1725                        llvm::makeArrayRef(startOffsetPathEntry),
1726                        /*IsOnePastTheEnd=*/false, 0);
1727 
1728   if (isStartEnd) {
1729     APValue &endField = initListValue.getStructField(1);
1730     APValue::LValuePathEntry endOffsetPathEntry;
1731     endOffsetPathEntry.ArrayIndex = numInits;
1732     endField = APValue(APValue::LValueBase(backingArray),
1733                        ctx.getTypeSizeInChars(elementType) * numInits,
1734                        llvm::makeArrayRef(endOffsetPathEntry),
1735                        /*IsOnePastTheEnd=*/true, 0);
1736   } else {
1737     APValue &sizeField = initListValue.getStructField(1);
1738     sizeField = APValue(llvm::APSInt(numElements));
1739   }
1740 
1741   // Emit the constant for the initializer_list.
1742   llvm::Constant *llvmInit =
1743       EmitConstantValueForMemory(initListValue, D->getType());
1744   assert(llvmInit && "failed to initialize as constant");
1745   return llvmInit;
1746 }
1747 
1748 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1749                                                  unsigned AddrSpace) {
1750   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1751     if (D->hasAttr<CUDAConstantAttr>())
1752       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1753     else if (D->hasAttr<CUDASharedAttr>())
1754       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1755     else
1756       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1757   }
1758 
1759   return AddrSpace;
1760 }
1761 
1762 template<typename SomeDecl>
1763 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1764                                                llvm::GlobalValue *GV) {
1765   if (!getLangOpts().CPlusPlus)
1766     return;
1767 
1768   // Must have 'used' attribute, or else inline assembly can't rely on
1769   // the name existing.
1770   if (!D->template hasAttr<UsedAttr>())
1771     return;
1772 
1773   // Must have internal linkage and an ordinary name.
1774   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1775     return;
1776 
1777   // Must be in an extern "C" context. Entities declared directly within
1778   // a record are not extern "C" even if the record is in such a context.
1779   const SomeDecl *First = D->getFirstDeclaration();
1780   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1781     return;
1782 
1783   // OK, this is an internal linkage entity inside an extern "C" linkage
1784   // specification. Make a note of that so we can give it the "expected"
1785   // mangled name if nothing else is using that name.
1786   std::pair<StaticExternCMap::iterator, bool> R =
1787       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1788 
1789   // If we have multiple internal linkage entities with the same name
1790   // in extern "C" regions, none of them gets that name.
1791   if (!R.second)
1792     R.first->second = 0;
1793 }
1794 
1795 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1796   llvm::Constant *Init = 0;
1797   QualType ASTTy = D->getType();
1798   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1799   bool NeedsGlobalCtor = false;
1800   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1801 
1802   const VarDecl *InitDecl;
1803   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1804 
1805   if (!InitExpr) {
1806     // This is a tentative definition; tentative definitions are
1807     // implicitly initialized with { 0 }.
1808     //
1809     // Note that tentative definitions are only emitted at the end of
1810     // a translation unit, so they should never have incomplete
1811     // type. In addition, EmitTentativeDefinition makes sure that we
1812     // never attempt to emit a tentative definition if a real one
1813     // exists. A use may still exists, however, so we still may need
1814     // to do a RAUW.
1815     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1816     Init = EmitNullConstant(D->getType());
1817   } else {
1818     // If this is a std::initializer_list, emit the special initializer.
1819     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1820     // An empty init list will perform zero-initialization, which happens
1821     // to be exactly what we want.
1822     // FIXME: It does so in a global constructor, which is *not* what we
1823     // want.
1824 
1825     if (!Init) {
1826       initializedGlobalDecl = GlobalDecl(D);
1827       Init = EmitConstantInit(*InitDecl);
1828     }
1829     if (!Init) {
1830       QualType T = InitExpr->getType();
1831       if (D->getType()->isReferenceType())
1832         T = D->getType();
1833 
1834       if (getLangOpts().CPlusPlus) {
1835         Init = EmitNullConstant(T);
1836         NeedsGlobalCtor = true;
1837       } else {
1838         ErrorUnsupported(D, "static initializer");
1839         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1840       }
1841     } else {
1842       // We don't need an initializer, so remove the entry for the delayed
1843       // initializer position (just in case this entry was delayed) if we
1844       // also don't need to register a destructor.
1845       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1846         DelayedCXXInitPosition.erase(D);
1847     }
1848   }
1849 
1850   llvm::Type* InitType = Init->getType();
1851   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1852 
1853   // Strip off a bitcast if we got one back.
1854   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1855     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1856            // all zero index gep.
1857            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1858     Entry = CE->getOperand(0);
1859   }
1860 
1861   // Entry is now either a Function or GlobalVariable.
1862   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1863 
1864   // We have a definition after a declaration with the wrong type.
1865   // We must make a new GlobalVariable* and update everything that used OldGV
1866   // (a declaration or tentative definition) with the new GlobalVariable*
1867   // (which will be a definition).
1868   //
1869   // This happens if there is a prototype for a global (e.g.
1870   // "extern int x[];") and then a definition of a different type (e.g.
1871   // "int x[10];"). This also happens when an initializer has a different type
1872   // from the type of the global (this happens with unions).
1873   if (GV == 0 ||
1874       GV->getType()->getElementType() != InitType ||
1875       GV->getType()->getAddressSpace() !=
1876        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1877 
1878     // Move the old entry aside so that we'll create a new one.
1879     Entry->setName(StringRef());
1880 
1881     // Make a new global with the correct type, this is now guaranteed to work.
1882     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1883 
1884     // Replace all uses of the old global with the new global
1885     llvm::Constant *NewPtrForOldDecl =
1886         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1887     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1888 
1889     // Erase the old global, since it is no longer used.
