1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "TargetInfo.h" 26 #include "clang/AST/ASTContext.h" 27 #include "clang/AST/CharUnits.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclObjC.h" 30 #include "clang/AST/DeclTemplate.h" 31 #include "clang/AST/Mangle.h" 32 #include "clang/AST/RecordLayout.h" 33 #include "clang/AST/RecursiveASTVisitor.h" 34 #include "clang/Basic/Builtins.h" 35 #include "clang/Basic/CharInfo.h" 36 #include "clang/Basic/Diagnostic.h" 37 #include "clang/Basic/Module.h" 38 #include "clang/Basic/SourceManager.h" 39 #include "clang/Basic/TargetInfo.h" 40 #include "clang/Basic/Version.h" 41 #include "clang/Frontend/CodeGenOptions.h" 42 #include "clang/Sema/SemaDiagnostic.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/Triple.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/CallingConv.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/ProfileData/InstrProfReader.h" 52 #include "llvm/Support/ConvertUTF.h" 53 #include "llvm/Support/ErrorHandling.h" 54 55 using namespace clang; 56 using namespace CodeGen; 57 58 static const char AnnotationSection[] = "llvm.metadata"; 59 60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 61 switch (CGM.getTarget().getCXXABI().getKind()) { 62 case TargetCXXABI::GenericAArch64: 63 case TargetCXXABI::GenericARM: 64 case TargetCXXABI::iOS: 65 case TargetCXXABI::iOS64: 66 case TargetCXXABI::GenericItanium: 67 return CreateItaniumCXXABI(CGM); 68 case TargetCXXABI::Microsoft: 69 return CreateMicrosoftCXXABI(CGM); 70 } 71 72 llvm_unreachable("invalid C++ ABI kind"); 73 } 74 75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 76 llvm::Module &M, const llvm::DataLayout &TD, 77 DiagnosticsEngine &diags) 78 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 79 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 80 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 81 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 82 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 83 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 84 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 85 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 86 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 87 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 88 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 89 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 90 LifetimeEndFn(nullptr), 91 SanitizerBlacklist( 92 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 93 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 94 : LangOpts.Sanitize) { 95 96 // Initialize the type cache. 97 llvm::LLVMContext &LLVMContext = M.getContext(); 98 VoidTy = llvm::Type::getVoidTy(LLVMContext); 99 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 100 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 101 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 102 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 103 FloatTy = llvm::Type::getFloatTy(LLVMContext); 104 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 105 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 106 PointerAlignInBytes = 107 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 108 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 109 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 110 Int8PtrTy = Int8Ty->getPointerTo(0); 111 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 112 113 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 114 115 if (LangOpts.ObjC1) 116 createObjCRuntime(); 117 if (LangOpts.OpenCL) 118 createOpenCLRuntime(); 119 if (LangOpts.OpenMP) 120 createOpenMPRuntime(); 121 if (LangOpts.CUDA) 122 createCUDARuntime(); 123 124 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 125 if (SanOpts.Thread || 126 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 127 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 128 getCXXABI().getMangleContext()); 129 130 // If debug info or coverage generation is enabled, create the CGDebugInfo 131 // object. 132 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 133 CodeGenOpts.EmitGcovArcs || 134 CodeGenOpts.EmitGcovNotes) 135 DebugInfo = new CGDebugInfo(*this); 136 137 Block.GlobalUniqueCount = 0; 138 139 if (C.getLangOpts().ObjCAutoRefCount) 140 ARCData = new ARCEntrypoints(); 141 RRData = new RREntrypoints(); 142 143 if (!CodeGenOpts.InstrProfileInput.empty()) { 144 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 145 CodeGenOpts.InstrProfileInput, PGOReader)) { 146 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 147 "Could not read profile: %0"); 148 getDiags().Report(DiagID) << EC.message(); 149 } 150 } 151 } 152 153 CodeGenModule::~CodeGenModule() { 154 delete ObjCRuntime; 155 delete OpenCLRuntime; 156 delete OpenMPRuntime; 157 delete CUDARuntime; 158 delete TheTargetCodeGenInfo; 159 delete TBAA; 160 delete DebugInfo; 161 delete ARCData; 162 delete RRData; 163 } 164 165 void CodeGenModule::createObjCRuntime() { 166 // This is just isGNUFamily(), but we want to force implementors of 167 // new ABIs to decide how best to do this. 168 switch (LangOpts.ObjCRuntime.getKind()) { 169 case ObjCRuntime::GNUstep: 170 case ObjCRuntime::GCC: 171 case ObjCRuntime::ObjFW: 172 ObjCRuntime = CreateGNUObjCRuntime(*this); 173 return; 174 175 case ObjCRuntime::FragileMacOSX: 176 case ObjCRuntime::MacOSX: 177 case ObjCRuntime::iOS: 178 ObjCRuntime = CreateMacObjCRuntime(*this); 179 return; 180 } 181 llvm_unreachable("bad runtime kind"); 182 } 183 184 void CodeGenModule::createOpenCLRuntime() { 185 OpenCLRuntime = new CGOpenCLRuntime(*this); 186 } 187 188 void CodeGenModule::createOpenMPRuntime() { 189 OpenMPRuntime = new CGOpenMPRuntime(*this); 190 } 191 192 void CodeGenModule::createCUDARuntime() { 193 CUDARuntime = CreateNVCUDARuntime(*this); 194 } 195 196 void CodeGenModule::applyReplacements() { 197 for (ReplacementsTy::iterator I = Replacements.begin(), 198 E = Replacements.end(); 199 I != E; ++I) { 200 StringRef MangledName = I->first(); 201 llvm::Constant *Replacement = I->second; 202 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 203 if (!Entry) 204 continue; 205 auto *OldF = cast<llvm::Function>(Entry); 206 auto *NewF = dyn_cast<llvm::Function>(Replacement); 207 if (!NewF) { 208 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 209 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 210 } else { 211 auto *CE = cast<llvm::ConstantExpr>(Replacement); 212 assert(CE->getOpcode() == llvm::Instruction::BitCast || 213 CE->getOpcode() == llvm::Instruction::GetElementPtr); 214 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 215 } 216 } 217 218 // Replace old with new, but keep the old order. 219 OldF->replaceAllUsesWith(Replacement); 220 if (NewF) { 221 NewF->removeFromParent(); 222 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 223 } 224 OldF->eraseFromParent(); 225 } 226 } 227 228 // This is only used in aliases that we created and we know they have a 229 // linear structure. 230 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 231 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 232 const llvm::Constant *C = &GA; 233 for (;;) { 234 C = C->stripPointerCasts(); 235 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 236 return GO; 237 // stripPointerCasts will not walk over weak aliases. 238 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 239 if (!GA2) 240 return nullptr; 241 if (!Visited.insert(GA2)) 242 return nullptr; 243 C = GA2->getAliasee(); 244 } 245 } 246 247 void CodeGenModule::checkAliases() { 248 // Check if the constructed aliases are well formed. It is really unfortunate 249 // that we have to do this in CodeGen, but we only construct mangled names 250 // and aliases during codegen. 251 bool Error = false; 252 DiagnosticsEngine &Diags = getDiags(); 253 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 254 E = Aliases.end(); I != E; ++I) { 255 const GlobalDecl &GD = *I; 256 const auto *D = cast<ValueDecl>(GD.getDecl()); 257 const AliasAttr *AA = D->getAttr<AliasAttr>(); 258 StringRef MangledName = getMangledName(GD); 259 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 260 auto *Alias = cast<llvm::GlobalAlias>(Entry); 261 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 262 if (!GV) { 263 Error = true; 264 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 265 } else if (GV->isDeclaration()) { 266 Error = true; 267 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 268 } 269 270 llvm::Constant *Aliasee = Alias->getAliasee(); 271 llvm::GlobalValue *AliaseeGV; 272 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 273 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 274 else 275 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 276 277 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 278 StringRef AliasSection = SA->getName(); 279 if (AliasSection != AliaseeGV->getSection()) 280 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 281 << AliasSection; 282 } 283 284 // We have to handle alias to weak aliases in here. LLVM itself disallows 285 // this since the object semantics would not match the IL one. For 286 // compatibility with gcc we implement it by just pointing the alias 287 // to its aliasee's aliasee. We also warn, since the user is probably 288 // expecting the link to be weak. 289 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 290 if (GA->mayBeOverridden()) { 291 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 292 << GV->getName() << GA->getName(); 293 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 294 GA->getAliasee(), Alias->getType()); 295 Alias->setAliasee(Aliasee); 296 } 297 } 298 } 299 if (!Error) 300 return; 301 302 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 303 E = Aliases.end(); I != E; ++I) { 304 const GlobalDecl &GD = *I; 305 StringRef MangledName = getMangledName(GD); 306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 307 auto *Alias = cast<llvm::GlobalAlias>(Entry); 308 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 309 Alias->eraseFromParent(); 310 } 311 } 312 313 void CodeGenModule::clear() { 314 DeferredDeclsToEmit.clear(); 315 } 316 317 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 318 StringRef MainFile) { 319 if (!hasDiagnostics()) 320 return; 321 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 322 if (MainFile.empty()) 323 MainFile = "<stdin>"; 324 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 325 } else 326 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 327 << Mismatched; 328 } 329 330 void CodeGenModule::Release() { 331 EmitDeferred(); 332 applyReplacements(); 333 checkAliases(); 334 EmitCXXGlobalInitFunc(); 335 EmitCXXGlobalDtorFunc(); 336 EmitCXXThreadLocalInitFunc(); 337 if (ObjCRuntime) 338 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 339 AddGlobalCtor(ObjCInitFunction); 340 if (getCodeGenOpts().ProfileInstrGenerate) 341 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 342 AddGlobalCtor(PGOInit, 0); 343 if (PGOReader && PGOStats.hasDiagnostics()) 344 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 345 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 346 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 347 EmitGlobalAnnotations(); 348 EmitStaticExternCAliases(); 349 emitLLVMUsed(); 350 351 if (CodeGenOpts.Autolink && 352 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 353 EmitModuleLinkOptions(); 354 } 355 if (CodeGenOpts.DwarfVersion) 356 // We actually want the latest version when there are conflicts. 357 // We can change from Warning to Latest if such mode is supported. 358 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 359 CodeGenOpts.DwarfVersion); 360 if (DebugInfo) 361 // We support a single version in the linked module. The LLVM 362 // parser will drop debug info with a different version number 363 // (and warn about it, too). 364 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 365 llvm::DEBUG_METADATA_VERSION); 366 367 // We need to record the widths of enums and wchar_t, so that we can generate 368 // the correct build attributes in the ARM backend. 369 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 370 if ( Arch == llvm::Triple::arm 371 || Arch == llvm::Triple::armeb 372 || Arch == llvm::Triple::thumb 373 || Arch == llvm::Triple::thumbeb) { 374 // Width of wchar_t in bytes 375 uint64_t WCharWidth = 376 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 377 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 378 379 // The minimum width of an enum in bytes 380 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 381 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 382 } 383 384 SimplifyPersonality(); 385 386 if (getCodeGenOpts().EmitDeclMetadata) 387 EmitDeclMetadata(); 388 389 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 390 EmitCoverageFile(); 391 392 if (DebugInfo) 393 DebugInfo->finalize(); 394 395 EmitVersionIdentMetadata(); 396 } 397 398 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 399 // Make sure that this type is translated. 400 Types.UpdateCompletedType(TD); 401 } 402 403 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 404 if (!TBAA) 405 return nullptr; 406 return TBAA->getTBAAInfo(QTy); 407 } 408 409 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 410 if (!TBAA) 411 return nullptr; 412 return TBAA->getTBAAInfoForVTablePtr(); 413 } 414 415 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 416 if (!TBAA) 417 return nullptr; 418 return TBAA->getTBAAStructInfo(QTy); 419 } 420 421 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 422 if (!TBAA) 423 return nullptr; 424 return TBAA->getTBAAStructTypeInfo(QTy); 425 } 426 427 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 428 llvm::MDNode *AccessN, 429 uint64_t O) { 430 if (!TBAA) 431 return nullptr; 432 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 433 } 434 435 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 436 /// and struct-path aware TBAA, the tag has the same format: 437 /// base type, access type and offset. 438 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 439 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 440 llvm::MDNode *TBAAInfo, 441 bool ConvertTypeToTag) { 442 if (ConvertTypeToTag && TBAA) 443 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 444 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 445 else 446 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 447 } 448 449 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 450 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 451 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 452 } 453 454 /// ErrorUnsupported - Print out an error that codegen doesn't support the 455 /// specified stmt yet. 456 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 457 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 458 "cannot compile this %0 yet"); 459 std::string Msg = Type; 460 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 461 << Msg << S->getSourceRange(); 462 } 463 464 /// ErrorUnsupported - Print out an error that codegen doesn't support the 465 /// specified decl yet. 466 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 467 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 468 "cannot compile this %0 yet"); 469 std::string Msg = Type; 470 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 471 } 472 473 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 474 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 475 } 476 477 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 478 const NamedDecl *D) const { 479 // Internal definitions always have default visibility. 