1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/TargetData.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/ErrorHandling.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 47 switch (CGM.getContext().Target.getCXXABI()) { 48 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 49 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 50 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 51 } 52 53 llvm_unreachable("invalid C++ ABI kind"); 54 return *CreateItaniumCXXABI(CGM); 55 } 56 57 58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 59 llvm::Module &M, const llvm::TargetData &TD, 60 Diagnostic &diags) 61 : BlockModule(C, M, TD, Types, *this), Context(C), 62 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0){ 74 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info generation is enabled, create the CGDebugInfo object. 90 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 91 } 92 93 CodeGenModule::~CodeGenModule() { 94 delete Runtime; 95 delete &ABI; 96 delete TBAA; 97 delete DebugInfo; 98 } 99 100 void CodeGenModule::createObjCRuntime() { 101 if (!Features.NeXTRuntime) 102 Runtime = CreateGNUObjCRuntime(*this); 103 else if (Features.ObjCNonFragileABI) 104 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 105 else 106 Runtime = CreateMacObjCRuntime(*this); 107 } 108 109 void CodeGenModule::Release() { 110 EmitDeferred(); 111 EmitCXXGlobalInitFunc(); 112 EmitCXXGlobalDtorFunc(); 113 if (Runtime) 114 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 115 AddGlobalCtor(ObjCInitFunction); 116 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 117 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 118 EmitAnnotations(); 119 EmitLLVMUsed(); 120 121 SimplifyPersonality(); 122 123 if (getCodeGenOpts().EmitDeclMetadata) 124 EmitDeclMetadata(); 125 } 126 127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 128 if (!TBAA) 129 return 0; 130 return TBAA->getTBAAInfo(QTy); 131 } 132 133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 134 llvm::MDNode *TBAAInfo) { 135 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 136 } 137 138 bool CodeGenModule::isTargetDarwin() const { 139 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 140 } 141 142 /// ErrorUnsupported - Print out an error that codegen doesn't support the 143 /// specified stmt yet. 144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 145 bool OmitOnError) { 146 if (OmitOnError && getDiags().hasErrorOccurred()) 147 return; 148 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 149 "cannot compile this %0 yet"); 150 std::string Msg = Type; 151 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 152 << Msg << S->getSourceRange(); 153 } 154 155 /// ErrorUnsupported - Print out an error that codegen doesn't support the 156 /// specified decl yet. 157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 158 bool OmitOnError) { 159 if (OmitOnError && getDiags().hasErrorOccurred()) 160 return; 161 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 162 "cannot compile this %0 yet"); 163 std::string Msg = Type; 164 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 165 } 166 167 static llvm::GlobalValue::VisibilityTypes GetLLVMVisibility(Visibility V) { 168 switch (V) { 169 case DefaultVisibility: return llvm::GlobalValue::DefaultVisibility; 170 case HiddenVisibility: return llvm::GlobalValue::HiddenVisibility; 171 case ProtectedVisibility: return llvm::GlobalValue::ProtectedVisibility; 172 } 173 llvm_unreachable("unknown visibility!"); 174 return llvm::GlobalValue::DefaultVisibility; 175 } 176 177 178 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 179 const NamedDecl *D, 180 bool IsForDefinition) const { 181 // Internal definitions always have default visibility. 182 if (GV->hasLocalLinkage()) { 183 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 184 return; 185 } 186 187 // Set visibility for definitions. 188 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 189 if (LV.visibilityExplicit() || 190 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 191 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 192 } 193 194 /// Set the symbol visibility of type information (vtable and RTTI) 195 /// associated with the given type. 196 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 197 const CXXRecordDecl *RD, 198 bool IsForRTTI, 199 bool IsForDefinition) const { 200 setGlobalVisibility(GV, RD, IsForDefinition); 201 202 if (!CodeGenOpts.HiddenWeakVTables) 203 return; 204 205 // We want to drop the visibility to hidden for weak type symbols. 206 // This isn't possible if there might be unresolved references 207 // elsewhere that rely on this symbol being visible. 208 209 // This should be kept roughly in sync with setThunkVisibility 210 // in CGVTables.cpp. 211 212 // Preconditions. 213 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 214 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 215 return; 216 217 // Don't override an explicit visibility attribute. 218 if (RD->hasAttr<VisibilityAttr>()) 219 return; 220 221 switch (RD->getTemplateSpecializationKind()) { 222 // We have to disable the optimization if this is an EI definition 223 // because there might be EI declarations in other shared objects. 224 case TSK_ExplicitInstantiationDefinition: 225 case TSK_ExplicitInstantiationDeclaration: 226 return; 227 228 // Every use of a non-template class's type information has to emit it. 229 case TSK_Undeclared: 230 break; 231 232 // In theory, implicit instantiations can ignore the possibility of 233 // an explicit instantiation declaration because there necessarily 234 // must be an EI definition somewhere with default visibility. In 235 // practice, it's possible to have an explicit instantiation for 236 // an arbitrary template class, and linkers aren't necessarily able 237 // to deal with mixed-visibility symbols. 238 case TSK_ExplicitSpecialization: 239 case TSK_ImplicitInstantiation: 240 if (!CodeGenOpts.HiddenWeakTemplateVTables) 241 return; 242 break; 243 } 244 245 // If there's a key function, there may be translation units 246 // that don't have the key function's definition. But ignore 247 // this if we're emitting RTTI under -fno-rtti. 248 if (!IsForRTTI || Features.RTTI) 249 if (Context.getKeyFunction(RD)) 250 return; 251 252 // Otherwise, drop the visibility to hidden. 253 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 254 GV->setUnnamedAddr(true); 255 } 256 257 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 258 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 259 260 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 261 if (!Str.empty()) 262 return Str; 263 264 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 265 IdentifierInfo *II = ND->getIdentifier(); 266 assert(II && "Attempt to mangle unnamed decl."); 267 268 Str = II->getName(); 269 return Str; 270 } 271 272 llvm::SmallString<256> Buffer; 273 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 274 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 275 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 276 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 277 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 278 getCXXABI().getMangleContext().mangleBlock(BD, Buffer); 279 else 280 getCXXABI().getMangleContext().mangleName(ND, Buffer); 281 282 // Allocate space for the mangled name. 283 size_t Length = Buffer.size(); 284 char *Name = MangledNamesAllocator.Allocate<char>(Length); 285 std::copy(Buffer.begin(), Buffer.end(), Name); 286 287 Str = llvm::StringRef(Name, Length); 288 289 return Str; 290 } 291 292 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 293 const BlockDecl *BD) { 294 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 295 const Decl *D = GD.getDecl(); 296 if (D == 0) 297 MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer()); 298 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 299 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer()); 300 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 301 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer()); 302 else 303 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer()); 304 } 305 306 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 307 return getModule().getNamedValue(Name); 308 } 309 310 /// AddGlobalCtor - Add a function to the list that will be called before 311 /// main() runs. 312 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 313 // FIXME: Type coercion of void()* types. 314 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 315 } 316 317 /// AddGlobalDtor - Add a function to the list that will be called 318 /// when the module is unloaded. 319 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 320 // FIXME: Type coercion of void()* types. 321 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 322 } 323 324 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 325 // Ctor function type is void()*. 326 llvm::FunctionType* CtorFTy = 327 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 328 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 329 330 // Get the type of a ctor entry, { i32, void ()* }. 331 llvm::StructType* CtorStructTy = 332 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 333 llvm::PointerType::getUnqual(CtorFTy), NULL); 334 335 // Construct the constructor and destructor arrays. 