1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/Mangler.h" 41 #include "llvm/Target/TargetData.h" 42 #include "llvm/Support/CallSite.h" 43 #include "llvm/Support/ErrorHandling.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 static const char AnnotationSection[] = "llvm.metadata"; 48 49 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 50 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 51 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 52 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 53 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 54 } 55 56 llvm_unreachable("invalid C++ ABI kind"); 57 return *CreateItaniumCXXABI(CGM); 58 } 59 60 61 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 62 llvm::Module &M, const llvm::TargetData &TD, 63 Diagnostic &diags) 64 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 65 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 66 ABI(createCXXABI(*this)), 67 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO), 68 TBAA(0), 69 VTables(*this), ObjCRuntime(0), DebugInfo(0), ARCData(0), RRData(0), 70 CFConstantStringClassRef(0), ConstantStringClassRef(0), 71 NSConstantStringType(0), 72 VMContext(M.getContext()), 73 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 74 BlockObjectAssign(0), BlockObjectDispose(0), 75 BlockDescriptorType(0), GenericBlockLiteralType(0) { 76 if (Features.ObjC1) 77 createObjCRuntime(); 78 79 // Enable TBAA unless it's suppressed. 80 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 81 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 82 ABI.getMangleContext()); 83 84 // If debug info or coverage generation is enabled, create the CGDebugInfo 85 // object. 86 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 87 CodeGenOpts.EmitGcovNotes) 88 DebugInfo = new CGDebugInfo(*this); 89 90 Block.GlobalUniqueCount = 0; 91 92 if (C.getLangOptions().ObjCAutoRefCount) 93 ARCData = new ARCEntrypoints(); 94 RRData = new RREntrypoints(); 95 96 // Initialize the type cache. 97 llvm::LLVMContext &LLVMContext = M.getContext(); 98 VoidTy = llvm::Type::getVoidTy(LLVMContext); 99 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 100 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 101 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 106 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 107 Int8PtrTy = Int8Ty->getPointerTo(0); 108 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 109 } 110 111 CodeGenModule::~CodeGenModule() { 112 delete ObjCRuntime; 113 delete &ABI; 114 delete TBAA; 115 delete DebugInfo; 116 delete ARCData; 117 delete RRData; 118 } 119 120 void CodeGenModule::createObjCRuntime() { 121 if (!Features.NeXTRuntime) 122 ObjCRuntime = CreateGNUObjCRuntime(*this); 123 else 124 ObjCRuntime = CreateMacObjCRuntime(*this); 125 } 126 127 void CodeGenModule::Release() { 128 EmitDeferred(); 129 EmitCXXGlobalInitFunc(); 130 EmitCXXGlobalDtorFunc(); 131 if (ObjCRuntime) 132 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 133 AddGlobalCtor(ObjCInitFunction); 134 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 135 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 136 EmitGlobalAnnotations(); 137 EmitLLVMUsed(); 138 139 SimplifyPersonality(); 140 141 if (getCodeGenOpts().EmitDeclMetadata) 142 EmitDeclMetadata(); 143 144 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 145 EmitCoverageFile(); 146 147 if (DebugInfo) 148 DebugInfo->finalize(); 149 } 150 151 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 152 // Make sure that this type is translated. 153 Types.UpdateCompletedType(TD); 154 if (DebugInfo) 155 DebugInfo->UpdateCompletedType(TD); 156 } 157 158 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 159 if (!TBAA) 160 return 0; 161 return TBAA->getTBAAInfo(QTy); 162 } 163 164 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 165 llvm::MDNode *TBAAInfo) { 166 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 167 } 168 169 bool CodeGenModule::isTargetDarwin() const { 170 return getContext().getTargetInfo().getTriple().isOSDarwin(); 171 } 172 173 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 174 unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error); 175 getDiags().Report(Context.getFullLoc(loc), diagID); 176 } 177 178 /// ErrorUnsupported - Print out an error that codegen doesn't support the 179 /// specified stmt yet. 180 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 181 bool OmitOnError) { 182 if (OmitOnError && getDiags().hasErrorOccurred()) 183 return; 184 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 185 "cannot compile this %0 yet"); 186 std::string Msg = Type; 187 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 188 << Msg << S->getSourceRange(); 189 } 190 191 /// ErrorUnsupported - Print out an error that codegen doesn't support the 192 /// specified decl yet. 193 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 194 bool OmitOnError) { 195 if (OmitOnError && getDiags().hasErrorOccurred()) 196 return; 197 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 198 "cannot compile this %0 yet"); 199 std::string Msg = Type; 200 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 201 } 202 203 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 204 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 205 } 206 207 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 208 const NamedDecl *D) const { 209 // Internal definitions always have default visibility. 210 if (GV->hasLocalLinkage()) { 211 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 212 return; 213 } 214 215 // Set visibility for definitions. 216 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 217 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 218 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 219 } 220 221 /// Set the symbol visibility of type information (vtable and RTTI) 222 /// associated with the given type. 223 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 224 const CXXRecordDecl *RD, 225 TypeVisibilityKind TVK) const { 226 setGlobalVisibility(GV, RD); 227 228 if (!CodeGenOpts.HiddenWeakVTables) 229 return; 230 231 // We never want to drop the visibility for RTTI names. 232 if (TVK == TVK_ForRTTIName) 233 return; 234 235 // We want to drop the visibility to hidden for weak type symbols. 236 // This isn't possible if there might be unresolved references 237 // elsewhere that rely on this symbol being visible. 238 239 // This should be kept roughly in sync with setThunkVisibility 240 // in CGVTables.cpp. 241 242 // Preconditions. 243 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 244 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 245 return; 246 247 // Don't override an explicit visibility attribute. 248 if (RD->getExplicitVisibility()) 249 return; 250 251 switch (RD->getTemplateSpecializationKind()) { 252 // We have to disable the optimization if this is an EI definition 253 // because there might be EI declarations in other shared objects. 254 case TSK_ExplicitInstantiationDefinition: 255 case TSK_ExplicitInstantiationDeclaration: 256 return; 257 258 // Every use of a non-template class's type information has to emit it. 259 case TSK_Undeclared: 260 break; 261 262 // In theory, implicit instantiations can ignore the possibility of 263 // an explicit instantiation declaration because there necessarily 264 // must be an EI definition somewhere with default visibility. In 265 // practice, it's possible to have an explicit instantiation for 266 // an arbitrary template class, and linkers aren't necessarily able 267 // to deal with mixed-visibility symbols. 268 case TSK_ExplicitSpecialization: 269 case TSK_ImplicitInstantiation: 270 if (!CodeGenOpts.HiddenWeakTemplateVTables) 271 return; 272 break; 273 } 274 275 // If there's a key function, there may be translation units 276 // that don't have the key function's definition. But ignore 277 // this if we're emitting RTTI under -fno-rtti. 278 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 279 if (Context.getKeyFunction(RD)) 280 return; 281 } 282 283 // Otherwise, drop the visibility to hidden. 284 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 285 GV->setUnnamedAddr(true); 286 } 287 288 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 289 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 290 291 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 292 if (!Str.empty()) 293 return Str; 294 295 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 296 IdentifierInfo *II = ND->getIdentifier(); 297 assert(II && "Attempt to mangle unnamed decl."); 298 299 Str = II->getName(); 300 return Str; 301 } 302 303 llvm::SmallString<256> Buffer; 304 llvm::raw_svector_ostream Out(Buffer); 305 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 306 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 307 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 308 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 309 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 310 getCXXABI().getMangleContext().mangleBlock(BD, Out); 311 else 312 getCXXABI().getMangleContext().mangleName(ND, Out); 313 314 // Allocate space for the mangled name. 315 Out.flush(); 316 size_t Length = Buffer.size(); 317 char *Name = MangledNamesAllocator.Allocate<char>(Length); 318 std::copy(Buffer.begin(), Buffer.end(), Name); 319 320 Str = StringRef(Name, Length); 321 322 return Str; 323 } 324 325 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 326 const BlockDecl *BD) { 327 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 328 const Decl *D = GD.getDecl(); 329 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 330 if (D == 0) 331 MangleCtx.mangleGlobalBlock(BD, Out); 332 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 333 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 334 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 335 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 336 else 337 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 338 } 339 340 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 341 return getModule().getNamedValue(Name); 342 } 343 344 /// AddGlobalCtor - Add a function to the list that will be called before 345 /// main() runs. 346 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 347 // FIXME: Type coercion of void()* types. 348 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 349 } 350 351 /// AddGlobalDtor - Add a function to the list that will be called 352 /// when the module is unloaded. 