1890     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1891   }
1892 
1893   MaybeHandleStaticInExternC(D, GV);
1894 
1895   if (D->hasAttr<AnnotateAttr>())
1896     AddGlobalAnnotations(D, GV);
1897 
1898   GV->setInitializer(Init);
1899 
1900   // If it is safe to mark the global 'constant', do so now.
1901   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1902                   isTypeConstant(D->getType(), true));
1903 
1904   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1905 
1906   // Set the llvm linkage type as appropriate.
1907   llvm::GlobalValue::LinkageTypes Linkage =
1908     GetLLVMLinkageVarDefinition(D, GV);
1909   GV->setLinkage(Linkage);
1910   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1911     // common vars aren't constant even if declared const.
1912     GV->setConstant(false);
1913 
1914   SetCommonAttributes(D, GV);
1915 
1916   // Emit the initializer function if necessary.
1917   if (NeedsGlobalCtor || NeedsGlobalDtor)
1918     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1919 
1920   // If we are compiling with ASan, add metadata indicating dynamically
1921   // initialized globals.
1922   if (SanOpts.Address && NeedsGlobalCtor) {
1923     llvm::Module &M = getModule();
1924 
1925     llvm::NamedMDNode *DynamicInitializers =
1926         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1927     llvm::Value *GlobalToAdd[] = { GV };
1928     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1929     DynamicInitializers->addOperand(ThisGlobal);
1930   }
1931 
1932   // Emit global variable debug information.
1933   if (CGDebugInfo *DI = getModuleDebugInfo())
1934     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1935       DI->EmitGlobalVariable(GV, D);
1936 }
1937 
1938 llvm::GlobalValue::LinkageTypes
1939 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1940                                            llvm::GlobalVariable *GV) {
1941   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1942   if (Linkage == GVA_Internal)
1943     return llvm::Function::InternalLinkage;
1944   else if (D->hasAttr<DLLImportAttr>())
1945     return llvm::Function::DLLImportLinkage;
1946   else if (D->hasAttr<DLLExportAttr>())
1947     return llvm::Function::DLLExportLinkage;
1948   else if (D->hasAttr<SelectAnyAttr>()) {
1949     // selectany symbols are externally visible, so use weak instead of
1950     // linkonce.  MSVC optimizes away references to const selectany globals, so
1951     // all definitions should be the same and ODR linkage should be used.
1952     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1953     return llvm::GlobalVariable::WeakODRLinkage;
1954   } else if (D->hasAttr<WeakAttr>()) {
1955     if (GV->isConstant())
1956       return llvm::GlobalVariable::WeakODRLinkage;
1957     else
1958       return llvm::GlobalVariable::WeakAnyLinkage;
1959   } else if (Linkage == GVA_TemplateInstantiation ||
1960              Linkage == GVA_ExplicitTemplateInstantiation)
1961     return llvm::GlobalVariable::WeakODRLinkage;
1962   else if (!getLangOpts().CPlusPlus &&
1963            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1964              D->getAttr<CommonAttr>()) &&
1965            !D->hasExternalStorage() && !D->getInit() &&
1966            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1967            !D->getAttr<WeakImportAttr>()) {
1968     // Thread local vars aren't considered common linkage.
1969     return llvm::GlobalVariable::CommonLinkage;
1970   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1971              getTarget().getTriple().isMacOSX())
1972     // On Darwin, the backing variable for a C++11 thread_local variable always
1973     // has internal linkage; all accesses should just be calls to the
1974     // Itanium-specified entry point, which has the normal linkage of the
1975     // variable.
1976     return llvm::GlobalValue::InternalLinkage;
1977   return llvm::GlobalVariable::ExternalLinkage;
1978 }
1979 
1980 /// Replace the uses of a function that was declared with a non-proto type.
1981 /// We want to silently drop extra arguments from call sites
1982 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1983                                           llvm::Function *newFn) {
1984   // Fast path.
1985   if (old->use_empty()) return;
1986 
1987   llvm::Type *newRetTy = newFn->getReturnType();
1988   SmallVector<llvm::Value*, 4> newArgs;
1989 
1990   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1991          ui != ue; ) {
1992     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1993     llvm::User *user = *use;
1994 
1995     // Recognize and replace uses of bitcasts.  Most calls to
1996     // unprototyped functions will use bitcasts.
1997     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1998       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1999         replaceUsesOfNonProtoConstant(bitcast, newFn);
2000       continue;
2001     }
2002 
2003     // Recognize calls to the function.
2004     llvm::CallSite callSite(user);
2005     if (!callSite) continue;
2006     if (!callSite.isCallee(use)) continue;
2007 
2008     // If the return types don't match exactly, then we can't
2009     // transform this call unless it's dead.
2010     if (callSite->getType() != newRetTy && !callSite->use_empty())
2011       continue;
2012 
2013     // Get the call site's attribute list.
2014     SmallVector<llvm::AttributeSet, 8> newAttrs;
2015     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2016 
2017     // Collect any return attributes from the call.
2018     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2019       newAttrs.push_back(
2020         llvm::AttributeSet::get(newFn->getContext(),
2021                                 oldAttrs.getRetAttributes()));
2022 
2023     // If the function was passed too few arguments, don't transform.
2024     unsigned newNumArgs = newFn->arg_size();
2025     if (callSite.arg_size() < newNumArgs) continue;
2026 
2027     // If extra arguments were passed, we silently drop them.
2028     // If any of the types mismatch, we don't transform.
2029     unsigned argNo = 0;
2030     bool dontTransform = false;
2031     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2032            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2033       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2034         dontTransform = true;
2035         break;
2036       }
2037 
2038       // Add any parameter attributes.
2039       if (oldAttrs.hasAttributes(argNo + 1))
2040         newAttrs.