336 std::vector<llvm::Constant*> Ctors; 337 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 338 std::vector<llvm::Constant*> S; 339 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 340 I->second, false)); 341 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 342 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 343 } 344 345 if (!Ctors.empty()) { 346 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 347 new llvm::GlobalVariable(TheModule, AT, false, 348 llvm::GlobalValue::AppendingLinkage, 349 llvm::ConstantArray::get(AT, Ctors), 350 GlobalName); 351 } 352 } 353 354 void CodeGenModule::EmitAnnotations() { 355 if (Annotations.empty()) 356 return; 357 358 // Create a new global variable for the ConstantStruct in the Module. 359 llvm::Constant *Array = 360 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 361 Annotations.size()), 362 Annotations); 363 llvm::GlobalValue *gv = 364 new llvm::GlobalVariable(TheModule, Array->getType(), false, 365 llvm::GlobalValue::AppendingLinkage, Array, 366 "llvm.global.annotations"); 367 gv->setSection("llvm.metadata"); 368 } 369 370 llvm::GlobalValue::LinkageTypes 371 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 372 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 373 374 if (Linkage == GVA_Internal) 375 return llvm::Function::InternalLinkage; 376 377 if (D->hasAttr<DLLExportAttr>()) 378 return llvm::Function::DLLExportLinkage; 379 380 if (D->hasAttr<WeakAttr>()) 381 return llvm::Function::WeakAnyLinkage; 382 383 // In C99 mode, 'inline' functions are guaranteed to have a strong 384 // definition somewhere else, so we can use available_externally linkage. 385 if (Linkage == GVA_C99Inline) 386 return llvm::Function::AvailableExternallyLinkage; 387 388 // In C++, the compiler has to emit a definition in every translation unit 389 // that references the function. We should use linkonce_odr because 390 // a) if all references in this translation unit are optimized away, we 391 // don't need to codegen it. b) if the function persists, it needs to be 392 // merged with other definitions. c) C++ has the ODR, so we know the 393 // definition is dependable. 394 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 395 return llvm::Function::LinkOnceODRLinkage; 396 397 // An explicit instantiation of a template has weak linkage, since 398 // explicit instantiations can occur in multiple translation units 399 // and must all be equivalent. However, we are not allowed to 400 // throw away these explicit instantiations. 401 if (Linkage == GVA_ExplicitTemplateInstantiation) 402 return llvm::Function::WeakODRLinkage; 403 404 // Otherwise, we have strong external linkage. 405 assert(Linkage == GVA_StrongExternal); 406 return llvm::Function::ExternalLinkage; 407 } 408 409 410 /// SetFunctionDefinitionAttributes - Set attributes for a global. 411 /// 412 /// FIXME: This is currently only done for aliases and functions, but not for 413 /// variables (these details are set in EmitGlobalVarDefinition for variables). 414 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 415 llvm::GlobalValue *GV) { 416 SetCommonAttributes(D, GV); 417 } 418 419 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 420 const CGFunctionInfo &Info, 421 llvm::Function *F) { 422 unsigned CallingConv; 423 AttributeListType AttributeList; 424 ConstructAttributeList(Info, D, AttributeList, CallingConv); 425 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 426 AttributeList.size())); 427 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 428 } 429 430 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 431 llvm::Function *F) { 432 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 433 F->addFnAttr(llvm::Attribute::NoUnwind); 434 435 if (D->hasAttr<AlwaysInlineAttr>()) 436 F->addFnAttr(llvm::Attribute::AlwaysInline); 437 438 if (D->hasAttr<NakedAttr>()) 439 F->addFnAttr(llvm::Attribute::Naked); 440 441 if (D->hasAttr<NoInlineAttr>()) 442 F->addFnAttr(llvm::Attribute::NoInline); 443 444 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 445 F->setUnnamedAddr(true); 446 447 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 448 F->addFnAttr(llvm::Attribute::StackProtect); 449 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 450 F->addFnAttr(llvm::Attribute::StackProtectReq); 451 452 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 453 if (alignment) 454 F->setAlignment(alignment); 455 456 // C++ ABI requires 2-byte alignment for member functions. 457 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 458 F->setAlignment(2); 459 } 460 461 void CodeGenModule::SetCommonAttributes(const Decl *D, 462 llvm::GlobalValue *GV) { 463 if (isa<NamedDecl>(D)) 464 setGlobalVisibility(GV, cast<NamedDecl>(D), /*ForDef*/ true); 465 else 466 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 467 468 if (D->hasAttr<UsedAttr>()) 469 AddUsedGlobal(GV); 470 471 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 472 GV->setSection(SA->getName()); 473 474 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 475 } 476 477 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 478 llvm::Function *F, 479 const CGFunctionInfo &FI) { 480 SetLLVMFunctionAttributes(D, FI, F); 481 SetLLVMFunctionAttributesForDefinition(D, F); 482 483 F->setLinkage(llvm::Function::InternalLinkage); 484 485 SetCommonAttributes(D, F); 486 } 487 488 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 489 llvm::Function *F, 490 bool IsIncompleteFunction) { 491 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 492 493 if (!IsIncompleteFunction) 494 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 495 496 // Only a few attributes are set on declarations; these may later be 497 // overridden by a definition. 498 499 if (FD->hasAttr<DLLImportAttr>()) { 500 F->setLinkage(llvm::Function::DLLImportLinkage); 501 } else if (FD->hasAttr<WeakAttr>() || 502 FD->hasAttr<WeakImportAttr>()) { 503 // "extern_weak" is overloaded in LLVM; we probably should have 504 // separate linkage types for this. 505 F->setLinkage(llvm::Function::ExternalWeakLinkage); 506 } else { 507 F->setLinkage(llvm::Function::ExternalLinkage); 508 509 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 510 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 511 F->setVisibility(GetLLVMVisibility(LV.visibility())); 512 } 513 } 514 515 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 516 F->setSection(SA->getName()); 517 } 518 519 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 520 assert(!GV->isDeclaration() && 521 "Only globals with definition can force usage."); 522 LLVMUsed.push_back(GV); 523 } 524 525 void CodeGenModule::EmitLLVMUsed() { 526 // Don't create llvm.used if there is no need. 527 if (LLVMUsed.empty()) 528 return; 529 530 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 531 532 // Convert LLVMUsed to what ConstantArray needs. 533 std::vector<llvm::Constant*> UsedArray; 534 UsedArray.resize(LLVMUsed.size()); 535 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 536 UsedArray[i] = 537 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 538 i8PTy); 539 } 540 541 if (UsedArray.empty()) 542 return; 543 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 544 545 llvm::GlobalVariable *GV = 546 new llvm::GlobalVariable(getModule(), ATy, false, 547 llvm::GlobalValue::AppendingLinkage, 548 llvm::ConstantArray::get(ATy, UsedArray), 549 "llvm.used"); 550 551 GV->setSection("llvm.metadata"); 552 } 553 554 void CodeGenModule::EmitDeferred() { 555 // Emit code for any potentially referenced deferred decls. Since a 556 // previously unused static decl may become used during the generation of code 557 // for a static function, iterate until no changes are made. 558 559 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 560 if (!DeferredVTables.empty()) { 561 const CXXRecordDecl *RD = DeferredVTables.back(); 562 DeferredVTables.pop_back(); 563 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 564 continue; 565 } 566 567 GlobalDecl D = DeferredDeclsToEmit.back(); 568 DeferredDeclsToEmit.pop_back(); 569 570 // Check to see if we've already emitted this. This is necessary 571 // for a couple of reasons: first, decls can end up in the 572 // deferred-decls queue multiple times, and second, decls can end 573 // up with definitions in unusual ways (e.g. by an extern inline 574 // function acquiring a strong function redefinition). Just 575 // ignore these cases. 576 // 577 // TODO: That said, looking this up multiple times is very wasteful. 578 llvm::StringRef Name = getMangledName(D); 579 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 580 assert(CGRef && "Deferred decl wasn't referenced?"); 581 582 if (!CGRef->isDeclaration()) 583 continue; 584 585 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 586 // purposes an alias counts as a definition. 587 if (isa<llvm::GlobalAlias>(CGRef)) 588 continue; 589 590 // Otherwise, emit the definition and move on to the next one. 591 EmitGlobalDefinition(D); 592 } 593 } 594 595 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 596 /// annotation information for a given GlobalValue. The annotation struct is 597 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 598 /// GlobalValue being annotated. The second field is the constant string 599 /// created from the AnnotateAttr's annotation. The third field is a constant 600 /// string containing the name of the translation unit. The fourth field is 601 /// the line number in the file of the annotated value declaration. 