xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 588d6abf7d38fd7e7d189dbff79f16e995c2c79d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/Triple.h"
43 #include "llvm/Target/Mangler.h"
44 #include "llvm/Target/TargetData.h"
45 #include "llvm/Support/CallSite.h"
46 #include "llvm/Support/ErrorHandling.h"
47 using namespace clang;
48 using namespace CodeGen;
49 
50 static const char AnnotationSection[] = "llvm.metadata";
51 
52 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
53   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
54   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
55   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
56   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
57   }
58 
59   llvm_unreachable("invalid C++ ABI kind");
60 }
61 
62 
63 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
64                              llvm::Module &M, const llvm::TargetData &TD,
65                              DiagnosticsEngine &diags)
66   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
67     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
68     ABI(createCXXABI(*this)),
69     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
70     TBAA(0),
71     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
72     DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0),
73     ConstantStringClassRef(0), NSConstantStringType(0),
74     VMContext(M.getContext()),
75     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
76     BlockObjectAssign(0), BlockObjectDispose(0),
77     BlockDescriptorType(0), GenericBlockLiteralType(0) {
78   if (Features.ObjC1)
79     createObjCRuntime();
80   if (Features.OpenCL)
81     createOpenCLRuntime();
82   if (Features.CUDA)
83     createCUDARuntime();
84 
85   // Enable TBAA unless it's suppressed.
86   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
87     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
88                            ABI.getMangleContext());
89 
90   // If debug info or coverage generation is enabled, create the CGDebugInfo
91   // object.
92   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
93       CodeGenOpts.EmitGcovNotes)
94     DebugInfo = new CGDebugInfo(*this);
95 
96   Block.GlobalUniqueCount = 0;
97 
98   if (C.getLangOptions().ObjCAutoRefCount)
99     ARCData = new ARCEntrypoints();
100   RRData = new RREntrypoints();
101 
102   // Initialize the type cache.
103   llvm::LLVMContext &LLVMContext = M.getContext();
104   VoidTy = llvm::Type::getVoidTy(LLVMContext);
105   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
109   PointerAlignInBytes =
110     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
111   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
112   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
113   Int8PtrTy = Int8Ty->getPointerTo(0);
114   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
115 }
116 
117 CodeGenModule::~CodeGenModule() {
118   delete ObjCRuntime;
119   delete OpenCLRuntime;
120   delete CUDARuntime;
121   delete TheTargetCodeGenInfo;
122   delete &ABI;
123   delete TBAA;
124   delete DebugInfo;
125   delete ARCData;
126   delete RRData;
127 }
128 
129 void CodeGenModule::createObjCRuntime() {
130   if (!Features.NeXTRuntime)
131     ObjCRuntime = CreateGNUObjCRuntime(*this);
132   else
133     ObjCRuntime = CreateMacObjCRuntime(*this);
134 }
135 
136 void CodeGenModule::createOpenCLRuntime() {
137   OpenCLRuntime = new CGOpenCLRuntime(*this);
138 }
139 
140 void CodeGenModule::createCUDARuntime() {
141   CUDARuntime = CreateNVCUDARuntime(*this);
142 }
143 
144 void CodeGenModule::Release() {
145   EmitDeferred();
146   EmitCXXGlobalInitFunc();
147   EmitCXXGlobalDtorFunc();
148   if (ObjCRuntime)
149     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
150       AddGlobalCtor(ObjCInitFunction);
151   EmitCtorList(GlobalCtors, "llvm.global_ctors");
152   EmitCtorList(GlobalDtors, "llvm.global_dtors");
153   EmitGlobalAnnotations();
154   EmitLLVMUsed();
155 
156   SimplifyPersonality();
157 
158   if (getCodeGenOpts().EmitDeclMetadata)
159     EmitDeclMetadata();
160 
161   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
162     EmitCoverageFile();
163 
164   if (DebugInfo)
165     DebugInfo->finalize();
166 }
167 
168 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
169   // Make sure that this type is translated.
170   Types.UpdateCompletedType(TD);
171   if (DebugInfo)
172     DebugInfo->UpdateCompletedType(TD);
173 }
174 
175 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
176   if (!TBAA)
177     return 0;
178   return TBAA->getTBAAInfo(QTy);
179 }
180 
181 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
182                                         llvm::MDNode *TBAAInfo) {
183   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
184 }
185 
186 bool CodeGenModule::isTargetDarwin() const {
187   return getContext().getTargetInfo().getTriple().isOSDarwin();
188 }
189 
190 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
191   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
192   getDiags().Report(Context.getFullLoc(loc), diagID);
193 }
194 
195 /// ErrorUnsupported - Print out an error that codegen doesn't support the
196 /// specified stmt yet.
197 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
198                                      bool OmitOnError) {
199   if (OmitOnError && getDiags().hasErrorOccurred())
200     return;
201   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
202                                                "cannot compile this %0 yet");
203   std::string Msg = Type;
204   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
205     << Msg << S->getSourceRange();
206 }
207 
208 /// ErrorUnsupported - Print out an error that codegen doesn't support the
209 /// specified decl yet.
210 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
211                                      bool OmitOnError) {
212   if (OmitOnError && getDiags().hasErrorOccurred())
213     return;
214   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
215                                                "cannot compile this %0 yet");
216   std::string Msg = Type;
217   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
218 }
219 
220 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
221   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
222 }
223 
224 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
225                                         const NamedDecl *D) const {
226   // Internal definitions always have default visibility.
227   if (GV->hasLocalLinkage()) {
228     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
229     return;
230   }
231 
232   // Set visibility for definitions.
233   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
234   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
235     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
236 }
237 
238 /// Set the symbol visibility of type information (vtable and RTTI)
239 /// associated with the given type.
240 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
241                                       const CXXRecordDecl *RD,
242                                       TypeVisibilityKind TVK) const {
243   setGlobalVisibility(GV, RD);
244 
245   if (!CodeGenOpts.HiddenWeakVTables)
246     return;
247 
248   // We never want to drop the visibility for RTTI names.
249   if (TVK == TVK_ForRTTIName)
250     return;
251 
252   // We want to drop the visibility to hidden for weak type symbols.
253   // This isn't possible if there might be unresolved references
254   // elsewhere that rely on this symbol being visible.
255 
256   // This should be kept roughly in sync with setThunkVisibility
257   // in CGVTables.cpp.
258 
259   // Preconditions.
260   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
261       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
262     return;
263 
264   // Don't override an explicit visibility attribute.
265   if (RD->getExplicitVisibility())
266     return;
267 
268   switch (RD->getTemplateSpecializationKind()) {
269   // We have to disable the optimization if this is an EI definition
270   // because there might be EI declarations in other shared objects.
271   case TSK_ExplicitInstantiationDefinition:
272   case TSK_ExplicitInstantiationDeclaration:
273     return;
274 
275   // Every use of a non-template class's type information has to emit it.
276   case TSK_Undeclared:
277     break;
278 
279   // In theory, implicit instantiations can ignore the possibility of
280   // an explicit instantiation declaration because there necessarily
281   // must be an EI definition somewhere with default visibility.  In
282   // practice, it's possible to have an explicit instantiation for
283   // an arbitrary template class, and linkers aren't necessarily able
284   // to deal with mixed-visibility symbols.
285   case TSK_ExplicitSpecialization:
286   case TSK_ImplicitInstantiation:
287     if (!CodeGenOpts.HiddenWeakTemplateVTables)
288       return;
289     break;
290   }
291 
292   // If there's a key function, there may be translation units
293   // that don't have the key function's definition.  But ignore
294   // this if we're emitting RTTI under -fno-rtti.
295   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
296     if (Context.getKeyFunction(RD))
297       return;
298   }
299 
300   // Otherwise, drop the visibility to hidden.
301   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
302   GV->setUnnamedAddr(true);
303 }
304 
305 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
306   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
307 
308   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
309   if (!Str.empty())
310     return Str;
311 
312   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
313     IdentifierInfo *II = ND->getIdentifier();
314     assert(II && "Attempt to mangle unnamed decl.");
315 
316     Str = II->getName();
317     return Str;
318   }
319 
320   llvm::SmallString<256> Buffer;
321   llvm::raw_svector_ostream Out(Buffer);
322   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
323     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
324   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
325     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
326   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
327     getCXXABI().getMangleContext().mangleBlock(BD, Out);
328   else
329     getCXXABI().getMangleContext().mangleName(ND, Out);
330 
331   // Allocate space for the mangled name.
332   Out.flush();
333   size_t Length = Buffer.size();
334   char *Name = MangledNamesAllocator.Allocate<char>(Length);
335   std::copy(Buffer.begin(), Buffer.end(), Name);
336 
337   Str = StringRef(Name, Length);
338 
339   return Str;
340 }
341 
342 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
343                                         const BlockDecl *BD) {
344   MangleContext &MangleCtx = getCXXABI().getMangleContext();
345   const Decl *D = GD.getDecl();
346   llvm::raw_svector_ostream Out(Buffer.getBuffer());
347   if (D == 0)
348     MangleCtx.mangleGlobalBlock(BD, Out);
349   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
350     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
351   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
352     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
353   else
354     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
355 }
356 
357 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
358   return getModule().getNamedValue(Name);
359 }
360 
361 /// AddGlobalCtor - Add a function to the list that will be called before
362 /// main() runs.
363 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
364   // FIXME: Type coercion of void()* types.
365   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
366 }
367 
368 /// AddGlobalDtor - Add a function to the list that will be called
369 /// when the module is unloaded.
370 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
371   // FIXME: Type coercion of void()* types.
372   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
373 }
374 
375 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
376   // Ctor function type is void()*.
377   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
378   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
379 
380   // Get the type of a ctor entry, { i32, void ()* }.
381   llvm::StructType *CtorStructTy =
382     llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
383                           llvm::PointerType::getUnqual(CtorFTy), NULL);
384 
385   // Construct the constructor and destructor arrays.
