xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 5c3bde96250c5260773009e691f92cb4823372df)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeGPU.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/StringSwitch.h"
51 #include "llvm/ADT/Triple.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
54 #include "llvm/IR/CallingConv.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ProfileSummary.h"
60 #include "llvm/ProfileData/InstrProfReader.h"
61 #include "llvm/Support/CodeGen.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ConvertUTF.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/MD5.h"
66 #include "llvm/Support/TimeProfiler.h"
67 #include "llvm/Support/X86TargetParser.h"
68 
69 using namespace clang;
70 using namespace CodeGen;
71 
72 static llvm::cl::opt<bool> LimitedCoverage(
73     "limited-coverage-experimental", llvm::cl::Hidden,
74     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
75 
76 static const char AnnotationSection[] = "llvm.metadata";
77 
78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
79   switch (CGM.getContext().getCXXABIKind()) {
80   case TargetCXXABI::AppleARM64:
81   case TargetCXXABI::Fuchsia:
82   case TargetCXXABI::GenericAArch64:
83   case TargetCXXABI::GenericARM:
84   case TargetCXXABI::iOS:
85   case TargetCXXABI::WatchOS:
86   case TargetCXXABI::GenericMIPS:
87   case TargetCXXABI::GenericItanium:
88   case TargetCXXABI::WebAssembly:
89   case TargetCXXABI::XL:
90     return CreateItaniumCXXABI(CGM);
91   case TargetCXXABI::Microsoft:
92     return CreateMicrosoftCXXABI(CGM);
93   }
94 
95   llvm_unreachable("invalid C++ ABI kind");
96 }
97 
98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
99                              const PreprocessorOptions &PPO,
100                              const CodeGenOptions &CGO, llvm::Module &M,
101                              DiagnosticsEngine &diags,
102                              CoverageSourceInfo *CoverageInfo)
103     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
104       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
105       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
106       VMContext(M.getContext()), Types(*this), VTables(*this),
107       SanitizerMD(new SanitizerMetadata(*this)) {
108 
109   // Initialize the type cache.
110   llvm::LLVMContext &LLVMContext = M.getContext();
111   VoidTy = llvm::Type::getVoidTy(LLVMContext);
112   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
113   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
114   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
115   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
116   HalfTy = llvm::Type::getHalfTy(LLVMContext);
117   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
118   FloatTy = llvm::Type::getFloatTy(LLVMContext);
119   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
120   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
121   PointerAlignInBytes =
122     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
123   SizeSizeInBytes =
124     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
125   IntAlignInBytes =
126     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
127   CharTy =
128     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
129   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
130   IntPtrTy = llvm::IntegerType::get(LLVMContext,
131     C.getTargetInfo().getMaxPointerWidth());
132   Int8PtrTy = Int8Ty->getPointerTo(0);
133   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
134   const llvm::DataLayout &DL = M.getDataLayout();
135   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
136   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
137   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
138 
139   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
140 
141   if (LangOpts.ObjC)
142     createObjCRuntime();
143   if (LangOpts.OpenCL)
144     createOpenCLRuntime();
145   if (LangOpts.OpenMP)
146     createOpenMPRuntime();
147   if (LangOpts.CUDA)
148     createCUDARuntime();
149   if (LangOpts.HLSL)
150     createHLSLRuntime();
151 
152   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
153   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
154       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
155     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
156                                getCXXABI().getMangleContext()));
157 
158   // If debug info or coverage generation is enabled, create the CGDebugInfo
159   // object.
160   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
161       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
162     DebugInfo.reset(new CGDebugInfo(*this));
163 
164   Block.GlobalUniqueCount = 0;
165 
166   if (C.getLangOpts().ObjC)
167     ObjCData.reset(new ObjCEntrypoints());
168 
169   if (CodeGenOpts.hasProfileClangUse()) {
170     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
171         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
172     if (auto E = ReaderOrErr.takeError()) {
173       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
174                                               "Could not read profile %0: %1");
175       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
176         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
177                                   << EI.message();
178       });
179     } else
180       PGOReader = std::move(ReaderOrErr.get());
181   }
182 
183   // If coverage mapping generation is enabled, create the
184   // CoverageMappingModuleGen object.
185   if (CodeGenOpts.CoverageMapping)
186     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
187 
188   // Generate the module name hash here if needed.
189   if (CodeGenOpts.UniqueInternalLinkageNames &&
190       !getModule().getSourceFileName().empty()) {
191     std::string Path = getModule().getSourceFileName();
192     // Check if a path substitution is needed from the MacroPrefixMap.
193     for (const auto &Entry : LangOpts.MacroPrefixMap)
194       if (Path.rfind(Entry.first, 0) != std::string::npos) {
195         Path = Entry.second + Path.substr(Entry.first.size());
196         break;
197       }
198     llvm::MD5 Md5;
199     Md5.update(Path);
200     llvm::MD5::MD5Result R;
201     Md5.final(R);
202     SmallString<32> Str;
203     llvm::MD5::stringifyResult(R, Str);
204     // Convert MD5hash to Decimal. Demangler suffixes can either contain
205     // numbers or characters but not both.
206     llvm::APInt IntHash(128, Str.str(), 16);
207     // Prepend "__uniq" before the hash for tools like profilers to understand
208     // that this symbol is of internal linkage type.  The "__uniq" is the
209     // pre-determined prefix that is used to tell tools that this symbol was
210     // created with -funique-internal-linakge-symbols and the tools can strip or
211     // keep the prefix as needed.
212     ModuleNameHash = (Twine(".__uniq.") +
213         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
214   }
215 }
216 
217 CodeGenModule::~CodeGenModule() {}
218 
219 void CodeGenModule::createObjCRuntime() {
220   // This is just isGNUFamily(), but we want to force implementors of
221   // new ABIs to decide how best to do this.
222   switch (LangOpts.ObjCRuntime.getKind()) {
223   case ObjCRuntime::GNUstep:
224   case ObjCRuntime::GCC:
225   case ObjCRuntime::ObjFW:
226     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
227     return;
228 
229   case ObjCRuntime::FragileMacOSX:
230   case ObjCRuntime::MacOSX:
231   case ObjCRuntime::iOS:
232   case ObjCRuntime::WatchOS:
233     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
234     return;
235   }
236   llvm_unreachable("bad runtime kind");
237 }
238 
239 void CodeGenModule::createOpenCLRuntime() {
240   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
241 }
242 
243 void CodeGenModule::createOpenMPRuntime() {
244   // Select a specialized code generation class based on the target, if any.
245   // If it does not exist use the default implementation.
246   switch (getTriple().getArch()) {
247   case llvm::Triple::nvptx:
248   case llvm::Triple::nvptx64:
249   case llvm::Triple::amdgcn:
250     assert(getLangOpts().OpenMPIsDevice &&
251            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
252     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
253     break;
254   default:
255     if (LangOpts.OpenMPSimd)
256       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
257     else
258       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
259     break;
260   }
261 }
262 
263 void CodeGenModule::createCUDARuntime() {
264   CUDARuntime.reset(CreateNVCUDARuntime(*this));
265 }
266 
267 void CodeGenModule::createHLSLRuntime() {
268   HLSLRuntime.reset(new CGHLSLRuntime(*this));
269 }
270 
271 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
272   Replacements[Name] = C;
273 }
274 
275 void CodeGenModule::applyReplacements() {
276   for (auto &I : Replacements) {
277     StringRef MangledName = I.first();
278     llvm::Constant *Replacement = I.second;
279     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
280     if (!Entry)
281       continue;
282     auto *OldF = cast<llvm::Function>(Entry);
283     auto *NewF = dyn_cast<llvm::Function>(Replacement);
284     if (!NewF) {
285       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
286         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
287       } else {
288         auto *CE = cast<llvm::ConstantExpr>(Replacement);
289         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
290                CE->getOpcode() == llvm::Instruction::GetElementPtr);
291         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
292       }
293     }
294 
295     // Replace old with new, but keep the old order.
296     OldF->replaceAllUsesWith(Replacement);
297     if (NewF) {
298       NewF->removeFromParent();
299       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
300                                                        NewF);
301     }
302     OldF->eraseFromParent();
303   }
304 }
305 
306 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
307   GlobalValReplacements.push_back(std::make_pair(GV, C));
308 }
309 
310 void CodeGenModule::applyGlobalValReplacements() {
311   for (auto &I : GlobalValReplacements) {
312     llvm::GlobalValue *GV = I.first;
313     llvm::Constant *C = I.second;
314 
315     GV->replaceAllUsesWith(C);
316     GV->eraseFromParent();
317   }
318 }
319 
320 // This is only used in aliases that we created and we know they have a
321 // linear structure.
322 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
323   const llvm::Constant *C;
324   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
325     C = GA->getAliasee();
326   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
327     C = GI->getResolver();
328   else
329     return GV;
330 
331   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
332   if (!AliaseeGV)
333     return nullptr;
334 
335   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
336   if (FinalGV == GV)
337     return nullptr;
338 
339   return FinalGV;
340 }
341 
342 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
343                                SourceLocation Location, bool IsIFunc,
344                                const llvm::GlobalValue *Alias,
345                                const llvm::GlobalValue *&GV) {
346   GV = getAliasedGlobal(Alias);
347   if (!GV) {
348     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
349     return false;
350   }
351 
352   if (GV->isDeclaration()) {
353     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
354     return false;
355   }
356 
357   if (IsIFunc) {
358     // Check resolver function type.
359     const auto *F = dyn_cast<llvm::Function>(GV);
360     if (!F) {
361       Diags.Report(Location, diag::err_alias_to_undefined)
362           << IsIFunc << IsIFunc;
363       return false;
364     }
365 
366     llvm::FunctionType *FTy = F->getFunctionType();
367     if (!FTy->getReturnType()->isPointerTy()) {
368       Diags.Report(Location, diag::err_ifunc_resolver_return);
369       return false;
370     }
371   }
372 
373   return true;
374 }
375 
376 void CodeGenModule::checkAliases() {
377   // Check if the constructed aliases are well formed. It is really unfortunate
378   // that we have to do this in CodeGen, but we only construct mangled names
379   // and aliases during codegen.
380   bool Error = false;
381   DiagnosticsEngine &Diags = getDiags();
382   for (const GlobalDecl &GD : Aliases) {
383     const auto *D = cast<ValueDecl>(GD.getDecl());
384     SourceLocation Location;
385     bool IsIFunc = D->hasAttr<IFuncAttr>();
386     if (const Attr *A = D->getDefiningAttr())
387       Location = A->getLocation();
388     else
389       llvm_unreachable("Not an alias or ifunc?");
390 
391     StringRef MangledName = getMangledName(GD);
392     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
393     const llvm::GlobalValue *GV = nullptr;
394     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
395       Error = true;
396       continue;
397     }
398 
399     llvm::Constant *Aliasee =
400         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
401                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
402 
403     llvm::GlobalValue *AliaseeGV;
404     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
405       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
406     else
407       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
408 
409     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
410       StringRef AliasSection = SA->getName();
411       if (AliasSection != AliaseeGV->getSection())
412         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
413             << AliasSection << IsIFunc << IsIFunc;
414     }
415 
416     // We have to handle alias to weak aliases in here. LLVM itself disallows
417     // this since the object semantics would not match the IL one. For
418     // compatibility with gcc we implement it by just pointing the alias
419     // to its aliasee's aliasee. We also warn, since the user is probably
420     // expecting the link to be weak.
421     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
422       if (GA->isInterposable()) {
423         Diags.Report(Location, diag::warn_alias_to_weak_alias)
424             << GV->getName() << GA->getName() << IsIFunc;
425         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
426             GA->getAliasee(), Alias->getType());
427 
428         if (IsIFunc)
429           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
430         else
431           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
432       }
433     }
434   }
435   if (!Error)
436     return;
437 
438   for (const GlobalDecl &GD : Aliases) {
439     StringRef MangledName = getMangledName(GD);
440     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
441     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
442     Alias->eraseFromParent();
443   }
444 }
445 
446 void CodeGenModule::clear() {
447   DeferredDeclsToEmit.clear();
448   if (OpenMPRuntime)
449     OpenMPRuntime->clear();
450 }
451 
452 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
453                                        StringRef MainFile) {
454   if (!hasDiagnostics())
455     return;
456   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
457     if (MainFile.empty())
458       MainFile = "<stdin>";
459     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
460   } else {
461     if (Mismatched > 0)
462       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
463 
464     if (Missing > 0)
465       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
466   }
467 }
468 
469 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
470                                              llvm::Module &M) {
471   if (!LO.VisibilityFromDLLStorageClass)
472     return;
473 
474   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
475       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
476   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
477       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
478   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
479       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
480   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
481       CodeGenModule::GetLLVMVisibility(
482           LO.getExternDeclNoDLLStorageClassVisibility());
483 
484   for (llvm::GlobalValue &GV : M.global_values()) {
485     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
486       continue;
487 
488     // Reset DSO locality before setting the visibility. This removes
489     // any effects that visibility options and annotations may have
490     // had on the DSO locality. Setting the visibility will implicitly set
491     // appropriate globals to DSO Local; however, this will be pessimistic
492     // w.r.t. to the normal compiler IRGen.
493     GV.setDSOLocal(false);
494 
495     if (GV.isDeclarationForLinker()) {
496       GV.setVisibility(GV.getDLLStorageClass() ==
497                                llvm::GlobalValue::DLLImportStorageClass
498                            ? ExternDeclDLLImportVisibility
499                            : ExternDeclNoDLLStorageClassVisibility);
500     } else {
501       GV.setVisibility(GV.getDLLStorageClass() ==
502                                llvm::GlobalValue::DLLExportStorageClass
503                            ? DLLExportVisibility
504                            : NoDLLStorageClassVisibility);
505     }
506 
507     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
508   }
509 }
510 
511 void CodeGenModule::Release() {
512   EmitDeferred();
513   EmitVTablesOpportunistically();
514   applyGlobalValReplacements();
515   applyReplacements();
516   emitMultiVersionFunctions();
517   EmitCXXGlobalInitFunc();
518   EmitCXXGlobalCleanUpFunc();
519   registerGlobalDtorsWithAtExit();
520   EmitCXXThreadLocalInitFunc();
521   if (ObjCRuntime)
522     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
523       AddGlobalCtor(ObjCInitFunction);
524   if (Context.getLangOpts().CUDA && CUDARuntime) {
525     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
526       AddGlobalCtor(CudaCtorFunction);
527   }
528   if (OpenMPRuntime) {
529     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
530             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
531       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
532     }
533     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
534     OpenMPRuntime->clear();
535   }
536   if (PGOReader) {
537     getModule().setProfileSummary(
538         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
539         llvm::ProfileSummary::PSK_Instr);
540     if (PGOStats.hasDiagnostics())
541       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
542   }
543   EmitCtorList(GlobalCtors, "llvm.global_ctors");
544   EmitCtorList(GlobalDtors, "llvm.global_dtors");
545   EmitGlobalAnnotations();
546   EmitStaticExternCAliases();
547   checkAliases();
548   EmitDeferredUnusedCoverageMappings();
549   CodeGenPGO(*this).setValueProfilingFlag(getModule());
550   if (CoverageMapping)
551     CoverageMapping->emit();
552   if (CodeGenOpts.SanitizeCfiCrossDso) {
553     CodeGenFunction(*this).EmitCfiCheckFail();
554     CodeGenFunction(*this).EmitCfiCheckStub();
555   }
556   emitAtAvailableLinkGuard();
557   if (Context.getTargetInfo().getTriple().isWasm())
558     EmitMainVoidAlias();
559 
560   if (getTriple().isAMDGPU()) {
561     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
562     // preserve ASAN functions in bitcode libraries.
563     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
564       auto *FT = llvm::FunctionType::get(VoidTy, {});
565       auto *F = llvm::Function::Create(
566           FT, llvm::GlobalValue::ExternalLinkage,
567           "__amdgpu_device_library_preserve_asan_functions", &getModule());
568       auto *Var = new llvm::GlobalVariable(
569           getModule(), FT->getPointerTo(),
570           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
571           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
572           llvm::GlobalVariable::NotThreadLocal);
573       addCompilerUsedGlobal(Var);
574     }
575     // Emit amdgpu_code_object_version module flag, which is code object version
576     // times 100.
577     // ToDo: Enable module flag for all code object version when ROCm device
578     // library is ready.
579     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
580       getModule().addModuleFlag(llvm::Module::Error,
581                                 "amdgpu_code_object_version",
582                                 getTarget().getTargetOpts().CodeObjectVersion);
583     }
584   }
585 
586   // Emit a global array containing all external kernels or device variables
587   // used by host functions and mark it as used for CUDA/HIP. This is necessary
588   // to get kernels or device variables in archives linked in even if these
589   // kernels or device variables are only used in host functions.
590   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
591     SmallVector<llvm::Constant *, 8> UsedArray;
592     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
593       GlobalDecl GD;
594       if (auto *FD = dyn_cast<FunctionDecl>(D))
595         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
596       else
597         GD = GlobalDecl(D);
598       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
599           GetAddrOfGlobal(GD), Int8PtrTy));
600     }
601 
602     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
603 
604     auto *GV = new llvm::GlobalVariable(
605         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
606         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
607     addCompilerUsedGlobal(GV);
608   }
609 
610   emitLLVMUsed();
611   if (SanStats)
612     SanStats->finish();
613 
614   if (CodeGenOpts.Autolink &&
615       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
616     EmitModuleLinkOptions();
617   }
618 
619   // On ELF we pass the dependent library specifiers directly to the linker
620   // without manipulating them. This is in contrast to other platforms where
621   // they are mapped to a specific linker option by the compiler. This
622   // difference is a result of the greater variety of ELF linkers and the fact
623   // that ELF linkers tend to handle libraries in a more complicated fashion
624   // than on other platforms. This forces us to defer handling the dependent
625   // libs to the linker.
626   //
627   // CUDA/HIP device and host libraries are different. Currently there is no
628   // way to differentiate dependent libraries for host or device. Existing
629   // usage of #pragma comment(lib, *) is intended for host libraries on
630   // Windows. Therefore emit llvm.dependent-libraries only for host.
631   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
632     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
633     for (auto *MD : ELFDependentLibraries)
634       NMD->addOperand(MD);
635   }
636 
637   // Record mregparm value now so it is visible through rest of codegen.
638   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
639     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
640                               CodeGenOpts.NumRegisterParameters);
641 
642   if (CodeGenOpts.DwarfVersion) {
643     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
644                               CodeGenOpts.DwarfVersion);
645   }
646 
647   if (CodeGenOpts.Dwarf64)
648     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
649 
650   if (Context.getLangOpts().SemanticInterposition)
651     // Require various optimization to respect semantic interposition.
652     getModule().setSemanticInterposition(true);
653 
654   if (CodeGenOpts.EmitCodeView) {
655     // Indicate that we want CodeView in the metadata.
656     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
657   }
658   if (CodeGenOpts.CodeViewGHash) {
659     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
660   }
661   if (CodeGenOpts.ControlFlowGuard) {
662     // Function ID tables and checks for Control Flow Guard (cfguard=2).
663     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
664   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
665     // Function ID tables for Control Flow Guard (cfguard=1).
666     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
667   }
668   if (CodeGenOpts.EHContGuard) {
669     // Function ID tables for EH Continuation Guard.
670     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
671   }
672   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
673     // We don't support LTO with 2 with different StrictVTablePointers
674     // FIXME: we could support it by stripping all the information introduced
675     // by StrictVTablePointers.
676 
677     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
678 
679     llvm::Metadata *Ops[2] = {
680               llvm::MDString::get(VMContext, "StrictVTablePointers"),
681               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
682                   llvm::Type::getInt32Ty(VMContext), 1))};
683 
684     getModule().addModuleFlag(llvm::Module::Require,
685                               "StrictVTablePointersRequirement",
686                               llvm::MDNode::get(VMContext, Ops));
687   }
688   if (getModuleDebugInfo())
689     // We support a single version in the linked module. The LLVM
690     // parser will drop debug info with a different version number
691     // (and warn about it, too).
692     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
693                               llvm::DEBUG_METADATA_VERSION);
694 
695   // We need to record the widths of enums and wchar_t, so that we can generate
696   // the correct build attributes in the ARM backend. wchar_size is also used by
697   // TargetLibraryInfo.
698   uint64_t WCharWidth =
699       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
700   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
701 
702   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
703   if (   Arch == llvm::Triple::arm
704       || Arch == llvm::Triple::armeb
705       || Arch == llvm::Triple::thumb
706       || Arch == llvm::Triple::thumbeb) {
707     // The minimum width of an enum in bytes
708     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
709     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
710   }
711 
712   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
713     StringRef ABIStr = Target.getABI();
714     llvm::LLVMContext &Ctx = TheModule.getContext();
715     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
716                               llvm::MDString::get(Ctx, ABIStr));
717   }
718 
719   if (CodeGenOpts.SanitizeCfiCrossDso) {
720     // Indicate that we want cross-DSO control flow integrity checks.
721     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
722   }
723 
724   if (CodeGenOpts.WholeProgramVTables) {
725     // Indicate whether VFE was enabled for this module, so that the
726     // vcall_visibility metadata added under whole program vtables is handled
727     // appropriately in the optimizer.
728     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
729                               CodeGenOpts.VirtualFunctionElimination);
730   }
731 
732   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
733     getModule().addModuleFlag(llvm::Module::Override,
734                               "CFI Canonical Jump Tables",
735                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
736   }
737 
738   if (CodeGenOpts.CFProtectionReturn &&
739       Target.checkCFProtectionReturnSupported(getDiags())) {
740     // Indicate that we want to instrument return control flow protection.
741     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
742                               1);
743   }
744 
745   if (CodeGenOpts.CFProtectionBranch &&
746       Target.checkCFProtectionBranchSupported(getDiags())) {
747     // Indicate that we want to instrument branch control flow protection.
748     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
749                               1);
750   }
751 
752   if (CodeGenOpts.IBTSeal)
753     getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1);
754 
755   // Add module metadata for return address signing (ignoring
756   // non-leaf/all) and stack tagging. These are actually turned on by function
757   // attributes, but we use module metadata to emit build attributes. This is
758   // needed for LTO, where the function attributes are inside bitcode
759   // serialised into a global variable by the time build attributes are
760   // emitted, so we can't access them. LTO objects could be compiled with
761   // different flags therefore module flags are set to "Min" behavior to achieve
762   // the same end result of the normal build where e.g BTI is off if any object
763   // doesn't support it.
764   if (Context.getTargetInfo().hasFeature("ptrauth") &&
765       LangOpts.getSignReturnAddressScope() !=
766           LangOptions::SignReturnAddressScopeKind::None)
767     getModule().addModuleFlag(llvm::Module::Override,
768                               "sign-return-address-buildattr", 1);
769   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
770     getModule().addModuleFlag(llvm::Module::Override,
771                               "tag-stack-memory-buildattr", 1);
772 
773   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
774       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
775       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
776       Arch == llvm::Triple::aarch64_be) {
777     getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
778                               LangOpts.BranchTargetEnforcement);
779 
780     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address",
781                               LangOpts.hasSignReturnAddress());
782 
783     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
784                               LangOpts.isSignReturnAddressScopeAll());
785 
786     getModule().addModuleFlag(llvm::Module::Min,
787                               "sign-return-address-with-bkey",
788                               !LangOpts.isSignReturnAddressWithAKey());
789   }
790 
791   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
792     llvm::LLVMContext &Ctx = TheModule.getContext();
793     getModule().addModuleFlag(
794         llvm::Module::Error, "MemProfProfileFilename",
795         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
796   }
797 
798   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
799     // Indicate whether __nvvm_reflect should be configured to flush denormal
800     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
801     // property.)
802     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
803                               CodeGenOpts.FP32DenormalMode.Output !=
804                                   llvm::DenormalMode::IEEE);
805   }
806 
807   if (LangOpts.EHAsynch)
808     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
809 
810   // Indicate whether this Module was compiled with -fopenmp
811   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
812     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
813   if (getLangOpts().OpenMPIsDevice)
814     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
815                               LangOpts.OpenMP);
816 
817   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
818   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
819     EmitOpenCLMetadata();
820     // Emit SPIR version.
821     if (getTriple().isSPIR()) {
822       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
823       // opencl.spir.version named metadata.
824       // C++ for OpenCL has a distinct mapping for version compatibility with
825       // OpenCL.
826       auto Version = LangOpts.getOpenCLCompatibleVersion();
827       llvm::Metadata *SPIRVerElts[] = {
828           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
829               Int32Ty, Version / 100)),
830           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
831               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
832       llvm::NamedMDNode *SPIRVerMD =
833           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
834       llvm::LLVMContext &Ctx = TheModule.getContext();
835       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
836     }
837   }
838 
839   // HLSL related end of code gen work items.
840   if (LangOpts.HLSL)
841     getHLSLRuntime().finishCodeGen();
842 
843   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
844     assert(PLevel < 3 && "Invalid PIC Level");
845     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
846     if (Context.getLangOpts().PIE)
847       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
848   }
849 
850   if (getCodeGenOpts().CodeModel.size() > 0) {
851     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
852                   .Case("tiny", llvm::CodeModel::Tiny)
853                   .Case("small", llvm::CodeModel::Small)
854                   .Case("kernel", llvm::CodeModel::Kernel)
855                   .Case("medium", llvm::CodeModel::Medium)
856                   .Case("large", llvm::CodeModel::Large)
857                   .Default(~0u);
858     if (CM != ~0u) {
859       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
860       getModule().setCodeModel(codeModel);
861     }
862   }
863 
864   if (CodeGenOpts.NoPLT)
865     getModule().setRtLibUseGOT();
866   if (CodeGenOpts.UnwindTables)
867     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
868 
869   switch (CodeGenOpts.getFramePointer()) {
870   case CodeGenOptions::FramePointerKind::None:
871     // 0 ("none") is the default.
872     break;
873   case CodeGenOptions::FramePointerKind::NonLeaf:
874     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
875     break;
876   case CodeGenOptions::FramePointerKind::All:
877     getModule().setFramePointer(llvm::FramePointerKind::All);
878     break;
879   }
880 
881   SimplifyPersonality();
882 
883   if (getCodeGenOpts().EmitDeclMetadata)
884     EmitDeclMetadata();
885 
886   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
887     EmitCoverageFile();
888 
889   if (CGDebugInfo *DI = getModuleDebugInfo())
890     DI->finalize();
891 
892   if (getCodeGenOpts().EmitVersionIdentMetadata)
893     EmitVersionIdentMetadata();
894 
895   if (!getCodeGenOpts().RecordCommandLine.empty())
896     EmitCommandLineMetadata();
897 
898   if (!getCodeGenOpts().StackProtectorGuard.empty())
899     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
900   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
901     getModule().setStackProtectorGuardReg(
902         getCodeGenOpts().StackProtectorGuardReg);
903   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
904     getModule().setStackProtectorGuardOffset(
905         getCodeGenOpts().StackProtectorGuardOffset);
906   if (getCodeGenOpts().StackAlignment)
907     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
908   if (getCodeGenOpts().SkipRaxSetup)
909     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
910 
911   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
912 
913   EmitBackendOptionsMetadata(getCodeGenOpts());
914 
915   // If there is device offloading code embed it in the host now.