602 /// 603 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 604 /// appears to. 605 /// 606 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 607 const AnnotateAttr *AA, 608 unsigned LineNo) { 609 llvm::Module *M = &getModule(); 610 611 // get [N x i8] constants for the annotation string, and the filename string 612 // which are the 2nd and 3rd elements of the global annotation structure. 613 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 614 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 615 AA->getAnnotation(), true); 616 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 617 M->getModuleIdentifier(), 618 true); 619 620 // Get the two global values corresponding to the ConstantArrays we just 621 // created to hold the bytes of the strings. 622 llvm::GlobalValue *annoGV = 623 new llvm::GlobalVariable(*M, anno->getType(), false, 624 llvm::GlobalValue::PrivateLinkage, anno, 625 GV->getName()); 626 // translation unit name string, emitted into the llvm.metadata section. 627 llvm::GlobalValue *unitGV = 628 new llvm::GlobalVariable(*M, unit->getType(), false, 629 llvm::GlobalValue::PrivateLinkage, unit, 630 ".str"); 631 unitGV->setUnnamedAddr(true); 632 633 // Create the ConstantStruct for the global annotation. 634 llvm::Constant *Fields[4] = { 635 llvm::ConstantExpr::getBitCast(GV, SBP), 636 llvm::ConstantExpr::getBitCast(annoGV, SBP), 637 llvm::ConstantExpr::getBitCast(unitGV, SBP), 638 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 639 }; 640 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 641 } 642 643 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 644 // Never defer when EmitAllDecls is specified. 645 if (Features.EmitAllDecls) 646 return false; 647 648 return !getContext().DeclMustBeEmitted(Global); 649 } 650 651 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 652 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 653 assert(AA && "No alias?"); 654 655 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 656 657 // See if there is already something with the target's name in the module. 658 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 659 660 llvm::Constant *Aliasee; 661 if (isa<llvm::FunctionType>(DeclTy)) 662 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 663 else 664 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 665 llvm::PointerType::getUnqual(DeclTy), 0); 666 if (!Entry) { 667 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 668 F->setLinkage(llvm::Function::ExternalWeakLinkage); 669 WeakRefReferences.insert(F); 670 } 671 672 return Aliasee; 673 } 674 675 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 676 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 677 678 // Weak references don't produce any output by themselves. 679 if (Global->hasAttr<WeakRefAttr>()) 680 return; 681 682 // If this is an alias definition (which otherwise looks like a declaration) 683 // emit it now. 684 if (Global->hasAttr<AliasAttr>()) 685 return EmitAliasDefinition(GD); 686 687 // Ignore declarations, they will be emitted on their first use. 688 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 689 if (FD->getIdentifier()) { 690 llvm::StringRef Name = FD->getName(); 691 if (Name == "_Block_object_assign") { 692 BlockObjectAssignDecl = FD; 693 } else if (Name == "_Block_object_dispose") { 694 BlockObjectDisposeDecl = FD; 695 } 696 } 697 698 // Forward declarations are emitted lazily on first use. 699 if (!FD->isThisDeclarationADefinition()) 700 return; 701 } else { 702 const VarDecl *VD = cast<VarDecl>(Global); 703 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 704 705 if (VD->getIdentifier()) { 706 llvm::StringRef Name = VD->getName(); 707 if (Name == "_NSConcreteGlobalBlock") { 708 NSConcreteGlobalBlockDecl = VD; 709 } else if (Name == "_NSConcreteStackBlock") { 710 NSConcreteStackBlockDecl = VD; 711 } 712 } 713 714 715 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 716 return; 717 } 718 719 // Defer code generation when possible if this is a static definition, inline 720 // function etc. These we only want to emit if they are used. 721 if (!MayDeferGeneration(Global)) { 722 // Emit the definition if it can't be deferred. 723 EmitGlobalDefinition(GD); 724 return; 725 } 726 727 // If we're deferring emission of a C++ variable with an 728 // initializer, remember the order in which it appeared in the file. 729 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 730 cast<VarDecl>(Global)->hasInit()) { 731 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 732 CXXGlobalInits.push_back(0); 733 } 734 735 // If the value has already been used, add it directly to the 736 // DeferredDeclsToEmit list. 737 llvm::StringRef MangledName = getMangledName(GD); 738 if (GetGlobalValue(MangledName)) 739 DeferredDeclsToEmit.push_back(GD); 740 else { 741 // Otherwise, remember that we saw a deferred decl with this name. The 742 // first use of the mangled name will cause it to move into 743 // DeferredDeclsToEmit. 744 DeferredDecls[MangledName] = GD; 745 } 746 } 747 748 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 749 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 750 751 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 752 Context.getSourceManager(), 753 "Generating code for declaration"); 754 755 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 756 // At -O0, don't generate IR for functions with available_externally 757 // linkage. 758 if (CodeGenOpts.OptimizationLevel == 0 && 759 !Function->hasAttr<AlwaysInlineAttr>() && 760 getFunctionLinkage(Function) 761 == llvm::Function::AvailableExternallyLinkage) 762 return; 763 764 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 765 if (Method->isVirtual()) 766 getVTables().EmitThunks(GD); 767 768 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 769 return EmitCXXConstructor(CD, GD.getCtorType()); 770 771 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 772 return EmitCXXDestructor(DD, GD.getDtorType()); 773 } 774 775 return EmitGlobalFunctionDefinition(GD); 776 } 777 778 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 779 return EmitGlobalVarDefinition(VD); 780 781 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 782 } 783 784 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 785 /// module, create and return an llvm Function with the specified type. If there 786 /// is something in the module with the specified name, return it potentially 787 /// bitcasted to the right type. 788 /// 789 /// If D is non-null, it specifies a decl that correspond to this. This is used 790 /// to set the attributes on the function when it is first created. 791 llvm::Constant * 792 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 793 const llvm::Type *Ty, 794 GlobalDecl D) { 795 // Lookup the entry, lazily creating it if necessary. 796 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 797 if (Entry) { 798 if (WeakRefReferences.count(Entry)) { 799 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 800 if (FD && !FD->hasAttr<WeakAttr>()) 801 Entry->setLinkage(llvm::Function::ExternalLinkage); 802 803 WeakRefReferences.erase(Entry); 804 } 805 806 if (Entry->getType()->getElementType() == Ty) 807 return Entry; 808 809 // Make sure the result is of the correct type. 810 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 811 return llvm::ConstantExpr::getBitCast(Entry, PTy); 812 } 813 814 // This function doesn't have a complete type (for example, the return 815 // type is an incomplete struct). Use a fake type instead, and make 816 // sure not to try to set attributes. 817 bool IsIncompleteFunction = false; 818 819 const llvm::FunctionType *FTy; 820 if (isa<llvm::FunctionType>(Ty)) { 821 FTy = cast<llvm::FunctionType>(Ty); 822 } else { 823 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 824 IsIncompleteFunction = true; 825 } 826 827 llvm::Function *F = llvm::Function::Create(FTy, 828 llvm::Function::ExternalLinkage, 829 MangledName, &getModule()); 830 assert(F->getName() == MangledName && "name was uniqued!"); 831 if (D.getDecl()) 832 SetFunctionAttributes(D, F, IsIncompleteFunction); 833 834 // This is the first use or definition of a mangled name. If there is a 835 // deferred decl with this name, remember that we need to emit it at the end 836 // of the file. 837 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 838 if (DDI != DeferredDecls.end()) { 839 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 840 // list, and remove it from DeferredDecls (since we don't need it anymore). 841 DeferredDeclsToEmit.push_back(DDI->second); 842 DeferredDecls.erase(DDI); 843 844 // Otherwise, there are cases we have to worry about where we're 845 // using a declaration for which we must emit a definition but where 846 // we might not find a top-level definition: 847 // - member functions defined inline in their classes 848 // - friend functions defined inline in some class 849 // - special member functions with implicit definitions 850 // If we ever change our AST traversal to walk into class methods, 851 // this will be unnecessary. 852 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 853 // Look for a declaration that's lexically in a record. 