xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 5c8e7596e6e886544cf99a9e9ee62d9bf0fc9ba3)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecordLayout.h"
37 #include "clang/AST/RecursiveASTVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/CodeGenOptions.h"
47 #include "clang/Sema/SemaDiagnostic.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallSite.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/ConvertUTF.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/MD5.h"
60 
61 using namespace clang;
62 using namespace CodeGen;
63 
64 static llvm::cl::opt<bool> LimitedCoverage(
65     "limited-coverage-experimental", llvm::cl::ZeroOrMore,
66     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
67     llvm::cl::init(false));
68 
69 static const char AnnotationSection[] = "llvm.metadata";
70 
71 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
72   switch (CGM.getTarget().getCXXABI().getKind()) {
73   case TargetCXXABI::GenericAArch64:
74   case TargetCXXABI::GenericARM:
75   case TargetCXXABI::iOS:
76   case TargetCXXABI::iOS64:
77   case TargetCXXABI::WatchOS:
78   case TargetCXXABI::GenericMIPS:
79   case TargetCXXABI::GenericItanium:
80   case TargetCXXABI::WebAssembly:
81     return CreateItaniumCXXABI(CGM);
82   case TargetCXXABI::Microsoft:
83     return CreateMicrosoftCXXABI(CGM);
84   }
85 
86   llvm_unreachable("invalid C++ ABI kind");
87 }
88 
89 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
90                              const PreprocessorOptions &PPO,
91                              const CodeGenOptions &CGO, llvm::Module &M,
92                              DiagnosticsEngine &diags,
93                              CoverageSourceInfo *CoverageInfo)
94     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
95       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
96       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
97       VMContext(M.getContext()), Types(*this), VTables(*this),
98       SanitizerMD(new SanitizerMetadata(*this)) {
99 
100   // Initialize the type cache.
101   llvm::LLVMContext &LLVMContext = M.getContext();
102   VoidTy = llvm::Type::getVoidTy(LLVMContext);
103   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
104   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
105   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
106   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
212     break;
213   }
214 }
215 
216 void CodeGenModule::createCUDARuntime() {
217   CUDARuntime.reset(CreateNVCUDARuntime(*this));
218 }
219 
220 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
221   Replacements[Name] = C;
222 }
223 
224 void CodeGenModule::applyReplacements() {
225   for (auto &I : Replacements) {
226     StringRef MangledName = I.first();
227     llvm::Constant *Replacement = I.second;
228     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
229     if (!Entry)
230       continue;
231     auto *OldF = cast<llvm::Function>(Entry);
232     auto *NewF = dyn_cast<llvm::Function>(Replacement);
233     if (!NewF) {
234       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
235         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
236       } else {
237         auto *CE = cast<llvm::ConstantExpr>(Replacement);
238         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
239                CE->getOpcode() == llvm::Instruction::GetElementPtr);
240         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
241       }
242     }
243 
244     // Replace old with new, but keep the old order.
245     OldF->replaceAllUsesWith(Replacement);
246     if (NewF) {
247       NewF->removeFromParent();
248       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
249                                                        NewF);
250     }
251     OldF->eraseFromParent();
252   }
253 }
254 
255 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
256   GlobalValReplacements.push_back(std::make_pair(GV, C));
257 }
258 
259 void CodeGenModule::applyGlobalValReplacements() {
260   for (auto &I : GlobalValReplacements) {
261     llvm::GlobalValue *GV = I.first;
262     llvm::Constant *C = I.second;
263 
264     GV->replaceAllUsesWith(C);
265     GV->eraseFromParent();
266   }
267 }
268 
269 // This is only used in aliases that we created and we know they have a
270 // linear structure.
271 static const llvm::GlobalObject *getAliasedGlobal(
272     const llvm::GlobalIndirectSymbol &GIS) {
273   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
274   const llvm::Constant *C = &GIS;
275   for (;;) {
276     C = C->stripPointerCasts();
277     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
278       return GO;
279     // stripPointerCasts will not walk over weak aliases.
280     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
281     if (!GIS2)
282       return nullptr;
283     if (!Visited.insert(GIS2).second)
284       return nullptr;
285     C = GIS2->getIndirectSymbol();
286   }
287 }
288 
289 void CodeGenModule::checkAliases() {
290   // Check if the constructed aliases are well formed. It is really unfortunate
291   // that we have to do this in CodeGen, but we only construct mangled names
292   // and aliases during codegen.
293   bool Error = false;
294   DiagnosticsEngine &Diags = getDiags();
295   for (const GlobalDecl &GD : Aliases) {
296     const auto *D = cast<ValueDecl>(GD.getDecl());
297     SourceLocation Location;
298     bool IsIFunc = D->hasAttr<IFuncAttr>();
299     if (const Attr *A = D->getDefiningAttr())
300       Location = A->getLocation();
301     else
302       llvm_unreachable("Not an alias or ifunc?");
303     StringRef MangledName = getMangledName(GD);
304     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
305     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
306     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
307     if (!GV) {
308       Error = true;
309       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
310     } else if (GV->isDeclaration()) {
311       Error = true;
312       Diags.Report(Location, diag::err_alias_to_undefined)
313           << IsIFunc << IsIFunc;
314     } else if (IsIFunc) {
315       // Check resolver function type.
316       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
317           GV->getType()->getPointerElementType());
318       assert(FTy);
319       if (!FTy->getReturnType()->isPointerTy())
320         Diags.Report(Location, diag::err_ifunc_resolver_return);
321       if (FTy->getNumParams())
322         Diags.Report(Location, diag::err_ifunc_resolver_params);
323     }
324 
325     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
326     llvm::GlobalValue *AliaseeGV;
327     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
328       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
329     else
330       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
331 
332     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
333       StringRef AliasSection = SA->getName();
334       if (AliasSection != AliaseeGV->getSection())
335         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
336             << AliasSection << IsIFunc << IsIFunc;
337     }
338 
339     // We have to handle alias to weak aliases in here. LLVM itself disallows
340     // this since the object semantics would not match the IL one. For
341     // compatibility with gcc we implement it by just pointing the alias
342     // to its aliasee's aliasee. We also warn, since the user is probably
343     // expecting the link to be weak.
344     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
345       if (GA->isInterposable()) {
346         Diags.Report(Location, diag::warn_alias_to_weak_alias)
347             << GV->getName() << GA->getName() << IsIFunc;
348         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
349             GA->getIndirectSymbol(), Alias->getType());
350         Alias->setIndirectSymbol(Aliasee);
351       }
352     }
353   }
354   if (!Error)
355     return;
356 
357   for (const GlobalDecl &GD : Aliases) {
358     StringRef MangledName = getMangledName(GD);
359     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
360     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
361     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
362     Alias->eraseFromParent();
363   }
364 }
365 
366 void CodeGenModule::clear() {
367   DeferredDeclsToEmit.clear();
368   if (OpenMPRuntime)
369     OpenMPRuntime->clear();
370 }
371 
372 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
373                                        StringRef MainFile) {
374   if (!hasDiagnostics())
375     return;
376   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
377     if (MainFile.empty())
378       MainFile = "<stdin>";
379     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
380   } else {
381     if (Mismatched > 0)
382       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
383 
384     if (Missing > 0)
385       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
386   }
387 }
388 
389 void CodeGenModule::Release() {
390   EmitDeferred();
391   EmitVTablesOpportunistically();
392   applyGlobalValReplacements();
393   applyReplacements();
394   checkAliases();
395   EmitCXXGlobalInitFunc();
396   EmitCXXGlobalDtorFunc();
397   EmitCXXThreadLocalInitFunc();
398   if (ObjCRuntime)
399     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
400       AddGlobalCtor(ObjCInitFunction);
401   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
402       CUDARuntime) {
403     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
404       AddGlobalCtor(CudaCtorFunction);
405     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
406       AddGlobalDtor(CudaDtorFunction);
407   }
408   if (OpenMPRuntime)
409     if (llvm::Function *OpenMPRegistrationFunction =
410             OpenMPRuntime->emitRegistrationFunction()) {
411       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
412         OpenMPRegistrationFunction : nullptr;
413       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
414     }
415   if (PGOReader) {
416     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
417     if (PGOStats.hasDiagnostics())
418       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
419   }
420   EmitCtorList(GlobalCtors, "llvm.global_ctors");
421   EmitCtorList(GlobalDtors, "llvm.global_dtors");
422   EmitGlobalAnnotations();
423   EmitStaticExternCAliases();
424   EmitDeferredUnusedCoverageMappings();
425   if (CoverageMapping)
426     CoverageMapping->emit();
427   if (CodeGenOpts.SanitizeCfiCrossDso) {
428     CodeGenFunction(*this).EmitCfiCheckFail();
429     CodeGenFunction(*this).EmitCfiCheckStub();
430   }
431   emitAtAvailableLinkGuard();
432   emitLLVMUsed();
433   if (SanStats)
434     SanStats->finish();
435 
436   if (CodeGenOpts.Autolink &&
437       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
438     EmitModuleLinkOptions();
439   }
440 
441   // Record mregparm value now so it is visible through rest of codegen.
442   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
443     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
444                               CodeGenOpts.NumRegisterParameters);
445 
446   if (CodeGenOpts.DwarfVersion) {
447     // We actually want the latest version when there are conflicts.
448     // We can change from Warning to Latest if such mode is supported.
449     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
450                               CodeGenOpts.DwarfVersion);
451   }
452   if (CodeGenOpts.EmitCodeView) {
453     // Indicate that we want CodeView in the metadata.
454     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
455   }
456   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
457     // We don't support LTO with 2 with different StrictVTablePointers
458     // FIXME: we could support it by stripping all the information introduced
459     // by StrictVTablePointers.
460 
461     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
462 
463     llvm::Metadata *Ops[2] = {
464               llvm::MDString::get(VMContext, "StrictVTablePointers"),
465               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
466                   llvm::Type::getInt32Ty(VMContext), 1))};
467 
468     getModule().addModuleFlag(llvm::Module::Require,
469                               "StrictVTablePointersRequirement",
470                               llvm::MDNode::get(VMContext, Ops));
471   }
472   if (DebugInfo)
473     // We support a single version in the linked module. The LLVM
474     // parser will drop debug info with a different version number
475     // (and warn about it, too).
476     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
477                               llvm::DEBUG_METADATA_VERSION);
478 
479   // We need to record the widths of enums and wchar_t, so that we can generate
480   // the correct build attributes in the ARM backend. wchar_size is also used by
481   // TargetLibraryInfo.
482   uint64_t WCharWidth =
483       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
484   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
485 
486   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
487   if (   Arch == llvm::Triple::arm
488       || Arch == llvm::Triple::armeb
489       || Arch == llvm::Triple::thumb
490       || Arch == llvm::Triple::thumbeb) {
491     // The minimum width of an enum in bytes
492     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
493     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
494   }
495 
496   if (CodeGenOpts.SanitizeCfiCrossDso) {
497     // Indicate that we want cross-DSO control flow integrity checks.
498     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
499   }
500 
501   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
502     // Indicate whether __nvvm_reflect should be configured to flush denormal
503     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
504     // property.)
505     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
506                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
507   }
508 
509   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
510   if (LangOpts.OpenCL) {
511     EmitOpenCLMetadata();
512     // Emit SPIR version.
513     if (getTriple().getArch() == llvm::Triple::spir ||
514         getTriple().getArch() == llvm::Triple::spir64) {
515       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
516       // opencl.spir.version named metadata.
517       llvm::Metadata *SPIRVerElts[] = {
518           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
519               Int32Ty, LangOpts.OpenCLVersion / 100)),
520           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
521               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
522       llvm::NamedMDNode *SPIRVerMD =
523           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
524       llvm::LLVMContext &Ctx = TheModule.getContext();
525       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
526     }
527   }
528 
529   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
530     assert(PLevel < 3 && "Invalid PIC Level");
531     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
532     if (Context.getLangOpts().PIE)
533       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
534   }
535 
536   SimplifyPersonality();
537 
538   if (getCodeGenOpts().EmitDeclMetadata)
539     EmitDeclMetadata();
540 
541   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
542     EmitCoverageFile();
543 
544   if (DebugInfo)
545     DebugInfo->finalize();
546 
547   EmitVersionIdentMetadata();
548 
549   EmitTargetMetadata();
550 }
551 
552 void CodeGenModule::EmitOpenCLMetadata() {
553   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
554   // opencl.ocl.version named metadata node.
555   llvm::Metadata *OCLVerElts[] = {
556       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
557           Int32Ty, LangOpts.OpenCLVersion / 100)),
558       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
559           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
560   llvm::NamedMDNode *OCLVerMD =
561       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
562   llvm::LLVMContext &Ctx = TheModule.getContext();
563   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
564 }
565 
566 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
567   // Make sure that this type is translated.
568   Types.UpdateCompletedType(TD);
569 }
570 
571 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
572   // Make sure that this type is translated.
573   Types.RefreshTypeCacheForClass(RD);
574 }
575 
576 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
577   if (!TBAA)
578     return nullptr;
579   return TBAA->getTypeInfo(QTy);
580 }
581 
582 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
583   if (!TBAA)
584     return nullptr;
585   return TBAA->getTBAAInfoForVTablePtr();
586 }
587 
588 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
589   if (!TBAA)
590     return nullptr;
591   return TBAA->getTBAAStructInfo(QTy);
592 }
593 
594 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
595                                                   llvm::MDNode *AccessN,
596                                                   uint64_t O) {
597   if (!TBAA)
598     return nullptr;
599   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
600 }
601 
602 llvm::MDNode *CodeGenModule::getTBAAMayAliasTypeInfo() {
603   if (!TBAA)
604     return nullptr;
605   return TBAA->getMayAliasTypeInfo();
606 }
607 
608 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
609 /// and struct-path aware TBAA, the tag has the same format:
610 /// base type, access type and offset.
611 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
612 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
613                                                 llvm::MDNode *TBAAInfo,
614                                                 bool ConvertTypeToTag) {
615   if (ConvertTypeToTag && TBAA)
616     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
617                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
618   else
619     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
620 }
621 
622 void CodeGenModule::DecorateInstructionWithInvariantGroup(
623     llvm::Instruction *I, const CXXRecordDecl *RD) {
624   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
625                  llvm::MDNode::get(getLLVMContext(), {}));
626 }
627 
628 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
629   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
630   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
631 }
632 
633 /// ErrorUnsupported - Print out an error that codegen doesn't support the
634 /// specified stmt yet.
635 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
636   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
637                                                "cannot compile this %0 yet");
638   std::string Msg = Type;
639   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
640     << Msg << S->getSourceRange();
641 }
642 
643 /// ErrorUnsupported - Print out an error that codegen doesn't support the
644 /// specified decl yet.
645 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
646   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
647                                                "cannot compile this %0 yet");
648   std::string Msg = Type;
649   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
650 }
651 
652 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
653   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
654 }
655 
656 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
657                                         const NamedDecl *D) const {
658   // Internal definitions always have default visibility.
659   if (GV->hasLocalLinkage()) {
660     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
661     return;
662   }
663 
664   // Set visibility for definitions.
665   LinkageInfo LV = D->getLinkageAndVisibility();
666   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
667     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
668 }
669 
670 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
671   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
672       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
673       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
674       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
675       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
676 }
677 
678 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
679     CodeGenOptions::TLSModel M) {
680   switch (M) {
681   case CodeGenOptions::GeneralDynamicTLSModel:
682     return llvm::GlobalVariable::GeneralDynamicTLSModel;
683   case CodeGenOptions::LocalDynamicTLSModel:
684     return llvm::GlobalVariable::LocalDynamicTLSModel;
685   case CodeGenOptions::InitialExecTLSModel:
686     return llvm::GlobalVariable::InitialExecTLSModel;
687   case CodeGenOptions::LocalExecTLSModel:
688     return llvm::GlobalVariable::LocalExecTLSModel;
689   }
690   llvm_unreachable("Invalid TLS model!");
691 }
692 
693 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
694   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
695 
696   llvm::GlobalValue::ThreadLocalMode TLM;
697   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
698 
699   // Override the TLS model if it is explicitly specified.
700   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
701     TLM = GetLLVMTLSModel(Attr->getModel());
702   }
703 
704   GV->setThreadLocalMode(TLM);
705 }
706 
707 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
708   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
709 
710   // Some ABIs don't have constructor variants.  Make sure that base and
711   // complete constructors get mangled the same.
712   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
713     if (!getTarget().getCXXABI().hasConstructorVariants()) {
714       CXXCtorType OrigCtorType = GD.getCtorType();
715       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
716       if (OrigCtorType == Ctor_Base)
717         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
718     }
719   }
720 
721   auto FoundName = MangledDeclNames.find(CanonicalGD);
722   if (FoundName != MangledDeclNames.end())
723     return FoundName->second;
724 
725   const auto *ND = cast<NamedDecl>(GD.getDecl());
726   SmallString<256> Buffer;
727   StringRef Str;
728   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
729     llvm::raw_svector_ostream Out(Buffer);
730     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
731       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
732     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
733       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
734     else
735       getCXXABI().getMangleContext().mangleName(ND, Out);
736     Str = Out.str();
737   } else {
738     IdentifierInfo *II = ND->getIdentifier();
739     assert(II && "Attempt to mangle unnamed decl.");
740     const auto *FD = dyn_cast<FunctionDecl>(ND);
741 
742     if (FD &&
743         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
744       llvm::raw_svector_ostream Out(Buffer);
745       Out << "__regcall3__" << II->getName();
746       Str = Out.str();
747     } else {
748       Str = II->getName();
749     }
750   }
751 
752   // Keep the first result in the case of a mangling collision.