916   EmbedObject(&getModule(), CodeGenOpts, getDiags());
917 
918   // Set visibility from DLL storage class
919   // We do this at the end of LLVM IR generation; after any operation
920   // that might affect the DLL storage class or the visibility, and
921   // before anything that might act on these.
922   setVisibilityFromDLLStorageClass(LangOpts, getModule());
923 }
924 
925 void CodeGenModule::EmitOpenCLMetadata() {
926   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
927   // opencl.ocl.version named metadata node.
928   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
929   auto Version = LangOpts.getOpenCLCompatibleVersion();
930   llvm::Metadata *OCLVerElts[] = {
931       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
932           Int32Ty, Version / 100)),
933       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
934           Int32Ty, (Version % 100) / 10))};
935   llvm::NamedMDNode *OCLVerMD =
936       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
937   llvm::LLVMContext &Ctx = TheModule.getContext();
938   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
939 }
940 
941 void CodeGenModule::EmitBackendOptionsMetadata(
942     const CodeGenOptions CodeGenOpts) {
943   switch (getTriple().getArch()) {
944   default:
945     break;
946   case llvm::Triple::riscv32:
947   case llvm::Triple::riscv64:
948     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
949                               CodeGenOpts.SmallDataLimit);
950     break;
951   }
952 }
953 
954 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
955   // Make sure that this type is translated.
956   Types.UpdateCompletedType(TD);
957 }
958 
959 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
960   // Make sure that this type is translated.
961   Types.RefreshTypeCacheForClass(RD);
962 }
963 
964 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
965   if (!TBAA)
966     return nullptr;
967   return TBAA->getTypeInfo(QTy);
968 }
969 
970 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
971   if (!TBAA)
972     return TBAAAccessInfo();
973   if (getLangOpts().CUDAIsDevice) {
974     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
975     // access info.
976     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
977       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
978           nullptr)
979         return TBAAAccessInfo();
980     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
981       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
982           nullptr)
983         return TBAAAccessInfo();
984     }
985   }
986   return TBAA->getAccessInfo(AccessType);
987 }
988 
989 TBAAAccessInfo
990 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
991   if (!TBAA)
992     return TBAAAccessInfo();
993   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
994 }
995 
996 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
997   if (!TBAA)
998     return nullptr;
999   return TBAA->getTBAAStructInfo(QTy);
1000 }
1001 
1002 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1003   if (!TBAA)
1004     return nullptr;
1005   return TBAA->getBaseTypeInfo(QTy);
1006 }
1007 
1008 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1009   if (!TBAA)
1010     return nullptr;
1011   return TBAA->getAccessTagInfo(Info);
1012 }
1013 
1014 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1015                                                    TBAAAccessInfo TargetInfo) {
1016   if (!TBAA)
1017     return TBAAAccessInfo();
1018   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1019 }
1020 
1021 TBAAAccessInfo
1022 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1023                                                    TBAAAccessInfo InfoB) {
1024   if (!TBAA)
1025     return TBAAAccessInfo();
1026   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1027 }
1028 
1029 TBAAAccessInfo
1030 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1031                                               TBAAAccessInfo SrcInfo) {
1032   if (!TBAA)
1033     return TBAAAccessInfo();
1034   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1035 }
1036 
1037 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1038                                                 TBAAAccessInfo TBAAInfo) {
1039   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1040     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1041 }
1042 
1043 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1044     llvm::Instruction *I, const CXXRecordDecl *RD) {
1045   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1046                  llvm::MDNode::get(getLLVMContext(), {}));
1047 }
1048 
1049 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1050   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1051   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1052 }
1053 
1054 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1055 /// specified stmt yet.
1056 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1057   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1058                                                "cannot compile this %0 yet");
1059   std::string Msg = Type;
1060   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1061       << Msg << S->getSourceRange();
1062 }
1063 
1064 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1065 /// specified decl yet.
1066 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1067   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1068                                                "cannot compile this %0 yet");
1069   std::string Msg = Type;
1070   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1071 }
1072 
1073 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1074   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1075 }
1076 
1077 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1078                                         const NamedDecl *D) const {
1079   if (GV->hasDLLImportStorageClass())
1080     return;
1081   // Internal definitions always have default visibility.
1082   if (GV->hasLocalLinkage()) {
1083     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1084     return;
1085   }
1086   if (!D)
1087     return;
1088   // Set visibility for definitions, and for declarations if requested globally
1089   // or set explicitly.
1090   LinkageInfo LV = D->getLinkageAndVisibility();
1091   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1092       !GV->isDeclarationForLinker())
1093     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1094 }
1095 
1096 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1097                                  llvm::GlobalValue *GV) {
1098   if (GV->hasLocalLinkage())
1099     return true;
1100 
1101   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1102     return true;
1103 
1104   // DLLImport explicitly marks the GV as external.
1105   if (GV->hasDLLImportStorageClass())
1106     return false;
1107 
1108   const llvm::Triple &TT = CGM.getTriple();
1109   if (TT.isWindowsGNUEnvironment()) {
1110     // In MinGW, variables without DLLImport can still be automatically
1111     // imported from a DLL by the linker; don't mark variables that
1112     // potentially could come from another DLL as DSO local.
1113 
1114     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1115     // (and this actually happens in the public interface of libstdc++), so
1116     // such variables can't be marked as DSO local. (Native TLS variables
1117     // can't be dllimported at all, though.)
1118     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1119         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1120       return false;
1121   }
1122 
1123   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1124   // remain unresolved in the link, they can be resolved to zero, which is
1125   // outside the current DSO.
1126   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1127     return false;
1128 
1129   // Every other GV is local on COFF.
1130   // Make an exception for windows OS in the triple: Some firmware builds use
1131   // *-win32-macho triples. This (accidentally?) produced windows relocations
1132   // without GOT tables in older clang versions; Keep this behaviour.
1133   // FIXME: even thread local variables?
1134   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1135     return true;
1136 
1137   // Only handle COFF and ELF for now.
1138   if (!TT.isOSBinFormatELF())
1139     return false;
1140 
1141   // If this is not an executable, don't assume anything is local.
1142   const auto &CGOpts = CGM.getCodeGenOpts();
1143   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1144   const auto &LOpts = CGM.getLangOpts();
1145   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1146     // On ELF, if -fno-semantic-interposition is specified and the target
1147     // supports local aliases, there will be neither CC1
1148     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1149     // dso_local on the function if using a local alias is preferable (can avoid
1150     // PLT indirection).
1151     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1152       return false;
1153     return !(CGM.getLangOpts().SemanticInterposition ||
1154              CGM.getLangOpts().HalfNoSemanticInterposition);
1155   }
1156 
1157   // A definition cannot be preempted from an executable.
1158   if (!GV->isDeclarationForLinker())
1159     return true;
1160 
1161   // Most PIC code sequences that assume that a symbol is local cannot produce a
1162   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1163   // depended, it seems worth it to handle it here.
1164   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1165     return false;
1166 
1167   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1168   if (TT.isPPC64())
1169     return false;
1170 
1171   if (CGOpts.DirectAccessExternalData) {
1172     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1173     // for non-thread-local variables. If the symbol is not defined in the
1174     // executable, a copy relocation will be needed at link time. dso_local is
1175     // excluded for thread-local variables because they generally don't support
1176     // copy relocations.
1177     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1178       if (!Var->isThreadLocal())
1179         return true;
1180 
1181     // -fno-pic sets dso_local on a function declaration to allow direct
1182     // accesses when taking its address (similar to a data symbol). If the
1183     // function is not defined in the executable, a canonical PLT entry will be
1184     // needed at link time. -fno-direct-access-external-data can avoid the
1185     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1186     // it could just cause trouble without providing perceptible benefits.
1187     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1188       return true;
1189   }
1190 
1191   // If we can use copy relocations we can assume it is local.
1192 
1193   // Otherwise don't assume it is local.
1194   return false;
1195 }
1196 
1197 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1198   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1199 }
1200 
1201 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1202                                           GlobalDecl GD) const {
1203   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1204   // C++ destructors have a few C++ ABI specific special cases.
1205   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1206     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1207     return;
1208   }
1209   setDLLImportDLLExport(GV, D);
1210 }
1211 
1212 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1213                                           const NamedDecl *D) const {
1214   if (D && D->isExternallyVisible()) {
1215     if (D->hasAttr<DLLImportAttr>())
1216       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1217     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1218       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1219   }
1220 }
1221 
1222 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1223                                     GlobalDecl GD) const {
1224   setDLLImportDLLExport(GV, GD);
1225   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1226 }
1227 
1228 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1229                                     const NamedDecl *D) const {
1230   setDLLImportDLLExport(GV, D);
1231   setGVPropertiesAux(GV, D);
1232 }
1233 
1234 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1235                                        const NamedDecl *D) const {
1236   setGlobalVisibility(GV, D);
1237   setDSOLocal(GV);
1238   GV->setPartition(CodeGenOpts.SymbolPartition);
1239 }
1240 
1241 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1242   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1243       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1244       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1245       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1246       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1247 }
1248 
1249 llvm::GlobalVariable::ThreadLocalMode
1250 CodeGenModule::GetDefaultLLVMTLSModel() const {
1251   switch (CodeGenOpts.getDefaultTLSModel()) {
1252   case CodeGenOptions::GeneralDynamicTLSModel:
1253     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1254   case CodeGenOptions::LocalDynamicTLSModel:
1255     return llvm::GlobalVariable::LocalDynamicTLSModel;
1256   case CodeGenOptions::InitialExecTLSModel:
1257     return llvm::GlobalVariable::InitialExecTLSModel;
1258   case CodeGenOptions::LocalExecTLSModel:
1259     return llvm::GlobalVariable::LocalExecTLSModel;
1260   }
1261   llvm_unreachable("Invalid TLS model!");
1262 }
1263 
1264 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1265   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1266 
1267   llvm::GlobalValue::ThreadLocalMode TLM;
1268   TLM = GetDefaultLLVMTLSModel();
1269 
1270   // Override the TLS model if it is explicitly specified.
1271   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1272     TLM = GetLLVMTLSModel(Attr->getModel());
1273   }
1274 
1275   GV->setThreadLocalMode(TLM);
1276 }
1277 
1278 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1279                                           StringRef Name) {
1280   const TargetInfo &Target = CGM.getTarget();
1281   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1282 }
1283 
1284 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1285                                                  const CPUSpecificAttr *Attr,
1286                                                  unsigned CPUIndex,
1287                                                  raw_ostream &Out) {
1288   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1289   // supported.
1290   if (Attr)
1291     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1292   else if (CGM.getTarget().supportsIFunc())
1293     Out << ".resolver";
1294 }
1295 
1296 static void AppendTargetMangling(const CodeGenModule &CGM,
1297                                  const TargetAttr *Attr, raw_ostream &Out) {
1298   if (Attr->isDefaultVersion())
1299     return;
1300 
1301   Out << '.';
1302   const TargetInfo &Target = CGM.getTarget();
1303   ParsedTargetAttr Info =
1304       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1305         // Multiversioning doesn't allow "no-${feature}", so we can
1306         // only have "+" prefixes here.
1307         assert(LHS.startswith("+") && RHS.startswith("+") &&
1308                "Features should always have a prefix.");
1309         return Target.multiVersionSortPriority(LHS.substr(1)) >
1310                Target.multiVersionSortPriority(RHS.substr(1));
1311       });
1312 
1313   bool IsFirst = true;
1314 
1315   if (!Info.Architecture.empty()) {
1316     IsFirst = false;
1317     Out << "arch_" << Info.Architecture;
1318   }
1319 
1320   for (StringRef Feat : Info.Features) {
1321     if (!IsFirst)
1322       Out << '_';
1323     IsFirst = false;
1324     Out << Feat.substr(1);
1325   }
1326 }
1327 
1328 // Returns true if GD is a function decl with internal linkage and
1329 // needs a unique suffix after the mangled name.
1330 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1331                                         CodeGenModule &CGM) {
1332   const Decl *D = GD.getDecl();
1333   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1334          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1335 }
1336 
1337 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1338                                        const TargetClonesAttr *Attr,
1339                                        unsigned VersionIndex,
1340                                        raw_ostream &Out) {
1341   Out << '.';
1342   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1343   if (FeatureStr.startswith("arch="))
1344     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1345   else
1346     Out << FeatureStr;
1347 
1348   Out << '.' << Attr->getMangledIndex(VersionIndex);
1349 }
1350 
1351 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1352                                       const NamedDecl *ND,
1353                                       bool OmitMultiVersionMangling = false) {
1354   SmallString<256> Buffer;
1355   llvm::raw_svector_ostream Out(Buffer);
1356   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1357   if (!CGM.getModuleNameHash().empty())
1358     MC.needsUniqueInternalLinkageNames();
1359   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1360   if (ShouldMangle)
1361     MC.mangleName(GD.getWithDecl(ND), Out);
1362   else {
1363     IdentifierInfo *II = ND->getIdentifier();
1364     assert(II && "Attempt to mangle unnamed decl.");
1365     const auto *FD = dyn_cast<FunctionDecl>(ND);
1366 
1367     if (FD &&
1368         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1369       Out << "__regcall3__" << II->getName();
1370     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1371                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1372       Out << "__device_stub__" << II->getName();
1373     } else {
1374       Out << II->getName();
1375     }
1376   }
1377 
1378   // Check if the module name hash should be appended for internal linkage
1379   // symbols.   This should come before multi-version target suffixes are
1380   // appended. This is to keep the name and module hash suffix of the
1381   // internal linkage function together.  The unique suffix should only be
1382   // added when name mangling is done to make sure that the final name can
1383   // be properly demangled.  For example, for C functions without prototypes,
1384   // name mangling is not done and the unique suffix should not be appeneded
1385   // then.
1386   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1387     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1388            "Hash computed when not explicitly requested");
1389     Out << CGM.getModuleNameHash();
1390   }
1391 
1392   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1393     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1394       switch (FD->getMultiVersionKind()) {
1395       case MultiVersionKind::CPUDispatch:
1396       case MultiVersionKind::CPUSpecific:
1397         AppendCPUSpecificCPUDispatchMangling(CGM,
1398                                              FD->getAttr<CPUSpecificAttr>(),
1399                                              GD.getMultiVersionIndex(), Out);
1400         break;
1401       case MultiVersionKind::Target:
1402         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1403         break;
1404       case MultiVersionKind::TargetClones:
1405         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1406                                    GD.getMultiVersionIndex(), Out);
1407         break;
1408       case MultiVersionKind::None:
1409         llvm_unreachable("None multiversion type isn't valid here");
1410       }
1411     }
1412 
1413   // Make unique name for device side static file-scope variable for HIP.
1414   if (CGM.getContext().shouldExternalize(ND) &&
1415       CGM.getLangOpts().GPURelocatableDeviceCode &&
1416       CGM.getLangOpts().CUDAIsDevice)
1417     CGM.printPostfixForExternalizedDecl(Out, ND);
1418 
1419   return std::string(Out.str());
1420 }
1421 
1422 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1423                                             const FunctionDecl *FD,
1424                                             StringRef &CurName) {
1425   if (!FD->isMultiVersion())
1426     return;
1427 
1428   // Get the name of what this would be without the 'target' attribute.  This
1429   // allows us to lookup the version that was emitted when this wasn't a
1430   // multiversion function.
1431   std::string NonTargetName =
1432       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1433   GlobalDecl OtherGD;
1434   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1435     assert(OtherGD.getCanonicalDecl()
1436                .getDecl()
1437                ->getAsFunction()
1438                ->isMultiVersion() &&
1439            "Other GD should now be a multiversioned function");
1440     // OtherFD is the version of this function that was mangled BEFORE
1441     // becoming a MultiVersion function.  It potentially needs to be updated.
1442     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1443                                       .getDecl()
1444                                       ->getAsFunction()
1445                                       ->getMostRecentDecl();
1446     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1447     // This is so that if the initial version was already the 'default'
1448     // version, we don't try to update it.
1449     if (OtherName != NonTargetName) {
1450       // Remove instead of erase, since others may have stored the StringRef
1451       // to this.
1452       const auto ExistingRecord = Manglings.find(NonTargetName);
1453       if (ExistingRecord != std::end(Manglings))
1454         Manglings.remove(&(*ExistingRecord));
1455       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1456       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1457           Result.first->first();
1458       // If this is the current decl is being created, make sure we update the name.
1459       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1460         CurName = OtherNameRef;
1461       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1462         Entry->setName(OtherName);
1463     }
1464   }
1465 }
1466 
1467 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1468   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1469 
1470   // Some ABIs don't have constructor variants.  Make sure that base and
1471   // complete constructors get mangled the same.
1472   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1473     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1474       CXXCtorType OrigCtorType = GD.getCtorType();
1475       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1476       if (OrigCtorType == Ctor_Base)
1477         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1478     }
1479   }
1480 
1481   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1482   // static device variable depends on whether the variable is referenced by
1483   // a host or device host function. Therefore the mangled name cannot be
1484   // cached.
1485   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1486     auto FoundName = MangledDeclNames.find(CanonicalGD);
1487     if (FoundName != MangledDeclNames.end())
1488       return FoundName->second;
1489   }
1490 
1491   // Keep the first result in the case of a mangling collision.
1492   const auto *ND = cast<NamedDecl>(GD.getDecl());
1493   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1494 
1495   // Ensure either we have different ABIs between host and device compilations,
1496   // says host compilation following MSVC ABI but device compilation follows
1497   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1498   // mangling should be the same after name stubbing. The later checking is
1499   // very important as the device kernel name being mangled in host-compilation
1500   // is used to resolve the device binaries to be executed. Inconsistent naming
1501   // result in undefined behavior. Even though we cannot check that naming
1502   // directly between host- and device-compilations, the host- and
1503   // device-mangling in host compilation could help catching certain ones.
1504   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1505          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1506          (getContext().getAuxTargetInfo() &&
1507           (getContext().getAuxTargetInfo()->getCXXABI() !=
1508            getContext().getTargetInfo().getCXXABI())) ||
1509          getCUDARuntime().getDeviceSideName(ND) ==
1510              getMangledNameImpl(
1511                  *this,
1512                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1513                  ND));
1514 
1515   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1516   return MangledDeclNames[CanonicalGD] = Result.first->first();
1517 }
1518 
1519 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1520                                              const BlockDecl *BD) {
1521   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1522   const Decl *D = GD.getDecl();
1523 
1524   SmallString<256> Buffer;
1525   llvm::raw_svector_ostream Out(Buffer);
1526   if (!D)
1527     MangleCtx.mangleGlobalBlock(BD,
1528       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1529   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1530     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1531   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1532     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1533   else
1534     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1535 
1536   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1537   return Result.first->first();
1538 }
1539 
1540 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1541   auto it = MangledDeclNames.begin();
1542   while (it != MangledDeclNames.end()) {
1543     if (it->second == Name)
1544       return it->first;
1545     it++;
1546   }
1547   return GlobalDecl();
1548 }
1549 
1550 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1551   return getModule().getNamedValue(Name);
1552 }
1553 
1554 /// AddGlobalCtor - Add a function to the list that will be called before
1555 /// main() runs.
1556 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1557                                   llvm::Constant *AssociatedData) {
1558   // FIXME: Type coercion of void()* types.
1559   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1560 }
1561 
1562 /// AddGlobalDtor - Add a function to the list that will be called
1563 /// when the module is unloaded.
1564 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1565                                   bool IsDtorAttrFunc) {
1566   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1567       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1568     DtorsUsingAtExit[Priority].push_back(Dtor);
1569     return;
1570   }
1571 
1572   // FIXME: Type coercion of void()* types.
1573   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1574 }
1575 
1576 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1577   if (Fns.empty()) return;
1578 
1579   // Ctor function type is void()*.
1580   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1581   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1582       TheModule.getDataLayout().getProgramAddressSpace());
1583 
1584   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1585   llvm::StructType *CtorStructTy = llvm::StructType::get(
1586       Int32Ty, CtorPFTy, VoidPtrTy);
1587 
1588   // Construct the constructor and destructor arrays.
1589   ConstantInitBuilder builder(*this);
1590   auto ctors = builder.beginArray(CtorStructTy);
1591   for (const auto &I : Fns) {
1592     auto ctor = ctors.beginStruct(CtorStructTy);
1593     ctor.addInt(Int32Ty, I.Priority);
1594     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1595     if (I.AssociatedData)
1596       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1597     else
1598       ctor.addNullPointer(VoidPtrTy);
1599     ctor.finishAndAddTo(ctors);
1600   }
1601 
1602   auto list =
1603     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1604                                 /*constant*/ false,
1605                                 llvm::GlobalValue::AppendingLinkage);
1606 
1607   // The LTO linker doesn't seem to like it when we set an alignment
1608   // on appending variables.  Take it off as a workaround.
1609   list->setAlignment(llvm::None);
1610 
1611   Fns.clear();
1612 }
1613 
1614 llvm::GlobalValue::LinkageTypes
1615 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1616   const auto *D = cast<FunctionDecl>(GD.getDecl());
1617 
1618   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1619 
1620   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1621     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1622 
1623   if (isa<CXXConstructorDecl>(D) &&
1624       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1625       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1626     // Our approach to inheriting constructors is fundamentally different from
1627     // that used by the MS ABI, so keep our inheriting constructor thunks
1628     // internal rather than trying to pick an unambiguous mangling for them.
1629     return llvm::GlobalValue::InternalLinkage;
1630   }
1631 
1632   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1633 }
1634 
1635 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1636   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1637   if (!MDS) return nullptr;
1638 
1639   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1640 }
1641 
1642 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1643                                               const CGFunctionInfo &Info,
1644                                               llvm::Function *F, bool IsThunk) {
1645   unsigned CallingConv;
1646   llvm::AttributeList PAL;
1647   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1648                          /*AttrOnCallSite=*/false, IsThunk);
1649   F->setAttributes(PAL);
1650   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1651 }
1652 
1653 static void removeImageAccessQualifier(std::string& TyName) {
1654   std::string ReadOnlyQual("__read_only");
1655   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1656   if (ReadOnlyPos != std::string::npos)
1657     // "+ 1" for the space after access qualifier.
1658     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1659   else {
1660     std::string WriteOnlyQual("__write_only");
1661     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1662     if (WriteOnlyPos != std::string::npos)
1663       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1664     else {
1665       std::string ReadWriteQual("__read_write");
1666       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1667       if (ReadWritePos != std::string::npos)
1668         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1669     }
1670   }
1671 }
1672 
1673 // Returns the address space id that should be produced to the
1674 // kernel_arg_addr_space metadata. This is always fixed to the ids
1675 // as specified in the SPIR 2.0 specification in order to differentiate
1676 // for example in clGetKernelArgInfo() implementation between the address
1677 // spaces with targets without unique mapping to the OpenCL address spaces
1678 // (basically all single AS CPUs).
1679 static unsigned ArgInfoAddressSpace(LangAS AS) {
1680   switch (AS) {
1681   case LangAS::opencl_global:
1682     return 1;
1683   case LangAS::opencl_constant:
1684     return 2;
1685   case LangAS::opencl_local:
1686     return 3;
1687   case LangAS::opencl_generic:
1688     return 4; // Not in SPIR 2.0 specs.
1689   case LangAS::opencl_global_device:
1690     return 5;
1691   case LangAS::opencl_global_host:
1692     return 6;
1693   default:
1694     return 0; // Assume private.
1695   }
1696 }
1697 
1698 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1699                                          const FunctionDecl *FD,
1700                                          CodeGenFunction *CGF) {
1701   assert(((FD && CGF) || (!FD && !CGF)) &&
1702          "Incorrect use - FD and CGF should either be both null or not!");
1703   // Create MDNodes that represent the kernel arg metadata.
1704   // Each MDNode is a list in the form of "key", N number of values which is
1705   // the same number of values as their are kernel arguments.
1706 
1707   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1708 
1709   // MDNode for the kernel argument address space qualifiers.
1710   SmallVector<llvm::Metadata *, 8> addressQuals;
1711 
1712   // MDNode for the kernel argument access qualifiers (images only).
1713   SmallVector<llvm::Metadata *, 8> accessQuals;
1714 
1715   // MDNode for the kernel argument type names.
1716   SmallVector<llvm::Metadata *, 8> argTypeNames;
1717 
1718   // MDNode for the kernel argument base type names.
1719   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1720 
1721   // MDNode for the kernel argument type qualifiers.
1722   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1723 
1724   // MDNode for the kernel argument names.
1725   SmallVector<llvm::Metadata *, 8> argNames;
1726 
1727   if (FD && CGF)
1728     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1729       const ParmVarDecl *parm = FD->getParamDecl(i);
1730       QualType ty = parm->getType();
1731       std::string typeQuals;
1732 
1733       // Get image and pipe access qualifier:
1734       if (ty->isImageType() || ty->isPipeType()) {
1735         const Decl *PDecl = parm;
1736         if (auto *TD = dyn_cast<TypedefType>(ty))
1737           PDecl = TD->getDecl();
1738         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1739         if (A && A->isWriteOnly())
1740           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1741         else if (A && A->isReadWrite())
1742           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1743         else
1744           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1745       } else
1746         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1747 
1748       // Get argument name.
1749       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1750 
1751       auto getTypeSpelling = [&](QualType Ty) {
1752         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1753 
1754         if (Ty.isCanonical()) {
1755           StringRef typeNameRef = typeName;
1756           // Turn "unsigned type" to "utype"
1757           if (typeNameRef.consume_front("unsigned "))
1758             return std::string("u") + typeNameRef.str();
1759           if (typeNameRef.consume_front("signed "))
1760             return typeNameRef.str();
1761         }
1762 
1763         return typeName;
1764       };
1765 
1766       if (ty->isPointerType()) {
1767         QualType pointeeTy = ty->getPointeeType();
1768 
1769         // Get address qualifier.
1770         addressQuals.push_back(
1771             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1772                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1773 
1774         // Get argument type name.