353 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 354 // FIXME: Type coercion of void()* types. 355 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 356 } 357 358 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 359 // Ctor function type is void()*. 360 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 361 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 362 363 // Get the type of a ctor entry, { i32, void ()* }. 364 llvm::StructType *CtorStructTy = 365 llvm::StructType::get(llvm::Type::getInt32Ty(VMContext), 366 llvm::PointerType::getUnqual(CtorFTy), NULL); 367 368 // Construct the constructor and destructor arrays. 369 std::vector<llvm::Constant*> Ctors; 370 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 371 std::vector<llvm::Constant*> S; 372 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 373 I->second, false)); 374 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 375 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 376 } 377 378 if (!Ctors.empty()) { 379 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 380 new llvm::GlobalVariable(TheModule, AT, false, 381 llvm::GlobalValue::AppendingLinkage, 382 llvm::ConstantArray::get(AT, Ctors), 383 GlobalName); 384 } 385 } 386 387 llvm::GlobalValue::LinkageTypes 388 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 389 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 390 391 if (Linkage == GVA_Internal) 392 return llvm::Function::InternalLinkage; 393 394 if (D->hasAttr<DLLExportAttr>()) 395 return llvm::Function::DLLExportLinkage; 396 397 if (D->hasAttr<WeakAttr>()) 398 return llvm::Function::WeakAnyLinkage; 399 400 // In C99 mode, 'inline' functions are guaranteed to have a strong 401 // definition somewhere else, so we can use available_externally linkage. 402 if (Linkage == GVA_C99Inline) 403 return llvm::Function::AvailableExternallyLinkage; 404 405 // In C++, the compiler has to emit a definition in every translation unit 406 // that references the function. We should use linkonce_odr because 407 // a) if all references in this translation unit are optimized away, we 408 // don't need to codegen it. b) if the function persists, it needs to be 409 // merged with other definitions. c) C++ has the ODR, so we know the 410 // definition is dependable. 411 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 412 return !Context.getLangOptions().AppleKext 413 ? llvm::Function::LinkOnceODRLinkage 414 : llvm::Function::InternalLinkage; 415 416 // An explicit instantiation of a template has weak linkage, since 417 // explicit instantiations can occur in multiple translation units 418 // and must all be equivalent. However, we are not allowed to 419 // throw away these explicit instantiations. 420 if (Linkage == GVA_ExplicitTemplateInstantiation) 421 return !Context.getLangOptions().AppleKext 422 ? llvm::Function::WeakODRLinkage 423 : llvm::Function::InternalLinkage; 424 425 // Otherwise, we have strong external linkage. 426 assert(Linkage == GVA_StrongExternal); 427 return llvm::Function::ExternalLinkage; 428 } 429 430 431 /// SetFunctionDefinitionAttributes - Set attributes for a global. 432 /// 433 /// FIXME: This is currently only done for aliases and functions, but not for 434 /// variables (these details are set in EmitGlobalVarDefinition for variables). 435 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 436 llvm::GlobalValue *GV) { 437 SetCommonAttributes(D, GV); 438 } 439 440 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 441 const CGFunctionInfo &Info, 442 llvm::Function *F) { 443 unsigned CallingConv; 444 AttributeListType AttributeList; 445 ConstructAttributeList(Info, D, AttributeList, CallingConv); 446 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 447 AttributeList.size())); 448 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 449 } 450 451 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 452 llvm::Function *F) { 453 if (CodeGenOpts.UnwindTables) 454 F->setHasUWTable(); 455 456 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 457 F->addFnAttr(llvm::Attribute::NoUnwind); 458 459 if (D->hasAttr<NakedAttr>()) { 460 // Naked implies noinline: we should not be inlining such functions. 461 F->addFnAttr(llvm::Attribute::Naked); 462 F->addFnAttr(llvm::Attribute::NoInline); 463 } 464 465 if (D->hasAttr<NoInlineAttr>()) 466 F->addFnAttr(llvm::Attribute::NoInline); 467 468 // (noinline wins over always_inline, and we can't specify both in IR) 469 if (D->hasAttr<AlwaysInlineAttr>() && 470 !F->hasFnAttr(llvm::Attribute::NoInline)) 471 F->addFnAttr(llvm::Attribute::AlwaysInline); 472 473 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 474 F->setUnnamedAddr(true); 475 476 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 477 F->addFnAttr(llvm::Attribute::StackProtect); 478 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 479 F->addFnAttr(llvm::Attribute::StackProtectReq); 480 481 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 482 if (alignment) 483 F->setAlignment(alignment); 484 485 // C++ ABI requires 2-byte alignment for member functions. 486 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 487 F->setAlignment(2); 488 } 489 490 void CodeGenModule::SetCommonAttributes(const Decl *D, 491 llvm::GlobalValue *GV) { 492 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 493 setGlobalVisibility(GV, ND); 494 else 495 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 496 497 if (D->hasAttr<UsedAttr>()) 498 AddUsedGlobal(GV); 499 500 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 501 GV->setSection(SA->getName()); 502 503 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 504 } 505 506 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 507 llvm::Function *F, 508 const CGFunctionInfo &FI) { 509 SetLLVMFunctionAttributes(D, FI, F); 510 SetLLVMFunctionAttributesForDefinition(D, F); 511 512 F->setLinkage(llvm::Function::InternalLinkage); 513 514 SetCommonAttributes(D, F); 515 } 516 517 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 518 llvm::Function *F, 519 bool IsIncompleteFunction) { 520 if (unsigned IID = F->getIntrinsicID()) { 521 // If this is an intrinsic function, set the function's attributes 522 // to the intrinsic's attributes. 523 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 524 return; 525 } 526 527 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 528 529 if (!IsIncompleteFunction) 530 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 531 532 // Only a few attributes are set on declarations; these may later be 533 // overridden by a definition. 534 535 if (FD->hasAttr<DLLImportAttr>()) { 536 F->setLinkage(llvm::Function::DLLImportLinkage); 537 } else if (FD->hasAttr<WeakAttr>() || 538 FD->isWeakImported()) { 539 // "extern_weak" is overloaded in LLVM; we probably should have 540 // separate linkage types for this. 541 F->setLinkage(llvm::Function::ExternalWeakLinkage); 542 } else { 543 F->setLinkage(llvm::Function::ExternalLinkage); 544 545 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 546 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 547 F->setVisibility(GetLLVMVisibility(LV.visibility())); 548 } 549 } 550 551 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 552 F->setSection(SA->getName()); 553 } 554 555 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 556 assert(!GV->isDeclaration() && 557 "Only globals with definition can force usage."); 558 LLVMUsed.push_back(GV); 559 } 560 561 void CodeGenModule::EmitLLVMUsed() { 562 // Don't create llvm.used if there is no need. 563 if (LLVMUsed.empty()) 564 return; 565 566 llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 567 568 // Convert LLVMUsed to what ConstantArray needs. 569 std::vector<llvm::Constant*> UsedArray; 570 UsedArray.resize(LLVMUsed.size()); 571 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 572 UsedArray[i] = 573 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 574 i8PTy); 575 } 576 577 if (UsedArray.empty()) 578 return; 579 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 580 581 llvm::GlobalVariable *GV = 582 new llvm::GlobalVariable(getModule(), ATy, false, 583 llvm::GlobalValue::AppendingLinkage, 584 llvm::ConstantArray::get(ATy, UsedArray), 585 "llvm.used"); 586 587 GV->setSection("llvm.metadata"); 588 } 589 590 void CodeGenModule::EmitDeferred() { 591 // Emit code for any potentially referenced deferred decls. Since a 592 // previously unused static decl may become used during the generation of code 593 // for a static function, iterate until no changes are made. 594 595 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 596 if (!DeferredVTables.empty()) { 597 const CXXRecordDecl *RD = DeferredVTables.back(); 598 DeferredVTables.pop_back(); 599 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 600 continue; 601 } 602 603 GlobalDecl D = DeferredDeclsToEmit.back(); 604 DeferredDeclsToEmit.pop_back(); 605 606 // Check to see if we've already emitted this. This is necessary 607 // for a couple of reasons: first, decls can end up in the 608 // deferred-decls queue multiple times, and second, decls can end 609 // up with definitions in unusual ways (e.g. by an extern inline 610 // function acquiring a strong function redefinition). Just 611 // ignore these cases. 612 // 613 // TODO: That said, looking this up multiple times is very wasteful. 614 StringRef Name = getMangledName(D); 615 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 616 assert(CGRef && "Deferred decl wasn't referenced?"); 617 618 if (!CGRef->isDeclaration()) 619 continue; 620 621 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 622 // purposes an alias counts as a definition. 623 if (isa<llvm::GlobalAlias>(CGRef)) 624 continue; 625 626 // Otherwise, emit the definition and move on to the next one. 627 EmitGlobalDefinition(D); 628 } 629 } 630 631 void CodeGenModule::EmitGlobalAnnotations() { 632 if (Annotations.empty()) 633 return; 634 635 // Create a new global variable for the ConstantStruct in the Module. 636 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 637 Annotations[0]->getType(), Annotations.size()), Annotations); 638 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 639 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 640 "llvm.global.annotations"); 641 gv->setSection(AnnotationSection); 642 } 643 644 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 645 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 646 if (i != AnnotationStrings.end()) 647 return i->second; 648 649 // Not found yet, create a new global. 