xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 5c0d1925e333442b9138e88c4eff3b0a915d6702)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallSite.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 
62 using namespace clang;
63 using namespace CodeGen;
64 
65 static llvm::cl::opt<bool> LimitedCoverage(
66     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
67     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
68     llvm::cl::init(false));
69 
70 static const char AnnotationSection[] = "llvm.metadata";
71 
72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
73   switch (CGM.getTarget().getCXXABI().getKind()) {
74   case TargetCXXABI::GenericAArch64:
75   case TargetCXXABI::GenericARM:
76   case TargetCXXABI::iOS:
77   case TargetCXXABI::iOS64:
78   case TargetCXXABI::WatchOS:
79   case TargetCXXABI::GenericMIPS:
80   case TargetCXXABI::GenericItanium:
81   case TargetCXXABI::WebAssembly:
82     return CreateItaniumCXXABI(CGM);
83   case TargetCXXABI::Microsoft:
84     return CreateMicrosoftCXXABI(CGM);
85   }
86 
87   llvm_unreachable("invalid C++ ABI kind");
88 }
89 
90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
91                              const PreprocessorOptions &PPO,
92                              const CodeGenOptions &CGO, llvm::Module &M,
93                              DiagnosticsEngine &diags,
94                              CoverageSourceInfo *CoverageInfo)
95     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
96       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
97       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
98       VMContext(M.getContext()), Types(*this), VTables(*this),
99       SanitizerMD(new SanitizerMetadata(*this)) {
100 
101   // Initialize the type cache.
102   llvm::LLVMContext &LLVMContext = M.getContext();
103   VoidTy = llvm::Type::getVoidTy(LLVMContext);
104   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
105   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   HalfTy = llvm::Type::getHalfTy(LLVMContext);
109   FloatTy = llvm::Type::getFloatTy(LLVMContext);
110   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
111   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
112   PointerAlignInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
114   SizeSizeInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
116   IntAlignInBytes =
117     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
118   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
119   IntPtrTy = llvm::IntegerType::get(LLVMContext,
120     C.getTargetInfo().getMaxPointerWidth());
121   Int8PtrTy = Int8Ty->getPointerTo(0);
122   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
123   AllocaInt8PtrTy = Int8Ty->getPointerTo(
124       M.getDataLayout().getAllocaAddrSpace());
125   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
126 
127   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
128 
129   if (LangOpts.ObjC)
130     createObjCRuntime();
131   if (LangOpts.OpenCL)
132     createOpenCLRuntime();
133   if (LangOpts.OpenMP)
134     createOpenMPRuntime();
135   if (LangOpts.CUDA)
136     createCUDARuntime();
137 
138   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
139   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
140       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
141     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
142                                getCXXABI().getMangleContext()));
143 
144   // If debug info or coverage generation is enabled, create the CGDebugInfo
145   // object.
146   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
147       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
148     DebugInfo.reset(new CGDebugInfo(*this));
149 
150   Block.GlobalUniqueCount = 0;
151 
152   if (C.getLangOpts().ObjC)
153     ObjCData.reset(new ObjCEntrypoints());
154 
155   if (CodeGenOpts.hasProfileClangUse()) {
156     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
157         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
158     if (auto E = ReaderOrErr.takeError()) {
159       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
160                                               "Could not read profile %0: %1");
161       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
162         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
163                                   << EI.message();
164       });
165     } else
166       PGOReader = std::move(ReaderOrErr.get());
167   }
168 
169   // If coverage mapping generation is enabled, create the
170   // CoverageMappingModuleGen object.
171   if (CodeGenOpts.CoverageMapping)
172     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
173 }
174 
175 CodeGenModule::~CodeGenModule() {}
176 
177 void CodeGenModule::createObjCRuntime() {
178   // This is just isGNUFamily(), but we want to force implementors of
179   // new ABIs to decide how best to do this.
180   switch (LangOpts.ObjCRuntime.getKind()) {
181   case ObjCRuntime::GNUstep:
182   case ObjCRuntime::GCC:
183   case ObjCRuntime::ObjFW:
184     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
185     return;
186 
187   case ObjCRuntime::FragileMacOSX:
188   case ObjCRuntime::MacOSX:
189   case ObjCRuntime::iOS:
190   case ObjCRuntime::WatchOS:
191     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
192     return;
193   }
194   llvm_unreachable("bad runtime kind");
195 }
196 
197 void CodeGenModule::createOpenCLRuntime() {
198   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
199 }
200 
201 void CodeGenModule::createOpenMPRuntime() {
202   // Select a specialized code generation class based on the target, if any.
203   // If it does not exist use the default implementation.
204   switch (getTriple().getArch()) {
205   case llvm::Triple::nvptx:
206   case llvm::Triple::nvptx64:
207     assert(getLangOpts().OpenMPIsDevice &&
208            "OpenMP NVPTX is only prepared to deal with device code.");
209     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
210     break;
211   default:
212     if (LangOpts.OpenMPSimd)
213       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
214     else
215       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
216     break;
217   }
218 }
219 
220 void CodeGenModule::createCUDARuntime() {
221   CUDARuntime.reset(CreateNVCUDARuntime(*this));
222 }
223 
224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
225   Replacements[Name] = C;
226 }
227 
228 void CodeGenModule::applyReplacements() {
229   for (auto &I : Replacements) {
230     StringRef MangledName = I.first();
231     llvm::Constant *Replacement = I.second;
232     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
233     if (!Entry)
234       continue;
235     auto *OldF = cast<llvm::Function>(Entry);
236     auto *NewF = dyn_cast<llvm::Function>(Replacement);
237     if (!NewF) {
238       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
239         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
240       } else {
241         auto *CE = cast<llvm::ConstantExpr>(Replacement);
242         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
243                CE->getOpcode() == llvm::Instruction::GetElementPtr);
244         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
245       }
246     }
247 
248     // Replace old with new, but keep the old order.
249     OldF->replaceAllUsesWith(Replacement);
250     if (NewF) {
251       NewF->removeFromParent();
252       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
253                                                        NewF);
254     }
255     OldF->eraseFromParent();
256   }
257 }
258 
259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
260   GlobalValReplacements.push_back(std::make_pair(GV, C));
261 }
262 
263 void CodeGenModule::applyGlobalValReplacements() {
264   for (auto &I : GlobalValReplacements) {
265     llvm::GlobalValue *GV = I.first;
266     llvm::Constant *C = I.second;
267 
268     GV->replaceAllUsesWith(C);
269     GV->eraseFromParent();
270   }
271 }
272 
273 // This is only used in aliases that we created and we know they have a
274 // linear structure.
275 static const llvm::GlobalObject *getAliasedGlobal(
276     const llvm::GlobalIndirectSymbol &GIS) {
277   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
278   const llvm::Constant *C = &GIS;
279   for (;;) {
280     C = C->stripPointerCasts();
281     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
282       return GO;
283     // stripPointerCasts will not walk over weak aliases.
284     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
285     if (!GIS2)
286       return nullptr;
287     if (!Visited.insert(GIS2).second)
288       return nullptr;
289     C = GIS2->getIndirectSymbol();
290   }
291 }
292 
293 void CodeGenModule::checkAliases() {
294   // Check if the constructed aliases are well formed. It is really unfortunate
295   // that we have to do this in CodeGen, but we only construct mangled names
296   // and aliases during codegen.
297   bool Error = false;
298   DiagnosticsEngine &Diags = getDiags();
299   for (const GlobalDecl &GD : Aliases) {
300     const auto *D = cast<ValueDecl>(GD.getDecl());
301     SourceLocation Location;
302     bool IsIFunc = D->hasAttr<IFuncAttr>();
303     if (const Attr *A = D->getDefiningAttr())
304       Location = A->getLocation();
305     else
306       llvm_unreachable("Not an alias or ifunc?");
307     StringRef MangledName = getMangledName(GD);
308     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
309     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
310     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
311     if (!GV) {
312       Error = true;
313       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
314     } else if (GV->isDeclaration()) {
315       Error = true;
316       Diags.Report(Location, diag::err_alias_to_undefined)
317           << IsIFunc << IsIFunc;
318     } else if (IsIFunc) {
319       // Check resolver function type.
320       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
321           GV->getType()->getPointerElementType());
322       assert(FTy);
323       if (!FTy->getReturnType()->isPointerTy())
324         Diags.Report(Location, diag::err_ifunc_resolver_return);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction =
408             CUDARuntime->makeModuleCtorFunction())
409       AddGlobalCtor(CudaCtorFunction);
410   }
411   if (OpenMPRuntime) {
412     if (llvm::Function *OpenMPRegistrationFunction =
413             OpenMPRuntime->emitRegistrationFunction()) {
414       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415         OpenMPRegistrationFunction : nullptr;
416       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417     }
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422     if (PGOStats.hasDiagnostics())
423       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424   }
425   EmitCtorList(GlobalCtors, "llvm.global_ctors");
426   EmitCtorList(GlobalDtors, "llvm.global_dtors");
427   EmitGlobalAnnotations();
428   EmitStaticExternCAliases();
429   EmitDeferredUnusedCoverageMappings();
430   if (CoverageMapping)
431     CoverageMapping->emit();
432   if (CodeGenOpts.SanitizeCfiCrossDso) {
433     CodeGenFunction(*this).EmitCfiCheckFail();
434     CodeGenFunction(*this).EmitCfiCheckStub();
435   }
436   emitAtAvailableLinkGuard();
437   emitLLVMUsed();
438   if (SanStats)
439     SanStats->finish();
440 
441   if (CodeGenOpts.Autolink &&
442       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443     EmitModuleLinkOptions();
444   }
445 
446   // Record mregparm value now so it is visible through rest of codegen.
447   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449                               CodeGenOpts.NumRegisterParameters);
450 
451   if (CodeGenOpts.DwarfVersion) {
452     // We actually want the latest version when there are conflicts.
453     // We can change from Warning to Latest if such mode is supported.
454     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455                               CodeGenOpts.DwarfVersion);
456   }
457   if (CodeGenOpts.EmitCodeView) {
458     // Indicate that we want CodeView in the metadata.
459     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460   }
461   if (CodeGenOpts.CodeViewGHash) {
462     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
463   }
464   if (CodeGenOpts.ControlFlowGuard) {
465     // We want function ID tables for Control Flow Guard.
466     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
467   }
468   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
469     // We don't support LTO with 2 with different StrictVTablePointers
470     // FIXME: we could support it by stripping all the information introduced
471     // by StrictVTablePointers.
472 
473     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
474 
475     llvm::Metadata *Ops[2] = {
476               llvm::MDString::get(VMContext, "StrictVTablePointers"),
477               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
478                   llvm::Type::getInt32Ty(VMContext), 1))};
479 
480     getModule().addModuleFlag(llvm::Module::Require,
481                               "StrictVTablePointersRequirement",
482                               llvm::MDNode::get(VMContext, Ops));
483   }
484   if (DebugInfo)
485     // We support a single version in the linked module. The LLVM
486     // parser will drop debug info with a different version number
487     // (and warn about it, too).
488     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
489                               llvm::DEBUG_METADATA_VERSION);
490 
491   // We need to record the widths of enums and wchar_t, so that we can generate
492   // the correct build attributes in the ARM backend. wchar_size is also used by
493   // TargetLibraryInfo.
494   uint64_t WCharWidth =
495       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
496   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
497 
498   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
499   if (   Arch == llvm::Triple::arm
500       || Arch == llvm::Triple::armeb
501       || Arch == llvm::Triple::thumb
502       || Arch == llvm::Triple::thumbeb) {
503     // The minimum width of an enum in bytes
504     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
505     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
506   }
507 
508   if (CodeGenOpts.SanitizeCfiCrossDso) {
509     // Indicate that we want cross-DSO control flow integrity checks.
510     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
511   }
512 
513   if (CodeGenOpts.CFProtectionReturn &&
514       Target.checkCFProtectionReturnSupported(getDiags())) {
515     // Indicate that we want to instrument return control flow protection.
516     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
517                               1);
518   }
519 
520   if (CodeGenOpts.CFProtectionBranch &&
521       Target.checkCFProtectionBranchSupported(getDiags())) {
522     // Indicate that we want to instrument branch control flow protection.
523     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
524                               1);
525   }
526 
527   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
528     // Indicate whether __nvvm_reflect should be configured to flush denormal
529     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
530     // property.)
531     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
532                               CodeGenOpts.FlushDenorm ? 1 : 0);
533   }
534 
535   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
536   if (LangOpts.OpenCL) {
537     EmitOpenCLMetadata();
538     // Emit SPIR version.
539     if (getTriple().getArch() == llvm::Triple::spir ||
540         getTriple().getArch() == llvm::Triple::spir64) {
541       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
542       // opencl.spir.version named metadata.
543       llvm::Metadata *SPIRVerElts[] = {
544           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
545               Int32Ty, LangOpts.OpenCLVersion / 100)),
546           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
547               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
548       llvm::NamedMDNode *SPIRVerMD =
549           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
550       llvm::LLVMContext &Ctx = TheModule.getContext();
551       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
552     }
553   }
554 
555   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
556     assert(PLevel < 3 && "Invalid PIC Level");
557     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
558     if (Context.getLangOpts().PIE)
559       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
560   }
561 
562   if (getCodeGenOpts().CodeModel.size() > 0) {
563     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
564                   .Case("tiny", llvm::CodeModel::Tiny)
565                   .Case("small", llvm::CodeModel::Small)
566                   .Case("kernel", llvm::CodeModel::Kernel)
567                   .Case("medium", llvm::CodeModel::Medium)
568                   .Case("large", llvm::CodeModel::Large)
569                   .Default(~0u);
570     if (CM != ~0u) {
571       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
572       getModule().setCodeModel(codeModel);
573     }
574   }
575 
576   if (CodeGenOpts.NoPLT)
577     getModule().setRtLibUseGOT();
578 
579   SimplifyPersonality();
580 
581   if (getCodeGenOpts().EmitDeclMetadata)
582     EmitDeclMetadata();
583 
584   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
585     EmitCoverageFile();
586 
587   if (DebugInfo)
588     DebugInfo->finalize();
589 
590   if (getCodeGenOpts().EmitVersionIdentMetadata)
591     EmitVersionIdentMetadata();
592 
593   EmitTargetMetadata();
594 }
595 
596 void CodeGenModule::EmitOpenCLMetadata() {
597   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
598   // opencl.ocl.version named metadata node.
599   llvm::Metadata *OCLVerElts[] = {
600       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
601           Int32Ty, LangOpts.OpenCLVersion / 100)),
602       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
603           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
604   llvm::NamedMDNode *OCLVerMD =
605       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
606   llvm::LLVMContext &Ctx = TheModule.getContext();
607   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
608 }
609 
610 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
611   // Make sure that this type is translated.
612   Types.UpdateCompletedType(TD);
613 }
614 
615 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
616   // Make sure that this type is translated.
617   Types.RefreshTypeCacheForClass(RD);
618 }
619 
620 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
621   if (!TBAA)
622     return nullptr;
623   return TBAA->getTypeInfo(QTy);
624 }
625 
626 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
627   if (!TBAA)
628     return TBAAAccessInfo();
629   return TBAA->getAccessInfo(AccessType);
630 }
631 
632 TBAAAccessInfo
633 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
634   if (!TBAA)
635     return TBAAAccessInfo();
636   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
637 }
638 
639 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
640   if (!TBAA)
641     return nullptr;
642   return TBAA->getTBAAStructInfo(QTy);
643 }
644 
645 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
646   if (!TBAA)
647     return nullptr;
648   return TBAA->getBaseTypeInfo(QTy);
649 }
650 
651 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
652   if (!TBAA)
653     return nullptr;
654   return TBAA->getAccessTagInfo(Info);
655 }
656 
657 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
658                                                    TBAAAccessInfo TargetInfo) {
659   if (!TBAA)
660     return TBAAAccessInfo();
661   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
662 }
663 
664 TBAAAccessInfo
665 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
666                                                    TBAAAccessInfo InfoB) {
667   if (!TBAA)
668     return TBAAAccessInfo();
669   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
670 }
671 
672 TBAAAccessInfo
673 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
674                                               TBAAAccessInfo SrcInfo) {
675   if (!TBAA)
676     return TBAAAccessInfo();
677   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
678 }
679 
680 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
681                                                 TBAAAccessInfo TBAAInfo) {
682   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
683     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
684 }
685 
686 void CodeGenModule::DecorateInstructionWithInvariantGroup(
687     llvm::Instruction *I, const CXXRecordDecl *RD) {
688   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
689                  llvm::MDNode::get(getLLVMContext(), {}));
690 }
691 
692 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
693   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
694   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
695 }
696 
697 /// ErrorUnsupported - Print out an error that codegen doesn't support the
698 /// specified stmt yet.
699 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
700   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
701                                                "cannot compile this %0 yet");
702   std::string Msg = Type;
703   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
704       << Msg << S->getSourceRange();
705 }
706 
707 /// ErrorUnsupported - Print out an error that codegen doesn't support the
708 /// specified decl yet.
709 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
710   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
711                                                "cannot compile this %0 yet");
712   std::string Msg = Type;
713   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
714 }
715 
716 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
717   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
718 }
719 
720 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
721                                         const NamedDecl *D) const {
722   if (GV->hasDLLImportStorageClass())
723     return;
724   // Internal definitions always have default visibility.
725   if (GV->hasLocalLinkage()) {
726     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
727     return;
728   }
729   if (!D)
730     return;
731   // Set visibility for definitions.
732   LinkageInfo LV = D->getLinkageAndVisibility();
733   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
734     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
735 }
736 
737 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
738                                  llvm::GlobalValue *GV) {
739   if (GV->hasLocalLinkage())
740     return true;
741 
742   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
743     return true;
744 
745   // DLLImport explicitly marks the GV as external.
746   if (GV->hasDLLImportStorageClass())
747     return false;
748 
749   const llvm::Triple &TT = CGM.getTriple();
750   if (TT.isWindowsGNUEnvironment()) {
751     // In MinGW, variables without DLLImport can still be automatically
752     // imported from a DLL by the linker; don't mark variables that
753     // potentially could come from another DLL as DSO local.
754     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
755         !GV->isThreadLocal())
756       return false;
757   }
758   // Every other GV is local on COFF.
759   // Make an exception for windows OS in the triple: Some firmware builds use
760   // *-win32-macho triples. This (accidentally?) produced windows relocations
761   // without GOT tables in older clang versions; Keep this behaviour.
762   // FIXME: even thread local variables?
763   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
764     return true;
765 
766   // Only handle COFF and ELF for now.
767   if (!TT.isOSBinFormatELF())
768     return false;
769 
770   // If this is not an executable, don't assume anything is local.
771   const auto &CGOpts = CGM.getCodeGenOpts();
772   llvm::Reloc::Model RM = CGOpts.RelocationModel;
773   const auto &LOpts = CGM.getLangOpts();
774   if (RM != llvm::Reloc::Static && !LOpts.PIE)
775     return false;
776 
777   // A definition cannot be preempted from an executable.
778   if (!GV->isDeclarationForLinker())
779     return true;
780 
781   // Most PIC code sequences that assume that a symbol is local cannot produce a
782   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
783   // depended, it seems worth it to handle it here.
784   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
785     return false;
786 
787   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
788   llvm::Triple::ArchType Arch = TT.getArch();
789   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
790       Arch == llvm::Triple::ppc64le)
791     return false;
792 
793   // If we can use copy relocations we can assume it is local.
794   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
795     if (!Var->isThreadLocal() &&
796         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
797       return true;
798 
799   // If we can use a plt entry as the symbol address we can assume it
800   // is local.
801   // FIXME: This should work for PIE, but the gold linker doesn't support it.
802   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
803     return true;
804 
805   // Otherwise don't assue it is local.
806   return false;
807 }
808 
809 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
810   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
811 }
812 
813 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
814                                           GlobalDecl GD) const {
815   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
816   // C++ destructors have a few C++ ABI specific special cases.