753   auto Result = Manglings.insert(std::make_pair(Str, GD));
754   return MangledDeclNames[CanonicalGD] = Result.first->first();
755 }
756 
757 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
758                                              const BlockDecl *BD) {
759   MangleContext &MangleCtx = getCXXABI().getMangleContext();
760   const Decl *D = GD.getDecl();
761 
762   SmallString<256> Buffer;
763   llvm::raw_svector_ostream Out(Buffer);
764   if (!D)
765     MangleCtx.mangleGlobalBlock(BD,
766       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
767   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
768     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
769   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
770     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
771   else
772     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
773 
774   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
775   return Result.first->first();
776 }
777 
778 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
779   return getModule().getNamedValue(Name);
780 }
781 
782 /// AddGlobalCtor - Add a function to the list that will be called before
783 /// main() runs.
784 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
785                                   llvm::Constant *AssociatedData) {
786   // FIXME: Type coercion of void()* types.
787   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
788 }
789 
790 /// AddGlobalDtor - Add a function to the list that will be called
791 /// when the module is unloaded.
792 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
793   // FIXME: Type coercion of void()* types.
794   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
795 }
796 
797 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
798   if (Fns.empty()) return;
799 
800   // Ctor function type is void()*.
801   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
802   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
803 
804   // Get the type of a ctor entry, { i32, void ()*, i8* }.
805   llvm::StructType *CtorStructTy = llvm::StructType::get(
806       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
807 
808   // Construct the constructor and destructor arrays.
809   ConstantInitBuilder builder(*this);
810   auto ctors = builder.beginArray(CtorStructTy);
811   for (const auto &I : Fns) {
812     auto ctor = ctors.beginStruct(CtorStructTy);
813     ctor.addInt(Int32Ty, I.Priority);
814     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
815     if (I.AssociatedData)
816       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
817     else
818       ctor.addNullPointer(VoidPtrTy);
819     ctor.finishAndAddTo(ctors);
820   }
821 
822   auto list =
823     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
824                                 /*constant*/ false,
825                                 llvm::GlobalValue::AppendingLinkage);
826 
827   // The LTO linker doesn't seem to like it when we set an alignment
828   // on appending variables.  Take it off as a workaround.
829   list->setAlignment(0);
830 
831   Fns.clear();
832 }
833 
834 llvm::GlobalValue::LinkageTypes
835 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
836   const auto *D = cast<FunctionDecl>(GD.getDecl());
837 
838   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
839 
840   if (isa<CXXDestructorDecl>(D) &&
841       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
842                                          GD.getDtorType())) {
843     // Destructor variants in the Microsoft C++ ABI are always internal or
844     // linkonce_odr thunks emitted on an as-needed basis.
845     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
846                                    : llvm::GlobalValue::LinkOnceODRLinkage;
847   }
848 
849   if (isa<CXXConstructorDecl>(D) &&
850       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
851       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
852     // Our approach to inheriting constructors is fundamentally different from
853     // that used by the MS ABI, so keep our inheriting constructor thunks
854     // internal rather than trying to pick an unambiguous mangling for them.
855     return llvm::GlobalValue::InternalLinkage;
856   }
857 
858   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
859 }
860 
861 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
862   const auto *FD = cast<FunctionDecl>(GD.getDecl());
863 
864   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
865     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
866       // Don't dllexport/import destructor thunks.
867       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
868       return;
869     }
870   }
871 
872   if (FD->hasAttr<DLLImportAttr>())
873     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
874   else if (FD->hasAttr<DLLExportAttr>())
875     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
876   else
877     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
878 }
879 
880 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
881   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
882   if (!MDS) return nullptr;
883 
884   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
885 }
886 
887 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
888                                                     llvm::Function *F) {
889   setNonAliasAttributes(D, F);
890 }
891 
892 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
893                                               const CGFunctionInfo &Info,
894                                               llvm::Function *F) {
895   unsigned CallingConv;
896   llvm::AttributeList PAL;
897   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
898   F->setAttributes(PAL);
899   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
900 }
901 
902 /// Determines whether the language options require us to model
903 /// unwind exceptions.  We treat -fexceptions as mandating this
904 /// except under the fragile ObjC ABI with only ObjC exceptions
905 /// enabled.  This means, for example, that C with -fexceptions
906 /// enables this.
907 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
908   // If exceptions are completely disabled, obviously this is false.
909   if (!LangOpts.Exceptions) return false;
910 
911   // If C++ exceptions are enabled, this is true.
912   if (LangOpts.CXXExceptions) return true;
913 
914   // If ObjC exceptions are enabled, this depends on the ABI.
915   if (LangOpts.ObjCExceptions) {
916     return LangOpts.ObjCRuntime.hasUnwindExceptions();
917   }
918 
919   return true;
920 }
921 
922 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
923                                                            llvm::Function *F) {
924   llvm::AttrBuilder B;
925 
926   if (CodeGenOpts.UnwindTables)
927     B.addAttribute(llvm::Attribute::UWTable);
928 
929   if (!hasUnwindExceptions(LangOpts))
930     B.addAttribute(llvm::Attribute::NoUnwind);
931 
932   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
933     B.addAttribute(llvm::Attribute::StackProtect);
934   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
935     B.addAttribute(llvm::Attribute::StackProtectStrong);
936   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
937     B.addAttribute(llvm::Attribute::StackProtectReq);
938 
939   if (!D) {
940     // If we don't have a declaration to control inlining, the function isn't
941     // explicitly marked as alwaysinline for semantic reasons, and inlining is
942     // disabled, mark the function as noinline.
943     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
944         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
945       B.addAttribute(llvm::Attribute::NoInline);
946 
947     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
948     return;
949   }
950 
951   // Track whether we need to add the optnone LLVM attribute,
952   // starting with the default for this optimization level.
953   bool ShouldAddOptNone =
954       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
955   // We can't add optnone in the following cases, it won't pass the verifier.
956   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
957   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
958   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
959 
960   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
961     B.addAttribute(llvm::Attribute::OptimizeNone);
962 
963     // OptimizeNone implies noinline; we should not be inlining such functions.
964     B.addAttribute(llvm::Attribute::NoInline);
965     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
966            "OptimizeNone and AlwaysInline on same function!");
967 
968     // We still need to handle naked functions even though optnone subsumes
969     // much of their semantics.
970     if (D->hasAttr<NakedAttr>())
971       B.addAttribute(llvm::Attribute::Naked);
972 
973     // OptimizeNone wins over OptimizeForSize and MinSize.
974     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
975     F->removeFnAttr(llvm::Attribute::MinSize);
976   } else if (D->hasAttr<NakedAttr>()) {
977     // Naked implies noinline: we should not be inlining such functions.
978     B.addAttribute(llvm::Attribute::Naked);
979     B.addAttribute(llvm::Attribute::NoInline);
980   } else if (D->hasAttr<NoDuplicateAttr>()) {
981     B.addAttribute(llvm::Attribute::NoDuplicate);
982   } else if (D->hasAttr<NoInlineAttr>()) {
983     B.addAttribute(llvm::Attribute::NoInline);
984   } else if (D->hasAttr<AlwaysInlineAttr>() &&
985              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
986     // (noinline wins over always_inline, and we can't specify both in IR)
987     B.addAttribute(llvm::Attribute::AlwaysInline);
988   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
989     // If we're not inlining, then force everything that isn't always_inline to
990     // carry an explicit noinline attribute.
991     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
992       B.addAttribute(llvm::Attribute::NoInline);
993   } else {
994     // Otherwise, propagate the inline hint attribute and potentially use its
995     // absence to mark things as noinline.
996     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
997       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
998             return Redecl->isInlineSpecified();
999           })) {
1000         B.addAttribute(llvm::Attribute::InlineHint);
1001       } else if (CodeGenOpts.getInlining() ==
1002                      CodeGenOptions::OnlyHintInlining &&
1003                  !FD->isInlined() &&
1004                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1005         B.addAttribute(llvm::Attribute::NoInline);
1006       }
1007     }
1008   }
1009 
1010   // Add other optimization related attributes if we are optimizing this
1011   // function.
1012   if (!D->hasAttr<OptimizeNoneAttr>()) {
1013     if (D->hasAttr<ColdAttr>()) {
1014       if (!ShouldAddOptNone)
1015         B.addAttribute(llvm::Attribute::OptimizeForSize);
1016       B.addAttribute(llvm::Attribute::Cold);
1017     }
1018 
1019     if (D->hasAttr<MinSizeAttr>())
1020       B.addAttribute(llvm::Attribute::MinSize);
1021   }
1022 
1023   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1024 
1025   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1026   if (alignment)
1027     F->setAlignment(alignment);
1028 
1029   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1030   // reserve a bit for differentiating between virtual and non-virtual member
1031   // functions. If the current target's C++ ABI requires this and this is a
1032   // member function, set its alignment accordingly.
1033   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1034     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1035       F->setAlignment(2);
1036   }
1037 
1038   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1039   if (CodeGenOpts.SanitizeCfiCrossDso)
1040     if (auto *FD = dyn_cast<FunctionDecl>(D))
1041       CreateFunctionTypeMetadata(FD, F);
1042 }
1043 
1044 void CodeGenModule::SetCommonAttributes(const Decl *D,
1045                                         llvm::GlobalValue *GV) {
1046   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1047     setGlobalVisibility(GV, ND);
1048   else
1049     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1050 
1051   if (D && D->hasAttr<UsedAttr>())
1052     addUsedGlobal(GV);
1053 }
1054 
1055 void CodeGenModule::setAliasAttributes(const Decl *D,
1056                                        llvm::GlobalValue *GV) {
1057   SetCommonAttributes(D, GV);
1058 
1059   // Process the dllexport attribute based on whether the original definition
1060   // (not necessarily the aliasee) was exported.
1061   if (D->hasAttr<DLLExportAttr>())
1062     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1063 }
1064 
1065 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1066                                           llvm::GlobalObject *GO) {
1067   SetCommonAttributes(D, GO);
1068 
1069   if (D) {
1070     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1071       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1072         GV->addAttribute("bss-section", SA->getName());
1073       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1074         GV->addAttribute("data-section", SA->getName());
1075       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1076         GV->addAttribute("rodata-section", SA->getName());
1077     }
1078 
1079     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1080       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1081        if (!D->getAttr<SectionAttr>())
1082          F->addFnAttr("implicit-section-name", SA->getName());
1083     }
1084 
1085     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1086       GO->setSection(SA->getName());
1087   }
1088 
1089   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition);
1090 }
1091 
1092 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1093                                                   llvm::Function *F,
1094                                                   const CGFunctionInfo &FI) {
1095   SetLLVMFunctionAttributes(D, FI, F);
1096   SetLLVMFunctionAttributesForDefinition(D, F);
1097 
1098   F->setLinkage(llvm::Function::InternalLinkage);
1099 
1100   setNonAliasAttributes(D, F);
1101 }
1102 
1103 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1104                                          const NamedDecl *ND) {
1105   // Set linkage and visibility in case we never see a definition.
1106   LinkageInfo LV = ND->getLinkageAndVisibility();
1107   if (!isExternallyVisible(LV.getLinkage())) {
1108     // Don't set internal linkage on declarations.
1109   } else {
1110     if (ND->hasAttr<DLLImportAttr>()) {
1111       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1112       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1113     } else if (ND->hasAttr<DLLExportAttr>()) {
1114       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1115     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1116       // "extern_weak" is overloaded in LLVM; we probably should have
1117       // separate linkage types for this.
1118       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1119     }
1120 
1121     // Set visibility on a declaration only if it's explicit.
1122     if (LV.isVisibilityExplicit())
1123       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1124   }
1125 }
1126 
1127 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1128                                                llvm::Function *F) {
1129   // Only if we are checking indirect calls.
1130   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1131     return;
1132 
1133   // Non-static class methods are handled via vtable pointer checks elsewhere.
1134   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1135     return;
1136 
1137   // Additionally, if building with cross-DSO support...
1138   if (CodeGenOpts.SanitizeCfiCrossDso) {
1139     // Skip available_externally functions. They won't be codegen'ed in the
1140     // current module anyway.
1141     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1142       return;
1143   }
1144 
1145   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1146   F->addTypeMetadata(0, MD);
1147 
1148   // Emit a hash-based bit set entry for cross-DSO calls.
1149   if (CodeGenOpts.SanitizeCfiCrossDso)
1150     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1151       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1152 }
1153 
1154 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1155                                           bool IsIncompleteFunction,
1156                                           bool IsThunk,
1157                                           ForDefinition_t IsForDefinition) {
1158 
1159   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1160     // If this is an intrinsic function, set the function's attributes
1161     // to the intrinsic's attributes.
1162     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1163     return;
1164   }
1165 
1166   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1167 
1168   if (!IsIncompleteFunction) {
1169     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1170     // Setup target-specific attributes.
1171     if (!IsForDefinition)
1172       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this,
1173                                                  NotForDefinition);
1174   }
1175 
1176   // Add the Returned attribute for "this", except for iOS 5 and earlier
1177   // where substantial code, including the libstdc++ dylib, was compiled with
1178   // GCC and does not actually return "this".
1179   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1180       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1181     assert(!F->arg_empty() &&
1182            F->arg_begin()->getType()
1183              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1184            "unexpected this return");
1185     F->addAttribute(1, llvm::Attribute::Returned);
1186   }
1187 
1188   // Only a few attributes are set on declarations; these may later be
1189   // overridden by a definition.
1190 
1191   setLinkageAndVisibilityForGV(F, FD);
1192 
1193   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1194     F->addFnAttr("implicit-section-name");
1195   }
1196 
1197   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1198     F->setSection(SA->getName());
1199 
1200   if (FD->isReplaceableGlobalAllocationFunction()) {
1201     // A replaceable global allocation function does not act like a builtin by
1202     // default, only if it is invoked by a new-expression or delete-expression.
1203     F->addAttribute(llvm::AttributeList::FunctionIndex,
1204                     llvm::Attribute::NoBuiltin);
1205 
1206     // A sane operator new returns a non-aliasing pointer.
1207     // FIXME: Also add NonNull attribute to the return value
1208     // for the non-nothrow forms?
1209     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1210     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1211         (Kind == OO_New || Kind == OO_Array_New))
1212       F->addAttribute(llvm::AttributeList::ReturnIndex,
1213                       llvm::Attribute::NoAlias);
1214   }
1215 
1216   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1217     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1218   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1219     if (MD->isVirtual())
1220       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1221 
1222   // Don't emit entries for function declarations in the cross-DSO mode. This
1223   // is handled with better precision by the receiving DSO.
1224   if (!CodeGenOpts.SanitizeCfiCrossDso)
1225     CreateFunctionTypeMetadata(FD, F);
1226 }
1227 
1228 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1229   assert(!GV->isDeclaration() &&
1230          "Only globals with definition can force usage.");
1231   LLVMUsed.emplace_back(GV);
1232 }
1233 
1234 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1235   assert(!GV->isDeclaration() &&
1236          "Only globals with definition can force usage.");
1237   LLVMCompilerUsed.emplace_back(GV);
1238 }
1239 
1240 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1241                      std::vector<llvm::WeakTrackingVH> &List) {
1242   // Don't create llvm.used if there is no need.
1243   if (List.empty())
1244     return;
1245 
1246   // Convert List to what ConstantArray needs.
1247   SmallVector<llvm::Constant*, 8> UsedArray;
1248   UsedArray.resize(List.size());
1249   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1250     UsedArray[i] =
1251         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1252             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1253   }
1254 
1255   if (UsedArray.empty())
1256     return;
1257   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1258 
1259   auto *GV = new llvm::GlobalVariable(
1260       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1261       llvm::ConstantArray::get(ATy, UsedArray), Name);
1262 
1263   GV->setSection("llvm.metadata");
1264 }
1265 
1266 void CodeGenModule::emitLLVMUsed() {
1267   emitUsed(*this, "llvm.used", LLVMUsed);
1268   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1269 }
1270 
1271 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1272   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1273   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1274 }
1275 
1276 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1277   llvm::SmallString<32> Opt;
1278   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1279   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1280   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1281 }
1282 
1283 void CodeGenModule::AddDependentLib(StringRef Lib) {
1284   llvm::SmallString<24> Opt;
1285   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1286   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1287   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1288 }
1289 
1290 /// \brief Add link options implied by the given module, including modules
1291 /// it depends on, using a postorder walk.
1292 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1293                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1294                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1295   // Import this module's parent.
1296   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1297     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1298   }
1299 
1300   // Import this module's dependencies.
1301   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1302     if (Visited.insert(Mod->Imports[I - 1]).second)
1303       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1304   }
1305 
1306   // Add linker options to link against the libraries/frameworks
1307   // described by this module.
1308   llvm::LLVMContext &Context = CGM.getLLVMContext();
1309   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1310     // Link against a framework.  Frameworks are currently Darwin only, so we
1311     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1312     if (Mod->LinkLibraries[I-1].IsFramework) {
1313       llvm::Metadata *Args[2] = {
1314           llvm::MDString::get(Context, "-framework"),
1315           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1316 
1317       Metadata.push_back(llvm::MDNode::get(Context, Args));
1318       continue;
1319     }
1320 
1321     // Link against a library.