386   std::vector<llvm::Constant*> Ctors;
387   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
388     std::vector<llvm::Constant*> S;
389     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
390                 I->second, false));
391     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
392     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
393   }
394 
395   if (!Ctors.empty()) {
396     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
397     new llvm::GlobalVariable(TheModule, AT, false,
398                              llvm::GlobalValue::AppendingLinkage,
399                              llvm::ConstantArray::get(AT, Ctors),
400                              GlobalName);
401   }
402 }
403 
404 llvm::GlobalValue::LinkageTypes
405 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
406   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
407 
408   if (Linkage == GVA_Internal)
409     return llvm::Function::InternalLinkage;
410 
411   if (D->hasAttr<DLLExportAttr>())
412     return llvm::Function::DLLExportLinkage;
413 
414   if (D->hasAttr<WeakAttr>())
415     return llvm::Function::WeakAnyLinkage;
416 
417   // In C99 mode, 'inline' functions are guaranteed to have a strong
418   // definition somewhere else, so we can use available_externally linkage.
419   if (Linkage == GVA_C99Inline)
420     return llvm::Function::AvailableExternallyLinkage;
421 
422   // Note that Apple's kernel linker doesn't support symbol
423   // coalescing, so we need to avoid linkonce and weak linkages there.
424   // Normally, this means we just map to internal, but for explicit
425   // instantiations we'll map to external.
426 
427   // In C++, the compiler has to emit a definition in every translation unit
428   // that references the function.  We should use linkonce_odr because
429   // a) if all references in this translation unit are optimized away, we
430   // don't need to codegen it.  b) if the function persists, it needs to be
431   // merged with other definitions. c) C++ has the ODR, so we know the
432   // definition is dependable.
433   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
434     return !Context.getLangOptions().AppleKext
435              ? llvm::Function::LinkOnceODRLinkage
436              : llvm::Function::InternalLinkage;
437 
438   // An explicit instantiation of a template has weak linkage, since
439   // explicit instantiations can occur in multiple translation units
440   // and must all be equivalent. However, we are not allowed to
441   // throw away these explicit instantiations.
442   if (Linkage == GVA_ExplicitTemplateInstantiation)
443     return !Context.getLangOptions().AppleKext
444              ? llvm::Function::WeakODRLinkage
445              : llvm::Function::ExternalLinkage;
446 
447   // Otherwise, we have strong external linkage.
448   assert(Linkage == GVA_StrongExternal);
449   return llvm::Function::ExternalLinkage;
450 }
451 
452 
453 /// SetFunctionDefinitionAttributes - Set attributes for a global.
454 ///
455 /// FIXME: This is currently only done for aliases and functions, but not for
456 /// variables (these details are set in EmitGlobalVarDefinition for variables).
457 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
458                                                     llvm::GlobalValue *GV) {
459   SetCommonAttributes(D, GV);
460 }
461 
462 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
463                                               const CGFunctionInfo &Info,
464                                               llvm::Function *F) {
465   unsigned CallingConv;
466   AttributeListType AttributeList;
467   ConstructAttributeList(Info, D, AttributeList, CallingConv);
468   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
469                                           AttributeList.size()));
470   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
471 }
472 
473 /// Determines whether the language options require us to model
474 /// unwind exceptions.  We treat -fexceptions as mandating this
475 /// except under the fragile ObjC ABI with only ObjC exceptions
476 /// enabled.  This means, for example, that C with -fexceptions
477 /// enables this.
478 static bool hasUnwindExceptions(const LangOptions &Features) {
479   // If exceptions are completely disabled, obviously this is false.
480   if (!Features.Exceptions) return false;
481 
482   // If C++ exceptions are enabled, this is true.
483   if (Features.CXXExceptions) return true;
484 
485   // If ObjC exceptions are enabled, this depends on the ABI.
486   if (Features.ObjCExceptions) {
487     if (!Features.ObjCNonFragileABI) return false;
488   }
489 
490   return true;
491 }
492 
493 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
494                                                            llvm::Function *F) {
495   if (CodeGenOpts.UnwindTables)
496     F->setHasUWTable();
497 
498   if (!hasUnwindExceptions(Features))
499     F->addFnAttr(llvm::Attribute::NoUnwind);
500 
501   if (D->hasAttr<NakedAttr>()) {
502     // Naked implies noinline: we should not be inlining such functions.
503     F->addFnAttr(llvm::Attribute::Naked);
504     F->addFnAttr(llvm::Attribute::NoInline);
505   }
506 
507   if (D->hasAttr<NoInlineAttr>())
508     F->addFnAttr(llvm::Attribute::NoInline);
509 
510   // (noinline wins over always_inline, and we can't specify both in IR)
511   if (D->hasAttr<AlwaysInlineAttr>() &&
512       !F->hasFnAttr(llvm::Attribute::NoInline))
513     F->addFnAttr(llvm::Attribute::AlwaysInline);
514 
515   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
516     F->setUnnamedAddr(true);
517 
518   if (Features.getStackProtector() == LangOptions::SSPOn)
519     F->addFnAttr(llvm::Attribute::StackProtect);
520   else if (Features.getStackProtector() == LangOptions::SSPReq)
521     F->addFnAttr(llvm::Attribute::StackProtectReq);
522 
523   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
524   if (alignment)
525     F->setAlignment(alignment);
526 
527   // C++ ABI requires 2-byte alignment for member functions.
528   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
529     F->setAlignment(2);
530 }
531 
532 void CodeGenModule::SetCommonAttributes(const Decl *D,
533                                         llvm::GlobalValue *GV) {
534   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
535     setGlobalVisibility(GV, ND);
536   else
537     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
538 
539   if (D->hasAttr<UsedAttr>())
540     AddUsedGlobal(GV);
541 
542   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
543     GV->setSection(SA->getName());
544 
545   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
546 }
547 
548 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
549                                                   llvm::Function *F,
550                                                   const CGFunctionInfo &FI) {
551   SetLLVMFunctionAttributes(D, FI, F);
552   SetLLVMFunctionAttributesForDefinition(D, F);
553 
554   F->setLinkage(llvm::Function::InternalLinkage);
555 
556   SetCommonAttributes(D, F);
557 }
558 
559 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
560                                           llvm::Function *F,
561                                           bool IsIncompleteFunction) {
562   if (unsigned IID = F->getIntrinsicID()) {
563     // If this is an intrinsic function, set the function's attributes
564     // to the intrinsic's attributes.
565     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
566     return;
567   }
568 
569   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
570 
571   if (!IsIncompleteFunction)
572     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
573 
574   // Only a few attributes are set on declarations; these may later be
575   // overridden by a definition.
576 
577   if (FD->hasAttr<DLLImportAttr>()) {
578     F->setLinkage(llvm::Function::DLLImportLinkage);
579   } else if (FD->hasAttr<WeakAttr>() ||
580              FD->isWeakImported()) {
581     // "extern_weak" is overloaded in LLVM; we probably should have
582     // separate linkage types for this.
583     F->setLinkage(llvm::Function::ExternalWeakLinkage);
584   } else {
585     F->setLinkage(llvm::Function::ExternalLinkage);
586 
587     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
588     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
589       F->setVisibility(GetLLVMVisibility(LV.visibility()));
590     }
591   }
592 
593   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
594     F->setSection(SA->getName());
595 }
596 
597 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
598   assert(!GV->isDeclaration() &&
599          "Only globals with definition can force usage.");
600   LLVMUsed.push_back(GV);
601 }
602 
603 void CodeGenModule::EmitLLVMUsed() {
604   // Don't create llvm.used if there is no need.
605   if (LLVMUsed.empty())
606     return;
607 
608   llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
609 
610   // Convert LLVMUsed to what ConstantArray needs.
611   std::vector<llvm::Constant*> UsedArray;
612   UsedArray.resize(LLVMUsed.size());
613   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
614     UsedArray[i] =
615      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
616                                       i8PTy);
617   }
618 
619   if (UsedArray.empty())
620     return;
621   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
622 
623   llvm::GlobalVariable *GV =
624     new llvm::GlobalVariable(getModule(), ATy, false,
625                              llvm::GlobalValue::AppendingLinkage,
626                              llvm::ConstantArray::get(ATy, UsedArray),
627                              "llvm.used");
628 
629   GV->setSection("llvm.metadata");
630 }
631 
632 void CodeGenModule::EmitDeferred() {
633   // Emit code for any potentially referenced deferred decls.  Since a
634   // previously unused static decl may become used during the generation of code
635   // for a static function, iterate until no changes are made.
636 
637   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
638     if (!DeferredVTables.empty()) {
639       const CXXRecordDecl *RD = DeferredVTables.back();
640       DeferredVTables.pop_back();
641       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
642       continue;
643     }
644 
645     GlobalDecl D = DeferredDeclsToEmit.back();
646     DeferredDeclsToEmit.pop_back();
647 
648     // Check to see if we've already emitted this.  This is necessary
649     // for a couple of reasons: first, decls can end up in the
650     // deferred-decls queue multiple times, and second, decls can end
651     // up with definitions in unusual ways (e.g. by an extern inline
652     // function acquiring a strong function redefinition).  Just
653     // ignore these cases.
654     //
655     // TODO: That said, looking this up multiple times is very wasteful.
656     StringRef Name = getMangledName(D);
657     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
658     assert(CGRef && "Deferred decl wasn't referenced?");
659 
660     if (!CGRef->isDeclaration())
661       continue;
662 
663     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
664     // purposes an alias counts as a definition.
665     if (isa<llvm::GlobalAlias>(CGRef))
666       continue;
667 
668     // Otherwise, emit the definition and move on to the next one.
669     EmitGlobalDefinition(D);
670   }
671 }
672 
673 void CodeGenModule::EmitGlobalAnnotations() {
674   if (Annotations.empty())
675     return;
676 
677   // Create a new global variable for the ConstantStruct in the Module.