817   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
818     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
819     return;
820   }
821   setDLLImportDLLExport(GV, D);
822 }
823 
824 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
825                                           const NamedDecl *D) const {
826   if (D && D->isExternallyVisible()) {
827     if (D->hasAttr<DLLImportAttr>())
828       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
829     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
830       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
831   }
832 }
833 
834 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
835                                     GlobalDecl GD) const {
836   setDLLImportDLLExport(GV, GD);
837   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
838 }
839 
840 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
841                                     const NamedDecl *D) const {
842   setDLLImportDLLExport(GV, D);
843   setGlobalVisibilityAndLocal(GV, D);
844 }
845 
846 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
847                                                 const NamedDecl *D) const {
848   setGlobalVisibility(GV, D);
849   setDSOLocal(GV);
850 }
851 
852 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
853   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
854       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
855       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
856       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
857       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
858 }
859 
860 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
861     CodeGenOptions::TLSModel M) {
862   switch (M) {
863   case CodeGenOptions::GeneralDynamicTLSModel:
864     return llvm::GlobalVariable::GeneralDynamicTLSModel;
865   case CodeGenOptions::LocalDynamicTLSModel:
866     return llvm::GlobalVariable::LocalDynamicTLSModel;
867   case CodeGenOptions::InitialExecTLSModel:
868     return llvm::GlobalVariable::InitialExecTLSModel;
869   case CodeGenOptions::LocalExecTLSModel:
870     return llvm::GlobalVariable::LocalExecTLSModel;
871   }
872   llvm_unreachable("Invalid TLS model!");
873 }
874 
875 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
876   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
877 
878   llvm::GlobalValue::ThreadLocalMode TLM;
879   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
880 
881   // Override the TLS model if it is explicitly specified.
882   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
883     TLM = GetLLVMTLSModel(Attr->getModel());
884   }
885 
886   GV->setThreadLocalMode(TLM);
887 }
888 
889 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
890                                           StringRef Name) {
891   const TargetInfo &Target = CGM.getTarget();
892   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
893 }
894 
895 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
896                                                  const CPUSpecificAttr *Attr,
897                                                  unsigned CPUIndex,
898                                                  raw_ostream &Out) {
899   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
900   // supported.
901   if (Attr)
902     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
903   else if (CGM.getTarget().supportsIFunc())
904     Out << ".resolver";
905 }
906 
907 static void AppendTargetMangling(const CodeGenModule &CGM,
908                                  const TargetAttr *Attr, raw_ostream &Out) {
909   if (Attr->isDefaultVersion())
910     return;
911 
912   Out << '.';
913   const TargetInfo &Target = CGM.getTarget();
914   TargetAttr::ParsedTargetAttr Info =
915       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
916         // Multiversioning doesn't allow "no-${feature}", so we can
917         // only have "+" prefixes here.
918         assert(LHS.startswith("+") && RHS.startswith("+") &&
919                "Features should always have a prefix.");
920         return Target.multiVersionSortPriority(LHS.substr(1)) >
921                Target.multiVersionSortPriority(RHS.substr(1));
922       });
923 
924   bool IsFirst = true;
925 
926   if (!Info.Architecture.empty()) {
927     IsFirst = false;
928     Out << "arch_" << Info.Architecture;
929   }
930 
931   for (StringRef Feat : Info.Features) {
932     if (!IsFirst)
933       Out << '_';
934     IsFirst = false;
935     Out << Feat.substr(1);
936   }
937 }
938 
939 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
940                                       const NamedDecl *ND,
941                                       bool OmitMultiVersionMangling = false) {
942   SmallString<256> Buffer;
943   llvm::raw_svector_ostream Out(Buffer);
944   MangleContext &MC = CGM.getCXXABI().getMangleContext();
945   if (MC.shouldMangleDeclName(ND)) {
946     llvm::raw_svector_ostream Out(Buffer);
947     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
948       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
949     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
950       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
951     else
952       MC.mangleName(ND, Out);
953   } else {
954     IdentifierInfo *II = ND->getIdentifier();
955     assert(II && "Attempt to mangle unnamed decl.");
956     const auto *FD = dyn_cast<FunctionDecl>(ND);
957 
958     if (FD &&
959         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
960       llvm::raw_svector_ostream Out(Buffer);
961       Out << "__regcall3__" << II->getName();
962     } else {
963       Out << II->getName();
964     }
965   }
966 
967   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
968     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
969       switch (FD->getMultiVersionKind()) {
970       case MultiVersionKind::CPUDispatch:
971       case MultiVersionKind::CPUSpecific:
972         AppendCPUSpecificCPUDispatchMangling(CGM,
973                                              FD->getAttr<CPUSpecificAttr>(),
974                                              GD.getMultiVersionIndex(), Out);
975         break;
976       case MultiVersionKind::Target:
977         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
978         break;
979       case MultiVersionKind::None:
980         llvm_unreachable("None multiversion type isn't valid here");
981       }
982     }
983 
984   return Out.str();
985 }
986 
987 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
988                                             const FunctionDecl *FD) {
989   if (!FD->isMultiVersion())
990     return;
991 
992   // Get the name of what this would be without the 'target' attribute.  This
993   // allows us to lookup the version that was emitted when this wasn't a
994   // multiversion function.
995   std::string NonTargetName =
996       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
997   GlobalDecl OtherGD;
998   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
999     assert(OtherGD.getCanonicalDecl()
1000                .getDecl()
1001                ->getAsFunction()
1002                ->isMultiVersion() &&
1003            "Other GD should now be a multiversioned function");
1004     // OtherFD is the version of this function that was mangled BEFORE
1005     // becoming a MultiVersion function.  It potentially needs to be updated.
1006     const FunctionDecl *OtherFD =
1007         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
1008     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1009     // This is so that if the initial version was already the 'default'
1010     // version, we don't try to update it.
1011     if (OtherName != NonTargetName) {
1012       // Remove instead of erase, since others may have stored the StringRef
1013       // to this.
1014       const auto ExistingRecord = Manglings.find(NonTargetName);
1015       if (ExistingRecord != std::end(Manglings))
1016         Manglings.remove(&(*ExistingRecord));
1017       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1018       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1019       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1020         Entry->setName(OtherName);
1021     }
1022   }
1023 }
1024 
1025 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1026   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1027 
1028   // Some ABIs don't have constructor variants.  Make sure that base and
1029   // complete constructors get mangled the same.
1030   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1031     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1032       CXXCtorType OrigCtorType = GD.getCtorType();
1033       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1034       if (OrigCtorType == Ctor_Base)
1035         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1036     }
1037   }
1038 
1039   auto FoundName = MangledDeclNames.find(CanonicalGD);
1040   if (FoundName != MangledDeclNames.end())
1041     return FoundName->second;
1042 
1043   // Keep the first result in the case of a mangling collision.
1044   const auto *ND = cast<NamedDecl>(GD.getDecl());
1045   auto Result =
1046       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
1047   return MangledDeclNames[CanonicalGD] = Result.first->first();
1048 }
1049 
1050 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1051                                              const BlockDecl *BD) {
1052   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1053   const Decl *D = GD.getDecl();
1054 
1055   SmallString<256> Buffer;
1056   llvm::raw_svector_ostream Out(Buffer);
1057   if (!D)
1058     MangleCtx.mangleGlobalBlock(BD,
1059       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1060   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1061     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1062   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1063     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1064   else
1065     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1066 
1067   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1068   return Result.first->first();
1069 }
1070 
1071 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1072   return getModule().getNamedValue(Name);
1073 }
1074 
1075 /// AddGlobalCtor - Add a function to the list that will be called before
1076 /// main() runs.
1077 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1078                                   llvm::Constant *AssociatedData) {
1079   // FIXME: Type coercion of void()* types.
1080   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1081 }
1082 
1083 /// AddGlobalDtor - Add a function to the list that will be called
1084 /// when the module is unloaded.
1085 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1086   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1087     DtorsUsingAtExit[Priority].push_back(Dtor);
1088     return;
1089   }
1090 
1091   // FIXME: Type coercion of void()* types.
1092   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1093 }
1094 
1095 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1096   if (Fns.empty()) return;
1097 
1098   // Ctor function type is void()*.
1099   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1100   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1101       TheModule.getDataLayout().getProgramAddressSpace());
1102 
1103   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1104   llvm::StructType *CtorStructTy = llvm::StructType::get(
1105       Int32Ty, CtorPFTy, VoidPtrTy);
1106 
1107   // Construct the constructor and destructor arrays.
1108   ConstantInitBuilder builder(*this);
1109   auto ctors = builder.beginArray(CtorStructTy);
1110   for (const auto &I : Fns) {
1111     auto ctor = ctors.beginStruct(CtorStructTy);
1112     ctor.addInt(Int32Ty, I.Priority);
1113     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1114     if (I.AssociatedData)
1115       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1116     else
1117       ctor.addNullPointer(VoidPtrTy);
1118     ctor.finishAndAddTo(ctors);
1119   }
1120 
1121   auto list =
1122     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1123                                 /*constant*/ false,
1124                                 llvm::GlobalValue::AppendingLinkage);
1125 
1126   // The LTO linker doesn't seem to like it when we set an alignment
1127   // on appending variables.  Take it off as a workaround.
1128   list->setAlignment(0);
1129 
1130   Fns.clear();
1131 }
1132 
1133 llvm::GlobalValue::LinkageTypes
1134 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1135   const auto *D = cast<FunctionDecl>(GD.getDecl());
1136 
1137   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1138 
1139   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1140     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1141 
1142   if (isa<CXXConstructorDecl>(D) &&
1143       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1144       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1145     // Our approach to inheriting constructors is fundamentally different from
1146     // that used by the MS ABI, so keep our inheriting constructor thunks
1147     // internal rather than trying to pick an unambiguous mangling for them.
1148     return llvm::GlobalValue::InternalLinkage;
1149   }
1150 
1151   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1152 }
1153 
1154 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1155   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1156   if (!MDS) return nullptr;
1157 
1158   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1159 }
1160 
1161 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1162                                               const CGFunctionInfo &Info,
1163                                               llvm::Function *F) {
1164   unsigned CallingConv;
1165   llvm::AttributeList PAL;
1166   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1167   F->setAttributes(PAL);
1168   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1169 }
1170 
1171 /// Determines whether the language options require us to model
1172 /// unwind exceptions.  We treat -fexceptions as mandating this
1173 /// except under the fragile ObjC ABI with only ObjC exceptions
1174 /// enabled.  This means, for example, that C with -fexceptions
1175 /// enables this.
1176 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1177   // If exceptions are completely disabled, obviously this is false.
1178   if (!LangOpts.Exceptions) return false;
1179 
1180   // If C++ exceptions are enabled, this is true.
1181   if (LangOpts.CXXExceptions) return true;
1182 
1183   // If ObjC exceptions are enabled, this depends on the ABI.
1184   if (LangOpts.ObjCExceptions) {
1185     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1186   }
1187 
1188   return true;
1189 }
1190 
1191 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1192                                                       const CXXMethodDecl *MD) {
1193   // Check that the type metadata can ever actually be used by a call.
1194   if (!CGM.getCodeGenOpts().LTOUnit ||
1195       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1196     return false;
1197 
1198   // Only functions whose address can be taken with a member function pointer
1199   // need this sort of type metadata.
1200   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1201          !isa<CXXDestructorDecl>(MD);
1202 }
1203 
1204 std::vector<const CXXRecordDecl *>
1205 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1206   llvm::SetVector<const CXXRecordDecl *> MostBases;
1207 
1208   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1209   CollectMostBases = [&](const CXXRecordDecl *RD) {
1210     if (RD->getNumBases() == 0)
1211       MostBases.insert(RD);
1212     for (const CXXBaseSpecifier &B : RD->bases())
1213       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1214   };
1215   CollectMostBases(RD);
1216   return MostBases.takeVector();
1217 }
1218 
1219 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1220                                                            llvm::Function *F) {
1221   llvm::AttrBuilder B;
1222 
1223   if (CodeGenOpts.UnwindTables)
1224     B.addAttribute(llvm::Attribute::UWTable);
1225 
1226   if (!hasUnwindExceptions(LangOpts))
1227     B.addAttribute(llvm::Attribute::NoUnwind);
1228 
1229   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1230     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1231       B.addAttribute(llvm::Attribute::StackProtect);
1232     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1233       B.addAttribute(llvm::Attribute::StackProtectStrong);
1234     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1235       B.addAttribute(llvm::Attribute::StackProtectReq);
1236   }
1237 
1238   if (!D) {
1239     // If we don't have a declaration to control inlining, the function isn't
1240     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1241     // disabled, mark the function as noinline.
1242     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1243         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1244       B.addAttribute(llvm::Attribute::NoInline);
1245 
1246     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1247     return;
1248   }
1249 
1250   // Track whether we need to add the optnone LLVM attribute,
1251   // starting with the default for this optimization level.
1252   bool ShouldAddOptNone =
1253       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1254   // We can't add optnone in the following cases, it won't pass the verifier.
1255   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1256   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1257   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1258 
1259   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1260     B.addAttribute(llvm::Attribute::OptimizeNone);
1261 
1262     // OptimizeNone implies noinline; we should not be inlining such functions.
1263     B.addAttribute(llvm::Attribute::NoInline);
1264     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1265            "OptimizeNone and AlwaysInline on same function!");
1266 
1267     // We still need to handle naked functions even though optnone subsumes
1268     // much of their semantics.
1269     if (D->hasAttr<NakedAttr>())
1270       B.addAttribute(llvm::Attribute::Naked);
1271 
1272     // OptimizeNone wins over OptimizeForSize and MinSize.
1273     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1274     F->removeFnAttr(llvm::Attribute::MinSize);
1275   } else if (D->hasAttr<NakedAttr>()) {
1276     // Naked implies noinline: we should not be inlining such functions.
1277     B.addAttribute(llvm::Attribute::Naked);
1278     B.addAttribute(llvm::Attribute::NoInline);
1279   } else if (D->hasAttr<NoDuplicateAttr>()) {
1280     B.addAttribute(llvm::Attribute::NoDuplicate);
1281   } else if (D->hasAttr<NoInlineAttr>()) {
1282     B.addAttribute(llvm::Attribute::NoInline);
1283   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1284              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1285     // (noinline wins over always_inline, and we can't specify both in IR)
1286     B.addAttribute(llvm::Attribute::AlwaysInline);
1287   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1288     // If we're not inlining, then force everything that isn't always_inline to
1289     // carry an explicit noinline attribute.
1290     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1291       B.addAttribute(llvm::Attribute::NoInline);
1292   } else {
1293     // Otherwise, propagate the inline hint attribute and potentially use its
1294     // absence to mark things as noinline.
1295     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1296       // Search function and template pattern redeclarations for inline.
1297       auto CheckForInline = [](const FunctionDecl *FD) {
1298         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1299           return Redecl->isInlineSpecified();
1300         };
1301         if (any_of(FD->redecls(), CheckRedeclForInline))
1302           return true;
1303         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1304         if (!Pattern)
1305           return false;
1306         return any_of(Pattern->redecls(), CheckRedeclForInline);
1307       };
1308       if (CheckForInline(FD)) {
1309         B.addAttribute(llvm::Attribute::InlineHint);
1310       } else if (CodeGenOpts.getInlining() ==
1311                      CodeGenOptions::OnlyHintInlining &&
1312                  !FD->isInlined() &&
1313                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1314         B.addAttribute(llvm::Attribute::NoInline);
1315       }
1316     }
1317   }
1318 
1319   // Add other optimization related attributes if we are optimizing this
1320   // function.
1321   if (!D->hasAttr<OptimizeNoneAttr>()) {
1322     if (D->hasAttr<ColdAttr>()) {
1323       if (!ShouldAddOptNone)
1324         B.addAttribute(llvm::Attribute::OptimizeForSize);
1325       B.addAttribute(llvm::Attribute::Cold);
1326     }
1327 
1328     if (D->hasAttr<MinSizeAttr>())
1329       B.addAttribute(llvm::Attribute::MinSize);
1330   }
1331 
1332   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1333 
1334   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1335   if (alignment)
1336     F->setAlignment(alignment);
1337 
1338   if (!D->hasAttr<AlignedAttr>())
1339     if (LangOpts.FunctionAlignment)
1340       F->setAlignment(1 << LangOpts.FunctionAlignment);
1341 
1342   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1343   // reserve a bit for differentiating between virtual and non-virtual member
1344   // functions. If the current target's C++ ABI requires this and this is a
1345   // member function, set its alignment accordingly.
1346   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1347     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1348       F->setAlignment(2);
1349   }
1350 
1351   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1352   if (CodeGenOpts.SanitizeCfiCrossDso)
1353     if (auto *FD = dyn_cast<FunctionDecl>(D))
1354       CreateFunctionTypeMetadataForIcall(FD, F);
1355 
1356   // Emit type metadata on member functions for member function pointer checks.
1357   // These are only ever necessary on definitions; we're guaranteed that the
1358   // definition will be present in the LTO unit as a result of LTO visibility.
1359   auto *MD = dyn_cast<CXXMethodDecl>(D);
1360   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1361     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1362       llvm::Metadata *Id =
1363           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1364               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1365       F->addTypeMetadata(0, Id);
1366     }
1367   }
1368 }
1369 
1370 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1371   const Decl *D = GD.getDecl();
1372   if (dyn_cast_or_null<NamedDecl>(D))
1373     setGVProperties(GV, GD);
1374   else
1375     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1376 
1377   if (D && D->hasAttr<UsedAttr>())
1378     addUsedGlobal(GV);
1379 
1380   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1381     const auto *VD = cast<VarDecl>(D);
1382     if (VD->getType().isConstQualified() &&
1383         VD->getStorageDuration() == SD_Static)
1384       addUsedGlobal(GV);
1385   }
1386 }
1387 
1388 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1389                                                 llvm::AttrBuilder &Attrs) {
1390   // Add target-cpu and target-features attributes to functions. If
1391   // we have a decl for the function and it has a target attribute then
1392   // parse that and add it to the feature set.
1393   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1394   std::vector<std::string> Features;
1395   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1396   FD = FD ? FD->getMostRecentDecl() : FD;
1397   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1398   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1399   bool AddedAttr = false;
1400   if (TD || SD) {
1401     llvm::StringMap<bool> FeatureMap;
1402     getFunctionFeatureMap(FeatureMap, GD);
1403 
1404     // Produce the canonical string for this set of features.
1405     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1406       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1407 
1408     // Now add the target-cpu and target-features to the function.
1409     // While we populated the feature map above, we still need to
1410     // get and parse the target attribute so we can get the cpu for
1411     // the function.
1412     if (TD) {
1413       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1414       if (ParsedAttr.Architecture != "" &&
1415           getTarget().isValidCPUName(ParsedAttr.Architecture))
1416         TargetCPU = ParsedAttr.Architecture;
1417     }
1418   } else {
1419     // Otherwise just add the existing target cpu and target features to the
1420     // function.
1421     Features = getTarget().getTargetOpts().Features;
1422   }
1423 
1424   if (TargetCPU != "") {
1425     Attrs.addAttribute("target-cpu", TargetCPU);
1426     AddedAttr = true;
1427   }
1428   if (!Features.empty()) {
1429     llvm::sort(Features);
1430     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1431     AddedAttr = true;
1432   }
1433 
1434   return AddedAttr;
1435 }
1436 
1437 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1438                                           llvm::GlobalObject *GO) {
1439   const Decl *D = GD.getDecl();
1440   SetCommonAttributes(GD, GO);
1441 
1442   if (D) {
1443     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1444       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1445         GV->addAttribute("bss-section", SA->getName());
1446       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1447         GV->addAttribute("data-section", SA->getName());
1448       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1449         GV->addAttribute("rodata-section", SA->getName());
1450     }
1451 
1452     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1453       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1454         if (!D->getAttr<SectionAttr>())
1455           F->addFnAttr("implicit-section-name", SA->getName());
1456 
1457       llvm::AttrBuilder Attrs;
1458       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1459         // We know that GetCPUAndFeaturesAttributes will always have the
1460         // newest set, since it has the newest possible FunctionDecl, so the
1461         // new ones should replace the old.
1462         F->removeFnAttr("target-cpu");
1463         F->removeFnAttr("target-features");
1464         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1465       }
1466     }
1467 
1468     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1469       GO->setSection(CSA->getName());
1470     else if (const auto *SA = D->getAttr<SectionAttr>())
1471       GO->setSection(SA->getName());
1472   }
1473 
1474   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1475 }
1476 
1477 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1478                                                   llvm::Function *F,
1479                                                   const CGFunctionInfo &FI) {
1480   const Decl *D = GD.getDecl();
1481   SetLLVMFunctionAttributes(GD, FI, F);
1482   SetLLVMFunctionAttributesForDefinition(D, F);
1483 
1484   F->setLinkage(llvm::Function::InternalLinkage);
1485 
1486   setNonAliasAttributes(GD, F);
1487 }
1488 
1489 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1490   // Set linkage and visibility in case we never see a definition.
1491   LinkageInfo LV = ND->getLinkageAndVisibility();
1492   // Don't set internal linkage on declarations.
1493   // "extern_weak" is overloaded in LLVM; we probably should have
1494   // separate linkage types for this.
1495   if (isExternallyVisible(LV.getLinkage()) &&
1496       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1497     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1498 }
1499 
1500 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1501                                                        llvm::Function *F) {
1502   // Only if we are checking indirect calls.