2041           push_back(llvm::
2042                     AttributeSet::get(newFn->getContext(),
2043                                       oldAttrs.getParamAttributes(argNo + 1)));
2044     }
2045     if (dontTransform)
2046       continue;
2047 
2048     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2049       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2050                                                  oldAttrs.getFnAttributes()));
2051 
2052     // Okay, we can transform this.  Create the new call instruction and copy
2053     // over the required information.
2054     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2055 
2056     llvm::CallSite newCall;
2057     if (callSite.isCall()) {
2058       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2059                                        callSite.getInstruction());
2060     } else {
2061       llvm::InvokeInst *oldInvoke =
2062         cast<llvm::InvokeInst>(callSite.getInstruction());
2063       newCall = llvm::InvokeInst::Create(newFn,
2064                                          oldInvoke->getNormalDest(),
2065                                          oldInvoke->getUnwindDest(),
2066                                          newArgs, "",
2067                                          callSite.getInstruction());
2068     }
2069     newArgs.clear(); // for the next iteration
2070 
2071     if (!newCall->getType()->isVoidTy())
2072       newCall->takeName(callSite.getInstruction());
2073     newCall.setAttributes(
2074                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2075     newCall.setCallingConv(callSite.getCallingConv());
2076 
2077     // Finally, remove the old call, replacing any uses with the new one.
2078     if (!callSite->use_empty())
2079       callSite->replaceAllUsesWith(newCall.getInstruction());
2080 
2081     // Copy debug location attached to CI.
2082     if (!callSite->getDebugLoc().isUnknown())
2083       newCall->setDebugLoc(callSite->getDebugLoc());
2084     callSite->eraseFromParent();
2085   }
2086 }
2087 
2088 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2089 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2090 /// existing call uses of the old function in the module, this adjusts them to
2091 /// call the new function directly.
2092 ///
2093 /// This is not just a cleanup: the always_inline pass requires direct calls to
2094 /// functions to be able to inline them.  If there is a bitcast in the way, it
2095 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2096 /// run at -O0.
2097 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2098                                                       llvm::Function *NewFn) {
2099   // If we're redefining a global as a function, don't transform it.
2100   if (!isa<llvm::Function>(Old)) return;
2101 
2102   replaceUsesOfNonProtoConstant(Old, NewFn);
2103 }
2104 
2105 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2106   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2107   // If we have a definition, this might be a deferred decl. If the
2108   // instantiation is explicit, make sure we emit it at the end.
2109   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2110     GetAddrOfGlobalVar(VD);
2111 
2112   EmitTopLevelDecl(VD);
2113 }
2114 
2115 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2116   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2117 
2118   // Compute the function info and LLVM type.
2119   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2120   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2121 
2122   // Get or create the prototype for the function.
2123   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2124 
2125   // Strip off a bitcast if we got one back.
2126   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2127     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2128     Entry = CE->getOperand(0);
2129   }
2130 
2131 
2132   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2133     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2134 
2135     // If the types mismatch then we have to rewrite the definition.
2136     assert(OldFn->isDeclaration() &&
2137            "Shouldn't replace non-declaration");
2138 
2139     // F is the Function* for the one with the wrong type, we must make a new
2140     // Function* and update everything that used F (a declaration) with the new
2141     // Function* (which will be a definition).
2142     //
2143     // This happens if there is a prototype for a function
2144     // (e.g. "int f()") and then a definition of a different type
2145     // (e.g. "int f(int x)").  Move the old function aside so that it
2146     // doesn't interfere with GetAddrOfFunction.
2147     OldFn->setName(StringRef());
2148     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2149 
2150     // This might be an implementation of a function without a
2151     // prototype, in which case, try to do special replacement of
2152     // calls which match the new prototype.  The really key thing here
2153     // is that we also potentially drop arguments from the call site
2154     // so as to make a direct call, which makes the inliner happier
2155     // and suppresses a number of optimizer warnings (!) about
2156     // dropping arguments.
2157     if (!OldFn->use_empty()) {
2158       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2159       OldFn->removeDeadConstantUsers();
2160     }
2161 
2162     // Replace uses of F with the Function we will endow with a body.
2163     if (!Entry->use_empty()) {
2164       llvm::Constant *NewPtrForOldDecl =
2165         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2166       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2167     }
2168 
2169     // Ok, delete the old function now, which is dead.
2170     OldFn->eraseFromParent();
2171 
2172     Entry = NewFn;
2173   }
2174 
2175   // We need to set linkage and visibility on the function before
2176   // generating code for it because various parts of IR generation
2177   // want to propagate this information down (e.g. to local static
2178   // declarations).
2179   llvm::Function *Fn = cast<llvm::Function>(Entry);
2180   setFunctionLinkage(D, Fn);
2181 
2182   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2183   setGlobalVisibility(Fn, D);
2184 
2185   MaybeHandleStaticInExternC(D, Fn);
2186 
2187   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2188 
2189   SetFunctionDefinitionAttributes(D, Fn);
2190   SetLLVMFunctionAttributesForDefinition(D, Fn);
2191 
2192   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2193     AddGlobalCtor(Fn, CA->getPriority());
2194   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2195     AddGlobalDtor(Fn, DA->getPriority());
2196   if (D->hasAttr<AnnotateAttr>())
2197     AddGlobalAnnotations(D, Fn);
2198 }
2199 
2200 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2201   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2202   const AliasAttr *AA = D->getAttr<AliasAttr>();
2203   assert(AA && "Not an alias?");
2204 
2205   StringRef MangledName = getMangledName(GD);
2206 
2207   // If there is a definition in the module, then it wins over the alias.
2208   // This is dubious, but allow it to be safe.  Just ignore the alias.
2209   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2210   if (Entry && !Entry->isDeclaration())
2211     return;
2212 
2213   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2214 
2215   // Create a reference to the named value.  This ensures that it is emitted
2216   // if a deferred decl.