678   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
679     Annotations[0]->getType(), Annotations.size()), Annotations);
680   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
681     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
682     "llvm.global.annotations");
683   gv->setSection(AnnotationSection);
684 }
685 
686 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
687   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
688   if (i != AnnotationStrings.end())
689     return i->second;
690 
691   // Not found yet, create a new global.
692   llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true);
693   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
694     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
695   gv->setSection(AnnotationSection);
696   gv->setUnnamedAddr(true);
697   AnnotationStrings[Str] = gv;
698   return gv;
699 }
700 
701 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
702   SourceManager &SM = getContext().getSourceManager();
703   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
704   if (PLoc.isValid())
705     return EmitAnnotationString(PLoc.getFilename());
706   return EmitAnnotationString(SM.getBufferName(Loc));
707 }
708 
709 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
710   SourceManager &SM = getContext().getSourceManager();
711   PresumedLoc PLoc = SM.getPresumedLoc(L);
712   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
713     SM.getExpansionLineNumber(L);
714   return llvm::ConstantInt::get(Int32Ty, LineNo);
715 }
716 
717 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
718                                                 const AnnotateAttr *AA,
719                                                 SourceLocation L) {
720   // Get the globals for file name, annotation, and the line number.
721   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
722                  *UnitGV = EmitAnnotationUnit(L),
723                  *LineNoCst = EmitAnnotationLineNo(L);
724 
725   // Create the ConstantStruct for the global annotation.
726   llvm::Constant *Fields[4] = {
727     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
728     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
729     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
730     LineNoCst
731   };
732   return llvm::ConstantStruct::getAnon(Fields);
733 }
734 
735 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
736                                          llvm::GlobalValue *GV) {
737   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
738   // Get the struct elements for these annotations.
739   for (specific_attr_iterator<AnnotateAttr>
740        ai = D->specific_attr_begin<AnnotateAttr>(),
741        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
742     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
743 }
744 
745 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
746   // Never defer when EmitAllDecls is specified.
747   if (Features.EmitAllDecls)
748     return false;
749 
750   return !getContext().DeclMustBeEmitted(Global);
751 }
752 
753 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
754   const AliasAttr *AA = VD->getAttr<AliasAttr>();
755   assert(AA && "No alias?");
756 
757   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
758 
759   // See if there is already something with the target's name in the module.
760   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
761 
762   llvm::Constant *Aliasee;
763   if (isa<llvm::FunctionType>(DeclTy))
764     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
765                                       /*ForVTable=*/false);
766   else
767     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
768                                     llvm::PointerType::getUnqual(DeclTy), 0);
769   if (!Entry) {
770     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
771     F->setLinkage(llvm::Function::ExternalWeakLinkage);
772     WeakRefReferences.insert(F);
773   }
774 
775   return Aliasee;
776 }
777 
778 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
779   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
780 
781   // Weak references don't produce any output by themselves.
782   if (Global->hasAttr<WeakRefAttr>())
783     return;
784 
785   // If this is an alias definition (which otherwise looks like a declaration)
786   // emit it now.
787   if (Global->hasAttr<AliasAttr>())
788     return EmitAliasDefinition(GD);
789 
790   // If this is CUDA, be selective about which declarations we emit.
791   if (Features.CUDA) {
792     if (CodeGenOpts.CUDAIsDevice) {
793       if (!Global->hasAttr<CUDADeviceAttr>() &&
794           !Global->hasAttr<CUDAGlobalAttr>() &&
795           !Global->hasAttr<CUDAConstantAttr>() &&
796           !Global->hasAttr<CUDASharedAttr>())
797         return;
798     } else {
799       if (!Global->hasAttr<CUDAHostAttr>() && (
800             Global->hasAttr<CUDADeviceAttr>() ||
801             Global->hasAttr<CUDAConstantAttr>() ||
802             Global->hasAttr<CUDASharedAttr>()))
803         return;
804     }
805   }
806 
807   // Ignore declarations, they will be emitted on their first use.
808   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
809     // Forward declarations are emitted lazily on first use.
810     if (!FD->doesThisDeclarationHaveABody()) {
811       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
812         return;
813 
814       const FunctionDecl *InlineDefinition = 0;
815       FD->getBody(InlineDefinition);
816 
817       StringRef MangledName = getMangledName(GD);
818       llvm::StringMap<GlobalDecl>::iterator DDI =
819           DeferredDecls.find(MangledName);
820       if (DDI != DeferredDecls.end())
821         DeferredDecls.erase(DDI);
822       EmitGlobalDefinition(InlineDefinition);
823       return;
824     }
825   } else {
826     const VarDecl *VD = cast<VarDecl>(Global);
827     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
828 
829     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
830       return;
831   }
832 
833   // Defer code generation when possible if this is a static definition, inline
834   // function etc.  These we only want to emit if they are used.
835   if (!MayDeferGeneration(Global)) {
836     // Emit the definition if it can't be deferred.
837     EmitGlobalDefinition(GD);
838     return;
839   }
840 
841   // If we're deferring emission of a C++ variable with an
842   // initializer, remember the order in which it appeared in the file.
843   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
844       cast<VarDecl>(Global)->hasInit()) {
845     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
846     CXXGlobalInits.push_back(0);
847   }
848 
849   // If the value has already been used, add it directly to the
850   // DeferredDeclsToEmit list.
851   StringRef MangledName = getMangledName(GD);
852   if (GetGlobalValue(MangledName))
853     DeferredDeclsToEmit.push_back(GD);
854   else {
855     // Otherwise, remember that we saw a deferred decl with this name.  The
856     // first use of the mangled name will cause it to move into
857     // DeferredDeclsToEmit.
858     DeferredDecls[MangledName] = GD;
859   }
860 }
861 
862 namespace {
863   struct FunctionIsDirectlyRecursive :
864     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
865     const StringRef Name;
866     const Builtin::Context &BI;
867     bool Result;
868     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
869       Name(N), BI(C), Result(false) {
870     }
871     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
872 
873     bool TraverseCallExpr(CallExpr *E) {
874       const FunctionDecl *FD = E->getDirectCallee();
875       if (!FD)
876         return true;
877       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
878       if (Attr && Name == Attr->getLabel()) {
879         Result = true;
880         return false;
881       }
882       unsigned BuiltinID = FD->getBuiltinID();
883       if (!BuiltinID)
884         return true;
885       StringRef BuiltinName = BI.GetName(BuiltinID);
886       if (BuiltinName.startswith("__builtin_") &&
887           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
888         Result = true;
889         return false;
890       }
891       return true;
892     }
893   };
894 }
895 
896 // isTriviallyRecursive - Check if this function calls another
897 // decl that, because of the asm attribute or the other decl being a builtin,
898 // ends up pointing to itself.
899 bool
900 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
901   StringRef Name;
902   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
903     // asm labels are a special kind of mangling we have to support.
904     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
905     if (!Attr)
906       return false;
907     Name = Attr->getLabel();
908   } else {
909     Name = FD->getName();
910   }
911 
912   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
913   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
914   return Walker.Result;
915 }
916 
917 bool
918 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
919   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
920     return true;
921   if (CodeGenOpts.OptimizationLevel == 0 &&
922       !F->hasAttr<AlwaysInlineAttr>())
923     return false;
924   // PR9614. Avoid cases where the source code is lying to us. An available
925   // externally function should have an equivalent function somewhere else,
926   // but a function that calls itself is clearly not equivalent to the real
927   // implementation.
928   // This happens in glibc's btowc and in some configure checks.
929   return !isTriviallyRecursive(F);
930 }
931 
932 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
933   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
934 
935   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
936                                  Context.getSourceManager(),
937                                  "Generating code for declaration");
938 
939   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
940     // At -O0, don't generate IR for functions with available_externally
941     // linkage.
942     if (!shouldEmitFunction(Function))
943       return;
944 
945     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
946       // Make sure to emit the definition(s) before we emit the thunks.
947       // This is necessary for the generation of certain thunks.
948       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
949         EmitCXXConstructor(CD, GD.getCtorType());
950       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
951         EmitCXXDestructor(DD, GD.getDtorType());
952       else
953         EmitGlobalFunctionDefinition(GD);
954 
955       if (Method->isVirtual())
956         getVTables().EmitThunks(GD);
957 
958       return;
959     }
960 
961     return EmitGlobalFunctionDefinition(GD);
962   }
963 
964   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
965     return EmitGlobalVarDefinition(VD);
966 
967   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
968 }
969 
970 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
971 /// module, create and return an llvm Function with the specified type. If there
972 /// is something in the module with the specified name, return it potentially
973 /// bitcasted to the right type.
974 ///
975 /// If D is non-null, it specifies a decl that correspond to this.  This is used
976 /// to set the attributes on the function when it is first created.
977 llvm::Constant *
978 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
979                                        llvm::Type *Ty,
980                                        GlobalDecl D, bool ForVTable,
981                                        llvm::Attributes ExtraAttrs) {
982   // Lookup the entry, lazily creating it if necessary.
983   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
984   if (Entry) {
985     if (WeakRefReferences.count(Entry)) {
986       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
987       if (FD && !FD->hasAttr<WeakAttr>())
988         Entry->setLinkage(llvm::Function::ExternalLinkage);
989 
990       WeakRefReferences.erase(Entry);
991     }
992 
993     if (Entry->getType()->getElementType() == Ty)
994       return Entry;
995 
996     // Make sure the result is of the correct type.
997     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
998   }
999 
1000   // This function doesn't have a complete type (for example, the return
1001   // type is an incomplete struct). Use a fake type instead, and make
1002   // sure not to try to set attributes.
