xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 570024a8d9b4a4aa4a35f077a0a65003dc7b71fe)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/Diagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/ConvertUTF.h"
33 #include "llvm/CallingConv.h"
34 #include "llvm/Module.h"
35 #include "llvm/Intrinsics.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/Triple.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 
45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                              llvm::Module &M, const llvm::TargetData &TD,
47                              Diagnostic &diags)
48   : BlockModule(C, M, TD, Types, *this), Context(C),
49     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52     VTables(*this), Runtime(0), ABI(0),
53     CFConstantStringClassRef(0), NSConstantStringClassRef(0),
54     VMContext(M.getContext()),
55     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
56     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
57     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
58     BlockObjectAssign(0), BlockObjectDispose(0){
59 
60   if (!Features.ObjC1)
61     Runtime = 0;
62   else if (!Features.NeXTRuntime)
63     Runtime = CreateGNUObjCRuntime(*this);
64   else if (Features.ObjCNonFragileABI)
65     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
66   else
67     Runtime = CreateMacObjCRuntime(*this);
68 
69   if (!Features.CPlusPlus)
70     ABI = 0;
71   else createCXXABI();
72 
73   // If debug info generation is enabled, create the CGDebugInfo object.
74   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
75 }
76 
77 CodeGenModule::~CodeGenModule() {
78   delete Runtime;
79   delete ABI;
80   delete DebugInfo;
81 }
82 
83 void CodeGenModule::createObjCRuntime() {
84   if (!Features.NeXTRuntime)
85     Runtime = CreateGNUObjCRuntime(*this);
86   else if (Features.ObjCNonFragileABI)
87     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
88   else
89     Runtime = CreateMacObjCRuntime(*this);
90 }
91 
92 void CodeGenModule::createCXXABI() {
93   if (Context.Target.getCXXABI() == "microsoft")
94     ABI = CreateMicrosoftCXXABI(*this);
95   else
96     ABI = CreateItaniumCXXABI(*this);
97 }
98 
99 void CodeGenModule::Release() {
100   EmitDeferred();
101   EmitCXXGlobalInitFunc();
102   EmitCXXGlobalDtorFunc();
103   if (Runtime)
104     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
105       AddGlobalCtor(ObjCInitFunction);
106   EmitCtorList(GlobalCtors, "llvm.global_ctors");
107   EmitCtorList(GlobalDtors, "llvm.global_dtors");
108   EmitAnnotations();
109   EmitLLVMUsed();
110 
111   if (getCodeGenOpts().EmitDeclMetadata)
112     EmitDeclMetadata();
113 }
114 
115 bool CodeGenModule::isTargetDarwin() const {
116   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
117 }
118 
119 /// ErrorUnsupported - Print out an error that codegen doesn't support the
120 /// specified stmt yet.
121 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
122                                      bool OmitOnError) {
123   if (OmitOnError && getDiags().hasErrorOccurred())
124     return;
125   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
126                                                "cannot compile this %0 yet");
127   std::string Msg = Type;
128   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
129     << Msg << S->getSourceRange();
130 }
131 
132 /// ErrorUnsupported - Print out an error that codegen doesn't support the
133 /// specified decl yet.
134 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
135                                      bool OmitOnError) {
136   if (OmitOnError && getDiags().hasErrorOccurred())
137     return;
138   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
139                                                "cannot compile this %0 yet");
140   std::string Msg = Type;
141   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
142 }
143 
144 LangOptions::VisibilityMode
145 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
146   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
147     if (VD->getStorageClass() == VarDecl::PrivateExtern)
148       return LangOptions::Hidden;
149 
150   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
151     switch (attr->getVisibility()) {
152     default: assert(0 && "Unknown visibility!");
153     case VisibilityAttr::DefaultVisibility:
154       return LangOptions::Default;
155     case VisibilityAttr::HiddenVisibility:
156       return LangOptions::Hidden;
157     case VisibilityAttr::ProtectedVisibility:
158       return LangOptions::Protected;
159     }
160   }
161 
162   if (getLangOptions().CPlusPlus) {
163     // Entities subject to an explicit instantiation declaration get default
164     // visibility.