1503   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1504     return;
1505 
1506   // Non-static class methods are handled via vtable or member function pointer
1507   // checks elsewhere.
1508   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1509     return;
1510 
1511   // Additionally, if building with cross-DSO support...
1512   if (CodeGenOpts.SanitizeCfiCrossDso) {
1513     // Skip available_externally functions. They won't be codegen'ed in the
1514     // current module anyway.
1515     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1516       return;
1517   }
1518 
1519   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1520   F->addTypeMetadata(0, MD);
1521   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1522 
1523   // Emit a hash-based bit set entry for cross-DSO calls.
1524   if (CodeGenOpts.SanitizeCfiCrossDso)
1525     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1526       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1527 }
1528 
1529 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1530                                           bool IsIncompleteFunction,
1531                                           bool IsThunk) {
1532 
1533   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1534     // If this is an intrinsic function, set the function's attributes
1535     // to the intrinsic's attributes.
1536     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1537     return;
1538   }
1539 
1540   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1541 
1542   if (!IsIncompleteFunction) {
1543     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1544     // Setup target-specific attributes.
1545     if (F->isDeclaration())
1546       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1547   }
1548 
1549   // Add the Returned attribute for "this", except for iOS 5 and earlier
1550   // where substantial code, including the libstdc++ dylib, was compiled with
1551   // GCC and does not actually return "this".
1552   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1553       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1554     assert(!F->arg_empty() &&
1555            F->arg_begin()->getType()
1556              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1557            "unexpected this return");
1558     F->addAttribute(1, llvm::Attribute::Returned);
1559   }
1560 
1561   // Only a few attributes are set on declarations; these may later be
1562   // overridden by a definition.
1563 
1564   setLinkageForGV(F, FD);
1565   setGVProperties(F, FD);
1566 
1567   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1568     F->setSection(CSA->getName());
1569   else if (const auto *SA = FD->getAttr<SectionAttr>())
1570      F->setSection(SA->getName());
1571 
1572   if (FD->isReplaceableGlobalAllocationFunction()) {
1573     // A replaceable global allocation function does not act like a builtin by
1574     // default, only if it is invoked by a new-expression or delete-expression.
1575     F->addAttribute(llvm::AttributeList::FunctionIndex,
1576                     llvm::Attribute::NoBuiltin);
1577 
1578     // A sane operator new returns a non-aliasing pointer.
1579     // FIXME: Also add NonNull attribute to the return value
1580     // for the non-nothrow forms?
1581     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1582     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1583         (Kind == OO_New || Kind == OO_Array_New))
1584       F->addAttribute(llvm::AttributeList::ReturnIndex,
1585                       llvm::Attribute::NoAlias);
1586   }
1587 
1588   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1589     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1590   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1591     if (MD->isVirtual())
1592       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1593 
1594   // Don't emit entries for function declarations in the cross-DSO mode. This
1595   // is handled with better precision by the receiving DSO.
1596   if (!CodeGenOpts.SanitizeCfiCrossDso)
1597     CreateFunctionTypeMetadataForIcall(FD, F);
1598 
1599   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1600     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1601 }
1602 
1603 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1604   assert(!GV->isDeclaration() &&
1605          "Only globals with definition can force usage.");
1606   LLVMUsed.emplace_back(GV);
1607 }
1608 
1609 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1610   assert(!GV->isDeclaration() &&
1611          "Only globals with definition can force usage.");
1612   LLVMCompilerUsed.emplace_back(GV);
1613 }
1614 
1615 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1616                      std::vector<llvm::WeakTrackingVH> &List) {
1617   // Don't create llvm.used if there is no need.
1618   if (List.empty())
1619     return;
1620 
1621   // Convert List to what ConstantArray needs.
1622   SmallVector<llvm::Constant*, 8> UsedArray;
1623   UsedArray.resize(List.size());
1624   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1625     UsedArray[i] =
1626         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1627             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1628   }
1629 
1630   if (UsedArray.empty())
1631     return;
1632   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1633 
1634   auto *GV = new llvm::GlobalVariable(
1635       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1636       llvm::ConstantArray::get(ATy, UsedArray), Name);
1637 
1638   GV->setSection("llvm.metadata");
1639 }
1640 
1641 void CodeGenModule::emitLLVMUsed() {
1642   emitUsed(*this, "llvm.used", LLVMUsed);
1643   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1644 }
1645 
1646 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1647   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1648   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1649 }
1650 
1651 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1652   llvm::SmallString<32> Opt;
1653   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1654   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1655   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1656 }
1657 
1658 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1659   auto &C = getLLVMContext();
1660   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1661       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1662 }
1663 
1664 void CodeGenModule::AddDependentLib(StringRef Lib) {
1665   llvm::SmallString<24> Opt;
1666   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1667   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1668   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1669 }
1670 
1671 /// Add link options implied by the given module, including modules
1672 /// it depends on, using a postorder walk.
1673 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1674                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1675                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1676   // Import this module's parent.
1677   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1678     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1679   }
1680 
1681   // Import this module's dependencies.
1682   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1683     if (Visited.insert(Mod->Imports[I - 1]).second)
1684       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1685   }
1686 
1687   // Add linker options to link against the libraries/frameworks
1688   // described by this module.
1689   llvm::LLVMContext &Context = CGM.getLLVMContext();
1690 
1691   // For modules that use export_as for linking, use that module
1692   // name instead.
1693   if (Mod->UseExportAsModuleLinkName)
1694     return;
1695 
1696   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1697     // Link against a framework.  Frameworks are currently Darwin only, so we
1698     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1699     if (Mod->LinkLibraries[I-1].IsFramework) {
1700       llvm::Metadata *Args[2] = {
1701           llvm::MDString::get(Context, "-framework"),
1702           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1703 
1704       Metadata.push_back(llvm::MDNode::get(Context, Args));
1705       continue;
1706     }
1707 
1708     // Link against a library.
1709     llvm::SmallString<24> Opt;
1710     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1711       Mod->LinkLibraries[I-1].Library, Opt);
1712     auto *OptString = llvm::MDString::get(Context, Opt);
1713     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1714   }
1715 }
1716 
1717 void CodeGenModule::EmitModuleLinkOptions() {
1718   // Collect the set of all of the modules we want to visit to emit link
1719   // options, which is essentially the imported modules and all of their
1720   // non-explicit child modules.
1721   llvm::SetVector<clang::Module *> LinkModules;
1722   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1723   SmallVector<clang::Module *, 16> Stack;
1724 
1725   // Seed the stack with imported modules.
1726   for (Module *M : ImportedModules) {
1727     // Do not add any link flags when an implementation TU of a module imports
1728     // a header of that same module.
1729     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1730         !getLangOpts().isCompilingModule())
1731       continue;
1732     if (Visited.insert(M).second)
1733       Stack.push_back(M);
1734   }
1735 
1736   // Find all of the modules to import, making a little effort to prune
1737   // non-leaf modules.
1738   while (!Stack.empty()) {
1739     clang::Module *Mod = Stack.pop_back_val();
1740 
1741     bool AnyChildren = false;
1742 
1743     // Visit the submodules of this module.
1744     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1745                                         SubEnd = Mod->submodule_end();
1746          Sub != SubEnd; ++Sub) {
1747       // Skip explicit children; they need to be explicitly imported to be
1748       // linked against.
1749       if ((*Sub)->IsExplicit)
1750         continue;
1751 
1752       if (Visited.insert(*Sub).second) {
1753         Stack.push_back(*Sub);
1754         AnyChildren = true;
1755       }
1756     }
1757 
1758     // We didn't find any children, so add this module to the list of
1759     // modules to link against.
1760     if (!AnyChildren) {
1761       LinkModules.insert(Mod);
1762     }
1763   }
1764 
1765   // Add link options for all of the imported modules in reverse topological
1766   // order.  We don't do anything to try to order import link flags with respect
1767   // to linker options inserted by things like #pragma comment().
1768   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1769   Visited.clear();
1770   for (Module *M : LinkModules)
1771     if (Visited.insert(M).second)
1772       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1773   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1774   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1775 
1776   // Add the linker options metadata flag.
1777   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1778   for (auto *MD : LinkerOptionsMetadata)
1779     NMD->addOperand(MD);
1780 }
1781 
1782 void CodeGenModule::EmitDeferred() {
1783   // Emit deferred declare target declarations.
1784   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1785     getOpenMPRuntime().emitDeferredTargetDecls();
1786 
1787   // Emit code for any potentially referenced deferred decls.  Since a
1788   // previously unused static decl may become used during the generation of code
1789   // for a static function, iterate until no changes are made.
1790 
1791   if (!DeferredVTables.empty()) {
1792     EmitDeferredVTables();
1793 
1794     // Emitting a vtable doesn't directly cause more vtables to
1795     // become deferred, although it can cause functions to be
1796     // emitted that then need those vtables.
1797     assert(DeferredVTables.empty());
1798   }
1799 
1800   // Stop if we're out of both deferred vtables and deferred declarations.
1801   if (DeferredDeclsToEmit.empty())
1802     return;
1803 
1804   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1805   // work, it will not interfere with this.
1806   std::vector<GlobalDecl> CurDeclsToEmit;
1807   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1808 
1809   for (GlobalDecl &D : CurDeclsToEmit) {
1810     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1811     // to get GlobalValue with exactly the type we need, not something that
1812     // might had been created for another decl with the same mangled name but
1813     // different type.
1814     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1815         GetAddrOfGlobal(D, ForDefinition));
1816 
1817     // In case of different address spaces, we may still get a cast, even with
1818     // IsForDefinition equal to true. Query mangled names table to get
1819     // GlobalValue.
1820     if (!GV)
1821       GV = GetGlobalValue(getMangledName(D));
1822 
1823     // Make sure GetGlobalValue returned non-null.
1824     assert(GV);
1825 
1826     // Check to see if we've already emitted this.  This is necessary
1827     // for a couple of reasons: first, decls can end up in the
1828     // deferred-decls queue multiple times, and second, decls can end
1829     // up with definitions in unusual ways (e.g. by an extern inline
1830     // function acquiring a strong function redefinition).  Just
1831     // ignore these cases.
1832     if (!GV->isDeclaration())
1833       continue;
1834 
1835     // Otherwise, emit the definition and move on to the next one.
1836     EmitGlobalDefinition(D, GV);
1837 
1838     // If we found out that we need to emit more decls, do that recursively.
1839     // This has the advantage that the decls are emitted in a DFS and related
1840     // ones are close together, which is convenient for testing.
1841     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1842       EmitDeferred();
1843       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1844     }
1845   }
1846 }
1847 
1848 void CodeGenModule::EmitVTablesOpportunistically() {
1849   // Try to emit external vtables as available_externally if they have emitted
1850   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1851   // is not allowed to create new references to things that need to be emitted
1852   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1853 
1854   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1855          && "Only emit opportunistic vtables with optimizations");
1856 
1857   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1858     assert(getVTables().isVTableExternal(RD) &&
1859            "This queue should only contain external vtables");
1860     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1861       VTables.GenerateClassData(RD);
1862   }
1863   OpportunisticVTables.clear();
1864 }
1865 
1866 void CodeGenModule::EmitGlobalAnnotations() {
1867   if (Annotations.empty())
1868     return;
1869 
1870   // Create a new global variable for the ConstantStruct in the Module.
1871   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1872     Annotations[0]->getType(), Annotations.size()), Annotations);
1873   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1874                                       llvm::GlobalValue::AppendingLinkage,
1875                                       Array, "llvm.global.annotations");
1876   gv->setSection(AnnotationSection);
1877 }
1878 
1879 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1880   llvm::Constant *&AStr = AnnotationStrings[Str];
1881   if (AStr)
1882     return AStr;
1883 
1884   // Not found yet, create a new global.
1885   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1886   auto *gv =
1887       new llvm::GlobalVariable(getModule(), s->getType(), true,
1888                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1889   gv->setSection(AnnotationSection);
1890   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1891   AStr = gv;
1892   return gv;
1893 }
1894 
1895 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1896   SourceManager &SM = getContext().getSourceManager();
1897   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1898   if (PLoc.isValid())
1899     return EmitAnnotationString(PLoc.getFilename());
1900   return EmitAnnotationString(SM.getBufferName(Loc));
1901 }
1902 
1903 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1904   SourceManager &SM = getContext().getSourceManager();
1905   PresumedLoc PLoc = SM.getPresumedLoc(L);
1906   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1907     SM.getExpansionLineNumber(L);
1908   return llvm::ConstantInt::get(Int32Ty, LineNo);
1909 }
1910 
1911 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1912                                                 const AnnotateAttr *AA,
1913                                                 SourceLocation L) {
1914   // Get the globals for file name, annotation, and the line number.
1915   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1916                  *UnitGV = EmitAnnotationUnit(L),
1917                  *LineNoCst = EmitAnnotationLineNo(L);
1918 
1919   // Create the ConstantStruct for the global annotation.
1920   llvm::Constant *Fields[4] = {
1921     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1922     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1923     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1924     LineNoCst
1925   };
1926   return llvm::ConstantStruct::getAnon(Fields);
1927 }
1928 
1929 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1930                                          llvm::GlobalValue *GV) {
1931   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1932   // Get the struct elements for these annotations.
1933   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1934     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1935 }
1936 
1937 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1938                                            llvm::Function *Fn,
1939                                            SourceLocation Loc) const {
1940   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1941   // Blacklist by function name.
1942   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1943     return true;
1944   // Blacklist by location.
1945   if (Loc.isValid())
1946     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1947   // If location is unknown, this may be a compiler-generated function. Assume
1948   // it's located in the main file.
1949   auto &SM = Context.getSourceManager();
1950   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1951     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1952   }
1953   return false;
1954 }
1955 
1956 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1957                                            SourceLocation Loc, QualType Ty,
1958                                            StringRef Category) const {
1959   // For now globals can be blacklisted only in ASan and KASan.
1960   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1961       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1962        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1963   if (!EnabledAsanMask)
1964     return false;
1965   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1966   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1967     return true;
1968   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1969     return true;
1970   // Check global type.
1971   if (!Ty.isNull()) {
1972     // Drill down the array types: if global variable of a fixed type is
1973     // blacklisted, we also don't instrument arrays of them.
1974     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1975       Ty = AT->getElementType();
1976     Ty = Ty.getCanonicalType().getUnqualifiedType();
1977     // We allow to blacklist only record types (classes, structs etc.)
1978     if (Ty->isRecordType()) {
1979       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1980       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1981         return true;
1982     }
1983   }
1984   return false;
1985 }
1986 
1987 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1988                                    StringRef Category) const {
1989   const auto &XRayFilter = getContext().getXRayFilter();
1990   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1991   auto Attr = ImbueAttr::NONE;
1992   if (Loc.isValid())
1993     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1994   if (Attr == ImbueAttr::NONE)
1995     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1996   switch (Attr) {
1997   case ImbueAttr::NONE:
1998     return false;
1999   case ImbueAttr::ALWAYS:
2000     Fn->addFnAttr("function-instrument", "xray-always");
2001     break;
2002   case ImbueAttr::ALWAYS_ARG1:
2003     Fn->addFnAttr("function-instrument", "xray-always");
2004     Fn->addFnAttr("xray-log-args", "1");
2005     break;
2006   case ImbueAttr::NEVER:
2007     Fn->addFnAttr("function-instrument", "xray-never");
2008     break;
2009   }
2010   return true;
2011 }
2012 
2013 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2014   // Never defer when EmitAllDecls is specified.
2015   if (LangOpts.EmitAllDecls)
2016     return true;
2017 
2018   if (CodeGenOpts.KeepStaticConsts) {
2019     const auto *VD = dyn_cast<VarDecl>(Global);
2020     if (VD && VD->getType().isConstQualified() &&
2021         VD->getStorageDuration() == SD_Static)
2022       return true;
2023   }
2024 
2025   return getContext().DeclMustBeEmitted(Global);
2026 }
2027 
2028 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2029   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2030     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2031       // Implicit template instantiations may change linkage if they are later
2032       // explicitly instantiated, so they should not be emitted eagerly.
2033       return false;
2034   if (const auto *VD = dyn_cast<VarDecl>(Global))
2035     if (Context.getInlineVariableDefinitionKind(VD) ==
2036         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2037       // A definition of an inline constexpr static data member may change
2038       // linkage later if it's redeclared outside the class.
2039       return false;
2040   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2041   // codegen for global variables, because they may be marked as threadprivate.
2042   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2043       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2044       !isTypeConstant(Global->getType(), false) &&
2045       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2046     return false;
2047 
2048   return true;
2049 }
2050 
2051 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2052     const CXXUuidofExpr* E) {
2053   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2054   // well-formed.
2055   StringRef Uuid = E->getUuidStr();
2056   std::string Name = "_GUID_" + Uuid.lower();
2057   std::replace(Name.begin(), Name.end(), '-', '_');
2058 
2059   // The UUID descriptor should be pointer aligned.
2060   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2061 
2062   // Look for an existing global.
2063   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2064     return ConstantAddress(GV, Alignment);
2065 
2066   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2067   assert(Init && "failed to initialize as constant");
2068 
2069   auto *GV = new llvm::GlobalVariable(
2070       getModule(), Init->getType(),
2071       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2072   if (supportsCOMDAT())
2073     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2074   setDSOLocal(GV);
2075   return ConstantAddress(GV, Alignment);
2076 }
2077 
2078 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2079   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2080   assert(AA && "No alias?");
2081 
2082   CharUnits Alignment = getContext().getDeclAlign(VD);
2083   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2084 
2085   // See if there is already something with the target's name in the module.
2086   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2087   if (Entry) {
2088     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2089     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2090     return ConstantAddress(Ptr, Alignment);
2091   }
2092 
2093   llvm::Constant *Aliasee;
2094   if (isa<llvm::FunctionType>(DeclTy))
2095     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2096                                       GlobalDecl(cast<FunctionDecl>(VD)),
2097                                       /*ForVTable=*/false);
2098   else
2099     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2100                                     llvm::PointerType::getUnqual(DeclTy),
2101                                     nullptr);
2102 
2103   auto *F = cast<llvm::GlobalValue>(Aliasee);
2104   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2105   WeakRefReferences.insert(F);
2106 
2107   return ConstantAddress(Aliasee, Alignment);
2108 }
2109 
2110 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2111   const auto *Global = cast<ValueDecl>(GD.getDecl());
2112 
2113   // Weak references don't produce any output by themselves.
2114   if (Global->hasAttr<WeakRefAttr>())
2115     return;
2116 
2117   // If this is an alias definition (which otherwise looks like a declaration)
2118   // emit it now.
2119   if (Global->hasAttr<AliasAttr>())
2120     return EmitAliasDefinition(GD);
2121 
2122   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2123   if (Global->hasAttr<IFuncAttr>())
2124     return emitIFuncDefinition(GD);
2125 
2126   // If this is a cpu_dispatch multiversion function, emit the resolver.
2127   if (Global->hasAttr<CPUDispatchAttr>())
2128     return emitCPUDispatchDefinition(GD);
2129 
2130   // If this is CUDA, be selective about which declarations we emit.
2131   if (LangOpts.CUDA) {
2132     if (LangOpts.CUDAIsDevice) {
2133       if (!Global->hasAttr<CUDADeviceAttr>() &&
2134           !Global->hasAttr<CUDAGlobalAttr>() &&
2135           !Global->hasAttr<CUDAConstantAttr>() &&
2136           !Global->hasAttr<CUDASharedAttr>())
2137         return;
2138     } else {
2139       // We need to emit host-side 'shadows' for all global
2140       // device-side variables because the CUDA runtime needs their
2141       // size and host-side address in order to provide access to
2142       // their device-side incarnations.
2143 
2144       // So device-only functions are the only things we skip.
2145       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2146           Global->hasAttr<CUDADeviceAttr>())
2147         return;
2148 
2149       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2150              "Expected Variable or Function");
2151     }
2152   }
2153 
2154   if (LangOpts.OpenMP) {
2155     // If this is OpenMP device, check if it is legal to emit this global
2156     // normally.
2157     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2158       return;
2159     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2160       if (MustBeEmitted(Global))
2161         EmitOMPDeclareReduction(DRD);
2162       return;
2163     }
2164   }
2165 
2166   // Ignore declarations, they will be emitted on their first use.
2167   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2168     // Forward declarations are emitted lazily on first use.
2169     if (!FD->doesThisDeclarationHaveABody()) {
2170       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2171         return;
2172 
2173       StringRef MangledName = getMangledName(GD);
2174 
2175       // Compute the function info and LLVM type.