1775         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1776         std::string baseTypeName =
1777             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1778         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1779         argBaseTypeNames.push_back(
1780             llvm::MDString::get(VMContext, baseTypeName));
1781 
1782         // Get argument type qualifiers:
1783         if (ty.isRestrictQualified())
1784           typeQuals = "restrict";
1785         if (pointeeTy.isConstQualified() ||
1786             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1787           typeQuals += typeQuals.empty() ? "const" : " const";
1788         if (pointeeTy.isVolatileQualified())
1789           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1790       } else {
1791         uint32_t AddrSpc = 0;
1792         bool isPipe = ty->isPipeType();
1793         if (ty->isImageType() || isPipe)
1794           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1795 
1796         addressQuals.push_back(
1797             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1798 
1799         // Get argument type name.
1800         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1801         std::string typeName = getTypeSpelling(ty);
1802         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1803 
1804         // Remove access qualifiers on images
1805         // (as they are inseparable from type in clang implementation,
1806         // but OpenCL spec provides a special query to get access qualifier
1807         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1808         if (ty->isImageType()) {
1809           removeImageAccessQualifier(typeName);
1810           removeImageAccessQualifier(baseTypeName);
1811         }
1812 
1813         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1814         argBaseTypeNames.push_back(
1815             llvm::MDString::get(VMContext, baseTypeName));
1816 
1817         if (isPipe)
1818           typeQuals = "pipe";
1819       }
1820       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1821     }
1822 
1823   Fn->setMetadata("kernel_arg_addr_space",
1824                   llvm::MDNode::get(VMContext, addressQuals));
1825   Fn->setMetadata("kernel_arg_access_qual",
1826                   llvm::MDNode::get(VMContext, accessQuals));
1827   Fn->setMetadata("kernel_arg_type",
1828                   llvm::MDNode::get(VMContext, argTypeNames));
1829   Fn->setMetadata("kernel_arg_base_type",
1830                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1831   Fn->setMetadata("kernel_arg_type_qual",
1832                   llvm::MDNode::get(VMContext, argTypeQuals));
1833   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1834     Fn->setMetadata("kernel_arg_name",
1835                     llvm::MDNode::get(VMContext, argNames));
1836 }
1837 
1838 /// Determines whether the language options require us to model
1839 /// unwind exceptions.  We treat -fexceptions as mandating this
1840 /// except under the fragile ObjC ABI with only ObjC exceptions
1841 /// enabled.  This means, for example, that C with -fexceptions
1842 /// enables this.
1843 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1844   // If exceptions are completely disabled, obviously this is false.
1845   if (!LangOpts.Exceptions) return false;
1846 
1847   // If C++ exceptions are enabled, this is true.
1848   if (LangOpts.CXXExceptions) return true;
1849 
1850   // If ObjC exceptions are enabled, this depends on the ABI.
1851   if (LangOpts.ObjCExceptions) {
1852     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1853   }
1854 
1855   return true;
1856 }
1857 
1858 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1859                                                       const CXXMethodDecl *MD) {
1860   // Check that the type metadata can ever actually be used by a call.
1861   if (!CGM.getCodeGenOpts().LTOUnit ||
1862       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1863     return false;
1864 
1865   // Only functions whose address can be taken with a member function pointer
1866   // need this sort of type metadata.
1867   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1868          !isa<CXXDestructorDecl>(MD);
1869 }
1870 
1871 std::vector<const CXXRecordDecl *>
1872 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1873   llvm::SetVector<const CXXRecordDecl *> MostBases;
1874 
1875   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1876   CollectMostBases = [&](const CXXRecordDecl *RD) {
1877     if (RD->getNumBases() == 0)
1878       MostBases.insert(RD);
1879     for (const CXXBaseSpecifier &B : RD->bases())
1880       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1881   };
1882   CollectMostBases(RD);
1883   return MostBases.takeVector();
1884 }
1885 
1886 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1887                                                            llvm::Function *F) {
1888   llvm::AttrBuilder B(F->getContext());
1889 
1890   if (CodeGenOpts.UnwindTables)
1891     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1892 
1893   if (CodeGenOpts.StackClashProtector)
1894     B.addAttribute("probe-stack", "inline-asm");
1895 
1896   if (!hasUnwindExceptions(LangOpts))
1897     B.addAttribute(llvm::Attribute::NoUnwind);
1898 
1899   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1900     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1901       B.addAttribute(llvm::Attribute::StackProtect);
1902     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1903       B.addAttribute(llvm::Attribute::StackProtectStrong);
1904     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1905       B.addAttribute(llvm::Attribute::StackProtectReq);
1906   }
1907 
1908   if (!D) {
1909     // If we don't have a declaration to control inlining, the function isn't
1910     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1911     // disabled, mark the function as noinline.
1912     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1913         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1914       B.addAttribute(llvm::Attribute::NoInline);
1915 
1916     F->addFnAttrs(B);
1917     return;
1918   }
1919 
1920   // Track whether we need to add the optnone LLVM attribute,
1921   // starting with the default for this optimization level.
1922   bool ShouldAddOptNone =
1923       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1924   // We can't add optnone in the following cases, it won't pass the verifier.
1925   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1926   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1927 
1928   // Add optnone, but do so only if the function isn't always_inline.
1929   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1930       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1931     B.addAttribute(llvm::Attribute::OptimizeNone);
1932 
1933     // OptimizeNone implies noinline; we should not be inlining such functions.
1934     B.addAttribute(llvm::Attribute::NoInline);
1935 
1936     // We still need to handle naked functions even though optnone subsumes
1937     // much of their semantics.
1938     if (D->hasAttr<NakedAttr>())
1939       B.addAttribute(llvm::Attribute::Naked);
1940 
1941     // OptimizeNone wins over OptimizeForSize and MinSize.
1942     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1943     F->removeFnAttr(llvm::Attribute::MinSize);
1944   } else if (D->hasAttr<NakedAttr>()) {
1945     // Naked implies noinline: we should not be inlining such functions.
1946     B.addAttribute(llvm::Attribute::Naked);
1947     B.addAttribute(llvm::Attribute::NoInline);
1948   } else if (D->hasAttr<NoDuplicateAttr>()) {
1949     B.addAttribute(llvm::Attribute::NoDuplicate);
1950   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1951     // Add noinline if the function isn't always_inline.
1952     B.addAttribute(llvm::Attribute::NoInline);
1953   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1954              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1955     // (noinline wins over always_inline, and we can't specify both in IR)
1956     B.addAttribute(llvm::Attribute::AlwaysInline);
1957   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1958     // If we're not inlining, then force everything that isn't always_inline to
1959     // carry an explicit noinline attribute.
1960     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1961       B.addAttribute(llvm::Attribute::NoInline);
1962   } else {
1963     // Otherwise, propagate the inline hint attribute and potentially use its
1964     // absence to mark things as noinline.
1965     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1966       // Search function and template pattern redeclarations for inline.
1967       auto CheckForInline = [](const FunctionDecl *FD) {
1968         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1969           return Redecl->isInlineSpecified();
1970         };
1971         if (any_of(FD->redecls(), CheckRedeclForInline))
1972           return true;
1973         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1974         if (!Pattern)
1975           return false;
1976         return any_of(Pattern->redecls(), CheckRedeclForInline);
1977       };
1978       if (CheckForInline(FD)) {
1979         B.addAttribute(llvm::Attribute::InlineHint);
1980       } else if (CodeGenOpts.getInlining() ==
1981                      CodeGenOptions::OnlyHintInlining &&
1982                  !FD->isInlined() &&
1983                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1984         B.addAttribute(llvm::Attribute::NoInline);
1985       }
1986     }
1987   }
1988 
1989   // Add other optimization related attributes if we are optimizing this
1990   // function.
1991   if (!D->hasAttr<OptimizeNoneAttr>()) {
1992     if (D->hasAttr<ColdAttr>()) {
1993       if (!ShouldAddOptNone)
1994         B.addAttribute(llvm::Attribute::OptimizeForSize);
1995       B.addAttribute(llvm::Attribute::Cold);
1996     }
1997     if (D->hasAttr<HotAttr>())
1998       B.addAttribute(llvm::Attribute::Hot);
1999     if (D->hasAttr<MinSizeAttr>())
2000       B.addAttribute(llvm::Attribute::MinSize);
2001   }
2002 
2003   F->addFnAttrs(B);
2004 
2005   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2006   if (alignment)
2007     F->setAlignment(llvm::Align(alignment));
2008 
2009   if (!D->hasAttr<AlignedAttr>())
2010     if (LangOpts.FunctionAlignment)
2011       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2012 
2013   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2014   // reserve a bit for differentiating between virtual and non-virtual member
2015   // functions. If the current target's C++ ABI requires this and this is a
2016   // member function, set its alignment accordingly.
2017   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2018     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2019       F->setAlignment(llvm::Align(2));
2020   }
2021 
2022   // In the cross-dso CFI mode with canonical jump tables, we want !type
2023   // attributes on definitions only.
2024   if (CodeGenOpts.SanitizeCfiCrossDso &&
2025       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2026     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2027       // Skip available_externally functions. They won't be codegen'ed in the
2028       // current module anyway.
2029       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2030         CreateFunctionTypeMetadataForIcall(FD, F);
2031     }
2032   }
2033 
2034   // Emit type metadata on member functions for member function pointer checks.
2035   // These are only ever necessary on definitions; we're guaranteed that the
2036   // definition will be present in the LTO unit as a result of LTO visibility.
2037   auto *MD = dyn_cast<CXXMethodDecl>(D);
2038   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2039     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2040       llvm::Metadata *Id =
2041           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2042               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2043       F->addTypeMetadata(0, Id);
2044     }
2045   }
2046 }
2047 
2048 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2049                                                   llvm::Function *F) {
2050   if (D->hasAttr<StrictFPAttr>()) {
2051     llvm::AttrBuilder FuncAttrs(F->getContext());
2052     FuncAttrs.addAttribute("strictfp");
2053     F->addFnAttrs(FuncAttrs);
2054   }
2055 }
2056 
2057 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2058   const Decl *D = GD.getDecl();
2059   if (isa_and_nonnull<NamedDecl>(D))
2060     setGVProperties(GV, GD);
2061   else
2062     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2063 
2064   if (D && D->hasAttr<UsedAttr>())
2065     addUsedOrCompilerUsedGlobal(GV);
2066 
2067   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2068     const auto *VD = cast<VarDecl>(D);
2069     if (VD->getType().isConstQualified() &&
2070         VD->getStorageDuration() == SD_Static)
2071       addUsedOrCompilerUsedGlobal(GV);
2072   }
2073 }
2074 
2075 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2076                                                 llvm::AttrBuilder &Attrs) {
2077   // Add target-cpu and target-features attributes to functions. If
2078   // we have a decl for the function and it has a target attribute then
2079   // parse that and add it to the feature set.
2080   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2081   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2082   std::vector<std::string> Features;
2083   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2084   FD = FD ? FD->getMostRecentDecl() : FD;
2085   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2086   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2087   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2088   bool AddedAttr = false;
2089   if (TD || SD || TC) {
2090     llvm::StringMap<bool> FeatureMap;
2091     getContext().getFunctionFeatureMap(FeatureMap, GD);
2092 
2093     // Produce the canonical string for this set of features.
2094     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2095       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2096 
2097     // Now add the target-cpu and target-features to the function.
2098     // While we populated the feature map above, we still need to
2099     // get and parse the target attribute so we can get the cpu for
2100     // the function.
2101     if (TD) {
2102       ParsedTargetAttr ParsedAttr = TD->parse();
2103       if (!ParsedAttr.Architecture.empty() &&
2104           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2105         TargetCPU = ParsedAttr.Architecture;
2106         TuneCPU = ""; // Clear the tune CPU.
2107       }
2108       if (!ParsedAttr.Tune.empty() &&
2109           getTarget().isValidCPUName(ParsedAttr.Tune))
2110         TuneCPU = ParsedAttr.Tune;
2111     }
2112 
2113     if (SD) {
2114       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2115       // favor this processor.
2116       TuneCPU = getTarget().getCPUSpecificTuneName(
2117           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2118     }
2119   } else {
2120     // Otherwise just add the existing target cpu and target features to the
2121     // function.
2122     Features = getTarget().getTargetOpts().Features;
2123   }
2124 
2125   if (!TargetCPU.empty()) {
2126     Attrs.addAttribute("target-cpu", TargetCPU);
2127     AddedAttr = true;
2128   }
2129   if (!TuneCPU.empty()) {
2130     Attrs.addAttribute("tune-cpu", TuneCPU);
2131     AddedAttr = true;
2132   }
2133   if (!Features.empty()) {
2134     llvm::sort(Features);
2135     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2136     AddedAttr = true;
2137   }
2138 
2139   return AddedAttr;
2140 }
2141 
2142 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2143                                           llvm::GlobalObject *GO) {
2144   const Decl *D = GD.getDecl();
2145   SetCommonAttributes(GD, GO);
2146 
2147   if (D) {
2148     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2149       if (D->hasAttr<RetainAttr>())
2150         addUsedGlobal(GV);
2151       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2152         GV->addAttribute("bss-section", SA->getName());
2153       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2154         GV->addAttribute("data-section", SA->getName());
2155       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2156         GV->addAttribute("rodata-section", SA->getName());
2157       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2158         GV->addAttribute("relro-section", SA->getName());
2159     }
2160 
2161     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2162       if (D->hasAttr<RetainAttr>())
2163         addUsedGlobal(F);
2164       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2165         if (!D->getAttr<SectionAttr>())
2166           F->addFnAttr("implicit-section-name", SA->getName());
2167 
2168       llvm::AttrBuilder Attrs(F->getContext());
2169       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2170         // We know that GetCPUAndFeaturesAttributes will always have the
2171         // newest set, since it has the newest possible FunctionDecl, so the
2172         // new ones should replace the old.
2173         llvm::AttributeMask RemoveAttrs;
2174         RemoveAttrs.addAttribute("target-cpu");
2175         RemoveAttrs.addAttribute("target-features");
2176         RemoveAttrs.addAttribute("tune-cpu");
2177         F->removeFnAttrs(RemoveAttrs);
2178         F->addFnAttrs(Attrs);
2179       }
2180     }
2181 
2182     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2183       GO->setSection(CSA->getName());
2184     else if (const auto *SA = D->getAttr<SectionAttr>())
2185       GO->setSection(SA->getName());
2186   }
2187 
2188   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2189 }
2190 
2191 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2192                                                   llvm::Function *F,
2193                                                   const CGFunctionInfo &FI) {
2194   const Decl *D = GD.getDecl();
2195   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2196   SetLLVMFunctionAttributesForDefinition(D, F);
2197 
2198   F->setLinkage(llvm::Function::InternalLinkage);
2199 
2200   setNonAliasAttributes(GD, F);
2201 }
2202 
2203 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2204   // Set linkage and visibility in case we never see a definition.
2205   LinkageInfo LV = ND->getLinkageAndVisibility();
2206   // Don't set internal linkage on declarations.
2207   // "extern_weak" is overloaded in LLVM; we probably should have
2208   // separate linkage types for this.
2209   if (isExternallyVisible(LV.getLinkage()) &&
2210       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2211     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2212 }
2213 
2214 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2215                                                        llvm::Function *F) {
2216   // Only if we are checking indirect calls.
2217   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2218     return;
2219 
2220   // Non-static class methods are handled via vtable or member function pointer
2221   // checks elsewhere.
2222   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2223     return;
2224 
2225   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2226   F->addTypeMetadata(0, MD);
2227   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2228 
2229   // Emit a hash-based bit set entry for cross-DSO calls.
2230   if (CodeGenOpts.SanitizeCfiCrossDso)
2231     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2232       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2233 }
2234 
2235 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2236                                           bool IsIncompleteFunction,
2237                                           bool IsThunk) {
2238 
2239   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2240     // If this is an intrinsic function, set the function's attributes
2241     // to the intrinsic's attributes.
2242     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2243     return;
2244   }
2245 
2246   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2247 
2248   if (!IsIncompleteFunction)
2249     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2250                               IsThunk);
2251 
2252   // Add the Returned attribute for "this", except for iOS 5 and earlier
2253   // where substantial code, including the libstdc++ dylib, was compiled with
2254   // GCC and does not actually return "this".
2255   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2256       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2257     assert(!F->arg_empty() &&
2258            F->arg_begin()->getType()
2259              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2260            "unexpected this return");
2261     F->addParamAttr(0, llvm::Attribute::Returned);
2262   }
2263 
2264   // Only a few attributes are set on declarations; these may later be
2265   // overridden by a definition.
2266 
2267   setLinkageForGV(F, FD);
2268   setGVProperties(F, FD);
2269 
2270   // Setup target-specific attributes.
2271   if (!IsIncompleteFunction && F->isDeclaration())
2272     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2273 
2274   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2275     F->setSection(CSA->getName());
2276   else if (const auto *SA = FD->getAttr<SectionAttr>())
2277      F->setSection(SA->getName());
2278 
2279   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2280     if (EA->isError())
2281       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2282     else if (EA->isWarning())
2283       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2284   }
2285 
2286   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2287   if (FD->isInlineBuiltinDeclaration()) {
2288     const FunctionDecl *FDBody;
2289     bool HasBody = FD->hasBody(FDBody);
2290     (void)HasBody;
2291     assert(HasBody && "Inline builtin declarations should always have an "
2292                       "available body!");
2293     if (shouldEmitFunction(FDBody))
2294       F->addFnAttr(llvm::Attribute::NoBuiltin);
2295   }
2296 
2297   if (FD->isReplaceableGlobalAllocationFunction()) {
2298     // A replaceable global allocation function does not act like a builtin by
2299     // default, only if it is invoked by a new-expression or delete-expression.
2300     F->addFnAttr(llvm::Attribute::NoBuiltin);
2301   }
2302 
2303   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2304     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2305   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2306     if (MD->isVirtual())
2307       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2308 
2309   // Don't emit entries for function declarations in the cross-DSO mode. This
2310   // is handled with better precision by the receiving DSO. But if jump tables
2311   // are non-canonical then we need type metadata in order to produce the local
2312   // jump table.
2313   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2314       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2315     CreateFunctionTypeMetadataForIcall(FD, F);
2316 
2317   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2318     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2319 
2320   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2321     // Annotate the callback behavior as metadata:
2322     //  - The callback callee (as argument number).
2323     //  - The callback payloads (as argument numbers).
2324     llvm::LLVMContext &Ctx = F->getContext();
2325     llvm::MDBuilder MDB(Ctx);
2326 
2327     // The payload indices are all but the first one in the encoding. The first
2328     // identifies the callback callee.
2329     int CalleeIdx = *CB->encoding_begin();
2330     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2331     F->addMetadata(llvm::LLVMContext::MD_callback,
2332                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2333                                                CalleeIdx, PayloadIndices,
2334                                                /* VarArgsArePassed */ false)}));
2335   }
2336 }
2337 
2338 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2339   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2340          "Only globals with definition can force usage.");
2341   LLVMUsed.emplace_back(GV);
2342 }
2343 
2344 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2345   assert(!GV->isDeclaration() &&
2346          "Only globals with definition can force usage.");
2347   LLVMCompilerUsed.emplace_back(GV);
2348 }
2349 
2350 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2351   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2352          "Only globals with definition can force usage.");
2353   if (getTriple().isOSBinFormatELF())
2354     LLVMCompilerUsed.emplace_back(GV);
2355   else
2356     LLVMUsed.emplace_back(GV);
2357 }
2358 
2359 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2360                      std::vector<llvm::WeakTrackingVH> &List) {
2361   // Don't create llvm.used if there is no need.
2362   if (List.empty())
2363     return;
2364 
2365   // Convert List to what ConstantArray needs.
2366   SmallVector<llvm::Constant*, 8> UsedArray;
2367   UsedArray.resize(List.size());
2368   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2369     UsedArray[i] =
2370         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2371             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2372   }
2373 
2374   if (UsedArray.empty())
2375     return;
2376   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2377 
2378   auto *GV = new llvm::GlobalVariable(
2379       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2380       llvm::ConstantArray::get(ATy, UsedArray), Name);
2381 
2382   GV->setSection("llvm.metadata");
2383 }
2384 
2385 void CodeGenModule::emitLLVMUsed() {
2386   emitUsed(*this, "llvm.used", LLVMUsed);
2387   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2388 }
2389 
2390 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2391   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2392   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2393 }
2394 
2395 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2396   llvm::SmallString<32> Opt;
2397   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2398   if (Opt.empty())
2399     return;
2400   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2401   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2402 }
2403 
2404 void CodeGenModule::AddDependentLib(StringRef Lib) {
2405   auto &C = getLLVMContext();
2406   if (getTarget().getTriple().isOSBinFormatELF()) {
2407       ELFDependentLibraries.push_back(
2408         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2409     return;
2410   }
2411 
2412   llvm::SmallString<24> Opt;
2413   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2414   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2415   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2416 }
2417 
2418 /// Add link options implied by the given module, including modules
2419 /// it depends on, using a postorder walk.
2420 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2421                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2422                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2423   // Import this module's parent.
2424   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2425     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2426   }
2427 
2428   // Import this module's dependencies.
2429   for (Module *Import : llvm::reverse(Mod->Imports)) {
2430     if (Visited.insert(Import).second)
2431       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2432   }
2433 
2434   // Add linker options to link against the libraries/frameworks
2435   // described by this module.
2436   llvm::LLVMContext &Context = CGM.getLLVMContext();
2437   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2438 
2439   // For modules that use export_as for linking, use that module
2440   // name instead.
2441   if (Mod->UseExportAsModuleLinkName)
2442     return;
2443 
2444   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2445     // Link against a framework.  Frameworks are currently Darwin only, so we
2446     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2447     if (LL.IsFramework) {
2448       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2449                                  llvm::MDString::get(Context, LL.Library)};
2450 
2451       Metadata.push_back(llvm::MDNode::get(Context, Args));
2452       continue;
2453     }
2454 
2455     // Link against a library.
2456     if (IsELF) {
2457       llvm::Metadata *Args[2] = {
2458           llvm::MDString::get(Context, "lib"),
2459           llvm::MDString::get(Context, LL.Library),
2460       };
2461       Metadata.push_back(llvm::MDNode::get(Context, Args));
2462     } else {
2463       llvm::SmallString<24> Opt;
2464       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2465       auto *OptString = llvm::MDString::get(Context, Opt);
2466       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2467     }
2468   }
2469 }
2470 
2471 void CodeGenModule::EmitModuleLinkOptions() {
2472   // Collect the set of all of the modules we want to visit to emit link
2473   // options, which is essentially the imported modules and all of their
2474   // non-explicit child modules.
2475   llvm::SetVector<clang::Module *> LinkModules;
2476   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2477   SmallVector<clang::Module *, 16> Stack;
2478 
2479   // Seed the stack with imported modules.
2480   for (Module *M : ImportedModules) {
2481     // Do not add any link flags when an implementation TU of a module imports
2482     // a header of that same module.
2483     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2484         !getLangOpts().isCompilingModule())
2485       continue;
2486     if (Visited.insert(M).second)
2487       Stack.push_back(M);
2488   }
2489 
2490   // Find all of the modules to import, making a little effort to prune
2491   // non-leaf modules.
2492   while (!Stack.empty()) {
2493     clang::Module *Mod = Stack.pop_back_val();
2494 
2495     bool AnyChildren = false;
2496 
2497     // Visit the submodules of this module.
2498     for (const auto &SM : Mod->submodules()) {
2499       // Skip explicit children; they need to be explicitly imported to be
2500       // linked against.
2501       if (SM->IsExplicit)
2502         continue;
2503 
2504       if (Visited.insert(SM).second) {
2505         Stack.push_back(SM);
2506         AnyChildren = true;
2507       }
2508     }
2509 
2510     // We didn't find any children, so add this module to the list of
2511     // modules to link against.
2512     if (!AnyChildren) {
2513       LinkModules.insert(Mod);
2514     }
2515   }
2516 
2517   // Add link options for all of the imported modules in reverse topological
2518   // order.  We don't do anything to try to order import link flags with respect
2519   // to linker options inserted by things like #pragma comment().
2520   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2521   Visited.clear();
2522   for (Module *M : LinkModules)
2523     if (Visited.insert(M).second)
2524       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2525   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2526   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2527 
2528   // Add the linker options metadata flag.
2529   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2530   for (auto *MD : LinkerOptionsMetadata)
2531     NMD->addOperand(MD);
2532 }
2533 
2534 void CodeGenModule::EmitDeferred() {
2535   // Emit deferred declare target declarations.
2536   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2537     getOpenMPRuntime().emitDeferredTargetDecls();
2538 
2539   // Emit code for any potentially referenced deferred decls.  Since a
2540   // previously unused static decl may become used during the generation of code
2541   // for a static function, iterate until no changes are made.
2542 
2543   if (!DeferredVTables.empty()) {
2544     EmitDeferredVTables();
2545 
2546     // Emitting a vtable doesn't directly cause more vtables to
2547     // become deferred, although it can cause functions to be
2548     // emitted that then need those vtables.
2549     assert(DeferredVTables.empty());
2550   }
2551 
2552   // Emit CUDA/HIP static device variables referenced by host code only.
2553   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2554   // needed for further handling.
2555   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2556     llvm::append_range(DeferredDeclsToEmit,
2557                        getContext().CUDADeviceVarODRUsedByHost);
2558 
2559   // Stop if we're out of both deferred vtables and deferred declarations.
2560   if (DeferredDeclsToEmit.empty())
2561     return;
2562 
2563   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2564   // work, it will not interfere with this.
2565   std::vector<GlobalDecl> CurDeclsToEmit;
2566   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2567 
2568   for (GlobalDecl &D : CurDeclsToEmit) {
2569     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2570     // to get GlobalValue with exactly the type we need, not something that
2571     // might had been created for another decl with the same mangled name but
2572     // different type.
2573     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2574         GetAddrOfGlobal(D, ForDefinition));
2575 
2576     // In case of different address spaces, we may still get a cast, even with
2577     // IsForDefinition equal to true. Query mangled names table to get
2578     // GlobalValue.
2579     if (!GV)
2580       GV = GetGlobalValue(getMangledName(D));
2581 
2582     // Make sure GetGlobalValue returned non-null.
2583     assert(GV);
2584 
2585     // Check to see if we've already emitted this.  This is necessary
2586     // for a couple of reasons: first, decls can end up in the
2587     // deferred-decls queue multiple times, and second, decls can end
2588     // up with definitions in unusual ways (e.g. by an extern inline
2589     // function acquiring a strong function redefinition).  Just
2590     // ignore these cases.
2591     if (!GV->isDeclaration())
2592       continue;
2593 
2594     // If this is OpenMP, check if it is legal to emit this global normally.
2595     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2596       continue;
2597 
2598     // Otherwise, emit the definition and move on to the next one.