480 if (GV->hasLocalLinkage()) { 481 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 482 return; 483 } 484 485 // Set visibility for definitions. 486 LinkageInfo LV = D->getLinkageAndVisibility(); 487 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 488 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 489 } 490 491 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 492 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 493 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 494 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 495 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 496 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 497 } 498 499 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 500 CodeGenOptions::TLSModel M) { 501 switch (M) { 502 case CodeGenOptions::GeneralDynamicTLSModel: 503 return llvm::GlobalVariable::GeneralDynamicTLSModel; 504 case CodeGenOptions::LocalDynamicTLSModel: 505 return llvm::GlobalVariable::LocalDynamicTLSModel; 506 case CodeGenOptions::InitialExecTLSModel: 507 return llvm::GlobalVariable::InitialExecTLSModel; 508 case CodeGenOptions::LocalExecTLSModel: 509 return llvm::GlobalVariable::LocalExecTLSModel; 510 } 511 llvm_unreachable("Invalid TLS model!"); 512 } 513 514 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 515 const VarDecl &D) const { 516 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 517 518 llvm::GlobalVariable::ThreadLocalMode TLM; 519 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 520 521 // Override the TLS model if it is explicitly specified. 522 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 523 TLM = GetLLVMTLSModel(Attr->getModel()); 524 } 525 526 GV->setThreadLocalMode(TLM); 527 } 528 529 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 530 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 531 if (!FoundStr.empty()) 532 return FoundStr; 533 534 const auto *ND = cast<NamedDecl>(GD.getDecl()); 535 SmallString<256> Buffer; 536 StringRef Str; 537 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 538 llvm::raw_svector_ostream Out(Buffer); 539 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 540 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 541 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 542 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 543 else 544 getCXXABI().getMangleContext().mangleName(ND, Out); 545 Str = Out.str(); 546 } else { 547 IdentifierInfo *II = ND->getIdentifier(); 548 assert(II && "Attempt to mangle unnamed decl."); 549 Str = II->getName(); 550 } 551 552 auto &Mangled = Manglings.GetOrCreateValue(Str); 553 Mangled.second = GD; 554 return FoundStr = Mangled.first(); 555 } 556 557 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 558 const BlockDecl *BD) { 559 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 560 const Decl *D = GD.getDecl(); 561 562 SmallString<256> Buffer; 563 llvm::raw_svector_ostream Out(Buffer); 564 if (!D) 565 MangleCtx.mangleGlobalBlock(BD, 566 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 567 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 568 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 569 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 570 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 571 else 572 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 573 574 auto &Mangled = Manglings.GetOrCreateValue(Out.str()); 575 Mangled.second = BD; 576 return Mangled.first(); 577 } 578 579 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 580 return getModule().getNamedValue(Name); 581 } 582 583 /// AddGlobalCtor - Add a function to the list that will be called before 584 /// main() runs. 585 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 586 llvm::Constant *AssociatedData) { 587 // FIXME: Type coercion of void()* types. 588 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 589 } 590 591 /// AddGlobalDtor - Add a function to the list that will be called 592 /// when the module is unloaded. 593 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 594 // FIXME: Type coercion of void()* types. 595 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 596 } 597 598 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 599 // Ctor function type is void()*. 600 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 601 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 602 603 // Get the type of a ctor entry, { i32, void ()*, i8* }. 604 llvm::StructType *CtorStructTy = llvm::StructType::get( 605 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL); 606 607 // Construct the constructor and destructor arrays. 608 SmallVector<llvm::Constant*, 8> Ctors; 609 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 610 llvm::Constant *S[] = { 611 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 612 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 613 (I->AssociatedData 614 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 615 : llvm::Constant::getNullValue(VoidPtrTy)) 616 }; 617 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 618 } 619 620 if (!Ctors.empty()) { 621 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 622 new llvm::GlobalVariable(TheModule, AT, false, 623 llvm::GlobalValue::AppendingLinkage, 624 llvm::ConstantArray::get(AT, Ctors), 625 GlobalName); 626 } 627 } 628 629 llvm::GlobalValue::LinkageTypes 630 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 631 const auto *D = cast<FunctionDecl>(GD.getDecl()); 632 633 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 634 635 if (isa<CXXDestructorDecl>(D) && 636 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 637 GD.getDtorType())) { 638 // Destructor variants in the Microsoft C++ ABI are always internal or 639 // linkonce_odr thunks emitted on an as-needed basis. 640 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 641 : llvm::GlobalValue::LinkOnceODRLinkage; 642 } 643 644 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 645 } 646 647 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 648 llvm::Function *F) { 649 setNonAliasAttributes(D, F); 650 } 651 652 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 653 const CGFunctionInfo &Info, 654 llvm::Function *F) { 655 unsigned CallingConv; 656 AttributeListType AttributeList; 657 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 658 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 659 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 660 } 661 662 /// Determines whether the language options require us to model 663 /// unwind exceptions. We treat -fexceptions as mandating this 664 /// except under the fragile ObjC ABI with only ObjC exceptions 665 /// enabled. This means, for example, that C with -fexceptions 666 /// enables this. 667 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 668 // If exceptions are completely disabled, obviously this is false. 669 if (!LangOpts.Exceptions) return false; 670 671 // If C++ exceptions are enabled, this is true. 672 if (LangOpts.CXXExceptions) return true; 673 674 // If ObjC exceptions are enabled, this depends on the ABI. 675 if (LangOpts.ObjCExceptions) { 676 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 677 } 678 679 return true; 680 } 681 682 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 683 llvm::Function *F) { 684 llvm::AttrBuilder B; 685 686 if (CodeGenOpts.UnwindTables) 687 B.addAttribute(llvm::Attribute::UWTable); 688 689 if (!hasUnwindExceptions(LangOpts)) 690 B.addAttribute(llvm::Attribute::NoUnwind); 691 692 if (D->hasAttr<NakedAttr>()) { 693 // Naked implies noinline: we should not be inlining such functions. 694 B.addAttribute(llvm::Attribute::Naked); 695 B.addAttribute(llvm::Attribute::NoInline); 696 } else if (D->hasAttr<OptimizeNoneAttr>()) { 697 // OptimizeNone implies noinline; we should not be inlining such functions. 698 B.addAttribute(llvm::Attribute::OptimizeNone); 699 B.addAttribute(llvm::Attribute::NoInline); 700 } else if (D->hasAttr<NoDuplicateAttr>()) { 701 B.addAttribute(llvm::Attribute::NoDuplicate); 702 } else if (D->hasAttr<NoInlineAttr>()) { 703 B.addAttribute(llvm::Attribute::NoInline); 704 } else if (D->hasAttr<AlwaysInlineAttr>() && 705 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 706 llvm::Attribute::NoInline)) { 707 // (noinline wins over always_inline, and we can't specify both in IR) 708 B.addAttribute(llvm::Attribute::AlwaysInline); 709 } 710 711 if (D->hasAttr<ColdAttr>()) { 712 B.addAttribute(llvm::Attribute::OptimizeForSize); 713 B.addAttribute(llvm::Attribute::Cold); 714 } 715 716 if (D->hasAttr<MinSizeAttr>()) 717 B.addAttribute(llvm::Attribute::MinSize); 718 719 if (D->hasAttr<OptimizeNoneAttr>()) { 720 // OptimizeNone wins over OptimizeForSize and MinSize. 721 B.removeAttribute(llvm::Attribute::OptimizeForSize); 722 B.removeAttribute(llvm::Attribute::MinSize); 723 } 724 725 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 726 B.addAttribute(llvm::Attribute::StackProtect); 727 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 728 B.addAttribute(llvm::Attribute::StackProtectStrong); 729 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 730 B.addAttribute(llvm::Attribute::StackProtectReq); 731 732 // Add sanitizer attributes if function is not blacklisted. 733 if (!SanitizerBlacklist->isIn(*F)) { 734 // When AddressSanitizer is enabled, set SanitizeAddress attribute 735 // unless __attribute__((no_sanitize_address)) is used. 736 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 737 B.addAttribute(llvm::Attribute::SanitizeAddress); 738 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 739 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 740 B.addAttribute(llvm::Attribute::SanitizeThread); 741 } 742 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 743 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 744 B.addAttribute(llvm::Attribute::SanitizeMemory); 745 } 746 747 F->addAttributes(llvm::AttributeSet::FunctionIndex, 748 llvm::AttributeSet::get( 749 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 750 751 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 752 F->setUnnamedAddr(true); 753 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 754 if (MD->isVirtual()) 755 F->setUnnamedAddr(true); 756 757 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 758 if (alignment) 759 F->setAlignment(alignment); 760 761 // C++ ABI requires 2-byte alignment for member functions. 762 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 763 F->setAlignment(2); 764 } 765 766 void CodeGenModule::SetCommonAttributes(const Decl *D, 767 llvm::GlobalValue *GV) { 768 if (const auto *ND = dyn_cast<NamedDecl>(D)) 769 setGlobalVisibility(GV, ND); 770 else 771 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 772 773 if (D->hasAttr<UsedAttr>()) 774 addUsedGlobal(GV); 775 } 776 777 void CodeGenModule::setNonAliasAttributes(const Decl *D, 778 llvm::GlobalObject *GO) { 779 SetCommonAttributes(D, GO); 780 781 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 782 GO->setSection(SA->getName()); 783 784 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 785 } 786 787 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 788 llvm::Function *F, 789 const CGFunctionInfo &FI) { 790 SetLLVMFunctionAttributes(D, FI, F); 791 SetLLVMFunctionAttributesForDefinition(D, F); 792 793 F->setLinkage(llvm::Function::InternalLinkage); 794 795 setNonAliasAttributes(D, F); 796 } 797 798 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 799 const NamedDecl *ND) { 800 // Set linkage and visibility in case we never see a definition. 801 LinkageInfo LV = ND->getLinkageAndVisibility(); 802 if (LV.getLinkage() != ExternalLinkage) { 803 // Don't set internal linkage on declarations. 804 } else { 805 if (ND->hasAttr<DLLImportAttr>()) { 806 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 807 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 808 } else if (ND->hasAttr<DLLExportAttr>()) { 809 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 810 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 811 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 812 // "extern_weak" is overloaded in LLVM; we probably should have 813 // separate linkage types for this. 814 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 815 } 816 817 // Set visibility on a declaration only if it's explicit. 818 if (LV.isVisibilityExplicit()) 819 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 820 } 821 } 822 823 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 824 llvm::Function *F, 825 bool IsIncompleteFunction) { 826 if (unsigned IID = F->getIntrinsicID()) { 827 // If this is an intrinsic function, set the function's attributes 828 // to the intrinsic's attributes. 829 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 830 (llvm::Intrinsic::ID)IID)); 831 return; 832 } 833 834 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 835 836 if (!IsIncompleteFunction) 837 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 838 839 // Add the Returned attribute for "this", except for iOS 5 and earlier 840 // where substantial code, including the libstdc++ dylib, was compiled with 841 // GCC and does not actually return "this". 842 if (getCXXABI().HasThisReturn(GD) && 843 !(getTarget().getTriple().isiOS() && 844 getTarget().getTriple().isOSVersionLT(6))) { 845 assert(!F->arg_empty() && 846 F->arg_begin()->getType() 847 ->canLosslesslyBitCastTo(F->getReturnType()) && 848 "unexpected this return"); 849 F->addAttribute(1, llvm::Attribute::Returned); 850 } 851 852 // Only a few attributes are set on declarations; these may later be 853 // overridden by a definition. 854 855 setLinkageAndVisibilityForGV(F, FD); 856 857 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 858 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 859 // Don't dllexport/import destructor thunks. 860 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 861 } 862 } 863 864 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 865 F->setSection(SA->getName()); 866 867 // A replaceable global allocation function does not act like a builtin by 868 // default, only if it is invoked by a new-expression or delete-expression. 869 if (FD->isReplaceableGlobalAllocationFunction()) 870 F->addAttribute(llvm::AttributeSet::FunctionIndex, 871 llvm::Attribute::NoBuiltin); 872 } 873 874 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 875 assert(!GV->isDeclaration() && 876 "Only globals with definition can force usage."); 877 LLVMUsed.push_back(GV); 878 } 879 880 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 881 assert(!GV->isDeclaration() && 882 "Only globals with definition can force usage."); 883 LLVMCompilerUsed.push_back(GV); 884 } 885 886 static void emitUsed(CodeGenModule &CGM, StringRef Name, 887 std::vector<llvm::WeakVH> &List) { 888 // Don't create llvm.used if there is no need. 889 if (List.empty()) 890 return; 891 892 // Convert List to what ConstantArray needs. 