2217   llvm::Constant *Aliasee;
2218   if (isa<llvm::FunctionType>(DeclTy))
2219     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2220                                       /*ForVTable=*/false);
2221   else
2222     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2223                                     llvm::PointerType::getUnqual(DeclTy), 0);
2224 
2225   // Create the new alias itself, but don't set a name yet.
2226   llvm::GlobalValue *GA =
2227     new llvm::GlobalAlias(Aliasee->getType(),
2228                           llvm::Function::ExternalLinkage,
2229                           "", Aliasee, &getModule());
2230 
2231   if (Entry) {
2232     assert(Entry->isDeclaration());
2233 
2234     // If there is a declaration in the module, then we had an extern followed
2235     // by the alias, as in:
2236     //   extern int test6();
2237     //   ...
2238     //   int test6() __attribute__((alias("test7")));
2239     //
2240     // Remove it and replace uses of it with the alias.
2241     GA->takeName(Entry);
2242 
2243     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2244                                                           Entry->getType()));
2245     Entry->eraseFromParent();
2246   } else {
2247     GA->setName(MangledName);
2248   }
2249 
2250   // Set attributes which are particular to an alias; this is a
2251   // specialization of the attributes which may be set on a global
2252   // variable/function.
2253   if (D->hasAttr<DLLExportAttr>()) {
2254     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2255       // The dllexport attribute is ignored for undefined symbols.
2256       if (FD->hasBody())
2257         GA->setLinkage(llvm::Function::DLLExportLinkage);
2258     } else {
2259       GA->setLinkage(llvm::Function::DLLExportLinkage);
2260     }
2261   } else if (D->hasAttr<WeakAttr>() ||
2262              D->hasAttr<WeakRefAttr>() ||
2263              D->isWeakImported()) {
2264     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2265   }
2266 
2267   SetCommonAttributes(D, GA);
2268 }
2269 
2270 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2271                                             ArrayRef<llvm::Type*> Tys) {
2272   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2273                                          Tys);
2274 }
2275 
2276 static llvm::StringMapEntry<llvm::Constant*> &
2277 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2278                          const StringLiteral *Literal,
2279                          bool TargetIsLSB,
2280                          bool &IsUTF16,
2281                          unsigned &StringLength) {
2282   StringRef String = Literal->getString();
2283   unsigned NumBytes = String.size();
2284 
2285   // Check for simple case.
2286   if (!Literal->containsNonAsciiOrNull()) {
2287     StringLength = NumBytes;
2288     return Map.GetOrCreateValue(String);
2289   }
2290 
2291   // Otherwise, convert the UTF8 literals into a string of shorts.
2292   IsUTF16 = true;
2293 
2294   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2295   const UTF8 *FromPtr = (const UTF8 *)String.data();
2296   UTF16 *ToPtr = &ToBuf[0];
2297 
2298   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2299                            &ToPtr, ToPtr + NumBytes,
2300                            strictConversion);
2301 
2302   // ConvertUTF8toUTF16 returns the length in ToPtr.
2303   StringLength = ToPtr - &ToBuf[0];
2304 
2305   // Add an explicit null.
2306   *ToPtr = 0;
2307   return Map.
2308     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2309                                (StringLength + 1) * 2));
2310 }
2311 
2312 static llvm::StringMapEntry<llvm::Constant*> &
2313 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2314                        const StringLiteral *Literal,
2315                        unsigned &StringLength) {
2316   StringRef String = Literal->getString();
2317   StringLength = String.size();
2318   return Map.GetOrCreateValue(String);
2319 }
2320 
2321 llvm::Constant *
2322 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2323   unsigned StringLength = 0;
2324   bool isUTF16 = false;
2325   llvm::StringMapEntry<llvm::Constant*> &Entry =
2326     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2327                              getDataLayout().isLittleEndian(),
2328                              isUTF16, StringLength);
2329 
2330   if (llvm::Constant *C = Entry.getValue())
2331     return C;
2332 
2333   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2334   llvm::Constant *Zeros[] = { Zero, Zero };
2335   llvm::Value *V;
2336 
2337   // If we don't already have it, get __CFConstantStringClassReference.
2338   if (!CFConstantStringClassRef) {
2339     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2340     Ty = llvm::ArrayType::get(Ty, 0);
2341     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2342                                            "__CFConstantStringClassReference");
2343     // Decay array -> ptr
2344     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2345     CFConstantStringClassRef = V;
2346   }
2347   else
2348     V = CFConstantStringClassRef;
2349 
2350   QualType CFTy = getContext().getCFConstantStringType();
2351 
2352   llvm::StructType *STy =
2353     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2354 
2355   llvm::Constant *Fields[4];
2356 
2357   // Class pointer.
2358   Fields[0] = cast<llvm::ConstantExpr>(V);
2359 
2360   // Flags.
2361   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2362   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2363     llvm::ConstantInt::get(Ty, 0x07C8);
2364 
2365   // String pointer.
2366   llvm::Constant *C = 0;
2367   if (isUTF16) {
2368     ArrayRef<uint16_t> Arr =
2369       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2370                                      const_cast<char *>(Entry.getKey().data())),
2371                                    Entry.getKey().size() / 2);
2372     C = llvm::ConstantDataArray::get(VMContext, Arr);
2373   } else {
2374     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2375   }
2376 
2377   llvm::GlobalValue::LinkageTypes Linkage;
2378   if (isUTF16)
2379     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2380     Linkage = llvm::GlobalValue::InternalLinkage;
2381   else
2382     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2383     // when using private linkage. It is not clear if this is a bug in ld
2384     // or a reasonable new restriction.
2385     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2386 
2387   // Note: -fwritable-strings doesn't make the backing store strings of
2388   // CFStrings writable. (See <rdar://problem/10657500>)
2389   llvm::GlobalVariable *GV =
2390     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2391                              Linkage, C, ".str");
2392   GV->setUnnamedAddr(true);
2393   // Don't enforce the target's minimum global alignment, since the only use
2394   // of the string is via this class initializer.