2599     EmitGlobalDefinition(D, GV);
2600 
2601     // If we found out that we need to emit more decls, do that recursively.
2602     // This has the advantage that the decls are emitted in a DFS and related
2603     // ones are close together, which is convenient for testing.
2604     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2605       EmitDeferred();
2606       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2607     }
2608   }
2609 }
2610 
2611 void CodeGenModule::EmitVTablesOpportunistically() {
2612   // Try to emit external vtables as available_externally if they have emitted
2613   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2614   // is not allowed to create new references to things that need to be emitted
2615   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2616 
2617   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2618          && "Only emit opportunistic vtables with optimizations");
2619 
2620   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2621     assert(getVTables().isVTableExternal(RD) &&
2622            "This queue should only contain external vtables");
2623     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2624       VTables.GenerateClassData(RD);
2625   }
2626   OpportunisticVTables.clear();
2627 }
2628 
2629 void CodeGenModule::EmitGlobalAnnotations() {
2630   if (Annotations.empty())
2631     return;
2632 
2633   // Create a new global variable for the ConstantStruct in the Module.
2634   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2635     Annotations[0]->getType(), Annotations.size()), Annotations);
2636   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2637                                       llvm::GlobalValue::AppendingLinkage,
2638                                       Array, "llvm.global.annotations");
2639   gv->setSection(AnnotationSection);
2640 }
2641 
2642 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2643   llvm::Constant *&AStr = AnnotationStrings[Str];
2644   if (AStr)
2645     return AStr;
2646 
2647   // Not found yet, create a new global.
2648   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2649   auto *gv =
2650       new llvm::GlobalVariable(getModule(), s->getType(), true,
2651                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2652   gv->setSection(AnnotationSection);
2653   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2654   AStr = gv;
2655   return gv;
2656 }
2657 
2658 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2659   SourceManager &SM = getContext().getSourceManager();
2660   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2661   if (PLoc.isValid())
2662     return EmitAnnotationString(PLoc.getFilename());
2663   return EmitAnnotationString(SM.getBufferName(Loc));
2664 }
2665 
2666 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2667   SourceManager &SM = getContext().getSourceManager();
2668   PresumedLoc PLoc = SM.getPresumedLoc(L);
2669   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2670     SM.getExpansionLineNumber(L);
2671   return llvm::ConstantInt::get(Int32Ty, LineNo);
2672 }
2673 
2674 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2675   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2676   if (Exprs.empty())
2677     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2678 
2679   llvm::FoldingSetNodeID ID;
2680   for (Expr *E : Exprs) {
2681     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2682   }
2683   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2684   if (Lookup)
2685     return Lookup;
2686 
2687   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2688   LLVMArgs.reserve(Exprs.size());
2689   ConstantEmitter ConstEmiter(*this);
2690   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2691     const auto *CE = cast<clang::ConstantExpr>(E);
2692     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2693                                     CE->getType());
2694   });
2695   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2696   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2697                                       llvm::GlobalValue::PrivateLinkage, Struct,
2698                                       ".args");
2699   GV->setSection(AnnotationSection);
2700   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2701   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2702 
2703   Lookup = Bitcasted;
2704   return Bitcasted;
2705 }
2706 
2707 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2708                                                 const AnnotateAttr *AA,
2709                                                 SourceLocation L) {
2710   // Get the globals for file name, annotation, and the line number.
2711   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2712                  *UnitGV = EmitAnnotationUnit(L),
2713                  *LineNoCst = EmitAnnotationLineNo(L),
2714                  *Args = EmitAnnotationArgs(AA);
2715 
2716   llvm::Constant *GVInGlobalsAS = GV;
2717   if (GV->getAddressSpace() !=
2718       getDataLayout().getDefaultGlobalsAddressSpace()) {
2719     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2720         GV, GV->getValueType()->getPointerTo(
2721                 getDataLayout().getDefaultGlobalsAddressSpace()));
2722   }
2723 
2724   // Create the ConstantStruct for the global annotation.
2725   llvm::Constant *Fields[] = {
2726       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2727       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2728       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2729       LineNoCst,
2730       Args,
2731   };
2732   return llvm::ConstantStruct::getAnon(Fields);
2733 }
2734 
2735 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2736                                          llvm::GlobalValue *GV) {
2737   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2738   // Get the struct elements for these annotations.
2739   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2740     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2741 }
2742 
2743 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2744                                        SourceLocation Loc) const {
2745   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2746   // NoSanitize by function name.
2747   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2748     return true;
2749   // NoSanitize by location.
2750   if (Loc.isValid())
2751     return NoSanitizeL.containsLocation(Kind, Loc);
2752   // If location is unknown, this may be a compiler-generated function. Assume
2753   // it's located in the main file.
2754   auto &SM = Context.getSourceManager();
2755   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2756     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2757   }
2758   return false;
2759 }
2760 
2761 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2762                                        SourceLocation Loc, QualType Ty,
2763                                        StringRef Category) const {
2764   // For now globals can be ignored only in ASan and KASan.
2765   const SanitizerMask EnabledAsanMask =
2766       LangOpts.Sanitize.Mask &
2767       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2768        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2769        SanitizerKind::MemTag);
2770   if (!EnabledAsanMask)
2771     return false;
2772   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2773   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2774     return true;
2775   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2776     return true;
2777   // Check global type.
2778   if (!Ty.isNull()) {
2779     // Drill down the array types: if global variable of a fixed type is
2780     // not sanitized, we also don't instrument arrays of them.
2781     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2782       Ty = AT->getElementType();
2783     Ty = Ty.getCanonicalType().getUnqualifiedType();
2784     // Only record types (classes, structs etc.) are ignored.
2785     if (Ty->isRecordType()) {
2786       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2787       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2788         return true;
2789     }
2790   }
2791   return false;
2792 }
2793 
2794 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2795                                    StringRef Category) const {
2796   const auto &XRayFilter = getContext().getXRayFilter();
2797   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2798   auto Attr = ImbueAttr::NONE;
2799   if (Loc.isValid())
2800     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2801   if (Attr == ImbueAttr::NONE)
2802     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2803   switch (Attr) {
2804   case ImbueAttr::NONE:
2805     return false;
2806   case ImbueAttr::ALWAYS:
2807     Fn->addFnAttr("function-instrument", "xray-always");
2808     break;
2809   case ImbueAttr::ALWAYS_ARG1:
2810     Fn->addFnAttr("function-instrument", "xray-always");
2811     Fn->addFnAttr("xray-log-args", "1");
2812     break;
2813   case ImbueAttr::NEVER:
2814     Fn->addFnAttr("function-instrument", "xray-never");
2815     break;
2816   }
2817   return true;
2818 }
2819 
2820 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2821                                            SourceLocation Loc) const {
2822   const auto &ProfileList = getContext().getProfileList();
2823   // If the profile list is empty, then instrument everything.
2824   if (ProfileList.isEmpty())
2825     return false;
2826   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2827   // First, check the function name.
2828   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2829   if (V.hasValue())
2830     return *V;
2831   // Next, check the source location.
2832   if (Loc.isValid()) {
2833     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2834     if (V.hasValue())
2835       return *V;
2836   }
2837   // If location is unknown, this may be a compiler-generated function. Assume
2838   // it's located in the main file.
2839   auto &SM = Context.getSourceManager();
2840   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2841     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2842     if (V.hasValue())
2843       return *V;
2844   }
2845   return ProfileList.getDefault();
2846 }
2847 
2848 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2849   // Never defer when EmitAllDecls is specified.
2850   if (LangOpts.EmitAllDecls)
2851     return true;
2852 
2853   if (CodeGenOpts.KeepStaticConsts) {
2854     const auto *VD = dyn_cast<VarDecl>(Global);
2855     if (VD && VD->getType().isConstQualified() &&
2856         VD->getStorageDuration() == SD_Static)
2857       return true;
2858   }
2859 
2860   return getContext().DeclMustBeEmitted(Global);
2861 }
2862 
2863 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2864   // In OpenMP 5.0 variables and function may be marked as
2865   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2866   // that they must be emitted on the host/device. To be sure we need to have
2867   // seen a declare target with an explicit mentioning of the function, we know
2868   // we have if the level of the declare target attribute is -1. Note that we
2869   // check somewhere else if we should emit this at all.
2870   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2871     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2872         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2873     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2874       return false;
2875   }
2876 
2877   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2878     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2879       // Implicit template instantiations may change linkage if they are later
2880       // explicitly instantiated, so they should not be emitted eagerly.
2881       return false;
2882   }
2883   if (const auto *VD = dyn_cast<VarDecl>(Global))
2884     if (Context.getInlineVariableDefinitionKind(VD) ==
2885         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2886       // A definition of an inline constexpr static data member may change
2887       // linkage later if it's redeclared outside the class.
2888       return false;
2889   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2890   // codegen for global variables, because they may be marked as threadprivate.
2891   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2892       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2893       !isTypeConstant(Global->getType(), false) &&
2894       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2895     return false;
2896 
2897   return true;
2898 }
2899 
2900 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2901   StringRef Name = getMangledName(GD);
2902 
2903   // The UUID descriptor should be pointer aligned.
2904   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2905 
2906   // Look for an existing global.
2907   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2908     return ConstantAddress(GV, GV->getValueType(), Alignment);
2909 
2910   ConstantEmitter Emitter(*this);
2911   llvm::Constant *Init;
2912 
2913   APValue &V = GD->getAsAPValue();
2914   if (!V.isAbsent()) {
2915     // If possible, emit the APValue version of the initializer. In particular,
2916     // this gets the type of the constant right.
2917     Init = Emitter.emitForInitializer(
2918         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2919   } else {
2920     // As a fallback, directly construct the constant.
2921     // FIXME: This may get padding wrong under esoteric struct layout rules.
2922     // MSVC appears to create a complete type 'struct __s_GUID' that it
2923     // presumably uses to represent these constants.
2924     MSGuidDecl::Parts Parts = GD->getParts();
2925     llvm::Constant *Fields[4] = {
2926         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2927         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2928         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2929         llvm::ConstantDataArray::getRaw(
2930             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2931             Int8Ty)};
2932     Init = llvm::ConstantStruct::getAnon(Fields);
2933   }
2934 
2935   auto *GV = new llvm::GlobalVariable(
2936       getModule(), Init->getType(),
2937       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2938   if (supportsCOMDAT())
2939     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2940   setDSOLocal(GV);
2941 
2942   if (!V.isAbsent()) {
2943     Emitter.finalize(GV);
2944     return ConstantAddress(GV, GV->getValueType(), Alignment);
2945   }
2946 
2947   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2948   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
2949       GV, Ty->getPointerTo(GV->getAddressSpace()));
2950   return ConstantAddress(Addr, Ty, Alignment);
2951 }
2952 
2953 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
2954     const UnnamedGlobalConstantDecl *GCD) {
2955   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
2956 
2957   llvm::GlobalVariable **Entry = nullptr;
2958   Entry = &UnnamedGlobalConstantDeclMap[GCD];
2959   if (*Entry)
2960     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
2961 
2962   ConstantEmitter Emitter(*this);
2963   llvm::Constant *Init;
2964 
2965   const APValue &V = GCD->getValue();
2966 
2967   assert(!V.isAbsent());
2968   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
2969                                     GCD->getType());
2970 
2971   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
2972                                       /*isConstant=*/true,
2973                                       llvm::GlobalValue::PrivateLinkage, Init,
2974                                       ".constant");
2975   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2976   GV->setAlignment(Alignment.getAsAlign());
2977 
2978   Emitter.finalize(GV);
2979 
2980   *Entry = GV;
2981   return ConstantAddress(GV, GV->getValueType(), Alignment);
2982 }
2983 
2984 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2985     const TemplateParamObjectDecl *TPO) {
2986   StringRef Name = getMangledName(TPO);
2987   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2988 
2989   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2990     return ConstantAddress(GV, GV->getValueType(), Alignment);
2991 
2992   ConstantEmitter Emitter(*this);
2993   llvm::Constant *Init = Emitter.emitForInitializer(
2994         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2995 
2996   if (!Init) {
2997     ErrorUnsupported(TPO, "template parameter object");
2998     return ConstantAddress::invalid();
2999   }
3000 
3001   auto *GV = new llvm::GlobalVariable(
3002       getModule(), Init->getType(),
3003       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3004   if (supportsCOMDAT())
3005     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3006   Emitter.finalize(GV);
3007 
3008   return ConstantAddress(GV, GV->getValueType(), Alignment);
3009 }
3010 
3011 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3012   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3013   assert(AA && "No alias?");
3014 
3015   CharUnits Alignment = getContext().getDeclAlign(VD);
3016   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3017 
3018   // See if there is already something with the target's name in the module.
3019   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3020   if (Entry) {
3021     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3022     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3023     return ConstantAddress(Ptr, DeclTy, Alignment);
3024   }
3025 
3026   llvm::Constant *Aliasee;
3027   if (isa<llvm::FunctionType>(DeclTy))
3028     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3029                                       GlobalDecl(cast<FunctionDecl>(VD)),
3030                                       /*ForVTable=*/false);
3031   else
3032     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3033                                     nullptr);
3034 
3035   auto *F = cast<llvm::GlobalValue>(Aliasee);
3036   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3037   WeakRefReferences.insert(F);
3038 
3039   return ConstantAddress(Aliasee, DeclTy, Alignment);
3040 }
3041 
3042 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3043   const auto *Global = cast<ValueDecl>(GD.getDecl());
3044 
3045   // Weak references don't produce any output by themselves.
3046   if (Global->hasAttr<WeakRefAttr>())
3047     return;
3048 
3049   // If this is an alias definition (which otherwise looks like a declaration)
3050   // emit it now.
3051   if (Global->hasAttr<AliasAttr>())
3052     return EmitAliasDefinition(GD);
3053 
3054   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3055   if (Global->hasAttr<IFuncAttr>())
3056     return emitIFuncDefinition(GD);
3057 
3058   // If this is a cpu_dispatch multiversion function, emit the resolver.
3059   if (Global->hasAttr<CPUDispatchAttr>())
3060     return emitCPUDispatchDefinition(GD);
3061 
3062   // If this is CUDA, be selective about which declarations we emit.
3063   if (LangOpts.CUDA) {
3064     if (LangOpts.CUDAIsDevice) {
3065       if (!Global->hasAttr<CUDADeviceAttr>() &&
3066           !Global->hasAttr<CUDAGlobalAttr>() &&
3067           !Global->hasAttr<CUDAConstantAttr>() &&
3068           !Global->hasAttr<CUDASharedAttr>() &&
3069           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3070           !Global->getType()->isCUDADeviceBuiltinTextureType())
3071         return;
3072     } else {
3073       // We need to emit host-side 'shadows' for all global
3074       // device-side variables because the CUDA runtime needs their
3075       // size and host-side address in order to provide access to
3076       // their device-side incarnations.
3077 
3078       // So device-only functions are the only things we skip.
3079       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3080           Global->hasAttr<CUDADeviceAttr>())
3081         return;
3082 
3083       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3084              "Expected Variable or Function");
3085     }
3086   }
3087 
3088   if (LangOpts.OpenMP) {
3089     // If this is OpenMP, check if it is legal to emit this global normally.
3090     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3091       return;
3092     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3093       if (MustBeEmitted(Global))
3094         EmitOMPDeclareReduction(DRD);
3095       return;
3096     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3097       if (MustBeEmitted(Global))
3098         EmitOMPDeclareMapper(DMD);
3099       return;
3100     }
3101   }
3102 
3103   // Ignore declarations, they will be emitted on their first use.
3104   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3105     // Forward declarations are emitted lazily on first use.
3106     if (!FD->doesThisDeclarationHaveABody()) {
3107       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3108         return;
3109 
3110       StringRef MangledName = getMangledName(GD);
3111 
3112       // Compute the function info and LLVM type.
3113       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3114       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3115 
3116       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3117                               /*DontDefer=*/false);
3118       return;
3119     }
3120   } else {
3121     const auto *VD = cast<VarDecl>(Global);
3122     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3123     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3124         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3125       if (LangOpts.OpenMP) {
3126         // Emit declaration of the must-be-emitted declare target variable.
3127         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3128                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3129           bool UnifiedMemoryEnabled =
3130               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3131           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3132               !UnifiedMemoryEnabled) {
3133             (void)GetAddrOfGlobalVar(VD);
3134           } else {
3135             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3136                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3137                      UnifiedMemoryEnabled)) &&
3138                    "Link clause or to clause with unified memory expected.");
3139             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3140           }
3141 
3142           return;
3143         }
3144       }
3145       // If this declaration may have caused an inline variable definition to
3146       // change linkage, make sure that it's emitted.
3147       if (Context.getInlineVariableDefinitionKind(VD) ==
3148           ASTContext::InlineVariableDefinitionKind::Strong)
3149         GetAddrOfGlobalVar(VD);
3150       return;
3151     }
3152   }
3153 
3154   // Defer code generation to first use when possible, e.g. if this is an inline
3155   // function. If the global must always be emitted, do it eagerly if possible
3156   // to benefit from cache locality.
3157   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3158     // Emit the definition if it can't be deferred.
3159     EmitGlobalDefinition(GD);
3160     return;
3161   }
3162 
3163   // If we're deferring emission of a C++ variable with an
3164   // initializer, remember the order in which it appeared in the file.
3165   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3166       cast<VarDecl>(Global)->hasInit()) {
3167     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3168     CXXGlobalInits.push_back(nullptr);
3169   }
3170 
3171   StringRef MangledName = getMangledName(GD);
3172   if (GetGlobalValue(MangledName) != nullptr) {
3173     // The value has already been used and should therefore be emitted.
3174     addDeferredDeclToEmit(GD);
3175   } else if (MustBeEmitted(Global)) {
3176     // The value must be emitted, but cannot be emitted eagerly.
3177     assert(!MayBeEmittedEagerly(Global));
3178     addDeferredDeclToEmit(GD);
3179   } else {
3180     // Otherwise, remember that we saw a deferred decl with this name.  The
3181     // first use of the mangled name will cause it to move into
3182     // DeferredDeclsToEmit.
3183     DeferredDecls[MangledName] = GD;
3184   }
3185 }
3186 
3187 // Check if T is a class type with a destructor that's not dllimport.
3188 static bool HasNonDllImportDtor(QualType T) {
3189   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3190     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3191       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3192         return true;
3193 
3194   return false;
3195 }
3196 
3197 namespace {
3198   struct FunctionIsDirectlyRecursive
3199       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3200     const StringRef Name;
3201     const Builtin::Context &BI;
3202     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3203         : Name(N), BI(C) {}
3204 
3205     bool VisitCallExpr(const CallExpr *E) {
3206       const FunctionDecl *FD = E->getDirectCallee();
3207       if (!FD)
3208         return false;
3209       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3210       if (Attr && Name == Attr->getLabel())
3211         return true;
3212       unsigned BuiltinID = FD->getBuiltinID();
3213       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3214         return false;
3215       StringRef BuiltinName = BI.getName(BuiltinID);
3216       if (BuiltinName.startswith("__builtin_") &&
3217           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3218         return true;
3219       }
3220       return false;
3221     }
3222 
3223     bool VisitStmt(const Stmt *S) {
3224       for (const Stmt *Child : S->children())
3225         if (Child && this->Visit(Child))
3226           return true;
3227       return false;
3228     }
3229   };
3230 
3231   // Make sure we're not referencing non-imported vars or functions.
3232   struct DLLImportFunctionVisitor
3233       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3234     bool SafeToInline = true;
3235 
3236     bool shouldVisitImplicitCode() const { return true; }
3237 
3238     bool VisitVarDecl(VarDecl *VD) {
3239       if (VD->getTLSKind()) {
3240         // A thread-local variable cannot be imported.
3241         SafeToInline = false;
3242         return SafeToInline;
3243       }
3244 
3245       // A variable definition might imply a destructor call.
3246       if (VD->isThisDeclarationADefinition())
3247         SafeToInline = !HasNonDllImportDtor(VD->getType());
3248 
3249       return SafeToInline;
3250     }
3251 
3252     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3253       if (const auto *D = E->getTemporary()->getDestructor())
3254         SafeToInline = D->hasAttr<DLLImportAttr>();
3255       return SafeToInline;
3256     }
3257 
3258     bool VisitDeclRefExpr(DeclRefExpr *E) {
3259       ValueDecl *VD = E->getDecl();
3260       if (isa<FunctionDecl>(VD))
3261         SafeToInline = VD->hasAttr<DLLImportAttr>();
3262       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3263         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3264       return SafeToInline;
3265     }
3266 
3267     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3268       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3269       return SafeToInline;
3270     }
3271 
3272     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3273       CXXMethodDecl *M = E->getMethodDecl();
3274       if (!M) {
3275         // Call through a pointer to member function. This is safe to inline.
3276         SafeToInline = true;
3277       } else {
3278         SafeToInline = M->hasAttr<DLLImportAttr>();
3279       }
3280       return SafeToInline;
3281     }
3282 
3283     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3284       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3285       return SafeToInline;
3286     }
3287 
3288     bool VisitCXXNewExpr(CXXNewExpr *E) {
3289       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3290       return SafeToInline;
3291     }
3292   };
3293 }
3294 
3295 // isTriviallyRecursive - Check if this function calls another
3296 // decl that, because of the asm attribute or the other decl being a builtin,
3297 // ends up pointing to itself.
3298 bool
3299 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3300   StringRef Name;
3301   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3302     // asm labels are a special kind of mangling we have to support.
3303     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3304     if (!Attr)
3305       return false;
3306     Name = Attr->getLabel();
3307   } else {
3308     Name = FD->getName();
3309   }
3310 
3311   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3312   const Stmt *Body = FD->getBody();
3313   return Body ? Walker.Visit(Body) : false;
3314 }
3315 
3316 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3317   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3318     return true;
3319   const auto *F = cast<FunctionDecl>(GD.getDecl());
3320   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3321     return false;
3322 
3323   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3324     // Check whether it would be safe to inline this dllimport function.
3325     DLLImportFunctionVisitor Visitor;
3326     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3327     if (!Visitor.SafeToInline)
3328       return false;
3329 
3330     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3331       // Implicit destructor invocations aren't captured in the AST, so the
3332       // check above can't see them. Check for them manually here.
3333       for (const Decl *Member : Dtor->getParent()->decls())
3334         if (isa<FieldDecl>(Member))
3335           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3336             return false;
3337       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3338         if (HasNonDllImportDtor(B.getType()))
3339           return false;
3340     }
3341   }
3342 
3343   // Inline builtins declaration must be emitted. They often are fortified
3344   // functions.
3345   if (F->isInlineBuiltinDeclaration())
3346     return true;
3347 
3348   // PR9614. Avoid cases where the source code is lying to us. An available
3349   // externally function should have an equivalent function somewhere else,
3350   // but a function that calls itself through asm label/`__builtin_` trickery is
3351   // clearly not equivalent to the real implementation.
3352   // This happens in glibc's btowc and in some configure checks.
3353   return !isTriviallyRecursive(F);
3354 }
3355 
3356 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3357   return CodeGenOpts.OptimizationLevel > 0;
3358 }
3359 
3360 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3361                                                        llvm::GlobalValue *GV) {
3362   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3363 
3364   if (FD->isCPUSpecificMultiVersion()) {
3365     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3366     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3367       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3368   } else if (FD->isTargetClonesMultiVersion()) {
3369     auto *Clone = FD->getAttr<TargetClonesAttr>();
3370     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3371       if (Clone->isFirstOfVersion(I))
3372         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3373     // Ensure that the resolver function is also emitted.
3374     GetOrCreateMultiVersionResolver(GD);
3375   } else
3376     EmitGlobalFunctionDefinition(GD, GV);
3377 }
3378 
3379 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3380   const auto *D = cast<ValueDecl>(GD.getDecl());
3381 
3382   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3383                                  Context.getSourceManager(),
3384                                  "Generating code for declaration");
3385 
3386   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3387     // At -O0, don't generate IR for functions with available_externally
3388     // linkage.
3389     if (!shouldEmitFunction(GD))
3390       return;
3391 
3392     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3393       std::string Name;
3394       llvm::raw_string_ostream OS(Name);
3395       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3396                                /*Qualified=*/true);
3397       return Name;
3398     });
3399 
3400     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3401       // Make sure to emit the definition(s) before we emit the thunks.
3402       // This is necessary for the generation of certain thunks.
3403       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3404         ABI->emitCXXStructor(GD);
3405       else if (FD->isMultiVersion())
3406         EmitMultiVersionFunctionDefinition(GD, GV);
3407       else
3408         EmitGlobalFunctionDefinition(GD, GV);
3409 
3410       if (Method->isVirtual())
3411         getVTables().EmitThunks(GD);
3412 
3413       return;
3414     }
3415 
3416     if (FD->isMultiVersion())
3417       return EmitMultiVersionFunctionDefinition(GD, GV);
3418     return EmitGlobalFunctionDefinition(GD, GV);
3419   }
3420 
3421   if (const auto *VD = dyn_cast<VarDecl>(D))
3422     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3423 
3424   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3425 }
3426 
3427 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3428                                                       llvm::Function *NewFn);
3429 
3430 static unsigned
3431 TargetMVPriority(const TargetInfo &TI,
3432                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3433   unsigned Priority = 0;
3434   for (StringRef Feat : RO.Conditions.Features)
3435     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3436 
3437   if (!RO.Conditions.Architecture.empty())
3438     Priority = std::max(
3439         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3440   return Priority;
3441 }
3442 
3443 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3444 // TU can forward declare the function without causing problems.  Particularly
3445 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3446 // work with internal linkage functions, so that the same function name can be
3447 // used with internal linkage in multiple TUs.