650 llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true); 651 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 652 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 653 gv->setSection(AnnotationSection); 654 gv->setUnnamedAddr(true); 655 AnnotationStrings[Str] = gv; 656 return gv; 657 } 658 659 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 660 SourceManager &SM = getContext().getSourceManager(); 661 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 662 if (PLoc.isValid()) 663 return EmitAnnotationString(PLoc.getFilename()); 664 return EmitAnnotationString(SM.getBufferName(Loc)); 665 } 666 667 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 668 SourceManager &SM = getContext().getSourceManager(); 669 PresumedLoc PLoc = SM.getPresumedLoc(L); 670 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 671 SM.getExpansionLineNumber(L); 672 return llvm::ConstantInt::get(Int32Ty, LineNo); 673 } 674 675 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 676 const AnnotateAttr *AA, 677 SourceLocation L) { 678 // Get the globals for file name, annotation, and the line number. 679 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 680 *UnitGV = EmitAnnotationUnit(L), 681 *LineNoCst = EmitAnnotationLineNo(L); 682 683 // Create the ConstantStruct for the global annotation. 684 llvm::Constant *Fields[4] = { 685 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 686 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 687 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 688 LineNoCst 689 }; 690 return llvm::ConstantStruct::getAnon(Fields); 691 } 692 693 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 694 llvm::GlobalValue *GV) { 695 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 696 // Get the struct elements for these annotations. 697 for (specific_attr_iterator<AnnotateAttr> 698 ai = D->specific_attr_begin<AnnotateAttr>(), 699 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 700 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 701 } 702 703 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 704 // Never defer when EmitAllDecls is specified. 705 if (Features.EmitAllDecls) 706 return false; 707 708 return !getContext().DeclMustBeEmitted(Global); 709 } 710 711 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 712 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 713 assert(AA && "No alias?"); 714 715 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 716 717 // See if there is already something with the target's name in the module. 718 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 719 720 llvm::Constant *Aliasee; 721 if (isa<llvm::FunctionType>(DeclTy)) 722 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 723 /*ForVTable=*/false); 724 else 725 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 726 llvm::PointerType::getUnqual(DeclTy), 0); 727 if (!Entry) { 728 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 729 F->setLinkage(llvm::Function::ExternalWeakLinkage); 730 WeakRefReferences.insert(F); 731 } 732 733 return Aliasee; 734 } 735 736 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 737 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 738 739 // Weak references don't produce any output by themselves. 740 if (Global->hasAttr<WeakRefAttr>()) 741 return; 742 743 // If this is an alias definition (which otherwise looks like a declaration) 744 // emit it now. 745 if (Global->hasAttr<AliasAttr>()) 746 return EmitAliasDefinition(GD); 747 748 // Ignore declarations, they will be emitted on their first use. 749 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 750 // Forward declarations are emitted lazily on first use. 751 if (!FD->doesThisDeclarationHaveABody()) { 752 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 753 return; 754 755 const FunctionDecl *InlineDefinition = 0; 756 FD->getBody(InlineDefinition); 757 758 StringRef MangledName = getMangledName(GD); 759 llvm::StringMap<GlobalDecl>::iterator DDI = 760 DeferredDecls.find(MangledName); 761 if (DDI != DeferredDecls.end()) 762 DeferredDecls.erase(DDI); 763 EmitGlobalDefinition(InlineDefinition); 764 return; 765 } 766 } else { 767 const VarDecl *VD = cast<VarDecl>(Global); 768 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 769 770 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 771 return; 772 } 773 774 // Defer code generation when possible if this is a static definition, inline 775 // function etc. These we only want to emit if they are used. 776 if (!MayDeferGeneration(Global)) { 777 // Emit the definition if it can't be deferred. 778 EmitGlobalDefinition(GD); 779 return; 780 } 781 782 // If we're deferring emission of a C++ variable with an 783 // initializer, remember the order in which it appeared in the file. 784 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 785 cast<VarDecl>(Global)->hasInit()) { 786 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 787 CXXGlobalInits.push_back(0); 788 } 789 790 // If the value has already been used, add it directly to the 791 // DeferredDeclsToEmit list. 792 StringRef MangledName = getMangledName(GD); 793 if (GetGlobalValue(MangledName)) 794 DeferredDeclsToEmit.push_back(GD); 795 else { 796 // Otherwise, remember that we saw a deferred decl with this name. The 797 // first use of the mangled name will cause it to move into 798 // DeferredDeclsToEmit. 799 DeferredDecls[MangledName] = GD; 800 } 801 } 802 803 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 804 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 805 806 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 807 Context.getSourceManager(), 808 "Generating code for declaration"); 809 810 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 811 // At -O0, don't generate IR for functions with available_externally 812 // linkage. 813 if (CodeGenOpts.OptimizationLevel == 0 && 814 !Function->hasAttr<AlwaysInlineAttr>() && 815 getFunctionLinkage(Function) 816 == llvm::Function::AvailableExternallyLinkage) 817 return; 818 819 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 820 // Make sure to emit the definition(s) before we emit the thunks. 821 // This is necessary for the generation of certain thunks. 822 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 823 EmitCXXConstructor(CD, GD.getCtorType()); 824 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 825 EmitCXXDestructor(DD, GD.getDtorType()); 826 else 827 EmitGlobalFunctionDefinition(GD); 828 829 if (Method->isVirtual()) 830 getVTables().EmitThunks(GD); 831 832 return; 833 } 834 835 return EmitGlobalFunctionDefinition(GD); 836 } 837 838 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 839 return EmitGlobalVarDefinition(VD); 840 841 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 842 } 843 844 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 845 /// module, create and return an llvm Function with the specified type. If there 846 /// is something in the module with the specified name, return it potentially 847 /// bitcasted to the right type. 848 /// 849 /// If D is non-null, it specifies a decl that correspond to this. This is used 850 /// to set the attributes on the function when it is first created. 851 llvm::Constant * 852 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 853 llvm::Type *Ty, 854 GlobalDecl D, bool ForVTable, 855 llvm::Attributes ExtraAttrs) { 856 // Lookup the entry, lazily creating it if necessary. 857 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 858 if (Entry) { 859 if (WeakRefReferences.count(Entry)) { 860 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 861 if (FD && !FD->hasAttr<WeakAttr>()) 862 Entry->setLinkage(llvm::Function::ExternalLinkage); 863 864 WeakRefReferences.erase(Entry); 865 } 866 867 if (Entry->getType()->getElementType() == Ty) 868 return Entry; 869 870 // Make sure the result is of the correct type. 871 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 872 } 873 874 // This function doesn't have a complete type (for example, the return 875 // type is an incomplete struct). Use a fake type instead, and make 876 // sure not to try to set attributes. 877 bool IsIncompleteFunction = false; 878 879 llvm::FunctionType *FTy; 880 if (isa<llvm::FunctionType>(Ty)) { 881 FTy = cast<llvm::FunctionType>(Ty); 882 } else { 883 FTy = llvm::FunctionType::get(VoidTy, false); 884 IsIncompleteFunction = true; 885 } 886 887 llvm::Function *F = llvm::Function::Create(FTy, 888 llvm::Function::ExternalLinkage, 889 MangledName, &getModule()); 890 assert(F->getName() == MangledName && "name was uniqued!"); 891 if (D.getDecl()) 892 SetFunctionAttributes(D, F, IsIncompleteFunction); 893 if (ExtraAttrs != llvm::Attribute::None) 894 F->addFnAttr(ExtraAttrs); 895 896 // This is the first use or definition of a mangled name. If there is a 897 // deferred decl with this name, remember that we need to emit it at the end 898 // of the file. 899 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 900 if (DDI != DeferredDecls.end()) { 901 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 902 // list, and remove it from DeferredDecls (since we don't need it anymore). 903 DeferredDeclsToEmit.push_back(DDI->second); 904 DeferredDecls.erase(DDI); 905 906 // Otherwise, there are cases we have to worry about where we're 907 // using a declaration for which we must emit a definition but where 908 // we might not find a top-level definition: 909 // - member functions defined inline in their classes 910 // - friend functions defined inline in some class 911 // - special member functions with implicit definitions 912 // If we ever change our AST traversal to walk into class methods, 913 // this will be unnecessary. 914 // 915 // We also don't emit a definition for a function if it's going to be an entry 916 // in a vtable, unless it's already marked as used. 917 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 918 // Look for a declaration that's lexically in a record. 