165     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
166       if (Function->getTemplateSpecializationKind()
167                                         == TSK_ExplicitInstantiationDeclaration)
168         return LangOptions::Default;
169     } else if (const ClassTemplateSpecializationDecl *ClassSpec
170                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
171       if (ClassSpec->getSpecializationKind()
172                                         == TSK_ExplicitInstantiationDeclaration)
173         return LangOptions::Default;
174     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
175       if (Record->getTemplateSpecializationKind()
176                                         == TSK_ExplicitInstantiationDeclaration)
177         return LangOptions::Default;
178     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
179       if (Var->isStaticDataMember() &&
180           (Var->getTemplateSpecializationKind()
181                                       == TSK_ExplicitInstantiationDeclaration))
182         return LangOptions::Default;
183     }
184 
185     // If -fvisibility-inlines-hidden was provided, then inline C++ member
186     // functions get "hidden" visibility by default.
187     if (getLangOptions().InlineVisibilityHidden)
188       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
189         if (Method->isInlined())
190           return LangOptions::Hidden;
191   }
192 
193   // If this decl is contained in a class, it should have the same visibility
194   // as the parent class.
195   if (const DeclContext *DC = D->getDeclContext())
196     if (DC->isRecord())
197       return getDeclVisibilityMode(cast<Decl>(DC));
198 
199   return getLangOptions().getVisibilityMode();
200 }
201 
202 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
203                                         const Decl *D) const {
204   // Internal definitions always have default visibility.
205   if (GV->hasLocalLinkage()) {
206     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
207     return;
208   }
209 
210   switch (getDeclVisibilityMode(D)) {
211   default: assert(0 && "Unknown visibility!");
212   case LangOptions::Default:
213     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
214   case LangOptions::Hidden:
215     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
216   case LangOptions::Protected:
217     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
218   }
219 }
220 
221 /// Set the symbol visibility of type information (vtable and RTTI)
222 /// associated with the given type.
223 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
224                                       const CXXRecordDecl *RD,
225                                       bool IsForRTTI) const {
226   setGlobalVisibility(GV, RD);
227 
228   // We want to drop the visibility to hidden for weak type symbols.
229   // This isn't possible if there might be unresolved references
230   // elsewhere that rely on this symbol being visible.
231 
232   // Preconditions.
233   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
234       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
235     return;
236 
237   // Don't override an explicit visibility attribute.
238   if (RD->hasAttr<VisibilityAttr>())
239     return;
240 
241   switch (RD->getTemplateSpecializationKind()) {
242   // We have to disable the optimization if this is an EI definition
243   // because there might be EI declarations in other shared objects.
244   case TSK_ExplicitInstantiationDefinition:
245   case TSK_ExplicitInstantiationDeclaration:
246     return;
247 
248   // Every use of a non-template or explicitly-specialized class's
249   // type information has to emit it.
250   case TSK_ExplicitSpecialization:
251   case TSK_Undeclared:
252     break;
253 
254   // Implicit instantiations can ignore the possibility of an
255   // explicit instantiation declaration because there necessarily
256   // must be an EI definition somewhere with default visibility.
257   case TSK_ImplicitInstantiation:
258     break;
259   }
260 
261   // If there's a key function, there may be translation units
262   // that don't have the key function's definition.  But ignore
263   // this if we're emitting RTTI under -fno-rtti.
264   if (!IsForRTTI || Features.RTTI)
265     if (Context.getKeyFunction(RD))
266       return;
267 
268   // Otherwise, drop the visibility to hidden.
269   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
270 }
271 
272 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
273   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
274 
275   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
276   if (!Str.empty())
277     return Str;
278 
279   if (!getMangleContext().shouldMangleDeclName(ND)) {
280     IdentifierInfo *II = ND->getIdentifier();
281     assert(II && "Attempt to mangle unnamed decl.");
282 
283     Str = II->getName();
284     return Str;
285   }
286 
287   llvm::SmallString<256> Buffer;
288   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
289     getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
290   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
291     getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
292   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
293     getMangleContext().mangleBlock(GD, BD, Buffer);
294   else
295     getMangleContext().mangleName(ND, Buffer);
296 
297   // Allocate space for the mangled name.