3448 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3449                                                        GlobalDecl GD) {
3450   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3451   if (FD->getFormalLinkage() == InternalLinkage)
3452     return llvm::GlobalValue::InternalLinkage;
3453   return llvm::GlobalValue::WeakODRLinkage;
3454 }
3455 
3456 void CodeGenModule::emitMultiVersionFunctions() {
3457   std::vector<GlobalDecl> MVFuncsToEmit;
3458   MultiVersionFuncs.swap(MVFuncsToEmit);
3459   for (GlobalDecl GD : MVFuncsToEmit) {
3460     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3461     assert(FD && "Expected a FunctionDecl");
3462 
3463     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3464     if (FD->isTargetMultiVersion()) {
3465       getContext().forEachMultiversionedFunctionVersion(
3466           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3467             GlobalDecl CurGD{
3468                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3469             StringRef MangledName = getMangledName(CurGD);
3470             llvm::Constant *Func = GetGlobalValue(MangledName);
3471             if (!Func) {
3472               if (CurFD->isDefined()) {
3473                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3474                 Func = GetGlobalValue(MangledName);
3475               } else {
3476                 const CGFunctionInfo &FI =
3477                     getTypes().arrangeGlobalDeclaration(GD);
3478                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3479                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3480                                          /*DontDefer=*/false, ForDefinition);
3481               }
3482               assert(Func && "This should have just been created");
3483             }
3484 
3485             const auto *TA = CurFD->getAttr<TargetAttr>();
3486             llvm::SmallVector<StringRef, 8> Feats;
3487             TA->getAddedFeatures(Feats);
3488 
3489             Options.emplace_back(cast<llvm::Function>(Func),
3490                                  TA->getArchitecture(), Feats);
3491           });
3492     } else if (FD->isTargetClonesMultiVersion()) {
3493       const auto *TC = FD->getAttr<TargetClonesAttr>();
3494       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3495            ++VersionIndex) {
3496         if (!TC->isFirstOfVersion(VersionIndex))
3497           continue;
3498         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3499                          VersionIndex};
3500         StringRef Version = TC->getFeatureStr(VersionIndex);
3501         StringRef MangledName = getMangledName(CurGD);
3502         llvm::Constant *Func = GetGlobalValue(MangledName);
3503         if (!Func) {
3504           if (FD->isDefined()) {
3505             EmitGlobalFunctionDefinition(CurGD, nullptr);
3506             Func = GetGlobalValue(MangledName);
3507           } else {
3508             const CGFunctionInfo &FI =
3509                 getTypes().arrangeGlobalDeclaration(CurGD);
3510             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3511             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3512                                      /*DontDefer=*/false, ForDefinition);
3513           }
3514           assert(Func && "This should have just been created");
3515         }
3516 
3517         StringRef Architecture;
3518         llvm::SmallVector<StringRef, 1> Feature;
3519 
3520         if (Version.startswith("arch="))
3521           Architecture = Version.drop_front(sizeof("arch=") - 1);
3522         else if (Version != "default")
3523           Feature.push_back(Version);
3524 
3525         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3526       }
3527     } else {
3528       assert(0 && "Expected a target or target_clones multiversion function");
3529       continue;
3530     }
3531 
3532     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3533     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3534       ResolverConstant = IFunc->getResolver();
3535     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3536 
3537     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3538 
3539     if (supportsCOMDAT())
3540       ResolverFunc->setComdat(
3541           getModule().getOrInsertComdat(ResolverFunc->getName()));
3542 
3543     const TargetInfo &TI = getTarget();
3544     llvm::stable_sort(
3545         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3546                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3547           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3548         });
3549     CodeGenFunction CGF(*this);
3550     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3551   }
3552 
3553   // Ensure that any additions to the deferred decls list caused by emitting a
3554   // variant are emitted.  This can happen when the variant itself is inline and
3555   // calls a function without linkage.
3556   if (!MVFuncsToEmit.empty())
3557     EmitDeferred();
3558 
3559   // Ensure that any additions to the multiversion funcs list from either the
3560   // deferred decls or the multiversion functions themselves are emitted.
3561   if (!MultiVersionFuncs.empty())
3562     emitMultiVersionFunctions();
3563 }
3564 
3565 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3566   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3567   assert(FD && "Not a FunctionDecl?");
3568   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3569   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3570   assert(DD && "Not a cpu_dispatch Function?");
3571 
3572   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3573   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3574 
3575   StringRef ResolverName = getMangledName(GD);
3576   UpdateMultiVersionNames(GD, FD, ResolverName);
3577 
3578   llvm::Type *ResolverType;
3579   GlobalDecl ResolverGD;
3580   if (getTarget().supportsIFunc()) {
3581     ResolverType = llvm::FunctionType::get(
3582         llvm::PointerType::get(DeclTy,
3583                                Context.getTargetAddressSpace(FD->getType())),
3584         false);
3585   }
3586   else {
3587     ResolverType = DeclTy;
3588     ResolverGD = GD;
3589   }
3590 
3591   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3592       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3593   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3594   if (supportsCOMDAT())
3595     ResolverFunc->setComdat(
3596         getModule().getOrInsertComdat(ResolverFunc->getName()));
3597 
3598   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3599   const TargetInfo &Target = getTarget();
3600   unsigned Index = 0;
3601   for (const IdentifierInfo *II : DD->cpus()) {
3602     // Get the name of the target function so we can look it up/create it.
3603     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3604                               getCPUSpecificMangling(*this, II->getName());
3605 
3606     llvm::Constant *Func = GetGlobalValue(MangledName);
3607 
3608     if (!Func) {
3609       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3610       if (ExistingDecl.getDecl() &&
3611           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3612         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3613         Func = GetGlobalValue(MangledName);
3614       } else {
3615         if (!ExistingDecl.getDecl())
3616           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3617 
3618       Func = GetOrCreateLLVMFunction(
3619           MangledName, DeclTy, ExistingDecl,
3620           /*ForVTable=*/false, /*DontDefer=*/true,
3621           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3622       }
3623     }
3624 
3625     llvm::SmallVector<StringRef, 32> Features;
3626     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3627     llvm::transform(Features, Features.begin(),
3628                     [](StringRef Str) { return Str.substr(1); });
3629     llvm::erase_if(Features, [&Target](StringRef Feat) {
3630       return !Target.validateCpuSupports(Feat);
3631     });
3632     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3633     ++Index;
3634   }
3635 
3636   llvm::stable_sort(
3637       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3638                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3639         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3640                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3641       });
3642 
3643   // If the list contains multiple 'default' versions, such as when it contains
3644   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3645   // always run on at least a 'pentium'). We do this by deleting the 'least
3646   // advanced' (read, lowest mangling letter).
3647   while (Options.size() > 1 &&
3648          llvm::X86::getCpuSupportsMask(
3649              (Options.end() - 2)->Conditions.Features) == 0) {
3650     StringRef LHSName = (Options.end() - 2)->Function->getName();
3651     StringRef RHSName = (Options.end() - 1)->Function->getName();
3652     if (LHSName.compare(RHSName) < 0)
3653       Options.erase(Options.end() - 2);
3654     else
3655       Options.erase(Options.end() - 1);
3656   }
3657 
3658   CodeGenFunction CGF(*this);
3659   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3660 
3661   if (getTarget().supportsIFunc()) {
3662     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3663     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3664 
3665     // Fix up function declarations that were created for cpu_specific before
3666     // cpu_dispatch was known
3667     if (!dyn_cast<llvm::GlobalIFunc>(IFunc)) {
3668       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3669       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3670                                            &getModule());
3671       GI->takeName(IFunc);
3672       IFunc->replaceAllUsesWith(GI);
3673       IFunc->eraseFromParent();
3674       IFunc = GI;
3675     }
3676 
3677     std::string AliasName = getMangledNameImpl(
3678         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3679     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3680     if (!AliasFunc) {
3681       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3682                                            &getModule());
3683       SetCommonAttributes(GD, GA);
3684     }
3685   }
3686 }
3687 
3688 /// If a dispatcher for the specified mangled name is not in the module, create
3689 /// and return an llvm Function with the specified type.
3690 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3691   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3692   assert(FD && "Not a FunctionDecl?");
3693 
3694   std::string MangledName =
3695       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3696 
3697   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3698   // a separate resolver).
3699   std::string ResolverName = MangledName;
3700   if (getTarget().supportsIFunc())
3701     ResolverName += ".ifunc";
3702   else if (FD->isTargetMultiVersion())
3703     ResolverName += ".resolver";
3704 
3705   // If the resolver has already been created, just return it.
3706   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3707     return ResolverGV;
3708 
3709   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3710   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3711 
3712   // The resolver needs to be created. For target and target_clones, defer
3713   // creation until the end of the TU.
3714   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3715     MultiVersionFuncs.push_back(GD);
3716 
3717   // For cpu_specific, don't create an ifunc yet because we don't know if the
3718   // cpu_dispatch will be emitted in this translation unit.
3719   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3720     llvm::Type *ResolverType = llvm::FunctionType::get(
3721         llvm::PointerType::get(
3722             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3723         false);
3724     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3725         MangledName + ".resolver", ResolverType, GlobalDecl{},
3726         /*ForVTable=*/false);
3727     llvm::GlobalIFunc *GIF =
3728         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3729                                   "", Resolver, &getModule());
3730     GIF->setName(ResolverName);
3731     SetCommonAttributes(FD, GIF);
3732 
3733     return GIF;
3734   }
3735 
3736   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3737       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3738   assert(isa<llvm::GlobalValue>(Resolver) &&
3739          "Resolver should be created for the first time");
3740   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3741   return Resolver;
3742 }
3743 
3744 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3745 /// module, create and return an llvm Function with the specified type. If there
3746 /// is something in the module with the specified name, return it potentially
3747 /// bitcasted to the right type.
3748 ///
3749 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3750 /// to set the attributes on the function when it is first created.
3751 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3752     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3753     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3754     ForDefinition_t IsForDefinition) {
3755   const Decl *D = GD.getDecl();
3756 
3757   // Any attempts to use a MultiVersion function should result in retrieving
3758   // the iFunc instead. Name Mangling will handle the rest of the changes.
3759   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3760     // For the device mark the function as one that should be emitted.
3761     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3762         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3763         !DontDefer && !IsForDefinition) {
3764       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3765         GlobalDecl GDDef;
3766         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3767           GDDef = GlobalDecl(CD, GD.getCtorType());
3768         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3769           GDDef = GlobalDecl(DD, GD.getDtorType());
3770         else
3771           GDDef = GlobalDecl(FDDef);
3772         EmitGlobal(GDDef);
3773       }
3774     }
3775 
3776     if (FD->isMultiVersion()) {
3777       UpdateMultiVersionNames(GD, FD, MangledName);
3778       if (!IsForDefinition)
3779         return GetOrCreateMultiVersionResolver(GD);
3780     }
3781   }
3782 
3783   // Lookup the entry, lazily creating it if necessary.
3784   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3785   if (Entry) {
3786     if (WeakRefReferences.erase(Entry)) {
3787       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3788       if (FD && !FD->hasAttr<WeakAttr>())
3789         Entry->setLinkage(llvm::Function::ExternalLinkage);
3790     }
3791 
3792     // Handle dropped DLL attributes.
3793     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3794       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3795       setDSOLocal(Entry);
3796     }
3797 
3798     // If there are two attempts to define the same mangled name, issue an
3799     // error.
3800     if (IsForDefinition && !Entry->isDeclaration()) {
3801       GlobalDecl OtherGD;
3802       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3803       // to make sure that we issue an error only once.
3804       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3805           (GD.getCanonicalDecl().getDecl() !=
3806            OtherGD.getCanonicalDecl().getDecl()) &&
3807           DiagnosedConflictingDefinitions.insert(GD).second) {
3808         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3809             << MangledName;
3810         getDiags().Report(OtherGD.getDecl()->getLocation(),
3811                           diag::note_previous_definition);
3812       }
3813     }
3814 
3815     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3816         (Entry->getValueType() == Ty)) {
3817       return Entry;
3818     }
3819 
3820     // Make sure the result is of the correct type.
3821     // (If function is requested for a definition, we always need to create a new
3822     // function, not just return a bitcast.)
3823     if (!IsForDefinition)
3824       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3825   }
3826 
3827   // This function doesn't have a complete type (for example, the return
3828   // type is an incomplete struct). Use a fake type instead, and make
3829   // sure not to try to set attributes.
3830   bool IsIncompleteFunction = false;
3831 
3832   llvm::FunctionType *FTy;
3833   if (isa<llvm::FunctionType>(Ty)) {
3834     FTy = cast<llvm::FunctionType>(Ty);
3835   } else {
3836     FTy = llvm::FunctionType::get(VoidTy, false);
3837     IsIncompleteFunction = true;
3838   }
3839 
3840   llvm::Function *F =
3841       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3842                              Entry ? StringRef() : MangledName, &getModule());
3843 
3844   // If we already created a function with the same mangled name (but different
3845   // type) before, take its name and add it to the list of functions to be
3846   // replaced with F at the end of CodeGen.
3847   //
3848   // This happens if there is a prototype for a function (e.g. "int f()") and
3849   // then a definition of a different type (e.g. "int f(int x)").
3850   if (Entry) {
3851     F->takeName(Entry);
3852 
3853     // This might be an implementation of a function without a prototype, in
3854     // which case, try to do special replacement of calls which match the new
3855     // prototype.  The really key thing here is that we also potentially drop
3856     // arguments from the call site so as to make a direct call, which makes the
3857     // inliner happier and suppresses a number of optimizer warnings (!) about
3858     // dropping arguments.
3859     if (!Entry->use_empty()) {
3860       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3861       Entry->removeDeadConstantUsers();
3862     }
3863 
3864     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3865         F, Entry->getValueType()->getPointerTo());
3866     addGlobalValReplacement(Entry, BC);
3867   }
3868 
3869   assert(F->getName() == MangledName && "name was uniqued!");
3870   if (D)
3871     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3872   if (ExtraAttrs.hasFnAttrs()) {
3873     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3874     F->addFnAttrs(B);
3875   }
3876 
3877   if (!DontDefer) {
3878     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3879     // each other bottoming out with the base dtor.  Therefore we emit non-base
3880     // dtors on usage, even if there is no dtor definition in the TU.
3881     if (D && isa<CXXDestructorDecl>(D) &&
3882         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3883                                            GD.getDtorType()))
3884       addDeferredDeclToEmit(GD);
3885 
3886     // This is the first use or definition of a mangled name.  If there is a
3887     // deferred decl with this name, remember that we need to emit it at the end
3888     // of the file.
3889     auto DDI = DeferredDecls.find(MangledName);
3890     if (DDI != DeferredDecls.end()) {
3891       // Move the potentially referenced deferred decl to the
3892       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3893       // don't need it anymore).
3894       addDeferredDeclToEmit(DDI->second);
3895       DeferredDecls.erase(DDI);
3896 
3897       // Otherwise, there are cases we have to worry about where we're
3898       // using a declaration for which we must emit a definition but where
3899       // we might not find a top-level definition:
3900       //   - member functions defined inline in their classes
3901       //   - friend functions defined inline in some class
3902       //   - special member functions with implicit definitions
3903       // If we ever change our AST traversal to walk into class methods,
3904       // this will be unnecessary.
3905       //
3906       // We also don't emit a definition for a function if it's going to be an
3907       // entry in a vtable, unless it's already marked as used.
3908     } else if (getLangOpts().CPlusPlus && D) {
3909       // Look for a declaration that's lexically in a record.
3910       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3911            FD = FD->getPreviousDecl()) {
3912         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3913           if (FD->doesThisDeclarationHaveABody()) {
3914             addDeferredDeclToEmit(GD.getWithDecl(FD));
3915             break;
3916           }
3917         }
3918       }
3919     }
3920   }
3921 
3922   // Make sure the result is of the requested type.
3923   if (!IsIncompleteFunction) {
3924     assert(F->getFunctionType() == Ty);
3925     return F;
3926   }
3927 
3928   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3929   return llvm::ConstantExpr::getBitCast(F, PTy);
3930 }
3931 
3932 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3933 /// non-null, then this function will use the specified type if it has to
3934 /// create it (this occurs when we see a definition of the function).
3935 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3936                                                  llvm::Type *Ty,
3937                                                  bool ForVTable,
3938                                                  bool DontDefer,
3939                                               ForDefinition_t IsForDefinition) {
3940   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3941          "consteval function should never be emitted");
3942   // If there was no specific requested type, just convert it now.
3943   if (!Ty) {
3944     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3945     Ty = getTypes().ConvertType(FD->getType());
3946   }
3947 
3948   // Devirtualized destructor calls may come through here instead of via
3949   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3950   // of the complete destructor when necessary.
3951   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3952     if (getTarget().getCXXABI().isMicrosoft() &&
3953         GD.getDtorType() == Dtor_Complete &&
3954         DD->getParent()->getNumVBases() == 0)
3955       GD = GlobalDecl(DD, Dtor_Base);
3956   }
3957 
3958   StringRef MangledName = getMangledName(GD);
3959   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3960                                     /*IsThunk=*/false, llvm::AttributeList(),
3961                                     IsForDefinition);
3962   // Returns kernel handle for HIP kernel stub function.
3963   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3964       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3965     auto *Handle = getCUDARuntime().getKernelHandle(
3966         cast<llvm::Function>(F->stripPointerCasts()), GD);
3967     if (IsForDefinition)
3968       return F;
3969     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3970   }
3971   return F;
3972 }
3973 
3974 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
3975   llvm::GlobalValue *F =
3976       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
3977 
3978   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
3979                                         llvm::Type::getInt8PtrTy(VMContext));
3980 }
3981 
3982 static const FunctionDecl *
3983 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3984   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3985   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3986 
3987   IdentifierInfo &CII = C.Idents.get(Name);
3988   for (const auto *Result : DC->lookup(&CII))
3989     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3990       return FD;
3991 
3992   if (!C.getLangOpts().CPlusPlus)
3993     return nullptr;
3994 
3995   // Demangle the premangled name from getTerminateFn()
3996   IdentifierInfo &CXXII =
3997       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3998           ? C.Idents.get("terminate")
3999           : C.Idents.get(Name);
4000 
4001   for (const auto &N : {"__cxxabiv1", "std"}) {
4002     IdentifierInfo &NS = C.Idents.get(N);
4003     for (const auto *Result : DC->lookup(&NS)) {
4004       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4005       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4006         for (const auto *Result : LSD->lookup(&NS))
4007           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4008             break;
4009 
4010       if (ND)
4011         for (const auto *Result : ND->lookup(&CXXII))
4012           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4013             return FD;
4014     }
4015   }
4016 
4017   return nullptr;
4018 }
4019 
4020 /// CreateRuntimeFunction - Create a new runtime function with the specified
4021 /// type and name.
4022 llvm::FunctionCallee
4023 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4024                                      llvm::AttributeList ExtraAttrs, bool Local,
4025                                      bool AssumeConvergent) {
4026   if (AssumeConvergent) {
4027     ExtraAttrs =
4028         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4029   }
4030 
4031   llvm::Constant *C =
4032       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4033                               /*DontDefer=*/false, /*IsThunk=*/false,
4034                               ExtraAttrs);
4035 
4036   if (auto *F = dyn_cast<llvm::Function>(C)) {
4037     if (F->empty()) {
4038       F->setCallingConv(getRuntimeCC());
4039 
4040       // In Windows Itanium environments, try to mark runtime functions
4041       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4042       // will link their standard library statically or dynamically. Marking
4043       // functions imported when they are not imported can cause linker errors
4044       // and warnings.
4045       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4046           !getCodeGenOpts().LTOVisibilityPublicStd) {
4047         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4048         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4049           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4050           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4051         }
4052       }
4053       setDSOLocal(F);
4054     }
4055   }
4056 
4057   return {FTy, C};
4058 }
4059 
4060 /// isTypeConstant - Determine whether an object of this type can be emitted
4061 /// as a constant.
4062 ///
4063 /// If ExcludeCtor is true, the duration when the object's constructor runs
4064 /// will not be considered. The caller will need to verify that the object is
4065 /// not written to during its construction.
4066 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4067   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4068     return false;
4069 
4070   if (Context.getLangOpts().CPlusPlus) {
4071     if (const CXXRecordDecl *Record
4072           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4073       return ExcludeCtor && !Record->hasMutableFields() &&
4074              Record->hasTrivialDestructor();
4075   }
4076 
4077   return true;
4078 }
4079 
4080 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4081 /// create and return an llvm GlobalVariable with the specified type and address
4082 /// space. If there is something in the module with the specified name, return
4083 /// it potentially bitcasted to the right type.
4084 ///
4085 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4086 /// to set the attributes on the global when it is first created.
4087 ///
4088 /// If IsForDefinition is true, it is guaranteed that an actual global with
4089 /// type Ty will be returned, not conversion of a variable with the same
4090 /// mangled name but some other type.
4091 llvm::Constant *
4092 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4093                                      LangAS AddrSpace, const VarDecl *D,
4094                                      ForDefinition_t IsForDefinition) {
4095   // Lookup the entry, lazily creating it if necessary.
4096   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4097   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4098   if (Entry) {
4099     if (WeakRefReferences.erase(Entry)) {
4100       if (D && !D->hasAttr<WeakAttr>())
4101         Entry->setLinkage(llvm::Function::ExternalLinkage);
4102     }
4103 
4104     // Handle dropped DLL attributes.
4105     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
4106       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4107 
4108     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4109       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4110 
4111     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4112       return Entry;
4113 
4114     // If there are two attempts to define the same mangled name, issue an
4115     // error.
4116     if (IsForDefinition && !Entry->isDeclaration()) {
4117       GlobalDecl OtherGD;
4118       const VarDecl *OtherD;
4119 
4120       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4121       // to make sure that we issue an error only once.
4122       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4123           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4124           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4125           OtherD->hasInit() &&
4126           DiagnosedConflictingDefinitions.insert(D).second) {
4127         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4128             << MangledName;
4129         getDiags().Report(OtherGD.getDecl()->getLocation(),
4130                           diag::note_previous_definition);
4131       }
4132     }
4133 
4134     // Make sure the result is of the correct type.
4135     if (Entry->getType()->getAddressSpace() != TargetAS) {
4136       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4137                                                   Ty->getPointerTo(TargetAS));
4138     }
4139 
4140     // (If global is requested for a definition, we always need to create a new
4141     // global, not just return a bitcast.)
4142     if (!IsForDefinition)
4143       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4144   }
4145 
4146   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4147 
4148   auto *GV = new llvm::GlobalVariable(
4149       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4150       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4151       getContext().getTargetAddressSpace(DAddrSpace));
4152 
4153   // If we already created a global with the same mangled name (but different
4154   // type) before, take its name and remove it from its parent.
4155   if (Entry) {
4156     GV->takeName(Entry);
4157 
4158     if (!Entry->use_empty()) {
4159       llvm::Constant *NewPtrForOldDecl =
4160           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4161       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4162     }
4163 
4164     Entry->eraseFromParent();
4165   }
4166 
4167   // This is the first use or definition of a mangled name.  If there is a
4168   // deferred decl with this name, remember that we need to emit it at the end
4169   // of the file.
4170   auto DDI = DeferredDecls.find(MangledName);
4171   if (DDI != DeferredDecls.end()) {
4172     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4173     // list, and remove it from DeferredDecls (since we don't need it anymore).
4174     addDeferredDeclToEmit(DDI->second);
4175     DeferredDecls.erase(DDI);
4176   }
4177 
4178   // Handle things which are present even on external declarations.
4179   if (D) {
4180     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4181       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4182 
4183     // FIXME: This code is overly simple and should be merged with other global
4184     // handling.
4185     GV->setConstant(isTypeConstant(D->getType(), false));
4186 
4187     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4188 
4189     setLinkageForGV(GV, D);
4190 
4191     if (D->getTLSKind()) {
4192       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4193         CXXThreadLocals.push_back(D);
4194       setTLSMode(GV, *D);
4195     }
4196 
4197     setGVProperties(GV, D);
4198 
4199     // If required by the ABI, treat declarations of static data members with
4200     // inline initializers as definitions.
4201     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4202       EmitGlobalVarDefinition(D);
4203     }
4204 
4205     // Emit section information for extern variables.
4206     if (D->hasExternalStorage()) {
4207       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4208         GV->setSection(SA->getName());
4209     }
4210 
4211     // Handle XCore specific ABI requirements.
4212     if (getTriple().getArch() == llvm::Triple::xcore &&
4213         D->getLanguageLinkage() == CLanguageLinkage &&
4214         D->getType().isConstant(Context) &&
4215         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4216       GV->setSection(".cp.rodata");
4217 
4218     // Check if we a have a const declaration with an initializer, we may be
4219     // able to emit it as available_externally to expose it's value to the
4220     // optimizer.
4221     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4222         D->getType().isConstQualified() && !GV->hasInitializer() &&
4223         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4224       const auto *Record =
4225           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4226       bool HasMutableFields = Record && Record->hasMutableFields();
4227       if (!HasMutableFields) {
4228         const VarDecl *InitDecl;
4229         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4230         if (InitExpr) {
4231           ConstantEmitter emitter(*this);
4232           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4233           if (Init) {
4234             auto *InitType = Init->getType();
4235             if (GV->getValueType() != InitType) {
4236               // The type of the initializer does not match the definition.
4237               // This happens when an initializer has a different type from
4238               // the type of the global (because of padding at the end of a
4239               // structure for instance).
4240               GV->setName(StringRef());
4241               // Make a new global with the correct type, this is now guaranteed
4242               // to work.
4243               auto *NewGV = cast<llvm::GlobalVariable>(
4244                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4245                       ->stripPointerCasts());
4246 
4247               // Erase the old global, since it is no longer used.
4248               GV->eraseFromParent();
4249               GV = NewGV;
4250             } else {
4251               GV->setInitializer(Init);
4252               GV->setConstant(true);
4253               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4254             }
4255             emitter.finalize(GV);
4256           }
4257         }
4258       }
4259     }
4260   }
4261 
4262   if (GV->isDeclaration()) {
4263     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4264     // External HIP managed variables needed to be recorded for transformation
4265     // in both device and host compilations.
4266     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4267         D->hasExternalStorage())
4268       getCUDARuntime().handleVarRegistration(D, *GV);
4269   }
4270 
4271   LangAS ExpectedAS =
4272       D ? D->getType().getAddressSpace()
4273         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4274   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4275   if (DAddrSpace != ExpectedAS) {
4276     return getTargetCodeGenInfo().performAddrSpaceCast(
4277         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4278   }
4279 
4280   return GV;
4281 }
4282 
4283 llvm::Constant *
4284 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4285   const Decl *D = GD.getDecl();
4286 
4287   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4288     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4289                                 /*DontDefer=*/false, IsForDefinition);
4290 
4291   if (isa<CXXMethodDecl>(D)) {
4292     auto FInfo =
4293         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4294     auto Ty = getTypes().GetFunctionType(*FInfo);
4295     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4296                              IsForDefinition);
4297   }
4298 
4299   if (isa<FunctionDecl>(D)) {
4300     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4301     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4302     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4303                              IsForDefinition);
4304   }
4305 
4306   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4307 }
4308 
4309 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4310     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4311     unsigned Alignment) {
4312   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4313   llvm::GlobalVariable *OldGV = nullptr;
4314 
4315   if (GV) {
4316     // Check if the variable has the right type.
4317     if (GV->getValueType() == Ty)
4318       return GV;
4319 
4320     // Because C++ name mangling, the only way we can end up with an already
4321     // existing global with the same name is if it has been declared extern "C".
4322     assert(GV->isDeclaration() && "Declaration has wrong type!");
4323     OldGV = GV;
4324   }
4325 
4326   // Create a new variable.