1322     llvm::SmallString<24> Opt;
1323     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1324       Mod->LinkLibraries[I-1].Library, Opt);
1325     auto *OptString = llvm::MDString::get(Context, Opt);
1326     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1327   }
1328 }
1329 
1330 void CodeGenModule::EmitModuleLinkOptions() {
1331   // Collect the set of all of the modules we want to visit to emit link
1332   // options, which is essentially the imported modules and all of their
1333   // non-explicit child modules.
1334   llvm::SetVector<clang::Module *> LinkModules;
1335   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1336   SmallVector<clang::Module *, 16> Stack;
1337 
1338   // Seed the stack with imported modules.
1339   for (Module *M : ImportedModules) {
1340     // Do not add any link flags when an implementation TU of a module imports
1341     // a header of that same module.
1342     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1343         !getLangOpts().isCompilingModule())
1344       continue;
1345     if (Visited.insert(M).second)
1346       Stack.push_back(M);
1347   }
1348 
1349   // Find all of the modules to import, making a little effort to prune
1350   // non-leaf modules.
1351   while (!Stack.empty()) {
1352     clang::Module *Mod = Stack.pop_back_val();
1353 
1354     bool AnyChildren = false;
1355 
1356     // Visit the submodules of this module.
1357     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1358                                         SubEnd = Mod->submodule_end();
1359          Sub != SubEnd; ++Sub) {
1360       // Skip explicit children; they need to be explicitly imported to be
1361       // linked against.
1362       if ((*Sub)->IsExplicit)
1363         continue;
1364 
1365       if (Visited.insert(*Sub).second) {
1366         Stack.push_back(*Sub);
1367         AnyChildren = true;
1368       }
1369     }
1370 
1371     // We didn't find any children, so add this module to the list of
1372     // modules to link against.
1373     if (!AnyChildren) {
1374       LinkModules.insert(Mod);
1375     }
1376   }
1377 
1378   // Add link options for all of the imported modules in reverse topological
1379   // order.  We don't do anything to try to order import link flags with respect
1380   // to linker options inserted by things like #pragma comment().
1381   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1382   Visited.clear();
1383   for (Module *M : LinkModules)
1384     if (Visited.insert(M).second)
1385       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1386   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1387   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1388 
1389   // Add the linker options metadata flag.
1390   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1391   for (auto *MD : LinkerOptionsMetadata)
1392     NMD->addOperand(MD);
1393 }
1394 
1395 void CodeGenModule::EmitDeferred() {
1396   // Emit code for any potentially referenced deferred decls.  Since a
1397   // previously unused static decl may become used during the generation of code
1398   // for a static function, iterate until no changes are made.
1399 
1400   if (!DeferredVTables.empty()) {
1401     EmitDeferredVTables();
1402 
1403     // Emitting a vtable doesn't directly cause more vtables to
1404     // become deferred, although it can cause functions to be
1405     // emitted that then need those vtables.
1406     assert(DeferredVTables.empty());
1407   }
1408 
1409   // Stop if we're out of both deferred vtables and deferred declarations.
1410   if (DeferredDeclsToEmit.empty())
1411     return;
1412 
1413   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1414   // work, it will not interfere with this.
1415   std::vector<GlobalDecl> CurDeclsToEmit;
1416   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1417 
1418   for (GlobalDecl &D : CurDeclsToEmit) {
1419     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1420     // to get GlobalValue with exactly the type we need, not something that
1421     // might had been created for another decl with the same mangled name but
1422     // different type.
1423     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1424         GetAddrOfGlobal(D, ForDefinition));
1425 
1426     // In case of different address spaces, we may still get a cast, even with
1427     // IsForDefinition equal to true. Query mangled names table to get
1428     // GlobalValue.
1429     if (!GV)
1430       GV = GetGlobalValue(getMangledName(D));
1431 
1432     // Make sure GetGlobalValue returned non-null.
1433     assert(GV);
1434 
1435     // Check to see if we've already emitted this.  This is necessary
1436     // for a couple of reasons: first, decls can end up in the
1437     // deferred-decls queue multiple times, and second, decls can end
1438     // up with definitions in unusual ways (e.g. by an extern inline
1439     // function acquiring a strong function redefinition).  Just
1440     // ignore these cases.
1441     if (!GV->isDeclaration())
1442       continue;
1443 
1444     // Otherwise, emit the definition and move on to the next one.
1445     EmitGlobalDefinition(D, GV);
1446 
1447     // If we found out that we need to emit more decls, do that recursively.
1448     // This has the advantage that the decls are emitted in a DFS and related
1449     // ones are close together, which is convenient for testing.
1450     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1451       EmitDeferred();
1452       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1453     }
1454   }
1455 }
1456 
1457 void CodeGenModule::EmitVTablesOpportunistically() {
1458   // Try to emit external vtables as available_externally if they have emitted
1459   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1460   // is not allowed to create new references to things that need to be emitted
1461   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1462 
1463   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1464          && "Only emit opportunistic vtables with optimizations");
1465 
1466   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1467     assert(getVTables().isVTableExternal(RD) &&
1468            "This queue should only contain external vtables");
1469     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1470       VTables.GenerateClassData(RD);
1471   }
1472   OpportunisticVTables.clear();
1473 }
1474 
1475 void CodeGenModule::EmitGlobalAnnotations() {
1476   if (Annotations.empty())
1477     return;
1478 
1479   // Create a new global variable for the ConstantStruct in the Module.
1480   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1481     Annotations[0]->getType(), Annotations.size()), Annotations);
1482   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1483                                       llvm::GlobalValue::AppendingLinkage,
1484                                       Array, "llvm.global.annotations");
1485   gv->setSection(AnnotationSection);
1486 }
1487 
1488 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1489   llvm::Constant *&AStr = AnnotationStrings[Str];
1490   if (AStr)
1491     return AStr;
1492 
1493   // Not found yet, create a new global.
1494   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1495   auto *gv =
1496       new llvm::GlobalVariable(getModule(), s->getType(), true,
1497                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1498   gv->setSection(AnnotationSection);
1499   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1500   AStr = gv;
1501   return gv;
1502 }
1503 
1504 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1505   SourceManager &SM = getContext().getSourceManager();
1506   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1507   if (PLoc.isValid())
1508     return EmitAnnotationString(PLoc.getFilename());
1509   return EmitAnnotationString(SM.getBufferName(Loc));
1510 }
1511 
1512 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1513   SourceManager &SM = getContext().getSourceManager();
1514   PresumedLoc PLoc = SM.getPresumedLoc(L);
1515   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1516     SM.getExpansionLineNumber(L);
1517   return llvm::ConstantInt::get(Int32Ty, LineNo);
1518 }
1519 
1520 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1521                                                 const AnnotateAttr *AA,
1522                                                 SourceLocation L) {
1523   // Get the globals for file name, annotation, and the line number.
1524   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1525                  *UnitGV = EmitAnnotationUnit(L),
1526                  *LineNoCst = EmitAnnotationLineNo(L);
1527 
1528   // Create the ConstantStruct for the global annotation.
1529   llvm::Constant *Fields[4] = {
1530     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1531     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1532     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1533     LineNoCst
1534   };
1535   return llvm::ConstantStruct::getAnon(Fields);
1536 }
1537 
1538 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1539                                          llvm::GlobalValue *GV) {
1540   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1541   // Get the struct elements for these annotations.
1542   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1543     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1544 }
1545 
1546 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1547                                            llvm::Function *Fn,
1548                                            SourceLocation Loc) const {
1549   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1550   // Blacklist by function name.
1551   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1552     return true;
1553   // Blacklist by location.
1554   if (Loc.isValid())
1555     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1556   // If location is unknown, this may be a compiler-generated function. Assume
1557   // it's located in the main file.
1558   auto &SM = Context.getSourceManager();
1559   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1560     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1561   }
1562   return false;
1563 }
1564 
1565 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1566                                            SourceLocation Loc, QualType Ty,
1567                                            StringRef Category) const {
1568   // For now globals can be blacklisted only in ASan and KASan.
1569   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1570       (SanitizerKind::Address | SanitizerKind::KernelAddress);
1571   if (!EnabledAsanMask)
1572     return false;
1573   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1574   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1575     return true;
1576   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1577     return true;
1578   // Check global type.
1579   if (!Ty.isNull()) {
1580     // Drill down the array types: if global variable of a fixed type is
1581     // blacklisted, we also don't instrument arrays of them.
1582     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1583       Ty = AT->getElementType();
1584     Ty = Ty.getCanonicalType().getUnqualifiedType();
1585     // We allow to blacklist only record types (classes, structs etc.)
1586     if (Ty->isRecordType()) {
1587       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1588       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1589         return true;
1590     }
1591   }
1592   return false;
1593 }
1594 
1595 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1596                                    StringRef Category) const {
1597   if (!LangOpts.XRayInstrument)
1598     return false;
1599   const auto &XRayFilter = getContext().getXRayFilter();
1600   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1601   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1602   if (Loc.isValid())
1603     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1604   if (Attr == ImbueAttr::NONE)
1605     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1606   switch (Attr) {
1607   case ImbueAttr::NONE:
1608     return false;
1609   case ImbueAttr::ALWAYS:
1610     Fn->addFnAttr("function-instrument", "xray-always");
1611     break;
1612   case ImbueAttr::ALWAYS_ARG1:
1613     Fn->addFnAttr("function-instrument", "xray-always");
1614     Fn->addFnAttr("xray-log-args", "1");
1615     break;
1616   case ImbueAttr::NEVER:
1617     Fn->addFnAttr("function-instrument", "xray-never");
1618     break;
1619   }
1620   return true;
1621 }
1622 
1623 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1624   // Never defer when EmitAllDecls is specified.
1625   if (LangOpts.EmitAllDecls)
1626     return true;
1627 
1628   return getContext().DeclMustBeEmitted(Global);
1629 }
1630 
1631 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1632   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1633     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1634       // Implicit template instantiations may change linkage if they are later
1635       // explicitly instantiated, so they should not be emitted eagerly.
1636       return false;
1637   if (const auto *VD = dyn_cast<VarDecl>(Global))
1638     if (Context.getInlineVariableDefinitionKind(VD) ==
1639         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1640       // A definition of an inline constexpr static data member may change
1641       // linkage later if it's redeclared outside the class.
1642       return false;
1643   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1644   // codegen for global variables, because they may be marked as threadprivate.
1645   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1646       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1647     return false;
1648 
1649   return true;
1650 }
1651 
1652 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1653     const CXXUuidofExpr* E) {
1654   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1655   // well-formed.
1656   StringRef Uuid = E->getUuidStr();
1657   std::string Name = "_GUID_" + Uuid.lower();
1658   std::replace(Name.begin(), Name.end(), '-', '_');
1659 
1660   // The UUID descriptor should be pointer aligned.
1661   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1662 
1663   // Look for an existing global.
1664   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1665     return ConstantAddress(GV, Alignment);
1666 
1667   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1668   assert(Init && "failed to initialize as constant");
1669 
1670   auto *GV = new llvm::GlobalVariable(
1671       getModule(), Init->getType(),
1672       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1673   if (supportsCOMDAT())
1674     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1675   return ConstantAddress(GV, Alignment);
1676 }
1677 
1678 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1679   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1680   assert(AA && "No alias?");
1681 
1682   CharUnits Alignment = getContext().getDeclAlign(VD);
1683   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1684 
1685   // See if there is already something with the target's name in the module.
1686   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1687   if (Entry) {
1688     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1689     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1690     return ConstantAddress(Ptr, Alignment);
1691   }
1692 
1693   llvm::Constant *Aliasee;
1694   if (isa<llvm::FunctionType>(DeclTy))
1695     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1696                                       GlobalDecl(cast<FunctionDecl>(VD)),
1697                                       /*ForVTable=*/false);
1698   else
1699     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1700                                     llvm::PointerType::getUnqual(DeclTy),
1701                                     nullptr);
1702 
1703   auto *F = cast<llvm::GlobalValue>(Aliasee);
1704   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1705   WeakRefReferences.insert(F);
1706 
1707   return ConstantAddress(Aliasee, Alignment);
1708 }
1709 
1710 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1711   const auto *Global = cast<ValueDecl>(GD.getDecl());
1712 
1713   // Weak references don't produce any output by themselves.
1714   if (Global->hasAttr<WeakRefAttr>())
1715     return;
1716 
1717   // If this is an alias definition (which otherwise looks like a declaration)
1718   // emit it now.
1719   if (Global->hasAttr<AliasAttr>())
1720     return EmitAliasDefinition(GD);
1721 
1722   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1723   if (Global->hasAttr<IFuncAttr>())
1724     return emitIFuncDefinition(GD);
1725 
1726   // If this is CUDA, be selective about which declarations we emit.
1727   if (LangOpts.CUDA) {
1728     if (LangOpts.CUDAIsDevice) {
1729       if (!Global->hasAttr<CUDADeviceAttr>() &&
1730           !Global->hasAttr<CUDAGlobalAttr>() &&
1731           !Global->hasAttr<CUDAConstantAttr>() &&
1732           !Global->hasAttr<CUDASharedAttr>())
1733         return;
1734     } else {
1735       // We need to emit host-side 'shadows' for all global
1736       // device-side variables because the CUDA runtime needs their
1737       // size and host-side address in order to provide access to
1738       // their device-side incarnations.
1739 
1740       // So device-only functions are the only things we skip.
1741       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1742           Global->hasAttr<CUDADeviceAttr>())
1743         return;
1744 
1745       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1746              "Expected Variable or Function");
1747     }
1748   }
1749 
1750   if (LangOpts.OpenMP) {
1751     // If this is OpenMP device, check if it is legal to emit this global
1752     // normally.
1753     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1754       return;
1755     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1756       if (MustBeEmitted(Global))
1757         EmitOMPDeclareReduction(DRD);
1758       return;
1759     }
1760   }
1761 
1762   // Ignore declarations, they will be emitted on their first use.
1763   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1764     // Forward declarations are emitted lazily on first use.
1765     if (!FD->doesThisDeclarationHaveABody()) {
1766       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1767         return;
1768 
1769       StringRef MangledName = getMangledName(GD);
1770 
1771       // Compute the function info and LLVM type.
1772       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1773       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1774 
1775       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1776                               /*DontDefer=*/false);
1777       return;
1778     }
1779   } else {
1780     const auto *VD = cast<VarDecl>(Global);
1781     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1782     // We need to emit device-side global CUDA variables even if a
1783     // variable does not have a definition -- we still need to define
1784     // host-side shadow for it.
1785     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1786                            !VD->hasDefinition() &&
1787                            (VD->hasAttr<CUDAConstantAttr>() ||
1788                             VD->hasAttr<CUDADeviceAttr>());
1789     if (!MustEmitForCuda &&
1790         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1791         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1792       // If this declaration may have caused an inline variable definition to
1793       // change linkage, make sure that it's emitted.
1794       if (Context.getInlineVariableDefinitionKind(VD) ==
1795           ASTContext::InlineVariableDefinitionKind::Strong)
1796         GetAddrOfGlobalVar(VD);
1797       return;
1798     }
1799   }
1800 
1801   // Defer code generation to first use when possible, e.g. if this is an inline
1802   // function. If the global must always be emitted, do it eagerly if possible
1803   // to benefit from cache locality.
1804   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1805     // Emit the definition if it can't be deferred.
1806     EmitGlobalDefinition(GD);
1807     return;
1808   }
1809 
1810   // If we're deferring emission of a C++ variable with an
1811   // initializer, remember the order in which it appeared in the file.
1812   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1813       cast<VarDecl>(Global)->hasInit()) {
1814     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1815     CXXGlobalInits.push_back(nullptr);
1816   }
1817 
1818   StringRef MangledName = getMangledName(GD);
1819   if (GetGlobalValue(MangledName) != nullptr) {
1820     // The value has already been used and should therefore be emitted.
1821     addDeferredDeclToEmit(GD);
1822   } else if (MustBeEmitted(Global)) {
1823     // The value must be emitted, but cannot be emitted eagerly.
1824     assert(!MayBeEmittedEagerly(Global));
1825     addDeferredDeclToEmit(GD);
1826   } else {
1827     // Otherwise, remember that we saw a deferred decl with this name.  The
1828     // first use of the mangled name will cause it to move into
1829     // DeferredDeclsToEmit.
1830     DeferredDecls[MangledName] = GD;
1831   }
1832 }
1833 
1834 // Check if T is a class type with a destructor that's not dllimport.
1835 static bool HasNonDllImportDtor(QualType T) {
1836   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1837     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1838       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1839         return true;
1840 
1841   return false;
1842 }
1843 
1844 namespace {
1845   struct FunctionIsDirectlyRecursive :
1846     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1847     const StringRef Name;
1848     const Builtin::Context &BI;
1849     bool Result;
1850     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1851       Name(N), BI(C), Result(false) {
1852     }
1853     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1854 
1855     bool TraverseCallExpr(CallExpr *E) {
1856       const FunctionDecl *FD = E->getDirectCallee();
1857       if (!FD)
1858         return true;
1859       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1860       if (Attr && Name == Attr->getLabel()) {
1861         Result = true;
1862         return false;
1863       }
1864       unsigned BuiltinID = FD->getBuiltinID();
1865       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1866         return true;
1867       StringRef BuiltinName = BI.getName(BuiltinID);
1868       if (BuiltinName.startswith("__builtin_") &&
1869           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1870         Result = true;
1871         return false;
1872       }
1873       return true;
1874     }
1875   };
1876 
1877   // Make sure we're not referencing non-imported vars or functions.
