1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclTemplate.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/Diagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Basic/ConvertUTF.h" 33 #include "llvm/CallingConv.h" 34 #include "llvm/Module.h" 35 #include "llvm/Intrinsics.h" 36 #include "llvm/LLVMContext.h" 37 #include "llvm/ADT/Triple.h" 38 #include "llvm/Target/TargetData.h" 39 #include "llvm/Support/CallSite.h" 40 #include "llvm/Support/ErrorHandling.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 46 llvm::Module &M, const llvm::TargetData &TD, 47 Diagnostic &diags) 48 : BlockModule(C, M, TD, Types, *this), Context(C), 49 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 50 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 51 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 52 VTables(*this), Runtime(0), ABI(0), 53 CFConstantStringClassRef(0), 54 NSConstantStringClassRef(0), 55 VMContext(M.getContext()) { 56 57 if (!Features.ObjC1) 58 Runtime = 0; 59 else if (!Features.NeXTRuntime) 60 Runtime = CreateGNUObjCRuntime(*this); 61 else if (Features.ObjCNonFragileABI) 62 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 63 else 64 Runtime = CreateMacObjCRuntime(*this); 65 66 if (!Features.CPlusPlus) 67 ABI = 0; 68 else createCXXABI(); 69 70 // If debug info generation is enabled, create the CGDebugInfo object. 71 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 72 } 73 74 CodeGenModule::~CodeGenModule() { 75 delete Runtime; 76 delete ABI; 77 delete DebugInfo; 78 } 79 80 void CodeGenModule::createObjCRuntime() { 81 if (!Features.NeXTRuntime) 82 Runtime = CreateGNUObjCRuntime(*this); 83 else if (Features.ObjCNonFragileABI) 84 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 85 else 86 Runtime = CreateMacObjCRuntime(*this); 87 } 88 89 void CodeGenModule::createCXXABI() { 90 if (Context.Target.getCXXABI() == "microsoft") 91 ABI = CreateMicrosoftCXXABI(*this); 92 else 93 ABI = CreateItaniumCXXABI(*this); 94 } 95 96 void CodeGenModule::Release() { 97 EmitDeferred(); 98 EmitCXXGlobalInitFunc(); 99 EmitCXXGlobalDtorFunc(); 100 if (Runtime) 101 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 102 AddGlobalCtor(ObjCInitFunction); 103 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 104 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 105 EmitAnnotations(); 106 EmitLLVMUsed(); 107 } 108 109 bool CodeGenModule::isTargetDarwin() const { 110 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 111 } 112 113 /// ErrorUnsupported - Print out an error that codegen doesn't support the 114 /// specified stmt yet. 115 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 116 bool OmitOnError) { 117 if (OmitOnError && getDiags().hasErrorOccurred()) 118 return; 119 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 120 "cannot compile this %0 yet"); 121 std::string Msg = Type; 122 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 123 << Msg << S->getSourceRange(); 124 } 125 126 /// ErrorUnsupported - Print out an error that codegen doesn't support the 127 /// specified decl yet. 128 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 129 bool OmitOnError) { 130 if (OmitOnError && getDiags().hasErrorOccurred()) 131 return; 132 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 133 "cannot compile this %0 yet"); 134 std::string Msg = Type; 135 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 136 } 137 138 LangOptions::VisibilityMode 139 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 140 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 141 if (VD->getStorageClass() == VarDecl::PrivateExtern) 142 return LangOptions::Hidden; 143 144 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 145 switch (attr->getVisibility()) { 146 default: assert(0 && "Unknown visibility!"); 147 case VisibilityAttr::DefaultVisibility: 148 return LangOptions::Default; 149 case VisibilityAttr::HiddenVisibility: 150 return LangOptions::Hidden; 151 case VisibilityAttr::ProtectedVisibility: 152 return LangOptions::Protected; 153 } 154 } 155 156 if (getLangOptions().CPlusPlus) { 157 // Entities subject to an explicit instantiation declaration get default 158 // visibility. 159 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 160 if (Function->getTemplateSpecializationKind() 161 == TSK_ExplicitInstantiationDeclaration) 162 return LangOptions::Default; 163 } else if (const ClassTemplateSpecializationDecl *ClassSpec 164 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 165 if (ClassSpec->getSpecializationKind() 166 == TSK_ExplicitInstantiationDeclaration) 167 return LangOptions::Default; 168 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 169 if (Record->getTemplateSpecializationKind() 170 == TSK_ExplicitInstantiationDeclaration) 171 return LangOptions::Default; 172 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 173 if (Var->isStaticDataMember() && 174 (Var->getTemplateSpecializationKind() 175 == TSK_ExplicitInstantiationDeclaration)) 176 return LangOptions::Default; 177 } 178 179 // If -fvisibility-inlines-hidden was provided, then inline C++ member 180 // functions get "hidden" visibility by default. 181 if (getLangOptions().InlineVisibilityHidden) 182 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 183 if (Method->isInlined()) 184 return LangOptions::Hidden; 185 } 186 187 // This decl should have the same visibility as its parent. 188 if (const DeclContext *DC = D->getDeclContext()) 189 return getDeclVisibilityMode(cast<Decl>(DC)); 190 191 return getLangOptions().getVisibilityMode(); 192 } 193 194 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 195 const Decl *D) const { 196 // Internal definitions always have default visibility. 197 if (GV->hasLocalLinkage()) { 198 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 199 return; 200 } 201 202 switch (getDeclVisibilityMode(D)) { 203 default: assert(0 && "Unknown visibility!"); 204 case LangOptions::Default: 205 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 206 case LangOptions::Hidden: 207 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 208 case LangOptions::Protected: 209 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 210 } 211 } 212 213 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 214 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 215 216 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 217 if (!Str.empty()) 218 return Str; 219 220 if (!getMangleContext().shouldMangleDeclName(ND)) { 221 IdentifierInfo *II = ND->getIdentifier(); 222 assert(II && "Attempt to mangle unnamed decl."); 223 224 Str = II->getName(); 225 return Str; 226 } 227 228 llvm::SmallString<256> Buffer; 229 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 230 getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 231 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 232 getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 233 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 234 getMangleContext().mangleBlock(GD, BD, Buffer); 235 else 236 getMangleContext().mangleName(ND, Buffer); 237 238 // Allocate space for the mangled name. 239 size_t Length = Buffer.size(); 240 char *Name = MangledNamesAllocator.Allocate<char>(Length); 241 std::copy(Buffer.begin(), Buffer.end(), Name); 242 243 Str = llvm::StringRef(Name, Length); 244 245 return Str; 246 } 247 248 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 249 const BlockDecl *BD) { 250 getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 251 } 252 253 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 254 return getModule().getNamedValue(Name); 255 } 256 257 /// AddGlobalCtor - Add a function to the list that will be called before 258 /// main() runs. 259 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 260 // FIXME: Type coercion of void()* types. 261 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 262 } 263 264 /// AddGlobalDtor - Add a function to the list that will be called 265 /// when the module is unloaded. 266 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 267 // FIXME: Type coercion of void()* types. 268 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 269 } 270 271 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 272 // Ctor function type is void()*. 273 llvm::FunctionType* CtorFTy = 274 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 275 std::vector<const llvm::Type*>(), 276 false); 277 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 278 279 // Get the type of a ctor entry, { i32, void ()* }. 280 llvm::StructType* CtorStructTy = 281 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 282 llvm::PointerType::getUnqual(CtorFTy), NULL); 283 284 // Construct the constructor and destructor arrays. 