298   size_t Length = Buffer.size();
299   char *Name = MangledNamesAllocator.Allocate<char>(Length);
300   std::copy(Buffer.begin(), Buffer.end(), Name);
301 
302   Str = llvm::StringRef(Name, Length);
303 
304   return Str;
305 }
306 
307 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
308                                    const BlockDecl *BD) {
309   getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
310 }
311 
312 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
313   return getModule().getNamedValue(Name);
314 }
315 
316 /// AddGlobalCtor - Add a function to the list that will be called before
317 /// main() runs.
318 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
319   // FIXME: Type coercion of void()* types.
320   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
321 }
322 
323 /// AddGlobalDtor - Add a function to the list that will be called
324 /// when the module is unloaded.
325 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
326   // FIXME: Type coercion of void()* types.
327   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
328 }
329 
330 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
331   // Ctor function type is void()*.
332   llvm::FunctionType* CtorFTy =
333     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
334                             std::vector<const llvm::Type*>(),
335                             false);
336   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
337 
338   // Get the type of a ctor entry, { i32, void ()* }.
339   llvm::StructType* CtorStructTy =
340     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
341                           llvm::PointerType::getUnqual(CtorFTy), NULL);
342 
343   // Construct the constructor and destructor arrays.
344   std::vector<llvm::Constant*> Ctors;
345   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
346     std::vector<llvm::Constant*> S;
347     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
348                 I->second, false));
349     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
350     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
351   }
352 
353   if (!Ctors.empty()) {
354     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
355     new llvm::GlobalVariable(TheModule, AT, false,
356                              llvm::GlobalValue::AppendingLinkage,
357                              llvm::ConstantArray::get(AT, Ctors),
358                              GlobalName);
359   }
360 }
361 
362 void CodeGenModule::EmitAnnotations() {
363   if (Annotations.empty())
364     return;
365 
366   // Create a new global variable for the ConstantStruct in the Module.
367   llvm::Constant *Array =
368   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
369                                                 Annotations.size()),
370                            Annotations);
371   llvm::GlobalValue *gv =
372   new llvm::GlobalVariable(TheModule, Array->getType(), false,
373                            llvm::GlobalValue::AppendingLinkage, Array,
374                            "llvm.global.annotations");
375   gv->setSection("llvm.metadata");
376 }
377 
378 llvm::GlobalValue::LinkageTypes
379 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
380   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
381 
382   if (Linkage == GVA_Internal)
383     return llvm::Function::InternalLinkage;
384 
385   if (D->hasAttr<DLLExportAttr>())
386     return llvm::Function::DLLExportLinkage;
387 
388   if (D->hasAttr<WeakAttr>())
389     return llvm::Function::WeakAnyLinkage;
390 
391   // In C99 mode, 'inline' functions are guaranteed to have a strong
392   // definition somewhere else, so we can use available_externally linkage.
393   if (Linkage == GVA_C99Inline)
394     return llvm::Function::AvailableExternallyLinkage;
395 
396   // In C++, the compiler has to emit a definition in every translation unit
397   // that references the function.  We should use linkonce_odr because
398   // a) if all references in this translation unit are optimized away, we
399   // don't need to codegen it.  b) if the function persists, it needs to be
400   // merged with other definitions. c) C++ has the ODR, so we know the
401   // definition is dependable.
402   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
403     return llvm::Function::LinkOnceODRLinkage;
404 
405   // An explicit instantiation of a template has weak linkage, since
406   // explicit instantiations can occur in multiple translation units
407   // and must all be equivalent. However, we are not allowed to
408   // throw away these explicit instantiations.
409   if (Linkage == GVA_ExplicitTemplateInstantiation)
410     return llvm::Function::WeakODRLinkage;
411 
412   // Otherwise, we have strong external linkage.
413   assert(Linkage == GVA_StrongExternal);
414   return llvm::Function::ExternalLinkage;
415 }
416 
417 
418 /// SetFunctionDefinitionAttributes - Set attributes for a global.