1003   bool IsIncompleteFunction = false;
1004 
1005   llvm::FunctionType *FTy;
1006   if (isa<llvm::FunctionType>(Ty)) {
1007     FTy = cast<llvm::FunctionType>(Ty);
1008   } else {
1009     FTy = llvm::FunctionType::get(VoidTy, false);
1010     IsIncompleteFunction = true;
1011   }
1012 
1013   llvm::Function *F = llvm::Function::Create(FTy,
1014                                              llvm::Function::ExternalLinkage,
1015                                              MangledName, &getModule());
1016   assert(F->getName() == MangledName && "name was uniqued!");
1017   if (D.getDecl())
1018     SetFunctionAttributes(D, F, IsIncompleteFunction);
1019   if (ExtraAttrs != llvm::Attribute::None)
1020     F->addFnAttr(ExtraAttrs);
1021 
1022   if (Features.AddressSanitizer) {
1023     // When AddressSanitizer is enabled, set AddressSafety attribute
1024     // unless __attribute__((no_address_safety_analysis)) is used.
1025     const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1026     if (!FD || !FD->hasAttr<NoAddressSafetyAnalysisAttr>())
1027       F->addFnAttr(llvm::Attribute::AddressSafety);
1028   }
1029 
1030   // This is the first use or definition of a mangled name.  If there is a
1031   // deferred decl with this name, remember that we need to emit it at the end
1032   // of the file.
1033   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1034   if (DDI != DeferredDecls.end()) {
1035     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1036     // list, and remove it from DeferredDecls (since we don't need it anymore).
1037     DeferredDeclsToEmit.push_back(DDI->second);
1038     DeferredDecls.erase(DDI);
1039 
1040   // Otherwise, there are cases we have to worry about where we're
1041   // using a declaration for which we must emit a definition but where
1042   // we might not find a top-level definition:
1043   //   - member functions defined inline in their classes
1044   //   - friend functions defined inline in some class
1045   //   - special member functions with implicit definitions
1046   // If we ever change our AST traversal to walk into class methods,
1047   // this will be unnecessary.
1048   //
1049   // We also don't emit a definition for a function if it's going to be an entry
1050   // in a vtable, unless it's already marked as used.
1051   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
1052     // Look for a declaration that's lexically in a record.
1053     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1054     do {
1055       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1056         if (FD->isImplicit() && !ForVTable) {
1057           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1058           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1059           break;
1060         } else if (FD->doesThisDeclarationHaveABody()) {
1061           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1062           break;
1063         }
1064       }
1065       FD = FD->getPreviousDecl();
1066     } while (FD);
1067   }
1068 
1069   // Make sure the result is of the requested type.
1070   if (!IsIncompleteFunction) {
1071     assert(F->getType()->getElementType() == Ty);
1072     return F;
1073   }
1074 
1075   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1076   return llvm::ConstantExpr::getBitCast(F, PTy);
1077 }
1078 
1079 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1080 /// non-null, then this function will use the specified type if it has to
1081 /// create it (this occurs when we see a definition of the function).
1082 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1083                                                  llvm::Type *Ty,
1084                                                  bool ForVTable) {
1085   // If there was no specific requested type, just convert it now.
1086   if (!Ty)
1087     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1088 
1089   StringRef MangledName = getMangledName(GD);
1090   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1091 }
1092 
1093 /// CreateRuntimeFunction - Create a new runtime function with the specified
1094 /// type and name.
1095 llvm::Constant *
1096 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1097                                      StringRef Name,
1098                                      llvm::Attributes ExtraAttrs) {
1099   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1100                                  ExtraAttrs);
1101 }
1102 
1103 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
1104                                  bool ConstantInit) {
1105   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
1106     return false;
1107 
1108   if (Context.getLangOptions().CPlusPlus) {
1109     if (const RecordType *Record
1110           = Context.getBaseElementType(D->getType())->getAs<RecordType>())
1111       return ConstantInit &&
1112              cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
1113              !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
1114   }
1115 
1116   return true;
1117 }
1118 
1119 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1120 /// create and return an llvm GlobalVariable with the specified type.  If there
1121 /// is something in the module with the specified name, return it potentially
1122 /// bitcasted to the right type.
1123 ///
1124 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1125 /// to set the attributes on the global when it is first created.
1126 llvm::Constant *
1127 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1128                                      llvm::PointerType *Ty,
1129                                      const VarDecl *D,
1130                                      bool UnnamedAddr) {
1131   // Lookup the entry, lazily creating it if necessary.
1132   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1133   if (Entry) {
1134     if (WeakRefReferences.count(Entry)) {
1135       if (D && !D->hasAttr<WeakAttr>())
1136         Entry->setLinkage(llvm::Function::ExternalLinkage);
1137 
1138       WeakRefReferences.erase(Entry);
1139     }
1140 
1141     if (UnnamedAddr)
1142       Entry->setUnnamedAddr(true);
1143 
1144     if (Entry->getType() == Ty)
1145       return Entry;
1146 
1147     // Make sure the result is of the correct type.
1148     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1149   }
1150 
1151   // This is the first use or definition of a mangled name.  If there is a
1152   // deferred decl with this name, remember that we need to emit it at the end
1153   // of the file.
1154   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1155   if (DDI != DeferredDecls.end()) {
1156     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1157     // list, and remove it from DeferredDecls (since we don't need it anymore).
1158     DeferredDeclsToEmit.push_back(DDI->second);
1159     DeferredDecls.erase(DDI);
1160   }
1161 
1162   llvm::GlobalVariable *GV =
1163     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1164                              llvm::GlobalValue::ExternalLinkage,
1165                              0, MangledName, 0,
1166                              false, Ty->getAddressSpace());
1167 
1168   // Handle things which are present even on external declarations.
1169   if (D) {
1170     // FIXME: This code is overly simple and should be merged with other global
1171     // handling.
1172     GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1173 
1174     // Set linkage and visibility in case we never see a definition.
1175     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1176     if (LV.linkage() != ExternalLinkage) {
1177       // Don't set internal linkage on declarations.
1178     } else {
1179       if (D->hasAttr<DLLImportAttr>())
1180         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1181       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1182         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1183 
1184       // Set visibility on a declaration only if it's explicit.
1185       if (LV.visibilityExplicit())
1186         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1187     }
1188 
1189     GV->setThreadLocal(D->isThreadSpecified());
1190   }
1191 
1192   return GV;
1193 }
1194 
1195 
1196 llvm::GlobalVariable *
1197 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1198                                       llvm::Type *Ty,
1199                                       llvm::GlobalValue::LinkageTypes Linkage) {
1200   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1201   llvm::GlobalVariable *OldGV = 0;
1202 
1203 
1204   if (GV) {
1205     // Check if the variable has the right type.
1206     if (GV->getType()->getElementType() == Ty)
1207       return GV;
1208 
1209     // Because C++ name mangling, the only way we can end up with an already
1210     // existing global with the same name is if it has been declared extern "C".
1211       assert(GV->isDeclaration() && "Declaration has wrong type!");
1212     OldGV = GV;
1213   }
1214 
1215   // Create a new variable.
1216   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1217                                 Linkage, 0, Name);
1218 
1219   if (OldGV) {
1220     // Replace occurrences of the old variable if needed.
1221     GV->takeName(OldGV);
1222 
1223     if (!OldGV->use_empty()) {
1224       llvm::Constant *NewPtrForOldDecl =
1225       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1226       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1227     }
1228 
1229     OldGV->eraseFromParent();
1230   }
1231 
1232   return GV;
1233 }
1234 
1235 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1236 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1237 /// then it will be greated with the specified type instead of whatever the
1238 /// normal requested type would be.
1239 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1240                                                   llvm::Type *Ty) {
1241   assert(D->hasGlobalStorage() && "Not a global variable");
1242   QualType ASTTy = D->getType();
1243   if (Ty == 0)
1244     Ty = getTypes().ConvertTypeForMem(ASTTy);
1245 
1246   llvm::PointerType *PTy =
1247     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1248 
1249   StringRef MangledName = getMangledName(D);
1250   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1251 }
1252 
1253 /// CreateRuntimeVariable - Create a new runtime global variable with the
1254 /// specified type and name.
1255 llvm::Constant *
1256 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1257                                      StringRef Name) {
1258   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1259                                true);
1260 }
1261 
1262 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1263   assert(!D->getInit() && "Cannot emit definite definitions here!");
1264 
1265   if (MayDeferGeneration(D)) {
1266     // If we have not seen a reference to this variable yet, place it
1267     // into the deferred declarations table to be emitted if needed
1268     // later.
1269     StringRef MangledName = getMangledName(D);
1270     if (!GetGlobalValue(MangledName)) {
1271       DeferredDecls[MangledName] = D;
1272       return;
1273     }
1274   }
1275 
1276   // The tentative definition is the only definition.
1277   EmitGlobalVarDefinition(D);
1278 }
1279 
1280 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1281   if (DefinitionRequired)
1282     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1283 }
1284 
1285 llvm::GlobalVariable::LinkageTypes
1286 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1287   if (RD->getLinkage() != ExternalLinkage)
1288     return llvm::GlobalVariable::InternalLinkage;
1289 
1290   if (const CXXMethodDecl *KeyFunction
1291                                     = RD->getASTContext().getKeyFunction(RD)) {
1292     // If this class has a key function, use that to determine the linkage of
1293     // the vtable.
1294     const FunctionDecl *Def = 0;
1295     if (KeyFunction->hasBody(Def))
1296       KeyFunction = cast<CXXMethodDecl>(Def);
1297 
1298     switch (KeyFunction->getTemplateSpecializationKind()) {
1299       case TSK_Undeclared:
1300       case TSK_ExplicitSpecialization:
1301         // When compiling with optimizations turned on, we emit all vtables,
1302         // even if the key function is not defined in the current translation
1303         // unit. If this is the case, use available_externally linkage.
1304         if (!Def && CodeGenOpts.OptimizationLevel)
1305           return llvm::GlobalVariable::AvailableExternallyLinkage;
1306 
1307         if (KeyFunction->isInlined())
1308           return !Context.getLangOptions().AppleKext ?
1309                    llvm::GlobalVariable::LinkOnceODRLinkage :
1310                    llvm::Function::InternalLinkage;
1311 
1312         return llvm::GlobalVariable::ExternalLinkage;
1313 
1314       case TSK_ImplicitInstantiation:
1315         return !Context.getLangOptions().AppleKext ?