285 std::vector<llvm::Constant*> Ctors; 286 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 287 std::vector<llvm::Constant*> S; 288 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 289 I->second, false)); 290 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 291 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 292 } 293 294 if (!Ctors.empty()) { 295 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 296 new llvm::GlobalVariable(TheModule, AT, false, 297 llvm::GlobalValue::AppendingLinkage, 298 llvm::ConstantArray::get(AT, Ctors), 299 GlobalName); 300 } 301 } 302 303 void CodeGenModule::EmitAnnotations() { 304 if (Annotations.empty()) 305 return; 306 307 // Create a new global variable for the ConstantStruct in the Module. 308 llvm::Constant *Array = 309 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 310 Annotations.size()), 311 Annotations); 312 llvm::GlobalValue *gv = 313 new llvm::GlobalVariable(TheModule, Array->getType(), false, 314 llvm::GlobalValue::AppendingLinkage, Array, 315 "llvm.global.annotations"); 316 gv->setSection("llvm.metadata"); 317 } 318 319 static CodeGenModule::GVALinkage 320 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 321 const LangOptions &Features) { 322 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 323 324 Linkage L = FD->getLinkage(); 325 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 326 FD->getType()->getLinkage() == UniqueExternalLinkage) 327 L = UniqueExternalLinkage; 328 329 switch (L) { 330 case NoLinkage: 331 case InternalLinkage: 332 case UniqueExternalLinkage: 333 return CodeGenModule::GVA_Internal; 334 335 case ExternalLinkage: 336 switch (FD->getTemplateSpecializationKind()) { 337 case TSK_Undeclared: 338 case TSK_ExplicitSpecialization: 339 External = CodeGenModule::GVA_StrongExternal; 340 break; 341 342 case TSK_ExplicitInstantiationDefinition: 343 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 344 345 case TSK_ExplicitInstantiationDeclaration: 346 case TSK_ImplicitInstantiation: 347 External = CodeGenModule::GVA_TemplateInstantiation; 348 break; 349 } 350 } 351 352 if (!FD->isInlined()) 353 return External; 354 355 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 356 // GNU or C99 inline semantics. Determine whether this symbol should be 357 // externally visible. 358 if (FD->isInlineDefinitionExternallyVisible()) 359 return External; 360 361 // C99 inline semantics, where the symbol is not externally visible. 362 return CodeGenModule::GVA_C99Inline; 363 } 364 365 // C++0x [temp.explicit]p9: 366 // [ Note: The intent is that an inline function that is the subject of 367 // an explicit instantiation declaration will still be implicitly 368 // instantiated when used so that the body can be considered for 369 // inlining, but that no out-of-line copy of the inline function would be 370 // generated in the translation unit. -- end note ] 371 if (FD->getTemplateSpecializationKind() 372 == TSK_ExplicitInstantiationDeclaration) 373 return CodeGenModule::GVA_C99Inline; 374 375 return CodeGenModule::GVA_CXXInline; 376 } 377 378 llvm::GlobalValue::LinkageTypes 379 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 380 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 381 382 if (Linkage == GVA_Internal) 383 return llvm::Function::InternalLinkage; 384 385 if (D->hasAttr<DLLExportAttr>()) 386 return llvm::Function::DLLExportLinkage; 387 388 if (D->hasAttr<WeakAttr>()) 389 return llvm::Function::WeakAnyLinkage; 390 391 // In C99 mode, 'inline' functions are guaranteed to have a strong 392 // definition somewhere else, so we can use available_externally linkage. 393 if (Linkage == GVA_C99Inline) 394 return llvm::Function::AvailableExternallyLinkage; 395 396 // In C++, the compiler has to emit a definition in every translation unit 397 // that references the function. We should use linkonce_odr because 398 // a) if all references in this translation unit are optimized away, we 399 // don't need to codegen it. b) if the function persists, it needs to be 400 // merged with other definitions. c) C++ has the ODR, so we know the 401 // definition is dependable. 402 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 403 return llvm::Function::LinkOnceODRLinkage; 404 405 // An explicit instantiation of a template has weak linkage, since 406 // explicit instantiations can occur in multiple translation units 407 // and must all be equivalent. However, we are not allowed to 408 // throw away these explicit instantiations. 409 if (Linkage == GVA_ExplicitTemplateInstantiation) 410 return llvm::Function::WeakODRLinkage; 411 412 // Otherwise, we have strong external linkage. 413 assert(Linkage == GVA_StrongExternal); 414 return llvm::Function::ExternalLinkage; 415 } 416 417 418 /// SetFunctionDefinitionAttributes - Set attributes for a global. 419 /// 420 /// FIXME: This is currently only done for aliases and functions, but not for 421 /// variables (these details are set in EmitGlobalVarDefinition for variables). 422 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 423 llvm::GlobalValue *GV) { 424 SetCommonAttributes(D, GV); 425 } 426 427 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 428 const CGFunctionInfo &Info, 429 llvm::Function *F) { 430 unsigned CallingConv; 431 AttributeListType AttributeList; 432 ConstructAttributeList(Info, D, AttributeList, CallingConv); 433 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 434 AttributeList.size())); 435 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 436 } 437 438 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 439 llvm::Function *F) { 440 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 441 F->addFnAttr(llvm::Attribute::NoUnwind); 442 443 if (D->hasAttr<AlwaysInlineAttr>()) 444 F->addFnAttr(llvm::Attribute::AlwaysInline); 445 446 if (D->hasAttr<NoInlineAttr>()) 447 F->addFnAttr(llvm::Attribute::NoInline); 448 449 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 450 F->addFnAttr(llvm::Attribute::StackProtect); 451 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 452 F->addFnAttr(llvm::Attribute::StackProtectReq); 453 454 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 455 unsigned width = Context.Target.getCharWidth(); 456 F->setAlignment(AA->getAlignment() / width); 457 while ((AA = AA->getNext<AlignedAttr>())) 458 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 459 } 460 // C++ ABI requires 2-byte alignment for member functions. 461 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 462 F->setAlignment(2); 463 } 464 465 void CodeGenModule::SetCommonAttributes(const Decl *D, 466 llvm::GlobalValue *GV) { 467 setGlobalVisibility(GV, D); 468 469 if (D->hasAttr<UsedAttr>()) 470 AddUsedGlobal(GV); 471 472 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 473 GV->setSection(SA->getName()); 474 475 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 476 } 477 478 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 479 llvm::Function *F, 480 const CGFunctionInfo &FI) { 481 SetLLVMFunctionAttributes(D, FI, F); 482 SetLLVMFunctionAttributesForDefinition(D, F); 483 484 F->setLinkage(llvm::Function::InternalLinkage); 485 486 SetCommonAttributes(D, F); 487 } 488 489 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 490 llvm::Function *F, 491 bool IsIncompleteFunction) { 492 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 493 494 if (!IsIncompleteFunction) 495 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 496 497 // Only a few attributes are set on declarations; these may later be 498 // overridden by a definition. 499 500 if (FD->hasAttr<DLLImportAttr>()) { 501 F->setLinkage(llvm::Function::DLLImportLinkage); 502 } else if (FD->hasAttr<WeakAttr>() || 503 FD->hasAttr<WeakImportAttr>()) { 504 // "extern_weak" is overloaded in LLVM; we probably should have 505 // separate linkage types for this. 506 F->setLinkage(llvm::Function::ExternalWeakLinkage); 507 } else { 508 F->setLinkage(llvm::Function::ExternalLinkage); 509 } 510 511 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 512 F->setSection(SA->getName()); 513 } 514 515 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 516 assert(!GV->isDeclaration() && 517 "Only globals with definition can force usage."); 518 LLVMUsed.push_back(GV); 519 } 520 521 void CodeGenModule::EmitLLVMUsed() { 522 // Don't create llvm.used if there is no need. 523 if (LLVMUsed.empty()) 524 return; 525 526 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 527 528 // Convert LLVMUsed to what ConstantArray needs. 