419 ///
420 /// FIXME: This is currently only done for aliases and functions, but not for
421 /// variables (these details are set in EmitGlobalVarDefinition for variables).
422 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
423                                                     llvm::GlobalValue *GV) {
424   SetCommonAttributes(D, GV);
425 }
426 
427 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
428                                               const CGFunctionInfo &Info,
429                                               llvm::Function *F) {
430   unsigned CallingConv;
431   AttributeListType AttributeList;
432   ConstructAttributeList(Info, D, AttributeList, CallingConv);
433   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
434                                           AttributeList.size()));
435   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
436 }
437 
438 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
439                                                            llvm::Function *F) {
440   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
441     F->addFnAttr(llvm::Attribute::NoUnwind);
442 
443   if (D->hasAttr<AlwaysInlineAttr>())
444     F->addFnAttr(llvm::Attribute::AlwaysInline);
445 
446   if (D->hasAttr<NoInlineAttr>())
447     F->addFnAttr(llvm::Attribute::NoInline);
448 
449   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
450     F->addFnAttr(llvm::Attribute::StackProtect);
451   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
452     F->addFnAttr(llvm::Attribute::StackProtectReq);
453 
454   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
455     unsigned width = Context.Target.getCharWidth();
456     F->setAlignment(AA->getAlignment() / width);
457     while ((AA = AA->getNext<AlignedAttr>()))
458       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
459   }
460   // C++ ABI requires 2-byte alignment for member functions.
461   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
462     F->setAlignment(2);
463 }
464 
465 void CodeGenModule::SetCommonAttributes(const Decl *D,
466                                         llvm::GlobalValue *GV) {
467   setGlobalVisibility(GV, D);
468 
469   if (D->hasAttr<UsedAttr>())
470     AddUsedGlobal(GV);
471 
472   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
473     GV->setSection(SA->getName());
474 
475   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
476 }
477 
478 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
479                                                   llvm::Function *F,
480                                                   const CGFunctionInfo &FI) {
481   SetLLVMFunctionAttributes(D, FI, F);
482   SetLLVMFunctionAttributesForDefinition(D, F);
483 
484   F->setLinkage(llvm::Function::InternalLinkage);
485 
486   SetCommonAttributes(D, F);
487 }
488 
489 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
490                                           llvm::Function *F,
491                                           bool IsIncompleteFunction) {
492   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
493 
494   if (!IsIncompleteFunction)
495     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
496 
497   // Only a few attributes are set on declarations; these may later be
498   // overridden by a definition.
499 
500   if (FD->hasAttr<DLLImportAttr>()) {
501     F->setLinkage(llvm::Function::DLLImportLinkage);
502   } else if (FD->hasAttr<WeakAttr>() ||
503              FD->hasAttr<WeakImportAttr>()) {
504     // "extern_weak" is overloaded in LLVM; we probably should have
505     // separate linkage types for this.
506     F->setLinkage(llvm::Function::ExternalWeakLinkage);
507   } else {
508     F->setLinkage(llvm::Function::ExternalLinkage);
509   }
510 
511   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
512     F->setSection(SA->getName());
513 }
514 
515 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
516   assert(!GV->isDeclaration() &&
517          "Only globals with definition can force usage.");
518   LLVMUsed.push_back(GV);
519 }
520 
521 void CodeGenModule::EmitLLVMUsed() {
522   // Don't create llvm.used if there is no need.
523   if (LLVMUsed.empty())
524     return;
525 
526   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
527 
528   // Convert LLVMUsed to what ConstantArray needs.
529   std::vector<llvm::Constant*> UsedArray;
530   UsedArray.resize(LLVMUsed.size());
531   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
532     UsedArray[i] =
533      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
534                                       i8PTy);
535   }
536 
537   if (UsedArray.empty())
538     return;
539   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
540 
541   llvm::GlobalVariable *GV =
542     new llvm::GlobalVariable(getModule(), ATy, false,
543                              llvm::GlobalValue::AppendingLinkage,
544                              llvm::ConstantArray::get(ATy, UsedArray),
545                              "llvm.used");
546 
547   GV->setSection("llvm.metadata");
548 }
549 
550 void CodeGenModule::EmitDeferred() {
551   // Emit code for any potentially referenced deferred decls.  Since a
552   // previously unused static decl may become used during the generation of code
553   // for a static function, iterate until no  changes are made.