1316                  llvm::GlobalVariable::LinkOnceODRLinkage :
1317                  llvm::Function::InternalLinkage;
1318 
1319       case TSK_ExplicitInstantiationDefinition:
1320         return !Context.getLangOptions().AppleKext ?
1321                  llvm::GlobalVariable::WeakODRLinkage :
1322                  llvm::Function::InternalLinkage;
1323 
1324       case TSK_ExplicitInstantiationDeclaration:
1325         // FIXME: Use available_externally linkage. However, this currently
1326         // breaks LLVM's build due to undefined symbols.
1327         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1328         return !Context.getLangOptions().AppleKext ?
1329                  llvm::GlobalVariable::LinkOnceODRLinkage :
1330                  llvm::Function::InternalLinkage;
1331     }
1332   }
1333 
1334   if (Context.getLangOptions().AppleKext)
1335     return llvm::Function::InternalLinkage;
1336 
1337   switch (RD->getTemplateSpecializationKind()) {
1338   case TSK_Undeclared:
1339   case TSK_ExplicitSpecialization:
1340   case TSK_ImplicitInstantiation:
1341     // FIXME: Use available_externally linkage. However, this currently
1342     // breaks LLVM's build due to undefined symbols.
1343     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1344   case TSK_ExplicitInstantiationDeclaration:
1345     return llvm::GlobalVariable::LinkOnceODRLinkage;
1346 
1347   case TSK_ExplicitInstantiationDefinition:
1348       return llvm::GlobalVariable::WeakODRLinkage;
1349   }
1350 
1351   llvm_unreachable("Invalid TemplateSpecializationKind!");
1352 }
1353 
1354 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1355     return Context.toCharUnitsFromBits(
1356       TheTargetData.getTypeStoreSizeInBits(Ty));
1357 }
1358 
1359 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1360   llvm::Constant *Init = 0;
1361   QualType ASTTy = D->getType();
1362   bool NonConstInit = false;
1363 
1364   const VarDecl *InitDecl;
1365   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1366 
1367   if (!InitExpr) {
1368     // This is a tentative definition; tentative definitions are
1369     // implicitly initialized with { 0 }.
1370     //
1371     // Note that tentative definitions are only emitted at the end of
1372     // a translation unit, so they should never have incomplete
1373     // type. In addition, EmitTentativeDefinition makes sure that we
1374     // never attempt to emit a tentative definition if a real one
1375     // exists. A use may still exists, however, so we still may need
1376     // to do a RAUW.
1377     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1378     Init = EmitNullConstant(D->getType());
1379   } else {
1380     Init = EmitConstantInit(*InitDecl);
1381     if (!Init) {
1382       QualType T = InitExpr->getType();
1383       if (D->getType()->isReferenceType())
1384         T = D->getType();
1385 
1386       if (getLangOptions().CPlusPlus) {
1387         Init = EmitNullConstant(T);
1388         NonConstInit = true;
1389       } else {
1390         ErrorUnsupported(D, "static initializer");
1391         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1392       }
1393     } else {
1394       // We don't need an initializer, so remove the entry for the delayed
1395       // initializer position (just in case this entry was delayed).
1396       if (getLangOptions().CPlusPlus)
1397         DelayedCXXInitPosition.erase(D);
1398     }
1399   }
1400 
1401   llvm::Type* InitType = Init->getType();
1402   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1403 
1404   // Strip off a bitcast if we got one back.
1405   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1406     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1407            // all zero index gep.
1408            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1409     Entry = CE->getOperand(0);
1410   }
1411 
1412   // Entry is now either a Function or GlobalVariable.
1413   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1414 
1415   // We have a definition after a declaration with the wrong type.
1416   // We must make a new GlobalVariable* and update everything that used OldGV
1417   // (a declaration or tentative definition) with the new GlobalVariable*
1418   // (which will be a definition).
1419   //
1420   // This happens if there is a prototype for a global (e.g.
1421   // "extern int x[];") and then a definition of a different type (e.g.
1422   // "int x[10];"). This also happens when an initializer has a different type
1423   // from the type of the global (this happens with unions).
1424   if (GV == 0 ||
1425       GV->getType()->getElementType() != InitType ||
1426       GV->getType()->getAddressSpace() !=
1427         getContext().getTargetAddressSpace(ASTTy)) {
1428 
1429     // Move the old entry aside so that we'll create a new one.
1430     Entry->setName(StringRef());
1431 
1432     // Make a new global with the correct type, this is now guaranteed to work.
1433     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1434 
1435     // Replace all uses of the old global with the new global
1436     llvm::Constant *NewPtrForOldDecl =
1437         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1438     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1439 
1440     // Erase the old global, since it is no longer used.
1441     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1442   }
1443 
1444   if (D->hasAttr<AnnotateAttr>())
1445     AddGlobalAnnotations(D, GV);
1446 
1447   GV->setInitializer(Init);
1448 
1449   // If it is safe to mark the global 'constant', do so now.
1450   GV->setConstant(false);
1451   if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1452     GV->setConstant(true);
1453 
1454   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1455 
1456   // Set the llvm linkage type as appropriate.
1457   llvm::GlobalValue::LinkageTypes Linkage =
1458     GetLLVMLinkageVarDefinition(D, GV);
1459   GV->setLinkage(Linkage);
1460   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1461     // common vars aren't constant even if declared const.
1462     GV->setConstant(false);
1463 
1464   SetCommonAttributes(D, GV);
1465 
1466   // Emit the initializer function if necessary.
1467   if (NonConstInit)
1468     EmitCXXGlobalVarDeclInitFunc(D, GV);
1469 
1470   // Emit global variable debug information.
1471   if (CGDebugInfo *DI = getModuleDebugInfo())
1472     DI->EmitGlobalVariable(GV, D);
1473 }
1474 
1475 llvm::GlobalValue::LinkageTypes
1476 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1477                                            llvm::GlobalVariable *GV) {
1478   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1479   if (Linkage == GVA_Internal)
1480     return llvm::Function::InternalLinkage;
1481   else if (D->hasAttr<DLLImportAttr>())
1482     return llvm::Function::DLLImportLinkage;
1483   else if (D->hasAttr<DLLExportAttr>())
1484     return llvm::Function::DLLExportLinkage;
1485   else if (D->hasAttr<WeakAttr>()) {
1486     if (GV->isConstant())
1487       return llvm::GlobalVariable::WeakODRLinkage;
1488     else
1489       return llvm::GlobalVariable::WeakAnyLinkage;
1490   } else if (Linkage == GVA_TemplateInstantiation ||
1491              Linkage == GVA_ExplicitTemplateInstantiation)
1492     return llvm::GlobalVariable::WeakODRLinkage;
1493   else if (!getLangOptions().CPlusPlus &&
1494            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1495              D->getAttr<CommonAttr>()) &&
1496            !D->hasExternalStorage() && !D->getInit() &&
1497            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1498            !D->getAttr<WeakImportAttr>()) {
1499     // Thread local vars aren't considered common linkage.
1500     return llvm::GlobalVariable::CommonLinkage;
1501   }
1502   return llvm::GlobalVariable::ExternalLinkage;
1503 }
1504 
1505 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1506 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1507 /// existing call uses of the old function in the module, this adjusts them to
1508 /// call the new function directly.
1509 ///
1510 /// This is not just a cleanup: the always_inline pass requires direct calls to
1511 /// functions to be able to inline them.  If there is a bitcast in the way, it
1512 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1513 /// run at -O0.
1514 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1515                                                       llvm::Function *NewFn) {
1516   // If we're redefining a global as a function, don't transform it.
1517   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1518   if (OldFn == 0) return;
1519 
1520   llvm::Type *NewRetTy = NewFn->getReturnType();
1521   SmallVector<llvm::Value*, 4> ArgList;
1522 
1523   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1524        UI != E; ) {
1525     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1526     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1527     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1528     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1529     llvm::CallSite CS(CI);
1530     if (!CI || !CS.isCallee(I)) continue;
1531 
1532     // If the return types don't match exactly, and if the call isn't dead, then
1533     // we can't transform this call.
1534     if (CI->getType() != NewRetTy && !CI->use_empty())
1535       continue;
1536 
1537     // Get the attribute list.
1538     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1539     llvm::AttrListPtr AttrList = CI->getAttributes();
1540 
1541     // Get any return attributes.
1542     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1543 
1544     // Add the return attributes.
1545     if (RAttrs)
1546       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1547 
1548     // If the function was passed too few arguments, don't transform.  If extra
1549     // arguments were passed, we silently drop them.  If any of the types
1550     // mismatch, we don't transform.
1551     unsigned ArgNo = 0;
1552     bool DontTransform = false;
1553     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1554          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1555       if (CS.arg_size() == ArgNo ||
1556           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1557         DontTransform = true;
1558         break;
1559       }
1560 
1561       // Add any parameter attributes.
1562       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1563         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1564     }
1565     if (DontTransform)
1566       continue;
1567 
1568     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1569       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1570 
1571     // Okay, we can transform this.  Create the new call instruction and copy
1572     // over the required information.
1573     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1574     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1575     ArgList.clear();
1576     if (!NewCall->getType()->isVoidTy())
1577       NewCall->takeName(CI);
1578     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1579                                                   AttrVec.end()));
1580     NewCall->setCallingConv(CI->getCallingConv());
1581 
1582     // Finally, remove the old call, replacing any uses with the new one.
1583     if (!CI->use_empty())
1584       CI->replaceAllUsesWith(NewCall);
1585 
1586     // Copy debug location attached to CI.
1587     if (!CI->getDebugLoc().isUnknown())
1588       NewCall->setDebugLoc(CI->getDebugLoc());
1589     CI->eraseFromParent();
1590   }
1591 }
1592 
1593 
1594 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1595   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1596 
1597   // Compute the function info and LLVM type.