1878   struct DLLImportFunctionVisitor
1879       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1880     bool SafeToInline = true;
1881 
1882     bool shouldVisitImplicitCode() const { return true; }
1883 
1884     bool VisitVarDecl(VarDecl *VD) {
1885       if (VD->getTLSKind()) {
1886         // A thread-local variable cannot be imported.
1887         SafeToInline = false;
1888         return SafeToInline;
1889       }
1890 
1891       // A variable definition might imply a destructor call.
1892       if (VD->isThisDeclarationADefinition())
1893         SafeToInline = !HasNonDllImportDtor(VD->getType());
1894 
1895       return SafeToInline;
1896     }
1897 
1898     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1899       if (const auto *D = E->getTemporary()->getDestructor())
1900         SafeToInline = D->hasAttr<DLLImportAttr>();
1901       return SafeToInline;
1902     }
1903 
1904     bool VisitDeclRefExpr(DeclRefExpr *E) {
1905       ValueDecl *VD = E->getDecl();
1906       if (isa<FunctionDecl>(VD))
1907         SafeToInline = VD->hasAttr<DLLImportAttr>();
1908       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1909         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1910       return SafeToInline;
1911     }
1912 
1913     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1914       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1915       return SafeToInline;
1916     }
1917 
1918     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1919       CXXMethodDecl *M = E->getMethodDecl();
1920       if (!M) {
1921         // Call through a pointer to member function. This is safe to inline.
1922         SafeToInline = true;
1923       } else {
1924         SafeToInline = M->hasAttr<DLLImportAttr>();
1925       }
1926       return SafeToInline;
1927     }
1928 
1929     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1930       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1931       return SafeToInline;
1932     }
1933 
1934     bool VisitCXXNewExpr(CXXNewExpr *E) {
1935       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1936       return SafeToInline;
1937     }
1938   };
1939 }
1940 
1941 // isTriviallyRecursive - Check if this function calls another
1942 // decl that, because of the asm attribute or the other decl being a builtin,
1943 // ends up pointing to itself.
1944 bool
1945 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1946   StringRef Name;
1947   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1948     // asm labels are a special kind of mangling we have to support.
1949     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1950     if (!Attr)
1951       return false;
1952     Name = Attr->getLabel();
1953   } else {
1954     Name = FD->getName();
1955   }
1956 
1957   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1958   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1959   return Walker.Result;
1960 }
1961 
1962 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1963   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1964     return true;
1965   const auto *F = cast<FunctionDecl>(GD.getDecl());
1966   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1967     return false;
1968 
1969   if (F->hasAttr<DLLImportAttr>()) {
1970     // Check whether it would be safe to inline this dllimport function.
1971     DLLImportFunctionVisitor Visitor;
1972     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1973     if (!Visitor.SafeToInline)
1974       return false;
1975 
1976     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1977       // Implicit destructor invocations aren't captured in the AST, so the
1978       // check above can't see them. Check for them manually here.
1979       for (const Decl *Member : Dtor->getParent()->decls())
1980         if (isa<FieldDecl>(Member))
1981           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1982             return false;
1983       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1984         if (HasNonDllImportDtor(B.getType()))
1985           return false;
1986     }
1987   }
1988 
1989   // PR9614. Avoid cases where the source code is lying to us. An available
1990   // externally function should have an equivalent function somewhere else,
1991   // but a function that calls itself is clearly not equivalent to the real
1992   // implementation.
1993   // This happens in glibc's btowc and in some configure checks.
1994   return !isTriviallyRecursive(F);
1995 }
1996 
1997 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
1998   return CodeGenOpts.OptimizationLevel > 0;
1999 }
2000 
2001 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2002   const auto *D = cast<ValueDecl>(GD.getDecl());
2003 
2004   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2005                                  Context.getSourceManager(),
2006                                  "Generating code for declaration");
2007 
2008   if (isa<FunctionDecl>(D)) {
2009     // At -O0, don't generate IR for functions with available_externally
2010     // linkage.
2011     if (!shouldEmitFunction(GD))
2012       return;
2013 
2014     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2015       // Make sure to emit the definition(s) before we emit the thunks.
2016       // This is necessary for the generation of certain thunks.
2017       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2018         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2019       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2020         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2021       else
2022         EmitGlobalFunctionDefinition(GD, GV);
2023 
2024       if (Method->isVirtual())
2025         getVTables().EmitThunks(GD);
2026 
2027       return;
2028     }
2029 
2030     return EmitGlobalFunctionDefinition(GD, GV);
2031   }
2032 
2033   if (const auto *VD = dyn_cast<VarDecl>(D))
2034     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2035 
2036   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2037 }
2038 
2039 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2040                                                       llvm::Function *NewFn);
2041 
2042 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2043 /// module, create and return an llvm Function with the specified type. If there
2044 /// is something in the module with the specified name, return it potentially
2045 /// bitcasted to the right type.
2046 ///
2047 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2048 /// to set the attributes on the function when it is first created.
2049 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2050     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2051     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2052     ForDefinition_t IsForDefinition) {
2053   const Decl *D = GD.getDecl();
2054 
2055   // Lookup the entry, lazily creating it if necessary.
2056   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2057   if (Entry) {
2058     if (WeakRefReferences.erase(Entry)) {
2059       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2060       if (FD && !FD->hasAttr<WeakAttr>())
2061         Entry->setLinkage(llvm::Function::ExternalLinkage);
2062     }
2063 
2064     // Handle dropped DLL attributes.
2065     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2066       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2067 
2068     // If there are two attempts to define the same mangled name, issue an
2069     // error.
2070     if (IsForDefinition && !Entry->isDeclaration()) {
2071       GlobalDecl OtherGD;
2072       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2073       // to make sure that we issue an error only once.
2074       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2075           (GD.getCanonicalDecl().getDecl() !=
2076            OtherGD.getCanonicalDecl().getDecl()) &&
2077           DiagnosedConflictingDefinitions.insert(GD).second) {
2078         getDiags().Report(D->getLocation(),
2079                           diag::err_duplicate_mangled_name);
2080         getDiags().Report(OtherGD.getDecl()->getLocation(),
2081                           diag::note_previous_definition);
2082       }
2083     }
2084 
2085     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2086         (Entry->getType()->getElementType() == Ty)) {
2087       return Entry;
2088     }
2089 
2090     // Make sure the result is of the correct type.
2091     // (If function is requested for a definition, we always need to create a new
2092     // function, not just return a bitcast.)
2093     if (!IsForDefinition)
2094       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2095   }
2096 
2097   // This function doesn't have a complete type (for example, the return
2098   // type is an incomplete struct). Use a fake type instead, and make
2099   // sure not to try to set attributes.
2100   bool IsIncompleteFunction = false;
2101 
2102   llvm::FunctionType *FTy;
2103   if (isa<llvm::FunctionType>(Ty)) {
2104     FTy = cast<llvm::FunctionType>(Ty);
2105   } else {
2106     FTy = llvm::FunctionType::get(VoidTy, false);
2107     IsIncompleteFunction = true;
2108   }
2109 
2110   llvm::Function *F =
2111       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2112                              Entry ? StringRef() : MangledName, &getModule());
2113 
2114   // If we already created a function with the same mangled name (but different
2115   // type) before, take its name and add it to the list of functions to be
2116   // replaced with F at the end of CodeGen.
2117   //
2118   // This happens if there is a prototype for a function (e.g. "int f()") and
2119   // then a definition of a different type (e.g. "int f(int x)").
2120   if (Entry) {
2121     F->takeName(Entry);
2122 
2123     // This might be an implementation of a function without a prototype, in
2124     // which case, try to do special replacement of calls which match the new
2125     // prototype.  The really key thing here is that we also potentially drop
2126     // arguments from the call site so as to make a direct call, which makes the
2127     // inliner happier and suppresses a number of optimizer warnings (!) about
2128     // dropping arguments.
2129     if (!Entry->use_empty()) {
2130       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2131       Entry->removeDeadConstantUsers();
2132     }
2133 
2134     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2135         F, Entry->getType()->getElementType()->getPointerTo());
2136     addGlobalValReplacement(Entry, BC);
2137   }
2138 
2139   assert(F->getName() == MangledName && "name was uniqued!");
2140   if (D)
2141     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk,
2142                           IsForDefinition);
2143   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2144     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2145     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2146   }
2147 
2148   if (!DontDefer) {
2149     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2150     // each other bottoming out with the base dtor.  Therefore we emit non-base
2151     // dtors on usage, even if there is no dtor definition in the TU.
2152     if (D && isa<CXXDestructorDecl>(D) &&
2153         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2154                                            GD.getDtorType()))
2155       addDeferredDeclToEmit(GD);
2156 
2157     // This is the first use or definition of a mangled name.  If there is a
2158     // deferred decl with this name, remember that we need to emit it at the end
2159     // of the file.
2160     auto DDI = DeferredDecls.find(MangledName);
2161     if (DDI != DeferredDecls.end()) {
2162       // Move the potentially referenced deferred decl to the
2163       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2164       // don't need it anymore).
2165       addDeferredDeclToEmit(DDI->second);
2166       DeferredDecls.erase(DDI);
2167 
2168       // Otherwise, there are cases we have to worry about where we're
2169       // using a declaration for which we must emit a definition but where
2170       // we might not find a top-level definition:
2171       //   - member functions defined inline in their classes
2172       //   - friend functions defined inline in some class
2173       //   - special member functions with implicit definitions
2174       // If we ever change our AST traversal to walk into class methods,
2175       // this will be unnecessary.
2176       //
2177       // We also don't emit a definition for a function if it's going to be an
2178       // entry in a vtable, unless it's already marked as used.
2179     } else if (getLangOpts().CPlusPlus && D) {
2180       // Look for a declaration that's lexically in a record.
2181       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2182            FD = FD->getPreviousDecl()) {
2183         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2184           if (FD->doesThisDeclarationHaveABody()) {
2185             addDeferredDeclToEmit(GD.getWithDecl(FD));
2186             break;
2187           }
2188         }
2189       }
2190     }
2191   }
2192 
2193   // Make sure the result is of the requested type.
2194   if (!IsIncompleteFunction) {
2195     assert(F->getType()->getElementType() == Ty);
2196     return F;
2197   }
2198 
2199   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2200   return llvm::ConstantExpr::getBitCast(F, PTy);
2201 }
2202 
2203 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2204 /// non-null, then this function will use the specified type if it has to
2205 /// create it (this occurs when we see a definition of the function).
2206 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2207                                                  llvm::Type *Ty,
2208                                                  bool ForVTable,
2209                                                  bool DontDefer,
2210                                               ForDefinition_t IsForDefinition) {
2211   // If there was no specific requested type, just convert it now.
2212   if (!Ty) {
2213     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2214     auto CanonTy = Context.getCanonicalType(FD->getType());
2215     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2216   }
2217 
2218   StringRef MangledName = getMangledName(GD);
2219   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2220                                  /*IsThunk=*/false, llvm::AttributeList(),
2221                                  IsForDefinition);
2222 }
2223 
2224 static const FunctionDecl *
2225 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2226   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2227   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2228 
2229   IdentifierInfo &CII = C.Idents.get(Name);
2230   for (const auto &Result : DC->lookup(&CII))
2231     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2232       return FD;
2233 
2234   if (!C.getLangOpts().CPlusPlus)
2235     return nullptr;
2236 
2237   // Demangle the premangled name from getTerminateFn()
2238   IdentifierInfo &CXXII =
2239       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2240           ? C.Idents.get("terminate")
2241           : C.Idents.get(Name);
2242 
2243   for (const auto &N : {"__cxxabiv1", "std"}) {
2244     IdentifierInfo &NS = C.Idents.get(N);
2245     for (const auto &Result : DC->lookup(&NS)) {
2246       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2247       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2248         for (const auto &Result : LSD->lookup(&NS))
2249           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2250             break;
2251 
2252       if (ND)
2253         for (const auto &Result : ND->lookup(&CXXII))
2254           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2255             return FD;
2256     }
2257   }
2258 
2259   return nullptr;
2260 }
2261 
2262 /// CreateRuntimeFunction - Create a new runtime function with the specified
2263 /// type and name.
2264 llvm::Constant *
2265 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2266                                      llvm::AttributeList ExtraAttrs,
2267                                      bool Local) {
2268   llvm::Constant *C =
2269       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2270                               /*DontDefer=*/false, /*IsThunk=*/false,
2271                               ExtraAttrs);
2272 
2273   if (auto *F = dyn_cast<llvm::Function>(C)) {
2274     if (F->empty()) {
2275       F->setCallingConv(getRuntimeCC());
2276 
2277       if (!Local && getTriple().isOSBinFormatCOFF() &&
2278           !getCodeGenOpts().LTOVisibilityPublicStd) {
2279         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2280         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2281           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2282           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2283         }
2284       }
2285     }
2286   }
2287 
2288   return C;
2289 }
2290 
2291 /// CreateBuiltinFunction - Create a new builtin function with the specified
2292 /// type and name.
2293 llvm::Constant *
2294 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2295                                      llvm::AttributeList ExtraAttrs) {
2296   llvm::Constant *C =
2297       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2298                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2299   if (auto *F = dyn_cast<llvm::Function>(C))
2300     if (F->empty())
2301       F->setCallingConv(getBuiltinCC());
2302   return C;
2303 }
2304 
2305 /// isTypeConstant - Determine whether an object of this type can be emitted
2306 /// as a constant.
2307 ///
2308 /// If ExcludeCtor is true, the duration when the object's constructor runs
2309 /// will not be considered. The caller will need to verify that the object is
2310 /// not written to during its construction.
2311 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2312   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2313     return false;
2314 
2315   if (Context.getLangOpts().CPlusPlus) {
2316     if (const CXXRecordDecl *Record
2317           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2318       return ExcludeCtor && !Record->hasMutableFields() &&
2319              Record->hasTrivialDestructor();
2320   }
2321 
2322   return true;
2323 }
2324 
2325 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2326 /// create and return an llvm GlobalVariable with the specified type.  If there
2327 /// is something in the module with the specified name, return it potentially
2328 /// bitcasted to the right type.
2329 ///
2330 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2331 /// to set the attributes on the global when it is first created.
2332 ///
2333 /// If IsForDefinition is true, it is guranteed that an actual global with
2334 /// type Ty will be returned, not conversion of a variable with the same
2335 /// mangled name but some other type.
2336 llvm::Constant *
2337 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2338                                      llvm::PointerType *Ty,
2339                                      const VarDecl *D,
2340                                      ForDefinition_t IsForDefinition) {
2341   // Lookup the entry, lazily creating it if necessary.
2342   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2343   if (Entry) {
2344     if (WeakRefReferences.erase(Entry)) {
2345       if (D && !D->hasAttr<WeakAttr>())
2346         Entry->setLinkage(llvm::Function::ExternalLinkage);
2347     }
2348 
2349     // Handle dropped DLL attributes.
2350     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2351       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2352 
2353     if (Entry->getType() == Ty)
2354       return Entry;
2355 
2356     // If there are two attempts to define the same mangled name, issue an
2357     // error.
2358     if (IsForDefinition && !Entry->isDeclaration()) {
2359       GlobalDecl OtherGD;
2360       const VarDecl *OtherD;
2361 
2362       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2363       // to make sure that we issue an error only once.
2364       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2365           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2366           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2367           OtherD->hasInit() &&
2368           DiagnosedConflictingDefinitions.insert(D).second) {
2369         getDiags().Report(D->getLocation(),
2370                           diag::err_duplicate_mangled_name);
2371         getDiags().Report(OtherGD.getDecl()->getLocation(),
2372                           diag::note_previous_definition);
2373       }
2374     }
2375 
2376     // Make sure the result is of the correct type.
2377     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2378       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2379 
2380     // (If global is requested for a definition, we always need to create a new
2381     // global, not just return a bitcast.)
2382     if (!IsForDefinition)
2383       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2384   }
2385 
2386   auto AddrSpace = GetGlobalVarAddressSpace(D);
2387   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2388 
2389   auto *GV = new llvm::GlobalVariable(
2390       getModule(), Ty->getElementType(), false,
2391       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2392       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2393 
2394   // If we already created a global with the same mangled name (but different
2395   // type) before, take its name and remove it from its parent.
2396   if (Entry) {
2397     GV->takeName(Entry);
2398 
2399     if (!Entry->use_empty()) {
2400       llvm::Constant *NewPtrForOldDecl =
2401           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2402       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2403     }
2404 
2405     Entry->eraseFromParent();
2406   }
2407 
2408   // This is the first use or definition of a mangled name.  If there is a
2409   // deferred decl with this name, remember that we need to emit it at the end
2410   // of the file.
2411   auto DDI = DeferredDecls.find(MangledName);
2412   if (DDI != DeferredDecls.end()) {
2413     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2414     // list, and remove it from DeferredDecls (since we don't need it anymore).
2415     addDeferredDeclToEmit(DDI->second);
2416     DeferredDecls.erase(DDI);
2417   }
2418 
2419   // Handle things which are present even on external declarations.
2420   if (D) {
2421     // FIXME: This code is overly simple and should be merged with other global
2422     // handling.
2423     GV->setConstant(isTypeConstant(D->getType(), false));
2424 
2425     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2426 
2427     setLinkageAndVisibilityForGV(GV, D);
2428 
2429     if (D->getTLSKind()) {
2430       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2431         CXXThreadLocals.push_back(D);
2432       setTLSMode(GV, *D);
2433     }
2434 
2435     // If required by the ABI, treat declarations of static data members with
2436     // inline initializers as definitions.