554 
555   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
556     if (!DeferredVTables.empty()) {
557       const CXXRecordDecl *RD = DeferredVTables.back();
558       DeferredVTables.pop_back();
559       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
560       continue;
561     }
562 
563     GlobalDecl D = DeferredDeclsToEmit.back();
564     DeferredDeclsToEmit.pop_back();
565 
566     // Check to see if we've already emitted this.  This is necessary
567     // for a couple of reasons: first, decls can end up in the
568     // deferred-decls queue multiple times, and second, decls can end
569     // up with definitions in unusual ways (e.g. by an extern inline
570     // function acquiring a strong function redefinition).  Just
571     // ignore these cases.
572     //
573     // TODO: That said, looking this up multiple times is very wasteful.
574     llvm::StringRef Name = getMangledName(D);
575     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
576     assert(CGRef && "Deferred decl wasn't referenced?");
577 
578     if (!CGRef->isDeclaration())
579       continue;
580 
581     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
582     // purposes an alias counts as a definition.
583     if (isa<llvm::GlobalAlias>(CGRef))
584       continue;
585 
586     // Otherwise, emit the definition and move on to the next one.
587     EmitGlobalDefinition(D);
588   }
589 }
590 
591 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
592 /// annotation information for a given GlobalValue.  The annotation struct is
593 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
594 /// GlobalValue being annotated.  The second field is the constant string
595 /// created from the AnnotateAttr's annotation.  The third field is a constant
596 /// string containing the name of the translation unit.  The fourth field is
597 /// the line number in the file of the annotated value declaration.
598 ///
599 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
600 ///        appears to.
601 ///
602 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
603                                                 const AnnotateAttr *AA,
604                                                 unsigned LineNo) {
605   llvm::Module *M = &getModule();
606 
607   // get [N x i8] constants for the annotation string, and the filename string
608   // which are the 2nd and 3rd elements of the global annotation structure.
609   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
610   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
611                                                   AA->getAnnotation(), true);
612   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
613                                                   M->getModuleIdentifier(),
614                                                   true);
615 
616   // Get the two global values corresponding to the ConstantArrays we just
617   // created to hold the bytes of the strings.
618   llvm::GlobalValue *annoGV =
619     new llvm::GlobalVariable(*M, anno->getType(), false,
620                              llvm::GlobalValue::PrivateLinkage, anno,
621                              GV->getName());
622   // translation unit name string, emitted into the llvm.metadata section.
623   llvm::GlobalValue *unitGV =
624     new llvm::GlobalVariable(*M, unit->getType(), false,
625                              llvm::GlobalValue::PrivateLinkage, unit,
626                              ".str");
627 
628   // Create the ConstantStruct for the global annotation.
629   llvm::Constant *Fields[4] = {
630     llvm::ConstantExpr::getBitCast(GV, SBP),
631     llvm::ConstantExpr::getBitCast(annoGV, SBP),
632     llvm::ConstantExpr::getBitCast(unitGV, SBP),
633     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
634   };
635   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
636 }
637 
638 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
639   // Never defer when EmitAllDecls is specified.
640   if (Features.EmitAllDecls)
641     return false;
642 
643   return !getContext().DeclMustBeEmitted(Global);
644 }
645 
646 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
647   const AliasAttr *AA = VD->getAttr<AliasAttr>();
648   assert(AA && "No alias?");
649 
650   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
651 
652   // See if there is already something with the target's name in the module.
653   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
654 
655   llvm::Constant *Aliasee;
656   if (isa<llvm::FunctionType>(DeclTy))
657     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
658   else
659     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
660                                     llvm::PointerType::getUnqual(DeclTy), 0);
661   if (!Entry) {
662     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
663     F->setLinkage(llvm::Function::ExternalWeakLinkage);
664     WeakRefReferences.insert(F);
665   }
666 
667   return Aliasee;
668 }
669 
670 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
671   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
672 
673   // Weak references don't produce any output by themselves.