2176       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2177       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2178 
2179       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2180                               /*DontDefer=*/false);
2181       return;
2182     }
2183   } else {
2184     const auto *VD = cast<VarDecl>(Global);
2185     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2186     // We need to emit device-side global CUDA variables even if a
2187     // variable does not have a definition -- we still need to define
2188     // host-side shadow for it.
2189     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2190                            !VD->hasDefinition() &&
2191                            (VD->hasAttr<CUDAConstantAttr>() ||
2192                             VD->hasAttr<CUDADeviceAttr>());
2193     if (!MustEmitForCuda &&
2194         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2195         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2196       if (LangOpts.OpenMP) {
2197         // Emit declaration of the must-be-emitted declare target variable.
2198         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2199                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2200           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2201             (void)GetAddrOfGlobalVar(VD);
2202           } else {
2203             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2204                    "link claue expected.");
2205             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2206           }
2207           return;
2208         }
2209       }
2210       // If this declaration may have caused an inline variable definition to
2211       // change linkage, make sure that it's emitted.
2212       if (Context.getInlineVariableDefinitionKind(VD) ==
2213           ASTContext::InlineVariableDefinitionKind::Strong)
2214         GetAddrOfGlobalVar(VD);
2215       return;
2216     }
2217   }
2218 
2219   // Defer code generation to first use when possible, e.g. if this is an inline
2220   // function. If the global must always be emitted, do it eagerly if possible
2221   // to benefit from cache locality.
2222   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2223     // Emit the definition if it can't be deferred.
2224     EmitGlobalDefinition(GD);
2225     return;
2226   }
2227 
2228   // If we're deferring emission of a C++ variable with an
2229   // initializer, remember the order in which it appeared in the file.
2230   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2231       cast<VarDecl>(Global)->hasInit()) {
2232     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2233     CXXGlobalInits.push_back(nullptr);
2234   }
2235 
2236   StringRef MangledName = getMangledName(GD);
2237   if (GetGlobalValue(MangledName) != nullptr) {
2238     // The value has already been used and should therefore be emitted.
2239     addDeferredDeclToEmit(GD);
2240   } else if (MustBeEmitted(Global)) {
2241     // The value must be emitted, but cannot be emitted eagerly.
2242     assert(!MayBeEmittedEagerly(Global));
2243     addDeferredDeclToEmit(GD);
2244   } else {
2245     // Otherwise, remember that we saw a deferred decl with this name.  The
2246     // first use of the mangled name will cause it to move into
2247     // DeferredDeclsToEmit.
2248     DeferredDecls[MangledName] = GD;
2249   }
2250 }
2251 
2252 // Check if T is a class type with a destructor that's not dllimport.
2253 static bool HasNonDllImportDtor(QualType T) {
2254   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2255     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2256       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2257         return true;
2258 
2259   return false;
2260 }
2261 
2262 namespace {
2263   struct FunctionIsDirectlyRecursive :
2264     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2265     const StringRef Name;
2266     const Builtin::Context &BI;
2267     bool Result;
2268     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2269       Name(N), BI(C), Result(false) {
2270     }
2271     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2272 
2273     bool TraverseCallExpr(CallExpr *E) {
2274       const FunctionDecl *FD = E->getDirectCallee();
2275       if (!FD)
2276         return true;
2277       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2278       if (Attr && Name == Attr->getLabel()) {
2279         Result = true;
2280         return false;
2281       }
2282       unsigned BuiltinID = FD->getBuiltinID();
2283       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2284         return true;
2285       StringRef BuiltinName = BI.getName(BuiltinID);
2286       if (BuiltinName.startswith("__builtin_") &&
2287           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2288         Result = true;
2289         return false;
2290       }
2291       return true;
2292     }
2293   };
2294 
2295   // Make sure we're not referencing non-imported vars or functions.
2296   struct DLLImportFunctionVisitor
2297       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2298     bool SafeToInline = true;
2299 
2300     bool shouldVisitImplicitCode() const { return true; }
2301 
2302     bool VisitVarDecl(VarDecl *VD) {
2303       if (VD->getTLSKind()) {
2304         // A thread-local variable cannot be imported.
2305         SafeToInline = false;
2306         return SafeToInline;
2307       }
2308 
2309       // A variable definition might imply a destructor call.
2310       if (VD->isThisDeclarationADefinition())
2311         SafeToInline = !HasNonDllImportDtor(VD->getType());
2312 
2313       return SafeToInline;
2314     }
2315 
2316     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2317       if (const auto *D = E->getTemporary()->getDestructor())
2318         SafeToInline = D->hasAttr<DLLImportAttr>();
2319       return SafeToInline;
2320     }
2321 
2322     bool VisitDeclRefExpr(DeclRefExpr *E) {
2323       ValueDecl *VD = E->getDecl();
2324       if (isa<FunctionDecl>(VD))
2325         SafeToInline = VD->hasAttr<DLLImportAttr>();
2326       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2327         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2328       return SafeToInline;
2329     }
2330 
2331     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2332       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2333       return SafeToInline;
2334     }
2335 
2336     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2337       CXXMethodDecl *M = E->getMethodDecl();
2338       if (!M) {
2339         // Call through a pointer to member function. This is safe to inline.
2340         SafeToInline = true;
2341       } else {
2342         SafeToInline = M->hasAttr<DLLImportAttr>();
2343       }
2344       return SafeToInline;
2345     }
2346 
2347     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2348       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2349       return SafeToInline;
2350     }
2351 
2352     bool VisitCXXNewExpr(CXXNewExpr *E) {
2353       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2354       return SafeToInline;
2355     }
2356   };
2357 }
2358 
2359 // isTriviallyRecursive - Check if this function calls another
2360 // decl that, because of the asm attribute or the other decl being a builtin,
2361 // ends up pointing to itself.
2362 bool
2363 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2364   StringRef Name;
2365   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2366     // asm labels are a special kind of mangling we have to support.
2367     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2368     if (!Attr)
2369       return false;
2370     Name = Attr->getLabel();
2371   } else {
2372     Name = FD->getName();
2373   }
2374 
2375   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2376   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2377   return Walker.Result;
2378 }
2379 
2380 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2381   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2382     return true;
2383   const auto *F = cast<FunctionDecl>(GD.getDecl());
2384   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2385     return false;
2386 
2387   if (F->hasAttr<DLLImportAttr>()) {
2388     // Check whether it would be safe to inline this dllimport function.
2389     DLLImportFunctionVisitor Visitor;
2390     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2391     if (!Visitor.SafeToInline)
2392       return false;
2393 
2394     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2395       // Implicit destructor invocations aren't captured in the AST, so the
2396       // check above can't see them. Check for them manually here.
2397       for (const Decl *Member : Dtor->getParent()->decls())
2398         if (isa<FieldDecl>(Member))
2399           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2400             return false;
2401       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2402         if (HasNonDllImportDtor(B.getType()))
2403           return false;
2404     }
2405   }
2406 
2407   // PR9614. Avoid cases where the source code is lying to us. An available
2408   // externally function should have an equivalent function somewhere else,
2409   // but a function that calls itself is clearly not equivalent to the real
2410   // implementation.
2411   // This happens in glibc's btowc and in some configure checks.
2412   return !isTriviallyRecursive(F);
2413 }
2414 
2415 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2416   return CodeGenOpts.OptimizationLevel > 0;
2417 }
2418 
2419 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2420                                                        llvm::GlobalValue *GV) {
2421   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2422 
2423   if (FD->isCPUSpecificMultiVersion()) {
2424     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2425     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2426       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2427     // Requires multiple emits.
2428   } else
2429     EmitGlobalFunctionDefinition(GD, GV);
2430 }
2431 
2432 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2433   const auto *D = cast<ValueDecl>(GD.getDecl());
2434 
2435   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2436                                  Context.getSourceManager(),
2437                                  "Generating code for declaration");
2438 
2439   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2440     // At -O0, don't generate IR for functions with available_externally
2441     // linkage.
2442     if (!shouldEmitFunction(GD))
2443       return;
2444 
2445     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2446       // Make sure to emit the definition(s) before we emit the thunks.
2447       // This is necessary for the generation of certain thunks.
2448       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2449         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2450       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2451         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2452       else if (FD->isMultiVersion())
2453         EmitMultiVersionFunctionDefinition(GD, GV);
2454       else
2455         EmitGlobalFunctionDefinition(GD, GV);
2456 
2457       if (Method->isVirtual())
2458         getVTables().EmitThunks(GD);
2459 
2460       return;
2461     }
2462 
2463     if (FD->isMultiVersion())
2464       return EmitMultiVersionFunctionDefinition(GD, GV);
2465     return EmitGlobalFunctionDefinition(GD, GV);
2466   }
2467 
2468   if (const auto *VD = dyn_cast<VarDecl>(D))
2469     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2470 
2471   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2472 }
2473 
2474 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2475                                                       llvm::Function *NewFn);
2476 
2477 static unsigned
2478 TargetMVPriority(const TargetInfo &TI,
2479                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2480   unsigned Priority = 0;
2481   for (StringRef Feat : RO.Conditions.Features)
2482     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2483 
2484   if (!RO.Conditions.Architecture.empty())
2485     Priority = std::max(
2486         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2487   return Priority;
2488 }
2489 
2490 void CodeGenModule::emitMultiVersionFunctions() {
2491   for (GlobalDecl GD : MultiVersionFuncs) {
2492     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2493     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2494     getContext().forEachMultiversionedFunctionVersion(
2495         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2496           GlobalDecl CurGD{
2497               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2498           StringRef MangledName = getMangledName(CurGD);
2499           llvm::Constant *Func = GetGlobalValue(MangledName);
2500           if (!Func) {
2501             if (CurFD->isDefined()) {
2502               EmitGlobalFunctionDefinition(CurGD, nullptr);
2503               Func = GetGlobalValue(MangledName);
2504             } else {
2505               const CGFunctionInfo &FI =
2506                   getTypes().arrangeGlobalDeclaration(GD);
2507               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2508               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2509                                        /*DontDefer=*/false, ForDefinition);
2510             }
2511             assert(Func && "This should have just been created");
2512           }
2513 
2514           const auto *TA = CurFD->getAttr<TargetAttr>();
2515           llvm::SmallVector<StringRef, 8> Feats;
2516           TA->getAddedFeatures(Feats);
2517 
2518           Options.emplace_back(cast<llvm::Function>(Func),
2519                                TA->getArchitecture(), Feats);
2520         });
2521 
2522     llvm::Function *ResolverFunc;
2523     const TargetInfo &TI = getTarget();
2524 
2525     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2526       ResolverFunc = cast<llvm::Function>(
2527           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2528     else
2529       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2530 
2531     if (supportsCOMDAT())
2532       ResolverFunc->setComdat(
2533           getModule().getOrInsertComdat(ResolverFunc->getName()));
2534 
2535     std::stable_sort(
2536         Options.begin(), Options.end(),
2537         [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2538               const CodeGenFunction::MultiVersionResolverOption &RHS) {
2539           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2540         });
2541     CodeGenFunction CGF(*this);
2542     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2543   }
2544 }
2545 
2546 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2547   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2548   assert(FD && "Not a FunctionDecl?");
2549   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2550   assert(DD && "Not a cpu_dispatch Function?");
2551   QualType CanonTy = Context.getCanonicalType(FD->getType());
2552   llvm::Type *DeclTy = getTypes().ConvertFunctionType(CanonTy, FD);
2553 
2554   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2555     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2556     DeclTy = getTypes().GetFunctionType(FInfo);
2557   }
2558 
2559   StringRef ResolverName = getMangledName(GD);
2560 
2561   llvm::Type *ResolverType;
2562   GlobalDecl ResolverGD;
2563   if (getTarget().supportsIFunc())
2564     ResolverType = llvm::FunctionType::get(
2565         llvm::PointerType::get(DeclTy,
2566                                Context.getTargetAddressSpace(FD->getType())),
2567         false);
2568   else {
2569     ResolverType = DeclTy;
2570     ResolverGD = GD;
2571   }
2572 
2573   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2574       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2575 
2576   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2577   const TargetInfo &Target = getTarget();
2578   unsigned Index = 0;
2579   for (const IdentifierInfo *II : DD->cpus()) {
2580     // Get the name of the target function so we can look it up/create it.
2581     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2582                               getCPUSpecificMangling(*this, II->getName());
2583 
2584     llvm::Constant *Func = GetGlobalValue(MangledName);
2585 
2586     if (!Func)
2587       Func = GetOrCreateLLVMFunction(
2588           MangledName, DeclTy, GD.getWithMultiVersionIndex(Index),
2589           /*ForVTable=*/false, /*DontDefer=*/true,
2590           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2591 
2592     llvm::SmallVector<StringRef, 32> Features;
2593     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2594     llvm::transform(Features, Features.begin(),
2595                     [](StringRef Str) { return Str.substr(1); });
2596     Features.erase(std::remove_if(
2597         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2598           return !Target.validateCpuSupports(Feat);
2599         }), Features.end());
2600     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2601     ++Index;
2602   }
2603 
2604   llvm::sort(
2605       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2606                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2607         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2608                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2609       });
2610 
2611   // If the list contains multiple 'default' versions, such as when it contains
2612   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2613   // always run on at least a 'pentium'). We do this by deleting the 'least
2614   // advanced' (read, lowest mangling letter).
2615   while (Options.size() > 1 &&
2616          CodeGenFunction::GetX86CpuSupportsMask(
2617              (Options.end() - 2)->Conditions.Features) == 0) {
2618     StringRef LHSName = (Options.end() - 2)->Function->getName();
2619     StringRef RHSName = (Options.end() - 1)->Function->getName();
2620     if (LHSName.compare(RHSName) < 0)
2621       Options.erase(Options.end() - 2);
2622     else
2623       Options.erase(Options.end() - 1);
2624   }
2625 
2626   CodeGenFunction CGF(*this);
2627   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2628 }
2629 
2630 /// If a dispatcher for the specified mangled name is not in the module, create
2631 /// and return an llvm Function with the specified type.
2632 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2633     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2634   std::string MangledName =
2635       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2636 
2637   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2638   // a separate resolver).
2639   std::string ResolverName = MangledName;
2640   if (getTarget().supportsIFunc())
2641     ResolverName += ".ifunc";
2642   else if (FD->isTargetMultiVersion())
2643     ResolverName += ".resolver";
2644 
2645   // If this already exists, just return that one.
2646   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2647     return ResolverGV;
2648 
2649   // Since this is the first time we've created this IFunc, make sure
2650   // that we put this multiversioned function into the list to be
2651   // replaced later if necessary (target multiversioning only).
2652   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2653     MultiVersionFuncs.push_back(GD);
2654 
2655   if (getTarget().supportsIFunc()) {
2656     llvm::Type *ResolverType = llvm::FunctionType::get(
2657         llvm::PointerType::get(
2658             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2659         false);
2660     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2661         MangledName + ".resolver", ResolverType, GlobalDecl{},
2662         /*ForVTable=*/false);
2663     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2664         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2665     GIF->setName(ResolverName);
2666     SetCommonAttributes(FD, GIF);
2667 
2668     return GIF;
2669   }
2670 
2671   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2672       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2673   assert(isa<llvm::GlobalValue>(Resolver) &&
2674          "Resolver should be created for the first time");
2675   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2676   return Resolver;
2677 }
2678 
2679 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2680 /// module, create and return an llvm Function with the specified type. If there
2681 /// is something in the module with the specified name, return it potentially
2682 /// bitcasted to the right type.
2683 ///
2684 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2685 /// to set the attributes on the function when it is first created.
2686 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2687     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2688     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2689     ForDefinition_t IsForDefinition) {
2690   const Decl *D = GD.getDecl();
2691 
2692   // Any attempts to use a MultiVersion function should result in retrieving
2693   // the iFunc instead. Name Mangling will handle the rest of the changes.
2694   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2695     // For the device mark the function as one that should be emitted.
2696     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2697         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2698         !DontDefer && !IsForDefinition) {
2699       if (const FunctionDecl *FDDef = FD->getDefinition()) {
2700         GlobalDecl GDDef;
2701         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2702           GDDef = GlobalDecl(CD, GD.getCtorType());
2703         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2704           GDDef = GlobalDecl(DD, GD.getDtorType());
2705         else
2706           GDDef = GlobalDecl(FDDef);
2707         EmitGlobal(GDDef);
2708       }
2709     }
2710 
2711     if (FD->isMultiVersion()) {
2712       const auto *TA = FD->getAttr<TargetAttr>();
2713       if (TA && TA->isDefaultVersion())
2714         UpdateMultiVersionNames(GD, FD);
2715       if (!IsForDefinition)
2716         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
2717     }
2718   }
2719 
2720   // Lookup the entry, lazily creating it if necessary.
2721   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2722   if (Entry) {
2723     if (WeakRefReferences.erase(Entry)) {
2724       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2725       if (FD && !FD->hasAttr<WeakAttr>())
2726         Entry->setLinkage(llvm::Function::ExternalLinkage);
2727     }
2728 
2729     // Handle dropped DLL attributes.
2730     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2731       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2732       setDSOLocal(Entry);
2733     }
2734 
2735     // If there are two attempts to define the same mangled name, issue an
2736     // error.
2737     if (IsForDefinition && !Entry->isDeclaration()) {
2738       GlobalDecl OtherGD;
2739       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2740       // to make sure that we issue an error only once.
2741       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2742           (GD.getCanonicalDecl().getDecl() !=
2743            OtherGD.getCanonicalDecl().getDecl()) &&
2744           DiagnosedConflictingDefinitions.insert(GD).second) {
2745         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2746             << MangledName;
2747         getDiags().Report(OtherGD.getDecl()->getLocation(),
2748                           diag::note_previous_definition);
2749       }
2750     }
2751 
2752     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2753         (Entry->getType()->getElementType() == Ty)) {
2754       return Entry;
2755     }
2756 
2757     // Make sure the result is of the correct type.
2758     // (If function is requested for a definition, we always need to create a new
2759     // function, not just return a bitcast.)
2760     if (!IsForDefinition)
2761       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2762   }
2763 
2764   // This function doesn't have a complete type (for example, the return
2765   // type is an incomplete struct). Use a fake type instead, and make
2766   // sure not to try to set attributes.
2767   bool IsIncompleteFunction = false;
2768 
2769   llvm::FunctionType *FTy;
2770   if (isa<llvm::FunctionType>(Ty)) {
2771     FTy = cast<llvm::FunctionType>(Ty);
2772   } else {
2773     FTy = llvm::FunctionType::get(VoidTy, false);
2774     IsIncompleteFunction = true;
2775   }
2776 
2777   llvm::Function *F =
2778       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2779                              Entry ? StringRef() : MangledName, &getModule());
2780 
2781   // If we already created a function with the same mangled name (but different
2782   // type) before, take its name and add it to the list of functions to be
2783   // replaced with F at the end of CodeGen.
2784   //
2785   // This happens if there is a prototype for a function (e.g. "int f()") and
2786   // then a definition of a different type (e.g. "int f(int x)").
2787   if (Entry) {
2788     F->takeName(Entry);
2789 
2790     // This might be an implementation of a function without a prototype, in
2791     // which case, try to do special replacement of calls which match the new
2792     // prototype.  The really key thing here is that we also potentially drop
2793     // arguments from the call site so as to make a direct call, which makes the
2794     // inliner happier and suppresses a number of optimizer warnings (!) about
2795     // dropping arguments.
2796     if (!Entry->use_empty()) {
2797       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2798       Entry->removeDeadConstantUsers();
2799     }
2800 
2801     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2802         F, Entry->getType()->getElementType()->getPointerTo());
2803     addGlobalValReplacement(Entry, BC);
2804   }
2805 
2806   assert(F->getName() == MangledName && "name was uniqued!");
2807   if (D)
2808     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2809   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2810     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2811     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2812   }
2813 
2814   if (!DontDefer) {
2815     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2816     // each other bottoming out with the base dtor.  Therefore we emit non-base
2817     // dtors on usage, even if there is no dtor definition in the TU.
2818     if (D && isa<CXXDestructorDecl>(D) &&
2819         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2820                                            GD.getDtorType()))
2821       addDeferredDeclToEmit(GD);
2822 
2823     // This is the first use or definition of a mangled name.  If there is a
2824     // deferred decl with this name, remember that we need to emit it at the end
2825     // of the file.
2826     auto DDI = DeferredDecls.find(MangledName);
2827     if (DDI != DeferredDecls.end()) {
2828       // Move the potentially referenced deferred decl to the
2829       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2830       // don't need it anymore).
2831       addDeferredDeclToEmit(DDI->second);
2832       DeferredDecls.erase(DDI);
2833 
2834       // Otherwise, there are cases we have to worry about where we're
2835       // using a declaration for which we must emit a definition but where
2836       // we might not find a top-level definition:
2837       //   - member functions defined inline in their classes
2838       //   - friend functions defined inline in some class
2839       //   - special member functions with implicit definitions
2840       // If we ever change our AST traversal to walk into class methods,
2841       // this will be unnecessary.