854 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 855 do { 856 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 857 if (FD->isImplicit()) { 858 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 859 DeferredDeclsToEmit.push_back(D); 860 break; 861 } else if (FD->isThisDeclarationADefinition()) { 862 DeferredDeclsToEmit.push_back(D); 863 break; 864 } 865 } 866 FD = FD->getPreviousDeclaration(); 867 } while (FD); 868 } 869 870 // Make sure the result is of the requested type. 871 if (!IsIncompleteFunction) { 872 assert(F->getType()->getElementType() == Ty); 873 return F; 874 } 875 876 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 877 return llvm::ConstantExpr::getBitCast(F, PTy); 878 } 879 880 /// GetAddrOfFunction - Return the address of the given function. If Ty is 881 /// non-null, then this function will use the specified type if it has to 882 /// create it (this occurs when we see a definition of the function). 883 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 884 const llvm::Type *Ty) { 885 // If there was no specific requested type, just convert it now. 886 if (!Ty) 887 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 888 889 llvm::StringRef MangledName = getMangledName(GD); 890 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 891 } 892 893 /// CreateRuntimeFunction - Create a new runtime function with the specified 894 /// type and name. 895 llvm::Constant * 896 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 897 llvm::StringRef Name) { 898 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 899 } 900 901 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 902 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 903 return false; 904 if (Context.getLangOptions().CPlusPlus && 905 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 906 // FIXME: We should do something fancier here! 907 return false; 908 } 909 return true; 910 } 911 912 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 913 /// create and return an llvm GlobalVariable with the specified type. If there 914 /// is something in the module with the specified name, return it potentially 915 /// bitcasted to the right type. 916 /// 917 /// If D is non-null, it specifies a decl that correspond to this. This is used 918 /// to set the attributes on the global when it is first created. 919 llvm::Constant * 920 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 921 const llvm::PointerType *Ty, 922 const VarDecl *D, 923 bool UnnamedAddr) { 924 // Lookup the entry, lazily creating it if necessary. 925 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 926 if (Entry) { 927 if (WeakRefReferences.count(Entry)) { 928 if (D && !D->hasAttr<WeakAttr>()) 929 Entry->setLinkage(llvm::Function::ExternalLinkage); 930 931 WeakRefReferences.erase(Entry); 932 } 933 934 if (UnnamedAddr) 935 Entry->setUnnamedAddr(true); 936 937 if (Entry->getType() == Ty) 938 return Entry; 939 940 // Make sure the result is of the correct type. 941 return llvm::ConstantExpr::getBitCast(Entry, Ty); 942 } 943 944 // This is the first use or definition of a mangled name. If there is a 945 // deferred decl with this name, remember that we need to emit it at the end 946 // of the file. 947 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 948 if (DDI != DeferredDecls.end()) { 949 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 950 // list, and remove it from DeferredDecls (since we don't need it anymore). 951 DeferredDeclsToEmit.push_back(DDI->second); 952 DeferredDecls.erase(DDI); 953 } 954 955 llvm::GlobalVariable *GV = 956 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 957 llvm::GlobalValue::ExternalLinkage, 958 0, MangledName, 0, 959 false, Ty->getAddressSpace()); 960 961 // Handle things which are present even on external declarations. 962 if (D) { 963 // FIXME: This code is overly simple and should be merged with other global 964 // handling. 965 GV->setConstant(DeclIsConstantGlobal(Context, D)); 966 967 // Set linkage and visibility in case we never see a definition. 968 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 969 if (LV.linkage() != ExternalLinkage) { 970 GV->setLinkage(llvm::GlobalValue::InternalLinkage); 971 } else { 972 if (D->hasAttr<DLLImportAttr>()) 973 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 974 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 975 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 976 977 // Set visibility on a declaration only if it's explicit. 978 if (LV.visibilityExplicit()) 979 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 980 } 981 982 GV->setThreadLocal(D->isThreadSpecified()); 983 } 984 985 return GV; 986 } 987 988 989 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 990 /// given global variable. If Ty is non-null and if the global doesn't exist, 991 /// then it will be greated with the specified type instead of whatever the 992 /// normal requested type would be. 993 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 994 const llvm::Type *Ty) { 995 assert(D->hasGlobalStorage() && "Not a global variable"); 996 QualType ASTTy = D->getType(); 997 if (Ty == 0) 998 Ty = getTypes().ConvertTypeForMem(ASTTy); 999 1000 const llvm::PointerType *PTy = 1001 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1002 1003 llvm::StringRef MangledName = getMangledName(D); 1004 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1005 } 1006 1007 /// CreateRuntimeVariable - Create a new runtime global variable with the 1008 /// specified type and name. 1009 llvm::Constant * 1010 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1011 llvm::StringRef Name) { 1012 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1013 true); 1014 } 1015 1016 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1017 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1018 1019 if (MayDeferGeneration(D)) { 1020 // If we have not seen a reference to this variable yet, place it 1021 // into the deferred declarations table to be emitted if needed 1022 // later. 1023 llvm::StringRef MangledName = getMangledName(D); 1024 if (!GetGlobalValue(MangledName)) { 1025 DeferredDecls[MangledName] = D; 1026 return; 1027 } 1028 } 1029 1030 // The tentative definition is the only definition. 1031 EmitGlobalVarDefinition(D); 1032 } 1033 1034 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1035 if (DefinitionRequired) 1036 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1037 } 1038 1039 llvm::GlobalVariable::LinkageTypes 1040 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1041 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1042 return llvm::GlobalVariable::InternalLinkage; 1043 1044 if (const CXXMethodDecl *KeyFunction 1045 = RD->getASTContext().getKeyFunction(RD)) { 1046 // If this class has a key function, use that to determine the linkage of 1047 // the vtable. 1048 const FunctionDecl *Def = 0; 1049 if (KeyFunction->hasBody(Def)) 1050 KeyFunction = cast<CXXMethodDecl>(Def); 1051 1052 switch (KeyFunction->getTemplateSpecializationKind()) { 1053 case TSK_Undeclared: 1054 case TSK_ExplicitSpecialization: 1055 if (KeyFunction->isInlined()) 1056 return llvm::GlobalVariable::LinkOnceODRLinkage; 1057 1058 return llvm::GlobalVariable::ExternalLinkage; 1059 1060 case TSK_ImplicitInstantiation: 1061 return llvm::GlobalVariable::LinkOnceODRLinkage; 1062 1063 case TSK_ExplicitInstantiationDefinition: 1064 return llvm::GlobalVariable::WeakODRLinkage; 1065 1066 case TSK_ExplicitInstantiationDeclaration: 1067 // FIXME: Use available_externally linkage. However, this currently 1068 // breaks LLVM's build due to undefined symbols. 1069 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1070 return llvm::GlobalVariable::LinkOnceODRLinkage; 1071 } 1072 } 1073 1074 switch (RD->getTemplateSpecializationKind()) { 1075 case TSK_Undeclared: 1076 case TSK_ExplicitSpecialization: 1077 case TSK_ImplicitInstantiation: 1078 return llvm::GlobalVariable::LinkOnceODRLinkage; 1079 1080 case TSK_ExplicitInstantiationDefinition: 1081 return llvm::GlobalVariable::WeakODRLinkage; 1082 1083 case TSK_ExplicitInstantiationDeclaration: 1084 // FIXME: Use available_externally linkage. However, this currently 1085 // breaks LLVM's build due to undefined symbols. 1086 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1087 return llvm::GlobalVariable::LinkOnceODRLinkage; 1088 } 1089 1090 // Silence GCC warning. 1091 return llvm::GlobalVariable::LinkOnceODRLinkage; 1092 } 1093 1094 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1095 return Context.toCharUnitsFromBits( 1096 TheTargetData.getTypeStoreSizeInBits(Ty)); 1097 } 1098 1099 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1100 llvm::Constant *Init = 0; 1101 QualType ASTTy = D->getType(); 1102 bool NonConstInit = false; 1103 1104 const Expr *InitExpr = D->getAnyInitializer(); 1105 1106 if (!InitExpr) { 1107 // This is a tentative definition; tentative definitions are 1108 // implicitly initialized with { 0 }. 