674   if (Global->hasAttr<WeakRefAttr>())
675     return;
676 
677   // If this is an alias definition (which otherwise looks like a declaration)
678   // emit it now.
679   if (Global->hasAttr<AliasAttr>())
680     return EmitAliasDefinition(GD);
681 
682   // Ignore declarations, they will be emitted on their first use.
683   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
684     if (FD->getIdentifier()) {
685       llvm::StringRef Name = FD->getName();
686       if (Name == "_Block_object_assign") {
687         BlockObjectAssignDecl = FD;
688       } else if (Name == "_Block_object_dispose") {
689         BlockObjectDisposeDecl = FD;
690       }
691     }
692 
693     // Forward declarations are emitted lazily on first use.
694     if (!FD->isThisDeclarationADefinition())
695       return;
696   } else {
697     const VarDecl *VD = cast<VarDecl>(Global);
698     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
699 
700     if (VD->getIdentifier()) {
701       llvm::StringRef Name = VD->getName();
702       if (Name == "_NSConcreteGlobalBlock") {
703         NSConcreteGlobalBlockDecl = VD;
704       } else if (Name == "_NSConcreteStackBlock") {
705         NSConcreteStackBlockDecl = VD;
706       }
707     }
708 
709 
710     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
711       return;
712   }
713 
714   // Defer code generation when possible if this is a static definition, inline
715   // function etc.  These we only want to emit if they are used.
716   if (!MayDeferGeneration(Global)) {
717     // Emit the definition if it can't be deferred.
718     EmitGlobalDefinition(GD);
719     return;
720   }
721 
722   // If we're deferring emission of a C++ variable with an
723   // initializer, remember the order in which it appeared in the file.
724   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
725       cast<VarDecl>(Global)->hasInit()) {
726     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
727     CXXGlobalInits.push_back(0);
728   }
729 
730   // If the value has already been used, add it directly to the
731   // DeferredDeclsToEmit list.
732   llvm::StringRef MangledName = getMangledName(GD);
733   if (GetGlobalValue(MangledName))
734     DeferredDeclsToEmit.push_back(GD);
735   else {
736     // Otherwise, remember that we saw a deferred decl with this name.  The
737     // first use of the mangled name will cause it to move into
738     // DeferredDeclsToEmit.
739     DeferredDecls[MangledName] = GD;
740   }
741 }
742 
743 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
744   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
745 
746   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
747                                  Context.getSourceManager(),
748                                  "Generating code for declaration");
749 
750   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
751     // At -O0, don't generate IR for functions with available_externally
752     // linkage.
753     if (CodeGenOpts.OptimizationLevel == 0 &&
754         !Function->hasAttr<AlwaysInlineAttr>() &&
755         getFunctionLinkage(Function)
756                                   == llvm::Function::AvailableExternallyLinkage)
757       return;
758 
759     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
760       if (Method->isVirtual())
761         getVTables().EmitThunks(GD);
762 
763       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
764         return EmitCXXConstructor(CD, GD.getCtorType());
765 
766       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
767         return EmitCXXDestructor(DD, GD.getDtorType());
768     }
769 
770     return EmitGlobalFunctionDefinition(GD);
771   }
772 
773   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
774     return EmitGlobalVarDefinition(VD);
775 
776   assert(0 && "Invalid argument to EmitGlobalDefinition()");
777 }
778 
779 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
780 /// module, create and return an llvm Function with the specified type. If there
781 /// is something in the module with the specified name, return it potentially
782 /// bitcasted to the right type.
783 ///
784 /// If D is non-null, it specifies a decl that correspond to this.  This is used
785 /// to set the attributes on the function when it is first created.
786 llvm::Constant *
787 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
788                                        const llvm::Type *Ty,
789                                        GlobalDecl D) {
790   // Lookup the entry, lazily creating it if necessary.
791   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
792   if (Entry) {
793     if (WeakRefReferences.count(Entry)) {
794       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
795       if (FD && !FD->hasAttr<WeakAttr>())
796         Entry->setLinkage(llvm::Function::ExternalLinkage);
797 
798       WeakRefReferences.erase(Entry);
799     }
800 
801     if (Entry->getType()->getElementType() == Ty)
802       return Entry;
803 
804     // Make sure the result is of the correct type.