4327   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4328                                 Linkage, nullptr, Name);
4329 
4330   if (OldGV) {
4331     // Replace occurrences of the old variable if needed.
4332     GV->takeName(OldGV);
4333 
4334     if (!OldGV->use_empty()) {
4335       llvm::Constant *NewPtrForOldDecl =
4336       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4337       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4338     }
4339 
4340     OldGV->eraseFromParent();
4341   }
4342 
4343   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4344       !GV->hasAvailableExternallyLinkage())
4345     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4346 
4347   GV->setAlignment(llvm::MaybeAlign(Alignment));
4348 
4349   return GV;
4350 }
4351 
4352 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4353 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4354 /// then it will be created with the specified type instead of whatever the
4355 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4356 /// that an actual global with type Ty will be returned, not conversion of a
4357 /// variable with the same mangled name but some other type.
4358 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4359                                                   llvm::Type *Ty,
4360                                            ForDefinition_t IsForDefinition) {
4361   assert(D->hasGlobalStorage() && "Not a global variable");
4362   QualType ASTTy = D->getType();
4363   if (!Ty)
4364     Ty = getTypes().ConvertTypeForMem(ASTTy);
4365 
4366   StringRef MangledName = getMangledName(D);
4367   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4368                                IsForDefinition);
4369 }
4370 
4371 /// CreateRuntimeVariable - Create a new runtime global variable with the
4372 /// specified type and name.
4373 llvm::Constant *
4374 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4375                                      StringRef Name) {
4376   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4377                                                        : LangAS::Default;
4378   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4379   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4380   return Ret;
4381 }
4382 
4383 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4384   assert(!D->getInit() && "Cannot emit definite definitions here!");
4385 
4386   StringRef MangledName = getMangledName(D);
4387   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4388 
4389   // We already have a definition, not declaration, with the same mangled name.
4390   // Emitting of declaration is not required (and actually overwrites emitted
4391   // definition).
4392   if (GV && !GV->isDeclaration())
4393     return;
4394 
4395   // If we have not seen a reference to this variable yet, place it into the
4396   // deferred declarations table to be emitted if needed later.
4397   if (!MustBeEmitted(D) && !GV) {
4398       DeferredDecls[MangledName] = D;
4399       return;
4400   }
4401 
4402   // The tentative definition is the only definition.
4403   EmitGlobalVarDefinition(D);
4404 }
4405 
4406 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4407   EmitExternalVarDeclaration(D);
4408 }
4409 
4410 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4411   return Context.toCharUnitsFromBits(
4412       getDataLayout().getTypeStoreSizeInBits(Ty));
4413 }
4414 
4415 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4416   if (LangOpts.OpenCL) {
4417     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4418     assert(AS == LangAS::opencl_global ||
4419            AS == LangAS::opencl_global_device ||
4420            AS == LangAS::opencl_global_host ||
4421            AS == LangAS::opencl_constant ||
4422            AS == LangAS::opencl_local ||
4423            AS >= LangAS::FirstTargetAddressSpace);
4424     return AS;
4425   }
4426 
4427   if (LangOpts.SYCLIsDevice &&
4428       (!D || D->getType().getAddressSpace() == LangAS::Default))
4429     return LangAS::sycl_global;
4430 
4431   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4432     if (D && D->hasAttr<CUDAConstantAttr>())
4433       return LangAS::cuda_constant;
4434     else if (D && D->hasAttr<CUDASharedAttr>())
4435       return LangAS::cuda_shared;
4436     else if (D && D->hasAttr<CUDADeviceAttr>())
4437       return LangAS::cuda_device;
4438     else if (D && D->getType().isConstQualified())
4439       return LangAS::cuda_constant;
4440     else
4441       return LangAS::cuda_device;
4442   }
4443 
4444   if (LangOpts.OpenMP) {
4445     LangAS AS;
4446     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4447       return AS;
4448   }
4449   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4450 }
4451 
4452 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4453   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4454   if (LangOpts.OpenCL)
4455     return LangAS::opencl_constant;
4456   if (LangOpts.SYCLIsDevice)
4457     return LangAS::sycl_global;
4458   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4459     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4460     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4461     // with OpVariable instructions with Generic storage class which is not
4462     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4463     // UniformConstant storage class is not viable as pointers to it may not be
4464     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4465     return LangAS::cuda_device;
4466   if (auto AS = getTarget().getConstantAddressSpace())
4467     return AS.getValue();
4468   return LangAS::Default;
4469 }
4470 
4471 // In address space agnostic languages, string literals are in default address
4472 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4473 // emitted in constant address space in LLVM IR. To be consistent with other
4474 // parts of AST, string literal global variables in constant address space
4475 // need to be casted to default address space before being put into address
4476 // map and referenced by other part of CodeGen.
4477 // In OpenCL, string literals are in constant address space in AST, therefore
4478 // they should not be casted to default address space.
4479 static llvm::Constant *
4480 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4481                                        llvm::GlobalVariable *GV) {
4482   llvm::Constant *Cast = GV;
4483   if (!CGM.getLangOpts().OpenCL) {
4484     auto AS = CGM.GetGlobalConstantAddressSpace();
4485     if (AS != LangAS::Default)
4486       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4487           CGM, GV, AS, LangAS::Default,
4488           GV->getValueType()->getPointerTo(
4489               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4490   }
4491   return Cast;
4492 }
4493 
4494 template<typename SomeDecl>
4495 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4496                                                llvm::GlobalValue *GV) {
4497   if (!getLangOpts().CPlusPlus)
4498     return;
4499 
4500   // Must have 'used' attribute, or else inline assembly can't rely on
4501   // the name existing.
4502   if (!D->template hasAttr<UsedAttr>())
4503     return;
4504 
4505   // Must have internal linkage and an ordinary name.
4506   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4507     return;
4508 
4509   // Must be in an extern "C" context. Entities declared directly within
4510   // a record are not extern "C" even if the record is in such a context.
4511   const SomeDecl *First = D->getFirstDecl();
4512   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4513     return;
4514 
4515   // OK, this is an internal linkage entity inside an extern "C" linkage
4516   // specification. Make a note of that so we can give it the "expected"
4517   // mangled name if nothing else is using that name.
4518   std::pair<StaticExternCMap::iterator, bool> R =
4519       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4520 
4521   // If we have multiple internal linkage entities with the same name
4522   // in extern "C" regions, none of them gets that name.
4523   if (!R.second)
4524     R.first->second = nullptr;
4525 }
4526 
4527 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4528   if (!CGM.supportsCOMDAT())
4529     return false;
4530 
4531   if (D.hasAttr<SelectAnyAttr>())
4532     return true;
4533 
4534   GVALinkage Linkage;
4535   if (auto *VD = dyn_cast<VarDecl>(&D))
4536     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4537   else
4538     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4539 
4540   switch (Linkage) {
4541   case GVA_Internal:
4542   case GVA_AvailableExternally:
4543   case GVA_StrongExternal:
4544     return false;
4545   case GVA_DiscardableODR:
4546   case GVA_StrongODR:
4547     return true;
4548   }
4549   llvm_unreachable("No such linkage");
4550 }
4551 
4552 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4553                                           llvm::GlobalObject &GO) {
4554   if (!shouldBeInCOMDAT(*this, D))
4555     return;
4556   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4557 }
4558 
4559 /// Pass IsTentative as true if you want to create a tentative definition.
4560 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4561                                             bool IsTentative) {
4562   // OpenCL global variables of sampler type are translated to function calls,
4563   // therefore no need to be translated.
4564   QualType ASTTy = D->getType();
4565   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4566     return;
4567 
4568   // If this is OpenMP device, check if it is legal to emit this global
4569   // normally.
4570   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4571       OpenMPRuntime->emitTargetGlobalVariable(D))
4572     return;
4573 
4574   llvm::TrackingVH<llvm::Constant> Init;
4575   bool NeedsGlobalCtor = false;
4576   bool NeedsGlobalDtor =
4577       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4578 
4579   const VarDecl *InitDecl;
4580   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4581 
4582   Optional<ConstantEmitter> emitter;
4583 
4584   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4585   // as part of their declaration."  Sema has already checked for
4586   // error cases, so we just need to set Init to UndefValue.
4587   bool IsCUDASharedVar =
4588       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4589   // Shadows of initialized device-side global variables are also left
4590   // undefined.
4591   // Managed Variables should be initialized on both host side and device side.
4592   bool IsCUDAShadowVar =
4593       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4594       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4595        D->hasAttr<CUDASharedAttr>());
4596   bool IsCUDADeviceShadowVar =
4597       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4598       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4599        D->getType()->isCUDADeviceBuiltinTextureType());
4600   if (getLangOpts().CUDA &&
4601       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4602     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4603   else if (D->hasAttr<LoaderUninitializedAttr>())
4604     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4605   else if (!InitExpr) {
4606     // This is a tentative definition; tentative definitions are
4607     // implicitly initialized with { 0 }.
4608     //
4609     // Note that tentative definitions are only emitted at the end of
4610     // a translation unit, so they should never have incomplete
4611     // type. In addition, EmitTentativeDefinition makes sure that we
4612     // never attempt to emit a tentative definition if a real one
4613     // exists. A use may still exists, however, so we still may need
4614     // to do a RAUW.
4615     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4616     Init = EmitNullConstant(D->getType());
4617   } else {
4618     initializedGlobalDecl = GlobalDecl(D);
4619     emitter.emplace(*this);
4620     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4621     if (!Initializer) {
4622       QualType T = InitExpr->getType();
4623       if (D->getType()->isReferenceType())
4624         T = D->getType();
4625 
4626       if (getLangOpts().CPlusPlus) {
4627         if (InitDecl->hasFlexibleArrayInit(getContext()))
4628           ErrorUnsupported(D, "flexible array initializer");
4629         Init = EmitNullConstant(T);
4630         NeedsGlobalCtor = true;
4631       } else {
4632         ErrorUnsupported(D, "static initializer");
4633         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4634       }
4635     } else {
4636       Init = Initializer;
4637       // We don't need an initializer, so remove the entry for the delayed
4638       // initializer position (just in case this entry was delayed) if we
4639       // also don't need to register a destructor.
4640       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4641         DelayedCXXInitPosition.erase(D);
4642 
4643 #ifndef NDEBUG
4644       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4645                           InitDecl->getFlexibleArrayInitChars(getContext());
4646       CharUnits CstSize = CharUnits::fromQuantity(
4647           getDataLayout().getTypeAllocSize(Init->getType()));
4648       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4649 #endif
4650     }
4651   }
4652 
4653   llvm::Type* InitType = Init->getType();
4654   llvm::Constant *Entry =
4655       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4656 
4657   // Strip off pointer casts if we got them.
4658   Entry = Entry->stripPointerCasts();
4659 
4660   // Entry is now either a Function or GlobalVariable.
4661   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4662 
4663   // We have a definition after a declaration with the wrong type.
4664   // We must make a new GlobalVariable* and update everything that used OldGV
4665   // (a declaration or tentative definition) with the new GlobalVariable*
4666   // (which will be a definition).
4667   //
4668   // This happens if there is a prototype for a global (e.g.
4669   // "extern int x[];") and then a definition of a different type (e.g.
4670   // "int x[10];"). This also happens when an initializer has a different type
4671   // from the type of the global (this happens with unions).
4672   if (!GV || GV->getValueType() != InitType ||
4673       GV->getType()->getAddressSpace() !=
4674           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4675 
4676     // Move the old entry aside so that we'll create a new one.
4677     Entry->setName(StringRef());
4678 
4679     // Make a new global with the correct type, this is now guaranteed to work.
4680     GV = cast<llvm::GlobalVariable>(
4681         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4682             ->stripPointerCasts());
4683 
4684     // Replace all uses of the old global with the new global
4685     llvm::Constant *NewPtrForOldDecl =
4686         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4687                                                              Entry->getType());
4688     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4689 
4690     // Erase the old global, since it is no longer used.
4691     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4692   }
4693 
4694   MaybeHandleStaticInExternC(D, GV);
4695 
4696   if (D->hasAttr<AnnotateAttr>())
4697     AddGlobalAnnotations(D, GV);
4698 
4699   // Set the llvm linkage type as appropriate.
4700   llvm::GlobalValue::LinkageTypes Linkage =
4701       getLLVMLinkageVarDefinition(D, GV->isConstant());
4702 
4703   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4704   // the device. [...]"
4705   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4706   // __device__, declares a variable that: [...]
4707   // Is accessible from all the threads within the grid and from the host
4708   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4709   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4710   if (GV && LangOpts.CUDA) {
4711     if (LangOpts.CUDAIsDevice) {
4712       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4713           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4714            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4715            D->getType()->isCUDADeviceBuiltinTextureType()))
4716         GV->setExternallyInitialized(true);
4717     } else {
4718       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4719     }
4720     getCUDARuntime().handleVarRegistration(D, *GV);
4721   }
4722 
4723   GV->setInitializer(Init);
4724   if (emitter)
4725     emitter->finalize(GV);
4726 
4727   // If it is safe to mark the global 'constant', do so now.
4728   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4729                   isTypeConstant(D->getType(), true));
4730 
4731   // If it is in a read-only section, mark it 'constant'.
4732   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4733     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4734     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4735       GV->setConstant(true);
4736   }
4737 
4738   CharUnits AlignVal = getContext().getDeclAlign(D);
4739   // Check for alignment specifed in an 'omp allocate' directive.
4740   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4741           getOMPAllocateAlignment(D))
4742     AlignVal = AlignValFromAllocate.getValue();
4743   GV->setAlignment(AlignVal.getAsAlign());
4744 
4745   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4746   // function is only defined alongside the variable, not also alongside
4747   // callers. Normally, all accesses to a thread_local go through the
4748   // thread-wrapper in order to ensure initialization has occurred, underlying
4749   // variable will never be used other than the thread-wrapper, so it can be
4750   // converted to internal linkage.
4751   //
4752   // However, if the variable has the 'constinit' attribute, it _can_ be
4753   // referenced directly, without calling the thread-wrapper, so the linkage
4754   // must not be changed.
4755   //
4756   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4757   // weak or linkonce, the de-duplication semantics are important to preserve,
4758   // so we don't change the linkage.
4759   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4760       Linkage == llvm::GlobalValue::ExternalLinkage &&
4761       Context.getTargetInfo().getTriple().isOSDarwin() &&
4762       !D->hasAttr<ConstInitAttr>())
4763     Linkage = llvm::GlobalValue::InternalLinkage;
4764 
4765   GV->setLinkage(Linkage);
4766   if (D->hasAttr<DLLImportAttr>())
4767     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4768   else if (D->hasAttr<DLLExportAttr>())
4769     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4770   else
4771     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4772 
4773   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4774     // common vars aren't constant even if declared const.
4775     GV->setConstant(false);
4776     // Tentative definition of global variables may be initialized with
4777     // non-zero null pointers. In this case they should have weak linkage
4778     // since common linkage must have zero initializer and must not have
4779     // explicit section therefore cannot have non-zero initial value.
4780     if (!GV->getInitializer()->isNullValue())
4781       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4782   }
4783 
4784   setNonAliasAttributes(D, GV);
4785 
4786   if (D->getTLSKind() && !GV->isThreadLocal()) {
4787     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4788       CXXThreadLocals.push_back(D);
4789     setTLSMode(GV, *D);
4790   }
4791 
4792   maybeSetTrivialComdat(*D, *GV);
4793 
4794   // Emit the initializer function if necessary.
4795   if (NeedsGlobalCtor || NeedsGlobalDtor)
4796     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4797 
4798   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4799 
4800   // Emit global variable debug information.
4801   if (CGDebugInfo *DI = getModuleDebugInfo())
4802     if (getCodeGenOpts().hasReducedDebugInfo())
4803       DI->EmitGlobalVariable(GV, D);
4804 }
4805 
4806 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4807   if (CGDebugInfo *DI = getModuleDebugInfo())
4808     if (getCodeGenOpts().hasReducedDebugInfo()) {
4809       QualType ASTTy = D->getType();
4810       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4811       llvm::Constant *GV =
4812           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4813       DI->EmitExternalVariable(
4814           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4815     }
4816 }
4817 
4818 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4819                                       CodeGenModule &CGM, const VarDecl *D,
4820                                       bool NoCommon) {
4821   // Don't give variables common linkage if -fno-common was specified unless it
4822   // was overridden by a NoCommon attribute.
4823   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4824     return true;
4825 
4826   // C11 6.9.2/2:
4827   //   A declaration of an identifier for an object that has file scope without
4828   //   an initializer, and without a storage-class specifier or with the
4829   //   storage-class specifier static, constitutes a tentative definition.
4830   if (D->getInit() || D->hasExternalStorage())
4831     return true;
4832 
4833   // A variable cannot be both common and exist in a section.
4834   if (D->hasAttr<SectionAttr>())
4835     return true;
4836 
4837   // A variable cannot be both common and exist in a section.
4838   // We don't try to determine which is the right section in the front-end.
4839   // If no specialized section name is applicable, it will resort to default.
4840   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4841       D->hasAttr<PragmaClangDataSectionAttr>() ||
4842       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4843       D->hasAttr<PragmaClangRodataSectionAttr>())
4844     return true;
4845 
4846   // Thread local vars aren't considered common linkage.
4847   if (D->getTLSKind())
4848     return true;
4849 
4850   // Tentative definitions marked with WeakImportAttr are true definitions.
4851   if (D->hasAttr<WeakImportAttr>())
4852     return true;
4853 
4854   // A variable cannot be both common and exist in a comdat.
4855   if (shouldBeInCOMDAT(CGM, *D))
4856     return true;
4857 
4858   // Declarations with a required alignment do not have common linkage in MSVC
4859   // mode.
4860   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4861     if (D->hasAttr<AlignedAttr>())
4862       return true;
4863     QualType VarType = D->getType();
4864     if (Context.isAlignmentRequired(VarType))
4865       return true;
4866 
4867     if (const auto *RT = VarType->getAs<RecordType>()) {
4868       const RecordDecl *RD = RT->getDecl();
4869       for (const FieldDecl *FD : RD->fields()) {
4870         if (FD->isBitField())
4871           continue;
4872         if (FD->hasAttr<AlignedAttr>())
4873           return true;
4874         if (Context.isAlignmentRequired(FD->getType()))
4875           return true;
4876       }
4877     }
4878   }
4879 
4880   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4881   // common symbols, so symbols with greater alignment requirements cannot be
4882   // common.
4883   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4884   // alignments for common symbols via the aligncomm directive, so this
4885   // restriction only applies to MSVC environments.
4886   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4887       Context.getTypeAlignIfKnown(D->getType()) >
4888           Context.toBits(CharUnits::fromQuantity(32)))
4889     return true;
4890 
4891   return false;
4892 }
4893 
4894 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4895     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4896   if (Linkage == GVA_Internal)
4897     return llvm::Function::InternalLinkage;
4898 
4899   if (D->hasAttr<WeakAttr>())
4900     return llvm::GlobalVariable::WeakAnyLinkage;
4901 
4902   if (const auto *FD = D->getAsFunction())
4903     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4904       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4905 
4906   // We are guaranteed to have a strong definition somewhere else,
4907   // so we can use available_externally linkage.
4908   if (Linkage == GVA_AvailableExternally)
4909     return llvm::GlobalValue::AvailableExternallyLinkage;
4910 
4911   // Note that Apple's kernel linker doesn't support symbol
4912   // coalescing, so we need to avoid linkonce and weak linkages there.
4913   // Normally, this means we just map to internal, but for explicit
4914   // instantiations we'll map to external.
4915 
4916   // In C++, the compiler has to emit a definition in every translation unit
4917   // that references the function.  We should use linkonce_odr because
4918   // a) if all references in this translation unit are optimized away, we
4919   // don't need to codegen it.  b) if the function persists, it needs to be
4920   // merged with other definitions. c) C++ has the ODR, so we know the
4921   // definition is dependable.
4922   if (Linkage == GVA_DiscardableODR)
4923     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4924                                             : llvm::Function::InternalLinkage;
4925 
4926   // An explicit instantiation of a template has weak linkage, since
4927   // explicit instantiations can occur in multiple translation units
4928   // and must all be equivalent. However, we are not allowed to
4929   // throw away these explicit instantiations.
4930   //
4931   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4932   // so say that CUDA templates are either external (for kernels) or internal.
4933   // This lets llvm perform aggressive inter-procedural optimizations. For
4934   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4935   // therefore we need to follow the normal linkage paradigm.
4936   if (Linkage == GVA_StrongODR) {
4937     if (getLangOpts().AppleKext)
4938       return llvm::Function::ExternalLinkage;
4939     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4940         !getLangOpts().GPURelocatableDeviceCode)
4941       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4942                                           : llvm::Function::InternalLinkage;
4943     return llvm::Function::WeakODRLinkage;
4944   }
4945 
4946   // C++ doesn't have tentative definitions and thus cannot have common
4947   // linkage.
4948   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4949       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4950                                  CodeGenOpts.NoCommon))
4951     return llvm::GlobalVariable::CommonLinkage;
4952 
4953   // selectany symbols are externally visible, so use weak instead of
4954   // linkonce.  MSVC optimizes away references to const selectany globals, so
4955   // all definitions should be the same and ODR linkage should be used.
4956   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4957   if (D->hasAttr<SelectAnyAttr>())
4958     return llvm::GlobalVariable::WeakODRLinkage;
4959 
4960   // Otherwise, we have strong external linkage.
4961   assert(Linkage == GVA_StrongExternal);
4962   return llvm::GlobalVariable::ExternalLinkage;
4963 }
4964 
4965 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4966     const VarDecl *VD, bool IsConstant) {
4967   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4968   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4969 }
4970 
4971 /// Replace the uses of a function that was declared with a non-proto type.
4972 /// We want to silently drop extra arguments from call sites
4973 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4974                                           llvm::Function *newFn) {
4975   // Fast path.
4976   if (old->use_empty()) return;
4977 
4978   llvm::Type *newRetTy = newFn->getReturnType();
4979   SmallVector<llvm::Value*, 4> newArgs;
4980 
4981   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4982          ui != ue; ) {
4983     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4984     llvm::User *user = use->getUser();
4985 
4986     // Recognize and replace uses of bitcasts.  Most calls to
4987     // unprototyped functions will use bitcasts.
4988     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4989       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4990         replaceUsesOfNonProtoConstant(bitcast, newFn);
4991       continue;
4992     }
4993 
4994     // Recognize calls to the function.
4995     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4996     if (!callSite) continue;
4997     if (!callSite->isCallee(&*use))
4998       continue;
4999 
5000     // If the return types don't match exactly, then we can't
5001     // transform this call unless it's dead.
5002     if (callSite->getType() != newRetTy && !callSite->use_empty())
5003       continue;
5004 
5005     // Get the call site's attribute list.
5006     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5007     llvm::AttributeList oldAttrs = callSite->getAttributes();
5008 
5009     // If the function was passed too few arguments, don't transform.
5010     unsigned newNumArgs = newFn->arg_size();
5011     if (callSite->arg_size() < newNumArgs)
5012       continue;
5013 
5014     // If extra arguments were passed, we silently drop them.
5015     // If any of the types mismatch, we don't transform.
5016     unsigned argNo = 0;
5017     bool dontTransform = false;
5018     for (llvm::Argument &A : newFn->args()) {
5019       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5020         dontTransform = true;
5021         break;
5022       }
5023 
5024       // Add any parameter attributes.
5025       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5026       argNo++;
5027     }
5028     if (dontTransform)
5029       continue;
5030 
5031     // Okay, we can transform this.  Create the new call instruction and copy
5032     // over the required information.
5033     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5034 
5035     // Copy over any operand bundles.
5036     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5037     callSite->getOperandBundlesAsDefs(newBundles);
5038 
5039     llvm::CallBase *newCall;
5040     if (isa<llvm::CallInst>(callSite)) {
5041       newCall =
5042           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5043     } else {
5044       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5045       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5046                                          oldInvoke->getUnwindDest(), newArgs,
5047                                          newBundles, "", callSite);
5048     }
5049     newArgs.clear(); // for the next iteration
5050 
5051     if (!newCall->getType()->isVoidTy())
5052       newCall->takeName(callSite);
5053     newCall->setAttributes(
5054         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5055                                  oldAttrs.getRetAttrs(), newArgAttrs));
5056     newCall->setCallingConv(callSite->getCallingConv());
5057 
5058     // Finally, remove the old call, replacing any uses with the new one.
5059     if (!callSite->use_empty())
5060       callSite->replaceAllUsesWith(newCall);
5061 
5062     // Copy debug location attached to CI.
5063     if (callSite->getDebugLoc())
5064       newCall->setDebugLoc(callSite->getDebugLoc());
5065 
5066     callSite->eraseFromParent();
5067   }
5068 }
5069 
5070 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5071 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5072 /// existing call uses of the old function in the module, this adjusts them to
5073 /// call the new function directly.
5074 ///
5075 /// This is not just a cleanup: the always_inline pass requires direct calls to
5076 /// functions to be able to inline them.  If there is a bitcast in the way, it
5077 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5078 /// run at -O0.
5079 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5080                                                       llvm::Function *NewFn) {
5081   // If we're redefining a global as a function, don't transform it.
5082   if (!isa<llvm::Function>(Old)) return;
5083 
5084   replaceUsesOfNonProtoConstant(Old, NewFn);
5085 }
5086 
5087 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5088   auto DK = VD->isThisDeclarationADefinition();
5089   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5090     return;
5091 
5092   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5093   // If we have a definition, this might be a deferred decl. If the
5094   // instantiation is explicit, make sure we emit it at the end.
5095   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5096     GetAddrOfGlobalVar(VD);
5097 
5098   EmitTopLevelDecl(VD);
5099 }
5100 
5101 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5102                                                  llvm::GlobalValue *GV) {
5103   const auto *D = cast<FunctionDecl>(GD.getDecl());
5104 
5105   // Compute the function info and LLVM type.
5106   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5107   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5108 
5109   // Get or create the prototype for the function.
5110   if (!GV || (GV->getValueType() != Ty))
5111     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5112                                                    /*DontDefer=*/true,
5113                                                    ForDefinition));
5114 
5115   // Already emitted.
5116   if (!GV->isDeclaration())
5117     return;
5118 
5119   // We need to set linkage and visibility on the function before
5120   // generating code for it because various parts of IR generation
5121   // want to propagate this information down (e.g. to local static
5122   // declarations).
5123   auto *Fn = cast<llvm::Function>(GV);
5124   setFunctionLinkage(GD, Fn);
5125 
5126   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5127   setGVProperties(Fn, GD);
5128 
5129   MaybeHandleStaticInExternC(D, Fn);
5130 
5131   maybeSetTrivialComdat(*D, *Fn);
5132 
5133   // Set CodeGen attributes that represent floating point environment.