1109 // 1110 // Note that tentative definitions are only emitted at the end of 1111 // a translation unit, so they should never have incomplete 1112 // type. In addition, EmitTentativeDefinition makes sure that we 1113 // never attempt to emit a tentative definition if a real one 1114 // exists. A use may still exists, however, so we still may need 1115 // to do a RAUW. 1116 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1117 Init = EmitNullConstant(D->getType()); 1118 } else { 1119 Init = EmitConstantExpr(InitExpr, D->getType()); 1120 if (!Init) { 1121 QualType T = InitExpr->getType(); 1122 if (D->getType()->isReferenceType()) 1123 T = D->getType(); 1124 1125 if (getLangOptions().CPlusPlus) { 1126 Init = EmitNullConstant(T); 1127 NonConstInit = true; 1128 } else { 1129 ErrorUnsupported(D, "static initializer"); 1130 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1131 } 1132 } else { 1133 // We don't need an initializer, so remove the entry for the delayed 1134 // initializer position (just in case this entry was delayed). 1135 if (getLangOptions().CPlusPlus) 1136 DelayedCXXInitPosition.erase(D); 1137 } 1138 } 1139 1140 const llvm::Type* InitType = Init->getType(); 1141 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1142 1143 // Strip off a bitcast if we got one back. 1144 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1145 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1146 // all zero index gep. 1147 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1148 Entry = CE->getOperand(0); 1149 } 1150 1151 // Entry is now either a Function or GlobalVariable. 1152 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1153 1154 // We have a definition after a declaration with the wrong type. 1155 // We must make a new GlobalVariable* and update everything that used OldGV 1156 // (a declaration or tentative definition) with the new GlobalVariable* 1157 // (which will be a definition). 1158 // 1159 // This happens if there is a prototype for a global (e.g. 1160 // "extern int x[];") and then a definition of a different type (e.g. 1161 // "int x[10];"). This also happens when an initializer has a different type 1162 // from the type of the global (this happens with unions). 1163 if (GV == 0 || 1164 GV->getType()->getElementType() != InitType || 1165 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1166 1167 // Move the old entry aside so that we'll create a new one. 1168 Entry->setName(llvm::StringRef()); 1169 1170 // Make a new global with the correct type, this is now guaranteed to work. 1171 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1172 1173 // Replace all uses of the old global with the new global 1174 llvm::Constant *NewPtrForOldDecl = 1175 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1176 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1177 1178 // Erase the old global, since it is no longer used. 1179 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1180 } 1181 1182 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1183 SourceManager &SM = Context.getSourceManager(); 1184 AddAnnotation(EmitAnnotateAttr(GV, AA, 1185 SM.getInstantiationLineNumber(D->getLocation()))); 1186 } 1187 1188 GV->setInitializer(Init); 1189 1190 // If it is safe to mark the global 'constant', do so now. 1191 GV->setConstant(false); 1192 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1193 GV->setConstant(true); 1194 1195 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1196 1197 // Set the llvm linkage type as appropriate. 1198 llvm::GlobalValue::LinkageTypes Linkage = 1199 GetLLVMLinkageVarDefinition(D, GV); 1200 GV->setLinkage(Linkage); 1201 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1202 // common vars aren't constant even if declared const. 1203 GV->setConstant(false); 1204 1205 SetCommonAttributes(D, GV); 1206 1207 // Emit the initializer function if necessary. 1208 if (NonConstInit) 1209 EmitCXXGlobalVarDeclInitFunc(D, GV); 1210 1211 // Emit global variable debug information. 1212 if (CGDebugInfo *DI = getDebugInfo()) { 1213 DI->setLocation(D->getLocation()); 1214 DI->EmitGlobalVariable(GV, D); 1215 } 1216 } 1217 1218 llvm::GlobalValue::LinkageTypes 1219 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1220 llvm::GlobalVariable *GV) { 1221 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1222 if (Linkage == GVA_Internal) 1223 return llvm::Function::InternalLinkage; 1224 else if (D->hasAttr<DLLImportAttr>()) 1225 return llvm::Function::DLLImportLinkage; 1226 else if (D->hasAttr<DLLExportAttr>()) 1227 return llvm::Function::DLLExportLinkage; 1228 else if (D->hasAttr<WeakAttr>()) { 1229 if (GV->isConstant()) 1230 return llvm::GlobalVariable::WeakODRLinkage; 1231 else 1232 return llvm::GlobalVariable::WeakAnyLinkage; 1233 } else if (Linkage == GVA_TemplateInstantiation || 1234 Linkage == GVA_ExplicitTemplateInstantiation) 1235 // FIXME: It seems like we can provide more specific linkage here 1236 // (LinkOnceODR, WeakODR). 1237 return llvm::GlobalVariable::WeakAnyLinkage; 1238 else if (!getLangOptions().CPlusPlus && 1239 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1240 D->getAttr<CommonAttr>()) && 1241 !D->hasExternalStorage() && !D->getInit() && 1242 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1243 // Thread local vars aren't considered common linkage. 1244 return llvm::GlobalVariable::CommonLinkage; 1245 } 1246 return llvm::GlobalVariable::ExternalLinkage; 1247 } 1248 1249 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1250 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1251 /// existing call uses of the old function in the module, this adjusts them to 1252 /// call the new function directly. 1253 /// 1254 /// This is not just a cleanup: the always_inline pass requires direct calls to 1255 /// functions to be able to inline them. If there is a bitcast in the way, it 1256 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1257 /// run at -O0. 1258 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1259 llvm::Function *NewFn) { 1260 // If we're redefining a global as a function, don't transform it. 1261 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1262 if (OldFn == 0) return; 1263 1264 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1265 llvm::SmallVector<llvm::Value*, 4> ArgList; 1266 1267 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1268 UI != E; ) { 1269 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1270 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1271 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1272 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1273 llvm::CallSite CS(CI); 1274 if (!CI || !CS.isCallee(I)) continue; 1275 1276 // If the return types don't match exactly, and if the call isn't dead, then 1277 // we can't transform this call. 1278 if (CI->getType() != NewRetTy && !CI->use_empty()) 1279 continue; 1280 1281 // If the function was passed too few arguments, don't transform. If extra 1282 // arguments were passed, we silently drop them. If any of the types 1283 // mismatch, we don't transform. 1284 unsigned ArgNo = 0; 1285 bool DontTransform = false; 1286 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1287 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1288 if (CS.arg_size() == ArgNo || 1289 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1290 DontTransform = true; 1291 break; 1292 } 1293 } 1294 if (DontTransform) 1295 continue; 1296 1297 // Okay, we can transform this. Create the new call instruction and copy 1298 // over the required information. 1299 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1300 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1301 ArgList.end(), "", CI); 1302 ArgList.clear(); 1303 if (!NewCall->getType()->isVoidTy()) 1304 NewCall->takeName(CI); 1305 NewCall->setAttributes(CI->getAttributes()); 1306 NewCall->setCallingConv(CI->getCallingConv()); 1307 1308 // Finally, remove the old call, replacing any uses with the new one. 1309 if (!CI->use_empty()) 1310 CI->replaceAllUsesWith(NewCall); 1311 1312 // Copy debug location attached to CI. 1313 if (!CI->getDebugLoc().isUnknown()) 1314 NewCall->setDebugLoc(CI->getDebugLoc()); 1315 CI->eraseFromParent(); 1316 } 1317 } 1318 1319 1320 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1321 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1322 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1323 // Get or create the prototype for the function. 1324 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1325 1326 // Strip off a bitcast if we got one back. 1327 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1328 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1329 Entry = CE->getOperand(0); 1330 } 1331 1332 1333 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1334 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1335 1336 // If the types mismatch then we have to rewrite the definition. 1337 assert(OldFn->isDeclaration() && 1338 "Shouldn't replace non-declaration"); 1339 1340 // F is the Function* for the one with the wrong type, we must make a new 1341 // Function* and update everything that used F (a declaration) with the new 1342 // Function* (which will be a definition). 1343 // 1344 // This happens if there is a prototype for a function 1345 // (e.g. "int f()") and then a definition of a different type 1346 // (e.g. "int f(int x)"). Move the old function aside so that it 1347 // doesn't interfere with GetAddrOfFunction. 