805     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
806     return llvm::ConstantExpr::getBitCast(Entry, PTy);
807   }
808 
809   // This function doesn't have a complete type (for example, the return
810   // type is an incomplete struct). Use a fake type instead, and make
811   // sure not to try to set attributes.
812   bool IsIncompleteFunction = false;
813 
814   const llvm::FunctionType *FTy;
815   if (isa<llvm::FunctionType>(Ty)) {
816     FTy = cast<llvm::FunctionType>(Ty);
817   } else {
818     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
819                                   std::vector<const llvm::Type*>(), false);
820     IsIncompleteFunction = true;
821   }
822 
823   llvm::Function *F = llvm::Function::Create(FTy,
824                                              llvm::Function::ExternalLinkage,
825                                              MangledName, &getModule());
826   assert(F->getName() == MangledName && "name was uniqued!");
827   if (D.getDecl())
828     SetFunctionAttributes(D, F, IsIncompleteFunction);
829 
830   // This is the first use or definition of a mangled name.  If there is a
831   // deferred decl with this name, remember that we need to emit it at the end
832   // of the file.
833   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
834   if (DDI != DeferredDecls.end()) {
835     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
836     // list, and remove it from DeferredDecls (since we don't need it anymore).
837     DeferredDeclsToEmit.push_back(DDI->second);
838     DeferredDecls.erase(DDI);
839   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
840     // If this the first reference to a C++ inline function in a class, queue up
841     // the deferred function body for emission.  These are not seen as
842     // top-level declarations.
843     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
844       DeferredDeclsToEmit.push_back(D);
845     // A called constructor which has no definition or declaration need be
846     // synthesized.
847     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
848       if (CD->isImplicit()) {
849         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
850         DeferredDeclsToEmit.push_back(D);
851       }
852     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
853       if (DD->isImplicit()) {
854         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
855         DeferredDeclsToEmit.push_back(D);
856       }
857     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
858       if (MD->isCopyAssignment() && MD->isImplicit()) {
859         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
860         DeferredDeclsToEmit.push_back(D);
861       }
862     }
863   }
864 
865   // Make sure the result is of the requested type.
866   if (!IsIncompleteFunction) {
867     assert(F->getType()->getElementType() == Ty);
868     return F;
869   }
870 
871   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
872   return llvm::ConstantExpr::getBitCast(F, PTy);
873 }
874 
875 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
876 /// non-null, then this function will use the specified type if it has to
877 /// create it (this occurs when we see a definition of the function).
878 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
879                                                  const llvm::Type *Ty) {
880   // If there was no specific requested type, just convert it now.
881   if (!Ty)
882     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
883 
884   llvm::StringRef MangledName = getMangledName(GD);
885   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
886 }
887 
888 /// CreateRuntimeFunction - Create a new runtime function with the specified
889 /// type and name.
890 llvm::Constant *
891 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
892                                      llvm::StringRef Name) {
893   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
894 }
895 
896 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
897   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
898     return false;
899   if (Context.getLangOptions().CPlusPlus &&
900       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
901     // FIXME: We should do something fancier here!
902     return false;
903   }
904   return true;
905 }
906 
907 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
908 /// create and return an llvm GlobalVariable with the specified type.  If there
909 /// is something in the module with the specified name, return it potentially
910 /// bitcasted to the right type.
911 ///
912 /// If D is non-null, it specifies a decl that correspond to this.  This is used
913 /// to set the attributes on the global when it is first created.
914 llvm::Constant *
915 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
916                                      const llvm::PointerType *Ty,
917                                      const VarDecl *D) {
918   // Lookup the entry, lazily creating it if necessary.
919   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
920   if (Entry) {
921     if (WeakRefReferences.count(Entry)) {
922       if (D && !D->hasAttr<WeakAttr>())
923         Entry->setLinkage(llvm::Function::ExternalLinkage);
924 
925       WeakRefReferences.erase(Entry);
926     }
927 
928     if (Entry->getType() == Ty)
929       return Entry;
930 
931     // Make sure the result is of the correct type.