893 SmallVector<llvm::Constant*, 8> UsedArray; 894 UsedArray.resize(List.size()); 895 for (unsigned i = 0, e = List.size(); i != e; ++i) { 896 UsedArray[i] = 897 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 898 CGM.Int8PtrTy); 899 } 900 901 if (UsedArray.empty()) 902 return; 903 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 904 905 auto *GV = new llvm::GlobalVariable( 906 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 907 llvm::ConstantArray::get(ATy, UsedArray), Name); 908 909 GV->setSection("llvm.metadata"); 910 } 911 912 void CodeGenModule::emitLLVMUsed() { 913 emitUsed(*this, "llvm.used", LLVMUsed); 914 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 915 } 916 917 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 918 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 919 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 920 } 921 922 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 923 llvm::SmallString<32> Opt; 924 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 925 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 926 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 927 } 928 929 void CodeGenModule::AddDependentLib(StringRef Lib) { 930 llvm::SmallString<24> Opt; 931 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 932 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 933 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 934 } 935 936 /// \brief Add link options implied by the given module, including modules 937 /// it depends on, using a postorder walk. 938 static void addLinkOptionsPostorder(CodeGenModule &CGM, 939 Module *Mod, 940 SmallVectorImpl<llvm::Value *> &Metadata, 941 llvm::SmallPtrSet<Module *, 16> &Visited) { 942 // Import this module's parent. 943 if (Mod->Parent && Visited.insert(Mod->Parent)) { 944 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 945 } 946 947 // Import this module's dependencies. 948 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 949 if (Visited.insert(Mod->Imports[I-1])) 950 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 951 } 952 953 // Add linker options to link against the libraries/frameworks 954 // described by this module. 955 llvm::LLVMContext &Context = CGM.getLLVMContext(); 956 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 957 // Link against a framework. Frameworks are currently Darwin only, so we 958 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 959 if (Mod->LinkLibraries[I-1].IsFramework) { 960 llvm::Value *Args[2] = { 961 llvm::MDString::get(Context, "-framework"), 962 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 963 }; 964 965 Metadata.push_back(llvm::MDNode::get(Context, Args)); 966 continue; 967 } 968 969 // Link against a library. 970 llvm::SmallString<24> Opt; 971 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 972 Mod->LinkLibraries[I-1].Library, Opt); 973 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 974 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 975 } 976 } 977 978 void CodeGenModule::EmitModuleLinkOptions() { 979 // Collect the set of all of the modules we want to visit to emit link 980 // options, which is essentially the imported modules and all of their 981 // non-explicit child modules. 982 llvm::SetVector<clang::Module *> LinkModules; 983 llvm::SmallPtrSet<clang::Module *, 16> Visited; 984 SmallVector<clang::Module *, 16> Stack; 985 986 // Seed the stack with imported modules. 987 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 988 MEnd = ImportedModules.end(); 989 M != MEnd; ++M) { 990 if (Visited.insert(*M)) 991 Stack.push_back(*M); 992 } 993 994 // Find all of the modules to import, making a little effort to prune 995 // non-leaf modules. 996 while (!Stack.empty()) { 997 clang::Module *Mod = Stack.pop_back_val(); 998 999 bool AnyChildren = false; 1000 1001 // Visit the submodules of this module. 1002 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1003 SubEnd = Mod->submodule_end(); 1004 Sub != SubEnd; ++Sub) { 1005 // Skip explicit children; they need to be explicitly imported to be 1006 // linked against. 1007 if ((*Sub)->IsExplicit) 1008 continue; 1009 1010 if (Visited.insert(*Sub)) { 1011 Stack.push_back(*Sub); 1012 AnyChildren = true; 1013 } 1014 } 1015 1016 // We didn't find any children, so add this module to the list of 1017 // modules to link against. 1018 if (!AnyChildren) { 1019 LinkModules.insert(Mod); 1020 } 1021 } 1022 1023 // Add link options for all of the imported modules in reverse topological 1024 // order. We don't do anything to try to order import link flags with respect 1025 // to linker options inserted by things like #pragma comment(). 1026 SmallVector<llvm::Value *, 16> MetadataArgs; 1027 Visited.clear(); 1028 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1029 MEnd = LinkModules.end(); 1030 M != MEnd; ++M) { 1031 if (Visited.insert(*M)) 1032 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1033 } 1034 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1035 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1036 1037 // Add the linker options metadata flag. 1038 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1039 llvm::MDNode::get(getLLVMContext(), 1040 LinkerOptionsMetadata)); 1041 } 1042 1043 void CodeGenModule::EmitDeferred() { 1044 // Emit code for any potentially referenced deferred decls. Since a 1045 // previously unused static decl may become used during the generation of code 1046 // for a static function, iterate until no changes are made. 1047 1048 while (true) { 1049 if (!DeferredVTables.empty()) { 1050 EmitDeferredVTables(); 1051 1052 // Emitting a v-table doesn't directly cause more v-tables to 1053 // become deferred, although it can cause functions to be 1054 // emitted that then need those v-tables. 1055 assert(DeferredVTables.empty()); 1056 } 1057 1058 // Stop if we're out of both deferred v-tables and deferred declarations. 1059 if (DeferredDeclsToEmit.empty()) break; 1060 1061 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1062 GlobalDecl D = G.GD; 1063 llvm::GlobalValue *GV = G.GV; 1064 DeferredDeclsToEmit.pop_back(); 1065 1066 assert(GV == GetGlobalValue(getMangledName(D))); 1067 // Check to see if we've already emitted this. This is necessary 1068 // for a couple of reasons: first, decls can end up in the 1069 // deferred-decls queue multiple times, and second, decls can end 1070 // up with definitions in unusual ways (e.g. by an extern inline 1071 // function acquiring a strong function redefinition). Just 1072 // ignore these cases. 1073 if(!GV->isDeclaration()) 1074 continue; 1075 1076 // Otherwise, emit the definition and move on to the next one. 1077 EmitGlobalDefinition(D, GV); 1078 } 1079 } 1080 1081 void CodeGenModule::EmitGlobalAnnotations() { 1082 if (Annotations.empty()) 1083 return; 1084 1085 // Create a new global variable for the ConstantStruct in the Module. 1086 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1087 Annotations[0]->getType(), Annotations.size()), Annotations); 1088 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1089 llvm::GlobalValue::AppendingLinkage, 1090 Array, "llvm.global.annotations"); 1091 gv->setSection(AnnotationSection); 1092 } 1093 1094 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1095 llvm::Constant *&AStr = AnnotationStrings[Str]; 1096 if (AStr) 1097 return AStr; 1098 1099 // Not found yet, create a new global. 1100 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1101 auto *gv = 1102 new llvm::GlobalVariable(getModule(), s->getType(), true, 1103 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1104 gv->setSection(AnnotationSection); 1105 gv->setUnnamedAddr(true); 1106 AStr = gv; 1107 return gv; 1108 } 1109 1110 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1111 SourceManager &SM = getContext().getSourceManager(); 1112 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1113 if (PLoc.isValid()) 1114 return EmitAnnotationString(PLoc.getFilename()); 1115 return EmitAnnotationString(SM.getBufferName(Loc)); 1116 } 1117 1118 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1119 SourceManager &SM = getContext().getSourceManager(); 1120 PresumedLoc PLoc = SM.getPresumedLoc(L); 1121 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1122 SM.getExpansionLineNumber(L); 1123 return llvm::ConstantInt::get(Int32Ty, LineNo); 1124 } 1125 1126 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1127 const AnnotateAttr *AA, 1128 SourceLocation L) { 1129 // Get the globals for file name, annotation, and the line number. 1130 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1131 *UnitGV = EmitAnnotationUnit(L), 1132 *LineNoCst = EmitAnnotationLineNo(L); 1133 1134 // Create the ConstantStruct for the global annotation. 1135 llvm::Constant *Fields[4] = { 1136 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1137 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1138 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1139 LineNoCst 1140 }; 1141 return llvm::ConstantStruct::getAnon(Fields); 1142 } 1143 1144 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1145 llvm::GlobalValue *GV) { 1146 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1147 // Get the struct elements for these annotations. 1148 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1149 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1150 } 1151 1152 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1153 // Never defer when EmitAllDecls is specified. 1154 if (LangOpts.EmitAllDecls) 1155 return false; 1156 1157 return !getContext().DeclMustBeEmitted(Global); 1158 } 1159 1160 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1161 const CXXUuidofExpr* E) { 1162 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1163 // well-formed. 1164 StringRef Uuid = E->getUuidAsStringRef(Context); 1165 std::string Name = "_GUID_" + Uuid.lower(); 1166 std::replace(Name.begin(), Name.end(), '-', '_'); 1167 1168 // Look for an existing global. 1169 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1170 return GV; 1171 1172 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1173 assert(Init && "failed to initialize as constant"); 1174 1175 auto *GV = new llvm::GlobalVariable( 1176 getModule(), Init->getType(), 1177 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1178 return GV; 1179 } 1180 1181 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1182 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1183 assert(AA && "No alias?"); 1184 1185 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1186 1187 // See if there is already something with the target's name in the module. 1188 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1189 if (Entry) { 1190 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1191 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1192 } 1193 1194 llvm::Constant *Aliasee; 1195 if (isa<llvm::FunctionType>(DeclTy)) 1196 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1197 GlobalDecl(cast<FunctionDecl>(VD)), 1198 /*ForVTable=*/false); 1199 else 1200 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1201 llvm::PointerType::getUnqual(DeclTy), 1202 nullptr); 1203 1204 auto *F = cast<llvm::GlobalValue>(Aliasee); 1205 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1206 WeakRefReferences.insert(F); 1207 1208 return Aliasee; 1209 } 1210 1211 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1212 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1213 1214 // Weak references don't produce any output by themselves. 1215 if (Global->hasAttr<WeakRefAttr>()) 1216 return; 1217 1218 // If this is an alias definition (which otherwise looks like a declaration) 1219 // emit it now. 1220 if (Global->hasAttr<AliasAttr>()) 1221 return EmitAliasDefinition(GD); 1222 1223 // If this is CUDA, be selective about which declarations we emit. 1224 if (LangOpts.CUDA) { 1225 if (CodeGenOpts.CUDAIsDevice) { 1226 if (!Global->hasAttr<CUDADeviceAttr>() && 1227 !Global->hasAttr<CUDAGlobalAttr>() && 1228 !Global->hasAttr<CUDAConstantAttr>() && 1229 !Global->hasAttr<CUDASharedAttr>()) 1230 return; 1231 } else { 1232 if (!Global->hasAttr<CUDAHostAttr>() && ( 1233 Global->hasAttr<CUDADeviceAttr>() || 1234 Global->hasAttr<CUDAConstantAttr>() || 1235 Global->hasAttr<CUDASharedAttr>())) 1236 return; 1237 } 1238 } 1239 1240 // Ignore declarations, they will be emitted on their first use. 1241 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1242 // Forward declarations are emitted lazily on first use. 1243 if (!FD->doesThisDeclarationHaveABody()) { 1244 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1245 return; 1246 1247 StringRef MangledName = getMangledName(GD); 1248 1249 // Compute the function info and LLVM type. 1250 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1251 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1252 1253 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1254 /*DontDefer=*/false); 1255 return; 1256 } 1257 } else { 1258 const auto *VD = cast<VarDecl>(Global); 1259 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1260 1261 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1262 return; 1263 } 1264 1265 // Defer code generation when possible if this is a static definition, inline 1266 // function etc. These we only want to emit if they are used. 1267 if (!MayDeferGeneration(Global)) { 1268 // Emit the definition if it can't be deferred. 1269 EmitGlobalDefinition(GD); 1270 return; 1271 } 1272 1273 // If we're deferring emission of a C++ variable with an 1274 // initializer, remember the order in which it appeared in the file. 1275 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1276 cast<VarDecl>(Global)->hasInit()) { 1277 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1278 CXXGlobalInits.push_back(nullptr); 1279 } 1280 1281 // If the value has already been used, add it directly to the 1282 // DeferredDeclsToEmit list. 1283 StringRef MangledName = getMangledName(GD); 1284 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1285 addDeferredDeclToEmit(GV, GD); 1286 else { 1287 // Otherwise, remember that we saw a deferred decl with this name. The 1288 // first use of the mangled name will cause it to move into 1289 // DeferredDeclsToEmit. 