2395   if (isUTF16) {
2396     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2397     GV->setAlignment(Align.getQuantity());
2398   } else {
2399     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2400     GV->setAlignment(Align.getQuantity());
2401   }
2402 
2403   // String.
2404   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2405 
2406   if (isUTF16)
2407     // Cast the UTF16 string to the correct type.
2408     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2409 
2410   // String length.
2411   Ty = getTypes().ConvertType(getContext().LongTy);
2412   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2413 
2414   // The struct.
2415   C = llvm::ConstantStruct::get(STy, Fields);
2416   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2417                                 llvm::GlobalVariable::PrivateLinkage, C,
2418                                 "_unnamed_cfstring_");
2419   if (const char *Sect = getTarget().getCFStringSection())
2420     GV->setSection(Sect);
2421   Entry.setValue(GV);
2422 
2423   return GV;
2424 }
2425 
2426 static RecordDecl *
2427 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2428                  DeclContext *DC, IdentifierInfo *Id) {
2429   SourceLocation Loc;
2430   if (Ctx.getLangOpts().CPlusPlus)
2431     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2432   else
2433     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2434 }
2435 
2436 llvm::Constant *
2437 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2438   unsigned StringLength = 0;
2439   llvm::StringMapEntry<llvm::Constant*> &Entry =
2440     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2441 
2442   if (llvm::Constant *C = Entry.getValue())
2443     return C;
2444 
2445   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2446   llvm::Constant *Zeros[] = { Zero, Zero };
2447   llvm::Value *V;
2448   // If we don't already have it, get _NSConstantStringClassReference.
2449   if (!ConstantStringClassRef) {
2450     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2451     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2452     llvm::Constant *GV;
2453     if (LangOpts.ObjCRuntime.isNonFragile()) {
2454       std::string str =
2455         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2456                             : "OBJC_CLASS_$_" + StringClass;
2457       GV = getObjCRuntime().GetClassGlobal(str);
2458       // Make sure the result is of the correct type.
2459       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2460       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2461       ConstantStringClassRef = V;
2462     } else {
2463       std::string str =
2464         StringClass.empty() ? "_NSConstantStringClassReference"
2465                             : "_" + StringClass + "ClassReference";
2466       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2467       GV = CreateRuntimeVariable(PTy, str);
2468       // Decay array -> ptr
2469       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2470       ConstantStringClassRef = V;
2471     }
2472   }
2473   else
2474     V = ConstantStringClassRef;
2475 
2476   if (!NSConstantStringType) {
2477     // Construct the type for a constant NSString.
2478     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2479                                      Context.getTranslationUnitDecl(),
2480                                    &Context.Idents.get("__builtin_NSString"));
2481     D->startDefinition();
2482 
2483     QualType FieldTypes[3];
2484 
2485     // const int *isa;
2486     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2487     // const char *str;
2488     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2489     // unsigned int length;
2490     FieldTypes[2] = Context.UnsignedIntTy;
2491 
2492     // Create fields
2493     for (unsigned i = 0; i < 3; ++i) {
2494       FieldDecl *Field = FieldDecl::Create(Context, D,
2495                                            SourceLocation(),
2496                                            SourceLocation(), 0,
2497                                            FieldTypes[i], /*TInfo=*/0,
2498                                            /*BitWidth=*/0,
2499                                            /*Mutable=*/false,
2500                                            ICIS_NoInit);
2501       Field->setAccess(AS_public);
2502       D->addDecl(Field);
2503     }
2504 
2505     D->completeDefinition();
2506     QualType NSTy = Context.getTagDeclType(D);
2507     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2508   }
2509 
2510   llvm::Constant *Fields[3];
2511 
2512   // Class pointer.
2513   Fields[0] = cast<llvm::ConstantExpr>(V);
2514 
2515   // String pointer.
2516   llvm::Constant *C =
2517     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2518 
2519   llvm::GlobalValue::LinkageTypes Linkage;
2520   bool isConstant;
2521   Linkage = llvm::GlobalValue::PrivateLinkage;
2522   isConstant = !LangOpts.WritableStrings;
2523 
2524   llvm::GlobalVariable *GV =
2525   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2526                            ".str");
2527   GV->setUnnamedAddr(true);
2528   // Don't enforce the target's minimum global alignment, since the only use
2529   // of the string is via this class initializer.
2530   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2531   GV->setAlignment(Align.getQuantity());
2532   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2533 
2534   // String length.
2535   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2536   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2537 
2538   // The struct.
2539   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2540   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2541                                 llvm::GlobalVariable::PrivateLinkage, C,
2542                                 "_unnamed_nsstring_");
2543   // FIXME. Fix section.
2544   if (const char *Sect =
2545         LangOpts.ObjCRuntime.isNonFragile()
2546           ? getTarget().getNSStringNonFragileABISection()
2547           : getTarget().getNSStringSection())
2548     GV->setSection(Sect);
2549   Entry.setValue(GV);
2550 
2551   return GV;
2552 }
2553 
2554 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2555   if (ObjCFastEnumerationStateType.isNull()) {
2556     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2557                                      Context.getTranslationUnitDecl(),
2558                       &Context.Idents.get("__objcFastEnumerationState"));
2559     D->startDefinition();
2560 
2561     QualType FieldTypes[] = {
2562       Context.UnsignedLongTy,
2563       Context.getPointerType(Context.getObjCIdType()),
2564       Context.getPointerType(Context.UnsignedLongTy),
2565       Context.getConstantArrayType(Context.UnsignedLongTy,
2566                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2567     };
2568 
2569     for (size_t i = 0; i < 4; ++i) {
2570       FieldDecl *Field = FieldDecl::Create(Context,
2571                                            D,
2572                                            SourceLocation(),
2573                                            SourceLocation(), 0,
2574                                            FieldTypes[i], /*TInfo=*/0,
2575                                            /*BitWidth=*/0,
2576                                            /*Mutable=*/false,
2577                                            ICIS_NoInit);
2578       Field->setAccess(AS_public);
2579       D->addDecl(Field);
2580     }
2581 
2582     D->completeDefinition();
2583     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2584   }
2585 
2586   return ObjCFastEnumerationStateType;
2587 }
2588 
2589 llvm::Constant *
2590 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2591   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2592 
2593   // Don't emit it as the address of the string, emit the string data itself
2594   // as an inline array.