5134   setLLVMFunctionFEnvAttributes(D, Fn);
5135 
5136   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5137 
5138   setNonAliasAttributes(GD, Fn);
5139   SetLLVMFunctionAttributesForDefinition(D, Fn);
5140 
5141   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5142     AddGlobalCtor(Fn, CA->getPriority());
5143   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5144     AddGlobalDtor(Fn, DA->getPriority(), true);
5145   if (D->hasAttr<AnnotateAttr>())
5146     AddGlobalAnnotations(D, Fn);
5147 }
5148 
5149 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5150   const auto *D = cast<ValueDecl>(GD.getDecl());
5151   const AliasAttr *AA = D->getAttr<AliasAttr>();
5152   assert(AA && "Not an alias?");
5153 
5154   StringRef MangledName = getMangledName(GD);
5155 
5156   if (AA->getAliasee() == MangledName) {
5157     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5158     return;
5159   }
5160 
5161   // If there is a definition in the module, then it wins over the alias.
5162   // This is dubious, but allow it to be safe.  Just ignore the alias.
5163   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5164   if (Entry && !Entry->isDeclaration())
5165     return;
5166 
5167   Aliases.push_back(GD);
5168 
5169   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5170 
5171   // Create a reference to the named value.  This ensures that it is emitted
5172   // if a deferred decl.
5173   llvm::Constant *Aliasee;
5174   llvm::GlobalValue::LinkageTypes LT;
5175   if (isa<llvm::FunctionType>(DeclTy)) {
5176     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5177                                       /*ForVTable=*/false);
5178     LT = getFunctionLinkage(GD);
5179   } else {
5180     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5181                                     /*D=*/nullptr);
5182     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5183       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5184     else
5185       LT = getFunctionLinkage(GD);
5186   }
5187 
5188   // Create the new alias itself, but don't set a name yet.
5189   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5190   auto *GA =
5191       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5192 
5193   if (Entry) {
5194     if (GA->getAliasee() == Entry) {
5195       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5196       return;
5197     }
5198 
5199     assert(Entry->isDeclaration());
5200 
5201     // If there is a declaration in the module, then we had an extern followed
5202     // by the alias, as in:
5203     //   extern int test6();
5204     //   ...
5205     //   int test6() __attribute__((alias("test7")));
5206     //
5207     // Remove it and replace uses of it with the alias.
5208     GA->takeName(Entry);
5209 
5210     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5211                                                           Entry->getType()));
5212     Entry->eraseFromParent();
5213   } else {
5214     GA->setName(MangledName);
5215   }
5216 
5217   // Set attributes which are particular to an alias; this is a
5218   // specialization of the attributes which may be set on a global
5219   // variable/function.
5220   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5221       D->isWeakImported()) {
5222     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5223   }
5224 
5225   if (const auto *VD = dyn_cast<VarDecl>(D))
5226     if (VD->getTLSKind())
5227       setTLSMode(GA, *VD);
5228 
5229   SetCommonAttributes(GD, GA);
5230 
5231   // Emit global alias debug information.
5232   if (isa<VarDecl>(D))
5233     if (CGDebugInfo *DI = getModuleDebugInfo())
5234       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD);
5235 }
5236 
5237 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5238   const auto *D = cast<ValueDecl>(GD.getDecl());
5239   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5240   assert(IFA && "Not an ifunc?");
5241 
5242   StringRef MangledName = getMangledName(GD);
5243 
5244   if (IFA->getResolver() == MangledName) {
5245     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5246     return;
5247   }
5248 
5249   // Report an error if some definition overrides ifunc.
5250   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5251   if (Entry && !Entry->isDeclaration()) {
5252     GlobalDecl OtherGD;
5253     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5254         DiagnosedConflictingDefinitions.insert(GD).second) {
5255       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5256           << MangledName;
5257       Diags.Report(OtherGD.getDecl()->getLocation(),
5258                    diag::note_previous_definition);
5259     }
5260     return;
5261   }
5262 
5263   Aliases.push_back(GD);
5264 
5265   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5266   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5267   llvm::Constant *Resolver =
5268       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5269                               /*ForVTable=*/false);
5270   llvm::GlobalIFunc *GIF =
5271       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5272                                 "", Resolver, &getModule());
5273   if (Entry) {
5274     if (GIF->getResolver() == Entry) {
5275       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5276       return;
5277     }
5278     assert(Entry->isDeclaration());
5279 
5280     // If there is a declaration in the module, then we had an extern followed
5281     // by the ifunc, as in:
5282     //   extern int test();
5283     //   ...
5284     //   int test() __attribute__((ifunc("resolver")));
5285     //
5286     // Remove it and replace uses of it with the ifunc.
5287     GIF->takeName(Entry);
5288 
5289     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5290                                                           Entry->getType()));
5291     Entry->eraseFromParent();
5292   } else
5293     GIF->setName(MangledName);
5294 
5295   SetCommonAttributes(GD, GIF);
5296 }
5297 
5298 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5299                                             ArrayRef<llvm::Type*> Tys) {
5300   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5301                                          Tys);
5302 }
5303 
5304 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5305 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5306                          const StringLiteral *Literal, bool TargetIsLSB,
5307                          bool &IsUTF16, unsigned &StringLength) {
5308   StringRef String = Literal->getString();
5309   unsigned NumBytes = String.size();
5310 
5311   // Check for simple case.
5312   if (!Literal->containsNonAsciiOrNull()) {
5313     StringLength = NumBytes;
5314     return *Map.insert(std::make_pair(String, nullptr)).first;
5315   }
5316 
5317   // Otherwise, convert the UTF8 literals into a string of shorts.
5318   IsUTF16 = true;
5319 
5320   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5321   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5322   llvm::UTF16 *ToPtr = &ToBuf[0];
5323 
5324   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5325                                  ToPtr + NumBytes, llvm::strictConversion);
5326 
5327   // ConvertUTF8toUTF16 returns the length in ToPtr.
5328   StringLength = ToPtr - &ToBuf[0];
5329 
5330   // Add an explicit null.
5331   *ToPtr = 0;
5332   return *Map.insert(std::make_pair(
5333                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5334                                    (StringLength + 1) * 2),
5335                          nullptr)).first;
5336 }
5337 
5338 ConstantAddress
5339 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5340   unsigned StringLength = 0;
5341   bool isUTF16 = false;
5342   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5343       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5344                                getDataLayout().isLittleEndian(), isUTF16,
5345                                StringLength);
5346 
5347   if (auto *C = Entry.second)
5348     return ConstantAddress(
5349         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5350 
5351   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5352   llvm::Constant *Zeros[] = { Zero, Zero };
5353 
5354   const ASTContext &Context = getContext();
5355   const llvm::Triple &Triple = getTriple();
5356 
5357   const auto CFRuntime = getLangOpts().CFRuntime;
5358   const bool IsSwiftABI =
5359       static_cast<unsigned>(CFRuntime) >=
5360       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5361   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5362 
5363   // If we don't already have it, get __CFConstantStringClassReference.
5364   if (!CFConstantStringClassRef) {
5365     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5366     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5367     Ty = llvm::ArrayType::get(Ty, 0);
5368 
5369     switch (CFRuntime) {
5370     default: break;
5371     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5372     case LangOptions::CoreFoundationABI::Swift5_0:
5373       CFConstantStringClassName =
5374           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5375                               : "$s10Foundation19_NSCFConstantStringCN";
5376       Ty = IntPtrTy;
5377       break;
5378     case LangOptions::CoreFoundationABI::Swift4_2:
5379       CFConstantStringClassName =
5380           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5381                               : "$S10Foundation19_NSCFConstantStringCN";
5382       Ty = IntPtrTy;
5383       break;
5384     case LangOptions::CoreFoundationABI::Swift4_1:
5385       CFConstantStringClassName =
5386           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5387                               : "__T010Foundation19_NSCFConstantStringCN";
5388       Ty = IntPtrTy;
5389       break;
5390     }
5391 
5392     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5393 
5394     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5395       llvm::GlobalValue *GV = nullptr;
5396 
5397       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5398         IdentifierInfo &II = Context.Idents.get(GV->getName());
5399         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5400         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5401 
5402         const VarDecl *VD = nullptr;
5403         for (const auto *Result : DC->lookup(&II))
5404           if ((VD = dyn_cast<VarDecl>(Result)))
5405             break;
5406 
5407         if (Triple.isOSBinFormatELF()) {
5408           if (!VD)
5409             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5410         } else {
5411           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5412           if (!VD || !VD->hasAttr<DLLExportAttr>())
5413             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5414           else
5415             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5416         }
5417 
5418         setDSOLocal(GV);
5419       }
5420     }
5421 
5422     // Decay array -> ptr
5423     CFConstantStringClassRef =
5424         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5425                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5426   }
5427 
5428   QualType CFTy = Context.getCFConstantStringType();
5429 
5430   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5431 
5432   ConstantInitBuilder Builder(*this);
5433   auto Fields = Builder.beginStruct(STy);
5434 
5435   // Class pointer.
5436   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5437 
5438   // Flags.
5439   if (IsSwiftABI) {
5440     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5441     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5442   } else {
5443     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5444   }
5445 
5446   // String pointer.
5447   llvm::Constant *C = nullptr;
5448   if (isUTF16) {
5449     auto Arr = llvm::makeArrayRef(
5450         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5451         Entry.first().size() / 2);
5452     C = llvm::ConstantDataArray::get(VMContext, Arr);
5453   } else {
5454     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5455   }
5456 
5457   // Note: -fwritable-strings doesn't make the backing store strings of
5458   // CFStrings writable. (See <rdar://problem/10657500>)
5459   auto *GV =
5460       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5461                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5462   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5463   // Don't enforce the target's minimum global alignment, since the only use
5464   // of the string is via this class initializer.
5465   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5466                             : Context.getTypeAlignInChars(Context.CharTy);
5467   GV->setAlignment(Align.getAsAlign());
5468 
5469   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5470   // Without it LLVM can merge the string with a non unnamed_addr one during
5471   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5472   if (Triple.isOSBinFormatMachO())
5473     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5474                            : "__TEXT,__cstring,cstring_literals");
5475   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5476   // the static linker to adjust permissions to read-only later on.
5477   else if (Triple.isOSBinFormatELF())
5478     GV->setSection(".rodata");
5479 
5480   // String.
5481   llvm::Constant *Str =
5482       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5483 
5484   if (isUTF16)
5485     // Cast the UTF16 string to the correct type.
5486     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5487   Fields.add(Str);
5488 
5489   // String length.
5490   llvm::IntegerType *LengthTy =
5491       llvm::IntegerType::get(getModule().getContext(),
5492                              Context.getTargetInfo().getLongWidth());
5493   if (IsSwiftABI) {
5494     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5495         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5496       LengthTy = Int32Ty;
5497     else
5498       LengthTy = IntPtrTy;
5499   }
5500   Fields.addInt(LengthTy, StringLength);
5501 
5502   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5503   // properly aligned on 32-bit platforms.
5504   CharUnits Alignment =
5505       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5506 
5507   // The struct.
5508   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5509                                     /*isConstant=*/false,
5510                                     llvm::GlobalVariable::PrivateLinkage);
5511   GV->addAttribute("objc_arc_inert");
5512   switch (Triple.getObjectFormat()) {
5513   case llvm::Triple::UnknownObjectFormat:
5514     llvm_unreachable("unknown file format");
5515   case llvm::Triple::DXContainer:
5516   case llvm::Triple::GOFF:
5517   case llvm::Triple::SPIRV:
5518   case llvm::Triple::XCOFF:
5519     llvm_unreachable("unimplemented");
5520   case llvm::Triple::COFF:
5521   case llvm::Triple::ELF:
5522   case llvm::Triple::Wasm:
5523     GV->setSection("cfstring");
5524     break;
5525   case llvm::Triple::MachO:
5526     GV->setSection("__DATA,__cfstring");
5527     break;
5528   }
5529   Entry.second = GV;
5530 
5531   return ConstantAddress(GV, GV->getValueType(), Alignment);
5532 }
5533 
5534 bool CodeGenModule::getExpressionLocationsEnabled() const {
5535   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5536 }
5537 
5538 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5539   if (ObjCFastEnumerationStateType.isNull()) {
5540     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5541     D->startDefinition();
5542 
5543     QualType FieldTypes[] = {
5544       Context.UnsignedLongTy,
5545       Context.getPointerType(Context.getObjCIdType()),
5546       Context.getPointerType(Context.UnsignedLongTy),
5547       Context.getConstantArrayType(Context.UnsignedLongTy,
5548                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5549     };
5550 
5551     for (size_t i = 0; i < 4; ++i) {
5552       FieldDecl *Field = FieldDecl::Create(Context,
5553                                            D,
5554                                            SourceLocation(),
5555                                            SourceLocation(), nullptr,
5556                                            FieldTypes[i], /*TInfo=*/nullptr,
5557                                            /*BitWidth=*/nullptr,
5558                                            /*Mutable=*/false,
5559                                            ICIS_NoInit);
5560       Field->setAccess(AS_public);
5561       D->addDecl(Field);
5562     }
5563 
5564     D->completeDefinition();
5565     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5566   }
5567 
5568   return ObjCFastEnumerationStateType;
5569 }
5570 
5571 llvm::Constant *
5572 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5573   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5574 
5575   // Don't emit it as the address of the string, emit the string data itself
5576   // as an inline array.
5577   if (E->getCharByteWidth() == 1) {
5578     SmallString<64> Str(E->getString());
5579 
5580     // Resize the string to the right size, which is indicated by its type.
5581     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5582     Str.resize(CAT->getSize().getZExtValue());
5583     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5584   }
5585 
5586   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5587   llvm::Type *ElemTy = AType->getElementType();
5588   unsigned NumElements = AType->getNumElements();
5589 
5590   // Wide strings have either 2-byte or 4-byte elements.
5591   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5592     SmallVector<uint16_t, 32> Elements;
5593     Elements.reserve(NumElements);
5594 
5595     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5596       Elements.push_back(E->getCodeUnit(i));
5597     Elements.resize(NumElements);
5598     return llvm::ConstantDataArray::get(VMContext, Elements);
5599   }
5600 
5601   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5602   SmallVector<uint32_t, 32> Elements;
5603   Elements.reserve(NumElements);
5604 
5605   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5606     Elements.push_back(E->getCodeUnit(i));
5607   Elements.resize(NumElements);
5608   return llvm::ConstantDataArray::get(VMContext, Elements);
5609 }
5610 
5611 static llvm::GlobalVariable *
5612 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5613                       CodeGenModule &CGM, StringRef GlobalName,
5614                       CharUnits Alignment) {
5615   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5616       CGM.GetGlobalConstantAddressSpace());
5617 
5618   llvm::Module &M = CGM.getModule();
5619   // Create a global variable for this string
5620   auto *GV = new llvm::GlobalVariable(
5621       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5622       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5623   GV->setAlignment(Alignment.getAsAlign());
5624   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5625   if (GV->isWeakForLinker()) {
5626     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5627     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5628   }
5629   CGM.setDSOLocal(GV);
5630 
5631   return GV;
5632 }
5633 
5634 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5635 /// constant array for the given string literal.
5636 ConstantAddress
5637 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5638                                                   StringRef Name) {
5639   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5640 
5641   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5642   llvm::GlobalVariable **Entry = nullptr;
5643   if (!LangOpts.WritableStrings) {
5644     Entry = &ConstantStringMap[C];
5645     if (auto GV = *Entry) {
5646       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5647         GV->setAlignment(Alignment.getAsAlign());
5648       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5649                              GV->getValueType(), Alignment);
5650     }
5651   }
5652 
5653   SmallString<256> MangledNameBuffer;
5654   StringRef GlobalVariableName;
5655   llvm::GlobalValue::LinkageTypes LT;
5656 
5657   // Mangle the string literal if that's how the ABI merges duplicate strings.
5658   // Don't do it if they are writable, since we don't want writes in one TU to
5659   // affect strings in another.
5660   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5661       !LangOpts.WritableStrings) {
5662     llvm::raw_svector_ostream Out(MangledNameBuffer);
5663     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5664     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5665     GlobalVariableName = MangledNameBuffer;
5666   } else {
5667     LT = llvm::GlobalValue::PrivateLinkage;
5668     GlobalVariableName = Name;
5669   }
5670 
5671   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5672 
5673   CGDebugInfo *DI = getModuleDebugInfo();
5674   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5675     DI->AddStringLiteralDebugInfo(GV, S);
5676 
5677   if (Entry)
5678     *Entry = GV;
5679 
5680   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5681                                   QualType());
5682 
5683   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5684                          GV->getValueType(), Alignment);
5685 }
5686 
5687 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5688 /// array for the given ObjCEncodeExpr node.
5689 ConstantAddress
5690 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5691   std::string Str;
5692   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5693 
5694   return GetAddrOfConstantCString(Str);
5695 }
5696 
5697 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5698 /// the literal and a terminating '\0' character.
5699 /// The result has pointer to array type.
5700 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5701     const std::string &Str, const char *GlobalName) {
5702   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5703   CharUnits Alignment =
5704     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5705 
5706   llvm::Constant *C =
5707       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5708 
5709   // Don't share any string literals if strings aren't constant.
5710   llvm::GlobalVariable **Entry = nullptr;
5711   if (!LangOpts.WritableStrings) {
5712     Entry = &ConstantStringMap[C];
5713     if (auto GV = *Entry) {
5714       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5715         GV->setAlignment(Alignment.getAsAlign());
5716       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5717                              GV->getValueType(), Alignment);
5718     }
5719   }
5720 
5721   // Get the default prefix if a name wasn't specified.
5722   if (!GlobalName)
5723     GlobalName = ".str";
5724   // Create a global variable for this.
5725   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5726                                   GlobalName, Alignment);
5727   if (Entry)
5728     *Entry = GV;
5729 
5730   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5731                          GV->getValueType(), Alignment);
5732 }
5733 
5734 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5735     const MaterializeTemporaryExpr *E, const Expr *Init) {
5736   assert((E->getStorageDuration() == SD_Static ||
5737           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5738   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5739 
5740   // If we're not materializing a subobject of the temporary, keep the
5741   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5742   QualType MaterializedType = Init->getType();
5743   if (Init == E->getSubExpr())
5744     MaterializedType = E->getType();
5745 
5746   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5747 
5748   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5749   if (!InsertResult.second) {
5750     // We've seen this before: either we already created it or we're in the
5751     // process of doing so.
5752     if (!InsertResult.first->second) {
5753       // We recursively re-entered this function, probably during emission of
5754       // the initializer. Create a placeholder. We'll clean this up in the
5755       // outer call, at the end of this function.
5756       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5757       InsertResult.first->second = new llvm::GlobalVariable(
5758           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5759           nullptr);
5760     }
5761     return ConstantAddress(InsertResult.first->second,
5762                            llvm::cast<llvm::GlobalVariable>(
5763                                InsertResult.first->second->stripPointerCasts())
5764                                ->getValueType(),
5765                            Align);
5766   }
5767 
5768   // FIXME: If an externally-visible declaration extends multiple temporaries,
5769   // we need to give each temporary the same name in every translation unit (and
5770   // we also need to make the temporaries externally-visible).
5771   SmallString<256> Name;
5772   llvm::raw_svector_ostream Out(Name);
5773   getCXXABI().getMangleContext().mangleReferenceTemporary(
5774       VD, E->getManglingNumber(), Out);
5775 
5776   APValue *Value = nullptr;
5777   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5778     // If the initializer of the extending declaration is a constant
5779     // initializer, we should have a cached constant initializer for this
5780     // temporary. Note that this might have a different value from the value
5781     // computed by evaluating the initializer if the surrounding constant
5782     // expression modifies the temporary.
5783     Value = E->getOrCreateValue(false);
5784   }
5785 
5786   // Try evaluating it now, it might have a constant initializer.
5787   Expr::EvalResult EvalResult;
5788   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5789       !EvalResult.hasSideEffects())
5790     Value = &EvalResult.Val;
5791 
5792   LangAS AddrSpace =
5793       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5794 
5795   Optional<ConstantEmitter> emitter;
5796   llvm::Constant *InitialValue = nullptr;
5797   bool Constant = false;
5798   llvm::Type *Type;
5799   if (Value) {
5800     // The temporary has a constant initializer, use it.
5801     emitter.emplace(*this);
5802     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5803                                                MaterializedType);
5804     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5805     Type = InitialValue->getType();
5806   } else {
5807     // No initializer, the initialization will be provided when we
5808     // initialize the declaration which performed lifetime extension.
5809     Type = getTypes().ConvertTypeForMem(MaterializedType);
5810   }
5811 
5812   // Create a global variable for this lifetime-extended temporary.
5813   llvm::GlobalValue::LinkageTypes Linkage =
5814       getLLVMLinkageVarDefinition(VD, Constant);
5815   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5816     const VarDecl *InitVD;
5817     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5818         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5819       // Temporaries defined inside a class get linkonce_odr linkage because the
5820       // class can be defined in multiple translation units.
5821       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5822     } else {
5823       // There is no need for this temporary to have external linkage if the
5824       // VarDecl has external linkage.
5825       Linkage = llvm::GlobalVariable::InternalLinkage;
5826     }
5827   }
5828   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5829   auto *GV = new llvm::GlobalVariable(
5830       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5831       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5832   if (emitter) emitter->finalize(GV);
5833   setGVProperties(GV, VD);
5834   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
5835     // The reference temporary should never be dllexport.
5836     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5837   GV->setAlignment(Align.getAsAlign());
5838   if (supportsCOMDAT() && GV->isWeakForLinker())
5839     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5840   if (VD->getTLSKind())
5841     setTLSMode(GV, *VD);
5842   llvm::Constant *CV = GV;
5843   if (AddrSpace != LangAS::Default)
5844     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5845         *this, GV, AddrSpace, LangAS::Default,
5846         Type->getPointerTo(
5847             getContext().getTargetAddressSpace(LangAS::Default)));
5848 
5849   // Update the map with the new temporary. If we created a placeholder above,
5850   // replace it with the new global now.
5851   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5852   if (Entry) {
5853     Entry->replaceAllUsesWith(
5854         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5855     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5856   }
5857   Entry = CV;
5858 
5859   return ConstantAddress(CV, Type, Align);
5860 }
5861 
5862 /// EmitObjCPropertyImplementations - Emit information for synthesized
5863 /// properties for an implementation.
5864 void CodeGenModule::EmitObjCPropertyImplementations(const
5865                                                     ObjCImplementationDecl *D) {
5866   for (const auto *PID : D->property_impls()) {
5867     // Dynamic is just for type-checking.
5868     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5869       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5870 
5871       // Determine which methods need to be implemented, some may have
5872       // been overridden. Note that ::isPropertyAccessor is not the method
5873       // we want, that just indicates if the decl came from a
5874       // property. What we want to know is if the method is defined in
5875       // this implementation.
5876       auto *Getter = PID->getGetterMethodDecl();
5877       if (!Getter || Getter->isSynthesizedAccessorStub())
5878         CodeGenFunction(*this).GenerateObjCGetter(
5879             const_cast<ObjCImplementationDecl *>(D), PID);
5880       auto *Setter = PID->getSetterMethodDecl();
5881       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5882         CodeGenFunction(*this).GenerateObjCSetter(
5883                                  const_cast<ObjCImplementationDecl *>(D), PID);
5884     }
5885   }
5886 }
5887 
5888 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5889   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5890   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5891        ivar; ivar = ivar->getNextIvar())
5892     if (ivar->getType().isDestructedType())
5893       return true;
5894 
5895   return false;
5896 }
5897 
5898 static bool AllTrivialInitializers(CodeGenModule &CGM,
5899                                    ObjCImplementationDecl *D) {
5900   CodeGenFunction CGF(CGM);
5901   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5902        E = D->init_end(); B != E; ++B) {
5903     CXXCtorInitializer *CtorInitExp = *B;
5904     Expr *Init = CtorInitExp->getInit();
5905     if (!CGF.isTrivialInitializer(Init))
5906       return false;
5907   }
5908   return true;
5909 }
5910 
5911 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5912 /// for an implementation.
5913 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5914   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5915   if (needsDestructMethod(D)) {
5916     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5917     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5918     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5919         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5920         getContext().VoidTy, nullptr, D,
5921         /*isInstance=*/true, /*isVariadic=*/false,
5922         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5923         /*isImplicitlyDeclared=*/true,
5924         /*isDefined=*/false, ObjCMethodDecl::Required);
5925     D->addInstanceMethod(DTORMethod);
5926     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5927     D->setHasDestructors(true);
5928   }
5929 
5930   // If the implementation doesn't have any ivar initializers, we don't need
5931   // a .cxx_construct.
5932   if (D->getNumIvarInitializers() == 0 ||
5933       AllTrivialInitializers(*this, D))
5934     return;
5935 
5936   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5937   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5938   // The constructor returns 'self'.
5939   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5940       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5941       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5942       /*isVariadic=*/false,
5943       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5944       /*isImplicitlyDeclared=*/true,
5945       /*isDefined=*/false, ObjCMethodDecl::Required);
5946   D->addInstanceMethod(CTORMethod);
5947   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5948   D->setHasNonZeroConstructors(true);
5949 }
5950 
5951 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5952 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5953   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5954       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5955     ErrorUnsupported(LSD, "linkage spec");
5956     return;
5957   }
5958 
5959   EmitDeclContext(LSD);
5960 }
5961 
5962 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5963   for (auto *I : DC->decls()) {
5964     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5965     // are themselves considered "top-level", so EmitTopLevelDecl on an
5966     // ObjCImplDecl does not recursively visit them. We need to do that in
5967     // case they're nested inside another construct (LinkageSpecDecl /
5968     // ExportDecl) that does stop them from being considered "top-level".
5969     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5970       for (auto *M : OID->methods())
5971         EmitTopLevelDecl(M);
5972     }
5973 
5974     EmitTopLevelDecl(I);
5975   }
5976 }
5977 
5978 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5979 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5980   // Ignore dependent declarations.
5981   if (D->isTemplated())
5982     return;
5983 
5984   // Consteval function shouldn't be emitted.
5985   if (auto *FD = dyn_cast<FunctionDecl>(D))
5986     if (FD->isConsteval())
5987       return;
5988 
5989   switch (D->getKind()) {
5990   case Decl::CXXConversion:
5991   case Decl::CXXMethod:
5992   case Decl::Function:
5993     EmitGlobal(cast<FunctionDecl>(D));
5994     // Always provide some coverage mapping
5995     // even for the functions that aren't emitted.