1290 DeferredDecls[MangledName] = GD; 1291 } 1292 } 1293 1294 namespace { 1295 struct FunctionIsDirectlyRecursive : 1296 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1297 const StringRef Name; 1298 const Builtin::Context &BI; 1299 bool Result; 1300 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1301 Name(N), BI(C), Result(false) { 1302 } 1303 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1304 1305 bool TraverseCallExpr(CallExpr *E) { 1306 const FunctionDecl *FD = E->getDirectCallee(); 1307 if (!FD) 1308 return true; 1309 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1310 if (Attr && Name == Attr->getLabel()) { 1311 Result = true; 1312 return false; 1313 } 1314 unsigned BuiltinID = FD->getBuiltinID(); 1315 if (!BuiltinID) 1316 return true; 1317 StringRef BuiltinName = BI.GetName(BuiltinID); 1318 if (BuiltinName.startswith("__builtin_") && 1319 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1320 Result = true; 1321 return false; 1322 } 1323 return true; 1324 } 1325 }; 1326 } 1327 1328 // isTriviallyRecursive - Check if this function calls another 1329 // decl that, because of the asm attribute or the other decl being a builtin, 1330 // ends up pointing to itself. 1331 bool 1332 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1333 StringRef Name; 1334 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1335 // asm labels are a special kind of mangling we have to support. 1336 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1337 if (!Attr) 1338 return false; 1339 Name = Attr->getLabel(); 1340 } else { 1341 Name = FD->getName(); 1342 } 1343 1344 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1345 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1346 return Walker.Result; 1347 } 1348 1349 bool 1350 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1351 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1352 return true; 1353 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1354 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1355 return false; 1356 // PR9614. Avoid cases where the source code is lying to us. An available 1357 // externally function should have an equivalent function somewhere else, 1358 // but a function that calls itself is clearly not equivalent to the real 1359 // implementation. 1360 // This happens in glibc's btowc and in some configure checks. 1361 return !isTriviallyRecursive(F); 1362 } 1363 1364 /// If the type for the method's class was generated by 1365 /// CGDebugInfo::createContextChain(), the cache contains only a 1366 /// limited DIType without any declarations. Since EmitFunctionStart() 1367 /// needs to find the canonical declaration for each method, we need 1368 /// to construct the complete type prior to emitting the method. 1369 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1370 if (!D->isInstance()) 1371 return; 1372 1373 if (CGDebugInfo *DI = getModuleDebugInfo()) 1374 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1375 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1376 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1377 } 1378 } 1379 1380 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1381 const auto *D = cast<ValueDecl>(GD.getDecl()); 1382 1383 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1384 Context.getSourceManager(), 1385 "Generating code for declaration"); 1386 1387 if (isa<FunctionDecl>(D)) { 1388 // At -O0, don't generate IR for functions with available_externally 1389 // linkage. 1390 if (!shouldEmitFunction(GD)) 1391 return; 1392 1393 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1394 CompleteDIClassType(Method); 1395 // Make sure to emit the definition(s) before we emit the thunks. 1396 // This is necessary for the generation of certain thunks. 1397 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1398 EmitCXXConstructor(CD, GD.getCtorType()); 1399 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1400 EmitCXXDestructor(DD, GD.getDtorType()); 1401 else 1402 EmitGlobalFunctionDefinition(GD, GV); 1403 1404 if (Method->isVirtual()) 1405 getVTables().EmitThunks(GD); 1406 1407 return; 1408 } 1409 1410 return EmitGlobalFunctionDefinition(GD, GV); 1411 } 1412 1413 if (const auto *VD = dyn_cast<VarDecl>(D)) 1414 return EmitGlobalVarDefinition(VD); 1415 1416 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1417 } 1418 1419 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1420 /// module, create and return an llvm Function with the specified type. If there 1421 /// is something in the module with the specified name, return it potentially 1422 /// bitcasted to the right type. 1423 /// 1424 /// If D is non-null, it specifies a decl that correspond to this. This is used 1425 /// to set the attributes on the function when it is first created. 1426 llvm::Constant * 1427 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1428 llvm::Type *Ty, 1429 GlobalDecl GD, bool ForVTable, 1430 bool DontDefer, 1431 llvm::AttributeSet ExtraAttrs) { 1432 const Decl *D = GD.getDecl(); 1433 1434 // Lookup the entry, lazily creating it if necessary. 1435 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1436 if (Entry) { 1437 if (WeakRefReferences.erase(Entry)) { 1438 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1439 if (FD && !FD->hasAttr<WeakAttr>()) 1440 Entry->setLinkage(llvm::Function::ExternalLinkage); 1441 } 1442 1443 if (Entry->getType()->getElementType() == Ty) 1444 return Entry; 1445 1446 // Make sure the result is of the correct type. 1447 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1448 } 1449 1450 // This function doesn't have a complete type (for example, the return 1451 // type is an incomplete struct). Use a fake type instead, and make 1452 // sure not to try to set attributes. 1453 bool IsIncompleteFunction = false; 1454 1455 llvm::FunctionType *FTy; 1456 if (isa<llvm::FunctionType>(Ty)) { 1457 FTy = cast<llvm::FunctionType>(Ty); 1458 } else { 1459 FTy = llvm::FunctionType::get(VoidTy, false); 1460 IsIncompleteFunction = true; 1461 } 1462 1463 llvm::Function *F = llvm::Function::Create(FTy, 1464 llvm::Function::ExternalLinkage, 1465 MangledName, &getModule()); 1466 assert(F->getName() == MangledName && "name was uniqued!"); 1467 if (D) 1468 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1469 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1470 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1471 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1472 llvm::AttributeSet::get(VMContext, 1473 llvm::AttributeSet::FunctionIndex, 1474 B)); 1475 } 1476 1477 if (!DontDefer) { 1478 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1479 // each other bottoming out with the base dtor. Therefore we emit non-base 1480 // dtors on usage, even if there is no dtor definition in the TU. 1481 if (D && isa<CXXDestructorDecl>(D) && 1482 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1483 GD.getDtorType())) 1484 addDeferredDeclToEmit(F, GD); 1485 1486 // This is the first use or definition of a mangled name. If there is a 1487 // deferred decl with this name, remember that we need to emit it at the end 1488 // of the file. 1489 auto DDI = DeferredDecls.find(MangledName); 1490 if (DDI != DeferredDecls.end()) { 1491 // Move the potentially referenced deferred decl to the 1492 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1493 // don't need it anymore). 1494 addDeferredDeclToEmit(F, DDI->second); 1495 DeferredDecls.erase(DDI); 1496 1497 // Otherwise, if this is a sized deallocation function, emit a weak 1498 // definition 1499 // for it at the end of the translation unit. 1500 } else if (D && cast<FunctionDecl>(D) 1501 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1502 addDeferredDeclToEmit(F, GD); 1503 1504 // Otherwise, there are cases we have to worry about where we're 1505 // using a declaration for which we must emit a definition but where 1506 // we might not find a top-level definition: 1507 // - member functions defined inline in their classes 1508 // - friend functions defined inline in some class 1509 // - special member functions with implicit definitions 1510 // If we ever change our AST traversal to walk into class methods, 1511 // this will be unnecessary. 1512 // 1513 // We also don't emit a definition for a function if it's going to be an 1514 // entry 1515 // in a vtable, unless it's already marked as used. 1516 } else if (getLangOpts().CPlusPlus && D) { 1517 // Look for a declaration that's lexically in a record. 1518 const auto *FD = cast<FunctionDecl>(D); 1519 FD = FD->getMostRecentDecl(); 1520 do { 1521 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1522 if (FD->isImplicit() && !ForVTable) { 1523 assert(FD->isUsed() && 1524 "Sema didn't mark implicit function as used!"); 1525 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1526 break; 1527 } else if (FD->doesThisDeclarationHaveABody()) { 1528 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1529 break; 1530 } 1531 } 1532 FD = FD->getPreviousDecl(); 1533 } while (FD); 1534 } 1535 } 1536 1537 getTargetCodeGenInfo().emitTargetMD(D, F, *this); 1538 1539 // Make sure the result is of the requested type. 1540 if (!IsIncompleteFunction) { 1541 assert(F->getType()->getElementType() == Ty); 1542 return F; 1543 } 1544 1545 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1546 return llvm::ConstantExpr::getBitCast(F, PTy); 1547 } 1548 1549 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1550 /// non-null, then this function will use the specified type if it has to 1551 /// create it (this occurs when we see a definition of the function). 1552 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1553 llvm::Type *Ty, 1554 bool ForVTable, 1555 bool DontDefer) { 1556 // If there was no specific requested type, just convert it now. 1557 if (!Ty) 1558 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1559 1560 StringRef MangledName = getMangledName(GD); 1561 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1562 } 1563 1564 /// CreateRuntimeFunction - Create a new runtime function with the specified 1565 /// type and name. 1566 llvm::Constant * 1567 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1568 StringRef Name, 1569 llvm::AttributeSet ExtraAttrs) { 1570 llvm::Constant *C = 1571 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1572 /*DontDefer=*/false, ExtraAttrs); 1573 if (auto *F = dyn_cast<llvm::Function>(C)) 1574 if (F->empty()) 1575 F->setCallingConv(getRuntimeCC()); 1576 return C; 1577 } 1578 1579 /// isTypeConstant - Determine whether an object of this type can be emitted 1580 /// as a constant. 1581 /// 1582 /// If ExcludeCtor is true, the duration when the object's constructor runs 1583 /// will not be considered. The caller will need to verify that the object is 1584 /// not written to during its construction. 1585 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1586 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1587 return false; 1588 1589 if (Context.getLangOpts().CPlusPlus) { 1590 if (const CXXRecordDecl *Record 1591 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1592 return ExcludeCtor && !Record->hasMutableFields() && 1593 Record->hasTrivialDestructor(); 1594 } 1595 1596 return true; 1597 } 1598 1599 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) { 1600 if (!VD->isStaticDataMember()) 1601 return false; 1602 const VarDecl *InitDecl; 1603 const Expr *InitExpr = VD->getAnyInitializer(InitDecl); 1604 if (!InitExpr) 1605 return false; 1606 if (InitDecl->isThisDeclarationADefinition()) 1607 return false; 1608 return true; 1609 } 1610 1611 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1612 /// create and return an llvm GlobalVariable with the specified type. If there 1613 /// is something in the module with the specified name, return it potentially 1614 /// bitcasted to the right type. 1615 /// 1616 /// If D is non-null, it specifies a decl that correspond to this. This is used 1617 /// to set the attributes on the global when it is first created. 1618 llvm::Constant * 1619 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1620 llvm::PointerType *Ty, 1621 const VarDecl *D) { 1622 // Lookup the entry, lazily creating it if necessary. 1623 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1624 if (Entry) { 1625 if (WeakRefReferences.erase(Entry)) { 1626 if (D && !D->hasAttr<WeakAttr>()) 1627 Entry->setLinkage(llvm::Function::ExternalLinkage); 1628 } 1629 1630 if (Entry->getType() == Ty) 1631 return Entry; 1632 1633 // Make sure the result is of the correct type. 1634 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1635 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1636 1637 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1638 } 1639 1640 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1641 auto *GV = new llvm::GlobalVariable( 1642 getModule(), Ty->getElementType(), false, 1643 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1644 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1645 1646 // This is the first use or definition of a mangled name. If there is a 1647 // deferred decl with this name, remember that we need to emit it at the end 1648 // of the file. 1649 auto DDI = DeferredDecls.find(MangledName); 1650 if (DDI != DeferredDecls.end()) { 1651 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1652 // list, and remove it from DeferredDecls (since we don't need it anymore). 1653 addDeferredDeclToEmit(GV, DDI->second); 1654 DeferredDecls.erase(DDI); 1655 } 1656 1657 // Handle things which are present even on external declarations. 1658 if (D) { 1659 // FIXME: This code is overly simple and should be merged with other global 1660 // handling. 1661 GV->setConstant(isTypeConstant(D->getType(), false)); 1662 1663 setLinkageAndVisibilityForGV(GV, D); 1664 1665 if (D->getTLSKind()) { 1666 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1667 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1668 setTLSMode(GV, *D); 1669 } 1670 1671 // If required by the ABI, treat declarations of static data members with 1672 // inline initializers as definitions. 1673 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1674 isVarDeclInlineInitializedStaticDataMember(D)) 1675 EmitGlobalVarDefinition(D); 1676 1677 // Handle XCore specific ABI requirements. 1678 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1679 D->getLanguageLinkage() == CLanguageLinkage && 1680 D->getType().isConstant(Context) && 1681 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1682 GV->setSection(".cp.rodata"); 1683 } 1684 1685 if (AddrSpace != Ty->getAddressSpace()) 1686 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1687 1688 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 1689 1690 return GV; 1691 } 1692 1693 1694 llvm::GlobalVariable * 1695 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1696 llvm::Type *Ty, 1697 llvm::GlobalValue::LinkageTypes Linkage) { 1698 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1699 llvm::GlobalVariable *OldGV = nullptr; 1700 1701 if (GV) { 1702 // Check if the variable has the right type. 1703 if (GV->getType()->getElementType() == Ty) 1704 return GV; 1705 1706 // Because C++ name mangling, the only way we can end up with an already 1707 // existing global with the same name is if it has been declared extern "C". 1708 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1709 OldGV = GV; 1710 } 1711 1712 // Create a new variable. 1713 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1714 Linkage, nullptr, Name); 1715 1716 if (OldGV) { 1717 // Replace occurrences of the old variable if needed. 