1598   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1599   bool variadic = false;
1600   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1601     variadic = fpt->isVariadic();
1602   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic);
1603 
1604   // Get or create the prototype for the function.
1605   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1606 
1607   // Strip off a bitcast if we got one back.
1608   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1609     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1610     Entry = CE->getOperand(0);
1611   }
1612 
1613 
1614   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1615     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1616 
1617     // If the types mismatch then we have to rewrite the definition.
1618     assert(OldFn->isDeclaration() &&
1619            "Shouldn't replace non-declaration");
1620 
1621     // F is the Function* for the one with the wrong type, we must make a new
1622     // Function* and update everything that used F (a declaration) with the new
1623     // Function* (which will be a definition).
1624     //
1625     // This happens if there is a prototype for a function
1626     // (e.g. "int f()") and then a definition of a different type
1627     // (e.g. "int f(int x)").  Move the old function aside so that it
1628     // doesn't interfere with GetAddrOfFunction.
1629     OldFn->setName(StringRef());
1630     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1631 
1632     // If this is an implementation of a function without a prototype, try to
1633     // replace any existing uses of the function (which may be calls) with uses
1634     // of the new function
1635     if (D->getType()->isFunctionNoProtoType()) {
1636       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1637       OldFn->removeDeadConstantUsers();
1638     }
1639 
1640     // Replace uses of F with the Function we will endow with a body.
1641     if (!Entry->use_empty()) {
1642       llvm::Constant *NewPtrForOldDecl =
1643         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1644       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1645     }
1646 
1647     // Ok, delete the old function now, which is dead.
1648     OldFn->eraseFromParent();
1649 
1650     Entry = NewFn;
1651   }
1652 
1653   // We need to set linkage and visibility on the function before
1654   // generating code for it because various parts of IR generation
1655   // want to propagate this information down (e.g. to local static
1656   // declarations).
1657   llvm::Function *Fn = cast<llvm::Function>(Entry);
1658   setFunctionLinkage(D, Fn);
1659 
1660   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1661   setGlobalVisibility(Fn, D);
1662 
1663   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1664 
1665   SetFunctionDefinitionAttributes(D, Fn);
1666   SetLLVMFunctionAttributesForDefinition(D, Fn);
1667 
1668   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1669     AddGlobalCtor(Fn, CA->getPriority());
1670   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1671     AddGlobalDtor(Fn, DA->getPriority());
1672   if (D->hasAttr<AnnotateAttr>())
1673     AddGlobalAnnotations(D, Fn);
1674 }
1675 
1676 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1677   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1678   const AliasAttr *AA = D->getAttr<AliasAttr>();
1679   assert(AA && "Not an alias?");
1680 
1681   StringRef MangledName = getMangledName(GD);
1682 
1683   // If there is a definition in the module, then it wins over the alias.
1684   // This is dubious, but allow it to be safe.  Just ignore the alias.
1685   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1686   if (Entry && !Entry->isDeclaration())
1687     return;
1688 
1689   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1690 
1691   // Create a reference to the named value.  This ensures that it is emitted
1692   // if a deferred decl.
1693   llvm::Constant *Aliasee;
1694   if (isa<llvm::FunctionType>(DeclTy))
1695     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1696                                       /*ForVTable=*/false);
1697   else
1698     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1699                                     llvm::PointerType::getUnqual(DeclTy), 0);
1700 
1701   // Create the new alias itself, but don't set a name yet.
1702   llvm::GlobalValue *GA =
1703     new llvm::GlobalAlias(Aliasee->getType(),
1704                           llvm::Function::ExternalLinkage,
1705                           "", Aliasee, &getModule());
1706 
1707   if (Entry) {
1708     assert(Entry->isDeclaration());
1709 
1710     // If there is a declaration in the module, then we had an extern followed
1711     // by the alias, as in:
1712     //   extern int test6();
1713     //   ...
1714     //   int test6() __attribute__((alias("test7")));
1715     //
1716     // Remove it and replace uses of it with the alias.
1717     GA->takeName(Entry);
1718 
1719     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1720                                                           Entry->getType()));
1721     Entry->eraseFromParent();
1722   } else {
1723     GA->setName(MangledName);
1724   }
1725 
1726   // Set attributes which are particular to an alias; this is a
1727   // specialization of the attributes which may be set on a global
1728   // variable/function.
1729   if (D->hasAttr<DLLExportAttr>()) {
1730     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1731       // The dllexport attribute is ignored for undefined symbols.
1732       if (FD->hasBody())
1733         GA->setLinkage(llvm::Function::DLLExportLinkage);
1734     } else {
1735       GA->setLinkage(llvm::Function::DLLExportLinkage);
1736     }
1737   } else if (D->hasAttr<WeakAttr>() ||
1738              D->hasAttr<WeakRefAttr>() ||
1739              D->isWeakImported()) {
1740     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1741   }
1742 
1743   SetCommonAttributes(D, GA);
1744 }
1745 
1746 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1747                                             ArrayRef<llvm::Type*> Tys) {
1748   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1749                                          Tys);
1750 }
1751 
1752 static llvm::StringMapEntry<llvm::Constant*> &
1753 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1754                          const StringLiteral *Literal,
1755                          bool TargetIsLSB,
1756                          bool &IsUTF16,
1757                          unsigned &StringLength) {
1758   StringRef String = Literal->getString();
1759   unsigned NumBytes = String.size();
1760 
1761   // Check for simple case.
1762   if (!Literal->containsNonAsciiOrNull()) {
1763     StringLength = NumBytes;
1764     return Map.GetOrCreateValue(String);
1765   }
1766 
1767   // Otherwise, convert the UTF8 literals into a byte string.
1768   SmallVector<UTF16, 128> ToBuf(NumBytes);
1769   const UTF8 *FromPtr = (UTF8 *)String.data();
1770   UTF16 *ToPtr = &ToBuf[0];
1771 
1772   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1773                            &ToPtr, ToPtr + NumBytes,
1774                            strictConversion);
1775 
1776   // ConvertUTF8toUTF16 returns the length in ToPtr.
1777   StringLength = ToPtr - &ToBuf[0];
1778 
1779   // Render the UTF-16 string into a byte array and convert to the target byte
1780   // order.
1781   //
1782   // FIXME: This isn't something we should need to do here.
1783   llvm::SmallString<128> AsBytes;
1784   AsBytes.reserve(StringLength * 2);
1785   for (unsigned i = 0; i != StringLength; ++i) {
1786     unsigned short Val = ToBuf[i];
1787     if (TargetIsLSB) {
1788       AsBytes.push_back(Val & 0xFF);
1789       AsBytes.push_back(Val >> 8);
1790     } else {
1791       AsBytes.push_back(Val >> 8);
1792       AsBytes.push_back(Val & 0xFF);
1793     }
1794   }
1795   // Append one extra null character, the second is automatically added by our
1796   // caller.
1797   AsBytes.push_back(0);
1798 
1799   IsUTF16 = true;
1800   return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
1801 }
1802 
1803 static llvm::StringMapEntry<llvm::Constant*> &
1804 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1805 		       const StringLiteral *Literal,
1806 		       unsigned &StringLength)
1807 {
1808 	StringRef String = Literal->getString();
1809 	StringLength = String.size();
1810 	return Map.GetOrCreateValue(String);
1811 }
1812 
1813 llvm::Constant *
1814 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1815   unsigned StringLength = 0;
1816   bool isUTF16 = false;
1817   llvm::StringMapEntry<llvm::Constant*> &Entry =
1818     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1819                              getTargetData().isLittleEndian(),
1820                              isUTF16, StringLength);
1821 
1822   if (llvm::Constant *C = Entry.getValue())
1823     return C;
1824 
1825   llvm::Constant *Zero =
1826       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1827   llvm::Constant *Zeros[] = { Zero, Zero };
1828 
1829   // If we don't already have it, get __CFConstantStringClassReference.
1830   if (!CFConstantStringClassRef) {
1831     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1832     Ty = llvm::ArrayType::get(Ty, 0);
1833     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1834                                            "__CFConstantStringClassReference");
1835     // Decay array -> ptr
1836     CFConstantStringClassRef =
1837       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1838   }
1839 
1840   QualType CFTy = getContext().getCFConstantStringType();
1841 
1842   llvm::StructType *STy =
1843     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1844 
1845   llvm::Constant *Fields[4];
1846 
1847   // Class pointer.
1848   Fields[0] = CFConstantStringClassRef;
1849 
1850   // Flags.
1851   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1852   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1853     llvm::ConstantInt::get(Ty, 0x07C8);
1854 
1855   // String pointer.
1856   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1857 
1858   llvm::GlobalValue::LinkageTypes Linkage;
1859   if (isUTF16)
1860     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1861     Linkage = llvm::GlobalValue::InternalLinkage;
1862   else
1863     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1864     // when using private linkage. It is not clear if this is a bug in ld
1865     // or a reasonable new restriction.
1866     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1867 
1868   // Note: -fwritable-strings doesn't make the backing store strings of
1869   // CFStrings writable. (See <rdar://problem/10657500>)
1870   llvm::GlobalVariable *GV =
1871     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
1872                              Linkage, C, ".str");
1873   GV->setUnnamedAddr(true);
1874   if (isUTF16) {
1875     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1876     GV->setAlignment(Align.getQuantity());
1877   } else {
1878     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1879     GV->setAlignment(Align.getQuantity());
1880   }
1881   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1882 
1883   // String length.
1884   Ty = getTypes().ConvertType(getContext().LongTy);
1885   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1886 
1887   // The struct.