2842       //
2843       // We also don't emit a definition for a function if it's going to be an
2844       // entry in a vtable, unless it's already marked as used.
2845     } else if (getLangOpts().CPlusPlus && D) {
2846       // Look for a declaration that's lexically in a record.
2847       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2848            FD = FD->getPreviousDecl()) {
2849         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2850           if (FD->doesThisDeclarationHaveABody()) {
2851             addDeferredDeclToEmit(GD.getWithDecl(FD));
2852             break;
2853           }
2854         }
2855       }
2856     }
2857   }
2858 
2859   // Make sure the result is of the requested type.
2860   if (!IsIncompleteFunction) {
2861     assert(F->getType()->getElementType() == Ty);
2862     return F;
2863   }
2864 
2865   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2866   return llvm::ConstantExpr::getBitCast(F, PTy);
2867 }
2868 
2869 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2870 /// non-null, then this function will use the specified type if it has to
2871 /// create it (this occurs when we see a definition of the function).
2872 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2873                                                  llvm::Type *Ty,
2874                                                  bool ForVTable,
2875                                                  bool DontDefer,
2876                                               ForDefinition_t IsForDefinition) {
2877   // If there was no specific requested type, just convert it now.
2878   if (!Ty) {
2879     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2880     auto CanonTy = Context.getCanonicalType(FD->getType());
2881     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2882   }
2883 
2884   // Devirtualized destructor calls may come through here instead of via
2885   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2886   // of the complete destructor when necessary.
2887   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2888     if (getTarget().getCXXABI().isMicrosoft() &&
2889         GD.getDtorType() == Dtor_Complete &&
2890         DD->getParent()->getNumVBases() == 0)
2891       GD = GlobalDecl(DD, Dtor_Base);
2892   }
2893 
2894   StringRef MangledName = getMangledName(GD);
2895   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2896                                  /*IsThunk=*/false, llvm::AttributeList(),
2897                                  IsForDefinition);
2898 }
2899 
2900 static const FunctionDecl *
2901 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2902   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2903   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2904 
2905   IdentifierInfo &CII = C.Idents.get(Name);
2906   for (const auto &Result : DC->lookup(&CII))
2907     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2908       return FD;
2909 
2910   if (!C.getLangOpts().CPlusPlus)
2911     return nullptr;
2912 
2913   // Demangle the premangled name from getTerminateFn()
2914   IdentifierInfo &CXXII =
2915       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2916           ? C.Idents.get("terminate")
2917           : C.Idents.get(Name);
2918 
2919   for (const auto &N : {"__cxxabiv1", "std"}) {
2920     IdentifierInfo &NS = C.Idents.get(N);
2921     for (const auto &Result : DC->lookup(&NS)) {
2922       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2923       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2924         for (const auto &Result : LSD->lookup(&NS))
2925           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2926             break;
2927 
2928       if (ND)
2929         for (const auto &Result : ND->lookup(&CXXII))
2930           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2931             return FD;
2932     }
2933   }
2934 
2935   return nullptr;
2936 }
2937 
2938 /// CreateRuntimeFunction - Create a new runtime function with the specified
2939 /// type and name.
2940 llvm::Constant *
2941 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2942                                      llvm::AttributeList ExtraAttrs,
2943                                      bool Local) {
2944   llvm::Constant *C =
2945       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2946                               /*DontDefer=*/false, /*IsThunk=*/false,
2947                               ExtraAttrs);
2948 
2949   if (auto *F = dyn_cast<llvm::Function>(C)) {
2950     if (F->empty()) {
2951       F->setCallingConv(getRuntimeCC());
2952 
2953       if (!Local && getTriple().isOSBinFormatCOFF() &&
2954           !getCodeGenOpts().LTOVisibilityPublicStd &&
2955           !getTriple().isWindowsGNUEnvironment()) {
2956         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2957         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2958           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2959           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2960         }
2961       }
2962       setDSOLocal(F);
2963     }
2964   }
2965 
2966   return C;
2967 }
2968 
2969 /// CreateBuiltinFunction - Create a new builtin function with the specified
2970 /// type and name.
2971 llvm::Constant *
2972 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2973                                      llvm::AttributeList ExtraAttrs) {
2974   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2975 }
2976 
2977 /// isTypeConstant - Determine whether an object of this type can be emitted
2978 /// as a constant.
2979 ///
2980 /// If ExcludeCtor is true, the duration when the object's constructor runs
2981 /// will not be considered. The caller will need to verify that the object is
2982 /// not written to during its construction.
2983 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2984   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2985     return false;
2986 
2987   if (Context.getLangOpts().CPlusPlus) {
2988     if (const CXXRecordDecl *Record
2989           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2990       return ExcludeCtor && !Record->hasMutableFields() &&
2991              Record->hasTrivialDestructor();
2992   }
2993 
2994   return true;
2995 }
2996 
2997 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2998 /// create and return an llvm GlobalVariable with the specified type.  If there
2999 /// is something in the module with the specified name, return it potentially
3000 /// bitcasted to the right type.
3001 ///
3002 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3003 /// to set the attributes on the global when it is first created.
3004 ///
3005 /// If IsForDefinition is true, it is guaranteed that an actual global with
3006 /// type Ty will be returned, not conversion of a variable with the same
3007 /// mangled name but some other type.
3008 llvm::Constant *
3009 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3010                                      llvm::PointerType *Ty,
3011                                      const VarDecl *D,
3012                                      ForDefinition_t IsForDefinition) {
3013   // Lookup the entry, lazily creating it if necessary.
3014   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3015   if (Entry) {
3016     if (WeakRefReferences.erase(Entry)) {
3017       if (D && !D->hasAttr<WeakAttr>())
3018         Entry->setLinkage(llvm::Function::ExternalLinkage);
3019     }
3020 
3021     // Handle dropped DLL attributes.
3022     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3023       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3024 
3025     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3026       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3027 
3028     if (Entry->getType() == Ty)
3029       return Entry;
3030 
3031     // If there are two attempts to define the same mangled name, issue an
3032     // error.
3033     if (IsForDefinition && !Entry->isDeclaration()) {
3034       GlobalDecl OtherGD;
3035       const VarDecl *OtherD;
3036 
3037       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3038       // to make sure that we issue an error only once.
3039       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3040           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3041           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3042           OtherD->hasInit() &&
3043           DiagnosedConflictingDefinitions.insert(D).second) {
3044         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3045             << MangledName;
3046         getDiags().Report(OtherGD.getDecl()->getLocation(),
3047                           diag::note_previous_definition);
3048       }
3049     }
3050 
3051     // Make sure the result is of the correct type.
3052     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3053       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3054 
3055     // (If global is requested for a definition, we always need to create a new
3056     // global, not just return a bitcast.)
3057     if (!IsForDefinition)
3058       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3059   }
3060 
3061   auto AddrSpace = GetGlobalVarAddressSpace(D);
3062   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3063 
3064   auto *GV = new llvm::GlobalVariable(
3065       getModule(), Ty->getElementType(), false,
3066       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3067       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3068 
3069   // If we already created a global with the same mangled name (but different
3070   // type) before, take its name and remove it from its parent.
3071   if (Entry) {
3072     GV->takeName(Entry);
3073 
3074     if (!Entry->use_empty()) {
3075       llvm::Constant *NewPtrForOldDecl =
3076           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3077       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3078     }
3079 
3080     Entry->eraseFromParent();
3081   }
3082 
3083   // This is the first use or definition of a mangled name.  If there is a
3084   // deferred decl with this name, remember that we need to emit it at the end
3085   // of the file.
3086   auto DDI = DeferredDecls.find(MangledName);
3087   if (DDI != DeferredDecls.end()) {
3088     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3089     // list, and remove it from DeferredDecls (since we don't need it anymore).
3090     addDeferredDeclToEmit(DDI->second);
3091     DeferredDecls.erase(DDI);
3092   }
3093 
3094   // Handle things which are present even on external declarations.
3095   if (D) {
3096     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3097       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3098 
3099     // FIXME: This code is overly simple and should be merged with other global
3100     // handling.
3101     GV->setConstant(isTypeConstant(D->getType(), false));
3102 
3103     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3104 
3105     setLinkageForGV(GV, D);
3106 
3107     if (D->getTLSKind()) {
3108       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3109         CXXThreadLocals.push_back(D);
3110       setTLSMode(GV, *D);
3111     }
3112 
3113     setGVProperties(GV, D);
3114 
3115     // If required by the ABI, treat declarations of static data members with
3116     // inline initializers as definitions.
3117     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3118       EmitGlobalVarDefinition(D);
3119     }
3120 
3121     // Emit section information for extern variables.
3122     if (D->hasExternalStorage()) {
3123       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3124         GV->setSection(SA->getName());
3125     }
3126 
3127     // Handle XCore specific ABI requirements.
3128     if (getTriple().getArch() == llvm::Triple::xcore &&
3129         D->getLanguageLinkage() == CLanguageLinkage &&
3130         D->getType().isConstant(Context) &&
3131         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3132       GV->setSection(".cp.rodata");
3133 
3134     // Check if we a have a const declaration with an initializer, we may be
3135     // able to emit it as available_externally to expose it's value to the
3136     // optimizer.
3137     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3138         D->getType().isConstQualified() && !GV->hasInitializer() &&
3139         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3140       const auto *Record =
3141           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3142       bool HasMutableFields = Record && Record->hasMutableFields();
3143       if (!HasMutableFields) {
3144         const VarDecl *InitDecl;
3145         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3146         if (InitExpr) {
3147           ConstantEmitter emitter(*this);
3148           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3149           if (Init) {
3150             auto *InitType = Init->getType();
3151             if (GV->getType()->getElementType() != InitType) {
3152               // The type of the initializer does not match the definition.
3153               // This happens when an initializer has a different type from
3154               // the type of the global (because of padding at the end of a
3155               // structure for instance).
3156               GV->setName(StringRef());
3157               // Make a new global with the correct type, this is now guaranteed
3158               // to work.
3159               auto *NewGV = cast<llvm::GlobalVariable>(
3160                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3161 
3162               // Erase the old global, since it is no longer used.
3163               GV->eraseFromParent();
3164               GV = NewGV;
3165             } else {
3166               GV->setInitializer(Init);
3167               GV->setConstant(true);
3168               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3169             }
3170             emitter.finalize(GV);
3171           }
3172         }
3173       }
3174     }
3175   }
3176 
3177   LangAS ExpectedAS =
3178       D ? D->getType().getAddressSpace()
3179         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3180   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3181          Ty->getPointerAddressSpace());
3182   if (AddrSpace != ExpectedAS)
3183     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3184                                                        ExpectedAS, Ty);
3185 
3186   return GV;
3187 }
3188 
3189 llvm::Constant *
3190 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3191                                ForDefinition_t IsForDefinition) {
3192   const Decl *D = GD.getDecl();
3193   if (isa<CXXConstructorDecl>(D))
3194     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
3195                                 getFromCtorType(GD.getCtorType()),
3196                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3197                                 /*DontDefer=*/false, IsForDefinition);
3198   else if (isa<CXXDestructorDecl>(D))
3199     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
3200                                 getFromDtorType(GD.getDtorType()),
3201                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3202                                 /*DontDefer=*/false, IsForDefinition);
3203   else if (isa<CXXMethodDecl>(D)) {
3204     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3205         cast<CXXMethodDecl>(D));
3206     auto Ty = getTypes().GetFunctionType(*FInfo);
3207     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3208                              IsForDefinition);
3209   } else if (isa<FunctionDecl>(D)) {
3210     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3211     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3212     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3213                              IsForDefinition);
3214   } else
3215     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3216                               IsForDefinition);
3217 }
3218 
3219 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3220     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3221     unsigned Alignment) {
3222   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3223   llvm::GlobalVariable *OldGV = nullptr;
3224 
3225   if (GV) {
3226     // Check if the variable has the right type.
3227     if (GV->getType()->getElementType() == Ty)
3228       return GV;
3229 
3230     // Because C++ name mangling, the only way we can end up with an already
3231     // existing global with the same name is if it has been declared extern "C".
3232     assert(GV->isDeclaration() && "Declaration has wrong type!");
3233     OldGV = GV;
3234   }
3235 
3236   // Create a new variable.
3237   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3238                                 Linkage, nullptr, Name);
3239 
3240   if (OldGV) {
3241     // Replace occurrences of the old variable if needed.
3242     GV->takeName(OldGV);
3243 
3244     if (!OldGV->use_empty()) {
3245       llvm::Constant *NewPtrForOldDecl =
3246       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3247       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3248     }
3249 
3250     OldGV->eraseFromParent();
3251   }
3252 
3253   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3254       !GV->hasAvailableExternallyLinkage())
3255     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3256 
3257   GV->setAlignment(Alignment);
3258 
3259   return GV;
3260 }
3261 
3262 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3263 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3264 /// then it will be created with the specified type instead of whatever the
3265 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3266 /// that an actual global with type Ty will be returned, not conversion of a
3267 /// variable with the same mangled name but some other type.
3268 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3269                                                   llvm::Type *Ty,
3270                                            ForDefinition_t IsForDefinition) {
3271   assert(D->hasGlobalStorage() && "Not a global variable");
3272   QualType ASTTy = D->getType();
3273   if (!Ty)
3274     Ty = getTypes().ConvertTypeForMem(ASTTy);
3275 
3276   llvm::PointerType *PTy =
3277     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3278 
3279   StringRef MangledName = getMangledName(D);
3280   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3281 }
3282 
3283 /// CreateRuntimeVariable - Create a new runtime global variable with the
3284 /// specified type and name.
3285 llvm::Constant *
3286 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3287                                      StringRef Name) {
3288   auto *Ret =
3289       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3290   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3291   return Ret;
3292 }
3293 
3294 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3295   assert(!D->getInit() && "Cannot emit definite definitions here!");
3296 
3297   StringRef MangledName = getMangledName(D);
3298   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3299 
3300   // We already have a definition, not declaration, with the same mangled name.
3301   // Emitting of declaration is not required (and actually overwrites emitted
3302   // definition).
3303   if (GV && !GV->isDeclaration())
3304     return;
3305 
3306   // If we have not seen a reference to this variable yet, place it into the
3307   // deferred declarations table to be emitted if needed later.
3308   if (!MustBeEmitted(D) && !GV) {
3309       DeferredDecls[MangledName] = D;
3310       return;
3311   }
3312 
3313   // The tentative definition is the only definition.
3314   EmitGlobalVarDefinition(D);
3315 }
3316 
3317 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3318   return Context.toCharUnitsFromBits(
3319       getDataLayout().getTypeStoreSizeInBits(Ty));
3320 }
3321 
3322 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3323   LangAS AddrSpace = LangAS::Default;
3324   if (LangOpts.OpenCL) {
3325     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3326     assert(AddrSpace == LangAS::opencl_global ||
3327            AddrSpace == LangAS::opencl_constant ||
3328            AddrSpace == LangAS::opencl_local ||
3329            AddrSpace >= LangAS::FirstTargetAddressSpace);
3330     return AddrSpace;
3331   }
3332 
3333   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3334     if (D && D->hasAttr<CUDAConstantAttr>())
3335       return LangAS::cuda_constant;
3336     else if (D && D->hasAttr<CUDASharedAttr>())
3337       return LangAS::cuda_shared;
3338     else if (D && D->hasAttr<CUDADeviceAttr>())
3339       return LangAS::cuda_device;
3340     else if (D && D->getType().isConstQualified())
3341       return LangAS::cuda_constant;
3342     else
3343       return LangAS::cuda_device;
3344   }
3345 
3346   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3347 }
3348 
3349 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3350   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3351   if (LangOpts.OpenCL)
3352     return LangAS::opencl_constant;
3353   if (auto AS = getTarget().getConstantAddressSpace())
3354     return AS.getValue();
3355   return LangAS::Default;
3356 }
3357 
3358 // In address space agnostic languages, string literals are in default address
3359 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3360 // emitted in constant address space in LLVM IR. To be consistent with other
3361 // parts of AST, string literal global variables in constant address space
3362 // need to be casted to default address space before being put into address
3363 // map and referenced by other part of CodeGen.
3364 // In OpenCL, string literals are in constant address space in AST, therefore
3365 // they should not be casted to default address space.
3366 static llvm::Constant *
3367 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3368                                        llvm::GlobalVariable *GV) {
3369   llvm::Constant *Cast = GV;
3370   if (!CGM.getLangOpts().OpenCL) {
3371     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3372       if (AS != LangAS::Default)
3373         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3374             CGM, GV, AS.getValue(), LangAS::Default,
3375             GV->getValueType()->getPointerTo(
3376                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3377     }
3378   }
3379   return Cast;
3380 }
3381 
3382 template<typename SomeDecl>
3383 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3384                                                llvm::GlobalValue *GV) {
3385   if (!getLangOpts().CPlusPlus)
3386     return;
3387 
3388   // Must have 'used' attribute, or else inline assembly can't rely on
3389   // the name existing.
3390   if (!D->template hasAttr<UsedAttr>())
3391     return;
3392 
3393   // Must have internal linkage and an ordinary name.
3394   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3395     return;
3396 
3397   // Must be in an extern "C" context. Entities declared directly within
3398   // a record are not extern "C" even if the record is in such a context.
3399   const SomeDecl *First = D->getFirstDecl();
3400   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3401     return;
3402 
3403   // OK, this is an internal linkage entity inside an extern "C" linkage
3404   // specification. Make a note of that so we can give it the "expected"
3405   // mangled name if nothing else is using that name.
3406   std::pair<StaticExternCMap::iterator, bool> R =
3407       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3408 
3409   // If we have multiple internal linkage entities with the same name
3410   // in extern "C" regions, none of them gets that name.
3411   if (!R.second)
3412     R.first->second = nullptr;
3413 }
3414 
3415 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3416   if (!CGM.supportsCOMDAT())
3417     return false;
3418 
3419   if (D.hasAttr<SelectAnyAttr>())
3420     return true;
3421 
3422   GVALinkage Linkage;
3423   if (auto *VD = dyn_cast<VarDecl>(&D))
3424     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3425   else
3426     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3427 
3428   switch (Linkage) {
3429   case GVA_Internal:
3430   case GVA_AvailableExternally:
3431   case GVA_StrongExternal:
3432     return false;
3433   case GVA_DiscardableODR:
3434   case GVA_StrongODR:
3435     return true;
3436   }
3437   llvm_unreachable("No such linkage");
3438 }
3439 
3440 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3441                                           llvm::GlobalObject &GO) {
3442   if (!shouldBeInCOMDAT(*this, D))
3443     return;
3444   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3445 }
3446 
3447 /// Pass IsTentative as true if you want to create a tentative definition.
3448 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3449                                             bool IsTentative) {
3450   // OpenCL global variables of sampler type are translated to function calls,
3451   // therefore no need to be translated.
3452   QualType ASTTy = D->getType();
3453   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3454     return;
3455 
3456   // If this is OpenMP device, check if it is legal to emit this global
3457   // normally.
3458   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3459       OpenMPRuntime->emitTargetGlobalVariable(D))
3460     return;
3461 
3462   llvm::Constant *Init = nullptr;
3463   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3464   bool NeedsGlobalCtor = false;
3465   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3466 
3467   const VarDecl *InitDecl;
3468   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3469 
3470   Optional<ConstantEmitter> emitter;
3471 
3472   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3473   // as part of their declaration."  Sema has already checked for
3474   // error cases, so we just need to set Init to UndefValue.
3475   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3476       D->hasAttr<CUDASharedAttr>())
3477     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3478   else if (!InitExpr) {
3479     // This is a tentative definition; tentative definitions are
3480     // implicitly initialized with { 0 }.
3481     //
3482     // Note that tentative definitions are only emitted at the end of
3483     // a translation unit, so they should never have incomplete
3484     // type. In addition, EmitTentativeDefinition makes sure that we
3485     // never attempt to emit a tentative definition if a real one
3486     // exists. A use may still exists, however, so we still may need
3487     // to do a RAUW.
3488     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3489     Init = EmitNullConstant(D->getType());
3490   } else {
3491     initializedGlobalDecl = GlobalDecl(D);
3492     emitter.emplace(*this);
3493     Init = emitter->tryEmitForInitializer(*InitDecl);
3494 
3495     if (!Init) {
3496       QualType T = InitExpr->getType();
3497       if (D->getType()->isReferenceType())
3498         T = D->getType();
3499 
3500       if (getLangOpts().CPlusPlus) {
3501         Init = EmitNullConstant(T);
3502         NeedsGlobalCtor = true;
3503       } else {
3504         ErrorUnsupported(D, "static initializer");
3505         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3506       }
3507     } else {
3508       // We don't need an initializer, so remove the entry for the delayed
3509       // initializer position (just in case this entry was delayed) if we
3510       // also don't need to register a destructor.