1718 GV->takeName(OldGV); 1719 1720 if (!OldGV->use_empty()) { 1721 llvm::Constant *NewPtrForOldDecl = 1722 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1723 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1724 } 1725 1726 OldGV->eraseFromParent(); 1727 } 1728 1729 return GV; 1730 } 1731 1732 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1733 /// given global variable. If Ty is non-null and if the global doesn't exist, 1734 /// then it will be created with the specified type instead of whatever the 1735 /// normal requested type would be. 1736 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1737 llvm::Type *Ty) { 1738 assert(D->hasGlobalStorage() && "Not a global variable"); 1739 QualType ASTTy = D->getType(); 1740 if (!Ty) 1741 Ty = getTypes().ConvertTypeForMem(ASTTy); 1742 1743 llvm::PointerType *PTy = 1744 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1745 1746 StringRef MangledName = getMangledName(D); 1747 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1748 } 1749 1750 /// CreateRuntimeVariable - Create a new runtime global variable with the 1751 /// specified type and name. 1752 llvm::Constant * 1753 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1754 StringRef Name) { 1755 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1756 } 1757 1758 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1759 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1760 1761 if (MayDeferGeneration(D)) { 1762 // If we have not seen a reference to this variable yet, place it 1763 // into the deferred declarations table to be emitted if needed 1764 // later. 1765 StringRef MangledName = getMangledName(D); 1766 if (!GetGlobalValue(MangledName)) { 1767 DeferredDecls[MangledName] = D; 1768 return; 1769 } 1770 } 1771 1772 // The tentative definition is the only definition. 1773 EmitGlobalVarDefinition(D); 1774 } 1775 1776 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1777 return Context.toCharUnitsFromBits( 1778 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1779 } 1780 1781 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1782 unsigned AddrSpace) { 1783 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1784 if (D->hasAttr<CUDAConstantAttr>()) 1785 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1786 else if (D->hasAttr<CUDASharedAttr>()) 1787 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1788 else 1789 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1790 } 1791 1792 return AddrSpace; 1793 } 1794 1795 template<typename SomeDecl> 1796 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1797 llvm::GlobalValue *GV) { 1798 if (!getLangOpts().CPlusPlus) 1799 return; 1800 1801 // Must have 'used' attribute, or else inline assembly can't rely on 1802 // the name existing. 1803 if (!D->template hasAttr<UsedAttr>()) 1804 return; 1805 1806 // Must have internal linkage and an ordinary name. 1807 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1808 return; 1809 1810 // Must be in an extern "C" context. Entities declared directly within 1811 // a record are not extern "C" even if the record is in such a context. 1812 const SomeDecl *First = D->getFirstDecl(); 1813 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1814 return; 1815 1816 // OK, this is an internal linkage entity inside an extern "C" linkage 1817 // specification. Make a note of that so we can give it the "expected" 1818 // mangled name if nothing else is using that name. 1819 std::pair<StaticExternCMap::iterator, bool> R = 1820 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1821 1822 // If we have multiple internal linkage entities with the same name 1823 // in extern "C" regions, none of them gets that name. 1824 if (!R.second) 1825 R.first->second = nullptr; 1826 } 1827 1828 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1829 llvm::Constant *Init = nullptr; 1830 QualType ASTTy = D->getType(); 1831 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1832 bool NeedsGlobalCtor = false; 1833 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1834 1835 const VarDecl *InitDecl; 1836 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1837 1838 if (!InitExpr) { 1839 // This is a tentative definition; tentative definitions are 1840 // implicitly initialized with { 0 }. 1841 // 1842 // Note that tentative definitions are only emitted at the end of 1843 // a translation unit, so they should never have incomplete 1844 // type. In addition, EmitTentativeDefinition makes sure that we 1845 // never attempt to emit a tentative definition if a real one 1846 // exists. A use may still exists, however, so we still may need 1847 // to do a RAUW. 1848 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1849 Init = EmitNullConstant(D->getType()); 1850 } else { 1851 initializedGlobalDecl = GlobalDecl(D); 1852 Init = EmitConstantInit(*InitDecl); 1853 1854 if (!Init) { 1855 QualType T = InitExpr->getType(); 1856 if (D->getType()->isReferenceType()) 1857 T = D->getType(); 1858 1859 if (getLangOpts().CPlusPlus) { 1860 Init = EmitNullConstant(T); 1861 NeedsGlobalCtor = true; 1862 } else { 1863 ErrorUnsupported(D, "static initializer"); 1864 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1865 } 1866 } else { 1867 // We don't need an initializer, so remove the entry for the delayed 1868 // initializer position (just in case this entry was delayed) if we 1869 // also don't need to register a destructor. 1870 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1871 DelayedCXXInitPosition.erase(D); 1872 } 1873 } 1874 1875 llvm::Type* InitType = Init->getType(); 1876 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1877 1878 // Strip off a bitcast if we got one back. 1879 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1880 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1881 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1882 // All zero index gep. 1883 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1884 Entry = CE->getOperand(0); 1885 } 1886 1887 // Entry is now either a Function or GlobalVariable. 1888 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1889 1890 // We have a definition after a declaration with the wrong type. 1891 // We must make a new GlobalVariable* and update everything that used OldGV 1892 // (a declaration or tentative definition) with the new GlobalVariable* 1893 // (which will be a definition). 1894 // 1895 // This happens if there is a prototype for a global (e.g. 1896 // "extern int x[];") and then a definition of a different type (e.g. 1897 // "int x[10];"). This also happens when an initializer has a different type 1898 // from the type of the global (this happens with unions). 1899 if (!GV || 1900 GV->getType()->getElementType() != InitType || 1901 GV->getType()->getAddressSpace() != 1902 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1903 1904 // Move the old entry aside so that we'll create a new one. 1905 Entry->setName(StringRef()); 1906 1907 // Make a new global with the correct type, this is now guaranteed to work. 1908 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1909 1910 // Replace all uses of the old global with the new global 1911 llvm::Constant *NewPtrForOldDecl = 1912 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1913 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1914 1915 // Erase the old global, since it is no longer used. 1916 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1917 } 1918 1919 MaybeHandleStaticInExternC(D, GV); 1920 1921 if (D->hasAttr<AnnotateAttr>()) 1922 AddGlobalAnnotations(D, GV); 1923 1924 GV->setInitializer(Init); 1925 1926 // If it is safe to mark the global 'constant', do so now. 1927 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1928 isTypeConstant(D->getType(), true)); 1929 1930 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1931 1932 // Set the llvm linkage type as appropriate. 1933 llvm::GlobalValue::LinkageTypes Linkage = 1934 getLLVMLinkageVarDefinition(D, GV->isConstant()); 1935 1936 // On Darwin, the backing variable for a C++11 thread_local variable always 1937 // has internal linkage; all accesses should just be calls to the 1938 // Itanium-specified entry point, which has the normal linkage of the 1939 // variable. 1940 if (const auto *VD = dyn_cast<VarDecl>(D)) 1941 if (!VD->isStaticLocal() && VD->getTLSKind() == VarDecl::TLS_Dynamic && 1942 Context.getTargetInfo().getTriple().isMacOSX()) 1943 Linkage = llvm::GlobalValue::InternalLinkage; 1944 1945 GV->setLinkage(Linkage); 1946 if (D->hasAttr<DLLImportAttr>()) 1947 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1948 else if (D->hasAttr<DLLExportAttr>()) 1949 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1950 1951 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1952 // common vars aren't constant even if declared const. 1953 GV->setConstant(false); 1954 1955 setNonAliasAttributes(D, GV); 1956 1957 // Emit the initializer function if necessary. 1958 if (NeedsGlobalCtor || NeedsGlobalDtor) 1959 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1960 1961 reportGlobalToASan(GV, D->getLocation(), NeedsGlobalCtor); 1962 1963 // Emit global variable debug information. 1964 if (CGDebugInfo *DI = getModuleDebugInfo()) 1965 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1966 DI->EmitGlobalVariable(GV, D); 1967 } 1968 1969 void CodeGenModule::reportGlobalToASan(llvm::GlobalVariable *GV, 1970 SourceLocation Loc, bool IsDynInit) { 1971 if (!SanOpts.Address) 1972 return; 1973 IsDynInit &= !SanitizerBlacklist->isIn(*GV, "init"); 1974 bool IsBlacklisted = SanitizerBlacklist->isIn(*GV); 1975 1976 llvm::LLVMContext &LLVMCtx = TheModule.getContext(); 1977 1978 llvm::GlobalVariable *LocDescr = nullptr; 1979 if (!IsBlacklisted) { 1980 // Don't generate source location if a global is blacklisted - it won't 1981 // be instrumented anyway. 1982 PresumedLoc PLoc = Context.getSourceManager().getPresumedLoc(Loc); 1983 if (PLoc.isValid()) { 1984 llvm::Constant *LocData[] = { 1985 GetAddrOfConstantCString(PLoc.getFilename()), 1986 llvm::ConstantInt::get(llvm::Type::getInt32Ty(LLVMCtx), PLoc.getLine()), 1987 llvm::ConstantInt::get(llvm::Type::getInt32Ty(LLVMCtx), 1988 PLoc.getColumn()), 1989 }; 1990 auto LocStruct = llvm::ConstantStruct::getAnon(LocData); 1991 LocDescr = new llvm::GlobalVariable(TheModule, LocStruct->getType(), true, 1992 llvm::GlobalValue::PrivateLinkage, 1993 LocStruct, ".asan_loc_descr"); 1994 LocDescr->setUnnamedAddr(true); 1995 // Add LocDescr to llvm.compiler.used, so that it won't be removed by 1996 // the optimizer before the ASan instrumentation pass. 1997 addCompilerUsedGlobal(LocDescr); 1998 } 1999 } 2000 2001 llvm::Value *GlobalMetadata[] = { 2002 GV, 2003 LocDescr, 2004 llvm::ConstantInt::get(llvm::Type::getInt1Ty(LLVMCtx), IsDynInit), 2005 llvm::ConstantInt::get(llvm::Type::getInt1Ty(LLVMCtx), IsBlacklisted) 2006 }; 2007 2008 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalMetadata); 2009 llvm::NamedMDNode *AsanGlobals = 2010 TheModule.getOrInsertNamedMetadata("llvm.asan.globals"); 2011 AsanGlobals->addOperand(ThisGlobal); 2012 } 2013 2014 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) { 2015 // Don't give variables common linkage if -fno-common was specified unless it 2016 // was overridden by a NoCommon attribute. 2017 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2018 return true; 2019 2020 // C11 6.9.2/2: 2021 // A declaration of an identifier for an object that has file scope without 2022 // an initializer, and without a storage-class specifier or with the 2023 // storage-class specifier static, constitutes a tentative definition. 2024 if (D->getInit() || D->hasExternalStorage()) 2025 return true; 2026 2027 // A variable cannot be both common and exist in a section. 2028 if (D->hasAttr<SectionAttr>()) 2029 return true; 2030 2031 // Thread local vars aren't considered common linkage. 2032 if (D->getTLSKind()) 2033 return true; 2034 2035 // Tentative definitions marked with WeakImportAttr are true definitions. 2036 if (D->hasAttr<WeakImportAttr>()) 2037 return true; 2038 2039 return false; 2040 } 2041 2042 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2043 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2044 if (Linkage == GVA_Internal) 2045 return llvm::Function::InternalLinkage; 2046 2047 if (D->hasAttr<WeakAttr>()) { 2048 if (IsConstantVariable) 2049 return llvm::GlobalVariable::WeakODRLinkage; 2050 else 2051 return llvm::GlobalVariable::WeakAnyLinkage; 2052 } 2053 2054 // We are guaranteed to have a strong definition somewhere else, 2055 // so we can use available_externally linkage. 2056 if (Linkage == GVA_AvailableExternally) 2057 return llvm::Function::AvailableExternallyLinkage; 2058 2059 // Note that Apple's kernel linker doesn't support symbol 2060 // coalescing, so we need to avoid linkonce and weak linkages there. 2061 // Normally, this means we just map to internal, but for explicit 2062 // instantiations we'll map to external. 2063 2064 // In C++, the compiler has to emit a definition in every translation unit 2065 // that references the function. We should use linkonce_odr because 2066 // a) if all references in this translation unit are optimized away, we 2067 // don't need to codegen it. b) if the function persists, it needs to be 2068 // merged with other definitions. c) C++ has the ODR, so we know the 2069 // definition is dependable. 2070 if (Linkage == GVA_DiscardableODR) 2071 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2072 : llvm::Function::InternalLinkage; 2073 2074 // An explicit instantiation of a template has weak linkage, since 2075 // explicit instantiations can occur in multiple translation units 2076 // and must all be equivalent. However, we are not allowed to 2077 // throw away these explicit instantiations. 2078 if (Linkage == GVA_StrongODR) 2079 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2080 : llvm::Function::ExternalLinkage; 2081 2082 // If required by the ABI, give definitions of static data members with inline 2083 // initializers at least linkonce_odr linkage. 2084 auto const VD = dyn_cast<VarDecl>(D); 2085 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 2086 VD && isVarDeclInlineInitializedStaticDataMember(VD)) { 2087 if (VD->hasAttr<DLLImportAttr>()) 2088 return llvm::GlobalValue::AvailableExternallyLinkage; 2089 if (VD->hasAttr<DLLExportAttr>()) 2090 return llvm::GlobalValue::WeakODRLinkage; 2091 return llvm::GlobalValue::LinkOnceODRLinkage; 2092 } 2093 2094 // C++ doesn't have tentative definitions and thus cannot have common 2095 // linkage. 2096 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2097 !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon)) 2098 return llvm::GlobalVariable::CommonLinkage; 2099 2100 // selectany symbols are externally visible, so use weak instead of 2101 // linkonce. MSVC optimizes away references to const selectany globals, so 2102 // all definitions should be the same and ODR linkage should be used. 2103 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2104 if (D->hasAttr<SelectAnyAttr>()) 2105 return llvm::GlobalVariable::WeakODRLinkage; 2106 2107 // Otherwise, we have strong external linkage. 