2437     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2438       EmitGlobalVarDefinition(D);
2439     }
2440 
2441     // Emit section information for extern variables.
2442     if (D->hasExternalStorage()) {
2443       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2444         GV->setSection(SA->getName());
2445     }
2446 
2447     // Handle XCore specific ABI requirements.
2448     if (getTriple().getArch() == llvm::Triple::xcore &&
2449         D->getLanguageLinkage() == CLanguageLinkage &&
2450         D->getType().isConstant(Context) &&
2451         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2452       GV->setSection(".cp.rodata");
2453 
2454     // Check if we a have a const declaration with an initializer, we may be
2455     // able to emit it as available_externally to expose it's value to the
2456     // optimizer.
2457     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2458         D->getType().isConstQualified() && !GV->hasInitializer() &&
2459         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2460       const auto *Record =
2461           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2462       bool HasMutableFields = Record && Record->hasMutableFields();
2463       if (!HasMutableFields) {
2464         const VarDecl *InitDecl;
2465         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2466         if (InitExpr) {
2467           ConstantEmitter emitter(*this);
2468           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2469           if (Init) {
2470             auto *InitType = Init->getType();
2471             if (GV->getType()->getElementType() != InitType) {
2472               // The type of the initializer does not match the definition.
2473               // This happens when an initializer has a different type from
2474               // the type of the global (because of padding at the end of a
2475               // structure for instance).
2476               GV->setName(StringRef());
2477               // Make a new global with the correct type, this is now guaranteed
2478               // to work.
2479               auto *NewGV = cast<llvm::GlobalVariable>(
2480                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2481 
2482               // Erase the old global, since it is no longer used.
2483               cast<llvm::GlobalValue>(GV)->eraseFromParent();
2484               GV = NewGV;
2485             } else {
2486               GV->setInitializer(Init);
2487               GV->setConstant(true);
2488               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2489             }
2490             emitter.finalize(GV);
2491           }
2492         }
2493       }
2494     }
2495   }
2496 
2497   auto ExpectedAS =
2498       D ? D->getType().getAddressSpace()
2499         : static_cast<unsigned>(LangOpts.OpenCL ? LangAS::opencl_global
2500                                                 : LangAS::Default);
2501   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2502          Ty->getPointerAddressSpace());
2503   if (AddrSpace != ExpectedAS)
2504     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2505                                                        ExpectedAS, Ty);
2506 
2507   return GV;
2508 }
2509 
2510 llvm::Constant *
2511 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2512                                ForDefinition_t IsForDefinition) {
2513   const Decl *D = GD.getDecl();
2514   if (isa<CXXConstructorDecl>(D))
2515     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2516                                 getFromCtorType(GD.getCtorType()),
2517                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2518                                 /*DontDefer=*/false, IsForDefinition);
2519   else if (isa<CXXDestructorDecl>(D))
2520     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2521                                 getFromDtorType(GD.getDtorType()),
2522                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2523                                 /*DontDefer=*/false, IsForDefinition);
2524   else if (isa<CXXMethodDecl>(D)) {
2525     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2526         cast<CXXMethodDecl>(D));
2527     auto Ty = getTypes().GetFunctionType(*FInfo);
2528     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2529                              IsForDefinition);
2530   } else if (isa<FunctionDecl>(D)) {
2531     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2532     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2533     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2534                              IsForDefinition);
2535   } else
2536     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2537                               IsForDefinition);
2538 }
2539 
2540 llvm::GlobalVariable *
2541 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2542                                       llvm::Type *Ty,
2543                                       llvm::GlobalValue::LinkageTypes Linkage) {
2544   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2545   llvm::GlobalVariable *OldGV = nullptr;
2546 
2547   if (GV) {
2548     // Check if the variable has the right type.
2549     if (GV->getType()->getElementType() == Ty)
2550       return GV;
2551 
2552     // Because C++ name mangling, the only way we can end up with an already
2553     // existing global with the same name is if it has been declared extern "C".
2554     assert(GV->isDeclaration() && "Declaration has wrong type!");
2555     OldGV = GV;
2556   }
2557 
2558   // Create a new variable.
2559   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2560                                 Linkage, nullptr, Name);
2561 
2562   if (OldGV) {
2563     // Replace occurrences of the old variable if needed.
2564     GV->takeName(OldGV);
2565 
2566     if (!OldGV->use_empty()) {
2567       llvm::Constant *NewPtrForOldDecl =
2568       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2569       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2570     }
2571 
2572     OldGV->eraseFromParent();
2573   }
2574 
2575   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2576       !GV->hasAvailableExternallyLinkage())
2577     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2578 
2579   return GV;
2580 }
2581 
2582 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2583 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2584 /// then it will be created with the specified type instead of whatever the
2585 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2586 /// that an actual global with type Ty will be returned, not conversion of a
2587 /// variable with the same mangled name but some other type.
2588 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2589                                                   llvm::Type *Ty,
2590                                            ForDefinition_t IsForDefinition) {
2591   assert(D->hasGlobalStorage() && "Not a global variable");
2592   QualType ASTTy = D->getType();
2593   if (!Ty)
2594     Ty = getTypes().ConvertTypeForMem(ASTTy);
2595 
2596   llvm::PointerType *PTy =
2597     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2598 
2599   StringRef MangledName = getMangledName(D);
2600   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2601 }
2602 
2603 /// CreateRuntimeVariable - Create a new runtime global variable with the
2604 /// specified type and name.
2605 llvm::Constant *
2606 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2607                                      StringRef Name) {
2608   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2609 }
2610 
2611 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2612   assert(!D->getInit() && "Cannot emit definite definitions here!");
2613 
2614   StringRef MangledName = getMangledName(D);
2615   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2616 
2617   // We already have a definition, not declaration, with the same mangled name.
2618   // Emitting of declaration is not required (and actually overwrites emitted
2619   // definition).
2620   if (GV && !GV->isDeclaration())
2621     return;
2622 
2623   // If we have not seen a reference to this variable yet, place it into the
2624   // deferred declarations table to be emitted if needed later.
2625   if (!MustBeEmitted(D) && !GV) {
2626       DeferredDecls[MangledName] = D;
2627       return;
2628   }
2629 
2630   // The tentative definition is the only definition.
2631   EmitGlobalVarDefinition(D);
2632 }
2633 
2634 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2635   return Context.toCharUnitsFromBits(
2636       getDataLayout().getTypeStoreSizeInBits(Ty));
2637 }
2638 
2639 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2640   unsigned AddrSpace;
2641   if (LangOpts.OpenCL) {
2642     AddrSpace = D ? D->getType().getAddressSpace()
2643                   : static_cast<unsigned>(LangAS::opencl_global);
2644     assert(AddrSpace == LangAS::opencl_global ||
2645            AddrSpace == LangAS::opencl_constant ||
2646            AddrSpace == LangAS::opencl_local ||
2647            AddrSpace >= LangAS::FirstTargetAddressSpace);
2648     return AddrSpace;
2649   }
2650 
2651   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2652     if (D && D->hasAttr<CUDAConstantAttr>())
2653       return LangAS::cuda_constant;
2654     else if (D && D->hasAttr<CUDASharedAttr>())
2655       return LangAS::cuda_shared;
2656     else
2657       return LangAS::cuda_device;
2658   }
2659 
2660   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2661 }
2662 
2663 template<typename SomeDecl>
2664 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2665                                                llvm::GlobalValue *GV) {
2666   if (!getLangOpts().CPlusPlus)
2667     return;
2668 
2669   // Must have 'used' attribute, or else inline assembly can't rely on
2670   // the name existing.
2671   if (!D->template hasAttr<UsedAttr>())
2672     return;
2673 
2674   // Must have internal linkage and an ordinary name.
2675   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2676     return;
2677 
2678   // Must be in an extern "C" context. Entities declared directly within
2679   // a record are not extern "C" even if the record is in such a context.
2680   const SomeDecl *First = D->getFirstDecl();
2681   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2682     return;
2683 
2684   // OK, this is an internal linkage entity inside an extern "C" linkage
2685   // specification. Make a note of that so we can give it the "expected"
2686   // mangled name if nothing else is using that name.
2687   std::pair<StaticExternCMap::iterator, bool> R =
2688       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2689 
2690   // If we have multiple internal linkage entities with the same name
2691   // in extern "C" regions, none of them gets that name.
2692   if (!R.second)
2693     R.first->second = nullptr;
2694 }
2695 
2696 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2697   if (!CGM.supportsCOMDAT())
2698     return false;
2699 
2700   if (D.hasAttr<SelectAnyAttr>())
2701     return true;
2702 
2703   GVALinkage Linkage;
2704   if (auto *VD = dyn_cast<VarDecl>(&D))
2705     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2706   else
2707     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2708 
2709   switch (Linkage) {
2710   case GVA_Internal:
2711   case GVA_AvailableExternally:
2712   case GVA_StrongExternal:
2713     return false;
2714   case GVA_DiscardableODR:
2715   case GVA_StrongODR:
2716     return true;
2717   }
2718   llvm_unreachable("No such linkage");
2719 }
2720 
2721 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2722                                           llvm::GlobalObject &GO) {
2723   if (!shouldBeInCOMDAT(*this, D))
2724     return;
2725   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2726 }
2727 
2728 /// Pass IsTentative as true if you want to create a tentative definition.
2729 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2730                                             bool IsTentative) {
2731   // OpenCL global variables of sampler type are translated to function calls,
2732   // therefore no need to be translated.
2733   QualType ASTTy = D->getType();
2734   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2735     return;
2736 
2737   llvm::Constant *Init = nullptr;
2738   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2739   bool NeedsGlobalCtor = false;
2740   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2741 
2742   const VarDecl *InitDecl;
2743   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2744 
2745   Optional<ConstantEmitter> emitter;
2746 
2747   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2748   // as part of their declaration."  Sema has already checked for
2749   // error cases, so we just need to set Init to UndefValue.
2750   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2751       D->hasAttr<CUDASharedAttr>())
2752     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2753   else if (!InitExpr) {
2754     // This is a tentative definition; tentative definitions are
2755     // implicitly initialized with { 0 }.
2756     //
2757     // Note that tentative definitions are only emitted at the end of
2758     // a translation unit, so they should never have incomplete
2759     // type. In addition, EmitTentativeDefinition makes sure that we
2760     // never attempt to emit a tentative definition if a real one
2761     // exists. A use may still exists, however, so we still may need
2762     // to do a RAUW.
2763     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2764     Init = EmitNullConstant(D->getType());
2765   } else {
2766     initializedGlobalDecl = GlobalDecl(D);
2767     emitter.emplace(*this);
2768     Init = emitter->tryEmitForInitializer(*InitDecl);
2769 
2770     if (!Init) {
2771       QualType T = InitExpr->getType();
2772       if (D->getType()->isReferenceType())
2773         T = D->getType();
2774 
2775       if (getLangOpts().CPlusPlus) {
2776         Init = EmitNullConstant(T);
2777         NeedsGlobalCtor = true;
2778       } else {
2779         ErrorUnsupported(D, "static initializer");
2780         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2781       }
2782     } else {
2783       // We don't need an initializer, so remove the entry for the delayed
2784       // initializer position (just in case this entry was delayed) if we
2785       // also don't need to register a destructor.
2786       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2787         DelayedCXXInitPosition.erase(D);
2788     }
2789   }
2790 
2791   llvm::Type* InitType = Init->getType();
2792   llvm::Constant *Entry =
2793       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2794 
2795   // Strip off a bitcast if we got one back.
2796   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2797     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2798            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2799            // All zero index gep.
2800            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2801     Entry = CE->getOperand(0);
2802   }
2803 
2804   // Entry is now either a Function or GlobalVariable.
2805   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2806 
2807   // We have a definition after a declaration with the wrong type.
2808   // We must make a new GlobalVariable* and update everything that used OldGV
2809   // (a declaration or tentative definition) with the new GlobalVariable*
2810   // (which will be a definition).
2811   //
2812   // This happens if there is a prototype for a global (e.g.
2813   // "extern int x[];") and then a definition of a different type (e.g.
2814   // "int x[10];"). This also happens when an initializer has a different type
2815   // from the type of the global (this happens with unions).
2816   if (!GV || GV->getType()->getElementType() != InitType ||
2817       GV->getType()->getAddressSpace() !=
2818           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
2819 
2820     // Move the old entry aside so that we'll create a new one.
2821     Entry->setName(StringRef());
2822 
2823     // Make a new global with the correct type, this is now guaranteed to work.
2824     GV = cast<llvm::GlobalVariable>(
2825         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2826 
2827     // Replace all uses of the old global with the new global
2828     llvm::Constant *NewPtrForOldDecl =
2829         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2830     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2831 
2832     // Erase the old global, since it is no longer used.
2833     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2834   }
2835 
2836   MaybeHandleStaticInExternC(D, GV);
2837 
2838   if (D->hasAttr<AnnotateAttr>())
2839     AddGlobalAnnotations(D, GV);
2840 
2841   // Set the llvm linkage type as appropriate.
2842   llvm::GlobalValue::LinkageTypes Linkage =
2843       getLLVMLinkageVarDefinition(D, GV->isConstant());
2844 
2845   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2846   // the device. [...]"
2847   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2848   // __device__, declares a variable that: [...]
2849   // Is accessible from all the threads within the grid and from the host
2850   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2851   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2852   if (GV && LangOpts.CUDA) {
2853     if (LangOpts.CUDAIsDevice) {
2854       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2855         GV->setExternallyInitialized(true);
2856     } else {
2857       // Host-side shadows of external declarations of device-side
2858       // global variables become internal definitions. These have to
2859       // be internal in order to prevent name conflicts with global
2860       // host variables with the same name in a different TUs.
2861       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2862         Linkage = llvm::GlobalValue::InternalLinkage;
2863 
2864         // Shadow variables and their properties must be registered
2865         // with CUDA runtime.
2866         unsigned Flags = 0;
2867         if (!D->hasDefinition())
2868           Flags |= CGCUDARuntime::ExternDeviceVar;
2869         if (D->hasAttr<CUDAConstantAttr>())
2870           Flags |= CGCUDARuntime::ConstantDeviceVar;
2871         getCUDARuntime().registerDeviceVar(*GV, Flags);
2872       } else if (D->hasAttr<CUDASharedAttr>())
2873         // __shared__ variables are odd. Shadows do get created, but
2874         // they are not registered with the CUDA runtime, so they
2875         // can't really be used to access their device-side
2876         // counterparts. It's not clear yet whether it's nvcc's bug or
2877         // a feature, but we've got to do the same for compatibility.
2878         Linkage = llvm::GlobalValue::InternalLinkage;
2879     }
2880   }
2881 
2882   GV->setInitializer(Init);
2883   if (emitter) emitter->finalize(GV);
2884 
2885   // If it is safe to mark the global 'constant', do so now.
2886   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2887                   isTypeConstant(D->getType(), true));
2888 
2889   // If it is in a read-only section, mark it 'constant'.
2890   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2891     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2892     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2893       GV->setConstant(true);
2894   }
2895 
2896   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2897 
2898 
2899   // On Darwin, if the normal linkage of a C++ thread_local variable is
2900   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2901   // copies within a linkage unit; otherwise, the backing variable has
2902   // internal linkage and all accesses should just be calls to the
2903   // Itanium-specified entry point, which has the normal linkage of the
2904   // variable. This is to preserve the ability to change the implementation
2905   // behind the scenes.
2906   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2907       Context.getTargetInfo().getTriple().isOSDarwin() &&
2908       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2909       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2910     Linkage = llvm::GlobalValue::InternalLinkage;
2911 
2912   GV->setLinkage(Linkage);
2913   if (D->hasAttr<DLLImportAttr>())
2914     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2915   else if (D->hasAttr<DLLExportAttr>())
2916     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2917   else
2918     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2919 
2920   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2921     // common vars aren't constant even if declared const.
2922     GV->setConstant(false);
2923     // Tentative definition of global variables may be initialized with
2924     // non-zero null pointers. In this case they should have weak linkage
2925     // since common linkage must have zero initializer and must not have
2926     // explicit section therefore cannot have non-zero initial value.
2927     if (!GV->getInitializer()->isNullValue())
2928       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2929   }
2930 
2931   setNonAliasAttributes(D, GV);
2932 
2933   if (D->getTLSKind() && !GV->isThreadLocal()) {
2934     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2935       CXXThreadLocals.push_back(D);
2936     setTLSMode(GV, *D);
2937   }
2938 
2939   maybeSetTrivialComdat(*D, *GV);
2940 
2941   // Emit the initializer function if necessary.
2942   if (NeedsGlobalCtor || NeedsGlobalDtor)
2943     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2944 
2945   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2946 
2947   // Emit global variable debug information.
2948   if (CGDebugInfo *DI = getModuleDebugInfo())
2949     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2950       DI->EmitGlobalVariable(GV, D);
2951 }
2952 
2953 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2954                                       CodeGenModule &CGM, const VarDecl *D,
2955                                       bool NoCommon) {
2956   // Don't give variables common linkage if -fno-common was specified unless it
2957   // was overridden by a NoCommon attribute.
2958   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2959     return true;
2960 
2961   // C11 6.9.2/2:
2962   //   A declaration of an identifier for an object that has file scope without
2963   //   an initializer, and without a storage-class specifier or with the
2964   //   storage-class specifier static, constitutes a tentative definition.
2965   if (D->getInit() || D->hasExternalStorage())
2966     return true;
2967 
2968   // A variable cannot be both common and exist in a section.