1888   C = llvm::ConstantStruct::get(STy, Fields);
1889   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1890                                 llvm::GlobalVariable::PrivateLinkage, C,
1891                                 "_unnamed_cfstring_");
1892   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
1893     GV->setSection(Sect);
1894   Entry.setValue(GV);
1895 
1896   return GV;
1897 }
1898 
1899 static RecordDecl *
1900 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
1901                  DeclContext *DC, IdentifierInfo *Id) {
1902   SourceLocation Loc;
1903   if (Ctx.getLangOptions().CPlusPlus)
1904     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1905   else
1906     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1907 }
1908 
1909 llvm::Constant *
1910 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1911   unsigned StringLength = 0;
1912   llvm::StringMapEntry<llvm::Constant*> &Entry =
1913     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1914 
1915   if (llvm::Constant *C = Entry.getValue())
1916     return C;
1917 
1918   llvm::Constant *Zero =
1919   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1920   llvm::Constant *Zeros[] = { Zero, Zero };
1921 
1922   // If we don't already have it, get _NSConstantStringClassReference.
1923   if (!ConstantStringClassRef) {
1924     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1925     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1926     llvm::Constant *GV;
1927     if (Features.ObjCNonFragileABI) {
1928       std::string str =
1929         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1930                             : "OBJC_CLASS_$_" + StringClass;
1931       GV = getObjCRuntime().GetClassGlobal(str);
1932       // Make sure the result is of the correct type.
1933       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1934       ConstantStringClassRef =
1935         llvm::ConstantExpr::getBitCast(GV, PTy);
1936     } else {
1937       std::string str =
1938         StringClass.empty() ? "_NSConstantStringClassReference"
1939                             : "_" + StringClass + "ClassReference";
1940       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1941       GV = CreateRuntimeVariable(PTy, str);
1942       // Decay array -> ptr
1943       ConstantStringClassRef =
1944         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1945     }
1946   }
1947 
1948   if (!NSConstantStringType) {
1949     // Construct the type for a constant NSString.
1950     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
1951                                      Context.getTranslationUnitDecl(),
1952                                    &Context.Idents.get("__builtin_NSString"));
1953     D->startDefinition();
1954 
1955     QualType FieldTypes[3];
1956 
1957     // const int *isa;
1958     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
1959     // const char *str;
1960     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
1961     // unsigned int length;
1962     FieldTypes[2] = Context.UnsignedIntTy;
1963 
1964     // Create fields
1965     for (unsigned i = 0; i < 3; ++i) {
1966       FieldDecl *Field = FieldDecl::Create(Context, D,
1967                                            SourceLocation(),
1968                                            SourceLocation(), 0,
1969                                            FieldTypes[i], /*TInfo=*/0,
1970                                            /*BitWidth=*/0,
1971                                            /*Mutable=*/false,
1972                                            /*HasInit=*/false);
1973       Field->setAccess(AS_public);
1974       D->addDecl(Field);
1975     }
1976 
1977     D->completeDefinition();
1978     QualType NSTy = Context.getTagDeclType(D);
1979     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1980   }
1981 
1982   llvm::Constant *Fields[3];
1983 
1984   // Class pointer.
1985   Fields[0] = ConstantStringClassRef;
1986 
1987   // String pointer.
1988   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1989 
1990   llvm::GlobalValue::LinkageTypes Linkage;
1991   bool isConstant;
1992   Linkage = llvm::GlobalValue::PrivateLinkage;
1993   isConstant = !Features.WritableStrings;
1994 
1995   llvm::GlobalVariable *GV =
1996   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1997                            ".str");
1998   GV->setUnnamedAddr(true);
1999   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2000   GV->setAlignment(Align.getQuantity());
2001   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2002 
2003   // String length.
2004   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2005   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2006 
2007   // The struct.
2008   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2009   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2010                                 llvm::GlobalVariable::PrivateLinkage, C,
2011                                 "_unnamed_nsstring_");
2012   // FIXME. Fix section.
2013   if (const char *Sect =
2014         Features.ObjCNonFragileABI
2015           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2016           : getContext().getTargetInfo().getNSStringSection())
2017     GV->setSection(Sect);
2018   Entry.setValue(GV);
2019 
2020   return GV;
2021 }
2022 
2023 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2024   if (ObjCFastEnumerationStateType.isNull()) {
2025     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2026                                      Context.getTranslationUnitDecl(),
2027                       &Context.Idents.get("__objcFastEnumerationState"));
2028     D->startDefinition();
2029 
2030     QualType FieldTypes[] = {
2031       Context.UnsignedLongTy,
2032       Context.getPointerType(Context.getObjCIdType()),
2033       Context.getPointerType(Context.UnsignedLongTy),
2034       Context.getConstantArrayType(Context.UnsignedLongTy,
2035                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2036     };
2037 
2038     for (size_t i = 0; i < 4; ++i) {
2039       FieldDecl *Field = FieldDecl::Create(Context,
2040                                            D,
2041                                            SourceLocation(),
2042                                            SourceLocation(), 0,
2043                                            FieldTypes[i], /*TInfo=*/0,
2044                                            /*BitWidth=*/0,
2045                                            /*Mutable=*/false,
2046                                            /*HasInit=*/false);
2047       Field->setAccess(AS_public);
2048       D->addDecl(Field);
2049     }
2050 
2051     D->completeDefinition();
2052     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2053   }
2054 
2055   return ObjCFastEnumerationStateType;
2056 }
2057 
2058 /// GetStringForStringLiteral - Return the appropriate bytes for a
2059 /// string literal, properly padded to match the literal type.
2060 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
2061   assert((E->isAscii() || E->isUTF8())
2062          && "Use GetConstantArrayFromStringLiteral for wide strings");
2063   const ASTContext &Context = getContext();
2064   const ConstantArrayType *CAT =
2065     Context.getAsConstantArrayType(E->getType());
2066   assert(CAT && "String isn't pointer or array!");
2067 
2068   // Resize the string to the right size.
2069   uint64_t RealLen = CAT->getSize().getZExtValue();
2070 
2071   std::string Str = E->getString().str();
2072   Str.resize(RealLen, '\0');
2073 
2074   return Str;
2075 }
2076 
2077 llvm::Constant *
2078 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2079   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2080 
2081   // Don't emit it as the address of the string, emit the string data itself
2082   // as an inline array.
2083   if (E->getCharByteWidth()==1) {
2084     return llvm::ConstantArray::get(VMContext,
2085                                     GetStringForStringLiteral(E), false);
2086   } else {
2087     llvm::ArrayType *AType =
2088       cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2089     llvm::Type *ElemTy = AType->getElementType();
2090     unsigned NumElements = AType->getNumElements();
2091     std::vector<llvm::Constant*> Elts;
2092     Elts.reserve(NumElements);
2093 
2094     for(unsigned i=0;i<E->getLength();++i) {
2095       unsigned value = E->getCodeUnit(i);
2096       llvm::Constant *C = llvm::ConstantInt::get(ElemTy,value,false);
2097       Elts.push_back(C);
2098     }
2099     for(unsigned i=E->getLength();i<NumElements;++i) {
2100       llvm::Constant *C = llvm::ConstantInt::get(ElemTy,0,false);
2101       Elts.push_back(C);
2102     }
2103 
2104     return llvm::ConstantArray::get(AType, Elts);
2105   }
2106 
2107 }
2108 
2109 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2110 /// constant array for the given string literal.
2111 llvm::Constant *
2112 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2113   // FIXME: This can be more efficient.
2114   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
2115   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2116   if (S->isAscii() || S->isUTF8()) {
2117     return GetAddrOfConstantString(GetStringForStringLiteral(S),
2118                                    /* GlobalName */ 0,
2119                                    Align.getQuantity());
2120   }
2121 
2122   // FIXME: the following does not memoize wide strings
2123   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2124   llvm::GlobalVariable *GV =
2125     new llvm::GlobalVariable(getModule(),C->getType(),
2126                              !Features.WritableStrings,
2127                              llvm::GlobalValue::PrivateLinkage,
2128                              C,".str");
2129 
2130   GV->setAlignment(Align.getQuantity());
2131   GV->setUnnamedAddr(true);
2132 
2133   return GV;
2134 }
2135 
2136 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2137 /// array for the given ObjCEncodeExpr node.
2138 llvm::Constant *
2139 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2140   std::string Str;
2141   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2142 
2143   return GetAddrOfConstantCString(Str);
2144 }
2145 
2146 
2147 /// GenerateWritableString -- Creates storage for a string literal.
2148 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2149                                              bool constant,
2150                                              CodeGenModule &CGM,
2151                                              const char *GlobalName,
2152                                              unsigned Alignment) {
2153   // Create Constant for this string literal. Don't add a '\0'.
2154   llvm::Constant *C =
2155       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
2156 
2157   // Create a global variable for this string
2158   llvm::GlobalVariable *GV =
2159     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2160                              llvm::GlobalValue::PrivateLinkage,
2161                              C, GlobalName);
2162   GV->setAlignment(Alignment);
2163   GV->setUnnamedAddr(true);
2164   return GV;
2165 }
2166 
2167 /// GetAddrOfConstantString - Returns a pointer to a character array
2168 /// containing the literal. This contents are exactly that of the
2169 /// given string, i.e. it will not be null terminated automatically;
2170 /// see GetAddrOfConstantCString. Note that whether the result is
2171 /// actually a pointer to an LLVM constant depends on
2172 /// Feature.WriteableStrings.
2173 ///
2174 /// The result has pointer to array type.
2175 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2176                                                        const char *GlobalName,
2177                                                        unsigned Alignment) {
2178   bool IsConstant = !Features.WritableStrings;
2179 
2180   // Get the default prefix if a name wasn't specified.
2181   if (!GlobalName)
2182     GlobalName = ".str";
2183 
2184   // Don't share any string literals if strings aren't constant.
2185   if (!IsConstant)
2186     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2187 
2188   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2189     ConstantStringMap.GetOrCreateValue(Str);
2190 
2191   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2192     if (Alignment > GV->getAlignment()) {
2193       GV->setAlignment(Alignment);
2194     }
2195     return GV;
2196   }
2197 
2198   // Create a global variable for this.
2199   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment);
2200   Entry.setValue(GV);
2201   return GV;
2202 }
2203 
2204 /// GetAddrOfConstantCString - Returns a pointer to a character
2205 /// array containing the literal and a terminating '\0'
2206 /// character. The result has pointer to array type.