2108 assert(Linkage == GVA_StrongExternal); 2109 return llvm::GlobalVariable::ExternalLinkage; 2110 } 2111 2112 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2113 const VarDecl *VD, bool IsConstant) { 2114 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2115 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2116 } 2117 2118 /// Replace the uses of a function that was declared with a non-proto type. 2119 /// We want to silently drop extra arguments from call sites 2120 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2121 llvm::Function *newFn) { 2122 // Fast path. 2123 if (old->use_empty()) return; 2124 2125 llvm::Type *newRetTy = newFn->getReturnType(); 2126 SmallVector<llvm::Value*, 4> newArgs; 2127 2128 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2129 ui != ue; ) { 2130 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2131 llvm::User *user = use->getUser(); 2132 2133 // Recognize and replace uses of bitcasts. Most calls to 2134 // unprototyped functions will use bitcasts. 2135 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2136 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2137 replaceUsesOfNonProtoConstant(bitcast, newFn); 2138 continue; 2139 } 2140 2141 // Recognize calls to the function. 2142 llvm::CallSite callSite(user); 2143 if (!callSite) continue; 2144 if (!callSite.isCallee(&*use)) continue; 2145 2146 // If the return types don't match exactly, then we can't 2147 // transform this call unless it's dead. 2148 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2149 continue; 2150 2151 // Get the call site's attribute list. 2152 SmallVector<llvm::AttributeSet, 8> newAttrs; 2153 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2154 2155 // Collect any return attributes from the call. 2156 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2157 newAttrs.push_back( 2158 llvm::AttributeSet::get(newFn->getContext(), 2159 oldAttrs.getRetAttributes())); 2160 2161 // If the function was passed too few arguments, don't transform. 2162 unsigned newNumArgs = newFn->arg_size(); 2163 if (callSite.arg_size() < newNumArgs) continue; 2164 2165 // If extra arguments were passed, we silently drop them. 2166 // If any of the types mismatch, we don't transform. 2167 unsigned argNo = 0; 2168 bool dontTransform = false; 2169 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2170 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2171 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2172 dontTransform = true; 2173 break; 2174 } 2175 2176 // Add any parameter attributes. 2177 if (oldAttrs.hasAttributes(argNo + 1)) 2178 newAttrs. 2179 push_back(llvm:: 2180 AttributeSet::get(newFn->getContext(), 2181 oldAttrs.getParamAttributes(argNo + 1))); 2182 } 2183 if (dontTransform) 2184 continue; 2185 2186 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2187 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2188 oldAttrs.getFnAttributes())); 2189 2190 // Okay, we can transform this. Create the new call instruction and copy 2191 // over the required information. 2192 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2193 2194 llvm::CallSite newCall; 2195 if (callSite.isCall()) { 2196 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2197 callSite.getInstruction()); 2198 } else { 2199 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2200 newCall = llvm::InvokeInst::Create(newFn, 2201 oldInvoke->getNormalDest(), 2202 oldInvoke->getUnwindDest(), 2203 newArgs, "", 2204 callSite.getInstruction()); 2205 } 2206 newArgs.clear(); // for the next iteration 2207 2208 if (!newCall->getType()->isVoidTy()) 2209 newCall->takeName(callSite.getInstruction()); 2210 newCall.setAttributes( 2211 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2212 newCall.setCallingConv(callSite.getCallingConv()); 2213 2214 // Finally, remove the old call, replacing any uses with the new one. 2215 if (!callSite->use_empty()) 2216 callSite->replaceAllUsesWith(newCall.getInstruction()); 2217 2218 // Copy debug location attached to CI. 2219 if (!callSite->getDebugLoc().isUnknown()) 2220 newCall->setDebugLoc(callSite->getDebugLoc()); 2221 callSite->eraseFromParent(); 2222 } 2223 } 2224 2225 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2226 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2227 /// existing call uses of the old function in the module, this adjusts them to 2228 /// call the new function directly. 2229 /// 2230 /// This is not just a cleanup: the always_inline pass requires direct calls to 2231 /// functions to be able to inline them. If there is a bitcast in the way, it 2232 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2233 /// run at -O0. 2234 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2235 llvm::Function *NewFn) { 2236 // If we're redefining a global as a function, don't transform it. 2237 if (!isa<llvm::Function>(Old)) return; 2238 2239 replaceUsesOfNonProtoConstant(Old, NewFn); 2240 } 2241 2242 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2243 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2244 // If we have a definition, this might be a deferred decl. If the 2245 // instantiation is explicit, make sure we emit it at the end. 2246 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2247 GetAddrOfGlobalVar(VD); 2248 2249 EmitTopLevelDecl(VD); 2250 } 2251 2252 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2253 llvm::GlobalValue *GV) { 2254 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2255 2256 // Compute the function info and LLVM type. 2257 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2258 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2259 2260 // Get or create the prototype for the function. 2261 if (!GV) { 2262 llvm::Constant *C = 2263 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2264 2265 // Strip off a bitcast if we got one back. 2266 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2267 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2268 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2269 } else { 2270 GV = cast<llvm::GlobalValue>(C); 2271 } 2272 } 2273 2274 if (!GV->isDeclaration()) { 2275 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2276 return; 2277 } 2278 2279 if (GV->getType()->getElementType() != Ty) { 2280 // If the types mismatch then we have to rewrite the definition. 2281 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2282 2283 // F is the Function* for the one with the wrong type, we must make a new 2284 // Function* and update everything that used F (a declaration) with the new 2285 // Function* (which will be a definition). 2286 // 2287 // This happens if there is a prototype for a function 2288 // (e.g. "int f()") and then a definition of a different type 2289 // (e.g. "int f(int x)"). Move the old function aside so that it 2290 // doesn't interfere with GetAddrOfFunction. 2291 GV->setName(StringRef()); 2292 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2293 2294 // This might be an implementation of a function without a 2295 // prototype, in which case, try to do special replacement of 2296 // calls which match the new prototype. The really key thing here 2297 // is that we also potentially drop arguments from the call site 2298 // so as to make a direct call, which makes the inliner happier 2299 // and suppresses a number of optimizer warnings (!) about 2300 // dropping arguments. 2301 if (!GV->use_empty()) { 2302 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2303 GV->removeDeadConstantUsers(); 2304 } 2305 2306 // Replace uses of F with the Function we will endow with a body. 2307 if (!GV->use_empty()) { 2308 llvm::Constant *NewPtrForOldDecl = 2309 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2310 GV->replaceAllUsesWith(NewPtrForOldDecl); 2311 } 2312 2313 // Ok, delete the old function now, which is dead. 2314 GV->eraseFromParent(); 2315 2316 GV = NewFn; 2317 } 2318 2319 // We need to set linkage and visibility on the function before 2320 // generating code for it because various parts of IR generation 2321 // want to propagate this information down (e.g. to local static 2322 // declarations). 2323 auto *Fn = cast<llvm::Function>(GV); 2324 setFunctionLinkage(GD, Fn); 2325 2326 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2327 setGlobalVisibility(Fn, D); 2328 2329 MaybeHandleStaticInExternC(D, Fn); 2330 2331 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2332 2333 setFunctionDefinitionAttributes(D, Fn); 2334 SetLLVMFunctionAttributesForDefinition(D, Fn); 2335 2336 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2337 AddGlobalCtor(Fn, CA->getPriority()); 2338 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2339 AddGlobalDtor(Fn, DA->getPriority()); 2340 if (D->hasAttr<AnnotateAttr>()) 2341 AddGlobalAnnotations(D, Fn); 2342 } 2343 2344 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2345 const auto *D = cast<ValueDecl>(GD.getDecl()); 2346 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2347 assert(AA && "Not an alias?"); 2348 2349 StringRef MangledName = getMangledName(GD); 2350 2351 // If there is a definition in the module, then it wins over the alias. 2352 // This is dubious, but allow it to be safe. Just ignore the alias. 2353 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2354 if (Entry && !Entry->isDeclaration()) 2355 return; 2356 2357 Aliases.push_back(GD); 2358 2359 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2360 2361 // Create a reference to the named value. This ensures that it is emitted 2362 // if a deferred decl. 2363 llvm::Constant *Aliasee; 2364 if (isa<llvm::FunctionType>(DeclTy)) 2365 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2366 /*ForVTable=*/false); 2367 else 2368 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2369 llvm::PointerType::getUnqual(DeclTy), 2370 nullptr); 2371 2372 // Create the new alias itself, but don't set a name yet. 2373 auto *GA = llvm::GlobalAlias::create( 2374 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2375 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2376 2377 if (Entry) { 2378 if (GA->getAliasee() == Entry) { 2379 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2380 return; 2381 } 2382 2383 assert(Entry->isDeclaration()); 2384 2385 // If there is a declaration in the module, then we had an extern followed 2386 // by the alias, as in: 2387 // extern int test6(); 2388 // ... 2389 // int test6() __attribute__((alias("test7"))); 2390 // 2391 // Remove it and replace uses of it with the alias. 2392 GA->takeName(Entry); 2393 2394 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2395 Entry->getType())); 2396 Entry->eraseFromParent(); 2397 } else { 2398 GA->setName(MangledName); 2399 } 2400 2401 // Set attributes which are particular to an alias; this is a 2402 // specialization of the attributes which may be set on a global 2403 // variable/function. 2404 if (D->hasAttr<DLLExportAttr>()) { 2405 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2406 // The dllexport attribute is ignored for undefined symbols. 2407 if (FD->hasBody()) 2408 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2409 } else { 2410 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2411 } 2412 } else if (D->hasAttr<WeakAttr>() || 2413 D->hasAttr<WeakRefAttr>() || 2414 D->isWeakImported()) { 2415 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2416 } 2417 2418 SetCommonAttributes(D, GA); 2419 } 2420 2421 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2422 ArrayRef<llvm::Type*> Tys) { 2423 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2424 Tys); 2425 } 2426 2427 static llvm::StringMapEntry<llvm::Constant*> & 2428 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2429 const StringLiteral *Literal, 2430 bool TargetIsLSB, 2431 bool &IsUTF16, 2432 unsigned &StringLength) { 2433 StringRef String = Literal->getString(); 2434 unsigned NumBytes = String.size(); 2435 2436 // Check for simple case. 2437 if (!Literal->containsNonAsciiOrNull()) { 2438 StringLength = NumBytes; 2439 return Map.GetOrCreateValue(String); 2440 } 2441 2442 // Otherwise, convert the UTF8 literals into a string of shorts. 2443 IsUTF16 = true; 2444 2445 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2446 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2447 UTF16 *ToPtr = &ToBuf[0]; 2448 2449 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2450 &ToPtr, ToPtr + NumBytes, 2451 strictConversion); 2452 2453 // ConvertUTF8toUTF16 returns the length in ToPtr. 2454 StringLength = ToPtr - &ToBuf[0]; 2455 2456 // Add an explicit null. 2457 *ToPtr = 0; 2458 return Map. 2459 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2460 (StringLength + 1) * 2)); 2461 } 2462 2463 static llvm::StringMapEntry<llvm::Constant*> & 2464 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2465 const StringLiteral *Literal, 2466 unsigned &StringLength) { 2467 StringRef String = Literal->getString(); 2468 StringLength = String.size(); 2469 return Map.GetOrCreateValue(String); 2470 } 2471 2472 llvm::Constant * 2473 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2474 unsigned StringLength = 0; 2475 bool isUTF16 = false; 2476 llvm::StringMapEntry<llvm::Constant*> &Entry = 2477 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2478 getDataLayout().isLittleEndian(), 2479 isUTF16, StringLength); 2480 2481 if (llvm::Constant *C = Entry.getValue()) 2482 return C; 2483 2484 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2485 llvm::Constant *Zeros[] = { Zero, Zero }; 2486 llvm::Value *V; 2487 2488 // If we don't already have it, get __CFConstantStringClassReference. 2489 if (!CFConstantStringClassRef) { 2490 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2491 Ty = llvm::ArrayType::get(Ty, 0); 2492 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2493 "__CFConstantStringClassReference"); 2494 // Decay array -> ptr 2495 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2496 CFConstantStringClassRef = V; 2497 } 2498 else 2499 V = CFConstantStringClassRef; 2500 2501 QualType CFTy = getContext().getCFConstantStringType(); 2502 2503 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2504 2505 llvm::Constant *Fields[4]; 2506 2507 // Class pointer. 2508 Fields[0] = cast<llvm::ConstantExpr>(V); 2509 2510 // Flags. 2511 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2512 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2513 llvm::ConstantInt::get(Ty, 0x07C8); 2514 2515 // String pointer. 2516 llvm::Constant *C = nullptr; 2517 if (isUTF16) { 2518 ArrayRef<uint16_t> Arr = 2519 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2520 const_cast<char *>(Entry.getKey().data())), 2521 Entry.getKey().size() / 2); 2522 C = llvm::ConstantDataArray::get(VMContext, Arr); 2523 } else { 2524 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2525 } 2526 2527 // Note: -fwritable-strings doesn't make the backing store strings of 2528 // CFStrings writable. (See <rdar://problem/10657500>) 2529 auto *GV = 2530 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2531 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2532 GV->setUnnamedAddr(true); 2533 // Don't enforce the target's minimum global alignment, since the only use 2534 // of the string is via this class initializer. 