2969   if (D->hasAttr<SectionAttr>())
2970     return true;
2971 
2972   // A variable cannot be both common and exist in a section.
2973   // We dont try to determine which is the right section in the front-end.
2974   // If no specialized section name is applicable, it will resort to default.
2975   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
2976       D->hasAttr<PragmaClangDataSectionAttr>() ||
2977       D->hasAttr<PragmaClangRodataSectionAttr>())
2978     return true;
2979 
2980   // Thread local vars aren't considered common linkage.
2981   if (D->getTLSKind())
2982     return true;
2983 
2984   // Tentative definitions marked with WeakImportAttr are true definitions.
2985   if (D->hasAttr<WeakImportAttr>())
2986     return true;
2987 
2988   // A variable cannot be both common and exist in a comdat.
2989   if (shouldBeInCOMDAT(CGM, *D))
2990     return true;
2991 
2992   // Declarations with a required alignment do not have common linkage in MSVC
2993   // mode.
2994   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2995     if (D->hasAttr<AlignedAttr>())
2996       return true;
2997     QualType VarType = D->getType();
2998     if (Context.isAlignmentRequired(VarType))
2999       return true;
3000 
3001     if (const auto *RT = VarType->getAs<RecordType>()) {
3002       const RecordDecl *RD = RT->getDecl();
3003       for (const FieldDecl *FD : RD->fields()) {
3004         if (FD->isBitField())
3005           continue;
3006         if (FD->hasAttr<AlignedAttr>())
3007           return true;
3008         if (Context.isAlignmentRequired(FD->getType()))
3009           return true;
3010       }
3011     }
3012   }
3013 
3014   return false;
3015 }
3016 
3017 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3018     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3019   if (Linkage == GVA_Internal)
3020     return llvm::Function::InternalLinkage;
3021 
3022   if (D->hasAttr<WeakAttr>()) {
3023     if (IsConstantVariable)
3024       return llvm::GlobalVariable::WeakODRLinkage;
3025     else
3026       return llvm::GlobalVariable::WeakAnyLinkage;
3027   }
3028 
3029   // We are guaranteed to have a strong definition somewhere else,
3030   // so we can use available_externally linkage.
3031   if (Linkage == GVA_AvailableExternally)
3032     return llvm::GlobalValue::AvailableExternallyLinkage;
3033 
3034   // Note that Apple's kernel linker doesn't support symbol
3035   // coalescing, so we need to avoid linkonce and weak linkages there.
3036   // Normally, this means we just map to internal, but for explicit
3037   // instantiations we'll map to external.
3038 
3039   // In C++, the compiler has to emit a definition in every translation unit
3040   // that references the function.  We should use linkonce_odr because
3041   // a) if all references in this translation unit are optimized away, we
3042   // don't need to codegen it.  b) if the function persists, it needs to be
3043   // merged with other definitions. c) C++ has the ODR, so we know the
3044   // definition is dependable.
3045   if (Linkage == GVA_DiscardableODR)
3046     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3047                                             : llvm::Function::InternalLinkage;
3048 
3049   // An explicit instantiation of a template has weak linkage, since
3050   // explicit instantiations can occur in multiple translation units
3051   // and must all be equivalent. However, we are not allowed to
3052   // throw away these explicit instantiations.
3053   //
3054   // We don't currently support CUDA device code spread out across multiple TUs,
3055   // so say that CUDA templates are either external (for kernels) or internal.
3056   // This lets llvm perform aggressive inter-procedural optimizations.
3057   if (Linkage == GVA_StrongODR) {
3058     if (Context.getLangOpts().AppleKext)
3059       return llvm::Function::ExternalLinkage;
3060     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3061       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3062                                           : llvm::Function::InternalLinkage;
3063     return llvm::Function::WeakODRLinkage;
3064   }
3065 
3066   // C++ doesn't have tentative definitions and thus cannot have common
3067   // linkage.
3068   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3069       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3070                                  CodeGenOpts.NoCommon))
3071     return llvm::GlobalVariable::CommonLinkage;
3072 
3073   // selectany symbols are externally visible, so use weak instead of
3074   // linkonce.  MSVC optimizes away references to const selectany globals, so
3075   // all definitions should be the same and ODR linkage should be used.
3076   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3077   if (D->hasAttr<SelectAnyAttr>())
3078     return llvm::GlobalVariable::WeakODRLinkage;
3079 
3080   // Otherwise, we have strong external linkage.
3081   assert(Linkage == GVA_StrongExternal);
3082   return llvm::GlobalVariable::ExternalLinkage;
3083 }
3084 
3085 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3086     const VarDecl *VD, bool IsConstant) {
3087   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3088   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3089 }
3090 
3091 /// Replace the uses of a function that was declared with a non-proto type.
3092 /// We want to silently drop extra arguments from call sites
3093 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3094                                           llvm::Function *newFn) {
3095   // Fast path.
3096   if (old->use_empty()) return;
3097 
3098   llvm::Type *newRetTy = newFn->getReturnType();
3099   SmallVector<llvm::Value*, 4> newArgs;
3100   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3101 
3102   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3103          ui != ue; ) {
3104     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3105     llvm::User *user = use->getUser();
3106 
3107     // Recognize and replace uses of bitcasts.  Most calls to
3108     // unprototyped functions will use bitcasts.
3109     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3110       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3111         replaceUsesOfNonProtoConstant(bitcast, newFn);
3112       continue;
3113     }
3114 
3115     // Recognize calls to the function.
3116     llvm::CallSite callSite(user);
3117     if (!callSite) continue;
3118     if (!callSite.isCallee(&*use)) continue;
3119 
3120     // If the return types don't match exactly, then we can't
3121     // transform this call unless it's dead.
3122     if (callSite->getType() != newRetTy && !callSite->use_empty())
3123       continue;
3124 
3125     // Get the call site's attribute list.
3126     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3127     llvm::AttributeList oldAttrs = callSite.getAttributes();
3128 
3129     // If the function was passed too few arguments, don't transform.
3130     unsigned newNumArgs = newFn->arg_size();
3131     if (callSite.arg_size() < newNumArgs) continue;
3132 
3133     // If extra arguments were passed, we silently drop them.
3134     // If any of the types mismatch, we don't transform.
3135     unsigned argNo = 0;
3136     bool dontTransform = false;
3137     for (llvm::Argument &A : newFn->args()) {
3138       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3139         dontTransform = true;
3140         break;
3141       }
3142 
3143       // Add any parameter attributes.
3144       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3145       argNo++;
3146     }
3147     if (dontTransform)
3148       continue;
3149 
3150     // Okay, we can transform this.  Create the new call instruction and copy
3151     // over the required information.
3152     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3153 
3154     // Copy over any operand bundles.
3155     callSite.getOperandBundlesAsDefs(newBundles);
3156 
3157     llvm::CallSite newCall;
3158     if (callSite.isCall()) {
3159       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3160                                        callSite.getInstruction());
3161     } else {
3162       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3163       newCall = llvm::InvokeInst::Create(newFn,
3164                                          oldInvoke->getNormalDest(),
3165                                          oldInvoke->getUnwindDest(),
3166                                          newArgs, newBundles, "",
3167                                          callSite.getInstruction());
3168     }
3169     newArgs.clear(); // for the next iteration
3170 
3171     if (!newCall->getType()->isVoidTy())
3172       newCall->takeName(callSite.getInstruction());
3173     newCall.setAttributes(llvm::AttributeList::get(
3174         newFn->getContext(), oldAttrs.getFnAttributes(),
3175         oldAttrs.getRetAttributes(), newArgAttrs));
3176     newCall.setCallingConv(callSite.getCallingConv());
3177 
3178     // Finally, remove the old call, replacing any uses with the new one.
3179     if (!callSite->use_empty())
3180       callSite->replaceAllUsesWith(newCall.getInstruction());
3181 
3182     // Copy debug location attached to CI.
3183     if (callSite->getDebugLoc())
3184       newCall->setDebugLoc(callSite->getDebugLoc());
3185 
3186     callSite->eraseFromParent();
3187   }
3188 }
3189 
3190 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3191 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3192 /// existing call uses of the old function in the module, this adjusts them to
3193 /// call the new function directly.
3194 ///
3195 /// This is not just a cleanup: the always_inline pass requires direct calls to
3196 /// functions to be able to inline them.  If there is a bitcast in the way, it
3197 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3198 /// run at -O0.
3199 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3200                                                       llvm::Function *NewFn) {
3201   // If we're redefining a global as a function, don't transform it.
3202   if (!isa<llvm::Function>(Old)) return;
3203 
3204   replaceUsesOfNonProtoConstant(Old, NewFn);
3205 }
3206 
3207 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3208   auto DK = VD->isThisDeclarationADefinition();
3209   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3210     return;
3211 
3212   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3213   // If we have a definition, this might be a deferred decl. If the
3214   // instantiation is explicit, make sure we emit it at the end.
3215   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3216     GetAddrOfGlobalVar(VD);
3217 
3218   EmitTopLevelDecl(VD);
3219 }
3220 
3221 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3222                                                  llvm::GlobalValue *GV) {
3223   const auto *D = cast<FunctionDecl>(GD.getDecl());
3224 
3225   // Compute the function info and LLVM type.
3226   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3227   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3228 
3229   // Get or create the prototype for the function.
3230   if (!GV || (GV->getType()->getElementType() != Ty))
3231     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3232                                                    /*DontDefer=*/true,
3233                                                    ForDefinition));
3234 
3235   // Already emitted.
3236   if (!GV->isDeclaration())
3237     return;
3238 
3239   // We need to set linkage and visibility on the function before
3240   // generating code for it because various parts of IR generation
3241   // want to propagate this information down (e.g. to local static
3242   // declarations).
3243   auto *Fn = cast<llvm::Function>(GV);
3244   setFunctionLinkage(GD, Fn);
3245   setFunctionDLLStorageClass(GD, Fn);
3246 
3247   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3248   setGlobalVisibility(Fn, D);
3249 
3250   MaybeHandleStaticInExternC(D, Fn);
3251 
3252   maybeSetTrivialComdat(*D, *Fn);
3253 
3254   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3255 
3256   setFunctionDefinitionAttributes(D, Fn);
3257   SetLLVMFunctionAttributesForDefinition(D, Fn);
3258 
3259   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3260     AddGlobalCtor(Fn, CA->getPriority());
3261   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3262     AddGlobalDtor(Fn, DA->getPriority());
3263   if (D->hasAttr<AnnotateAttr>())
3264     AddGlobalAnnotations(D, Fn);
3265 }
3266 
3267 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3268   const auto *D = cast<ValueDecl>(GD.getDecl());
3269   const AliasAttr *AA = D->getAttr<AliasAttr>();
3270   assert(AA && "Not an alias?");
3271 
3272   StringRef MangledName = getMangledName(GD);
3273 
3274   if (AA->getAliasee() == MangledName) {
3275     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3276     return;
3277   }
3278 
3279   // If there is a definition in the module, then it wins over the alias.
3280   // This is dubious, but allow it to be safe.  Just ignore the alias.
3281   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3282   if (Entry && !Entry->isDeclaration())
3283     return;
3284 
3285   Aliases.push_back(GD);
3286 
3287   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3288 
3289   // Create a reference to the named value.  This ensures that it is emitted
3290   // if a deferred decl.
3291   llvm::Constant *Aliasee;
3292   if (isa<llvm::FunctionType>(DeclTy))
3293     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3294                                       /*ForVTable=*/false);
3295   else
3296     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3297                                     llvm::PointerType::getUnqual(DeclTy),
3298                                     /*D=*/nullptr);
3299 
3300   // Create the new alias itself, but don't set a name yet.
3301   auto *GA = llvm::GlobalAlias::create(
3302       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3303 
3304   if (Entry) {
3305     if (GA->getAliasee() == Entry) {
3306       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3307       return;
3308     }
3309 
3310     assert(Entry->isDeclaration());
3311 
3312     // If there is a declaration in the module, then we had an extern followed
3313     // by the alias, as in:
3314     //   extern int test6();
3315     //   ...
3316     //   int test6() __attribute__((alias("test7")));
3317     //
3318     // Remove it and replace uses of it with the alias.
3319     GA->takeName(Entry);
3320 
3321     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3322                                                           Entry->getType()));
3323     Entry->eraseFromParent();
3324   } else {
3325     GA->setName(MangledName);
3326   }
3327 
3328   // Set attributes which are particular to an alias; this is a
3329   // specialization of the attributes which may be set on a global
3330   // variable/function.
3331   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3332       D->isWeakImported()) {
3333     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3334   }
3335 
3336   if (const auto *VD = dyn_cast<VarDecl>(D))
3337     if (VD->getTLSKind())
3338       setTLSMode(GA, *VD);
3339 
3340   setAliasAttributes(D, GA);
3341 }
3342 
3343 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3344   const auto *D = cast<ValueDecl>(GD.getDecl());
3345   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3346   assert(IFA && "Not an ifunc?");
3347 
3348   StringRef MangledName = getMangledName(GD);
3349 
3350   if (IFA->getResolver() == MangledName) {
3351     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3352     return;
3353   }
3354 
3355   // Report an error if some definition overrides ifunc.
3356   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3357   if (Entry && !Entry->isDeclaration()) {
3358     GlobalDecl OtherGD;
3359     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3360         DiagnosedConflictingDefinitions.insert(GD).second) {
3361       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3362       Diags.Report(OtherGD.getDecl()->getLocation(),
3363                    diag::note_previous_definition);
3364     }
3365     return;
3366   }
3367 
3368   Aliases.push_back(GD);
3369 
3370   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3371   llvm::Constant *Resolver =
3372       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3373                               /*ForVTable=*/false);
3374   llvm::GlobalIFunc *GIF =
3375       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3376                                 "", Resolver, &getModule());
3377   if (Entry) {
3378     if (GIF->getResolver() == Entry) {
3379       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3380       return;
3381     }
3382     assert(Entry->isDeclaration());
3383 
3384     // If there is a declaration in the module, then we had an extern followed
3385     // by the ifunc, as in:
3386     //   extern int test();
3387     //   ...
3388     //   int test() __attribute__((ifunc("resolver")));
3389     //
3390     // Remove it and replace uses of it with the ifunc.
3391     GIF->takeName(Entry);
3392 
3393     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3394                                                           Entry->getType()));
3395     Entry->eraseFromParent();
3396   } else
3397     GIF->setName(MangledName);
3398 
3399   SetCommonAttributes(D, GIF);
3400 }
3401 
3402 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3403                                             ArrayRef<llvm::Type*> Tys) {
3404   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3405                                          Tys);
3406 }
3407 
3408 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3409 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3410                          const StringLiteral *Literal, bool TargetIsLSB,
3411                          bool &IsUTF16, unsigned &StringLength) {
3412   StringRef String = Literal->getString();
3413   unsigned NumBytes = String.size();
3414 
3415   // Check for simple case.
3416   if (!Literal->containsNonAsciiOrNull()) {
3417     StringLength = NumBytes;
3418     return *Map.insert(std::make_pair(String, nullptr)).first;
3419   }
3420 
3421   // Otherwise, convert the UTF8 literals into a string of shorts.
3422   IsUTF16 = true;
3423 
3424   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3425   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3426   llvm::UTF16 *ToPtr = &ToBuf[0];
3427 
3428   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3429                                  ToPtr + NumBytes, llvm::strictConversion);
3430 
3431   // ConvertUTF8toUTF16 returns the length in ToPtr.
3432   StringLength = ToPtr - &ToBuf[0];
3433 
3434   // Add an explicit null.
3435   *ToPtr = 0;
3436   return *Map.insert(std::make_pair(
3437                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3438                                    (StringLength + 1) * 2),
3439                          nullptr)).first;
3440 }
3441 
3442 ConstantAddress
3443 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3444   unsigned StringLength = 0;
3445   bool isUTF16 = false;
3446   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3447       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3448                                getDataLayout().isLittleEndian(), isUTF16,
3449                                StringLength);
3450 
3451   if (auto *C = Entry.second)
3452     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3453 
3454   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3455   llvm::Constant *Zeros[] = { Zero, Zero };
3456 
3457   // If we don't already have it, get __CFConstantStringClassReference.
3458   if (!CFConstantStringClassRef) {
3459     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3460     Ty = llvm::ArrayType::get(Ty, 0);
3461     llvm::Constant *GV =
3462         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3463 
3464     if (getTriple().isOSBinFormatCOFF()) {
3465       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3466       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3467       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3468       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3469 
3470       const VarDecl *VD = nullptr;
3471       for (const auto &Result : DC->lookup(&II))
3472         if ((VD = dyn_cast<VarDecl>(Result)))
3473           break;
3474 
3475       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3476         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3477         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3478       } else {
3479         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3480         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3481       }
3482     }
3483 
3484     // Decay array -> ptr
3485     CFConstantStringClassRef =
3486         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3487   }
3488 
3489   QualType CFTy = getContext().getCFConstantStringType();
3490 
3491   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3492 
3493   ConstantInitBuilder Builder(*this);
3494   auto Fields = Builder.beginStruct(STy);
3495 
3496   // Class pointer.
3497   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3498 
3499   // Flags.
3500   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3501 
3502   // String pointer.