1348 OldFn->setName(llvm::StringRef()); 1349 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1350 1351 // If this is an implementation of a function without a prototype, try to 1352 // replace any existing uses of the function (which may be calls) with uses 1353 // of the new function 1354 if (D->getType()->isFunctionNoProtoType()) { 1355 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1356 OldFn->removeDeadConstantUsers(); 1357 } 1358 1359 // Replace uses of F with the Function we will endow with a body. 1360 if (!Entry->use_empty()) { 1361 llvm::Constant *NewPtrForOldDecl = 1362 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1363 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1364 } 1365 1366 // Ok, delete the old function now, which is dead. 1367 OldFn->eraseFromParent(); 1368 1369 Entry = NewFn; 1370 } 1371 1372 // We need to set linkage and visibility on the function before 1373 // generating code for it because various parts of IR generation 1374 // want to propagate this information down (e.g. to local static 1375 // declarations). 1376 llvm::Function *Fn = cast<llvm::Function>(Entry); 1377 setFunctionLinkage(D, Fn); 1378 1379 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1380 setGlobalVisibility(Fn, D, /*ForDef*/ true); 1381 1382 CodeGenFunction(*this).GenerateCode(D, Fn); 1383 1384 SetFunctionDefinitionAttributes(D, Fn); 1385 SetLLVMFunctionAttributesForDefinition(D, Fn); 1386 1387 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1388 AddGlobalCtor(Fn, CA->getPriority()); 1389 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1390 AddGlobalDtor(Fn, DA->getPriority()); 1391 } 1392 1393 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1394 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1395 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1396 assert(AA && "Not an alias?"); 1397 1398 llvm::StringRef MangledName = getMangledName(GD); 1399 1400 // If there is a definition in the module, then it wins over the alias. 1401 // This is dubious, but allow it to be safe. Just ignore the alias. 1402 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1403 if (Entry && !Entry->isDeclaration()) 1404 return; 1405 1406 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1407 1408 // Create a reference to the named value. This ensures that it is emitted 1409 // if a deferred decl. 1410 llvm::Constant *Aliasee; 1411 if (isa<llvm::FunctionType>(DeclTy)) 1412 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1413 else 1414 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1415 llvm::PointerType::getUnqual(DeclTy), 0); 1416 1417 // Create the new alias itself, but don't set a name yet. 1418 llvm::GlobalValue *GA = 1419 new llvm::GlobalAlias(Aliasee->getType(), 1420 llvm::Function::ExternalLinkage, 1421 "", Aliasee, &getModule()); 1422 1423 if (Entry) { 1424 assert(Entry->isDeclaration()); 1425 1426 // If there is a declaration in the module, then we had an extern followed 1427 // by the alias, as in: 1428 // extern int test6(); 1429 // ... 1430 // int test6() __attribute__((alias("test7"))); 1431 // 1432 // Remove it and replace uses of it with the alias. 1433 GA->takeName(Entry); 1434 1435 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1436 Entry->getType())); 1437 Entry->eraseFromParent(); 1438 } else { 1439 GA->setName(MangledName); 1440 } 1441 1442 // Set attributes which are particular to an alias; this is a 1443 // specialization of the attributes which may be set on a global 1444 // variable/function. 1445 if (D->hasAttr<DLLExportAttr>()) { 1446 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1447 // The dllexport attribute is ignored for undefined symbols. 1448 if (FD->hasBody()) 1449 GA->setLinkage(llvm::Function::DLLExportLinkage); 1450 } else { 1451 GA->setLinkage(llvm::Function::DLLExportLinkage); 1452 } 1453 } else if (D->hasAttr<WeakAttr>() || 1454 D->hasAttr<WeakRefAttr>() || 1455 D->hasAttr<WeakImportAttr>()) { 1456 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1457 } 1458 1459 SetCommonAttributes(D, GA); 1460 } 1461 1462 /// getBuiltinLibFunction - Given a builtin id for a function like 1463 /// "__builtin_fabsf", return a Function* for "fabsf". 1464 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1465 unsigned BuiltinID) { 1466 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1467 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1468 "isn't a lib fn"); 1469 1470 // Get the name, skip over the __builtin_ prefix (if necessary). 1471 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1472 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1473 Name += 10; 1474 1475 const llvm::FunctionType *Ty = 1476 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1477 1478 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1479 } 1480 1481 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1482 unsigned NumTys) { 1483 return llvm::Intrinsic::getDeclaration(&getModule(), 1484 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1485 } 1486 1487 static llvm::StringMapEntry<llvm::Constant*> & 1488 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1489 const StringLiteral *Literal, 1490 bool TargetIsLSB, 1491 bool &IsUTF16, 1492 unsigned &StringLength) { 1493 llvm::StringRef String = Literal->getString(); 1494 unsigned NumBytes = String.size(); 1495 1496 // Check for simple case. 1497 if (!Literal->containsNonAsciiOrNull()) { 1498 StringLength = NumBytes; 1499 return Map.GetOrCreateValue(String); 1500 } 1501 1502 // Otherwise, convert the UTF8 literals into a byte string. 1503 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1504 const UTF8 *FromPtr = (UTF8 *)String.data(); 1505 UTF16 *ToPtr = &ToBuf[0]; 1506 1507 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1508 &ToPtr, ToPtr + NumBytes, 1509 strictConversion); 1510 1511 // ConvertUTF8toUTF16 returns the length in ToPtr. 1512 StringLength = ToPtr - &ToBuf[0]; 1513 1514 // Render the UTF-16 string into a byte array and convert to the target byte 1515 // order. 1516 // 1517 // FIXME: This isn't something we should need to do here. 1518 llvm::SmallString<128> AsBytes; 1519 AsBytes.reserve(StringLength * 2); 1520 for (unsigned i = 0; i != StringLength; ++i) { 1521 unsigned short Val = ToBuf[i]; 1522 if (TargetIsLSB) { 1523 AsBytes.push_back(Val & 0xFF); 1524 AsBytes.push_back(Val >> 8); 1525 } else { 1526 AsBytes.push_back(Val >> 8); 1527 AsBytes.push_back(Val & 0xFF); 1528 } 1529 } 1530 // Append one extra null character, the second is automatically added by our 1531 // caller. 1532 AsBytes.push_back(0); 1533 1534 IsUTF16 = true; 1535 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1536 } 1537 1538 llvm::Constant * 1539 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1540 unsigned StringLength = 0; 1541 bool isUTF16 = false; 1542 llvm::StringMapEntry<llvm::Constant*> &Entry = 1543 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1544 getTargetData().isLittleEndian(), 1545 isUTF16, StringLength); 1546 1547 if (llvm::Constant *C = Entry.getValue()) 1548 return C; 1549 1550 llvm::Constant *Zero = 1551 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1552 llvm::Constant *Zeros[] = { Zero, Zero }; 1553 1554 // If we don't already have it, get __CFConstantStringClassReference. 1555 if (!CFConstantStringClassRef) { 1556 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1557 Ty = llvm::ArrayType::get(Ty, 0); 1558 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1559 "__CFConstantStringClassReference"); 1560 // Decay array -> ptr 1561 CFConstantStringClassRef = 1562 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1563 } 1564 1565 QualType CFTy = getContext().getCFConstantStringType(); 1566 1567 const llvm::StructType *STy = 1568 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1569 1570 std::vector<llvm::Constant*> Fields(4); 1571 1572 // Class pointer. 1573 Fields[0] = CFConstantStringClassRef; 1574 1575 // Flags. 1576 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1577 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1578 llvm::ConstantInt::get(Ty, 0x07C8); 1579 1580 // String pointer. 1581 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1582 1583 llvm::GlobalValue::LinkageTypes Linkage; 1584 bool isConstant; 1585 if (isUTF16) { 1586 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1587 Linkage = llvm::GlobalValue::InternalLinkage; 1588 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1589 // does make plain ascii ones writable. 1590 isConstant = true; 1591 } else { 1592 Linkage = llvm::GlobalValue::PrivateLinkage; 1593 isConstant = !Features.WritableStrings; 1594 } 1595 1596 llvm::GlobalVariable *GV = 1597 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1598 ".str"); 1599 GV->setUnnamedAddr(true); 1600 if (isUTF16) { 1601 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1602 GV->setAlignment(Align.getQuantity()); 1603 } 1604 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1605 1606 // String length. 1607 Ty = getTypes().ConvertType(getContext().LongTy); 1608 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1609 1610 // The struct. 1611 C = llvm::ConstantStruct::get(STy, Fields); 1612 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1613 llvm::GlobalVariable::PrivateLinkage, C, 1614 "_unnamed_cfstring_"); 1615 if (const char *Sect = getContext().Target.getCFStringSection()) 1616 GV->setSection(Sect); 1617 Entry.setValue(GV); 1618 1619 return GV; 1620 } 1621 1622 llvm::Constant * 1623 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1624 unsigned StringLength = 0; 1625 bool isUTF16 = false; 1626 llvm::StringMapEntry<llvm::Constant*> &Entry = 1627 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1628 getTargetData().isLittleEndian(), 1629 isUTF16, StringLength); 1630 1631 if (llvm::Constant *C = Entry.getValue()) 1632 return C; 1633 1634 llvm::Constant *Zero = 1635 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1636 llvm::Constant *Zeros[] = { Zero, Zero }; 1637 1638 // If we don't already have it, get _NSConstantStringClassReference. 