2535 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2536 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2537 // that changes the section it ends in, which surprises ld64. 2538 if (isUTF16) { 2539 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2540 GV->setAlignment(Align.getQuantity()); 2541 GV->setSection("__TEXT,__ustring"); 2542 } else { 2543 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2544 GV->setAlignment(Align.getQuantity()); 2545 GV->setSection("__TEXT,__cstring,cstring_literals"); 2546 } 2547 2548 // String. 2549 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2550 2551 if (isUTF16) 2552 // Cast the UTF16 string to the correct type. 2553 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2554 2555 // String length. 2556 Ty = getTypes().ConvertType(getContext().LongTy); 2557 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2558 2559 // The struct. 2560 C = llvm::ConstantStruct::get(STy, Fields); 2561 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2562 llvm::GlobalVariable::PrivateLinkage, C, 2563 "_unnamed_cfstring_"); 2564 GV->setSection("__DATA,__cfstring"); 2565 Entry.setValue(GV); 2566 2567 return GV; 2568 } 2569 2570 llvm::Constant * 2571 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2572 unsigned StringLength = 0; 2573 llvm::StringMapEntry<llvm::Constant*> &Entry = 2574 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2575 2576 if (llvm::Constant *C = Entry.getValue()) 2577 return C; 2578 2579 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2580 llvm::Constant *Zeros[] = { Zero, Zero }; 2581 llvm::Value *V; 2582 // If we don't already have it, get _NSConstantStringClassReference. 2583 if (!ConstantStringClassRef) { 2584 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2585 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2586 llvm::Constant *GV; 2587 if (LangOpts.ObjCRuntime.isNonFragile()) { 2588 std::string str = 2589 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2590 : "OBJC_CLASS_$_" + StringClass; 2591 GV = getObjCRuntime().GetClassGlobal(str); 2592 // Make sure the result is of the correct type. 2593 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2594 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2595 ConstantStringClassRef = V; 2596 } else { 2597 std::string str = 2598 StringClass.empty() ? "_NSConstantStringClassReference" 2599 : "_" + StringClass + "ClassReference"; 2600 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2601 GV = CreateRuntimeVariable(PTy, str); 2602 // Decay array -> ptr 2603 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2604 ConstantStringClassRef = V; 2605 } 2606 } 2607 else 2608 V = ConstantStringClassRef; 2609 2610 if (!NSConstantStringType) { 2611 // Construct the type for a constant NSString. 2612 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2613 D->startDefinition(); 2614 2615 QualType FieldTypes[3]; 2616 2617 // const int *isa; 2618 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2619 // const char *str; 2620 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2621 // unsigned int length; 2622 FieldTypes[2] = Context.UnsignedIntTy; 2623 2624 // Create fields 2625 for (unsigned i = 0; i < 3; ++i) { 2626 FieldDecl *Field = FieldDecl::Create(Context, D, 2627 SourceLocation(), 2628 SourceLocation(), nullptr, 2629 FieldTypes[i], /*TInfo=*/nullptr, 2630 /*BitWidth=*/nullptr, 2631 /*Mutable=*/false, 2632 ICIS_NoInit); 2633 Field->setAccess(AS_public); 2634 D->addDecl(Field); 2635 } 2636 2637 D->completeDefinition(); 2638 QualType NSTy = Context.getTagDeclType(D); 2639 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2640 } 2641 2642 llvm::Constant *Fields[3]; 2643 2644 // Class pointer. 2645 Fields[0] = cast<llvm::ConstantExpr>(V); 2646 2647 // String pointer. 2648 llvm::Constant *C = 2649 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2650 2651 llvm::GlobalValue::LinkageTypes Linkage; 2652 bool isConstant; 2653 Linkage = llvm::GlobalValue::PrivateLinkage; 2654 isConstant = !LangOpts.WritableStrings; 2655 2656 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2657 Linkage, C, ".str"); 2658 GV->setUnnamedAddr(true); 2659 // Don't enforce the target's minimum global alignment, since the only use 2660 // of the string is via this class initializer. 2661 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2662 GV->setAlignment(Align.getQuantity()); 2663 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2664 2665 // String length. 2666 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2667 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2668 2669 // The struct. 2670 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2671 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2672 llvm::GlobalVariable::PrivateLinkage, C, 2673 "_unnamed_nsstring_"); 2674 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2675 const char *NSStringNonFragileABISection = 2676 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2677 // FIXME. Fix section. 2678 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2679 ? NSStringNonFragileABISection 2680 : NSStringSection); 2681 Entry.setValue(GV); 2682 2683 return GV; 2684 } 2685 2686 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2687 if (ObjCFastEnumerationStateType.isNull()) { 2688 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2689 D->startDefinition(); 2690 2691 QualType FieldTypes[] = { 2692 Context.UnsignedLongTy, 2693 Context.getPointerType(Context.getObjCIdType()), 2694 Context.getPointerType(Context.UnsignedLongTy), 2695 Context.getConstantArrayType(Context.UnsignedLongTy, 2696 llvm::APInt(32, 5), ArrayType::Normal, 0) 2697 }; 2698 2699 for (size_t i = 0; i < 4; ++i) { 2700 FieldDecl *Field = FieldDecl::Create(Context, 2701 D, 2702 SourceLocation(), 2703 SourceLocation(), nullptr, 2704 FieldTypes[i], /*TInfo=*/nullptr, 2705 /*BitWidth=*/nullptr, 2706 /*Mutable=*/false, 2707 ICIS_NoInit); 2708 Field->setAccess(AS_public); 2709 D->addDecl(Field); 2710 } 2711 2712 D->completeDefinition(); 2713 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2714 } 2715 2716 return ObjCFastEnumerationStateType; 2717 } 2718 2719 llvm::Constant * 2720 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2721 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2722 2723 // Don't emit it as the address of the string, emit the string data itself 2724 // as an inline array. 2725 if (E->getCharByteWidth() == 1) { 2726 SmallString<64> Str(E->getString()); 2727 2728 // Resize the string to the right size, which is indicated by its type. 2729 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2730 Str.resize(CAT->getSize().getZExtValue()); 2731 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2732 } 2733 2734 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2735 llvm::Type *ElemTy = AType->getElementType(); 2736 unsigned NumElements = AType->getNumElements(); 2737 2738 // Wide strings have either 2-byte or 4-byte elements. 2739 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2740 SmallVector<uint16_t, 32> Elements; 2741 Elements.reserve(NumElements); 2742 2743 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2744 Elements.push_back(E->getCodeUnit(i)); 2745 Elements.resize(NumElements); 2746 return llvm::ConstantDataArray::get(VMContext, Elements); 2747 } 2748 2749 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2750 SmallVector<uint32_t, 32> Elements; 2751 Elements.reserve(NumElements); 2752 2753 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2754 Elements.push_back(E->getCodeUnit(i)); 2755 Elements.resize(NumElements); 2756 return llvm::ConstantDataArray::get(VMContext, Elements); 2757 } 2758 2759 static llvm::GlobalVariable * 2760 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2761 CodeGenModule &CGM, StringRef GlobalName, 2762 unsigned Alignment) { 2763 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2764 unsigned AddrSpace = 0; 2765 if (CGM.getLangOpts().OpenCL) 2766 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2767 2768 // Create a global variable for this string 2769 auto *GV = new llvm::GlobalVariable( 2770 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, 2771 GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2772 GV->setAlignment(Alignment); 2773 GV->setUnnamedAddr(true); 2774 return GV; 2775 } 2776 2777 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2778 /// constant array for the given string literal. 2779 llvm::Constant * 2780 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2781 auto Alignment = 2782 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2783 2784 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2785 if (!LangOpts.WritableStrings) { 2786 Entry = getConstantStringMapEntry(S->getBytes(), S->getCharByteWidth()); 2787 if (auto GV = Entry->getValue()) { 2788 if (Alignment > GV->getAlignment()) 2789 GV->setAlignment(Alignment); 2790 return GV; 2791 } 2792 } 2793 2794 SmallString<256> MangledNameBuffer; 2795 StringRef GlobalVariableName; 2796 llvm::GlobalValue::LinkageTypes LT; 2797 2798 // Mangle the string literal if the ABI allows for it. However, we cannot 2799 // do this if we are compiling with ASan or -fwritable-strings because they 2800 // rely on strings having normal linkage. 2801 if (!LangOpts.WritableStrings && !SanOpts.Address && 2802 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2803 llvm::raw_svector_ostream Out(MangledNameBuffer); 2804 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2805 Out.flush(); 2806 2807 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2808 GlobalVariableName = MangledNameBuffer; 2809 } else { 2810 LT = llvm::GlobalValue::PrivateLinkage; 2811 GlobalVariableName = ".str"; 2812 } 2813 2814 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2815 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2816 if (Entry) 2817 Entry->setValue(GV); 2818 2819 reportGlobalToASan(GV, S->getStrTokenLoc(0)); 2820 return GV; 2821 } 2822 2823 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2824 /// array for the given ObjCEncodeExpr node. 2825 llvm::Constant * 2826 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2827 std::string Str; 2828 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2829 2830 return GetAddrOfConstantCString(Str); 2831 } 2832 2833 2834 llvm::StringMapEntry<llvm::GlobalVariable *> *CodeGenModule::getConstantStringMapEntry( 2835 StringRef Str, int CharByteWidth) { 2836 llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr; 2837 switch (CharByteWidth) { 2838 case 1: 2839 ConstantStringMap = &Constant1ByteStringMap; 2840 break; 2841 case 2: 2842 ConstantStringMap = &Constant2ByteStringMap; 2843 break; 2844 case 4: 2845 ConstantStringMap = &Constant4ByteStringMap; 2846 break; 2847 default: 2848 llvm_unreachable("unhandled byte width!"); 2849 } 2850 return &ConstantStringMap->GetOrCreateValue(Str); 2851 } 2852 2853 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2854 /// the literal and a terminating '\0' character. 2855 /// The result has pointer to array type. 2856 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2857 const char *GlobalName, 2858 unsigned Alignment) { 2859 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2860 if (Alignment == 0) { 2861 Alignment = getContext() 2862 .getAlignOfGlobalVarInChars(getContext().CharTy) 2863 .getQuantity(); 2864 } 2865 2866 // Don't share any string literals if strings aren't constant. 2867 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2868 if (!LangOpts.WritableStrings) { 2869 Entry = getConstantStringMapEntry(StrWithNull, 1); 2870 if (auto GV = Entry->getValue()) { 2871 if (Alignment > GV->getAlignment()) 2872 GV->setAlignment(Alignment); 2873 return GV; 2874 } 2875 } 2876 2877 llvm::Constant *C = 2878 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2879 // Get the default prefix if a name wasn't specified. 2880 if (!GlobalName) 2881 GlobalName = ".str"; 2882 // Create a global variable for this. 2883 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 2884 GlobalName, Alignment); 2885 if (Entry) 2886 Entry->setValue(GV); 2887 return GV; 2888 } 2889 2890 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2891 const MaterializeTemporaryExpr *E, const Expr *Init) { 2892 assert((E->getStorageDuration() == SD_Static || 2893 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2894 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2895 2896 // If we're not materializing a subobject of the temporary, keep the 2897 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2898 QualType MaterializedType = Init->getType(); 2899 if (Init == E->GetTemporaryExpr()) 2900 MaterializedType = E->getType(); 2901 2902 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2903 if (Slot) 2904 return Slot; 2905 2906 // FIXME: If an externally-visible declaration extends multiple temporaries, 2907 // we need to give each temporary the same name in every translation unit (and 2908 // we also need to make the temporaries externally-visible). 2909 SmallString<256> Name; 2910 llvm::raw_svector_ostream Out(Name); 2911 getCXXABI().getMangleContext().mangleReferenceTemporary( 2912 VD, E->getManglingNumber(), Out); 2913 Out.flush(); 2914 2915 APValue *Value = nullptr; 2916 if (E->getStorageDuration() == SD_Static) { 2917 // We might have a cached constant initializer for this temporary. Note 2918 // that this might have a different value from the value computed by 2919 // evaluating the initializer if the surrounding constant expression 2920 // modifies the temporary. 2921 Value = getContext().getMaterializedTemporaryValue(E, false); 2922 if (Value && Value->isUninit()) 2923 Value = nullptr; 2924 } 2925 2926 // Try evaluating it now, it might have a constant initializer. 2927 Expr::EvalResult EvalResult; 2928 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2929 !EvalResult.hasSideEffects()) 2930 Value = &EvalResult.Val; 2931 2932 llvm::Constant *InitialValue = nullptr; 2933 bool Constant = false; 2934 llvm::Type *Type; 2935 if (Value) { 2936 // The temporary has a constant initializer, use it. 2937 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2938 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2939 Type = InitialValue->getType(); 2940 } else { 2941 // No initializer, the initialization will be provided when we 2942 // initialize the declaration which performed lifetime extension. 2943 Type = getTypes().ConvertTypeForMem(MaterializedType); 2944 } 2945 2946 // Create a global variable for this lifetime-extended temporary. 2947 llvm::GlobalValue::LinkageTypes Linkage = 2948 getLLVMLinkageVarDefinition(VD, Constant); 2949 // There is no need for this temporary to have global linkage if the global 2950 // variable has external linkage. 