529 std::vector<llvm::Constant*> UsedArray; 530 UsedArray.resize(LLVMUsed.size()); 531 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 532 UsedArray[i] = 533 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 534 i8PTy); 535 } 536 537 if (UsedArray.empty()) 538 return; 539 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 540 541 llvm::GlobalVariable *GV = 542 new llvm::GlobalVariable(getModule(), ATy, false, 543 llvm::GlobalValue::AppendingLinkage, 544 llvm::ConstantArray::get(ATy, UsedArray), 545 "llvm.used"); 546 547 GV->setSection("llvm.metadata"); 548 } 549 550 void CodeGenModule::EmitDeferred() { 551 // Emit code for any potentially referenced deferred decls. Since a 552 // previously unused static decl may become used during the generation of code 553 // for a static function, iterate until no changes are made. 554 555 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 556 if (!DeferredVTables.empty()) { 557 const CXXRecordDecl *RD = DeferredVTables.back(); 558 DeferredVTables.pop_back(); 559 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 560 continue; 561 } 562 563 GlobalDecl D = DeferredDeclsToEmit.back(); 564 DeferredDeclsToEmit.pop_back(); 565 566 // Check to see if we've already emitted this. This is necessary 567 // for a couple of reasons: first, decls can end up in the 568 // deferred-decls queue multiple times, and second, decls can end 569 // up with definitions in unusual ways (e.g. by an extern inline 570 // function acquiring a strong function redefinition). Just 571 // ignore these cases. 572 // 573 // TODO: That said, looking this up multiple times is very wasteful. 574 llvm::StringRef Name = getMangledName(D); 575 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 576 assert(CGRef && "Deferred decl wasn't referenced?"); 577 578 if (!CGRef->isDeclaration()) 579 continue; 580 581 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 582 // purposes an alias counts as a definition. 583 if (isa<llvm::GlobalAlias>(CGRef)) 584 continue; 585 586 // Otherwise, emit the definition and move on to the next one. 587 EmitGlobalDefinition(D); 588 } 589 } 590 591 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 592 /// annotation information for a given GlobalValue. The annotation struct is 593 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 594 /// GlobalValue being annotated. The second field is the constant string 595 /// created from the AnnotateAttr's annotation. The third field is a constant 596 /// string containing the name of the translation unit. The fourth field is 597 /// the line number in the file of the annotated value declaration. 598 /// 599 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 600 /// appears to. 601 /// 602 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 603 const AnnotateAttr *AA, 604 unsigned LineNo) { 605 llvm::Module *M = &getModule(); 606 607 // get [N x i8] constants for the annotation string, and the filename string 608 // which are the 2nd and 3rd elements of the global annotation structure. 609 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 610 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 611 AA->getAnnotation(), true); 612 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 613 M->getModuleIdentifier(), 614 true); 615 616 // Get the two global values corresponding to the ConstantArrays we just 617 // created to hold the bytes of the strings. 618 llvm::GlobalValue *annoGV = 619 new llvm::GlobalVariable(*M, anno->getType(), false, 620 llvm::GlobalValue::PrivateLinkage, anno, 621 GV->getName()); 622 // translation unit name string, emitted into the llvm.metadata section. 623 llvm::GlobalValue *unitGV = 624 new llvm::GlobalVariable(*M, unit->getType(), false, 625 llvm::GlobalValue::PrivateLinkage, unit, 626 ".str"); 627 628 // Create the ConstantStruct for the global annotation. 629 llvm::Constant *Fields[4] = { 630 llvm::ConstantExpr::getBitCast(GV, SBP), 631 llvm::ConstantExpr::getBitCast(annoGV, SBP), 632 llvm::ConstantExpr::getBitCast(unitGV, SBP), 633 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 634 }; 635 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 636 } 637 638 static CodeGenModule::GVALinkage 639 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 640 // If this is a static data member, compute the kind of template 641 // specialization. Otherwise, this variable is not part of a 642 // template. 643 TemplateSpecializationKind TSK = TSK_Undeclared; 644 if (VD->isStaticDataMember()) 645 TSK = VD->getTemplateSpecializationKind(); 646 647 Linkage L = VD->getLinkage(); 648 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 649 VD->getType()->getLinkage() == UniqueExternalLinkage) 650 L = UniqueExternalLinkage; 651 652 switch (L) { 653 case NoLinkage: 654 case InternalLinkage: 655 case UniqueExternalLinkage: 656 return CodeGenModule::GVA_Internal; 657 658 case ExternalLinkage: 659 switch (TSK) { 660 case TSK_Undeclared: 661 case TSK_ExplicitSpecialization: 662 return CodeGenModule::GVA_StrongExternal; 663 664 case TSK_ExplicitInstantiationDeclaration: 665 llvm_unreachable("Variable should not be instantiated"); 666 // Fall through to treat this like any other instantiation. 667 668 case TSK_ExplicitInstantiationDefinition: 669 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 670 671 case TSK_ImplicitInstantiation: 672 return CodeGenModule::GVA_TemplateInstantiation; 673 } 674 } 675 676 return CodeGenModule::GVA_StrongExternal; 677 } 678 679 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 680 // Never defer when EmitAllDecls is specified or the decl has 681 // attribute used. 682 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 683 return false; 684 685 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 686 // Constructors and destructors should never be deferred. 687 if (FD->hasAttr<ConstructorAttr>() || 688 FD->hasAttr<DestructorAttr>()) 689 return false; 690 691 // The key function for a class must never be deferred. 692 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 693 const CXXRecordDecl *RD = MD->getParent(); 694 if (MD->isOutOfLine() && RD->isDynamicClass()) { 695 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 696 if (KeyFunction && 697 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 698 return false; 699 } 700 } 701 702 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 703 704 // static, static inline, always_inline, and extern inline functions can 705 // always be deferred. Normal inline functions can be deferred in C99/C++. 706 // Implicit template instantiations can also be deferred in C++. 707 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 708 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 709 return true; 710 return false; 711 } 712 713 const VarDecl *VD = cast<VarDecl>(Global); 714 assert(VD->isFileVarDecl() && "Invalid decl"); 715 716 // We never want to defer structs that have non-trivial constructors or 717 // destructors. 718 719 // FIXME: Handle references. 720 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 721 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 722 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 723 return false; 724 } 725 } 726 727 GVALinkage L = GetLinkageForVariable(getContext(), VD); 728 if (L == GVA_Internal || L == GVA_TemplateInstantiation) { 729 if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context))) 730 return true; 731 } 732 733 return false; 734 } 735 736 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 737 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 738 assert(AA && "No alias?"); 739 740 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 741 742 // See if there is already something with the target's name in the module. 743 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 744 745 llvm::Constant *Aliasee; 746 if (isa<llvm::FunctionType>(DeclTy)) 747 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 748 else 749 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 750 llvm::PointerType::getUnqual(DeclTy), 0); 751 if (!Entry) { 752 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 753 F->setLinkage(llvm::Function::ExternalWeakLinkage); 754 WeakRefReferences.insert(F); 755 } 756 757 return Aliasee; 758 } 759 760 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 761 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 762 763 // Weak references don't produce any output by themselves. 764 if (Global->hasAttr<WeakRefAttr>()) 765 return; 766 767 // If this is an alias definition (which otherwise looks like a declaration) 768 // emit it now. 769 if (Global->hasAttr<AliasAttr>()) 770 return EmitAliasDefinition(GD); 771 772 // Ignore declarations, they will be emitted on their first use. 773 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 774 // Forward declarations are emitted lazily on first use. 775 if (!FD->isThisDeclarationADefinition()) 776 return; 777 } else { 778 const VarDecl *VD = cast<VarDecl>(Global); 779 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 780 781 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 782 return; 783 } 784 785 // Defer code generation when possible if this is a static definition, inline 786 // function etc. These we only want to emit if they are used. 787 if (!MayDeferGeneration(Global)) { 788 // Emit the definition if it can't be deferred. 