919 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 920 do { 921 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 922 if (FD->isImplicit() && !ForVTable) { 923 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 924 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 925 break; 926 } else if (FD->doesThisDeclarationHaveABody()) { 927 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 928 break; 929 } 930 } 931 FD = FD->getPreviousDeclaration(); 932 } while (FD); 933 } 934 935 // Make sure the result is of the requested type. 936 if (!IsIncompleteFunction) { 937 assert(F->getType()->getElementType() == Ty); 938 return F; 939 } 940 941 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 942 return llvm::ConstantExpr::getBitCast(F, PTy); 943 } 944 945 /// GetAddrOfFunction - Return the address of the given function. If Ty is 946 /// non-null, then this function will use the specified type if it has to 947 /// create it (this occurs when we see a definition of the function). 948 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 949 llvm::Type *Ty, 950 bool ForVTable) { 951 // If there was no specific requested type, just convert it now. 952 if (!Ty) 953 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 954 955 StringRef MangledName = getMangledName(GD); 956 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 957 } 958 959 /// CreateRuntimeFunction - Create a new runtime function with the specified 960 /// type and name. 961 llvm::Constant * 962 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 963 StringRef Name, 964 llvm::Attributes ExtraAttrs) { 965 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 966 ExtraAttrs); 967 } 968 969 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D, 970 bool ConstantInit) { 971 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 972 return false; 973 974 if (Context.getLangOptions().CPlusPlus) { 975 if (const RecordType *Record 976 = Context.getBaseElementType(D->getType())->getAs<RecordType>()) 977 return ConstantInit && 978 cast<CXXRecordDecl>(Record->getDecl())->isPOD() && 979 !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields(); 980 } 981 982 return true; 983 } 984 985 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 986 /// create and return an llvm GlobalVariable with the specified type. If there 987 /// is something in the module with the specified name, return it potentially 988 /// bitcasted to the right type. 989 /// 990 /// If D is non-null, it specifies a decl that correspond to this. This is used 991 /// to set the attributes on the global when it is first created. 992 llvm::Constant * 993 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 994 llvm::PointerType *Ty, 995 const VarDecl *D, 996 bool UnnamedAddr) { 997 // Lookup the entry, lazily creating it if necessary. 998 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 999 if (Entry) { 1000 if (WeakRefReferences.count(Entry)) { 1001 if (D && !D->hasAttr<WeakAttr>()) 1002 Entry->setLinkage(llvm::Function::ExternalLinkage); 1003 1004 WeakRefReferences.erase(Entry); 1005 } 1006 1007 if (UnnamedAddr) 1008 Entry->setUnnamedAddr(true); 1009 1010 if (Entry->getType() == Ty) 1011 return Entry; 1012 1013 // Make sure the result is of the correct type. 1014 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1015 } 1016 1017 // This is the first use or definition of a mangled name. If there is a 1018 // deferred decl with this name, remember that we need to emit it at the end 1019 // of the file. 1020 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1021 if (DDI != DeferredDecls.end()) { 1022 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1023 // list, and remove it from DeferredDecls (since we don't need it anymore). 1024 DeferredDeclsToEmit.push_back(DDI->second); 1025 DeferredDecls.erase(DDI); 1026 } 1027 1028 llvm::GlobalVariable *GV = 1029 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1030 llvm::GlobalValue::ExternalLinkage, 1031 0, MangledName, 0, 1032 false, Ty->getAddressSpace()); 1033 1034 // Handle things which are present even on external declarations. 1035 if (D) { 1036 // FIXME: This code is overly simple and should be merged with other global 1037 // handling. 1038 GV->setConstant(DeclIsConstantGlobal(Context, D, false)); 1039 1040 // Set linkage and visibility in case we never see a definition. 1041 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1042 if (LV.linkage() != ExternalLinkage) { 1043 // Don't set internal linkage on declarations. 1044 } else { 1045 if (D->hasAttr<DLLImportAttr>()) 1046 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1047 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1048 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1049 1050 // Set visibility on a declaration only if it's explicit. 1051 if (LV.visibilityExplicit()) 1052 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1053 } 1054 1055 GV->setThreadLocal(D->isThreadSpecified()); 1056 } 1057 1058 return GV; 1059 } 1060 1061 1062 llvm::GlobalVariable * 1063 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1064 llvm::Type *Ty, 1065 llvm::GlobalValue::LinkageTypes Linkage) { 1066 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1067 llvm::GlobalVariable *OldGV = 0; 1068 1069 1070 if (GV) { 1071 // Check if the variable has the right type. 1072 if (GV->getType()->getElementType() == Ty) 1073 return GV; 1074 1075 // Because C++ name mangling, the only way we can end up with an already 1076 // existing global with the same name is if it has been declared extern "C". 1077 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1078 OldGV = GV; 1079 } 1080 1081 // Create a new variable. 1082 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1083 Linkage, 0, Name); 1084 1085 if (OldGV) { 1086 // Replace occurrences of the old variable if needed. 1087 GV->takeName(OldGV); 1088 1089 if (!OldGV->use_empty()) { 1090 llvm::Constant *NewPtrForOldDecl = 1091 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1092 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1093 } 1094 1095 OldGV->eraseFromParent(); 1096 } 1097 1098 return GV; 1099 } 1100 1101 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1102 /// given global variable. If Ty is non-null and if the global doesn't exist, 1103 /// then it will be greated with the specified type instead of whatever the 1104 /// normal requested type would be. 1105 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1106 llvm::Type *Ty) { 1107 assert(D->hasGlobalStorage() && "Not a global variable"); 1108 QualType ASTTy = D->getType(); 1109 if (Ty == 0) 1110 Ty = getTypes().ConvertTypeForMem(ASTTy); 1111 1112 llvm::PointerType *PTy = 1113 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1114 1115 StringRef MangledName = getMangledName(D); 1116 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1117 } 1118 1119 /// CreateRuntimeVariable - Create a new runtime global variable with the 1120 /// specified type and name. 1121 llvm::Constant * 1122 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1123 StringRef Name) { 1124 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1125 true); 1126 } 1127 1128 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1129 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1130 1131 if (MayDeferGeneration(D)) { 1132 // If we have not seen a reference to this variable yet, place it 1133 // into the deferred declarations table to be emitted if needed 1134 // later. 1135 StringRef MangledName = getMangledName(D); 1136 if (!GetGlobalValue(MangledName)) { 1137 DeferredDecls[MangledName] = D; 1138 return; 1139 } 1140 } 1141 1142 // The tentative definition is the only definition. 1143 EmitGlobalVarDefinition(D); 1144 } 1145 1146 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1147 if (DefinitionRequired) 1148 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1149 } 1150 1151 llvm::GlobalVariable::LinkageTypes 1152 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1153 if (RD->getLinkage() != ExternalLinkage) 1154 return llvm::GlobalVariable::InternalLinkage; 1155 1156 if (const CXXMethodDecl *KeyFunction 1157 = RD->getASTContext().getKeyFunction(RD)) { 1158 // If this class has a key function, use that to determine the linkage of 1159 // the vtable. 1160 const FunctionDecl *Def = 0; 1161 if (KeyFunction->hasBody(Def)) 1162 KeyFunction = cast<CXXMethodDecl>(Def); 1163 1164 switch (KeyFunction->getTemplateSpecializationKind()) { 1165 case TSK_Undeclared: 1166 case TSK_ExplicitSpecialization: 1167 // When compiling with optimizations turned on, we emit all vtables, 1168 // even if the key function is not defined in the current translation 1169 // unit. If this is the case, use available_externally linkage. 1170 if (!Def && CodeGenOpts.OptimizationLevel) 1171 return llvm::GlobalVariable::AvailableExternallyLinkage; 1172 1173 if (KeyFunction->isInlined()) 1174 return !Context.getLangOptions().AppleKext ? 1175 llvm::GlobalVariable::LinkOnceODRLinkage : 1176 llvm::Function::InternalLinkage; 1177 1178 return llvm::GlobalVariable::ExternalLinkage; 1179 1180 case TSK_ImplicitInstantiation: 1181 return !Context.getLangOptions().AppleKext ? 1182 llvm::GlobalVariable::LinkOnceODRLinkage : 1183 llvm::Function::InternalLinkage; 1184 1185 case TSK_ExplicitInstantiationDefinition: 1186 return !Context.getLangOptions().AppleKext ? 1187 llvm::GlobalVariable::WeakODRLinkage : 1188 llvm::Function::InternalLinkage; 1189 1190 case TSK_ExplicitInstantiationDeclaration: 1191 // FIXME: Use available_externally linkage. However, this currently 1192 // breaks LLVM's build due to undefined symbols. 1193 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1194 return !Context.getLangOptions().AppleKext ? 1195 llvm::GlobalVariable::LinkOnceODRLinkage : 1196 llvm::Function::InternalLinkage; 1197 } 1198 } 1199 1200 if (Context.getLangOptions().AppleKext) 1201 return llvm::Function::InternalLinkage; 1202 1203 switch (RD->getTemplateSpecializationKind()) { 1204 case TSK_Undeclared: 1205 case TSK_ExplicitSpecialization: 1206 case TSK_ImplicitInstantiation: 1207 // FIXME: Use available_externally linkage. However, this currently 1208 // breaks LLVM's build due to undefined symbols. 1209 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1210 case TSK_ExplicitInstantiationDeclaration: 1211 return llvm::GlobalVariable::LinkOnceODRLinkage; 1212 1213 case TSK_ExplicitInstantiationDefinition: 1214 return llvm::GlobalVariable::WeakODRLinkage; 1215 } 1216 1217 // Silence GCC warning. 1218 return llvm::GlobalVariable::LinkOnceODRLinkage; 1219 } 1220 1221 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1222 return Context.toCharUnitsFromBits( 1223 TheTargetData.getTypeStoreSizeInBits(Ty)); 1224 } 1225 1226 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1227 llvm::Constant *Init = 0; 1228 QualType ASTTy = D->getType(); 1229 bool NonConstInit = false; 1230 1231 const Expr *InitExpr = D->getAnyInitializer(); 1232 1233 if (!InitExpr) { 1234 // This is a tentative definition; tentative definitions are 1235 // implicitly initialized with { 0 }. 