2207 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2208                                                         const char *GlobalName,
2209                                                         unsigned Alignment) {
2210   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2211   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2212 }
2213 
2214 /// EmitObjCPropertyImplementations - Emit information for synthesized
2215 /// properties for an implementation.
2216 void CodeGenModule::EmitObjCPropertyImplementations(const
2217                                                     ObjCImplementationDecl *D) {
2218   for (ObjCImplementationDecl::propimpl_iterator
2219          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2220     ObjCPropertyImplDecl *PID = *i;
2221 
2222     // Dynamic is just for type-checking.
2223     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2224       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2225 
2226       // Determine which methods need to be implemented, some may have
2227       // been overridden. Note that ::isSynthesized is not the method
2228       // we want, that just indicates if the decl came from a
2229       // property. What we want to know is if the method is defined in
2230       // this implementation.
2231       if (!D->getInstanceMethod(PD->getGetterName()))
2232         CodeGenFunction(*this).GenerateObjCGetter(
2233                                  const_cast<ObjCImplementationDecl *>(D), PID);
2234       if (!PD->isReadOnly() &&
2235           !D->getInstanceMethod(PD->getSetterName()))
2236         CodeGenFunction(*this).GenerateObjCSetter(
2237                                  const_cast<ObjCImplementationDecl *>(D), PID);
2238     }
2239   }
2240 }
2241 
2242 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2243   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2244   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2245        ivar; ivar = ivar->getNextIvar())
2246     if (ivar->getType().isDestructedType())
2247       return true;
2248 
2249   return false;
2250 }
2251 
2252 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2253 /// for an implementation.
2254 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2255   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2256   if (needsDestructMethod(D)) {
2257     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2258     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2259     ObjCMethodDecl *DTORMethod =
2260       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2261                              cxxSelector, getContext().VoidTy, 0, D,
2262                              /*isInstance=*/true, /*isVariadic=*/false,
2263                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2264                              /*isDefined=*/false, ObjCMethodDecl::Required);
2265     D->addInstanceMethod(DTORMethod);
2266     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2267     D->setHasCXXStructors(true);
2268   }
2269 
2270   // If the implementation doesn't have any ivar initializers, we don't need
2271   // a .cxx_construct.
2272   if (D->getNumIvarInitializers() == 0)
2273     return;
2274 
2275   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2276   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2277   // The constructor returns 'self'.
2278   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2279                                                 D->getLocation(),
2280                                                 D->getLocation(),
2281                                                 cxxSelector,
2282                                                 getContext().getObjCIdType(), 0,
2283                                                 D, /*isInstance=*/true,
2284                                                 /*isVariadic=*/false,
2285                                                 /*isSynthesized=*/true,
2286                                                 /*isImplicitlyDeclared=*/true,
2287                                                 /*isDefined=*/false,
2288                                                 ObjCMethodDecl::Required);
2289   D->addInstanceMethod(CTORMethod);
2290   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2291   D->setHasCXXStructors(true);
2292 }
2293 
2294 /// EmitNamespace - Emit all declarations in a namespace.
2295 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2296   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2297        I != E; ++I)
2298     EmitTopLevelDecl(*I);
2299 }
2300 
2301 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2302 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2303   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2304       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2305     ErrorUnsupported(LSD, "linkage spec");
2306     return;
2307   }
2308 
2309   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2310        I != E; ++I)
2311     EmitTopLevelDecl(*I);
2312 }
2313 
2314 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2315 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2316   // If an error has occurred, stop code generation, but continue
2317   // parsing and semantic analysis (to ensure all warnings and errors
2318   // are emitted).
2319   if (Diags.hasErrorOccurred())
2320     return;
2321 
2322   // Ignore dependent declarations.
2323   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2324     return;
2325 
2326   switch (D->getKind()) {
2327   case Decl::CXXConversion:
2328   case Decl::CXXMethod:
2329   case Decl::Function:
2330     // Skip function templates
2331     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2332         cast<FunctionDecl>(D)->isLateTemplateParsed())
2333       return;
2334 
2335     EmitGlobal(cast<FunctionDecl>(D));
2336     break;
2337 
2338   case Decl::Var:
2339     EmitGlobal(cast<VarDecl>(D));
2340     break;
2341 
2342   // Indirect fields from global anonymous structs and unions can be
2343   // ignored; only the actual variable requires IR gen support.
2344   case Decl::IndirectField:
2345     break;
2346 
2347   // C++ Decls
2348   case Decl::Namespace:
2349     EmitNamespace(cast<NamespaceDecl>(D));
2350     break;
2351     // No code generation needed.
2352   case Decl::UsingShadow:
2353   case Decl::Using:
2354   case Decl::UsingDirective:
2355   case Decl::ClassTemplate:
2356   case Decl::FunctionTemplate:
2357   case Decl::TypeAliasTemplate:
2358   case Decl::NamespaceAlias:
2359   case Decl::Block:
2360   case Decl::Import:
2361     break;
2362   case Decl::CXXConstructor:
2363     // Skip function templates
2364     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2365         cast<FunctionDecl>(D)->isLateTemplateParsed())
2366       return;
2367 
2368     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2369     break;
2370   case Decl::CXXDestructor:
2371     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2372       return;
2373     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2374     break;
2375 
2376   case Decl::StaticAssert:
2377     // Nothing to do.
2378     break;
2379 
2380   // Objective-C Decls
2381 
2382   // Forward declarations, no (immediate) code generation.
2383   case Decl::ObjCInterface:
2384     break;
2385 
2386   case Decl::ObjCCategory: {
2387     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2388     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2389       Context.ResetObjCLayout(CD->getClassInterface());
2390     break;
2391   }
2392 
2393   case Decl::ObjCProtocol: {
2394     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2395     if (Proto->isThisDeclarationADefinition())
2396       ObjCRuntime->GenerateProtocol(Proto);
2397     break;
2398   }
2399 
2400   case Decl::ObjCCategoryImpl:
2401     // Categories have properties but don't support synthesize so we
2402     // can ignore them here.
2403     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2404     break;
2405 
2406   case Decl::ObjCImplementation: {
2407     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2408     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2409       Context.ResetObjCLayout(OMD->getClassInterface());
2410     EmitObjCPropertyImplementations(OMD);
2411     EmitObjCIvarInitializations(OMD);
2412     ObjCRuntime->GenerateClass(OMD);
2413     break;
2414   }
2415   case Decl::ObjCMethod: {
2416     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2417     // If this is not a prototype, emit the body.
2418     if (OMD->getBody())
2419       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2420     break;
2421   }
2422   case Decl::ObjCCompatibleAlias:
2423     // compatibility-alias is a directive and has no code gen.
2424     break;
2425 
2426   case Decl::LinkageSpec:
2427     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2428     break;
2429 
2430   case Decl::FileScopeAsm: {
2431     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2432     StringRef AsmString = AD->getAsmString()->getString();
2433 
2434     const std::string &S = getModule().getModuleInlineAsm();
2435     if (S.empty())
2436       getModule().setModuleInlineAsm(AsmString);
2437     else if (*--S.end() == '\n')
2438       getModule().setModuleInlineAsm(S + AsmString.str());
2439     else
2440       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2441     break;
2442   }
2443 
2444   default:
2445     // Make sure we handled everything we should, every other kind is a
2446     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2447     // function. Need to recode Decl::Kind to do that easily.
2448     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2449   }
2450 }
2451 
2452 /// Turns the given pointer into a constant.
2453 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2454                                           const void *Ptr) {
2455   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2456   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2457   return llvm::ConstantInt::get(i64, PtrInt);
2458 }
2459 
2460 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2461                                    llvm::NamedMDNode *&GlobalMetadata,
2462                                    GlobalDecl D,
2463                                    llvm::GlobalValue *Addr) {
2464   if (!GlobalMetadata)
2465     GlobalMetadata =
2466       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2467 
2468   // TODO: should we report variant information for ctors/dtors?
2469   llvm::Value *Ops[] = {
2470     Addr,
2471     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2472   };
2473   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2474 }
2475 
2476 /// Emits metadata nodes associating all the global values in the
2477 /// current module with the Decls they came from.  This is useful for
2478 /// projects using IR gen as a subroutine.
2479 ///
2480 /// Since there's currently no way to associate an MDNode directly
2481 /// with an llvm::GlobalValue, we create a global named metadata
2482 /// with the name 'clang.global.decl.ptrs'.
2483 void CodeGenModule::EmitDeclMetadata() {
2484   llvm::NamedMDNode *GlobalMetadata = 0;
2485 
2486   // StaticLocalDeclMap
2487   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2488          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2489        I != E; ++I) {
2490     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2491     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2492   }
2493 }
2494 
2495 /// Emits metadata nodes for all the local variables in the current
2496 /// function.
2497 void CodeGenFunction::EmitDeclMetadata() {
2498   if (LocalDeclMap.empty()) return;
2499 
2500   llvm::LLVMContext &Context = getLLVMContext();
2501 
2502   // Find the unique metadata ID for this name.
2503   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2504 
2505   llvm::NamedMDNode *GlobalMetadata = 0;
2506 
2507   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2508          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2509     const Decl *D = I->first;
2510     llvm::Value *Addr = I->second;
2511 
2512     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2513       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2514       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2515     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2516       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2517       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2518     }
2519   }
2520 }
2521 
2522 void CodeGenModule::EmitCoverageFile() {
2523   if (!getCodeGenOpts().CoverageFile.empty()) {
2524     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2525       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2526       llvm::LLVMContext &Ctx = TheModule.getContext();
2527       llvm::MDString *CoverageFile =
2528           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2529       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2530         llvm::MDNode *CU = CUNode->getOperand(i);
2531         llvm::Value *node[] = { CoverageFile, CU };
2532         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2533         GCov->addOperand(N);
2534       }
2535     }
2536   }
2537 }
2538