2595   if (E->getCharByteWidth() == 1) {
2596     SmallString<64> Str(E->getString());
2597 
2598     // Resize the string to the right size, which is indicated by its type.
2599     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2600     Str.resize(CAT->getSize().getZExtValue());
2601     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2602   }
2603 
2604   llvm::ArrayType *AType =
2605     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2606   llvm::Type *ElemTy = AType->getElementType();
2607   unsigned NumElements = AType->getNumElements();
2608 
2609   // Wide strings have either 2-byte or 4-byte elements.
2610   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2611     SmallVector<uint16_t, 32> Elements;
2612     Elements.reserve(NumElements);
2613 
2614     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2615       Elements.push_back(E->getCodeUnit(i));
2616     Elements.resize(NumElements);
2617     return llvm::ConstantDataArray::get(VMContext, Elements);
2618   }
2619 
2620   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2621   SmallVector<uint32_t, 32> Elements;
2622   Elements.reserve(NumElements);
2623 
2624   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2625     Elements.push_back(E->getCodeUnit(i));
2626   Elements.resize(NumElements);
2627   return llvm::ConstantDataArray::get(VMContext, Elements);
2628 }
2629 
2630 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2631 /// constant array for the given string literal.
2632 llvm::Constant *
2633 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2634   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2635   if (S->isAscii() || S->isUTF8()) {
2636     SmallString<64> Str(S->getString());
2637 
2638     // Resize the string to the right size, which is indicated by its type.
2639     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2640     Str.resize(CAT->getSize().getZExtValue());
2641     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2642   }
2643 
2644   // FIXME: the following does not memoize wide strings.
2645   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2646   llvm::GlobalVariable *GV =
2647     new llvm::GlobalVariable(getModule(),C->getType(),
2648                              !LangOpts.WritableStrings,
2649                              llvm::GlobalValue::PrivateLinkage,
2650                              C,".str");
2651 
2652   GV->setAlignment(Align.getQuantity());
2653   GV->setUnnamedAddr(true);
2654   return GV;
2655 }
2656 
2657 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2658 /// array for the given ObjCEncodeExpr node.
2659 llvm::Constant *
2660 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2661   std::string Str;
2662   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2663 
2664   return GetAddrOfConstantCString(Str);
2665 }
2666 
2667 
2668 /// GenerateWritableString -- Creates storage for a string literal.
2669 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2670                                              bool constant,
2671                                              CodeGenModule &CGM,
2672                                              const char *GlobalName,
2673                                              unsigned Alignment) {
2674   // Create Constant for this string literal. Don't add a '\0'.
2675   llvm::Constant *C =
2676       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2677 
2678   // Create a global variable for this string
2679   llvm::GlobalVariable *GV =
2680     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2681                              llvm::GlobalValue::PrivateLinkage,
2682                              C, GlobalName);
2683   GV->setAlignment(Alignment);
2684   GV->setUnnamedAddr(true);
2685   return GV;
2686 }
2687 
2688 /// GetAddrOfConstantString - Returns a pointer to a character array
2689 /// containing the literal. This contents are exactly that of the
2690 /// given string, i.e. it will not be null terminated automatically;
2691 /// see GetAddrOfConstantCString. Note that whether the result is
2692 /// actually a pointer to an LLVM constant depends on
2693 /// Feature.WriteableStrings.
2694 ///
2695 /// The result has pointer to array type.
2696 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2697                                                        const char *GlobalName,
2698                                                        unsigned Alignment) {
2699   // Get the default prefix if a name wasn't specified.
2700   if (!GlobalName)
2701     GlobalName = ".str";
2702 
2703   if (Alignment == 0)
2704     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2705       .getQuantity();
2706 
2707   // Don't share any string literals if strings aren't constant.
2708   if (LangOpts.WritableStrings)
2709     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2710 
2711   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2712     ConstantStringMap.GetOrCreateValue(Str);
2713 
2714   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2715     if (Alignment > GV->getAlignment()) {
2716       GV->setAlignment(Alignment);
2717     }
2718     return GV;
2719   }
2720 
2721   // Create a global variable for this.
2722   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2723                                                    Alignment);
2724   Entry.setValue(GV);
2725   return GV;
2726 }
2727 
2728 /// GetAddrOfConstantCString - Returns a pointer to a character
2729 /// array containing the literal and a terminating '\0'
2730 /// character. The result has pointer to array type.
2731 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2732                                                         const char *GlobalName,
2733                                                         unsigned Alignment) {
2734   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2735   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2736 }
2737 
2738 /// EmitObjCPropertyImplementations - Emit information for synthesized
2739 /// properties for an implementation.
2740 void CodeGenModule::EmitObjCPropertyImplementations(const
2741                                                     ObjCImplementationDecl *D) {
2742   for (ObjCImplementationDecl::propimpl_iterator
2743          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2744     ObjCPropertyImplDecl *PID = *i;
2745 
2746     // Dynamic is just for type-checking.
2747     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2748       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2749 
2750       // Determine which methods need to be implemented, some may have
2751       // been overridden. Note that ::isPropertyAccessor is not the method
2752       // we want, that just indicates if the decl came from a
2753       // property. What we want to know is if the method is defined in
2754       // this implementation.