5996     AddDeferredUnusedCoverageMapping(D);
5997     break;
5998 
5999   case Decl::CXXDeductionGuide:
6000     // Function-like, but does not result in code emission.
6001     break;
6002 
6003   case Decl::Var:
6004   case Decl::Decomposition:
6005   case Decl::VarTemplateSpecialization:
6006     EmitGlobal(cast<VarDecl>(D));
6007     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6008       for (auto *B : DD->bindings())
6009         if (auto *HD = B->getHoldingVar())
6010           EmitGlobal(HD);
6011     break;
6012 
6013   // Indirect fields from global anonymous structs and unions can be
6014   // ignored; only the actual variable requires IR gen support.
6015   case Decl::IndirectField:
6016     break;
6017 
6018   // C++ Decls
6019   case Decl::Namespace:
6020     EmitDeclContext(cast<NamespaceDecl>(D));
6021     break;
6022   case Decl::ClassTemplateSpecialization: {
6023     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6024     if (CGDebugInfo *DI = getModuleDebugInfo())
6025       if (Spec->getSpecializationKind() ==
6026               TSK_ExplicitInstantiationDefinition &&
6027           Spec->hasDefinition())
6028         DI->completeTemplateDefinition(*Spec);
6029   } LLVM_FALLTHROUGH;
6030   case Decl::CXXRecord: {
6031     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6032     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6033       if (CRD->hasDefinition())
6034         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6035       if (auto *ES = D->getASTContext().getExternalSource())
6036         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6037           DI->completeUnusedClass(*CRD);
6038     }
6039     // Emit any static data members, they may be definitions.
6040     for (auto *I : CRD->decls())
6041       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6042         EmitTopLevelDecl(I);
6043     break;
6044   }
6045     // No code generation needed.
6046   case Decl::UsingShadow:
6047   case Decl::ClassTemplate:
6048   case Decl::VarTemplate:
6049   case Decl::Concept:
6050   case Decl::VarTemplatePartialSpecialization:
6051   case Decl::FunctionTemplate:
6052   case Decl::TypeAliasTemplate:
6053   case Decl::Block:
6054   case Decl::Empty:
6055   case Decl::Binding:
6056     break;
6057   case Decl::Using:          // using X; [C++]
6058     if (CGDebugInfo *DI = getModuleDebugInfo())
6059         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6060     break;
6061   case Decl::UsingEnum: // using enum X; [C++]
6062     if (CGDebugInfo *DI = getModuleDebugInfo())
6063       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6064     break;
6065   case Decl::NamespaceAlias:
6066     if (CGDebugInfo *DI = getModuleDebugInfo())
6067         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6068     break;
6069   case Decl::UsingDirective: // using namespace X; [C++]
6070     if (CGDebugInfo *DI = getModuleDebugInfo())
6071       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6072     break;
6073   case Decl::CXXConstructor:
6074     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6075     break;
6076   case Decl::CXXDestructor:
6077     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6078     break;
6079 
6080   case Decl::StaticAssert:
6081     // Nothing to do.
6082     break;
6083 
6084   // Objective-C Decls
6085 
6086   // Forward declarations, no (immediate) code generation.
6087   case Decl::ObjCInterface:
6088   case Decl::ObjCCategory:
6089     break;
6090 
6091   case Decl::ObjCProtocol: {
6092     auto *Proto = cast<ObjCProtocolDecl>(D);
6093     if (Proto->isThisDeclarationADefinition())
6094       ObjCRuntime->GenerateProtocol(Proto);
6095     break;
6096   }
6097 
6098   case Decl::ObjCCategoryImpl:
6099     // Categories have properties but don't support synthesize so we
6100     // can ignore them here.
6101     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6102     break;
6103 
6104   case Decl::ObjCImplementation: {
6105     auto *OMD = cast<ObjCImplementationDecl>(D);
6106     EmitObjCPropertyImplementations(OMD);
6107     EmitObjCIvarInitializations(OMD);
6108     ObjCRuntime->GenerateClass(OMD);
6109     // Emit global variable debug information.
6110     if (CGDebugInfo *DI = getModuleDebugInfo())
6111       if (getCodeGenOpts().hasReducedDebugInfo())
6112         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6113             OMD->getClassInterface()), OMD->getLocation());
6114     break;
6115   }
6116   case Decl::ObjCMethod: {
6117     auto *OMD = cast<ObjCMethodDecl>(D);
6118     // If this is not a prototype, emit the body.
6119     if (OMD->getBody())
6120       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6121     break;
6122   }
6123   case Decl::ObjCCompatibleAlias:
6124     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6125     break;
6126 
6127   case Decl::PragmaComment: {
6128     const auto *PCD = cast<PragmaCommentDecl>(D);
6129     switch (PCD->getCommentKind()) {
6130     case PCK_Unknown:
6131       llvm_unreachable("unexpected pragma comment kind");
6132     case PCK_Linker:
6133       AppendLinkerOptions(PCD->getArg());
6134       break;
6135     case PCK_Lib:
6136         AddDependentLib(PCD->getArg());
6137       break;
6138     case PCK_Compiler:
6139     case PCK_ExeStr:
6140     case PCK_User:
6141       break; // We ignore all of these.
6142     }
6143     break;
6144   }
6145 
6146   case Decl::PragmaDetectMismatch: {
6147     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6148     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6149     break;
6150   }
6151 
6152   case Decl::LinkageSpec:
6153     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6154     break;
6155 
6156   case Decl::FileScopeAsm: {
6157     // File-scope asm is ignored during device-side CUDA compilation.
6158     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6159       break;
6160     // File-scope asm is ignored during device-side OpenMP compilation.
6161     if (LangOpts.OpenMPIsDevice)
6162       break;
6163     // File-scope asm is ignored during device-side SYCL compilation.
6164     if (LangOpts.SYCLIsDevice)
6165       break;
6166     auto *AD = cast<FileScopeAsmDecl>(D);
6167     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6168     break;
6169   }
6170 
6171   case Decl::Import: {
6172     auto *Import = cast<ImportDecl>(D);
6173 
6174     // If we've already imported this module, we're done.
6175     if (!ImportedModules.insert(Import->getImportedModule()))
6176       break;
6177 
6178     // Emit debug information for direct imports.
6179     if (!Import->getImportedOwningModule()) {
6180       if (CGDebugInfo *DI = getModuleDebugInfo())
6181         DI->EmitImportDecl(*Import);
6182     }
6183 
6184     // Find all of the submodules and emit the module initializers.
6185     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6186     SmallVector<clang::Module *, 16> Stack;
6187     Visited.insert(Import->getImportedModule());
6188     Stack.push_back(Import->getImportedModule());
6189 
6190     while (!Stack.empty()) {
6191       clang::Module *Mod = Stack.pop_back_val();
6192       if (!EmittedModuleInitializers.insert(Mod).second)
6193         continue;
6194 
6195       for (auto *D : Context.getModuleInitializers(Mod))
6196         EmitTopLevelDecl(D);
6197 
6198       // Visit the submodules of this module.
6199       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6200                                              SubEnd = Mod->submodule_end();
6201            Sub != SubEnd; ++Sub) {
6202         // Skip explicit children; they need to be explicitly imported to emit
6203         // the initializers.
6204         if ((*Sub)->IsExplicit)
6205           continue;
6206 
6207         if (Visited.insert(*Sub).second)
6208           Stack.push_back(*Sub);
6209       }
6210     }
6211     break;
6212   }
6213 
6214   case Decl::Export:
6215     EmitDeclContext(cast<ExportDecl>(D));
6216     break;
6217 
6218   case Decl::OMPThreadPrivate:
6219     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6220     break;
6221 
6222   case Decl::OMPAllocate:
6223     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6224     break;
6225 
6226   case Decl::OMPDeclareReduction:
6227     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6228     break;
6229 
6230   case Decl::OMPDeclareMapper:
6231     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6232     break;
6233 
6234   case Decl::OMPRequires:
6235     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6236     break;
6237 
6238   case Decl::Typedef:
6239   case Decl::TypeAlias: // using foo = bar; [C++11]
6240     if (CGDebugInfo *DI = getModuleDebugInfo())
6241       DI->EmitAndRetainType(
6242           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6243     break;
6244 
6245   case Decl::Record:
6246     if (CGDebugInfo *DI = getModuleDebugInfo())
6247       if (cast<RecordDecl>(D)->getDefinition())
6248         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6249     break;
6250 
6251   case Decl::Enum:
6252     if (CGDebugInfo *DI = getModuleDebugInfo())
6253       if (cast<EnumDecl>(D)->getDefinition())
6254         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6255     break;
6256 
6257   default:
6258     // Make sure we handled everything we should, every other kind is a
6259     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6260     // function. Need to recode Decl::Kind to do that easily.
6261     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6262     break;
6263   }
6264 }
6265 
6266 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6267   // Do we need to generate coverage mapping?
6268   if (!CodeGenOpts.CoverageMapping)
6269     return;
6270   switch (D->getKind()) {
6271   case Decl::CXXConversion:
6272   case Decl::CXXMethod:
6273   case Decl::Function:
6274   case Decl::ObjCMethod:
6275   case Decl::CXXConstructor:
6276   case Decl::CXXDestructor: {
6277     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6278       break;
6279     SourceManager &SM = getContext().getSourceManager();
6280     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6281       break;
6282     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6283     if (I == DeferredEmptyCoverageMappingDecls.end())
6284       DeferredEmptyCoverageMappingDecls[D] = true;
6285     break;
6286   }
6287   default:
6288     break;
6289   };
6290 }
6291 
6292 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6293   // Do we need to generate coverage mapping?
6294   if (!CodeGenOpts.CoverageMapping)
6295     return;
6296   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6297     if (Fn->isTemplateInstantiation())
6298       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6299   }
6300   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6301   if (I == DeferredEmptyCoverageMappingDecls.end())
6302     DeferredEmptyCoverageMappingDecls[D] = false;
6303   else
6304     I->second = false;
6305 }
6306 
6307 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6308   // We call takeVector() here to avoid use-after-free.
6309   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6310   // we deserialize function bodies to emit coverage info for them, and that
6311   // deserializes more declarations. How should we handle that case?
6312   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6313     if (!Entry.second)
6314       continue;
6315     const Decl *D = Entry.first;
6316     switch (D->getKind()) {
6317     case Decl::CXXConversion:
6318     case Decl::CXXMethod:
6319     case Decl::Function:
6320     case Decl::ObjCMethod: {
6321       CodeGenPGO PGO(*this);
6322       GlobalDecl GD(cast<FunctionDecl>(D));
6323       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6324                                   getFunctionLinkage(GD));
6325       break;
6326     }
6327     case Decl::CXXConstructor: {
6328       CodeGenPGO PGO(*this);
6329       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6330       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6331                                   getFunctionLinkage(GD));
6332       break;
6333     }
6334     case Decl::CXXDestructor: {
6335       CodeGenPGO PGO(*this);
6336       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6337       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6338                                   getFunctionLinkage(GD));
6339       break;
6340     }
6341     default:
6342       break;
6343     };
6344   }
6345 }
6346 
6347 void CodeGenModule::EmitMainVoidAlias() {
6348   // In order to transition away from "__original_main" gracefully, emit an
6349   // alias for "main" in the no-argument case so that libc can detect when
6350   // new-style no-argument main is in used.
6351   if (llvm::Function *F = getModule().getFunction("main")) {
6352     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6353         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6354       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6355       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6356     }
6357   }
6358 }
6359 
6360 /// Turns the given pointer into a constant.
6361 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6362                                           const void *Ptr) {
6363   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6364   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6365   return llvm::ConstantInt::get(i64, PtrInt);
6366 }
6367 
6368 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6369                                    llvm::NamedMDNode *&GlobalMetadata,
6370                                    GlobalDecl D,
6371                                    llvm::GlobalValue *Addr) {
6372   if (!GlobalMetadata)
6373     GlobalMetadata =
6374       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6375 
6376   // TODO: should we report variant information for ctors/dtors?
6377   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6378                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6379                                CGM.getLLVMContext(), D.getDecl()))};
6380   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6381 }
6382 
6383 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6384                                                  llvm::GlobalValue *CppFunc) {
6385   // Store the list of ifuncs we need to replace uses in.
6386   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6387   // List of ConstantExprs that we should be able to delete when we're done
6388   // here.
6389   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6390 
6391   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6392   if (Elem == CppFunc)
6393     return false;
6394 
6395   // First make sure that all users of this are ifuncs (or ifuncs via a
6396   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6397   // later.
6398   for (llvm::User *User : Elem->users()) {
6399     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6400     // ifunc directly. In any other case, just give up, as we don't know what we
6401     // could break by changing those.
6402     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6403       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6404         return false;
6405 
6406       for (llvm::User *CEUser : ConstExpr->users()) {
6407         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6408           IFuncs.push_back(IFunc);
6409         } else {
6410           return false;
6411         }
6412       }
6413       CEs.push_back(ConstExpr);
6414     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6415       IFuncs.push_back(IFunc);
6416     } else {
6417       // This user is one we don't know how to handle, so fail redirection. This
6418       // will result in an ifunc retaining a resolver name that will ultimately
6419       // fail to be resolved to a defined function.
6420       return false;
6421     }
6422   }
6423 
6424   // Now we know this is a valid case where we can do this alias replacement, we
6425   // need to remove all of the references to Elem (and the bitcasts!) so we can
6426   // delete it.
6427   for (llvm::GlobalIFunc *IFunc : IFuncs)
6428     IFunc->setResolver(nullptr);
6429   for (llvm::ConstantExpr *ConstExpr : CEs)
6430     ConstExpr->destroyConstant();
6431 
6432   // We should now be out of uses for the 'old' version of this function, so we
6433   // can erase it as well.
6434   Elem->eraseFromParent();
6435 
6436   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6437     // The type of the resolver is always just a function-type that returns the
6438     // type of the IFunc, so create that here. If the type of the actual
6439     // resolver doesn't match, it just gets bitcast to the right thing.
6440     auto *ResolverTy =
6441         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6442     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6443         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6444     IFunc->setResolver(Resolver);
6445   }
6446   return true;
6447 }
6448 
6449 /// For each function which is declared within an extern "C" region and marked
6450 /// as 'used', but has internal linkage, create an alias from the unmangled
6451 /// name to the mangled name if possible. People expect to be able to refer
6452 /// to such functions with an unmangled name from inline assembly within the
6453 /// same translation unit.
6454 void CodeGenModule::EmitStaticExternCAliases() {
6455   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6456     return;
6457   for (auto &I : StaticExternCValues) {
6458     IdentifierInfo *Name = I.first;
6459     llvm::GlobalValue *Val = I.second;
6460 
6461     // If Val is null, that implies there were multiple declarations that each
6462     // had a claim to the unmangled name. In this case, generation of the alias
6463     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6464     if (!Val)
6465       break;
6466 
6467     llvm::GlobalValue *ExistingElem =
6468         getModule().getNamedValue(Name->getName());
6469 
6470     // If there is either not something already by this name, or we were able to
6471     // replace all uses from IFuncs, create the alias.
6472     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6473       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6474   }
6475 }
6476 
6477 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6478                                              GlobalDecl &Result) const {
6479   auto Res = Manglings.find(MangledName);
6480   if (Res == Manglings.end())
6481     return false;
6482   Result = Res->getValue();
6483   return true;
6484 }
6485 
6486 /// Emits metadata nodes associating all the global values in the
6487 /// current module with the Decls they came from.  This is useful for
6488 /// projects using IR gen as a subroutine.
6489 ///
6490 /// Since there's currently no way to associate an MDNode directly
6491 /// with an llvm::GlobalValue, we create a global named metadata
6492 /// with the name 'clang.global.decl.ptrs'.
6493 void CodeGenModule::EmitDeclMetadata() {
6494   llvm::NamedMDNode *GlobalMetadata = nullptr;
6495 
6496   for (auto &I : MangledDeclNames) {
6497     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6498     // Some mangled names don't necessarily have an associated GlobalValue
6499     // in this module, e.g. if we mangled it for DebugInfo.
6500     if (Addr)
6501       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6502   }
6503 }
6504 
6505 /// Emits metadata nodes for all the local variables in the current
6506 /// function.
6507 void CodeGenFunction::EmitDeclMetadata() {
6508   if (LocalDeclMap.empty()) return;
6509 
6510   llvm::LLVMContext &Context = getLLVMContext();
6511 
6512   // Find the unique metadata ID for this name.
6513   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6514 
6515   llvm::NamedMDNode *GlobalMetadata = nullptr;
6516 
6517   for (auto &I : LocalDeclMap) {
6518     const Decl *D = I.first;
6519     llvm::Value *Addr = I.second.getPointer();
6520     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6521       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6522       Alloca->setMetadata(
6523           DeclPtrKind, llvm::MDNode::get(
6524                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6525     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6526       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6527       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6528     }
6529   }
6530 }
6531 
6532 void CodeGenModule::EmitVersionIdentMetadata() {
6533   llvm::NamedMDNode *IdentMetadata =
6534     TheModule.getOrInsertNamedMetadata("llvm.ident");
6535   std::string Version = getClangFullVersion();
6536   llvm::LLVMContext &Ctx = TheModule.getContext();
6537 
6538   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6539   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6540 }
6541 
6542 void CodeGenModule::EmitCommandLineMetadata() {
6543   llvm::NamedMDNode *CommandLineMetadata =
6544     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6545   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6546   llvm::LLVMContext &Ctx = TheModule.getContext();
6547 
6548   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6549   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6550 }
6551 
6552 void CodeGenModule::EmitCoverageFile() {
6553   if (getCodeGenOpts().CoverageDataFile.empty() &&
6554       getCodeGenOpts().CoverageNotesFile.empty())
6555     return;
6556 
6557   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6558   if (!CUNode)
6559     return;
6560 
6561   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6562   llvm::LLVMContext &Ctx = TheModule.getContext();
6563   auto *CoverageDataFile =
6564       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6565   auto *CoverageNotesFile =
6566       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6567   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6568     llvm::MDNode *CU = CUNode->getOperand(i);
6569     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6570     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6571   }
6572 }
6573 
6574 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6575                                                        bool ForEH) {
6576   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6577   // FIXME: should we even be calling this method if RTTI is disabled
6578   // and it's not for EH?
6579   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6580       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6581        getTriple().isNVPTX()))
6582     return llvm::Constant::getNullValue(Int8PtrTy);
6583 
6584   if (ForEH && Ty->isObjCObjectPointerType() &&
6585       LangOpts.ObjCRuntime.isGNUFamily())
6586     return ObjCRuntime->GetEHType(Ty);
6587 
6588   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6589 }
6590 
6591 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6592   // Do not emit threadprivates in simd-only mode.
6593   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6594     return;
6595   for (auto RefExpr : D->varlists()) {
6596     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6597     bool PerformInit =
6598         VD->getAnyInitializer() &&
6599         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6600                                                         /*ForRef=*/false);
6601 
6602     Address Addr(GetAddrOfGlobalVar(VD),
6603                  getTypes().ConvertTypeForMem(VD->getType()),
6604                  getContext().getDeclAlign(VD));
6605     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6606             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6607       CXXGlobalInits.push_back(InitFunction);
6608   }
6609 }
6610 
6611 llvm::Metadata *
6612 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6613                                             StringRef Suffix) {
6614   if (auto *FnType = T->getAs<FunctionProtoType>())
6615     T = getContext().getFunctionType(
6616         FnType->getReturnType(), FnType->getParamTypes(),
6617         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6618 
6619   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6620   if (InternalId)
6621     return InternalId;
6622 
6623   if (isExternallyVisible(T->getLinkage())) {
6624     std::string OutName;
6625     llvm::raw_string_ostream Out(OutName);
6626     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6627     Out << Suffix;
6628 
6629     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6630   } else {
6631     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6632                                            llvm::ArrayRef<llvm::Metadata *>());
6633   }
6634 
6635   return InternalId;
6636 }
6637 
6638 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6639   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6640 }
6641 
6642 llvm::Metadata *
6643 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6644   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6645 }
6646 
6647 // Generalize pointer types to a void pointer with the qualifiers of the
6648 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6649 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6650 // 'void *'.
6651 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6652   if (!Ty->isPointerType())
6653     return Ty;
6654 
6655   return Ctx.getPointerType(
6656       QualType(Ctx.VoidTy).withCVRQualifiers(
6657           Ty->getPointeeType().getCVRQualifiers()));
6658 }
6659 
6660 // Apply type generalization to a FunctionType's return and argument types
6661 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6662   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6663     SmallVector<QualType, 8> GeneralizedParams;
6664     for (auto &Param : FnType->param_types())
6665       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6666 
6667     return Ctx.getFunctionType(
6668         GeneralizeType(Ctx, FnType->getReturnType()),
6669         GeneralizedParams, FnType->getExtProtoInfo());
6670   }
6671 
6672   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6673     return Ctx.getFunctionNoProtoType(
6674         GeneralizeType(Ctx, FnType->getReturnType()));
6675 
6676   llvm_unreachable("Encountered unknown FunctionType");
6677 }
6678 
6679 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6680   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6681                                       GeneralizedMetadataIdMap, ".generalized");
6682 }
6683 
6684 /// Returns whether this module needs the "all-vtables" type identifier.
6685 bool CodeGenModule::NeedAllVtablesTypeId() const {
6686   // Returns true if at least one of vtable-based CFI checkers is enabled and
6687   // is not in the trapping mode.
6688   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6689            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6690           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6691            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6692           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6693            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6694           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6695            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6696 }
6697 
6698 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6699                                           CharUnits Offset,
6700                                           const CXXRecordDecl *RD) {
6701   llvm::Metadata *MD =
6702       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6703   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6704 
6705   if (CodeGenOpts.SanitizeCfiCrossDso)
6706     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6707       VTable->addTypeMetadata(Offset.getQuantity(),
6708                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6709 
6710   if (NeedAllVtablesTypeId()) {
6711     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6712     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6713   }
6714 }
6715 
6716 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6717   if (!SanStats)
6718     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6719 
6720   return *SanStats;
6721 }
6722 
6723 llvm::Value *
6724 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6725                                                   CodeGenFunction &CGF) {
6726   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6727   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6728   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6729   auto *Call = CGF.EmitRuntimeCall(
6730       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6731   return Call;
6732 }
6733 
6734 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6735     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6736   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6737                                  /* forPointeeType= */ true);
6738 }
6739 
6740 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6741                                                  LValueBaseInfo *BaseInfo,
6742                                                  TBAAAccessInfo *TBAAInfo,
6743                                                  bool forPointeeType) {
6744   if (TBAAInfo)
6745     *TBAAInfo = getTBAAAccessInfo(T);
6746 
6747   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6748   // that doesn't return the information we need to compute BaseInfo.
6749 
6750   // Honor alignment typedef attributes even on incomplete types.
6751   // We also honor them straight for C++ class types, even as pointees;
6752   // there's an expressivity gap here.
6753   if (auto TT = T->getAs<TypedefType>()) {
6754     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6755       if (BaseInfo)
6756         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6757       return getContext().toCharUnitsFromBits(Align);
6758     }
6759   }
6760 
6761   bool AlignForArray = T->isArrayType();
6762 
6763   // Analyze the base element type, so we don't get confused by incomplete
6764   // array types.
6765   T = getContext().getBaseElementType(T);
6766 
6767   if (T->isIncompleteType()) {
6768     // We could try to replicate the logic from
6769     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6770     // type is incomplete, so it's impossible to test. We could try to reuse
6771     // getTypeAlignIfKnown, but that doesn't return the information we need
6772     // to set BaseInfo.  So just ignore the possibility that the alignment is
6773     // greater than one.
6774     if (BaseInfo)
6775       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6776     return CharUnits::One();
6777   }
6778 
6779   if (BaseInfo)
6780     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6781 
6782   CharUnits Alignment;
6783   const CXXRecordDecl *RD;
6784   if (T.getQualifiers().hasUnaligned()) {
6785     Alignment = CharUnits::One();
6786   } else if (forPointeeType && !AlignForArray &&
6787              (RD = T->getAsCXXRecordDecl())) {
6788     // For C++ class pointees, we don't know whether we're pointing at a
6789     // base or a complete object, so we generally need to use the
6790     // non-virtual alignment.
6791     Alignment = getClassPointerAlignment(RD);
6792   } else {
6793     Alignment = getContext().getTypeAlignInChars(T);
6794   }
6795 
6796   // Cap to the global maximum type alignment unless the alignment
6797   // was somehow explicit on the type.
6798   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6799     if (Alignment.getQuantity() > MaxAlign &&
6800         !getContext().isAlignmentRequired(T))
6801       Alignment = CharUnits::fromQuantity(MaxAlign);
6802   }
6803   return Alignment;
6804 }
6805 
6806 bool CodeGenModule::stopAutoInit() {
6807   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6808   if (StopAfter) {
6809     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6810     // used
6811     if (NumAutoVarInit >= StopAfter) {
6812       return true;
6813     }
6814     if (!NumAutoVarInit) {
6815       unsigned DiagID = getDiags().getCustomDiagID(
6816           DiagnosticsEngine::Warning,
6817           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6818           "number of times ftrivial-auto-var-init=%1 gets applied.");
6819       getDiags().Report(DiagID)
6820           << StopAfter
6821           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6822                       LangOptions::TrivialAutoVarInitKind::Zero
6823                   ? "zero"
6824                   : "pattern");
6825     }
6826     ++NumAutoVarInit;
6827   }
6828   return false;
6829 }
6830 
6831 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
6832                                                     const Decl *D) const {
6833   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
6834   // postfix beginning with '.' since the symbol name can be demangled.
6835   if (LangOpts.HIP)
6836     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
6837   else
6838     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
6839 
6840   // If the CUID is not specified we try to generate a unique postfix.
6841   if (getLangOpts().CUID.empty()) {
6842     SourceManager &SM = getContext().getSourceManager();
6843     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
6844     assert(PLoc.isValid() && "Source location is expected to be valid.");
6845 
6846     // Get the hash of the user defined macros.
6847     llvm::MD5 Hash;
6848     llvm::MD5::MD5Result Result;
6849     for (const auto &Arg : PreprocessorOpts.Macros)
6850       Hash.update(Arg.first);
6851     Hash.final(Result);
6852 
6853     // Get the UniqueID for the file containing the decl.
6854     llvm::sys::fs::UniqueID ID;
6855     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
6856       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
6857       assert(PLoc.isValid() && "Source location is expected to be valid.");
6858       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
6859         SM.getDiagnostics().Report(diag::err_cannot_open_file)
6860             << PLoc.getFilename() << EC.message();
6861     }
6862     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
6863        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
6864   } else {
6865     OS << getContext().getCUIDHash();
6866   }
6867 }
6868