3503   llvm::Constant *C = nullptr;
3504   if (isUTF16) {
3505     auto Arr = llvm::makeArrayRef(
3506         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3507         Entry.first().size() / 2);
3508     C = llvm::ConstantDataArray::get(VMContext, Arr);
3509   } else {
3510     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3511   }
3512 
3513   // Note: -fwritable-strings doesn't make the backing store strings of
3514   // CFStrings writable. (See <rdar://problem/10657500>)
3515   auto *GV =
3516       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3517                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3518   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3519   // Don't enforce the target's minimum global alignment, since the only use
3520   // of the string is via this class initializer.
3521   CharUnits Align = isUTF16
3522                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3523                         : getContext().getTypeAlignInChars(getContext().CharTy);
3524   GV->setAlignment(Align.getQuantity());
3525 
3526   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3527   // Without it LLVM can merge the string with a non unnamed_addr one during
3528   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3529   if (getTriple().isOSBinFormatMachO())
3530     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3531                            : "__TEXT,__cstring,cstring_literals");
3532 
3533   // String.
3534   llvm::Constant *Str =
3535       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3536 
3537   if (isUTF16)
3538     // Cast the UTF16 string to the correct type.
3539     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3540   Fields.add(Str);
3541 
3542   // String length.
3543   auto Ty = getTypes().ConvertType(getContext().LongTy);
3544   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3545 
3546   CharUnits Alignment = getPointerAlign();
3547 
3548   // The struct.
3549   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3550                                     /*isConstant=*/false,
3551                                     llvm::GlobalVariable::PrivateLinkage);
3552   switch (getTriple().getObjectFormat()) {
3553   case llvm::Triple::UnknownObjectFormat:
3554     llvm_unreachable("unknown file format");
3555   case llvm::Triple::COFF:
3556   case llvm::Triple::ELF:
3557   case llvm::Triple::Wasm:
3558     GV->setSection("cfstring");
3559     break;
3560   case llvm::Triple::MachO:
3561     GV->setSection("__DATA,__cfstring");
3562     break;
3563   }
3564   Entry.second = GV;
3565 
3566   return ConstantAddress(GV, Alignment);
3567 }
3568 
3569 bool CodeGenModule::getExpressionLocationsEnabled() const {
3570   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3571 }
3572 
3573 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3574   if (ObjCFastEnumerationStateType.isNull()) {
3575     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3576     D->startDefinition();
3577 
3578     QualType FieldTypes[] = {
3579       Context.UnsignedLongTy,
3580       Context.getPointerType(Context.getObjCIdType()),
3581       Context.getPointerType(Context.UnsignedLongTy),
3582       Context.getConstantArrayType(Context.UnsignedLongTy,
3583                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3584     };
3585 
3586     for (size_t i = 0; i < 4; ++i) {
3587       FieldDecl *Field = FieldDecl::Create(Context,
3588                                            D,
3589                                            SourceLocation(),
3590                                            SourceLocation(), nullptr,
3591                                            FieldTypes[i], /*TInfo=*/nullptr,
3592                                            /*BitWidth=*/nullptr,
3593                                            /*Mutable=*/false,
3594                                            ICIS_NoInit);
3595       Field->setAccess(AS_public);
3596       D->addDecl(Field);
3597     }
3598 
3599     D->completeDefinition();
3600     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3601   }
3602 
3603   return ObjCFastEnumerationStateType;
3604 }
3605 
3606 llvm::Constant *
3607 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3608   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3609 
3610   // Don't emit it as the address of the string, emit the string data itself
3611   // as an inline array.
3612   if (E->getCharByteWidth() == 1) {
3613     SmallString<64> Str(E->getString());
3614 
3615     // Resize the string to the right size, which is indicated by its type.
3616     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3617     Str.resize(CAT->getSize().getZExtValue());
3618     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3619   }
3620 
3621   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3622   llvm::Type *ElemTy = AType->getElementType();
3623   unsigned NumElements = AType->getNumElements();
3624 
3625   // Wide strings have either 2-byte or 4-byte elements.
3626   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3627     SmallVector<uint16_t, 32> Elements;
3628     Elements.reserve(NumElements);
3629 
3630     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3631       Elements.push_back(E->getCodeUnit(i));
3632     Elements.resize(NumElements);
3633     return llvm::ConstantDataArray::get(VMContext, Elements);
3634   }
3635 
3636   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3637   SmallVector<uint32_t, 32> Elements;
3638   Elements.reserve(NumElements);
3639 
3640   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3641     Elements.push_back(E->getCodeUnit(i));
3642   Elements.resize(NumElements);
3643   return llvm::ConstantDataArray::get(VMContext, Elements);
3644 }
3645 
3646 static llvm::GlobalVariable *
3647 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3648                       CodeGenModule &CGM, StringRef GlobalName,
3649                       CharUnits Alignment) {
3650   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3651   unsigned AddrSpace = 0;
3652   if (CGM.getLangOpts().OpenCL)
3653     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3654 
3655   llvm::Module &M = CGM.getModule();
3656   // Create a global variable for this string
3657   auto *GV = new llvm::GlobalVariable(
3658       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3659       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3660   GV->setAlignment(Alignment.getQuantity());
3661   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3662   if (GV->isWeakForLinker()) {
3663     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3664     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3665   }
3666 
3667   return GV;
3668 }
3669 
3670 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3671 /// constant array for the given string literal.
3672 ConstantAddress
3673 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3674                                                   StringRef Name) {
3675   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3676 
3677   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3678   llvm::GlobalVariable **Entry = nullptr;
3679   if (!LangOpts.WritableStrings) {
3680     Entry = &ConstantStringMap[C];
3681     if (auto GV = *Entry) {
3682       if (Alignment.getQuantity() > GV->getAlignment())
3683         GV->setAlignment(Alignment.getQuantity());
3684       return ConstantAddress(GV, Alignment);
3685     }
3686   }
3687 
3688   SmallString<256> MangledNameBuffer;
3689   StringRef GlobalVariableName;
3690   llvm::GlobalValue::LinkageTypes LT;
3691 
3692   // Mangle the string literal if the ABI allows for it.  However, we cannot
3693   // do this if  we are compiling with ASan or -fwritable-strings because they
3694   // rely on strings having normal linkage.
3695   if (!LangOpts.WritableStrings &&
3696       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3697       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3698     llvm::raw_svector_ostream Out(MangledNameBuffer);
3699     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3700 
3701     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3702     GlobalVariableName = MangledNameBuffer;
3703   } else {
3704     LT = llvm::GlobalValue::PrivateLinkage;
3705     GlobalVariableName = Name;
3706   }
3707 
3708   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3709   if (Entry)
3710     *Entry = GV;
3711 
3712   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3713                                   QualType());
3714   return ConstantAddress(GV, Alignment);
3715 }
3716 
3717 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3718 /// array for the given ObjCEncodeExpr node.
3719 ConstantAddress
3720 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3721   std::string Str;
3722   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3723 
3724   return GetAddrOfConstantCString(Str);
3725 }
3726 
3727 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3728 /// the literal and a terminating '\0' character.
3729 /// The result has pointer to array type.
3730 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3731     const std::string &Str, const char *GlobalName) {
3732   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3733   CharUnits Alignment =
3734     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3735 
3736   llvm::Constant *C =
3737       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3738 
3739   // Don't share any string literals if strings aren't constant.
3740   llvm::GlobalVariable **Entry = nullptr;
3741   if (!LangOpts.WritableStrings) {
3742     Entry = &ConstantStringMap[C];
3743     if (auto GV = *Entry) {
3744       if (Alignment.getQuantity() > GV->getAlignment())
3745         GV->setAlignment(Alignment.getQuantity());
3746       return ConstantAddress(GV, Alignment);
3747     }
3748   }
3749 
3750   // Get the default prefix if a name wasn't specified.
3751   if (!GlobalName)
3752     GlobalName = ".str";
3753   // Create a global variable for this.
3754   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3755                                   GlobalName, Alignment);
3756   if (Entry)
3757     *Entry = GV;
3758   return ConstantAddress(GV, Alignment);
3759 }
3760 
3761 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3762     const MaterializeTemporaryExpr *E, const Expr *Init) {
3763   assert((E->getStorageDuration() == SD_Static ||
3764           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3765   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3766 
3767   // If we're not materializing a subobject of the temporary, keep the
3768   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3769   QualType MaterializedType = Init->getType();
3770   if (Init == E->GetTemporaryExpr())
3771     MaterializedType = E->getType();
3772 
3773   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3774 
3775   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3776     return ConstantAddress(Slot, Align);
3777 
3778   // FIXME: If an externally-visible declaration extends multiple temporaries,
3779   // we need to give each temporary the same name in every translation unit (and
3780   // we also need to make the temporaries externally-visible).
3781   SmallString<256> Name;
3782   llvm::raw_svector_ostream Out(Name);
3783   getCXXABI().getMangleContext().mangleReferenceTemporary(
3784       VD, E->getManglingNumber(), Out);
3785 
3786   APValue *Value = nullptr;
3787   if (E->getStorageDuration() == SD_Static) {
3788     // We might have a cached constant initializer for this temporary. Note
3789     // that this might have a different value from the value computed by
3790     // evaluating the initializer if the surrounding constant expression
3791     // modifies the temporary.
3792     Value = getContext().getMaterializedTemporaryValue(E, false);
3793     if (Value && Value->isUninit())
3794       Value = nullptr;
3795   }
3796 
3797   // Try evaluating it now, it might have a constant initializer.
3798   Expr::EvalResult EvalResult;
3799   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3800       !EvalResult.hasSideEffects())
3801     Value = &EvalResult.Val;
3802 
3803   unsigned AddrSpace =
3804       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
3805 
3806   Optional<ConstantEmitter> emitter;
3807   llvm::Constant *InitialValue = nullptr;
3808   bool Constant = false;
3809   llvm::Type *Type;
3810   if (Value) {
3811     // The temporary has a constant initializer, use it.
3812     emitter.emplace(*this);
3813     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
3814                                                MaterializedType);
3815     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3816     Type = InitialValue->getType();
3817   } else {
3818     // No initializer, the initialization will be provided when we
3819     // initialize the declaration which performed lifetime extension.
3820     Type = getTypes().ConvertTypeForMem(MaterializedType);
3821   }
3822 
3823   // Create a global variable for this lifetime-extended temporary.
3824   llvm::GlobalValue::LinkageTypes Linkage =
3825       getLLVMLinkageVarDefinition(VD, Constant);
3826   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3827     const VarDecl *InitVD;
3828     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3829         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3830       // Temporaries defined inside a class get linkonce_odr linkage because the
3831       // class can be defined in multipe translation units.
3832       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3833     } else {
3834       // There is no need for this temporary to have external linkage if the
3835       // VarDecl has external linkage.
3836       Linkage = llvm::GlobalVariable::InternalLinkage;
3837     }
3838   }
3839   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
3840   auto *GV = new llvm::GlobalVariable(
3841       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3842       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
3843   if (emitter) emitter->finalize(GV);
3844   setGlobalVisibility(GV, VD);
3845   GV->setAlignment(Align.getQuantity());
3846   if (supportsCOMDAT() && GV->isWeakForLinker())
3847     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3848   if (VD->getTLSKind())
3849     setTLSMode(GV, *VD);
3850   llvm::Constant *CV = GV;
3851   if (AddrSpace != LangAS::Default)
3852     CV = getTargetCodeGenInfo().performAddrSpaceCast(
3853         *this, GV, AddrSpace, LangAS::Default,
3854         Type->getPointerTo(
3855             getContext().getTargetAddressSpace(LangAS::Default)));
3856   MaterializedGlobalTemporaryMap[E] = CV;
3857   return ConstantAddress(CV, Align);
3858 }
3859 
3860 /// EmitObjCPropertyImplementations - Emit information for synthesized
3861 /// properties for an implementation.
3862 void CodeGenModule::EmitObjCPropertyImplementations(const
3863                                                     ObjCImplementationDecl *D) {
3864   for (const auto *PID : D->property_impls()) {
3865     // Dynamic is just for type-checking.
3866     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3867       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3868 
3869       // Determine which methods need to be implemented, some may have
3870       // been overridden. Note that ::isPropertyAccessor is not the method
3871       // we want, that just indicates if the decl came from a
3872       // property. What we want to know is if the method is defined in
3873       // this implementation.
3874       if (!D->getInstanceMethod(PD->getGetterName()))
3875         CodeGenFunction(*this).GenerateObjCGetter(
3876                                  const_cast<ObjCImplementationDecl *>(D), PID);
3877       if (!PD->isReadOnly() &&
3878           !D->getInstanceMethod(PD->getSetterName()))
3879         CodeGenFunction(*this).GenerateObjCSetter(
3880                                  const_cast<ObjCImplementationDecl *>(D), PID);
3881     }
3882   }
3883 }
3884 
3885 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3886   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3887   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3888        ivar; ivar = ivar->getNextIvar())
3889     if (ivar->getType().isDestructedType())
3890       return true;
3891 
3892   return false;
3893 }
3894 
3895 static bool AllTrivialInitializers(CodeGenModule &CGM,
3896                                    ObjCImplementationDecl *D) {
3897   CodeGenFunction CGF(CGM);
3898   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3899        E = D->init_end(); B != E; ++B) {
3900     CXXCtorInitializer *CtorInitExp = *B;
3901     Expr *Init = CtorInitExp->getInit();
3902     if (!CGF.isTrivialInitializer(Init))
3903       return false;
3904   }
3905   return true;
3906 }
3907 
3908 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3909 /// for an implementation.
3910 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3911   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3912   if (needsDestructMethod(D)) {
3913     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3914     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3915     ObjCMethodDecl *DTORMethod =
3916       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3917                              cxxSelector, getContext().VoidTy, nullptr, D,
3918                              /*isInstance=*/true, /*isVariadic=*/false,
3919                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3920                              /*isDefined=*/false, ObjCMethodDecl::Required);
3921     D->addInstanceMethod(DTORMethod);
3922     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3923     D->setHasDestructors(true);
3924   }
3925 
3926   // If the implementation doesn't have any ivar initializers, we don't need
3927   // a .cxx_construct.
3928   if (D->getNumIvarInitializers() == 0 ||
3929       AllTrivialInitializers(*this, D))
3930     return;
3931 
3932   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3933   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3934   // The constructor returns 'self'.
3935   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3936                                                 D->getLocation(),
3937                                                 D->getLocation(),
3938                                                 cxxSelector,
3939                                                 getContext().getObjCIdType(),
3940                                                 nullptr, D, /*isInstance=*/true,
3941                                                 /*isVariadic=*/false,
3942                                                 /*isPropertyAccessor=*/true,
3943                                                 /*isImplicitlyDeclared=*/true,
3944                                                 /*isDefined=*/false,
3945                                                 ObjCMethodDecl::Required);
3946   D->addInstanceMethod(CTORMethod);
3947   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3948   D->setHasNonZeroConstructors(true);
3949 }
3950 
3951 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3952 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3953   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3954       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3955     ErrorUnsupported(LSD, "linkage spec");
3956     return;
3957   }
3958 
3959   EmitDeclContext(LSD);
3960 }
3961 
3962 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3963   for (auto *I : DC->decls()) {
3964     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3965     // are themselves considered "top-level", so EmitTopLevelDecl on an
3966     // ObjCImplDecl does not recursively visit them. We need to do that in
3967     // case they're nested inside another construct (LinkageSpecDecl /
3968     // ExportDecl) that does stop them from being considered "top-level".
3969     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3970       for (auto *M : OID->methods())
3971         EmitTopLevelDecl(M);
3972     }
3973 
3974     EmitTopLevelDecl(I);
3975   }
3976 }
3977 
3978 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3979 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3980   // Ignore dependent declarations.
3981   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3982     return;
3983 
3984   switch (D->getKind()) {
3985   case Decl::CXXConversion:
3986   case Decl::CXXMethod:
3987   case Decl::Function:
3988     // Skip function templates
3989     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3990         cast<FunctionDecl>(D)->isLateTemplateParsed())
3991       return;
3992 
3993     EmitGlobal(cast<FunctionDecl>(D));
3994     // Always provide some coverage mapping
3995     // even for the functions that aren't emitted.
3996     AddDeferredUnusedCoverageMapping(D);
3997     break;
3998 
3999   case Decl::CXXDeductionGuide:
4000     // Function-like, but does not result in code emission.
4001     break;
4002 
4003   case Decl::Var:
4004   case Decl::Decomposition:
4005     // Skip variable templates
4006     if (cast<VarDecl>(D)->getDescribedVarTemplate())
4007       return;
4008     LLVM_FALLTHROUGH;
4009   case Decl::VarTemplateSpecialization:
4010     EmitGlobal(cast<VarDecl>(D));
4011     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4012       for (auto *B : DD->bindings())
4013         if (auto *HD = B->getHoldingVar())
4014           EmitGlobal(HD);
4015     break;
4016 
4017   // Indirect fields from global anonymous structs and unions can be
4018   // ignored; only the actual variable requires IR gen support.
4019   case Decl::IndirectField:
4020     break;
4021 
4022   // C++ Decls
4023   case Decl::Namespace:
4024     EmitDeclContext(cast<NamespaceDecl>(D));
4025     break;
4026   case Decl::CXXRecord:
4027     if (DebugInfo) {
4028       if (auto *ES = D->getASTContext().getExternalSource())
4029         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4030           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4031     }
4032     // Emit any static data members, they may be definitions.
4033     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4034       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4035         EmitTopLevelDecl(I);
4036     break;
4037     // No code generation needed.