789 EmitGlobalDefinition(GD); 790 return; 791 } 792 793 // If the value has already been used, add it directly to the 794 // DeferredDeclsToEmit list. 795 llvm::StringRef MangledName = getMangledName(GD); 796 if (GetGlobalValue(MangledName)) 797 DeferredDeclsToEmit.push_back(GD); 798 else { 799 // Otherwise, remember that we saw a deferred decl with this name. The 800 // first use of the mangled name will cause it to move into 801 // DeferredDeclsToEmit. 802 DeferredDecls[MangledName] = GD; 803 } 804 } 805 806 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 807 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 808 809 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 810 Context.getSourceManager(), 811 "Generating code for declaration"); 812 813 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 814 if (Method->isVirtual()) 815 getVTables().EmitThunks(GD); 816 817 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 818 return EmitCXXConstructor(CD, GD.getCtorType()); 819 820 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 821 return EmitCXXDestructor(DD, GD.getDtorType()); 822 823 if (isa<FunctionDecl>(D)) 824 return EmitGlobalFunctionDefinition(GD); 825 826 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 827 return EmitGlobalVarDefinition(VD); 828 829 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 830 } 831 832 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 833 /// module, create and return an llvm Function with the specified type. If there 834 /// is something in the module with the specified name, return it potentially 835 /// bitcasted to the right type. 836 /// 837 /// If D is non-null, it specifies a decl that correspond to this. This is used 838 /// to set the attributes on the function when it is first created. 839 llvm::Constant * 840 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 841 const llvm::Type *Ty, 842 GlobalDecl D) { 843 // Lookup the entry, lazily creating it if necessary. 844 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 845 if (Entry) { 846 if (WeakRefReferences.count(Entry)) { 847 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 848 if (FD && !FD->hasAttr<WeakAttr>()) 849 Entry->setLinkage(llvm::Function::ExternalLinkage); 850 851 WeakRefReferences.erase(Entry); 852 } 853 854 if (Entry->getType()->getElementType() == Ty) 855 return Entry; 856 857 // Make sure the result is of the correct type. 858 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 859 return llvm::ConstantExpr::getBitCast(Entry, PTy); 860 } 861 862 // This function doesn't have a complete type (for example, the return 863 // type is an incomplete struct). Use a fake type instead, and make 864 // sure not to try to set attributes. 865 bool IsIncompleteFunction = false; 866 867 const llvm::FunctionType *FTy; 868 if (isa<llvm::FunctionType>(Ty)) { 869 FTy = cast<llvm::FunctionType>(Ty); 870 } else { 871 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 872 std::vector<const llvm::Type*>(), false); 873 IsIncompleteFunction = true; 874 } 875 876 llvm::Function *F = llvm::Function::Create(FTy, 877 llvm::Function::ExternalLinkage, 878 MangledName, &getModule()); 879 assert(F->getName() == MangledName && "name was uniqued!"); 880 if (D.getDecl()) 881 SetFunctionAttributes(D, F, IsIncompleteFunction); 882 883 // This is the first use or definition of a mangled name. If there is a 884 // deferred decl with this name, remember that we need to emit it at the end 885 // of the file. 886 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 887 if (DDI != DeferredDecls.end()) { 888 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 889 // list, and remove it from DeferredDecls (since we don't need it anymore). 890 DeferredDeclsToEmit.push_back(DDI->second); 891 DeferredDecls.erase(DDI); 892 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 893 // If this the first reference to a C++ inline function in a class, queue up 894 // the deferred function body for emission. These are not seen as 895 // top-level declarations. 896 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 897 DeferredDeclsToEmit.push_back(D); 898 // A called constructor which has no definition or declaration need be 899 // synthesized. 900 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 901 if (CD->isImplicit()) { 902 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 903 DeferredDeclsToEmit.push_back(D); 904 } 905 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 906 if (DD->isImplicit()) { 907 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 908 DeferredDeclsToEmit.push_back(D); 909 } 910 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 911 if (MD->isCopyAssignment() && MD->isImplicit()) { 912 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 913 DeferredDeclsToEmit.push_back(D); 914 } 915 } 916 } 917 918 // Make sure the result is of the requested type. 919 if (!IsIncompleteFunction) { 920 assert(F->getType()->getElementType() == Ty); 921 return F; 922 } 923 924 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 925 return llvm::ConstantExpr::getBitCast(F, PTy); 926 } 927 928 /// GetAddrOfFunction - Return the address of the given function. If Ty is 929 /// non-null, then this function will use the specified type if it has to 930 /// create it (this occurs when we see a definition of the function). 931 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 932 const llvm::Type *Ty) { 933 // If there was no specific requested type, just convert it now. 934 if (!Ty) 935 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 936 937 llvm::StringRef MangledName = getMangledName(GD); 938 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 939 } 940 941 /// CreateRuntimeFunction - Create a new runtime function with the specified 942 /// type and name. 943 llvm::Constant * 944 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 945 llvm::StringRef Name) { 946 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 947 } 948 949 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 950 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 951 return false; 952 if (Context.getLangOptions().CPlusPlus && 953 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 954 // FIXME: We should do something fancier here! 955 return false; 956 } 957 return true; 958 } 959 960 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 961 /// create and return an llvm GlobalVariable with the specified type. If there 962 /// is something in the module with the specified name, return it potentially 963 /// bitcasted to the right type. 964 /// 965 /// If D is non-null, it specifies a decl that correspond to this. This is used 966 /// to set the attributes on the global when it is first created. 967 llvm::Constant * 968 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 969 const llvm::PointerType *Ty, 970 const VarDecl *D) { 971 // Lookup the entry, lazily creating it if necessary. 972 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 973 if (Entry) { 974 if (WeakRefReferences.count(Entry)) { 975 if (D && !D->hasAttr<WeakAttr>()) 976 Entry->setLinkage(llvm::Function::ExternalLinkage); 977 978 WeakRefReferences.erase(Entry); 979 } 980 981 if (Entry->getType() == Ty) 982 return Entry; 983 984 // Make sure the result is of the correct type. 985 return llvm::ConstantExpr::getBitCast(Entry, Ty); 986 } 987 988 // This is the first use or definition of a mangled name. If there is a 989 // deferred decl with this name, remember that we need to emit it at the end 990 // of the file. 991 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 992 if (DDI != DeferredDecls.end()) { 993 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 994 // list, and remove it from DeferredDecls (since we don't need it anymore). 995 DeferredDeclsToEmit.push_back(DDI->second); 996 DeferredDecls.erase(DDI); 997 } 998 999 llvm::GlobalVariable *GV = 1000 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1001 llvm::GlobalValue::ExternalLinkage, 1002 0, MangledName, 0, 1003 false, Ty->getAddressSpace()); 1004 1005 // Handle things which are present even on external declarations. 1006 if (D) { 1007 // FIXME: This code is overly simple and should be merged with other global 1008 // handling. 