2951 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2952 Linkage = llvm::GlobalVariable::PrivateLinkage; 2953 unsigned AddrSpace = GetGlobalVarAddressSpace( 2954 VD, getContext().getTargetAddressSpace(MaterializedType)); 2955 auto *GV = new llvm::GlobalVariable( 2956 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2957 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2958 AddrSpace); 2959 setGlobalVisibility(GV, VD); 2960 GV->setAlignment( 2961 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2962 if (VD->getTLSKind()) 2963 setTLSMode(GV, *VD); 2964 Slot = GV; 2965 return GV; 2966 } 2967 2968 /// EmitObjCPropertyImplementations - Emit information for synthesized 2969 /// properties for an implementation. 2970 void CodeGenModule::EmitObjCPropertyImplementations(const 2971 ObjCImplementationDecl *D) { 2972 for (const auto *PID : D->property_impls()) { 2973 // Dynamic is just for type-checking. 2974 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2975 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2976 2977 // Determine which methods need to be implemented, some may have 2978 // been overridden. Note that ::isPropertyAccessor is not the method 2979 // we want, that just indicates if the decl came from a 2980 // property. What we want to know is if the method is defined in 2981 // this implementation. 2982 if (!D->getInstanceMethod(PD->getGetterName())) 2983 CodeGenFunction(*this).GenerateObjCGetter( 2984 const_cast<ObjCImplementationDecl *>(D), PID); 2985 if (!PD->isReadOnly() && 2986 !D->getInstanceMethod(PD->getSetterName())) 2987 CodeGenFunction(*this).GenerateObjCSetter( 2988 const_cast<ObjCImplementationDecl *>(D), PID); 2989 } 2990 } 2991 } 2992 2993 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2994 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2995 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2996 ivar; ivar = ivar->getNextIvar()) 2997 if (ivar->getType().isDestructedType()) 2998 return true; 2999 3000 return false; 3001 } 3002 3003 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3004 /// for an implementation. 3005 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3006 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3007 if (needsDestructMethod(D)) { 3008 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3009 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3010 ObjCMethodDecl *DTORMethod = 3011 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3012 cxxSelector, getContext().VoidTy, nullptr, D, 3013 /*isInstance=*/true, /*isVariadic=*/false, 3014 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3015 /*isDefined=*/false, ObjCMethodDecl::Required); 3016 D->addInstanceMethod(DTORMethod); 3017 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3018 D->setHasDestructors(true); 3019 } 3020 3021 // If the implementation doesn't have any ivar initializers, we don't need 3022 // a .cxx_construct. 3023 if (D->getNumIvarInitializers() == 0) 3024 return; 3025 3026 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3027 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3028 // The constructor returns 'self'. 3029 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3030 D->getLocation(), 3031 D->getLocation(), 3032 cxxSelector, 3033 getContext().getObjCIdType(), 3034 nullptr, D, /*isInstance=*/true, 3035 /*isVariadic=*/false, 3036 /*isPropertyAccessor=*/true, 3037 /*isImplicitlyDeclared=*/true, 3038 /*isDefined=*/false, 3039 ObjCMethodDecl::Required); 3040 D->addInstanceMethod(CTORMethod); 3041 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3042 D->setHasNonZeroConstructors(true); 3043 } 3044 3045 /// EmitNamespace - Emit all declarations in a namespace. 3046 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3047 for (auto *I : ND->decls()) { 3048 if (const auto *VD = dyn_cast<VarDecl>(I)) 3049 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3050 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3051 continue; 3052 EmitTopLevelDecl(I); 3053 } 3054 } 3055 3056 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3057 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3058 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3059 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3060 ErrorUnsupported(LSD, "linkage spec"); 3061 return; 3062 } 3063 3064 for (auto *I : LSD->decls()) { 3065 // Meta-data for ObjC class includes references to implemented methods. 3066 // Generate class's method definitions first. 3067 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3068 for (auto *M : OID->methods()) 3069 EmitTopLevelDecl(M); 3070 } 3071 EmitTopLevelDecl(I); 3072 } 3073 } 3074 3075 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3076 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3077 // Ignore dependent declarations. 3078 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3079 return; 3080 3081 switch (D->getKind()) { 3082 case Decl::CXXConversion: 3083 case Decl::CXXMethod: 3084 case Decl::Function: 3085 // Skip function templates 3086 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3087 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3088 return; 3089 3090 EmitGlobal(cast<FunctionDecl>(D)); 3091 break; 3092 3093 case Decl::Var: 3094 // Skip variable templates 3095 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3096 return; 3097 case Decl::VarTemplateSpecialization: 3098 EmitGlobal(cast<VarDecl>(D)); 3099 break; 3100 3101 // Indirect fields from global anonymous structs and unions can be 3102 // ignored; only the actual variable requires IR gen support. 3103 case Decl::IndirectField: 3104 break; 3105 3106 // C++ Decls 3107 case Decl::Namespace: 3108 EmitNamespace(cast<NamespaceDecl>(D)); 3109 break; 3110 // No code generation needed. 3111 case Decl::UsingShadow: 3112 case Decl::ClassTemplate: 3113 case Decl::VarTemplate: 3114 case Decl::VarTemplatePartialSpecialization: 3115 case Decl::FunctionTemplate: 3116 case Decl::TypeAliasTemplate: 3117 case Decl::Block: 3118 case Decl::Empty: 3119 break; 3120 case Decl::Using: // using X; [C++] 3121 if (CGDebugInfo *DI = getModuleDebugInfo()) 3122 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3123 return; 3124 case Decl::NamespaceAlias: 3125 if (CGDebugInfo *DI = getModuleDebugInfo()) 3126 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3127 return; 3128 case Decl::UsingDirective: // using namespace X; [C++] 3129 if (CGDebugInfo *DI = getModuleDebugInfo()) 3130 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3131 return; 3132 case Decl::CXXConstructor: 3133 // Skip function templates 3134 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3135 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3136 return; 3137 3138 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3139 break; 3140 case Decl::CXXDestructor: 3141 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3142 return; 3143 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3144 break; 3145 3146 case Decl::StaticAssert: 3147 // Nothing to do. 3148 break; 3149 3150 // Objective-C Decls 3151 3152 // Forward declarations, no (immediate) code generation. 3153 case Decl::ObjCInterface: 3154 case Decl::ObjCCategory: 3155 break; 3156 3157 case Decl::ObjCProtocol: { 3158 auto *Proto = cast<ObjCProtocolDecl>(D); 3159 if (Proto->isThisDeclarationADefinition()) 3160 ObjCRuntime->GenerateProtocol(Proto); 3161 break; 3162 } 3163 3164 case Decl::ObjCCategoryImpl: 3165 // Categories have properties but don't support synthesize so we 3166 // can ignore them here. 3167 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3168 break; 3169 3170 case Decl::ObjCImplementation: { 3171 auto *OMD = cast<ObjCImplementationDecl>(D); 3172 EmitObjCPropertyImplementations(OMD); 3173 EmitObjCIvarInitializations(OMD); 3174 ObjCRuntime->GenerateClass(OMD); 3175 // Emit global variable debug information. 3176 if (CGDebugInfo *DI = getModuleDebugInfo()) 3177 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3178 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3179 OMD->getClassInterface()), OMD->getLocation()); 3180 break; 3181 } 3182 case Decl::ObjCMethod: { 3183 auto *OMD = cast<ObjCMethodDecl>(D); 3184 // If this is not a prototype, emit the body. 3185 if (OMD->getBody()) 3186 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3187 break; 3188 } 3189 case Decl::ObjCCompatibleAlias: 3190 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3191 break; 3192 3193 case Decl::LinkageSpec: 3194 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3195 break; 3196 3197 case Decl::FileScopeAsm: { 3198 auto *AD = cast<FileScopeAsmDecl>(D); 3199 StringRef AsmString = AD->getAsmString()->getString(); 3200 3201 const std::string &S = getModule().getModuleInlineAsm(); 3202 if (S.empty()) 3203 getModule().setModuleInlineAsm(AsmString); 3204 else if (S.end()[-1] == '\n') 3205 getModule().setModuleInlineAsm(S + AsmString.str()); 3206 else 3207 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3208 break; 3209 } 3210 3211 case Decl::Import: { 3212 auto *Import = cast<ImportDecl>(D); 3213 3214 // Ignore import declarations that come from imported modules. 3215 if (clang::Module *Owner = Import->getOwningModule()) { 3216 if (getLangOpts().CurrentModule.empty() || 3217 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3218 break; 3219 } 3220 3221 ImportedModules.insert(Import->getImportedModule()); 3222 break; 3223 } 3224 3225 case Decl::ClassTemplateSpecialization: { 3226 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3227 if (DebugInfo && 3228 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3229 DebugInfo->completeTemplateDefinition(*Spec); 3230 } 3231 3232 default: 3233 // Make sure we handled everything we should, every other kind is a 3234 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3235 // function. Need to recode Decl::Kind to do that easily. 3236 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3237 } 3238 } 3239 3240 /// Turns the given pointer into a constant. 3241 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3242 const void *Ptr) { 3243 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3244 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3245 return llvm::ConstantInt::get(i64, PtrInt); 3246 } 3247 3248 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3249 llvm::NamedMDNode *&GlobalMetadata, 3250 GlobalDecl D, 3251 llvm::GlobalValue *Addr) { 3252 if (!GlobalMetadata) 3253 GlobalMetadata = 3254 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3255 3256 // TODO: should we report variant information for ctors/dtors? 3257 llvm::Value *Ops[] = { 3258 Addr, 3259 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3260 }; 3261 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3262 } 3263 3264 /// For each function which is declared within an extern "C" region and marked 3265 /// as 'used', but has internal linkage, create an alias from the unmangled 3266 /// name to the mangled name if possible. People expect to be able to refer 3267 /// to such functions with an unmangled name from inline assembly within the 3268 /// same translation unit. 3269 void CodeGenModule::EmitStaticExternCAliases() { 3270 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3271 E = StaticExternCValues.end(); 3272 I != E; ++I) { 3273 IdentifierInfo *Name = I->first; 3274 llvm::GlobalValue *Val = I->second; 3275 if (Val && !getModule().getNamedValue(Name->getName())) 3276 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3277 } 3278 } 3279 3280 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3281 GlobalDecl &Result) const { 3282 auto Res = Manglings.find(MangledName); 3283 if (Res == Manglings.end()) 3284 return false; 3285 Result = Res->getValue(); 3286 return true; 3287 } 3288 3289 /// Emits metadata nodes associating all the global values in the 3290 /// current module with the Decls they came from. This is useful for 3291 /// projects using IR gen as a subroutine. 3292 /// 3293 /// Since there's currently no way to associate an MDNode directly 3294 /// with an llvm::GlobalValue, we create a global named metadata 3295 /// with the name 'clang.global.decl.ptrs'. 3296 void CodeGenModule::EmitDeclMetadata() { 3297 llvm::NamedMDNode *GlobalMetadata = nullptr; 3298 3299 // StaticLocalDeclMap 3300 for (auto &I : MangledDeclNames) { 3301 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3302 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3303 } 3304 } 3305 3306 /// Emits metadata nodes for all the local variables in the current 3307 /// function. 3308 void CodeGenFunction::EmitDeclMetadata() { 3309 if (LocalDeclMap.empty()) return; 3310 3311 llvm::LLVMContext &Context = getLLVMContext(); 3312 3313 // Find the unique metadata ID for this name. 3314 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3315 3316 llvm::NamedMDNode *GlobalMetadata = nullptr; 3317 3318 for (auto &I : LocalDeclMap) { 3319 const Decl *D = I.first; 3320 llvm::Value *Addr = I.second; 3321 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3322 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3323 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3324 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3325 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3326 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3327 } 3328 } 3329 } 3330 3331 void CodeGenModule::EmitVersionIdentMetadata() { 3332 llvm::NamedMDNode *IdentMetadata = 3333 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3334 std::string Version = getClangFullVersion(); 3335 llvm::LLVMContext &Ctx = TheModule.getContext(); 3336 3337 llvm::Value *IdentNode[] = { 3338 llvm::MDString::get(Ctx, Version) 3339 }; 3340 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3341 } 3342 3343 void CodeGenModule::EmitCoverageFile() { 3344 if (!getCodeGenOpts().CoverageFile.empty()) { 3345 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3346 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3347 llvm::LLVMContext &Ctx = TheModule.getContext(); 3348 llvm::MDString *CoverageFile = 3349 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3350 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3351 llvm::MDNode *CU = CUNode->getOperand(i); 3352 llvm::Value *node[] = { CoverageFile, CU }; 3353 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3354 GCov->addOperand(N); 3355 } 3356 } 3357 } 3358 } 3359 3360 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3361 QualType GuidType) { 3362 // Sema has checked that all uuid strings are of the form 3363 // "12345678-1234-1234-1234-1234567890ab". 3364 assert(Uuid.size() == 36); 3365 for (unsigned i = 0; i < 36; ++i) { 3366 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3367 else assert(isHexDigit(Uuid[i])); 3368 } 3369 3370 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3371 3372 llvm::Constant *Field3[8]; 3373 for (unsigned Idx = 0; Idx < 8; ++Idx) 3374 Field3[Idx] = llvm::ConstantInt::get( 3375 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3376 3377 llvm::Constant *Fields[4] = { 3378 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3379 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3380 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3381 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3382 }; 3383 3384 return llvm::ConstantStruct::getAnon(Fields); 3385 } 3386