3511       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3512         DelayedCXXInitPosition.erase(D);
3513     }
3514   }
3515 
3516   llvm::Type* InitType = Init->getType();
3517   llvm::Constant *Entry =
3518       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3519 
3520   // Strip off a bitcast if we got one back.
3521   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3522     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3523            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3524            // All zero index gep.
3525            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3526     Entry = CE->getOperand(0);
3527   }
3528 
3529   // Entry is now either a Function or GlobalVariable.
3530   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3531 
3532   // We have a definition after a declaration with the wrong type.
3533   // We must make a new GlobalVariable* and update everything that used OldGV
3534   // (a declaration or tentative definition) with the new GlobalVariable*
3535   // (which will be a definition).
3536   //
3537   // This happens if there is a prototype for a global (e.g.
3538   // "extern int x[];") and then a definition of a different type (e.g.
3539   // "int x[10];"). This also happens when an initializer has a different type
3540   // from the type of the global (this happens with unions).
3541   if (!GV || GV->getType()->getElementType() != InitType ||
3542       GV->getType()->getAddressSpace() !=
3543           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3544 
3545     // Move the old entry aside so that we'll create a new one.
3546     Entry->setName(StringRef());
3547 
3548     // Make a new global with the correct type, this is now guaranteed to work.
3549     GV = cast<llvm::GlobalVariable>(
3550         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3551 
3552     // Replace all uses of the old global with the new global
3553     llvm::Constant *NewPtrForOldDecl =
3554         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3555     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3556 
3557     // Erase the old global, since it is no longer used.
3558     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3559   }
3560 
3561   MaybeHandleStaticInExternC(D, GV);
3562 
3563   if (D->hasAttr<AnnotateAttr>())
3564     AddGlobalAnnotations(D, GV);
3565 
3566   // Set the llvm linkage type as appropriate.
3567   llvm::GlobalValue::LinkageTypes Linkage =
3568       getLLVMLinkageVarDefinition(D, GV->isConstant());
3569 
3570   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3571   // the device. [...]"
3572   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3573   // __device__, declares a variable that: [...]
3574   // Is accessible from all the threads within the grid and from the host
3575   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3576   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3577   if (GV && LangOpts.CUDA) {
3578     if (LangOpts.CUDAIsDevice) {
3579       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3580         GV->setExternallyInitialized(true);
3581     } else {
3582       // Host-side shadows of external declarations of device-side
3583       // global variables become internal definitions. These have to
3584       // be internal in order to prevent name conflicts with global
3585       // host variables with the same name in a different TUs.
3586       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3587         Linkage = llvm::GlobalValue::InternalLinkage;
3588 
3589         // Shadow variables and their properties must be registered
3590         // with CUDA runtime.
3591         unsigned Flags = 0;
3592         if (!D->hasDefinition())
3593           Flags |= CGCUDARuntime::ExternDeviceVar;
3594         if (D->hasAttr<CUDAConstantAttr>())
3595           Flags |= CGCUDARuntime::ConstantDeviceVar;
3596         getCUDARuntime().registerDeviceVar(*GV, Flags);
3597       } else if (D->hasAttr<CUDASharedAttr>())
3598         // __shared__ variables are odd. Shadows do get created, but
3599         // they are not registered with the CUDA runtime, so they
3600         // can't really be used to access their device-side
3601         // counterparts. It's not clear yet whether it's nvcc's bug or
3602         // a feature, but we've got to do the same for compatibility.
3603         Linkage = llvm::GlobalValue::InternalLinkage;
3604     }
3605   }
3606 
3607   GV->setInitializer(Init);
3608   if (emitter) emitter->finalize(GV);
3609 
3610   // If it is safe to mark the global 'constant', do so now.
3611   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3612                   isTypeConstant(D->getType(), true));
3613 
3614   // If it is in a read-only section, mark it 'constant'.
3615   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3616     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3617     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3618       GV->setConstant(true);
3619   }
3620 
3621   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3622 
3623 
3624   // On Darwin, if the normal linkage of a C++ thread_local variable is
3625   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3626   // copies within a linkage unit; otherwise, the backing variable has
3627   // internal linkage and all accesses should just be calls to the
3628   // Itanium-specified entry point, which has the normal linkage of the
3629   // variable. This is to preserve the ability to change the implementation
3630   // behind the scenes.
3631   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3632       Context.getTargetInfo().getTriple().isOSDarwin() &&
3633       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3634       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3635     Linkage = llvm::GlobalValue::InternalLinkage;
3636 
3637   GV->setLinkage(Linkage);
3638   if (D->hasAttr<DLLImportAttr>())
3639     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3640   else if (D->hasAttr<DLLExportAttr>())
3641     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3642   else
3643     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3644 
3645   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3646     // common vars aren't constant even if declared const.
3647     GV->setConstant(false);
3648     // Tentative definition of global variables may be initialized with
3649     // non-zero null pointers. In this case they should have weak linkage
3650     // since common linkage must have zero initializer and must not have
3651     // explicit section therefore cannot have non-zero initial value.
3652     if (!GV->getInitializer()->isNullValue())
3653       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3654   }
3655 
3656   setNonAliasAttributes(D, GV);
3657 
3658   if (D->getTLSKind() && !GV->isThreadLocal()) {
3659     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3660       CXXThreadLocals.push_back(D);
3661     setTLSMode(GV, *D);
3662   }
3663 
3664   maybeSetTrivialComdat(*D, *GV);
3665 
3666   // Emit the initializer function if necessary.
3667   if (NeedsGlobalCtor || NeedsGlobalDtor)
3668     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3669 
3670   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3671 
3672   // Emit global variable debug information.
3673   if (CGDebugInfo *DI = getModuleDebugInfo())
3674     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3675       DI->EmitGlobalVariable(GV, D);
3676 }
3677 
3678 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3679                                       CodeGenModule &CGM, const VarDecl *D,
3680                                       bool NoCommon) {
3681   // Don't give variables common linkage if -fno-common was specified unless it
3682   // was overridden by a NoCommon attribute.
3683   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3684     return true;
3685 
3686   // C11 6.9.2/2:
3687   //   A declaration of an identifier for an object that has file scope without
3688   //   an initializer, and without a storage-class specifier or with the
3689   //   storage-class specifier static, constitutes a tentative definition.
3690   if (D->getInit() || D->hasExternalStorage())
3691     return true;
3692 
3693   // A variable cannot be both common and exist in a section.
3694   if (D->hasAttr<SectionAttr>())
3695     return true;
3696 
3697   // A variable cannot be both common and exist in a section.
3698   // We don't try to determine which is the right section in the front-end.
3699   // If no specialized section name is applicable, it will resort to default.
3700   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3701       D->hasAttr<PragmaClangDataSectionAttr>() ||
3702       D->hasAttr<PragmaClangRodataSectionAttr>())
3703     return true;
3704 
3705   // Thread local vars aren't considered common linkage.
3706   if (D->getTLSKind())
3707     return true;
3708 
3709   // Tentative definitions marked with WeakImportAttr are true definitions.
3710   if (D->hasAttr<WeakImportAttr>())
3711     return true;
3712 
3713   // A variable cannot be both common and exist in a comdat.
3714   if (shouldBeInCOMDAT(CGM, *D))
3715     return true;
3716 
3717   // Declarations with a required alignment do not have common linkage in MSVC
3718   // mode.
3719   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3720     if (D->hasAttr<AlignedAttr>())
3721       return true;
3722     QualType VarType = D->getType();
3723     if (Context.isAlignmentRequired(VarType))
3724       return true;
3725 
3726     if (const auto *RT = VarType->getAs<RecordType>()) {
3727       const RecordDecl *RD = RT->getDecl();
3728       for (const FieldDecl *FD : RD->fields()) {
3729         if (FD->isBitField())
3730           continue;
3731         if (FD->hasAttr<AlignedAttr>())
3732           return true;
3733         if (Context.isAlignmentRequired(FD->getType()))
3734           return true;
3735       }
3736     }
3737   }
3738 
3739   return false;
3740 }
3741 
3742 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3743     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3744   if (Linkage == GVA_Internal)
3745     return llvm::Function::InternalLinkage;
3746 
3747   if (D->hasAttr<WeakAttr>()) {
3748     if (IsConstantVariable)
3749       return llvm::GlobalVariable::WeakODRLinkage;
3750     else
3751       return llvm::GlobalVariable::WeakAnyLinkage;
3752   }
3753 
3754   if (const auto *FD = D->getAsFunction())
3755     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
3756       return llvm::GlobalVariable::LinkOnceAnyLinkage;
3757 
3758   // We are guaranteed to have a strong definition somewhere else,
3759   // so we can use available_externally linkage.
3760   if (Linkage == GVA_AvailableExternally)
3761     return llvm::GlobalValue::AvailableExternallyLinkage;
3762 
3763   // Note that Apple's kernel linker doesn't support symbol
3764   // coalescing, so we need to avoid linkonce and weak linkages there.
3765   // Normally, this means we just map to internal, but for explicit
3766   // instantiations we'll map to external.
3767 
3768   // In C++, the compiler has to emit a definition in every translation unit
3769   // that references the function.  We should use linkonce_odr because
3770   // a) if all references in this translation unit are optimized away, we
3771   // don't need to codegen it.  b) if the function persists, it needs to be
3772   // merged with other definitions. c) C++ has the ODR, so we know the
3773   // definition is dependable.
3774   if (Linkage == GVA_DiscardableODR)
3775     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3776                                             : llvm::Function::InternalLinkage;
3777 
3778   // An explicit instantiation of a template has weak linkage, since
3779   // explicit instantiations can occur in multiple translation units
3780   // and must all be equivalent. However, we are not allowed to
3781   // throw away these explicit instantiations.
3782   //
3783   // We don't currently support CUDA device code spread out across multiple TUs,
3784   // so say that CUDA templates are either external (for kernels) or internal.
3785   // This lets llvm perform aggressive inter-procedural optimizations.
3786   if (Linkage == GVA_StrongODR) {
3787     if (Context.getLangOpts().AppleKext)
3788       return llvm::Function::ExternalLinkage;
3789     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3790       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3791                                           : llvm::Function::InternalLinkage;
3792     return llvm::Function::WeakODRLinkage;
3793   }
3794 
3795   // C++ doesn't have tentative definitions and thus cannot have common
3796   // linkage.
3797   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3798       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3799                                  CodeGenOpts.NoCommon))
3800     return llvm::GlobalVariable::CommonLinkage;
3801 
3802   // selectany symbols are externally visible, so use weak instead of
3803   // linkonce.  MSVC optimizes away references to const selectany globals, so
3804   // all definitions should be the same and ODR linkage should be used.
3805   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3806   if (D->hasAttr<SelectAnyAttr>())
3807     return llvm::GlobalVariable::WeakODRLinkage;
3808 
3809   // Otherwise, we have strong external linkage.
3810   assert(Linkage == GVA_StrongExternal);
3811   return llvm::GlobalVariable::ExternalLinkage;
3812 }
3813 
3814 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3815     const VarDecl *VD, bool IsConstant) {
3816   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3817   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3818 }
3819 
3820 /// Replace the uses of a function that was declared with a non-proto type.
3821 /// We want to silently drop extra arguments from call sites
3822 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3823                                           llvm::Function *newFn) {
3824   // Fast path.
3825   if (old->use_empty()) return;
3826 
3827   llvm::Type *newRetTy = newFn->getReturnType();
3828   SmallVector<llvm::Value*, 4> newArgs;
3829   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3830 
3831   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3832          ui != ue; ) {
3833     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3834     llvm::User *user = use->getUser();
3835 
3836     // Recognize and replace uses of bitcasts.  Most calls to
3837     // unprototyped functions will use bitcasts.
3838     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3839       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3840         replaceUsesOfNonProtoConstant(bitcast, newFn);
3841       continue;
3842     }
3843 
3844     // Recognize calls to the function.
3845     llvm::CallSite callSite(user);
3846     if (!callSite) continue;
3847     if (!callSite.isCallee(&*use)) continue;
3848 
3849     // If the return types don't match exactly, then we can't
3850     // transform this call unless it's dead.
3851     if (callSite->getType() != newRetTy && !callSite->use_empty())
3852       continue;
3853 
3854     // Get the call site's attribute list.
3855     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3856     llvm::AttributeList oldAttrs = callSite.getAttributes();
3857 
3858     // If the function was passed too few arguments, don't transform.
3859     unsigned newNumArgs = newFn->arg_size();
3860     if (callSite.arg_size() < newNumArgs) continue;
3861 
3862     // If extra arguments were passed, we silently drop them.
3863     // If any of the types mismatch, we don't transform.
3864     unsigned argNo = 0;
3865     bool dontTransform = false;
3866     for (llvm::Argument &A : newFn->args()) {
3867       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3868         dontTransform = true;
3869         break;
3870       }
3871 
3872       // Add any parameter attributes.
3873       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3874       argNo++;
3875     }
3876     if (dontTransform)
3877       continue;
3878 
3879     // Okay, we can transform this.  Create the new call instruction and copy
3880     // over the required information.
3881     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3882 
3883     // Copy over any operand bundles.
3884     callSite.getOperandBundlesAsDefs(newBundles);
3885 
3886     llvm::CallSite newCall;
3887     if (callSite.isCall()) {
3888       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3889                                        callSite.getInstruction());
3890     } else {
3891       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3892       newCall = llvm::InvokeInst::Create(newFn,
3893                                          oldInvoke->getNormalDest(),
3894                                          oldInvoke->getUnwindDest(),
3895                                          newArgs, newBundles, "",
3896                                          callSite.getInstruction());
3897     }
3898     newArgs.clear(); // for the next iteration
3899 
3900     if (!newCall->getType()->isVoidTy())
3901       newCall->takeName(callSite.getInstruction());
3902     newCall.setAttributes(llvm::AttributeList::get(
3903         newFn->getContext(), oldAttrs.getFnAttributes(),
3904         oldAttrs.getRetAttributes(), newArgAttrs));
3905     newCall.setCallingConv(callSite.getCallingConv());
3906 
3907     // Finally, remove the old call, replacing any uses with the new one.
3908     if (!callSite->use_empty())
3909       callSite->replaceAllUsesWith(newCall.getInstruction());
3910 
3911     // Copy debug location attached to CI.
3912     if (callSite->getDebugLoc())
3913       newCall->setDebugLoc(callSite->getDebugLoc());
3914 
3915     callSite->eraseFromParent();
3916   }
3917 }
3918 
3919 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3920 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3921 /// existing call uses of the old function in the module, this adjusts them to
3922 /// call the new function directly.
3923 ///
3924 /// This is not just a cleanup: the always_inline pass requires direct calls to
3925 /// functions to be able to inline them.  If there is a bitcast in the way, it
3926 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3927 /// run at -O0.
3928 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3929                                                       llvm::Function *NewFn) {
3930   // If we're redefining a global as a function, don't transform it.
3931   if (!isa<llvm::Function>(Old)) return;
3932 
3933   replaceUsesOfNonProtoConstant(Old, NewFn);
3934 }
3935 
3936 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3937   auto DK = VD->isThisDeclarationADefinition();
3938   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3939     return;
3940 
3941   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3942   // If we have a definition, this might be a deferred decl. If the
3943   // instantiation is explicit, make sure we emit it at the end.
3944   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3945     GetAddrOfGlobalVar(VD);
3946 
3947   EmitTopLevelDecl(VD);
3948 }
3949 
3950 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3951                                                  llvm::GlobalValue *GV) {
3952   const auto *D = cast<FunctionDecl>(GD.getDecl());
3953 
3954   // Compute the function info and LLVM type.
3955   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3956   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3957 
3958   // Get or create the prototype for the function.
3959   if (!GV || (GV->getType()->getElementType() != Ty))
3960     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3961                                                    /*DontDefer=*/true,
3962                                                    ForDefinition));
3963 
3964   // Already emitted.
3965   if (!GV->isDeclaration())
3966     return;
3967 
3968   // We need to set linkage and visibility on the function before
3969   // generating code for it because various parts of IR generation
3970   // want to propagate this information down (e.g. to local static
3971   // declarations).
3972   auto *Fn = cast<llvm::Function>(GV);
3973   setFunctionLinkage(GD, Fn);
3974 
3975   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3976   setGVProperties(Fn, GD);
3977 
3978   MaybeHandleStaticInExternC(D, Fn);
3979 
3980 
3981   maybeSetTrivialComdat(*D, *Fn);
3982 
3983   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3984 
3985   setNonAliasAttributes(GD, Fn);
3986   SetLLVMFunctionAttributesForDefinition(D, Fn);
3987 
3988   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3989     AddGlobalCtor(Fn, CA->getPriority());
3990   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3991     AddGlobalDtor(Fn, DA->getPriority());
3992   if (D->hasAttr<AnnotateAttr>())
3993     AddGlobalAnnotations(D, Fn);
3994 }
3995 
3996 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3997   const auto *D = cast<ValueDecl>(GD.getDecl());
3998   const AliasAttr *AA = D->getAttr<AliasAttr>();
3999   assert(AA && "Not an alias?");
4000 
4001   StringRef MangledName = getMangledName(GD);
4002 
4003   if (AA->getAliasee() == MangledName) {
4004     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4005     return;
4006   }
4007 
4008   // If there is a definition in the module, then it wins over the alias.
4009   // This is dubious, but allow it to be safe.  Just ignore the alias.
4010   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4011   if (Entry && !Entry->isDeclaration())
4012     return;
4013 
4014   Aliases.push_back(GD);
4015 
4016   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4017 
4018   // Create a reference to the named value.  This ensures that it is emitted
4019   // if a deferred decl.
4020   llvm::Constant *Aliasee;
4021   if (isa<llvm::FunctionType>(DeclTy))
4022     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4023                                       /*ForVTable=*/false);
4024   else
4025     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4026                                     llvm::PointerType::getUnqual(DeclTy),
4027                                     /*D=*/nullptr);
4028 
4029   // Create the new alias itself, but don't set a name yet.
4030   auto *GA = llvm::GlobalAlias::create(
4031       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4032 
4033   if (Entry) {
4034     if (GA->getAliasee() == Entry) {
4035       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4036       return;
4037     }
4038 
4039     assert(Entry->isDeclaration());
4040 
4041     // If there is a declaration in the module, then we had an extern followed
4042     // by the alias, as in:
4043     //   extern int test6();
4044     //   ...
4045     //   int test6() __attribute__((alias("test7")));
4046     //
4047     // Remove it and replace uses of it with the alias.
4048     GA->takeName(Entry);
4049 
4050     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4051                                                           Entry->getType()));
4052     Entry->eraseFromParent();
4053   } else {
4054     GA->setName(MangledName);
4055   }
4056 
4057   // Set attributes which are particular to an alias; this is a
4058   // specialization of the attributes which may be set on a global
4059   // variable/function.
4060   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4061       D->isWeakImported()) {
4062     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4063   }
4064 
4065   if (const auto *VD = dyn_cast<VarDecl>(D))
4066     if (VD->getTLSKind())
4067       setTLSMode(GA, *VD);
4068 
4069   SetCommonAttributes(GD, GA);
4070 }
4071 
4072 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4073   const auto *D = cast<ValueDecl>(GD.getDecl());
4074   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4075   assert(IFA && "Not an ifunc?");
4076 
4077   StringRef MangledName = getMangledName(GD);
4078 
4079   if (IFA->getResolver() == MangledName) {
4080     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4081     return;
4082   }
4083 
4084   // Report an error if some definition overrides ifunc.
4085   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4086   if (Entry && !Entry->isDeclaration()) {
4087     GlobalDecl OtherGD;
4088     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4089         DiagnosedConflictingDefinitions.insert(GD).second) {
4090       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4091           << MangledName;
4092       Diags.Report(OtherGD.getDecl()->getLocation(),
4093                    diag::note_previous_definition);
4094     }
4095     return;
4096   }
4097 
4098   Aliases.push_back(GD);
4099 
4100   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4101   llvm::Constant *Resolver =
4102       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4103                               /*ForVTable=*/false);
4104   llvm::GlobalIFunc *GIF =
4105       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4106                                 "", Resolver, &getModule());
4107   if (Entry) {
4108     if (GIF->getResolver() == Entry) {
4109       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4110       return;
4111     }
4112     assert(Entry->isDeclaration());
4113 
4114     // If there is a declaration in the module, then we had an extern followed
4115     // by the ifunc, as in:
4116     //   extern int test();
4117     //   ...