1236 // 1237 // Note that tentative definitions are only emitted at the end of 1238 // a translation unit, so they should never have incomplete 1239 // type. In addition, EmitTentativeDefinition makes sure that we 1240 // never attempt to emit a tentative definition if a real one 1241 // exists. A use may still exists, however, so we still may need 1242 // to do a RAUW. 1243 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1244 Init = EmitNullConstant(D->getType()); 1245 } else { 1246 Init = EmitConstantExpr(InitExpr, D->getType()); 1247 if (!Init) { 1248 QualType T = InitExpr->getType(); 1249 if (D->getType()->isReferenceType()) 1250 T = D->getType(); 1251 1252 if (getLangOptions().CPlusPlus) { 1253 Init = EmitNullConstant(T); 1254 NonConstInit = true; 1255 } else { 1256 ErrorUnsupported(D, "static initializer"); 1257 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1258 } 1259 } else { 1260 // We don't need an initializer, so remove the entry for the delayed 1261 // initializer position (just in case this entry was delayed). 1262 if (getLangOptions().CPlusPlus) 1263 DelayedCXXInitPosition.erase(D); 1264 } 1265 } 1266 1267 llvm::Type* InitType = Init->getType(); 1268 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1269 1270 // Strip off a bitcast if we got one back. 1271 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1272 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1273 // all zero index gep. 1274 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1275 Entry = CE->getOperand(0); 1276 } 1277 1278 // Entry is now either a Function or GlobalVariable. 1279 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1280 1281 // We have a definition after a declaration with the wrong type. 1282 // We must make a new GlobalVariable* and update everything that used OldGV 1283 // (a declaration or tentative definition) with the new GlobalVariable* 1284 // (which will be a definition). 1285 // 1286 // This happens if there is a prototype for a global (e.g. 1287 // "extern int x[];") and then a definition of a different type (e.g. 1288 // "int x[10];"). This also happens when an initializer has a different type 1289 // from the type of the global (this happens with unions). 1290 if (GV == 0 || 1291 GV->getType()->getElementType() != InitType || 1292 GV->getType()->getAddressSpace() != 1293 getContext().getTargetAddressSpace(ASTTy)) { 1294 1295 // Move the old entry aside so that we'll create a new one. 1296 Entry->setName(StringRef()); 1297 1298 // Make a new global with the correct type, this is now guaranteed to work. 1299 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1300 1301 // Replace all uses of the old global with the new global 1302 llvm::Constant *NewPtrForOldDecl = 1303 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1304 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1305 1306 // Erase the old global, since it is no longer used. 1307 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1308 } 1309 1310 if (D->hasAttr<AnnotateAttr>()) 1311 AddGlobalAnnotations(D, GV); 1312 1313 GV->setInitializer(Init); 1314 1315 // If it is safe to mark the global 'constant', do so now. 1316 GV->setConstant(false); 1317 if (!NonConstInit && DeclIsConstantGlobal(Context, D, true)) 1318 GV->setConstant(true); 1319 1320 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1321 1322 // Set the llvm linkage type as appropriate. 1323 llvm::GlobalValue::LinkageTypes Linkage = 1324 GetLLVMLinkageVarDefinition(D, GV); 1325 GV->setLinkage(Linkage); 1326 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1327 // common vars aren't constant even if declared const. 1328 GV->setConstant(false); 1329 1330 SetCommonAttributes(D, GV); 1331 1332 // Emit the initializer function if necessary. 1333 if (NonConstInit) 1334 EmitCXXGlobalVarDeclInitFunc(D, GV); 1335 1336 // Emit global variable debug information. 1337 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1338 DI->setLocation(D->getLocation()); 1339 DI->EmitGlobalVariable(GV, D); 1340 } 1341 } 1342 1343 llvm::GlobalValue::LinkageTypes 1344 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1345 llvm::GlobalVariable *GV) { 1346 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1347 if (Linkage == GVA_Internal) 1348 return llvm::Function::InternalLinkage; 1349 else if (D->hasAttr<DLLImportAttr>()) 1350 return llvm::Function::DLLImportLinkage; 1351 else if (D->hasAttr<DLLExportAttr>()) 1352 return llvm::Function::DLLExportLinkage; 1353 else if (D->hasAttr<WeakAttr>()) { 1354 if (GV->isConstant()) 1355 return llvm::GlobalVariable::WeakODRLinkage; 1356 else 1357 return llvm::GlobalVariable::WeakAnyLinkage; 1358 } else if (Linkage == GVA_TemplateInstantiation || 1359 Linkage == GVA_ExplicitTemplateInstantiation) 1360 return llvm::GlobalVariable::WeakODRLinkage; 1361 else if (!getLangOptions().CPlusPlus && 1362 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1363 D->getAttr<CommonAttr>()) && 1364 !D->hasExternalStorage() && !D->getInit() && 1365 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1366 !D->getAttr<WeakImportAttr>()) { 1367 // Thread local vars aren't considered common linkage. 1368 return llvm::GlobalVariable::CommonLinkage; 1369 } 1370 return llvm::GlobalVariable::ExternalLinkage; 1371 } 1372 1373 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1374 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1375 /// existing call uses of the old function in the module, this adjusts them to 1376 /// call the new function directly. 1377 /// 1378 /// This is not just a cleanup: the always_inline pass requires direct calls to 1379 /// functions to be able to inline them. If there is a bitcast in the way, it 1380 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1381 /// run at -O0. 1382 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1383 llvm::Function *NewFn) { 1384 // If we're redefining a global as a function, don't transform it. 1385 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1386 if (OldFn == 0) return; 1387 1388 llvm::Type *NewRetTy = NewFn->getReturnType(); 1389 SmallVector<llvm::Value*, 4> ArgList; 1390 1391 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1392 UI != E; ) { 1393 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1394 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1395 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1396 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1397 llvm::CallSite CS(CI); 1398 if (!CI || !CS.isCallee(I)) continue; 1399 1400 // If the return types don't match exactly, and if the call isn't dead, then 1401 // we can't transform this call. 1402 if (CI->getType() != NewRetTy && !CI->use_empty()) 1403 continue; 1404 1405 // Get the attribute list. 1406 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1407 llvm::AttrListPtr AttrList = CI->getAttributes(); 1408 1409 // Get any return attributes. 1410 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1411 1412 // Add the return attributes. 1413 if (RAttrs) 1414 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1415 1416 // If the function was passed too few arguments, don't transform. If extra 1417 // arguments were passed, we silently drop them. If any of the types 1418 // mismatch, we don't transform. 1419 unsigned ArgNo = 0; 1420 bool DontTransform = false; 1421 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1422 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1423 if (CS.arg_size() == ArgNo || 1424 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1425 DontTransform = true; 1426 break; 1427 } 1428 1429 // Add any parameter attributes. 1430 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1431 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1432 } 1433 if (DontTransform) 1434 continue; 1435 1436 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1437 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1438 1439 // Okay, we can transform this. Create the new call instruction and copy 1440 // over the required information. 1441 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1442 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1443 ArgList.clear(); 1444 if (!NewCall->getType()->isVoidTy()) 1445 NewCall->takeName(CI); 1446 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1447 AttrVec.end())); 1448 NewCall->setCallingConv(CI->getCallingConv()); 1449 1450 // Finally, remove the old call, replacing any uses with the new one. 1451 if (!CI->use_empty()) 1452 CI->replaceAllUsesWith(NewCall); 1453 1454 // Copy debug location attached to CI. 1455 if (!CI->getDebugLoc().isUnknown()) 1456 NewCall->setDebugLoc(CI->getDebugLoc()); 1457 CI->eraseFromParent(); 1458 } 1459 } 1460 1461 1462 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1463 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1464 1465 // Compute the function info and LLVM type. 1466 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1467 bool variadic = false; 1468 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1469 variadic = fpt->isVariadic(); 1470 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic); 1471 1472 // Get or create the prototype for the function. 1473 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1474 1475 // Strip off a bitcast if we got one back. 1476 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1477 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1478 Entry = CE->getOperand(0); 1479 } 1480 1481 1482 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1483 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1484 1485 // If the types mismatch then we have to rewrite the definition. 1486 assert(OldFn->isDeclaration() && 1487 "Shouldn't replace non-declaration"); 1488 1489 // F is the Function* for the one with the wrong type, we must make a new 1490 // Function* and update everything that used F (a declaration) with the new 1491 // Function* (which will be a definition). 1492 // 1493 // This happens if there is a prototype for a function 1494 // (e.g. "int f()") and then a definition of a different type 1495 // (e.g. "int f(int x)"). Move the old function aside so that it 1496 // doesn't interfere with GetAddrOfFunction. 