1009 GV->setConstant(DeclIsConstantGlobal(Context, D)); 1010 1011 // FIXME: Merge with other attribute handling code. 1012 if (D->getStorageClass() == VarDecl::PrivateExtern) 1013 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1014 1015 if (D->hasAttr<WeakAttr>() || 1016 D->hasAttr<WeakImportAttr>()) 1017 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1018 1019 GV->setThreadLocal(D->isThreadSpecified()); 1020 } 1021 1022 return GV; 1023 } 1024 1025 1026 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1027 /// given global variable. If Ty is non-null and if the global doesn't exist, 1028 /// then it will be greated with the specified type instead of whatever the 1029 /// normal requested type would be. 1030 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1031 const llvm::Type *Ty) { 1032 assert(D->hasGlobalStorage() && "Not a global variable"); 1033 QualType ASTTy = D->getType(); 1034 if (Ty == 0) 1035 Ty = getTypes().ConvertTypeForMem(ASTTy); 1036 1037 const llvm::PointerType *PTy = 1038 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1039 1040 llvm::StringRef MangledName = getMangledName(D); 1041 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1042 } 1043 1044 /// CreateRuntimeVariable - Create a new runtime global variable with the 1045 /// specified type and name. 1046 llvm::Constant * 1047 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1048 llvm::StringRef Name) { 1049 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1050 } 1051 1052 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1053 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1054 1055 if (MayDeferGeneration(D)) { 1056 // If we have not seen a reference to this variable yet, place it 1057 // into the deferred declarations table to be emitted if needed 1058 // later. 1059 llvm::StringRef MangledName = getMangledName(D); 1060 if (!GetGlobalValue(MangledName)) { 1061 DeferredDecls[MangledName] = D; 1062 return; 1063 } 1064 } 1065 1066 // The tentative definition is the only definition. 1067 EmitGlobalVarDefinition(D); 1068 } 1069 1070 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1071 if (DefinitionRequired) 1072 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1073 } 1074 1075 llvm::GlobalVariable::LinkageTypes 1076 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1077 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1078 return llvm::GlobalVariable::InternalLinkage; 1079 1080 if (const CXXMethodDecl *KeyFunction 1081 = RD->getASTContext().getKeyFunction(RD)) { 1082 // If this class has a key function, use that to determine the linkage of 1083 // the vtable. 1084 const FunctionDecl *Def = 0; 1085 if (KeyFunction->getBody(Def)) 1086 KeyFunction = cast<CXXMethodDecl>(Def); 1087 1088 switch (KeyFunction->getTemplateSpecializationKind()) { 1089 case TSK_Undeclared: 1090 case TSK_ExplicitSpecialization: 1091 if (KeyFunction->isInlined()) 1092 return llvm::GlobalVariable::WeakODRLinkage; 1093 1094 return llvm::GlobalVariable::ExternalLinkage; 1095 1096 case TSK_ImplicitInstantiation: 1097 case TSK_ExplicitInstantiationDefinition: 1098 return llvm::GlobalVariable::WeakODRLinkage; 1099 1100 case TSK_ExplicitInstantiationDeclaration: 1101 // FIXME: Use available_externally linkage. However, this currently 1102 // breaks LLVM's build due to undefined symbols. 1103 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1104 return llvm::GlobalVariable::WeakODRLinkage; 1105 } 1106 } 1107 1108 switch (RD->getTemplateSpecializationKind()) { 1109 case TSK_Undeclared: 1110 case TSK_ExplicitSpecialization: 1111 case TSK_ImplicitInstantiation: 1112 case TSK_ExplicitInstantiationDefinition: 1113 return llvm::GlobalVariable::WeakODRLinkage; 1114 1115 case TSK_ExplicitInstantiationDeclaration: 1116 // FIXME: Use available_externally linkage. However, this currently 1117 // breaks LLVM's build due to undefined symbols. 1118 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1119 return llvm::GlobalVariable::WeakODRLinkage; 1120 } 1121 1122 // Silence GCC warning. 1123 return llvm::GlobalVariable::WeakODRLinkage; 1124 } 1125 1126 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1127 return CharUnits::fromQuantity( 1128 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1129 } 1130 1131 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1132 llvm::Constant *Init = 0; 1133 QualType ASTTy = D->getType(); 1134 bool NonConstInit = false; 1135 1136 const Expr *InitExpr = D->getAnyInitializer(); 1137 1138 if (!InitExpr) { 1139 // This is a tentative definition; tentative definitions are 1140 // implicitly initialized with { 0 }. 1141 // 1142 // Note that tentative definitions are only emitted at the end of 1143 // a translation unit, so they should never have incomplete 1144 // type. In addition, EmitTentativeDefinition makes sure that we 1145 // never attempt to emit a tentative definition if a real one 1146 // exists. A use may still exists, however, so we still may need 1147 // to do a RAUW. 1148 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1149 Init = EmitNullConstant(D->getType()); 1150 } else { 1151 Init = EmitConstantExpr(InitExpr, D->getType()); 1152 if (!Init) { 1153 QualType T = InitExpr->getType(); 1154 if (D->getType()->isReferenceType()) 1155 T = D->getType(); 1156 1157 if (getLangOptions().CPlusPlus) { 1158 EmitCXXGlobalVarDeclInitFunc(D); 1159 Init = EmitNullConstant(T); 1160 NonConstInit = true; 1161 } else { 1162 ErrorUnsupported(D, "static initializer"); 1163 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1164 } 1165 } 1166 } 1167 1168 const llvm::Type* InitType = Init->getType(); 1169 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1170 1171 // Strip off a bitcast if we got one back. 1172 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1173 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1174 // all zero index gep. 1175 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1176 Entry = CE->getOperand(0); 1177 } 1178 1179 // Entry is now either a Function or GlobalVariable. 1180 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1181 1182 // We have a definition after a declaration with the wrong type. 1183 // We must make a new GlobalVariable* and update everything that used OldGV 1184 // (a declaration or tentative definition) with the new GlobalVariable* 1185 // (which will be a definition). 1186 // 1187 // This happens if there is a prototype for a global (e.g. 1188 // "extern int x[];") and then a definition of a different type (e.g. 1189 // "int x[10];"). This also happens when an initializer has a different type 1190 // from the type of the global (this happens with unions). 1191 if (GV == 0 || 1192 GV->getType()->getElementType() != InitType || 1193 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1194 1195 // Move the old entry aside so that we'll create a new one. 1196 Entry->setName(llvm::StringRef()); 1197 1198 // Make a new global with the correct type, this is now guaranteed to work. 1199 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1200 1201 // Replace all uses of the old global with the new global 1202 llvm::Constant *NewPtrForOldDecl = 1203 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1204 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1205 1206 // Erase the old global, since it is no longer used. 1207 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1208 } 1209 1210 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1211 SourceManager &SM = Context.getSourceManager(); 1212 AddAnnotation(EmitAnnotateAttr(GV, AA, 1213 SM.getInstantiationLineNumber(D->getLocation()))); 1214 } 1215 1216 GV->setInitializer(Init); 1217 1218 // If it is safe to mark the global 'constant', do so now. 1219 GV->setConstant(false); 1220 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1221 GV->setConstant(true); 1222 1223 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1224 1225 // Set the llvm linkage type as appropriate. 1226 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1227 if (Linkage == GVA_Internal) 1228 GV->setLinkage(llvm::Function::InternalLinkage); 1229 else if (D->hasAttr<DLLImportAttr>()) 1230 GV->setLinkage(llvm::Function::DLLImportLinkage); 1231 else if (D->hasAttr<DLLExportAttr>()) 1232 GV->setLinkage(llvm::Function::DLLExportLinkage); 1233 else if (D->hasAttr<WeakAttr>()) { 1234 if (GV->isConstant()) 1235 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1236 else 1237 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1238 } else if (Linkage == GVA_TemplateInstantiation || 1239 Linkage == GVA_ExplicitTemplateInstantiation) 1240 // FIXME: It seems like we can provide more specific linkage here 1241 // (LinkOnceODR, WeakODR). 1242 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1243 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1244 !D->hasExternalStorage() && !D->getInit() && 1245 !D->getAttr<SectionAttr>()) { 1246 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1247 // common vars aren't constant even if declared const. 1248 GV->setConstant(false); 1249 } else 1250 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1251 1252 SetCommonAttributes(D, GV); 1253 1254 // Emit global variable debug information. 1255 if (CGDebugInfo *DI = getDebugInfo()) { 1256 DI->setLocation(D->getLocation()); 1257 DI->EmitGlobalVariable(GV, D); 1258 } 1259 } 1260 1261 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1262 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1263 /// existing call uses of the old function in the module, this adjusts them to 1264 /// call the new function directly. 1265 /// 1266 /// This is not just a cleanup: the always_inline pass requires direct calls to 1267 /// functions to be able to inline them. If there is a bitcast in the way, it 1268 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1269 /// run at -O0. 