2755       if (!D->getInstanceMethod(PD->getGetterName()))
2756         CodeGenFunction(*this).GenerateObjCGetter(
2757                                  const_cast<ObjCImplementationDecl *>(D), PID);
2758       if (!PD->isReadOnly() &&
2759           !D->getInstanceMethod(PD->getSetterName()))
2760         CodeGenFunction(*this).GenerateObjCSetter(
2761                                  const_cast<ObjCImplementationDecl *>(D), PID);
2762     }
2763   }
2764 }
2765 
2766 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2767   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2768   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2769        ivar; ivar = ivar->getNextIvar())
2770     if (ivar->getType().isDestructedType())
2771       return true;
2772 
2773   return false;
2774 }
2775 
2776 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2777 /// for an implementation.
2778 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2779   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2780   if (needsDestructMethod(D)) {
2781     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2782     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2783     ObjCMethodDecl *DTORMethod =
2784       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2785                              cxxSelector, getContext().VoidTy, 0, D,
2786                              /*isInstance=*/true, /*isVariadic=*/false,
2787                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2788                              /*isDefined=*/false, ObjCMethodDecl::Required);
2789     D->addInstanceMethod(DTORMethod);
2790     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2791     D->setHasDestructors(true);
2792   }
2793 
2794   // If the implementation doesn't have any ivar initializers, we don't need
2795   // a .cxx_construct.
2796   if (D->getNumIvarInitializers() == 0)
2797     return;
2798 
2799   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2800   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2801   // The constructor returns 'self'.
2802   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2803                                                 D->getLocation(),
2804                                                 D->getLocation(),
2805                                                 cxxSelector,
2806                                                 getContext().getObjCIdType(), 0,
2807                                                 D, /*isInstance=*/true,
2808                                                 /*isVariadic=*/false,
2809                                                 /*isPropertyAccessor=*/true,
2810                                                 /*isImplicitlyDeclared=*/true,
2811                                                 /*isDefined=*/false,
2812                                                 ObjCMethodDecl::Required);
2813   D->addInstanceMethod(CTORMethod);
2814   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2815   D->setHasNonZeroConstructors(true);
2816 }
2817 
2818 /// EmitNamespace - Emit all declarations in a namespace.
2819 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2820   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2821        I != E; ++I)
2822     EmitTopLevelDecl(*I);
2823 }
2824 
2825 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2826 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2827   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2828       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2829     ErrorUnsupported(LSD, "linkage spec");
2830     return;
2831   }
2832 
2833   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2834        I != E; ++I) {
2835     // Meta-data for ObjC class includes references to implemented methods.
2836     // Generate class's method definitions first.
2837     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2838       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2839            MEnd = OID->meth_end();
2840            M != MEnd; ++M)
2841         EmitTopLevelDecl(*M);
2842     }
2843     EmitTopLevelDecl(*I);
2844   }
2845 }
2846 
2847 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2848 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2849   // If an error has occurred, stop code generation, but continue
2850   // parsing and semantic analysis (to ensure all warnings and errors
2851   // are emitted).
2852   if (Diags.hasErrorOccurred())
2853     return;
2854 
2855   // Ignore dependent declarations.
2856   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2857     return;
2858 
2859   switch (D->getKind()) {
2860   case Decl::CXXConversion:
2861   case Decl::CXXMethod:
2862   case Decl::Function:
2863     // Skip function templates
2864     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2865         cast<FunctionDecl>(D)->isLateTemplateParsed())
2866       return;
2867 
2868     EmitGlobal(cast<FunctionDecl>(D));
2869     break;
2870 
2871   case Decl::Var:
2872     EmitGlobal(cast<VarDecl>(D));
2873     break;
2874 
2875   // Indirect fields from global anonymous structs and unions can be
2876   // ignored; only the actual variable requires IR gen support.
2877   case Decl::IndirectField:
2878     break;
2879 
2880   // C++ Decls
2881   case Decl::Namespace:
2882     EmitNamespace(cast<NamespaceDecl>(D));
2883     break;
2884     // No code generation needed.
2885   case Decl::UsingShadow:
2886   case Decl::Using:
2887   case Decl::ClassTemplate:
2888   case Decl::FunctionTemplate:
2889   case Decl::TypeAliasTemplate:
2890   case Decl::Block:
2891   case Decl::Empty:
2892     break;
2893   case Decl::NamespaceAlias:
2894     if (CGDebugInfo *DI = getModuleDebugInfo())
2895         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2896     return;
2897   case Decl::UsingDirective: // using namespace X; [C++]
2898     if (CGDebugInfo *DI = getModuleDebugInfo())
2899       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2900     return;
2901   case Decl::CXXConstructor:
2902     // Skip function templates
2903     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2904         cast<FunctionDecl>(D)->isLateTemplateParsed())
2905       return;
2906 
2907     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2908     break;
2909   case Decl::CXXDestructor:
2910     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2911       return;
2912     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2913     break;
2914 
2915   case Decl::StaticAssert:
2916     // Nothing to do.
2917     break;
2918 
2919   // Objective-C Decls
2920 
2921   // Forward declarations, no (immediate) code generation.
2922   case Decl::ObjCInterface:
2923   case Decl::ObjCCategory:
2924     break;
2925 
2926   case Decl::ObjCProtocol: {
2927     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2928     if (Proto->isThisDeclarationADefinition())
2929       ObjCRuntime->GenerateProtocol(Proto);
2930     break;
2931   }
2932 
2933   case Decl::ObjCCategoryImpl:
2934     // Categories have properties but don't support synthesize so we
2935     // can ignore them here.