1497 OldFn->setName(StringRef()); 1498 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1499 1500 // If this is an implementation of a function without a prototype, try to 1501 // replace any existing uses of the function (which may be calls) with uses 1502 // of the new function 1503 if (D->getType()->isFunctionNoProtoType()) { 1504 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1505 OldFn->removeDeadConstantUsers(); 1506 } 1507 1508 // Replace uses of F with the Function we will endow with a body. 1509 if (!Entry->use_empty()) { 1510 llvm::Constant *NewPtrForOldDecl = 1511 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1512 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1513 } 1514 1515 // Ok, delete the old function now, which is dead. 1516 OldFn->eraseFromParent(); 1517 1518 Entry = NewFn; 1519 } 1520 1521 // We need to set linkage and visibility on the function before 1522 // generating code for it because various parts of IR generation 1523 // want to propagate this information down (e.g. to local static 1524 // declarations). 1525 llvm::Function *Fn = cast<llvm::Function>(Entry); 1526 setFunctionLinkage(D, Fn); 1527 1528 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1529 setGlobalVisibility(Fn, D); 1530 1531 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1532 1533 SetFunctionDefinitionAttributes(D, Fn); 1534 SetLLVMFunctionAttributesForDefinition(D, Fn); 1535 1536 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1537 AddGlobalCtor(Fn, CA->getPriority()); 1538 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1539 AddGlobalDtor(Fn, DA->getPriority()); 1540 if (D->hasAttr<AnnotateAttr>()) 1541 AddGlobalAnnotations(D, Fn); 1542 } 1543 1544 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1545 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1546 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1547 assert(AA && "Not an alias?"); 1548 1549 StringRef MangledName = getMangledName(GD); 1550 1551 // If there is a definition in the module, then it wins over the alias. 1552 // This is dubious, but allow it to be safe. Just ignore the alias. 1553 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1554 if (Entry && !Entry->isDeclaration()) 1555 return; 1556 1557 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1558 1559 // Create a reference to the named value. This ensures that it is emitted 1560 // if a deferred decl. 1561 llvm::Constant *Aliasee; 1562 if (isa<llvm::FunctionType>(DeclTy)) 1563 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1564 /*ForVTable=*/false); 1565 else 1566 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1567 llvm::PointerType::getUnqual(DeclTy), 0); 1568 1569 // Create the new alias itself, but don't set a name yet. 1570 llvm::GlobalValue *GA = 1571 new llvm::GlobalAlias(Aliasee->getType(), 1572 llvm::Function::ExternalLinkage, 1573 "", Aliasee, &getModule()); 1574 1575 if (Entry) { 1576 assert(Entry->isDeclaration()); 1577 1578 // If there is a declaration in the module, then we had an extern followed 1579 // by the alias, as in: 1580 // extern int test6(); 1581 // ... 1582 // int test6() __attribute__((alias("test7"))); 1583 // 1584 // Remove it and replace uses of it with the alias. 1585 GA->takeName(Entry); 1586 1587 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1588 Entry->getType())); 1589 Entry->eraseFromParent(); 1590 } else { 1591 GA->setName(MangledName); 1592 } 1593 1594 // Set attributes which are particular to an alias; this is a 1595 // specialization of the attributes which may be set on a global 1596 // variable/function. 1597 if (D->hasAttr<DLLExportAttr>()) { 1598 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1599 // The dllexport attribute is ignored for undefined symbols. 1600 if (FD->hasBody()) 1601 GA->setLinkage(llvm::Function::DLLExportLinkage); 1602 } else { 1603 GA->setLinkage(llvm::Function::DLLExportLinkage); 1604 } 1605 } else if (D->hasAttr<WeakAttr>() || 1606 D->hasAttr<WeakRefAttr>() || 1607 D->isWeakImported()) { 1608 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1609 } 1610 1611 SetCommonAttributes(D, GA); 1612 } 1613 1614 /// getBuiltinLibFunction - Given a builtin id for a function like 1615 /// "__builtin_fabsf", return a Function* for "fabsf". 1616 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1617 unsigned BuiltinID) { 1618 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1619 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1620 "isn't a lib fn"); 1621 1622 // Get the name, skip over the __builtin_ prefix (if necessary). 1623 StringRef Name; 1624 GlobalDecl D(FD); 1625 1626 // If the builtin has been declared explicitly with an assembler label, 1627 // use the mangled name. This differs from the plain label on platforms 1628 // that prefix labels. 1629 if (FD->hasAttr<AsmLabelAttr>()) 1630 Name = getMangledName(D); 1631 else if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1632 Name = Context.BuiltinInfo.GetName(BuiltinID) + 10; 1633 else 1634 Name = Context.BuiltinInfo.GetName(BuiltinID); 1635 1636 1637 llvm::FunctionType *Ty = 1638 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1639 1640 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); 1641 } 1642 1643 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1644 ArrayRef<llvm::Type*> Tys) { 1645 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1646 Tys); 1647 } 1648 1649 static llvm::StringMapEntry<llvm::Constant*> & 1650 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1651 const StringLiteral *Literal, 1652 bool TargetIsLSB, 1653 bool &IsUTF16, 1654 unsigned &StringLength) { 1655 StringRef String = Literal->getString(); 1656 unsigned NumBytes = String.size(); 1657 1658 // Check for simple case. 1659 if (!Literal->containsNonAsciiOrNull()) { 1660 StringLength = NumBytes; 1661 return Map.GetOrCreateValue(String); 1662 } 1663 1664 // Otherwise, convert the UTF8 literals into a byte string. 1665 SmallVector<UTF16, 128> ToBuf(NumBytes); 1666 const UTF8 *FromPtr = (UTF8 *)String.data(); 1667 UTF16 *ToPtr = &ToBuf[0]; 1668 1669 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1670 &ToPtr, ToPtr + NumBytes, 1671 strictConversion); 1672 1673 // ConvertUTF8toUTF16 returns the length in ToPtr. 1674 StringLength = ToPtr - &ToBuf[0]; 1675 1676 // Render the UTF-16 string into a byte array and convert to the target byte 1677 // order. 1678 // 1679 // FIXME: This isn't something we should need to do here. 1680 llvm::SmallString<128> AsBytes; 1681 AsBytes.reserve(StringLength * 2); 1682 for (unsigned i = 0; i != StringLength; ++i) { 1683 unsigned short Val = ToBuf[i]; 1684 if (TargetIsLSB) { 1685 AsBytes.push_back(Val & 0xFF); 1686 AsBytes.push_back(Val >> 8); 1687 } else { 1688 AsBytes.push_back(Val >> 8); 1689 AsBytes.push_back(Val & 0xFF); 1690 } 1691 } 1692 // Append one extra null character, the second is automatically added by our 1693 // caller. 1694 AsBytes.push_back(0); 1695 1696 IsUTF16 = true; 1697 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1698 } 1699 1700 static llvm::StringMapEntry<llvm::Constant*> & 1701 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1702 const StringLiteral *Literal, 1703 unsigned &StringLength) 1704 { 1705 StringRef String = Literal->getString(); 1706 StringLength = String.size(); 1707 return Map.GetOrCreateValue(String); 1708 } 1709 1710 llvm::Constant * 1711 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1712 unsigned StringLength = 0; 1713 bool isUTF16 = false; 1714 llvm::StringMapEntry<llvm::Constant*> &Entry = 1715 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1716 getTargetData().isLittleEndian(), 1717 isUTF16, StringLength); 1718 1719 if (llvm::Constant *C = Entry.getValue()) 1720 return C; 1721 1722 llvm::Constant *Zero = 1723 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1724 llvm::Constant *Zeros[] = { Zero, Zero }; 1725 1726 // If we don't already have it, get __CFConstantStringClassReference. 1727 if (!CFConstantStringClassRef) { 1728 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1729 Ty = llvm::ArrayType::get(Ty, 0); 1730 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1731 "__CFConstantStringClassReference"); 1732 // Decay array -> ptr 1733 CFConstantStringClassRef = 1734 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1735 } 1736 1737 QualType CFTy = getContext().getCFConstantStringType(); 1738 1739 llvm::StructType *STy = 1740 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1741 1742 std::vector<llvm::Constant*> Fields(4); 1743 1744 // Class pointer. 1745 Fields[0] = CFConstantStringClassRef; 1746 1747 // Flags. 1748 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1749 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1750 llvm::ConstantInt::get(Ty, 0x07C8); 1751 1752 // String pointer. 1753 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1754 1755 llvm::GlobalValue::LinkageTypes Linkage; 1756 bool isConstant; 1757 if (isUTF16) { 1758 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1759 Linkage = llvm::GlobalValue::InternalLinkage; 1760 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1761 // does make plain ascii ones writable. 1762 isConstant = true; 1763 } else { 1764 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1765 // when using private linkage. It is not clear if this is a bug in ld 1766 // or a reasonable new restriction. 1767 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1768 isConstant = !Features.WritableStrings; 1769 } 1770 1771 llvm::GlobalVariable *GV = 1772 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1773 ".str"); 1774 GV->setUnnamedAddr(true); 1775 if (isUTF16) { 1776 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1777 GV->setAlignment(Align.getQuantity()); 1778 } else { 1779 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1780 GV->setAlignment(Align.getQuantity()); 1781 } 1782 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1783 1784 // String length. 1785 Ty = getTypes().ConvertType(getContext().LongTy); 1786 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1787 1788 // The struct. 