4118     //   int test() __attribute__((ifunc("resolver")));
4119     //
4120     // Remove it and replace uses of it with the ifunc.
4121     GIF->takeName(Entry);
4122 
4123     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4124                                                           Entry->getType()));
4125     Entry->eraseFromParent();
4126   } else
4127     GIF->setName(MangledName);
4128 
4129   SetCommonAttributes(GD, GIF);
4130 }
4131 
4132 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4133                                             ArrayRef<llvm::Type*> Tys) {
4134   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4135                                          Tys);
4136 }
4137 
4138 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4139 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4140                          const StringLiteral *Literal, bool TargetIsLSB,
4141                          bool &IsUTF16, unsigned &StringLength) {
4142   StringRef String = Literal->getString();
4143   unsigned NumBytes = String.size();
4144 
4145   // Check for simple case.
4146   if (!Literal->containsNonAsciiOrNull()) {
4147     StringLength = NumBytes;
4148     return *Map.insert(std::make_pair(String, nullptr)).first;
4149   }
4150 
4151   // Otherwise, convert the UTF8 literals into a string of shorts.
4152   IsUTF16 = true;
4153 
4154   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4155   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4156   llvm::UTF16 *ToPtr = &ToBuf[0];
4157 
4158   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4159                                  ToPtr + NumBytes, llvm::strictConversion);
4160 
4161   // ConvertUTF8toUTF16 returns the length in ToPtr.
4162   StringLength = ToPtr - &ToBuf[0];
4163 
4164   // Add an explicit null.
4165   *ToPtr = 0;
4166   return *Map.insert(std::make_pair(
4167                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4168                                    (StringLength + 1) * 2),
4169                          nullptr)).first;
4170 }
4171 
4172 ConstantAddress
4173 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4174   unsigned StringLength = 0;
4175   bool isUTF16 = false;
4176   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4177       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4178                                getDataLayout().isLittleEndian(), isUTF16,
4179                                StringLength);
4180 
4181   if (auto *C = Entry.second)
4182     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4183 
4184   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4185   llvm::Constant *Zeros[] = { Zero, Zero };
4186 
4187   const ASTContext &Context = getContext();
4188   const llvm::Triple &Triple = getTriple();
4189 
4190   const auto CFRuntime = getLangOpts().CFRuntime;
4191   const bool IsSwiftABI =
4192       static_cast<unsigned>(CFRuntime) >=
4193       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4194   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4195 
4196   // If we don't already have it, get __CFConstantStringClassReference.
4197   if (!CFConstantStringClassRef) {
4198     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4199     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4200     Ty = llvm::ArrayType::get(Ty, 0);
4201 
4202     switch (CFRuntime) {
4203     default: break;
4204     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4205     case LangOptions::CoreFoundationABI::Swift5_0:
4206       CFConstantStringClassName =
4207           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4208                               : "$s10Foundation19_NSCFConstantStringCN";
4209       Ty = IntPtrTy;
4210       break;
4211     case LangOptions::CoreFoundationABI::Swift4_2:
4212       CFConstantStringClassName =
4213           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4214                               : "$S10Foundation19_NSCFConstantStringCN";
4215       Ty = IntPtrTy;
4216       break;
4217     case LangOptions::CoreFoundationABI::Swift4_1:
4218       CFConstantStringClassName =
4219           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4220                               : "__T010Foundation19_NSCFConstantStringCN";
4221       Ty = IntPtrTy;
4222       break;
4223     }
4224 
4225     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4226 
4227     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4228       llvm::GlobalValue *GV = nullptr;
4229 
4230       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4231         IdentifierInfo &II = Context.Idents.get(GV->getName());
4232         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4233         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4234 
4235         const VarDecl *VD = nullptr;
4236         for (const auto &Result : DC->lookup(&II))
4237           if ((VD = dyn_cast<VarDecl>(Result)))
4238             break;
4239 
4240         if (Triple.isOSBinFormatELF()) {
4241           if (!VD)
4242             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4243         } else {
4244           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4245           if (!VD || !VD->hasAttr<DLLExportAttr>())
4246             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4247           else
4248             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4249         }
4250 
4251         setDSOLocal(GV);
4252       }
4253     }
4254 
4255     // Decay array -> ptr
4256     CFConstantStringClassRef =
4257         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4258                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4259   }
4260 
4261   QualType CFTy = Context.getCFConstantStringType();
4262 
4263   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4264 
4265   ConstantInitBuilder Builder(*this);
4266   auto Fields = Builder.beginStruct(STy);
4267 
4268   // Class pointer.
4269   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4270 
4271   // Flags.
4272   if (IsSwiftABI) {
4273     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4274     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4275   } else {
4276     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4277   }
4278 
4279   // String pointer.
4280   llvm::Constant *C = nullptr;
4281   if (isUTF16) {
4282     auto Arr = llvm::makeArrayRef(
4283         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4284         Entry.first().size() / 2);
4285     C = llvm::ConstantDataArray::get(VMContext, Arr);
4286   } else {
4287     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4288   }
4289 
4290   // Note: -fwritable-strings doesn't make the backing store strings of
4291   // CFStrings writable. (See <rdar://problem/10657500>)
4292   auto *GV =
4293       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4294                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4295   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4296   // Don't enforce the target's minimum global alignment, since the only use
4297   // of the string is via this class initializer.
4298   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4299                             : Context.getTypeAlignInChars(Context.CharTy);
4300   GV->setAlignment(Align.getQuantity());
4301 
4302   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4303   // Without it LLVM can merge the string with a non unnamed_addr one during
4304   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4305   if (Triple.isOSBinFormatMachO())
4306     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4307                            : "__TEXT,__cstring,cstring_literals");
4308   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4309   // the static linker to adjust permissions to read-only later on.
4310   else if (Triple.isOSBinFormatELF())
4311     GV->setSection(".rodata");
4312 
4313   // String.
4314   llvm::Constant *Str =
4315       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4316 
4317   if (isUTF16)
4318     // Cast the UTF16 string to the correct type.
4319     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4320   Fields.add(Str);
4321 
4322   // String length.
4323   llvm::IntegerType *LengthTy =
4324       llvm::IntegerType::get(getModule().getContext(),
4325                              Context.getTargetInfo().getLongWidth());
4326   if (IsSwiftABI) {
4327     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4328         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4329       LengthTy = Int32Ty;
4330     else
4331       LengthTy = IntPtrTy;
4332   }
4333   Fields.addInt(LengthTy, StringLength);
4334 
4335   CharUnits Alignment = getPointerAlign();
4336 
4337   // The struct.
4338   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4339                                     /*isConstant=*/false,
4340                                     llvm::GlobalVariable::PrivateLinkage);
4341   switch (Triple.getObjectFormat()) {
4342   case llvm::Triple::UnknownObjectFormat:
4343     llvm_unreachable("unknown file format");
4344   case llvm::Triple::COFF:
4345   case llvm::Triple::ELF:
4346   case llvm::Triple::Wasm:
4347     GV->setSection("cfstring");
4348     break;
4349   case llvm::Triple::MachO:
4350     GV->setSection("__DATA,__cfstring");
4351     break;
4352   }
4353   Entry.second = GV;
4354 
4355   return ConstantAddress(GV, Alignment);
4356 }
4357 
4358 bool CodeGenModule::getExpressionLocationsEnabled() const {
4359   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4360 }
4361 
4362 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4363   if (ObjCFastEnumerationStateType.isNull()) {
4364     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4365     D->startDefinition();
4366 
4367     QualType FieldTypes[] = {
4368       Context.UnsignedLongTy,
4369       Context.getPointerType(Context.getObjCIdType()),
4370       Context.getPointerType(Context.UnsignedLongTy),
4371       Context.getConstantArrayType(Context.UnsignedLongTy,
4372                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4373     };
4374 
4375     for (size_t i = 0; i < 4; ++i) {
4376       FieldDecl *Field = FieldDecl::Create(Context,
4377                                            D,
4378                                            SourceLocation(),
4379                                            SourceLocation(), nullptr,
4380                                            FieldTypes[i], /*TInfo=*/nullptr,
4381                                            /*BitWidth=*/nullptr,
4382                                            /*Mutable=*/false,
4383                                            ICIS_NoInit);
4384       Field->setAccess(AS_public);
4385       D->addDecl(Field);
4386     }
4387 
4388     D->completeDefinition();
4389     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4390   }
4391 
4392   return ObjCFastEnumerationStateType;
4393 }
4394 
4395 llvm::Constant *
4396 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4397   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4398 
4399   // Don't emit it as the address of the string, emit the string data itself
4400   // as an inline array.
4401   if (E->getCharByteWidth() == 1) {
4402     SmallString<64> Str(E->getString());
4403 
4404     // Resize the string to the right size, which is indicated by its type.
4405     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4406     Str.resize(CAT->getSize().getZExtValue());
4407     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4408   }
4409 
4410   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4411   llvm::Type *ElemTy = AType->getElementType();
4412   unsigned NumElements = AType->getNumElements();
4413 
4414   // Wide strings have either 2-byte or 4-byte elements.
4415   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4416     SmallVector<uint16_t, 32> Elements;
4417     Elements.reserve(NumElements);
4418 
4419     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4420       Elements.push_back(E->getCodeUnit(i));
4421     Elements.resize(NumElements);
4422     return llvm::ConstantDataArray::get(VMContext, Elements);
4423   }
4424 
4425   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4426   SmallVector<uint32_t, 32> Elements;
4427   Elements.reserve(NumElements);
4428 
4429   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4430     Elements.push_back(E->getCodeUnit(i));
4431   Elements.resize(NumElements);
4432   return llvm::ConstantDataArray::get(VMContext, Elements);
4433 }
4434 
4435 static llvm::GlobalVariable *
4436 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4437                       CodeGenModule &CGM, StringRef GlobalName,
4438                       CharUnits Alignment) {
4439   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4440       CGM.getStringLiteralAddressSpace());
4441 
4442   llvm::Module &M = CGM.getModule();
4443   // Create a global variable for this string
4444   auto *GV = new llvm::GlobalVariable(
4445       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4446       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4447   GV->setAlignment(Alignment.getQuantity());
4448   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4449   if (GV->isWeakForLinker()) {
4450     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4451     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4452   }
4453   CGM.setDSOLocal(GV);
4454 
4455   return GV;
4456 }
4457 
4458 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4459 /// constant array for the given string literal.
4460 ConstantAddress
4461 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4462                                                   StringRef Name) {
4463   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4464 
4465   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4466   llvm::GlobalVariable **Entry = nullptr;
4467   if (!LangOpts.WritableStrings) {
4468     Entry = &ConstantStringMap[C];
4469     if (auto GV = *Entry) {
4470       if (Alignment.getQuantity() > GV->getAlignment())
4471         GV->setAlignment(Alignment.getQuantity());
4472       return ConstantAddress(GV, Alignment);
4473     }
4474   }
4475 
4476   SmallString<256> MangledNameBuffer;
4477   StringRef GlobalVariableName;
4478   llvm::GlobalValue::LinkageTypes LT;
4479 
4480   // Mangle the string literal if that's how the ABI merges duplicate strings.
4481   // Don't do it if they are writable, since we don't want writes in one TU to
4482   // affect strings in another.
4483   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4484       !LangOpts.WritableStrings) {
4485     llvm::raw_svector_ostream Out(MangledNameBuffer);
4486     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4487     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4488     GlobalVariableName = MangledNameBuffer;
4489   } else {
4490     LT = llvm::GlobalValue::PrivateLinkage;
4491     GlobalVariableName = Name;
4492   }
4493 
4494   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4495   if (Entry)
4496     *Entry = GV;
4497 
4498   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4499                                   QualType());
4500 
4501   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4502                          Alignment);
4503 }
4504 
4505 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4506 /// array for the given ObjCEncodeExpr node.
4507 ConstantAddress
4508 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4509   std::string Str;
4510   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4511 
4512   return GetAddrOfConstantCString(Str);
4513 }
4514 
4515 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4516 /// the literal and a terminating '\0' character.
4517 /// The result has pointer to array type.
4518 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4519     const std::string &Str, const char *GlobalName) {
4520   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4521   CharUnits Alignment =
4522     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4523 
4524   llvm::Constant *C =
4525       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4526 
4527   // Don't share any string literals if strings aren't constant.
4528   llvm::GlobalVariable **Entry = nullptr;
4529   if (!LangOpts.WritableStrings) {
4530     Entry = &ConstantStringMap[C];
4531     if (auto GV = *Entry) {
4532       if (Alignment.getQuantity() > GV->getAlignment())
4533         GV->setAlignment(Alignment.getQuantity());
4534       return ConstantAddress(GV, Alignment);
4535     }
4536   }
4537 
4538   // Get the default prefix if a name wasn't specified.
4539   if (!GlobalName)
4540     GlobalName = ".str";
4541   // Create a global variable for this.
4542   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4543                                   GlobalName, Alignment);
4544   if (Entry)
4545     *Entry = GV;
4546 
4547   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4548                          Alignment);
4549 }
4550 
4551 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4552     const MaterializeTemporaryExpr *E, const Expr *Init) {
4553   assert((E->getStorageDuration() == SD_Static ||
4554           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4555   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4556 
4557   // If we're not materializing a subobject of the temporary, keep the
4558   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4559   QualType MaterializedType = Init->getType();
4560   if (Init == E->GetTemporaryExpr())
4561     MaterializedType = E->getType();
4562 
4563   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4564 
4565   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4566     return ConstantAddress(Slot, Align);
4567 
4568   // FIXME: If an externally-visible declaration extends multiple temporaries,
4569   // we need to give each temporary the same name in every translation unit (and
4570   // we also need to make the temporaries externally-visible).
4571   SmallString<256> Name;
4572   llvm::raw_svector_ostream Out(Name);
4573   getCXXABI().getMangleContext().mangleReferenceTemporary(
4574       VD, E->getManglingNumber(), Out);
4575 
4576   APValue *Value = nullptr;
4577   if (E->getStorageDuration() == SD_Static) {
4578     // We might have a cached constant initializer for this temporary. Note
4579     // that this might have a different value from the value computed by
4580     // evaluating the initializer if the surrounding constant expression
4581     // modifies the temporary.
4582     Value = getContext().getMaterializedTemporaryValue(E, false);
4583     if (Value && Value->isUninit())
4584       Value = nullptr;
4585   }
4586 
4587   // Try evaluating it now, it might have a constant initializer.
4588   Expr::EvalResult EvalResult;
4589   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4590       !EvalResult.hasSideEffects())
4591     Value = &EvalResult.Val;
4592 
4593   LangAS AddrSpace =
4594       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4595 
4596   Optional<ConstantEmitter> emitter;
4597   llvm::Constant *InitialValue = nullptr;
4598   bool Constant = false;
4599   llvm::Type *Type;
4600   if (Value) {
4601     // The temporary has a constant initializer, use it.
4602     emitter.emplace(*this);
4603     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4604                                                MaterializedType);
4605     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4606     Type = InitialValue->getType();
4607   } else {
4608     // No initializer, the initialization will be provided when we
4609     // initialize the declaration which performed lifetime extension.
4610     Type = getTypes().ConvertTypeForMem(MaterializedType);
4611   }
4612 
4613   // Create a global variable for this lifetime-extended temporary.
4614   llvm::GlobalValue::LinkageTypes Linkage =
4615       getLLVMLinkageVarDefinition(VD, Constant);
4616   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4617     const VarDecl *InitVD;
4618     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4619         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4620       // Temporaries defined inside a class get linkonce_odr linkage because the
4621       // class can be defined in multiple translation units.
4622       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4623     } else {
4624       // There is no need for this temporary to have external linkage if the
4625       // VarDecl has external linkage.
4626       Linkage = llvm::GlobalVariable::InternalLinkage;
4627     }
4628   }
4629   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4630   auto *GV = new llvm::GlobalVariable(
4631       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4632       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4633   if (emitter) emitter->finalize(GV);
4634   setGVProperties(GV, VD);
4635   GV->setAlignment(Align.getQuantity());
4636   if (supportsCOMDAT() && GV->isWeakForLinker())
4637     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4638   if (VD->getTLSKind())
4639     setTLSMode(GV, *VD);
4640   llvm::Constant *CV = GV;
4641   if (AddrSpace != LangAS::Default)
4642     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4643         *this, GV, AddrSpace, LangAS::Default,
4644         Type->getPointerTo(
4645             getContext().getTargetAddressSpace(LangAS::Default)));
4646   MaterializedGlobalTemporaryMap[E] = CV;
4647   return ConstantAddress(CV, Align);
4648 }
4649 
4650 /// EmitObjCPropertyImplementations - Emit information for synthesized
4651 /// properties for an implementation.
4652 void CodeGenModule::EmitObjCPropertyImplementations(const
4653                                                     ObjCImplementationDecl *D) {
4654   for (const auto *PID : D->property_impls()) {
4655     // Dynamic is just for type-checking.
4656     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4657       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4658 
4659       // Determine which methods need to be implemented, some may have
4660       // been overridden. Note that ::isPropertyAccessor is not the method
4661       // we want, that just indicates if the decl came from a
4662       // property. What we want to know is if the method is defined in
4663       // this implementation.
4664       if (!D->getInstanceMethod(PD->getGetterName()))
4665         CodeGenFunction(*this).GenerateObjCGetter(
4666                                  const_cast<ObjCImplementationDecl *>(D), PID);
4667       if (!PD->isReadOnly() &&
4668           !D->getInstanceMethod(PD->getSetterName()))
4669         CodeGenFunction(*this).GenerateObjCSetter(
4670                                  const_cast<ObjCImplementationDecl *>(D), PID);
4671     }
4672   }
4673 }
4674 
4675 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4676   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4677   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4678        ivar; ivar = ivar->getNextIvar())
4679     if (ivar->getType().isDestructedType())
4680       return true;
4681 
4682   return false;
4683 }
4684 
4685 static bool AllTrivialInitializers(CodeGenModule &CGM,
4686                                    ObjCImplementationDecl *D) {
4687   CodeGenFunction CGF(CGM);
4688   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4689        E = D->init_end(); B != E; ++B) {
4690     CXXCtorInitializer *CtorInitExp = *B;
4691     Expr *Init = CtorInitExp->getInit();
4692     if (!CGF.isTrivialInitializer(Init))
4693       return false;
4694   }
4695   return true;
4696 }
4697 
4698 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4699 /// for an implementation.
4700 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4701   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4702   if (needsDestructMethod(D)) {
4703     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4704     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4705     ObjCMethodDecl *DTORMethod =
4706       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4707                              cxxSelector, getContext().VoidTy, nullptr, D,
4708                              /*isInstance=*/true, /*isVariadic=*/false,
4709                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4710                              /*isDefined=*/false, ObjCMethodDecl::Required);
4711     D->addInstanceMethod(DTORMethod);
4712     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4713     D->setHasDestructors(true);
4714   }
4715 
4716   // If the implementation doesn't have any ivar initializers, we don't need
4717   // a .cxx_construct.
4718   if (D->getNumIvarInitializers() == 0 ||
4719       AllTrivialInitializers(*this, D))
4720     return;
4721 
4722   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4723   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4724   // The constructor returns 'self'.
4725   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4726                                                 D->getLocation(),
4727                                                 D->getLocation(),
4728                                                 cxxSelector,
4729                                                 getContext().getObjCIdType(),
4730                                                 nullptr, D, /*isInstance=*/true,
4731                                                 /*isVariadic=*/false,
4732                                                 /*isPropertyAccessor=*/true,
4733                                                 /*isImplicitlyDeclared=*/true,
4734                                                 /*isDefined=*/false,
4735                                                 ObjCMethodDecl::Required);
4736   D->addInstanceMethod(CTORMethod);
4737   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4738   D->setHasNonZeroConstructors(true);
4739 }
4740 
4741 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4742 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4743   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4744       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4745     ErrorUnsupported(LSD, "linkage spec");
4746     return;
4747   }
4748 
4749   EmitDeclContext(LSD);
4750 }
4751 
4752 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4753   for (auto *I : DC->decls()) {
4754     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4755     // are themselves considered "top-level", so EmitTopLevelDecl on an
4756     // ObjCImplDecl does not recursively visit them. We need to do that in
4757     // case they're nested inside another construct (LinkageSpecDecl /
4758     // ExportDecl) that does stop them from being considered "top-level".
4759     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4760       for (auto *M : OID->methods())
4761         EmitTopLevelDecl(M);
4762     }
4763 
4764     EmitTopLevelDecl(I);
4765   }
4766 }
4767 
4768 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4769 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4770   // Ignore dependent declarations.