1270 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1271 llvm::Function *NewFn) { 1272 // If we're redefining a global as a function, don't transform it. 1273 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1274 if (OldFn == 0) return; 1275 1276 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1277 llvm::SmallVector<llvm::Value*, 4> ArgList; 1278 1279 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1280 UI != E; ) { 1281 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1282 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1283 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1284 llvm::CallSite CS(CI); 1285 if (!CI || !CS.isCallee(I)) continue; 1286 1287 // If the return types don't match exactly, and if the call isn't dead, then 1288 // we can't transform this call. 1289 if (CI->getType() != NewRetTy && !CI->use_empty()) 1290 continue; 1291 1292 // If the function was passed too few arguments, don't transform. If extra 1293 // arguments were passed, we silently drop them. If any of the types 1294 // mismatch, we don't transform. 1295 unsigned ArgNo = 0; 1296 bool DontTransform = false; 1297 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1298 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1299 if (CS.arg_size() == ArgNo || 1300 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1301 DontTransform = true; 1302 break; 1303 } 1304 } 1305 if (DontTransform) 1306 continue; 1307 1308 // Okay, we can transform this. Create the new call instruction and copy 1309 // over the required information. 1310 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1311 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1312 ArgList.end(), "", CI); 1313 ArgList.clear(); 1314 if (!NewCall->getType()->isVoidTy()) 1315 NewCall->takeName(CI); 1316 NewCall->setAttributes(CI->getAttributes()); 1317 NewCall->setCallingConv(CI->getCallingConv()); 1318 1319 // Finally, remove the old call, replacing any uses with the new one. 1320 if (!CI->use_empty()) 1321 CI->replaceAllUsesWith(NewCall); 1322 1323 // Copy debug location attached to CI. 1324 if (!CI->getDebugLoc().isUnknown()) 1325 NewCall->setDebugLoc(CI->getDebugLoc()); 1326 CI->eraseFromParent(); 1327 } 1328 } 1329 1330 1331 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1332 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1333 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1334 getMangleContext().mangleInitDiscriminator(); 1335 // Get or create the prototype for the function. 1336 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1337 1338 // Strip off a bitcast if we got one back. 1339 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1340 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1341 Entry = CE->getOperand(0); 1342 } 1343 1344 1345 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1346 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1347 1348 // If the types mismatch then we have to rewrite the definition. 1349 assert(OldFn->isDeclaration() && 1350 "Shouldn't replace non-declaration"); 1351 1352 // F is the Function* for the one with the wrong type, we must make a new 1353 // Function* and update everything that used F (a declaration) with the new 1354 // Function* (which will be a definition). 1355 // 1356 // This happens if there is a prototype for a function 1357 // (e.g. "int f()") and then a definition of a different type 1358 // (e.g. "int f(int x)"). Move the old function aside so that it 1359 // doesn't interfere with GetAddrOfFunction. 1360 OldFn->setName(llvm::StringRef()); 1361 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1362 1363 // If this is an implementation of a function without a prototype, try to 1364 // replace any existing uses of the function (which may be calls) with uses 1365 // of the new function 1366 if (D->getType()->isFunctionNoProtoType()) { 1367 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1368 OldFn->removeDeadConstantUsers(); 1369 } 1370 1371 // Replace uses of F with the Function we will endow with a body. 1372 if (!Entry->use_empty()) { 1373 llvm::Constant *NewPtrForOldDecl = 1374 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1375 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1376 } 1377 1378 // Ok, delete the old function now, which is dead. 1379 OldFn->eraseFromParent(); 1380 1381 Entry = NewFn; 1382 } 1383 1384 llvm::Function *Fn = cast<llvm::Function>(Entry); 1385 setFunctionLinkage(D, Fn); 1386 1387 CodeGenFunction(*this).GenerateCode(D, Fn); 1388 1389 SetFunctionDefinitionAttributes(D, Fn); 1390 SetLLVMFunctionAttributesForDefinition(D, Fn); 1391 1392 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1393 AddGlobalCtor(Fn, CA->getPriority()); 1394 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1395 AddGlobalDtor(Fn, DA->getPriority()); 1396 } 1397 1398 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1399 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1400 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1401 assert(AA && "Not an alias?"); 1402 1403 llvm::StringRef MangledName = getMangledName(GD); 1404 1405 // If there is a definition in the module, then it wins over the alias. 1406 // This is dubious, but allow it to be safe. Just ignore the alias. 1407 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1408 if (Entry && !Entry->isDeclaration()) 1409 return; 1410 1411 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1412 1413 // Create a reference to the named value. This ensures that it is emitted 1414 // if a deferred decl. 1415 llvm::Constant *Aliasee; 1416 if (isa<llvm::FunctionType>(DeclTy)) 1417 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1418 else 1419 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1420 llvm::PointerType::getUnqual(DeclTy), 0); 1421 1422 // Create the new alias itself, but don't set a name yet. 1423 llvm::GlobalValue *GA = 1424 new llvm::GlobalAlias(Aliasee->getType(), 1425 llvm::Function::ExternalLinkage, 1426 "", Aliasee, &getModule()); 1427 1428 if (Entry) { 1429 assert(Entry->isDeclaration()); 1430 1431 // If there is a declaration in the module, then we had an extern followed 1432 // by the alias, as in: 1433 // extern int test6(); 1434 // ... 1435 // int test6() __attribute__((alias("test7"))); 1436 // 1437 // Remove it and replace uses of it with the alias. 1438 GA->takeName(Entry); 1439 1440 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1441 Entry->getType())); 1442 Entry->eraseFromParent(); 1443 } else { 1444 GA->setName(MangledName); 1445 } 1446 1447 // Set attributes which are particular to an alias; this is a 1448 // specialization of the attributes which may be set on a global 1449 // variable/function. 1450 if (D->hasAttr<DLLExportAttr>()) { 1451 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1452 // The dllexport attribute is ignored for undefined symbols. 1453 if (FD->getBody()) 1454 GA->setLinkage(llvm::Function::DLLExportLinkage); 1455 } else { 1456 GA->setLinkage(llvm::Function::DLLExportLinkage); 1457 } 1458 } else if (D->hasAttr<WeakAttr>() || 1459 D->hasAttr<WeakRefAttr>() || 1460 D->hasAttr<WeakImportAttr>()) { 1461 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1462 } 1463 1464 SetCommonAttributes(D, GA); 1465 } 1466 1467 /// getBuiltinLibFunction - Given a builtin id for a function like 1468 /// "__builtin_fabsf", return a Function* for "fabsf". 1469 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1470 unsigned BuiltinID) { 1471 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1472 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1473 "isn't a lib fn"); 1474 1475 // Get the name, skip over the __builtin_ prefix (if necessary). 1476 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1477 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1478 Name += 10; 1479 1480 const llvm::FunctionType *Ty = 1481 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1482 1483 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1484 } 1485 1486 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1487 unsigned NumTys) { 1488 return llvm::Intrinsic::getDeclaration(&getModule(), 1489 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1490 } 1491 1492 1493 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1494 const llvm::Type *SrcType, 1495 const llvm::Type *SizeType) { 1496 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1497 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1498 } 1499 1500 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1501 const llvm::Type *SrcType, 1502 const llvm::Type *SizeType) { 1503 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1504 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1505 } 1506 1507 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1508 const llvm::Type *SizeType) { 1509 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1510 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1511 } 1512 1513 static llvm::StringMapEntry<llvm::Constant*> & 1514 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1515 const StringLiteral *Literal, 1516 bool TargetIsLSB, 1517 bool &IsUTF16, 1518 unsigned &StringLength) { 1519 unsigned NumBytes = Literal->getByteLength(); 1520 1521 // Check for simple case. 1522 if (!Literal->containsNonAsciiOrNull()) { 1523 StringLength = NumBytes; 1524 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1525 StringLength)); 1526 } 1527 1528 // Otherwise, convert the UTF8 literals into a byte string. 