1639 if (!ConstantStringClassRef) { 1640 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1641 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1642 Ty = llvm::ArrayType::get(Ty, 0); 1643 llvm::Constant *GV; 1644 if (StringClass.empty()) 1645 GV = CreateRuntimeVariable(Ty, 1646 Features.ObjCNonFragileABI ? 1647 "OBJC_CLASS_$_NSConstantString" : 1648 "_NSConstantStringClassReference"); 1649 else { 1650 std::string str; 1651 if (Features.ObjCNonFragileABI) 1652 str = "OBJC_CLASS_$_" + StringClass; 1653 else 1654 str = "_" + StringClass + "ClassReference"; 1655 GV = CreateRuntimeVariable(Ty, str); 1656 } 1657 // Decay array -> ptr 1658 ConstantStringClassRef = 1659 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1660 } 1661 1662 QualType NSTy = getContext().getNSConstantStringType(); 1663 1664 const llvm::StructType *STy = 1665 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1666 1667 std::vector<llvm::Constant*> Fields(3); 1668 1669 // Class pointer. 1670 Fields[0] = ConstantStringClassRef; 1671 1672 // String pointer. 1673 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1674 1675 llvm::GlobalValue::LinkageTypes Linkage; 1676 bool isConstant; 1677 if (isUTF16) { 1678 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1679 Linkage = llvm::GlobalValue::InternalLinkage; 1680 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1681 // does make plain ascii ones writable. 1682 isConstant = true; 1683 } else { 1684 Linkage = llvm::GlobalValue::PrivateLinkage; 1685 isConstant = !Features.WritableStrings; 1686 } 1687 1688 llvm::GlobalVariable *GV = 1689 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1690 ".str"); 1691 GV->setUnnamedAddr(true); 1692 if (isUTF16) { 1693 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1694 GV->setAlignment(Align.getQuantity()); 1695 } 1696 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1697 1698 // String length. 1699 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1700 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1701 1702 // The struct. 1703 C = llvm::ConstantStruct::get(STy, Fields); 1704 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1705 llvm::GlobalVariable::PrivateLinkage, C, 1706 "_unnamed_nsstring_"); 1707 // FIXME. Fix section. 1708 if (const char *Sect = 1709 Features.ObjCNonFragileABI 1710 ? getContext().Target.getNSStringNonFragileABISection() 1711 : getContext().Target.getNSStringSection()) 1712 GV->setSection(Sect); 1713 Entry.setValue(GV); 1714 1715 return GV; 1716 } 1717 1718 /// GetStringForStringLiteral - Return the appropriate bytes for a 1719 /// string literal, properly padded to match the literal type. 1720 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1721 const ConstantArrayType *CAT = 1722 getContext().getAsConstantArrayType(E->getType()); 1723 assert(CAT && "String isn't pointer or array!"); 1724 1725 // Resize the string to the right size. 1726 uint64_t RealLen = CAT->getSize().getZExtValue(); 1727 1728 if (E->isWide()) 1729 RealLen *= getContext().Target.getWCharWidth()/8; 1730 1731 std::string Str = E->getString().str(); 1732 Str.resize(RealLen, '\0'); 1733 1734 return Str; 1735 } 1736 1737 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1738 /// constant array for the given string literal. 1739 llvm::Constant * 1740 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1741 // FIXME: This can be more efficient. 1742 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1743 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1744 if (S->isWide()) { 1745 llvm::Type *DestTy = 1746 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1747 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1748 } 1749 return C; 1750 } 1751 1752 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1753 /// array for the given ObjCEncodeExpr node. 1754 llvm::Constant * 1755 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1756 std::string Str; 1757 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1758 1759 return GetAddrOfConstantCString(Str); 1760 } 1761 1762 1763 /// GenerateWritableString -- Creates storage for a string literal. 1764 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1765 bool constant, 1766 CodeGenModule &CGM, 1767 const char *GlobalName) { 1768 // Create Constant for this string literal. Don't add a '\0'. 1769 llvm::Constant *C = 1770 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1771 1772 // Create a global variable for this string 1773 llvm::GlobalVariable *GV = 1774 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1775 llvm::GlobalValue::PrivateLinkage, 1776 C, GlobalName); 1777 GV->setUnnamedAddr(true); 1778 return GV; 1779 } 1780 1781 /// GetAddrOfConstantString - Returns a pointer to a character array 1782 /// containing the literal. This contents are exactly that of the 1783 /// given string, i.e. it will not be null terminated automatically; 1784 /// see GetAddrOfConstantCString. Note that whether the result is 1785 /// actually a pointer to an LLVM constant depends on 1786 /// Feature.WriteableStrings. 1787 /// 1788 /// The result has pointer to array type. 1789 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1790 const char *GlobalName) { 1791 bool IsConstant = !Features.WritableStrings; 1792 1793 // Get the default prefix if a name wasn't specified. 1794 if (!GlobalName) 1795 GlobalName = ".str"; 1796 1797 // Don't share any string literals if strings aren't constant. 1798 if (!IsConstant) 1799 return GenerateStringLiteral(str, false, *this, GlobalName); 1800 1801 llvm::StringMapEntry<llvm::Constant *> &Entry = 1802 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1803 1804 if (Entry.getValue()) 1805 return Entry.getValue(); 1806 1807 // Create a global variable for this. 1808 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1809 Entry.setValue(C); 1810 return C; 1811 } 1812 1813 /// GetAddrOfConstantCString - Returns a pointer to a character 1814 /// array containing the literal and a terminating '\-' 1815 /// character. The result has pointer to array type. 1816 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1817 const char *GlobalName){ 1818 return GetAddrOfConstantString(str + '\0', GlobalName); 1819 } 1820 1821 /// EmitObjCPropertyImplementations - Emit information for synthesized 1822 /// properties for an implementation. 1823 void CodeGenModule::EmitObjCPropertyImplementations(const 1824 ObjCImplementationDecl *D) { 1825 for (ObjCImplementationDecl::propimpl_iterator 1826 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1827 ObjCPropertyImplDecl *PID = *i; 1828 1829 // Dynamic is just for type-checking. 1830 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1831 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1832 1833 // Determine which methods need to be implemented, some may have 1834 // been overridden. Note that ::isSynthesized is not the method 1835 // we want, that just indicates if the decl came from a 1836 // property. What we want to know is if the method is defined in 1837 // this implementation. 1838 if (!D->getInstanceMethod(PD->getGetterName())) 1839 CodeGenFunction(*this).GenerateObjCGetter( 1840 const_cast<ObjCImplementationDecl *>(D), PID); 1841 if (!PD->isReadOnly() && 1842 !D->getInstanceMethod(PD->getSetterName())) 1843 CodeGenFunction(*this).GenerateObjCSetter( 1844 const_cast<ObjCImplementationDecl *>(D), PID); 1845 } 1846 } 1847 } 1848 1849 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1850 /// for an implementation. 1851 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1852 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1853 return; 1854 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1855 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1856 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1857 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1858 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1859 D->getLocation(), 1860 D->getLocation(), cxxSelector, 1861 getContext().VoidTy, 0, 1862 DC, true, false, true, false, 1863 ObjCMethodDecl::Required); 1864 D->addInstanceMethod(DTORMethod); 1865 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1866 1867 II = &getContext().Idents.get(".cxx_construct"); 1868 cxxSelector = getContext().Selectors.getSelector(0, &II); 1869 // The constructor returns 'self'. 1870 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1871 D->getLocation(), 1872 D->getLocation(), cxxSelector, 1873 getContext().getObjCIdType(), 0, 1874 DC, true, false, true, false, 1875 ObjCMethodDecl::Required); 1876 D->addInstanceMethod(CTORMethod); 1877 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1878 1879 1880 } 1881 1882 /// EmitNamespace - Emit all declarations in a namespace. 