4771   if (D->isTemplated())
4772     return;
4773 
4774   switch (D->getKind()) {
4775   case Decl::CXXConversion:
4776   case Decl::CXXMethod:
4777   case Decl::Function:
4778     EmitGlobal(cast<FunctionDecl>(D));
4779     // Always provide some coverage mapping
4780     // even for the functions that aren't emitted.
4781     AddDeferredUnusedCoverageMapping(D);
4782     break;
4783 
4784   case Decl::CXXDeductionGuide:
4785     // Function-like, but does not result in code emission.
4786     break;
4787 
4788   case Decl::Var:
4789   case Decl::Decomposition:
4790   case Decl::VarTemplateSpecialization:
4791     EmitGlobal(cast<VarDecl>(D));
4792     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4793       for (auto *B : DD->bindings())
4794         if (auto *HD = B->getHoldingVar())
4795           EmitGlobal(HD);
4796     break;
4797 
4798   // Indirect fields from global anonymous structs and unions can be
4799   // ignored; only the actual variable requires IR gen support.
4800   case Decl::IndirectField:
4801     break;
4802 
4803   // C++ Decls
4804   case Decl::Namespace:
4805     EmitDeclContext(cast<NamespaceDecl>(D));
4806     break;
4807   case Decl::ClassTemplateSpecialization: {
4808     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4809     if (DebugInfo &&
4810         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4811         Spec->hasDefinition())
4812       DebugInfo->completeTemplateDefinition(*Spec);
4813   } LLVM_FALLTHROUGH;
4814   case Decl::CXXRecord:
4815     if (DebugInfo) {
4816       if (auto *ES = D->getASTContext().getExternalSource())
4817         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4818           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4819     }
4820     // Emit any static data members, they may be definitions.
4821     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4822       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4823         EmitTopLevelDecl(I);
4824     break;
4825     // No code generation needed.
4826   case Decl::UsingShadow:
4827   case Decl::ClassTemplate:
4828   case Decl::VarTemplate:
4829   case Decl::VarTemplatePartialSpecialization:
4830   case Decl::FunctionTemplate:
4831   case Decl::TypeAliasTemplate:
4832   case Decl::Block:
4833   case Decl::Empty:
4834   case Decl::Binding:
4835     break;
4836   case Decl::Using:          // using X; [C++]
4837     if (CGDebugInfo *DI = getModuleDebugInfo())
4838         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4839     return;
4840   case Decl::NamespaceAlias:
4841     if (CGDebugInfo *DI = getModuleDebugInfo())
4842         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4843     return;
4844   case Decl::UsingDirective: // using namespace X; [C++]
4845     if (CGDebugInfo *DI = getModuleDebugInfo())
4846       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4847     return;
4848   case Decl::CXXConstructor:
4849     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4850     break;
4851   case Decl::CXXDestructor:
4852     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4853     break;
4854 
4855   case Decl::StaticAssert:
4856     // Nothing to do.
4857     break;
4858 
4859   // Objective-C Decls
4860 
4861   // Forward declarations, no (immediate) code generation.
4862   case Decl::ObjCInterface:
4863   case Decl::ObjCCategory:
4864     break;
4865 
4866   case Decl::ObjCProtocol: {
4867     auto *Proto = cast<ObjCProtocolDecl>(D);
4868     if (Proto->isThisDeclarationADefinition())
4869       ObjCRuntime->GenerateProtocol(Proto);
4870     break;
4871   }
4872 
4873   case Decl::ObjCCategoryImpl:
4874     // Categories have properties but don't support synthesize so we
4875     // can ignore them here.
4876     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4877     break;
4878 
4879   case Decl::ObjCImplementation: {
4880     auto *OMD = cast<ObjCImplementationDecl>(D);
4881     EmitObjCPropertyImplementations(OMD);
4882     EmitObjCIvarInitializations(OMD);
4883     ObjCRuntime->GenerateClass(OMD);
4884     // Emit global variable debug information.
4885     if (CGDebugInfo *DI = getModuleDebugInfo())
4886       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4887         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4888             OMD->getClassInterface()), OMD->getLocation());
4889     break;
4890   }
4891   case Decl::ObjCMethod: {
4892     auto *OMD = cast<ObjCMethodDecl>(D);
4893     // If this is not a prototype, emit the body.
4894     if (OMD->getBody())
4895       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4896     break;
4897   }
4898   case Decl::ObjCCompatibleAlias:
4899     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4900     break;
4901 
4902   case Decl::PragmaComment: {
4903     const auto *PCD = cast<PragmaCommentDecl>(D);
4904     switch (PCD->getCommentKind()) {
4905     case PCK_Unknown:
4906       llvm_unreachable("unexpected pragma comment kind");
4907     case PCK_Linker:
4908       AppendLinkerOptions(PCD->getArg());
4909       break;
4910     case PCK_Lib:
4911       if (getTarget().getTriple().isOSBinFormatELF() &&
4912           !getTarget().getTriple().isPS4())
4913         AddELFLibDirective(PCD->getArg());
4914       else
4915         AddDependentLib(PCD->getArg());
4916       break;
4917     case PCK_Compiler:
4918     case PCK_ExeStr:
4919     case PCK_User:
4920       break; // We ignore all of these.
4921     }
4922     break;
4923   }
4924 
4925   case Decl::PragmaDetectMismatch: {
4926     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4927     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4928     break;
4929   }
4930 
4931   case Decl::LinkageSpec:
4932     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4933     break;
4934 
4935   case Decl::FileScopeAsm: {
4936     // File-scope asm is ignored during device-side CUDA compilation.
4937     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4938       break;
4939     // File-scope asm is ignored during device-side OpenMP compilation.
4940     if (LangOpts.OpenMPIsDevice)
4941       break;
4942     auto *AD = cast<FileScopeAsmDecl>(D);
4943     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4944     break;
4945   }
4946 
4947   case Decl::Import: {
4948     auto *Import = cast<ImportDecl>(D);
4949 
4950     // If we've already imported this module, we're done.
4951     if (!ImportedModules.insert(Import->getImportedModule()))
4952       break;
4953 
4954     // Emit debug information for direct imports.
4955     if (!Import->getImportedOwningModule()) {
4956       if (CGDebugInfo *DI = getModuleDebugInfo())
4957         DI->EmitImportDecl(*Import);
4958     }
4959 
4960     // Find all of the submodules and emit the module initializers.
4961     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4962     SmallVector<clang::Module *, 16> Stack;
4963     Visited.insert(Import->getImportedModule());
4964     Stack.push_back(Import->getImportedModule());
4965 
4966     while (!Stack.empty()) {
4967       clang::Module *Mod = Stack.pop_back_val();
4968       if (!EmittedModuleInitializers.insert(Mod).second)
4969         continue;
4970 
4971       for (auto *D : Context.getModuleInitializers(Mod))
4972         EmitTopLevelDecl(D);
4973 
4974       // Visit the submodules of this module.
4975       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4976                                              SubEnd = Mod->submodule_end();
4977            Sub != SubEnd; ++Sub) {
4978         // Skip explicit children; they need to be explicitly imported to emit
4979         // the initializers.
4980         if ((*Sub)->IsExplicit)
4981           continue;
4982 
4983         if (Visited.insert(*Sub).second)
4984           Stack.push_back(*Sub);
4985       }
4986     }
4987     break;
4988   }
4989 
4990   case Decl::Export:
4991     EmitDeclContext(cast<ExportDecl>(D));
4992     break;
4993 
4994   case Decl::OMPThreadPrivate:
4995     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4996     break;
4997 
4998   case Decl::OMPDeclareReduction:
4999     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5000     break;
5001 
5002   case Decl::OMPRequires:
5003     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5004     break;
5005 
5006   default:
5007     // Make sure we handled everything we should, every other kind is a
5008     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5009     // function. Need to recode Decl::Kind to do that easily.
5010     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5011     break;
5012   }
5013 }
5014 
5015 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5016   // Do we need to generate coverage mapping?
5017   if (!CodeGenOpts.CoverageMapping)
5018     return;
5019   switch (D->getKind()) {
5020   case Decl::CXXConversion:
5021   case Decl::CXXMethod:
5022   case Decl::Function:
5023   case Decl::ObjCMethod:
5024   case Decl::CXXConstructor:
5025   case Decl::CXXDestructor: {
5026     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5027       return;
5028     SourceManager &SM = getContext().getSourceManager();
5029     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5030       return;
5031     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5032     if (I == DeferredEmptyCoverageMappingDecls.end())
5033       DeferredEmptyCoverageMappingDecls[D] = true;
5034     break;
5035   }
5036   default:
5037     break;
5038   };
5039 }
5040 
5041 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5042   // Do we need to generate coverage mapping?
5043   if (!CodeGenOpts.CoverageMapping)
5044     return;
5045   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5046     if (Fn->isTemplateInstantiation())
5047       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5048   }
5049   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5050   if (I == DeferredEmptyCoverageMappingDecls.end())
5051     DeferredEmptyCoverageMappingDecls[D] = false;
5052   else
5053     I->second = false;
5054 }
5055 
5056 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5057   // We call takeVector() here to avoid use-after-free.
5058   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5059   // we deserialize function bodies to emit coverage info for them, and that
5060   // deserializes more declarations. How should we handle that case?
5061   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5062     if (!Entry.second)
5063       continue;
5064     const Decl *D = Entry.first;
5065     switch (D->getKind()) {
5066     case Decl::CXXConversion:
5067     case Decl::CXXMethod:
5068     case Decl::Function:
5069     case Decl::ObjCMethod: {
5070       CodeGenPGO PGO(*this);
5071       GlobalDecl GD(cast<FunctionDecl>(D));
5072       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5073                                   getFunctionLinkage(GD));
5074       break;
5075     }
5076     case Decl::CXXConstructor: {
5077       CodeGenPGO PGO(*this);
5078       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5079       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5080                                   getFunctionLinkage(GD));
5081       break;
5082     }
5083     case Decl::CXXDestructor: {
5084       CodeGenPGO PGO(*this);
5085       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5086       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5087                                   getFunctionLinkage(GD));
5088       break;
5089     }
5090     default:
5091       break;
5092     };
5093   }
5094 }
5095 
5096 /// Turns the given pointer into a constant.
5097 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5098                                           const void *Ptr) {
5099   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5100   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5101   return llvm::ConstantInt::get(i64, PtrInt);
5102 }
5103 
5104 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5105                                    llvm::NamedMDNode *&GlobalMetadata,
5106                                    GlobalDecl D,
5107                                    llvm::GlobalValue *Addr) {
5108   if (!GlobalMetadata)
5109     GlobalMetadata =
5110       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5111 
5112   // TODO: should we report variant information for ctors/dtors?
5113   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5114                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5115                                CGM.getLLVMContext(), D.getDecl()))};
5116   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5117 }
5118 
5119 /// For each function which is declared within an extern "C" region and marked
5120 /// as 'used', but has internal linkage, create an alias from the unmangled
5121 /// name to the mangled name if possible. People expect to be able to refer
5122 /// to such functions with an unmangled name from inline assembly within the
5123 /// same translation unit.
5124 void CodeGenModule::EmitStaticExternCAliases() {
5125   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5126     return;
5127   for (auto &I : StaticExternCValues) {
5128     IdentifierInfo *Name = I.first;
5129     llvm::GlobalValue *Val = I.second;
5130     if (Val && !getModule().getNamedValue(Name->getName()))
5131       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5132   }
5133 }
5134 
5135 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5136                                              GlobalDecl &Result) const {
5137   auto Res = Manglings.find(MangledName);
5138   if (Res == Manglings.end())
5139     return false;
5140   Result = Res->getValue();
5141   return true;
5142 }
5143 
5144 /// Emits metadata nodes associating all the global values in the
5145 /// current module with the Decls they came from.  This is useful for
5146 /// projects using IR gen as a subroutine.
5147 ///
5148 /// Since there's currently no way to associate an MDNode directly
5149 /// with an llvm::GlobalValue, we create a global named metadata
5150 /// with the name 'clang.global.decl.ptrs'.
5151 void CodeGenModule::EmitDeclMetadata() {
5152   llvm::NamedMDNode *GlobalMetadata = nullptr;
5153 
5154   for (auto &I : MangledDeclNames) {
5155     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5156     // Some mangled names don't necessarily have an associated GlobalValue
5157     // in this module, e.g. if we mangled it for DebugInfo.
5158     if (Addr)
5159       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5160   }
5161 }
5162 
5163 /// Emits metadata nodes for all the local variables in the current
5164 /// function.
5165 void CodeGenFunction::EmitDeclMetadata() {
5166   if (LocalDeclMap.empty()) return;
5167 
5168   llvm::LLVMContext &Context = getLLVMContext();
5169 
5170   // Find the unique metadata ID for this name.
5171   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5172 
5173   llvm::NamedMDNode *GlobalMetadata = nullptr;
5174 
5175   for (auto &I : LocalDeclMap) {
5176     const Decl *D = I.first;
5177     llvm::Value *Addr = I.second.getPointer();
5178     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5179       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5180       Alloca->setMetadata(
5181           DeclPtrKind, llvm::MDNode::get(
5182                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5183     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5184       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5185       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5186     }
5187   }
5188 }
5189 
5190 void CodeGenModule::EmitVersionIdentMetadata() {
5191   llvm::NamedMDNode *IdentMetadata =
5192     TheModule.getOrInsertNamedMetadata("llvm.ident");
5193   std::string Version = getClangFullVersion();
5194   llvm::LLVMContext &Ctx = TheModule.getContext();
5195 
5196   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5197   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5198 }
5199 
5200 void CodeGenModule::EmitTargetMetadata() {
5201   // Warning, new MangledDeclNames may be appended within this loop.
5202   // We rely on MapVector insertions adding new elements to the end
5203   // of the container.
5204   // FIXME: Move this loop into the one target that needs it, and only
5205   // loop over those declarations for which we couldn't emit the target
5206   // metadata when we emitted the declaration.
5207   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5208     auto Val = *(MangledDeclNames.begin() + I);
5209     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5210     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5211     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5212   }
5213 }
5214 
5215 void CodeGenModule::EmitCoverageFile() {
5216   if (getCodeGenOpts().CoverageDataFile.empty() &&
5217       getCodeGenOpts().CoverageNotesFile.empty())
5218     return;
5219 
5220   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5221   if (!CUNode)
5222     return;
5223 
5224   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5225   llvm::LLVMContext &Ctx = TheModule.getContext();
5226   auto *CoverageDataFile =
5227       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5228   auto *CoverageNotesFile =
5229       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5230   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5231     llvm::MDNode *CU = CUNode->getOperand(i);
5232     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5233     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5234   }
5235 }
5236 
5237 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5238   // Sema has checked that all uuid strings are of the form
5239   // "12345678-1234-1234-1234-1234567890ab".
5240   assert(Uuid.size() == 36);
5241   for (unsigned i = 0; i < 36; ++i) {
5242     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5243     else                                         assert(isHexDigit(Uuid[i]));
5244   }
5245 
5246   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5247   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5248 
5249   llvm::Constant *Field3[8];
5250   for (unsigned Idx = 0; Idx < 8; ++Idx)
5251     Field3[Idx] = llvm::ConstantInt::get(
5252         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5253 
5254   llvm::Constant *Fields[4] = {
5255     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5256     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5257     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5258     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5259   };
5260 
5261   return llvm::ConstantStruct::getAnon(Fields);
5262 }
5263 
5264 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5265                                                        bool ForEH) {
5266   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5267   // FIXME: should we even be calling this method if RTTI is disabled
5268   // and it's not for EH?
5269   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5270     return llvm::Constant::getNullValue(Int8PtrTy);
5271 
5272   if (ForEH && Ty->isObjCObjectPointerType() &&
5273       LangOpts.ObjCRuntime.isGNUFamily())
5274     return ObjCRuntime->GetEHType(Ty);
5275 
5276   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5277 }
5278 
5279 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5280   // Do not emit threadprivates in simd-only mode.
5281   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5282     return;
5283   for (auto RefExpr : D->varlists()) {
5284     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5285     bool PerformInit =
5286         VD->getAnyInitializer() &&
5287         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5288                                                         /*ForRef=*/false);
5289 
5290     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5291     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5292             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5293       CXXGlobalInits.push_back(InitFunction);
5294   }
5295 }
5296 
5297 llvm::Metadata *
5298 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5299                                             StringRef Suffix) {
5300   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5301   if (InternalId)
5302     return InternalId;
5303 
5304   if (isExternallyVisible(T->getLinkage())) {
5305     std::string OutName;
5306     llvm::raw_string_ostream Out(OutName);
5307     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5308     Out << Suffix;
5309 
5310     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5311   } else {
5312     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5313                                            llvm::ArrayRef<llvm::Metadata *>());
5314   }
5315 
5316   return InternalId;
5317 }
5318 
5319 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5320   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5321 }
5322 
5323 llvm::Metadata *
5324 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5325   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5326 }
5327 
5328 // Generalize pointer types to a void pointer with the qualifiers of the
5329 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5330 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5331 // 'void *'.
5332 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5333   if (!Ty->isPointerType())
5334     return Ty;
5335 
5336   return Ctx.getPointerType(
5337       QualType(Ctx.VoidTy).withCVRQualifiers(
5338           Ty->getPointeeType().getCVRQualifiers()));
5339 }
5340 
5341 // Apply type generalization to a FunctionType's return and argument types
5342 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5343   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5344     SmallVector<QualType, 8> GeneralizedParams;
5345     for (auto &Param : FnType->param_types())
5346       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5347 
5348     return Ctx.getFunctionType(
5349         GeneralizeType(Ctx, FnType->getReturnType()),
5350         GeneralizedParams, FnType->getExtProtoInfo());
5351   }
5352 
5353   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5354     return Ctx.getFunctionNoProtoType(
5355         GeneralizeType(Ctx, FnType->getReturnType()));
5356 
5357   llvm_unreachable("Encountered unknown FunctionType");
5358 }
5359 
5360 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5361   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5362                                       GeneralizedMetadataIdMap, ".generalized");
5363 }
5364 
5365 /// Returns whether this module needs the "all-vtables" type identifier.
5366 bool CodeGenModule::NeedAllVtablesTypeId() const {
5367   // Returns true if at least one of vtable-based CFI checkers is enabled and
5368   // is not in the trapping mode.
5369   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5370            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5371           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5372            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5373           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5374            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5375           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5376            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5377 }
5378 
5379 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5380                                           CharUnits Offset,
5381                                           const CXXRecordDecl *RD) {
5382   llvm::Metadata *MD =
5383       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5384   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5385 
5386   if (CodeGenOpts.SanitizeCfiCrossDso)
5387     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5388       VTable->addTypeMetadata(Offset.getQuantity(),
5389                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5390 
5391   if (NeedAllVtablesTypeId()) {
5392     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5393     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5394   }
5395 }
5396 
5397 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5398   assert(TD != nullptr);
5399   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5400 
5401   ParsedAttr.Features.erase(
5402       llvm::remove_if(ParsedAttr.Features,
5403                       [&](const std::string &Feat) {
5404                         return !Target.isValidFeatureName(
5405                             StringRef{Feat}.substr(1));
5406                       }),
5407       ParsedAttr.Features.end());
5408   return ParsedAttr;
5409 }
5410 
5411 
5412 // Fills in the supplied string map with the set of target features for the
5413 // passed in function.
5414 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5415                                           GlobalDecl GD) {
5416   StringRef TargetCPU = Target.getTargetOpts().CPU;
5417   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5418   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5419     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5420 
5421     // Make a copy of the features as passed on the command line into the
5422     // beginning of the additional features from the function to override.
5423     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5424                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5425                             Target.getTargetOpts().FeaturesAsWritten.end());
5426 
5427     if (ParsedAttr.Architecture != "" &&
5428         Target.isValidCPUName(ParsedAttr.Architecture))
5429       TargetCPU = ParsedAttr.Architecture;
5430 
5431     // Now populate the feature map, first with the TargetCPU which is either
5432     // the default or a new one from the target attribute string. Then we'll use
5433     // the passed in features (FeaturesAsWritten) along with the new ones from
5434     // the attribute.
5435     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5436                           ParsedAttr.Features);
5437   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5438     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5439     Target.getCPUSpecificCPUDispatchFeatures(
5440         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5441     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5442     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5443   } else {
5444     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5445                           Target.getTargetOpts().Features);
5446   }
5447 }
5448 
5449 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5450   if (!SanStats)
5451     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5452 
5453   return *SanStats;
5454 }
5455 llvm::Value *
5456 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5457                                                   CodeGenFunction &CGF) {
5458   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5459   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5460   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5461   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5462                                 "__translate_sampler_initializer"),
5463                                 {C});
5464 }
5465