1789 C = llvm::ConstantStruct::get(STy, Fields); 1790 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1791 llvm::GlobalVariable::PrivateLinkage, C, 1792 "_unnamed_cfstring_"); 1793 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 1794 GV->setSection(Sect); 1795 Entry.setValue(GV); 1796 1797 return GV; 1798 } 1799 1800 static RecordDecl * 1801 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 1802 DeclContext *DC, IdentifierInfo *Id) { 1803 SourceLocation Loc; 1804 if (Ctx.getLangOptions().CPlusPlus) 1805 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1806 else 1807 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1808 } 1809 1810 llvm::Constant * 1811 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1812 unsigned StringLength = 0; 1813 llvm::StringMapEntry<llvm::Constant*> &Entry = 1814 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 1815 1816 if (llvm::Constant *C = Entry.getValue()) 1817 return C; 1818 1819 llvm::Constant *Zero = 1820 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1821 llvm::Constant *Zeros[] = { Zero, Zero }; 1822 1823 // If we don't already have it, get _NSConstantStringClassReference. 1824 if (!ConstantStringClassRef) { 1825 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1826 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1827 llvm::Constant *GV; 1828 if (Features.ObjCNonFragileABI) { 1829 std::string str = 1830 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1831 : "OBJC_CLASS_$_" + StringClass; 1832 GV = getObjCRuntime().GetClassGlobal(str); 1833 // Make sure the result is of the correct type. 1834 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1835 ConstantStringClassRef = 1836 llvm::ConstantExpr::getBitCast(GV, PTy); 1837 } else { 1838 std::string str = 1839 StringClass.empty() ? "_NSConstantStringClassReference" 1840 : "_" + StringClass + "ClassReference"; 1841 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 1842 GV = CreateRuntimeVariable(PTy, str); 1843 // Decay array -> ptr 1844 ConstantStringClassRef = 1845 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1846 } 1847 } 1848 1849 if (!NSConstantStringType) { 1850 // Construct the type for a constant NSString. 1851 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1852 Context.getTranslationUnitDecl(), 1853 &Context.Idents.get("__builtin_NSString")); 1854 D->startDefinition(); 1855 1856 QualType FieldTypes[3]; 1857 1858 // const int *isa; 1859 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 1860 // const char *str; 1861 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 1862 // unsigned int length; 1863 FieldTypes[2] = Context.UnsignedIntTy; 1864 1865 // Create fields 1866 for (unsigned i = 0; i < 3; ++i) { 1867 FieldDecl *Field = FieldDecl::Create(Context, D, 1868 SourceLocation(), 1869 SourceLocation(), 0, 1870 FieldTypes[i], /*TInfo=*/0, 1871 /*BitWidth=*/0, 1872 /*Mutable=*/false, 1873 /*HasInit=*/false); 1874 Field->setAccess(AS_public); 1875 D->addDecl(Field); 1876 } 1877 1878 D->completeDefinition(); 1879 QualType NSTy = Context.getTagDeclType(D); 1880 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1881 } 1882 1883 std::vector<llvm::Constant*> Fields(3); 1884 1885 // Class pointer. 1886 Fields[0] = ConstantStringClassRef; 1887 1888 // String pointer. 1889 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1890 1891 llvm::GlobalValue::LinkageTypes Linkage; 1892 bool isConstant; 1893 Linkage = llvm::GlobalValue::PrivateLinkage; 1894 isConstant = !Features.WritableStrings; 1895 1896 llvm::GlobalVariable *GV = 1897 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1898 ".str"); 1899 GV->setUnnamedAddr(true); 1900 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1901 GV->setAlignment(Align.getQuantity()); 1902 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1903 1904 // String length. 1905 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1906 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1907 1908 // The struct. 1909 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 1910 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1911 llvm::GlobalVariable::PrivateLinkage, C, 1912 "_unnamed_nsstring_"); 1913 // FIXME. Fix section. 1914 if (const char *Sect = 1915 Features.ObjCNonFragileABI 1916 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 1917 : getContext().getTargetInfo().getNSStringSection()) 1918 GV->setSection(Sect); 1919 Entry.setValue(GV); 1920 1921 return GV; 1922 } 1923 1924 QualType CodeGenModule::getObjCFastEnumerationStateType() { 1925 if (ObjCFastEnumerationStateType.isNull()) { 1926 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1927 Context.getTranslationUnitDecl(), 1928 &Context.Idents.get("__objcFastEnumerationState")); 1929 D->startDefinition(); 1930 1931 QualType FieldTypes[] = { 1932 Context.UnsignedLongTy, 1933 Context.getPointerType(Context.getObjCIdType()), 1934 Context.getPointerType(Context.UnsignedLongTy), 1935 Context.getConstantArrayType(Context.UnsignedLongTy, 1936 llvm::APInt(32, 5), ArrayType::Normal, 0) 1937 }; 1938 1939 for (size_t i = 0; i < 4; ++i) { 1940 FieldDecl *Field = FieldDecl::Create(Context, 1941 D, 1942 SourceLocation(), 1943 SourceLocation(), 0, 1944 FieldTypes[i], /*TInfo=*/0, 1945 /*BitWidth=*/0, 1946 /*Mutable=*/false, 1947 /*HasInit=*/false); 1948 Field->setAccess(AS_public); 1949 D->addDecl(Field); 1950 } 1951 1952 D->completeDefinition(); 1953 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 1954 } 1955 1956 return ObjCFastEnumerationStateType; 1957 } 1958 1959 /// GetStringForStringLiteral - Return the appropriate bytes for a 1960 /// string literal, properly padded to match the literal type. 1961 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1962 const ASTContext &Context = getContext(); 1963 const ConstantArrayType *CAT = 1964 Context.getAsConstantArrayType(E->getType()); 1965 assert(CAT && "String isn't pointer or array!"); 1966 1967 // Resize the string to the right size. 1968 uint64_t RealLen = CAT->getSize().getZExtValue(); 1969 1970 switch (E->getKind()) { 1971 case StringLiteral::Ascii: 1972 case StringLiteral::UTF8: 1973 break; 1974 case StringLiteral::Wide: 1975 RealLen *= Context.getTargetInfo().getWCharWidth() / Context.getCharWidth(); 1976 break; 1977 case StringLiteral::UTF16: 1978 RealLen *= Context.getTargetInfo().getChar16Width() / Context.getCharWidth(); 1979 break; 1980 case StringLiteral::UTF32: 1981 RealLen *= Context.getTargetInfo().getChar32Width() / Context.getCharWidth(); 1982 break; 1983 } 1984 1985 std::string Str = E->getString().str(); 1986 Str.resize(RealLen, '\0'); 1987 1988 return Str; 1989 } 1990 1991 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1992 /// constant array for the given string literal. 1993 llvm::Constant * 1994 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1995 // FIXME: This can be more efficient. 1996 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1997 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 1998 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S), 1999 /* GlobalName */ 0, 2000 Align.getQuantity()); 2001 if (S->isWide() || S->isUTF16() || S->isUTF32()) { 2002 llvm::Type *DestTy = 2003 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 2004 C = llvm::ConstantExpr::getBitCast(C, DestTy); 2005 } 2006 return C; 2007 } 2008 2009 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2010 /// array for the given ObjCEncodeExpr node. 2011 llvm::Constant * 2012 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2013 std::string Str; 2014 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2015 2016 return GetAddrOfConstantCString(Str); 2017 } 2018 2019 2020 /// GenerateWritableString -- Creates storage for a string literal. 2021 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2022 bool constant, 2023 CodeGenModule &CGM, 2024 const char *GlobalName, 2025 unsigned Alignment) { 2026 // Create Constant for this string literal. Don't add a '\0'. 2027 llvm::Constant *C = 2028 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 2029 2030 // Create a global variable for this string 2031 llvm::GlobalVariable *GV = 2032 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2033 llvm::GlobalValue::PrivateLinkage, 2034 C, GlobalName); 2035 GV->setAlignment(Alignment); 2036 GV->setUnnamedAddr(true); 2037 return GV; 2038 } 2039 2040 /// GetAddrOfConstantString - Returns a pointer to a character array 2041 /// containing the literal. This contents are exactly that of the 2042 /// given string, i.e. it will not be null terminated automatically; 2043 /// see GetAddrOfConstantCString. Note that whether the result is 2044 /// actually a pointer to an LLVM constant depends on 2045 /// Feature.WriteableStrings. 2046 /// 2047 /// The result has pointer to array type. 2048 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2049 const char *GlobalName, 2050 unsigned Alignment) { 2051 bool IsConstant = !Features.WritableStrings; 2052 2053 // Get the default prefix if a name wasn't specified. 2054 if (!GlobalName) 2055 GlobalName = ".str"; 2056 2057 // Don't share any string literals if strings aren't constant. 2058 if (!IsConstant) 2059 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2060 2061 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2062 ConstantStringMap.GetOrCreateValue(Str); 2063 2064 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2065 if (Alignment > GV->getAlignment()) { 2066 GV->setAlignment(Alignment); 2067 } 2068 return GV; 2069 } 2070 2071 // Create a global variable for this. 2072 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment); 2073 Entry.setValue(GV); 2074 return GV; 2075 } 2076 2077 /// GetAddrOfConstantCString - Returns a pointer to a character 2078 /// array containing the literal and a terminating '\0' 2079 /// character. The result has pointer to array type. 2080 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2081 const char *GlobalName, 2082 unsigned Alignment) { 2083 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2084 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2085 } 2086 2087 /// EmitObjCPropertyImplementations - Emit information for synthesized 2088 /// properties for an implementation. 2089 void CodeGenModule::EmitObjCPropertyImplementations(const 2090 ObjCImplementationDecl *D) { 2091 for (ObjCImplementationDecl::propimpl_iterator 2092 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2093 ObjCPropertyImplDecl *PID = *i; 2094 2095 // Dynamic is just for type-checking. 2096 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2097 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2098 2099 // Determine which methods need to be implemented, some may have 2100 // been overridden. Note that ::isSynthesized is not the method 2101 // we want, that just indicates if the decl came from a 2102 // property. What we want to know is if the method is defined in 2103 // this implementation. 