1529 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1530 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1531 UTF16 *ToPtr = &ToBuf[0]; 1532 1533 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1534 &ToPtr, ToPtr + NumBytes, 1535 strictConversion); 1536 1537 // Check for conversion failure. 1538 if (Result != conversionOK) { 1539 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1540 // this duplicate code. 1541 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1542 StringLength = NumBytes; 1543 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1544 StringLength)); 1545 } 1546 1547 // ConvertUTF8toUTF16 returns the length in ToPtr. 1548 StringLength = ToPtr - &ToBuf[0]; 1549 1550 // Render the UTF-16 string into a byte array and convert to the target byte 1551 // order. 1552 // 1553 // FIXME: This isn't something we should need to do here. 1554 llvm::SmallString<128> AsBytes; 1555 AsBytes.reserve(StringLength * 2); 1556 for (unsigned i = 0; i != StringLength; ++i) { 1557 unsigned short Val = ToBuf[i]; 1558 if (TargetIsLSB) { 1559 AsBytes.push_back(Val & 0xFF); 1560 AsBytes.push_back(Val >> 8); 1561 } else { 1562 AsBytes.push_back(Val >> 8); 1563 AsBytes.push_back(Val & 0xFF); 1564 } 1565 } 1566 // Append one extra null character, the second is automatically added by our 1567 // caller. 1568 AsBytes.push_back(0); 1569 1570 IsUTF16 = true; 1571 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1572 } 1573 1574 llvm::Constant * 1575 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1576 unsigned StringLength = 0; 1577 bool isUTF16 = false; 1578 llvm::StringMapEntry<llvm::Constant*> &Entry = 1579 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1580 getTargetData().isLittleEndian(), 1581 isUTF16, StringLength); 1582 1583 if (llvm::Constant *C = Entry.getValue()) 1584 return C; 1585 1586 llvm::Constant *Zero = 1587 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1588 llvm::Constant *Zeros[] = { Zero, Zero }; 1589 1590 // If we don't already have it, get __CFConstantStringClassReference. 1591 if (!CFConstantStringClassRef) { 1592 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1593 Ty = llvm::ArrayType::get(Ty, 0); 1594 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1595 "__CFConstantStringClassReference"); 1596 // Decay array -> ptr 1597 CFConstantStringClassRef = 1598 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1599 } 1600 1601 QualType CFTy = getContext().getCFConstantStringType(); 1602 1603 const llvm::StructType *STy = 1604 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1605 1606 std::vector<llvm::Constant*> Fields(4); 1607 1608 // Class pointer. 1609 Fields[0] = CFConstantStringClassRef; 1610 1611 // Flags. 1612 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1613 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1614 llvm::ConstantInt::get(Ty, 0x07C8); 1615 1616 // String pointer. 1617 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1618 1619 llvm::GlobalValue::LinkageTypes Linkage; 1620 bool isConstant; 1621 if (isUTF16) { 1622 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1623 Linkage = llvm::GlobalValue::InternalLinkage; 1624 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1625 // does make plain ascii ones writable. 1626 isConstant = true; 1627 } else { 1628 Linkage = llvm::GlobalValue::PrivateLinkage; 1629 isConstant = !Features.WritableStrings; 1630 } 1631 1632 llvm::GlobalVariable *GV = 1633 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1634 ".str"); 1635 if (isUTF16) { 1636 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1637 GV->setAlignment(Align.getQuantity()); 1638 } 1639 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1640 1641 // String length. 1642 Ty = getTypes().ConvertType(getContext().LongTy); 1643 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1644 1645 // The struct. 1646 C = llvm::ConstantStruct::get(STy, Fields); 1647 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1648 llvm::GlobalVariable::PrivateLinkage, C, 1649 "_unnamed_cfstring_"); 1650 if (const char *Sect = getContext().Target.getCFStringSection()) 1651 GV->setSection(Sect); 1652 Entry.setValue(GV); 1653 1654 return GV; 1655 } 1656 1657 llvm::Constant * 1658 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1659 unsigned StringLength = 0; 1660 bool isUTF16 = false; 1661 llvm::StringMapEntry<llvm::Constant*> &Entry = 1662 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1663 getTargetData().isLittleEndian(), 1664 isUTF16, StringLength); 1665 1666 if (llvm::Constant *C = Entry.getValue()) 1667 return C; 1668 1669 llvm::Constant *Zero = 1670 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1671 llvm::Constant *Zeros[] = { Zero, Zero }; 1672 1673 // If we don't already have it, get _NSConstantStringClassReference. 1674 if (!NSConstantStringClassRef) { 1675 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1676 Ty = llvm::ArrayType::get(Ty, 0); 1677 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1678 Features.ObjCNonFragileABI ? 1679 "OBJC_CLASS_$_NSConstantString" : 1680 "_NSConstantStringClassReference"); 1681 // Decay array -> ptr 1682 NSConstantStringClassRef = 1683 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1684 } 1685 1686 QualType NSTy = getContext().getNSConstantStringType(); 1687 1688 const llvm::StructType *STy = 1689 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1690 1691 std::vector<llvm::Constant*> Fields(3); 1692 1693 // Class pointer. 1694 Fields[0] = NSConstantStringClassRef; 1695 1696 // String pointer. 1697 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1698 1699 llvm::GlobalValue::LinkageTypes Linkage; 1700 bool isConstant; 1701 if (isUTF16) { 1702 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1703 Linkage = llvm::GlobalValue::InternalLinkage; 1704 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1705 // does make plain ascii ones writable. 1706 isConstant = true; 1707 } else { 1708 Linkage = llvm::GlobalValue::PrivateLinkage; 1709 isConstant = !Features.WritableStrings; 1710 } 1711 1712 llvm::GlobalVariable *GV = 1713 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1714 ".str"); 1715 if (isUTF16) { 1716 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1717 GV->setAlignment(Align.getQuantity()); 1718 } 1719 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1720 1721 // String length. 1722 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1723 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1724 1725 // The struct. 1726 C = llvm::ConstantStruct::get(STy, Fields); 1727 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1728 llvm::GlobalVariable::PrivateLinkage, C, 1729 "_unnamed_nsstring_"); 1730 // FIXME. Fix section. 1731 if (const char *Sect = 1732 Features.ObjCNonFragileABI 1733 ? getContext().Target.getNSStringNonFragileABISection() 1734 : getContext().Target.getNSStringSection()) 1735 GV->setSection(Sect); 1736 Entry.setValue(GV); 1737 1738 return GV; 1739 } 1740 1741 /// GetStringForStringLiteral - Return the appropriate bytes for a 1742 /// string literal, properly padded to match the literal type. 1743 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1744 const char *StrData = E->getStrData(); 1745 unsigned Len = E->getByteLength(); 1746 1747 const ConstantArrayType *CAT = 1748 getContext().getAsConstantArrayType(E->getType()); 1749 assert(CAT && "String isn't pointer or array!"); 1750 1751 // Resize the string to the right size. 1752 std::string Str(StrData, StrData+Len); 1753 uint64_t RealLen = CAT->getSize().getZExtValue(); 1754 1755 if (E->isWide()) 1756 RealLen *= getContext().Target.getWCharWidth()/8; 1757 1758 Str.resize(RealLen, '\0'); 1759 1760 return Str; 1761 } 1762 1763 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1764 /// constant array for the given string literal. 1765 llvm::Constant * 1766 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1767 // FIXME: This can be more efficient. 