1883 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1884 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1885 I != E; ++I) 1886 EmitTopLevelDecl(*I); 1887 } 1888 1889 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1890 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1891 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1892 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1893 ErrorUnsupported(LSD, "linkage spec"); 1894 return; 1895 } 1896 1897 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1898 I != E; ++I) 1899 EmitTopLevelDecl(*I); 1900 } 1901 1902 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1903 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1904 // If an error has occurred, stop code generation, but continue 1905 // parsing and semantic analysis (to ensure all warnings and errors 1906 // are emitted). 1907 if (Diags.hasErrorOccurred()) 1908 return; 1909 1910 // Ignore dependent declarations. 1911 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1912 return; 1913 1914 switch (D->getKind()) { 1915 case Decl::CXXConversion: 1916 case Decl::CXXMethod: 1917 case Decl::Function: 1918 // Skip function templates 1919 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1920 return; 1921 1922 EmitGlobal(cast<FunctionDecl>(D)); 1923 break; 1924 1925 case Decl::Var: 1926 EmitGlobal(cast<VarDecl>(D)); 1927 break; 1928 1929 // C++ Decls 1930 case Decl::Namespace: 1931 EmitNamespace(cast<NamespaceDecl>(D)); 1932 break; 1933 // No code generation needed. 1934 case Decl::UsingShadow: 1935 case Decl::Using: 1936 case Decl::UsingDirective: 1937 case Decl::ClassTemplate: 1938 case Decl::FunctionTemplate: 1939 case Decl::NamespaceAlias: 1940 break; 1941 case Decl::CXXConstructor: 1942 // Skip function templates 1943 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1944 return; 1945 1946 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1947 break; 1948 case Decl::CXXDestructor: 1949 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1950 break; 1951 1952 case Decl::StaticAssert: 1953 // Nothing to do. 1954 break; 1955 1956 // Objective-C Decls 1957 1958 // Forward declarations, no (immediate) code generation. 1959 case Decl::ObjCClass: 1960 case Decl::ObjCForwardProtocol: 1961 case Decl::ObjCInterface: 1962 break; 1963 1964 case Decl::ObjCCategory: { 1965 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 1966 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 1967 Context.ResetObjCLayout(CD->getClassInterface()); 1968 break; 1969 } 1970 1971 1972 case Decl::ObjCProtocol: 1973 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1974 break; 1975 1976 case Decl::ObjCCategoryImpl: 1977 // Categories have properties but don't support synthesize so we 1978 // can ignore them here. 1979 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1980 break; 1981 1982 case Decl::ObjCImplementation: { 1983 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1984 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 1985 Context.ResetObjCLayout(OMD->getClassInterface()); 1986 EmitObjCPropertyImplementations(OMD); 1987 EmitObjCIvarInitializations(OMD); 1988 Runtime->GenerateClass(OMD); 1989 break; 1990 } 1991 case Decl::ObjCMethod: { 1992 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1993 // If this is not a prototype, emit the body. 1994 if (OMD->getBody()) 1995 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1996 break; 1997 } 1998 case Decl::ObjCCompatibleAlias: 1999 // compatibility-alias is a directive and has no code gen. 2000 break; 2001 2002 case Decl::LinkageSpec: 2003 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2004 break; 2005 2006 case Decl::FileScopeAsm: { 2007 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2008 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2009 2010 const std::string &S = getModule().getModuleInlineAsm(); 2011 if (S.empty()) 2012 getModule().setModuleInlineAsm(AsmString); 2013 else 2014 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2015 break; 2016 } 2017 2018 default: 2019 // Make sure we handled everything we should, every other kind is a 2020 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2021 // function. Need to recode Decl::Kind to do that easily. 2022 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2023 } 2024 } 2025 2026 /// Turns the given pointer into a constant. 2027 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2028 const void *Ptr) { 2029 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2030 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2031 return llvm::ConstantInt::get(i64, PtrInt); 2032 } 2033 2034 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2035 llvm::NamedMDNode *&GlobalMetadata, 2036 GlobalDecl D, 2037 llvm::GlobalValue *Addr) { 2038 if (!GlobalMetadata) 2039 GlobalMetadata = 2040 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2041 2042 // TODO: should we report variant information for ctors/dtors? 2043 llvm::Value *Ops[] = { 2044 Addr, 2045 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2046 }; 2047 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2048 } 2049 2050 /// Emits metadata nodes associating all the global values in the 2051 /// current module with the Decls they came from. This is useful for 2052 /// projects using IR gen as a subroutine. 2053 /// 2054 /// Since there's currently no way to associate an MDNode directly 2055 /// with an llvm::GlobalValue, we create a global named metadata 2056 /// with the name 'clang.global.decl.ptrs'. 2057 void CodeGenModule::EmitDeclMetadata() { 2058 llvm::NamedMDNode *GlobalMetadata = 0; 2059 2060 // StaticLocalDeclMap 2061 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2062 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2063 I != E; ++I) { 2064 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2065 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2066 } 2067 } 2068 2069 /// Emits metadata nodes for all the local variables in the current 2070 /// function. 2071 void CodeGenFunction::EmitDeclMetadata() { 2072 if (LocalDeclMap.empty()) return; 2073 2074 llvm::LLVMContext &Context = getLLVMContext(); 2075 2076 // Find the unique metadata ID for this name. 2077 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2078 2079 llvm::NamedMDNode *GlobalMetadata = 0; 2080 2081 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2082 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2083 const Decl *D = I->first; 2084 llvm::Value *Addr = I->second; 2085 2086 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2087 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2088 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2089 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2090 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2091 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2092 } 2093 } 2094 } 2095 2096 ///@name Custom Runtime Function Interfaces 2097 ///@{ 2098 // 2099 // FIXME: These can be eliminated once we can have clients just get the required 2100 // AST nodes from the builtin tables. 2101 2102 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2103 if (BlockObjectDispose) 2104 return BlockObjectDispose; 2105 2106 // If we saw an explicit decl, use that. 2107 if (BlockObjectDisposeDecl) { 2108 return BlockObjectDispose = GetAddrOfFunction( 2109 BlockObjectDisposeDecl, 2110 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2111 } 2112 2113 // Otherwise construct the function by hand. 2114 const llvm::FunctionType *FTy; 2115 std::vector<const llvm::Type*> ArgTys; 2116 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2117 ArgTys.push_back(PtrToInt8Ty); 2118 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2119 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2120 return BlockObjectDispose = 2121 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2122 } 2123 2124 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2125 if (BlockObjectAssign) 2126 return BlockObjectAssign; 2127 2128 // If we saw an explicit decl, use that. 2129 if (BlockObjectAssignDecl) { 2130 return BlockObjectAssign = GetAddrOfFunction( 2131 BlockObjectAssignDecl, 2132 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2133 } 2134 2135 // Otherwise construct the function by hand. 2136 const llvm::FunctionType *FTy; 2137 std::vector<const llvm::Type*> ArgTys; 2138 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2139 ArgTys.push_back(PtrToInt8Ty); 2140 ArgTys.push_back(PtrToInt8Ty); 2141 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2142 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2143 return BlockObjectAssign = 2144 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2145 } 2146 2147 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2148 if (NSConcreteGlobalBlock) 2149 return NSConcreteGlobalBlock; 2150 2151 // If we saw an explicit decl, use that. 2152 if (NSConcreteGlobalBlockDecl) { 2153 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2154 NSConcreteGlobalBlockDecl, 2155 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2156 } 2157 2158 // Otherwise construct the variable by hand. 2159 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2160 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2161 } 2162 2163 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2164 if (NSConcreteStackBlock) 2165 return NSConcreteStackBlock; 2166 2167 // If we saw an explicit decl, use that. 2168 if (NSConcreteStackBlockDecl) { 2169 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2170 NSConcreteStackBlockDecl, 2171 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2172 } 2173 2174 // Otherwise construct the variable by hand. 2175 return NSConcreteStackBlock = CreateRuntimeVariable( 2176 PtrToInt8Ty, "_NSConcreteStackBlock"); 2177 } 2178 2179 ///@} 2180