2936     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2937     break;
2938 
2939   case Decl::ObjCImplementation: {
2940     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2941     EmitObjCPropertyImplementations(OMD);
2942     EmitObjCIvarInitializations(OMD);
2943     ObjCRuntime->GenerateClass(OMD);
2944     // Emit global variable debug information.
2945     if (CGDebugInfo *DI = getModuleDebugInfo())
2946       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2947         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2948             OMD->getClassInterface()), OMD->getLocation());
2949     break;
2950   }
2951   case Decl::ObjCMethod: {
2952     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2953     // If this is not a prototype, emit the body.
2954     if (OMD->getBody())
2955       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2956     break;
2957   }
2958   case Decl::ObjCCompatibleAlias:
2959     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2960     break;
2961 
2962   case Decl::LinkageSpec:
2963     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2964     break;
2965 
2966   case Decl::FileScopeAsm: {
2967     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2968     StringRef AsmString = AD->getAsmString()->getString();
2969 
2970     const std::string &S = getModule().getModuleInlineAsm();
2971     if (S.empty())
2972       getModule().setModuleInlineAsm(AsmString);
2973     else if (S.end()[-1] == '\n')
2974       getModule().setModuleInlineAsm(S + AsmString.str());
2975     else
2976       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2977     break;
2978   }
2979 
2980   case Decl::Import: {
2981     ImportDecl *Import = cast<ImportDecl>(D);
2982 
2983     // Ignore import declarations that come from imported modules.
2984     if (clang::Module *Owner = Import->getOwningModule()) {
2985       if (getLangOpts().CurrentModule.empty() ||
2986           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2987         break;
2988     }
2989 
2990     ImportedModules.insert(Import->getImportedModule());
2991     break;
2992  }
2993 
2994   default:
2995     // Make sure we handled everything we should, every other kind is a
2996     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2997     // function. Need to recode Decl::Kind to do that easily.
2998     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2999   }
3000 }
3001 
3002 /// Turns the given pointer into a constant.
3003 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3004                                           const void *Ptr) {
3005   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3006   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3007   return llvm::ConstantInt::get(i64, PtrInt);
3008 }
3009 
3010 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3011                                    llvm::NamedMDNode *&GlobalMetadata,
3012                                    GlobalDecl D,
3013                                    llvm::GlobalValue *Addr) {
3014   if (!GlobalMetadata)
3015     GlobalMetadata =
3016       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3017 
3018   // TODO: should we report variant information for ctors/dtors?
3019   llvm::Value *Ops[] = {
3020     Addr,
3021     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3022   };
3023   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3024 }
3025 
3026 /// For each function which is declared within an extern "C" region and marked
3027 /// as 'used', but has internal linkage, create an alias from the unmangled
3028 /// name to the mangled name if possible. People expect to be able to refer
3029 /// to such functions with an unmangled name from inline assembly within the
3030 /// same translation unit.
3031 void CodeGenModule::EmitStaticExternCAliases() {
3032   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3033                                   E = StaticExternCValues.end();
3034        I != E; ++I) {
3035     IdentifierInfo *Name = I->first;
3036     llvm::GlobalValue *Val = I->second;
3037     if (Val && !getModule().getNamedValue(Name->getName()))
3038       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3039                                           Name->getName(), Val, &getModule()));
3040   }
3041 }
3042 
3043 /// Emits metadata nodes associating all the global values in the
3044 /// current module with the Decls they came from.  This is useful for
3045 /// projects using IR gen as a subroutine.
3046 ///
3047 /// Since there's currently no way to associate an MDNode directly
3048 /// with an llvm::GlobalValue, we create a global named metadata
3049 /// with the name 'clang.global.decl.ptrs'.
3050 void CodeGenModule::EmitDeclMetadata() {
3051   llvm::NamedMDNode *GlobalMetadata = 0;
3052 
3053   // StaticLocalDeclMap
3054   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3055          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3056        I != E; ++I) {
3057     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3058     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3059   }
3060 }
3061 
3062 /// Emits metadata nodes for all the local variables in the current
3063 /// function.
3064 void CodeGenFunction::EmitDeclMetadata() {
3065   if (LocalDeclMap.empty()) return;
3066 
3067   llvm::LLVMContext &Context = getLLVMContext();
3068 
3069   // Find the unique metadata ID for this name.
3070   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3071 
3072   llvm::NamedMDNode *GlobalMetadata = 0;
3073 
3074   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3075          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3076     const Decl *D = I->first;
3077     llvm::Value *Addr = I->second;
3078 
3079     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3080       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3081       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3082     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3083       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3084       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3085     }
3086   }
3087 }
3088 
3089 void CodeGenModule::EmitCoverageFile() {
3090   if (!getCodeGenOpts().CoverageFile.empty()) {
3091     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3092       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3093       llvm::LLVMContext &Ctx = TheModule.getContext();
3094       llvm::MDString *CoverageFile =
3095           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3096       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3097         llvm::MDNode *CU = CUNode->getOperand(i);
3098         llvm::Value *node[] = { CoverageFile, CU };
3099         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3100         GCov->addOperand(N);
3101       }
3102     }
3103   }
3104 }
3105 
3106 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3107                                                      QualType GuidType) {
3108   // Sema has checked that all uuid strings are of the form
3109   // "12345678-1234-1234-1234-1234567890ab".
3110   assert(Uuid.size() == 36);
3111   const char *Uuidstr = Uuid.data();
3112   for (int i = 0; i < 36; ++i) {
3113     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3114     else                                         assert(isHexDigit(Uuidstr[i]));
3115   }
3116 
3117   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3118   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3119   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3120   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3121 
3122   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3123   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3124   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3125   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3126   APValue& Arr = InitStruct.getStructField(3);
3127   Arr = APValue(APValue::UninitArray(), 8, 8);
3128   for (int t = 0; t < 8; ++t)
3129     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3130           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3131 
3132   return EmitConstantValue(InitStruct, GuidType);
3133 }
3134