2104 if (!D->getInstanceMethod(PD->getGetterName())) 2105 CodeGenFunction(*this).GenerateObjCGetter( 2106 const_cast<ObjCImplementationDecl *>(D), PID); 2107 if (!PD->isReadOnly() && 2108 !D->getInstanceMethod(PD->getSetterName())) 2109 CodeGenFunction(*this).GenerateObjCSetter( 2110 const_cast<ObjCImplementationDecl *>(D), PID); 2111 } 2112 } 2113 } 2114 2115 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2116 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2117 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2118 ivar; ivar = ivar->getNextIvar()) 2119 if (ivar->getType().isDestructedType()) 2120 return true; 2121 2122 return false; 2123 } 2124 2125 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2126 /// for an implementation. 2127 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2128 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2129 if (needsDestructMethod(D)) { 2130 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2131 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2132 ObjCMethodDecl *DTORMethod = 2133 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2134 cxxSelector, getContext().VoidTy, 0, D, 2135 /*isInstance=*/true, /*isVariadic=*/false, 2136 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2137 /*isDefined=*/false, ObjCMethodDecl::Required); 2138 D->addInstanceMethod(DTORMethod); 2139 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2140 D->setHasCXXStructors(true); 2141 } 2142 2143 // If the implementation doesn't have any ivar initializers, we don't need 2144 // a .cxx_construct. 2145 if (D->getNumIvarInitializers() == 0) 2146 return; 2147 2148 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2149 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2150 // The constructor returns 'self'. 2151 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2152 D->getLocation(), 2153 D->getLocation(), cxxSelector, 2154 getContext().getObjCIdType(), 0, 2155 D, /*isInstance=*/true, 2156 /*isVariadic=*/false, 2157 /*isSynthesized=*/true, 2158 /*isImplicitlyDeclared=*/true, 2159 /*isDefined=*/false, 2160 ObjCMethodDecl::Required); 2161 D->addInstanceMethod(CTORMethod); 2162 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2163 D->setHasCXXStructors(true); 2164 } 2165 2166 /// EmitNamespace - Emit all declarations in a namespace. 2167 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2168 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2169 I != E; ++I) 2170 EmitTopLevelDecl(*I); 2171 } 2172 2173 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2174 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2175 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2176 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2177 ErrorUnsupported(LSD, "linkage spec"); 2178 return; 2179 } 2180 2181 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2182 I != E; ++I) 2183 EmitTopLevelDecl(*I); 2184 } 2185 2186 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2187 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2188 // If an error has occurred, stop code generation, but continue 2189 // parsing and semantic analysis (to ensure all warnings and errors 2190 // are emitted). 2191 if (Diags.hasErrorOccurred()) 2192 return; 2193 2194 // Ignore dependent declarations. 2195 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2196 return; 2197 2198 switch (D->getKind()) { 2199 case Decl::CXXConversion: 2200 case Decl::CXXMethod: 2201 case Decl::Function: 2202 // Skip function templates 2203 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2204 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2205 return; 2206 2207 EmitGlobal(cast<FunctionDecl>(D)); 2208 break; 2209 2210 case Decl::Var: 2211 EmitGlobal(cast<VarDecl>(D)); 2212 break; 2213 2214 // Indirect fields from global anonymous structs and unions can be 2215 // ignored; only the actual variable requires IR gen support. 2216 case Decl::IndirectField: 2217 break; 2218 2219 // C++ Decls 2220 case Decl::Namespace: 2221 EmitNamespace(cast<NamespaceDecl>(D)); 2222 break; 2223 // No code generation needed. 2224 case Decl::UsingShadow: 2225 case Decl::Using: 2226 case Decl::UsingDirective: 2227 case Decl::ClassTemplate: 2228 case Decl::FunctionTemplate: 2229 case Decl::TypeAliasTemplate: 2230 case Decl::NamespaceAlias: 2231 case Decl::Block: 2232 break; 2233 case Decl::CXXConstructor: 2234 // Skip function templates 2235 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2236 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2237 return; 2238 2239 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2240 break; 2241 case Decl::CXXDestructor: 2242 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2243 return; 2244 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2245 break; 2246 2247 case Decl::StaticAssert: 2248 // Nothing to do. 2249 break; 2250 2251 // Objective-C Decls 2252 2253 // Forward declarations, no (immediate) code generation. 2254 case Decl::ObjCClass: 2255 case Decl::ObjCForwardProtocol: 2256 case Decl::ObjCInterface: 2257 break; 2258 2259 case Decl::ObjCCategory: { 2260 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2261 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2262 Context.ResetObjCLayout(CD->getClassInterface()); 2263 break; 2264 } 2265 2266 case Decl::ObjCProtocol: 2267 ObjCRuntime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2268 break; 2269 2270 case Decl::ObjCCategoryImpl: 2271 // Categories have properties but don't support synthesize so we 2272 // can ignore them here. 2273 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2274 break; 2275 2276 case Decl::ObjCImplementation: { 2277 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2278 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2279 Context.ResetObjCLayout(OMD->getClassInterface()); 2280 EmitObjCPropertyImplementations(OMD); 2281 EmitObjCIvarInitializations(OMD); 2282 ObjCRuntime->GenerateClass(OMD); 2283 break; 2284 } 2285 case Decl::ObjCMethod: { 2286 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2287 // If this is not a prototype, emit the body. 2288 if (OMD->getBody()) 2289 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2290 break; 2291 } 2292 case Decl::ObjCCompatibleAlias: 2293 // compatibility-alias is a directive and has no code gen. 2294 break; 2295 2296 case Decl::LinkageSpec: 2297 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2298 break; 2299 2300 case Decl::FileScopeAsm: { 2301 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2302 StringRef AsmString = AD->getAsmString()->getString(); 2303 2304 const std::string &S = getModule().getModuleInlineAsm(); 2305 if (S.empty()) 2306 getModule().setModuleInlineAsm(AsmString); 2307 else if (*--S.end() == '\n') 2308 getModule().setModuleInlineAsm(S + AsmString.str()); 2309 else 2310 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2311 break; 2312 } 2313 2314 default: 2315 // Make sure we handled everything we should, every other kind is a 2316 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2317 // function. Need to recode Decl::Kind to do that easily. 2318 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2319 } 2320 } 2321 2322 /// Turns the given pointer into a constant. 2323 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2324 const void *Ptr) { 2325 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2326 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2327 return llvm::ConstantInt::get(i64, PtrInt); 2328 } 2329 2330 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2331 llvm::NamedMDNode *&GlobalMetadata, 2332 GlobalDecl D, 2333 llvm::GlobalValue *Addr) { 2334 if (!GlobalMetadata) 2335 GlobalMetadata = 2336 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2337 2338 // TODO: should we report variant information for ctors/dtors? 2339 llvm::Value *Ops[] = { 2340 Addr, 2341 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2342 }; 2343 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2344 } 2345 2346 /// Emits metadata nodes associating all the global values in the 2347 /// current module with the Decls they came from. This is useful for 2348 /// projects using IR gen as a subroutine. 2349 /// 2350 /// Since there's currently no way to associate an MDNode directly 2351 /// with an llvm::GlobalValue, we create a global named metadata 2352 /// with the name 'clang.global.decl.ptrs'. 2353 void CodeGenModule::EmitDeclMetadata() { 2354 llvm::NamedMDNode *GlobalMetadata = 0; 2355 2356 // StaticLocalDeclMap 2357 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2358 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2359 I != E; ++I) { 2360 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2361 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2362 } 2363 } 2364 2365 /// Emits metadata nodes for all the local variables in the current 2366 /// function. 2367 void CodeGenFunction::EmitDeclMetadata() { 2368 if (LocalDeclMap.empty()) return; 2369 2370 llvm::LLVMContext &Context = getLLVMContext(); 2371 2372 // Find the unique metadata ID for this name. 2373 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2374 2375 llvm::NamedMDNode *GlobalMetadata = 0; 2376 2377 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2378 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2379 const Decl *D = I->first; 2380 llvm::Value *Addr = I->second; 2381 2382 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2383 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2384 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2385 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2386 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2387 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2388 } 2389 } 2390 } 2391 2392 void CodeGenModule::EmitCoverageFile() { 2393 if (!getCodeGenOpts().CoverageFile.empty()) { 2394 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2395 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2396 llvm::LLVMContext &Ctx = TheModule.getContext(); 2397 llvm::MDString *CoverageFile = 2398 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2399 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2400 llvm::MDNode *CU = CUNode->getOperand(i); 2401 llvm::Value *node[] = { CoverageFile, CU }; 2402 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2403 GCov->addOperand(N); 2404 } 2405 } 2406 } 2407 } 2408