4038   case Decl::UsingShadow:
4039   case Decl::ClassTemplate:
4040   case Decl::VarTemplate:
4041   case Decl::VarTemplatePartialSpecialization:
4042   case Decl::FunctionTemplate:
4043   case Decl::TypeAliasTemplate:
4044   case Decl::Block:
4045   case Decl::Empty:
4046     break;
4047   case Decl::Using:          // using X; [C++]
4048     if (CGDebugInfo *DI = getModuleDebugInfo())
4049         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4050     return;
4051   case Decl::NamespaceAlias:
4052     if (CGDebugInfo *DI = getModuleDebugInfo())
4053         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4054     return;
4055   case Decl::UsingDirective: // using namespace X; [C++]
4056     if (CGDebugInfo *DI = getModuleDebugInfo())
4057       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4058     return;
4059   case Decl::CXXConstructor:
4060     // Skip function templates
4061     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
4062         cast<FunctionDecl>(D)->isLateTemplateParsed())
4063       return;
4064 
4065     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4066     break;
4067   case Decl::CXXDestructor:
4068     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
4069       return;
4070     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4071     break;
4072 
4073   case Decl::StaticAssert:
4074     // Nothing to do.
4075     break;
4076 
4077   // Objective-C Decls
4078 
4079   // Forward declarations, no (immediate) code generation.
4080   case Decl::ObjCInterface:
4081   case Decl::ObjCCategory:
4082     break;
4083 
4084   case Decl::ObjCProtocol: {
4085     auto *Proto = cast<ObjCProtocolDecl>(D);
4086     if (Proto->isThisDeclarationADefinition())
4087       ObjCRuntime->GenerateProtocol(Proto);
4088     break;
4089   }
4090 
4091   case Decl::ObjCCategoryImpl:
4092     // Categories have properties but don't support synthesize so we
4093     // can ignore them here.
4094     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4095     break;
4096 
4097   case Decl::ObjCImplementation: {
4098     auto *OMD = cast<ObjCImplementationDecl>(D);
4099     EmitObjCPropertyImplementations(OMD);
4100     EmitObjCIvarInitializations(OMD);
4101     ObjCRuntime->GenerateClass(OMD);
4102     // Emit global variable debug information.
4103     if (CGDebugInfo *DI = getModuleDebugInfo())
4104       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4105         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4106             OMD->getClassInterface()), OMD->getLocation());
4107     break;
4108   }
4109   case Decl::ObjCMethod: {
4110     auto *OMD = cast<ObjCMethodDecl>(D);
4111     // If this is not a prototype, emit the body.
4112     if (OMD->getBody())
4113       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4114     break;
4115   }
4116   case Decl::ObjCCompatibleAlias:
4117     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4118     break;
4119 
4120   case Decl::PragmaComment: {
4121     const auto *PCD = cast<PragmaCommentDecl>(D);
4122     switch (PCD->getCommentKind()) {
4123     case PCK_Unknown:
4124       llvm_unreachable("unexpected pragma comment kind");
4125     case PCK_Linker:
4126       AppendLinkerOptions(PCD->getArg());
4127       break;
4128     case PCK_Lib:
4129       AddDependentLib(PCD->getArg());
4130       break;
4131     case PCK_Compiler:
4132     case PCK_ExeStr:
4133     case PCK_User:
4134       break; // We ignore all of these.
4135     }
4136     break;
4137   }
4138 
4139   case Decl::PragmaDetectMismatch: {
4140     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4141     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4142     break;
4143   }
4144 
4145   case Decl::LinkageSpec:
4146     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4147     break;
4148 
4149   case Decl::FileScopeAsm: {
4150     // File-scope asm is ignored during device-side CUDA compilation.
4151     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4152       break;
4153     // File-scope asm is ignored during device-side OpenMP compilation.
4154     if (LangOpts.OpenMPIsDevice)
4155       break;
4156     auto *AD = cast<FileScopeAsmDecl>(D);
4157     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4158     break;
4159   }
4160 
4161   case Decl::Import: {
4162     auto *Import = cast<ImportDecl>(D);
4163 
4164     // If we've already imported this module, we're done.
4165     if (!ImportedModules.insert(Import->getImportedModule()))
4166       break;
4167 
4168     // Emit debug information for direct imports.
4169     if (!Import->getImportedOwningModule()) {
4170       if (CGDebugInfo *DI = getModuleDebugInfo())
4171         DI->EmitImportDecl(*Import);
4172     }
4173 
4174     // Find all of the submodules and emit the module initializers.
4175     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4176     SmallVector<clang::Module *, 16> Stack;
4177     Visited.insert(Import->getImportedModule());
4178     Stack.push_back(Import->getImportedModule());
4179 
4180     while (!Stack.empty()) {
4181       clang::Module *Mod = Stack.pop_back_val();
4182       if (!EmittedModuleInitializers.insert(Mod).second)
4183         continue;
4184 
4185       for (auto *D : Context.getModuleInitializers(Mod))
4186         EmitTopLevelDecl(D);
4187 
4188       // Visit the submodules of this module.
4189       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4190                                              SubEnd = Mod->submodule_end();
4191            Sub != SubEnd; ++Sub) {
4192         // Skip explicit children; they need to be explicitly imported to emit
4193         // the initializers.
4194         if ((*Sub)->IsExplicit)
4195           continue;
4196 
4197         if (Visited.insert(*Sub).second)
4198           Stack.push_back(*Sub);
4199       }
4200     }
4201     break;
4202   }
4203 
4204   case Decl::Export:
4205     EmitDeclContext(cast<ExportDecl>(D));
4206     break;
4207 
4208   case Decl::OMPThreadPrivate:
4209     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4210     break;
4211 
4212   case Decl::ClassTemplateSpecialization: {
4213     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4214     if (DebugInfo &&
4215         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4216         Spec->hasDefinition())
4217       DebugInfo->completeTemplateDefinition(*Spec);
4218     break;
4219   }
4220 
4221   case Decl::OMPDeclareReduction:
4222     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4223     break;
4224 
4225   default:
4226     // Make sure we handled everything we should, every other kind is a
4227     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4228     // function. Need to recode Decl::Kind to do that easily.
4229     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4230     break;
4231   }
4232 }
4233 
4234 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4235   // Do we need to generate coverage mapping?
4236   if (!CodeGenOpts.CoverageMapping)
4237     return;
4238   switch (D->getKind()) {
4239   case Decl::CXXConversion:
4240   case Decl::CXXMethod:
4241   case Decl::Function:
4242   case Decl::ObjCMethod:
4243   case Decl::CXXConstructor:
4244   case Decl::CXXDestructor: {
4245     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4246       return;
4247     SourceManager &SM = getContext().getSourceManager();
4248     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4249       return;
4250     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4251     if (I == DeferredEmptyCoverageMappingDecls.end())
4252       DeferredEmptyCoverageMappingDecls[D] = true;
4253     break;
4254   }
4255   default:
4256     break;
4257   };
4258 }
4259 
4260 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4261   // Do we need to generate coverage mapping?
4262   if (!CodeGenOpts.CoverageMapping)
4263     return;
4264   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4265     if (Fn->isTemplateInstantiation())
4266       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4267   }
4268   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4269   if (I == DeferredEmptyCoverageMappingDecls.end())
4270     DeferredEmptyCoverageMappingDecls[D] = false;
4271   else
4272     I->second = false;
4273 }
4274 
4275 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4276   std::vector<const Decl *> DeferredDecls;
4277   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4278     if (!I.second)
4279       continue;
4280     DeferredDecls.push_back(I.first);
4281   }
4282   // Sort the declarations by their location to make sure that the tests get a
4283   // predictable order for the coverage mapping for the unused declarations.
4284   if (CodeGenOpts.DumpCoverageMapping)
4285     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4286               [] (const Decl *LHS, const Decl *RHS) {
4287       return LHS->getLocStart() < RHS->getLocStart();
4288     });
4289   for (const auto *D : DeferredDecls) {
4290     switch (D->getKind()) {
4291     case Decl::CXXConversion:
4292     case Decl::CXXMethod:
4293     case Decl::Function:
4294     case Decl::ObjCMethod: {
4295       CodeGenPGO PGO(*this);
4296       GlobalDecl GD(cast<FunctionDecl>(D));
4297       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4298                                   getFunctionLinkage(GD));
4299       break;
4300     }
4301     case Decl::CXXConstructor: {
4302       CodeGenPGO PGO(*this);
4303       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4304       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4305                                   getFunctionLinkage(GD));
4306       break;
4307     }
4308     case Decl::CXXDestructor: {
4309       CodeGenPGO PGO(*this);
4310       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4311       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4312                                   getFunctionLinkage(GD));
4313       break;
4314     }
4315     default:
4316       break;
4317     };
4318   }
4319 }
4320 
4321 /// Turns the given pointer into a constant.
4322 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4323                                           const void *Ptr) {
4324   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4325   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4326   return llvm::ConstantInt::get(i64, PtrInt);
4327 }
4328 
4329 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4330                                    llvm::NamedMDNode *&GlobalMetadata,
4331                                    GlobalDecl D,
4332                                    llvm::GlobalValue *Addr) {
4333   if (!GlobalMetadata)
4334     GlobalMetadata =
4335       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4336 
4337   // TODO: should we report variant information for ctors/dtors?
4338   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4339                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4340                                CGM.getLLVMContext(), D.getDecl()))};
4341   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4342 }
4343 
4344 /// For each function which is declared within an extern "C" region and marked
4345 /// as 'used', but has internal linkage, create an alias from the unmangled
4346 /// name to the mangled name if possible. People expect to be able to refer
4347 /// to such functions with an unmangled name from inline assembly within the
4348 /// same translation unit.
4349 void CodeGenModule::EmitStaticExternCAliases() {
4350   // Don't do anything if we're generating CUDA device code -- the NVPTX
4351   // assembly target doesn't support aliases.
4352   if (Context.getTargetInfo().getTriple().isNVPTX())
4353     return;
4354   for (auto &I : StaticExternCValues) {
4355     IdentifierInfo *Name = I.first;
4356     llvm::GlobalValue *Val = I.second;
4357     if (Val && !getModule().getNamedValue(Name->getName()))
4358       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4359   }
4360 }
4361 
4362 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4363                                              GlobalDecl &Result) const {
4364   auto Res = Manglings.find(MangledName);
4365   if (Res == Manglings.end())
4366     return false;
4367   Result = Res->getValue();
4368   return true;
4369 }
4370 
4371 /// Emits metadata nodes associating all the global values in the
4372 /// current module with the Decls they came from.  This is useful for
4373 /// projects using IR gen as a subroutine.
4374 ///
4375 /// Since there's currently no way to associate an MDNode directly
4376 /// with an llvm::GlobalValue, we create a global named metadata
4377 /// with the name 'clang.global.decl.ptrs'.
4378 void CodeGenModule::EmitDeclMetadata() {
4379   llvm::NamedMDNode *GlobalMetadata = nullptr;
4380 
4381   for (auto &I : MangledDeclNames) {
4382     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4383     // Some mangled names don't necessarily have an associated GlobalValue
4384     // in this module, e.g. if we mangled it for DebugInfo.
4385     if (Addr)
4386       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4387   }
4388 }
4389 
4390 /// Emits metadata nodes for all the local variables in the current
4391 /// function.
4392 void CodeGenFunction::EmitDeclMetadata() {
4393   if (LocalDeclMap.empty()) return;
4394 
4395   llvm::LLVMContext &Context = getLLVMContext();
4396 
4397   // Find the unique metadata ID for this name.
4398   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4399 
4400   llvm::NamedMDNode *GlobalMetadata = nullptr;
4401 
4402   for (auto &I : LocalDeclMap) {
4403     const Decl *D = I.first;
4404     llvm::Value *Addr = I.second.getPointer();
4405     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4406       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4407       Alloca->setMetadata(
4408           DeclPtrKind, llvm::MDNode::get(
4409                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4410     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4411       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4412       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4413     }
4414   }
4415 }
4416 
4417 void CodeGenModule::EmitVersionIdentMetadata() {
4418   llvm::NamedMDNode *IdentMetadata =
4419     TheModule.getOrInsertNamedMetadata("llvm.ident");
4420   std::string Version = getClangFullVersion();
4421   llvm::LLVMContext &Ctx = TheModule.getContext();
4422 
4423   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4424   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4425 }
4426 
4427 void CodeGenModule::EmitTargetMetadata() {
4428   // Warning, new MangledDeclNames may be appended within this loop.
4429   // We rely on MapVector insertions adding new elements to the end
4430   // of the container.
4431   // FIXME: Move this loop into the one target that needs it, and only
4432   // loop over those declarations for which we couldn't emit the target
4433   // metadata when we emitted the declaration.
4434   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4435     auto Val = *(MangledDeclNames.begin() + I);
4436     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4437     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4438     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4439   }
4440 }
4441 
4442 void CodeGenModule::EmitCoverageFile() {
4443   if (getCodeGenOpts().CoverageDataFile.empty() &&
4444       getCodeGenOpts().CoverageNotesFile.empty())
4445     return;
4446 
4447   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4448   if (!CUNode)
4449     return;
4450 
4451   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4452   llvm::LLVMContext &Ctx = TheModule.getContext();
4453   auto *CoverageDataFile =
4454       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4455   auto *CoverageNotesFile =
4456       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4457   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4458     llvm::MDNode *CU = CUNode->getOperand(i);
4459     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4460     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4461   }
4462 }
4463 
4464 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4465   // Sema has checked that all uuid strings are of the form
4466   // "12345678-1234-1234-1234-1234567890ab".
4467   assert(Uuid.size() == 36);
4468   for (unsigned i = 0; i < 36; ++i) {
4469     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4470     else                                         assert(isHexDigit(Uuid[i]));
4471   }
4472 
4473   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4474   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4475 
4476   llvm::Constant *Field3[8];
4477   for (unsigned Idx = 0; Idx < 8; ++Idx)
4478     Field3[Idx] = llvm::ConstantInt::get(
4479         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4480 
4481   llvm::Constant *Fields[4] = {
4482     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4483     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4484     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4485     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4486   };
4487 
4488   return llvm::ConstantStruct::getAnon(Fields);
4489 }
4490 
4491 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4492                                                        bool ForEH) {
4493   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4494   // FIXME: should we even be calling this method if RTTI is disabled
4495   // and it's not for EH?
4496   if (!ForEH && !getLangOpts().RTTI)
4497     return llvm::Constant::getNullValue(Int8PtrTy);
4498 
4499   if (ForEH && Ty->isObjCObjectPointerType() &&
4500       LangOpts.ObjCRuntime.isGNUFamily())
4501     return ObjCRuntime->GetEHType(Ty);
4502 
4503   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4504 }
4505 
4506 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4507   for (auto RefExpr : D->varlists()) {
4508     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4509     bool PerformInit =
4510         VD->getAnyInitializer() &&
4511         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4512                                                         /*ForRef=*/false);
4513 
4514     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4515     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4516             VD, Addr, RefExpr->getLocStart(), PerformInit))
4517       CXXGlobalInits.push_back(InitFunction);
4518   }
4519 }
4520 
4521 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4522   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4523   if (InternalId)
4524     return InternalId;
4525 
4526   if (isExternallyVisible(T->getLinkage())) {
4527     std::string OutName;
4528     llvm::raw_string_ostream Out(OutName);
4529     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4530 
4531     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4532   } else {
4533     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4534                                            llvm::ArrayRef<llvm::Metadata *>());
4535   }
4536 
4537   return InternalId;
4538 }
4539 
4540 /// Returns whether this module needs the "all-vtables" type identifier.
4541 bool CodeGenModule::NeedAllVtablesTypeId() const {
4542   // Returns true if at least one of vtable-based CFI checkers is enabled and
4543   // is not in the trapping mode.
4544   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4545            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4546           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4547            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4548           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4549            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4550           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4551            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4552 }
4553 
4554 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4555                                           CharUnits Offset,
4556                                           const CXXRecordDecl *RD) {
4557   llvm::Metadata *MD =
4558       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4559   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4560 
4561   if (CodeGenOpts.SanitizeCfiCrossDso)
4562     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4563       VTable->addTypeMetadata(Offset.getQuantity(),
4564                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4565 
4566   if (NeedAllVtablesTypeId()) {
4567     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4568     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4569   }
4570 }
4571 
4572 // Fills in the supplied string map with the set of target features for the
4573 // passed in function.
4574 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4575                                           const FunctionDecl *FD) {
4576   StringRef TargetCPU = Target.getTargetOpts().CPU;
4577   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4578     // If we have a TargetAttr build up the feature map based on that.
4579     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4580 
4581     // Make a copy of the features as passed on the command line into the
4582     // beginning of the additional features from the function to override.
4583     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4584                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4585                             Target.getTargetOpts().FeaturesAsWritten.end());
4586 
4587     if (ParsedAttr.Architecture != "")
4588       TargetCPU = ParsedAttr.Architecture ;
4589 
4590     // Now populate the feature map, first with the TargetCPU which is either
4591     // the default or a new one from the target attribute string. Then we'll use
4592     // the passed in features (FeaturesAsWritten) along with the new ones from
4593     // the attribute.
4594     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4595                           ParsedAttr.Features);
4596   } else {
4597     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4598                           Target.getTargetOpts().Features);
4599   }
4600 }
4601 
4602 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4603   if (!SanStats)
4604     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4605 
4606   return *SanStats;
4607 }
4608 llvm::Value *
4609 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4610                                                   CodeGenFunction &CGF) {
4611   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4612   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4613   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4614   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4615                                 "__translate_sampler_initializer"),
4616                                 {C});
4617 }
4618