1768 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1769 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1770 if (S->isWide()) { 1771 llvm::Type *DestTy = 1772 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1773 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1774 } 1775 return C; 1776 } 1777 1778 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1779 /// array for the given ObjCEncodeExpr node. 1780 llvm::Constant * 1781 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1782 std::string Str; 1783 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1784 1785 return GetAddrOfConstantCString(Str); 1786 } 1787 1788 1789 /// GenerateWritableString -- Creates storage for a string literal. 1790 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1791 bool constant, 1792 CodeGenModule &CGM, 1793 const char *GlobalName) { 1794 // Create Constant for this string literal. Don't add a '\0'. 1795 llvm::Constant *C = 1796 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1797 1798 // Create a global variable for this string 1799 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1800 llvm::GlobalValue::PrivateLinkage, 1801 C, GlobalName); 1802 } 1803 1804 /// GetAddrOfConstantString - Returns a pointer to a character array 1805 /// containing the literal. This contents are exactly that of the 1806 /// given string, i.e. it will not be null terminated automatically; 1807 /// see GetAddrOfConstantCString. Note that whether the result is 1808 /// actually a pointer to an LLVM constant depends on 1809 /// Feature.WriteableStrings. 1810 /// 1811 /// The result has pointer to array type. 1812 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1813 const char *GlobalName) { 1814 bool IsConstant = !Features.WritableStrings; 1815 1816 // Get the default prefix if a name wasn't specified. 1817 if (!GlobalName) 1818 GlobalName = ".str"; 1819 1820 // Don't share any string literals if strings aren't constant. 1821 if (!IsConstant) 1822 return GenerateStringLiteral(str, false, *this, GlobalName); 1823 1824 llvm::StringMapEntry<llvm::Constant *> &Entry = 1825 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1826 1827 if (Entry.getValue()) 1828 return Entry.getValue(); 1829 1830 // Create a global variable for this. 1831 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1832 Entry.setValue(C); 1833 return C; 1834 } 1835 1836 /// GetAddrOfConstantCString - Returns a pointer to a character 1837 /// array containing the literal and a terminating '\-' 1838 /// character. The result has pointer to array type. 1839 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1840 const char *GlobalName){ 1841 return GetAddrOfConstantString(str + '\0', GlobalName); 1842 } 1843 1844 /// EmitObjCPropertyImplementations - Emit information for synthesized 1845 /// properties for an implementation. 1846 void CodeGenModule::EmitObjCPropertyImplementations(const 1847 ObjCImplementationDecl *D) { 1848 for (ObjCImplementationDecl::propimpl_iterator 1849 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1850 ObjCPropertyImplDecl *PID = *i; 1851 1852 // Dynamic is just for type-checking. 1853 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1854 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1855 1856 // Determine which methods need to be implemented, some may have 1857 // been overridden. Note that ::isSynthesized is not the method 1858 // we want, that just indicates if the decl came from a 1859 // property. What we want to know is if the method is defined in 1860 // this implementation. 1861 if (!D->getInstanceMethod(PD->getGetterName())) 1862 CodeGenFunction(*this).GenerateObjCGetter( 1863 const_cast<ObjCImplementationDecl *>(D), PID); 1864 if (!PD->isReadOnly() && 1865 !D->getInstanceMethod(PD->getSetterName())) 1866 CodeGenFunction(*this).GenerateObjCSetter( 1867 const_cast<ObjCImplementationDecl *>(D), PID); 1868 } 1869 } 1870 } 1871 1872 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1873 /// for an implementation. 1874 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1875 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1876 return; 1877 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1878 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1879 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1880 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1881 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1882 D->getLocation(), 1883 D->getLocation(), cxxSelector, 1884 getContext().VoidTy, 0, 1885 DC, true, false, true, 1886 ObjCMethodDecl::Required); 1887 D->addInstanceMethod(DTORMethod); 1888 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1889 1890 II = &getContext().Idents.get(".cxx_construct"); 1891 cxxSelector = getContext().Selectors.getSelector(0, &II); 1892 // The constructor returns 'self'. 1893 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1894 D->getLocation(), 1895 D->getLocation(), cxxSelector, 1896 getContext().getObjCIdType(), 0, 1897 DC, true, false, true, 1898 ObjCMethodDecl::Required); 1899 D->addInstanceMethod(CTORMethod); 1900 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1901 1902 1903 } 1904 1905 /// EmitNamespace - Emit all declarations in a namespace. 1906 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1907 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1908 I != E; ++I) 1909 EmitTopLevelDecl(*I); 1910 } 1911 1912 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1913 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1914 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1915 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1916 ErrorUnsupported(LSD, "linkage spec"); 1917 return; 1918 } 1919 1920 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1921 I != E; ++I) 1922 EmitTopLevelDecl(*I); 1923 } 1924 1925 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1926 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1927 // If an error has occurred, stop code generation, but continue 1928 // parsing and semantic analysis (to ensure all warnings and errors 1929 // are emitted). 1930 if (Diags.hasErrorOccurred()) 1931 return; 1932 1933 // Ignore dependent declarations. 1934 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1935 return; 1936 1937 switch (D->getKind()) { 1938 case Decl::CXXConversion: 1939 case Decl::CXXMethod: 1940 case Decl::Function: 1941 // Skip function templates 1942 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1943 return; 1944 1945 EmitGlobal(cast<FunctionDecl>(D)); 1946 break; 1947 1948 case Decl::Var: 1949 EmitGlobal(cast<VarDecl>(D)); 1950 break; 1951 1952 // C++ Decls 1953 case Decl::Namespace: 1954 EmitNamespace(cast<NamespaceDecl>(D)); 1955 break; 1956 // No code generation needed. 1957 case Decl::UsingShadow: 1958 case Decl::Using: 1959 case Decl::UsingDirective: 1960 case Decl::ClassTemplate: 1961 case Decl::FunctionTemplate: 1962 case Decl::NamespaceAlias: 1963 break; 1964 case Decl::CXXConstructor: 1965 // Skip function templates 1966 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1967 return; 1968 1969 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1970 break; 1971 case Decl::CXXDestructor: 1972 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1973 break; 1974 1975 case Decl::StaticAssert: 1976 // Nothing to do. 1977 break; 1978 1979 // Objective-C Decls 1980 1981 // Forward declarations, no (immediate) code generation. 1982 case Decl::ObjCClass: 1983 case Decl::ObjCForwardProtocol: 1984 case Decl::ObjCCategory: 1985 case Decl::ObjCInterface: 1986 break; 1987 1988 case Decl::ObjCProtocol: 1989 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1990 break; 1991 1992 case Decl::ObjCCategoryImpl: 1993 // Categories have properties but don't support synthesize so we 1994 // can ignore them here. 1995 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1996 break; 1997 1998 case Decl::ObjCImplementation: { 1999 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2000 EmitObjCPropertyImplementations(OMD); 2001 EmitObjCIvarInitializations(OMD); 2002 Runtime->GenerateClass(OMD); 2003 break; 2004 } 2005 case Decl::ObjCMethod: { 2006 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2007 // If this is not a prototype, emit the body. 2008 if (OMD->getBody()) 2009 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2010 break; 2011 } 2012 case Decl::ObjCCompatibleAlias: 2013 // compatibility-alias is a directive and has no code gen. 2014 break; 2015 2016 case Decl::LinkageSpec: 2017 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2018 break; 2019 2020 case Decl::FileScopeAsm: { 2021 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2022 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2023 2024 const std::string &S = getModule().getModuleInlineAsm(); 2025 if (S.empty()) 2026 getModule().setModuleInlineAsm(AsmString); 2027 else 2028 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2029 break; 2030 } 2031 2032 default: 2033 // Make sure we handled everything we should, every other kind is a 2034 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2035 // function. Need to recode Decl::Kind to do that easily. 2036 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2037 } 2038 } 2039