932     return llvm::ConstantExpr::getBitCast(Entry, Ty);
933   }
934 
935   // This is the first use or definition of a mangled name.  If there is a
936   // deferred decl with this name, remember that we need to emit it at the end
937   // of the file.
938   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
939   if (DDI != DeferredDecls.end()) {
940     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
941     // list, and remove it from DeferredDecls (since we don't need it anymore).
942     DeferredDeclsToEmit.push_back(DDI->second);
943     DeferredDecls.erase(DDI);
944   }
945 
946   llvm::GlobalVariable *GV =
947     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
948                              llvm::GlobalValue::ExternalLinkage,
949                              0, MangledName, 0,
950                              false, Ty->getAddressSpace());
951 
952   // Handle things which are present even on external declarations.
953   if (D) {
954     // FIXME: This code is overly simple and should be merged with other global
955     // handling.
956     GV->setConstant(DeclIsConstantGlobal(Context, D));
957 
958     // FIXME: Merge with other attribute handling code.
959     if (D->getStorageClass() == VarDecl::PrivateExtern)
960       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
961 
962     if (D->hasAttr<WeakAttr>() ||
963         D->hasAttr<WeakImportAttr>())
964       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
965 
966     GV->setThreadLocal(D->isThreadSpecified());
967   }
968 
969   return GV;
970 }
971 
972 
973 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
974 /// given global variable.  If Ty is non-null and if the global doesn't exist,
975 /// then it will be greated with the specified type instead of whatever the
976 /// normal requested type would be.
977 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
978                                                   const llvm::Type *Ty) {
979   assert(D->hasGlobalStorage() && "Not a global variable");
980   QualType ASTTy = D->getType();
981   if (Ty == 0)
982     Ty = getTypes().ConvertTypeForMem(ASTTy);
983 
984   const llvm::PointerType *PTy =
985     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
986 
987   llvm::StringRef MangledName = getMangledName(D);
988   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
989 }
990 
991 /// CreateRuntimeVariable - Create a new runtime global variable with the
992 /// specified type and name.
993 llvm::Constant *
994 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
995                                      llvm::StringRef Name) {
996   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
997 }
998 
999 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1000   assert(!D->getInit() && "Cannot emit definite definitions here!");
1001 
1002   if (MayDeferGeneration(D)) {
1003     // If we have not seen a reference to this variable yet, place it
1004     // into the deferred declarations table to be emitted if needed
1005     // later.
1006     llvm::StringRef MangledName = getMangledName(D);
1007     if (!GetGlobalValue(MangledName)) {
1008       DeferredDecls[MangledName] = D;
1009       return;
1010     }
1011   }
1012 
1013   // The tentative definition is the only definition.
1014   EmitGlobalVarDefinition(D);
1015 }
1016 
1017 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1018   if (DefinitionRequired)
1019     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1020 }
1021 
1022 llvm::GlobalVariable::LinkageTypes
1023 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1024   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1025     return llvm::GlobalVariable::InternalLinkage;
1026 
1027   if (const CXXMethodDecl *KeyFunction
1028                                     = RD->getASTContext().getKeyFunction(RD)) {
1029     // If this class has a key function, use that to determine the linkage of
1030     // the vtable.
1031     const FunctionDecl *Def = 0;
1032     if (KeyFunction->hasBody(Def))
1033       KeyFunction = cast<CXXMethodDecl>(Def);
1034 
1035     switch (KeyFunction->getTemplateSpecializationKind()) {
1036       case TSK_Undeclared:
1037       case TSK_ExplicitSpecialization:
1038         if (KeyFunction->isInlined())
1039           return llvm::GlobalVariable::WeakODRLinkage;
1040 
1041         return llvm::GlobalVariable::ExternalLinkage;
1042 
1043       case TSK_ImplicitInstantiation:
1044       case TSK_ExplicitInstantiationDefinition:
1045         return llvm::GlobalVariable::WeakODRLinkage;
1046 
1047       case TSK_ExplicitInstantiationDeclaration:
1048         // FIXME: Use available_externally linkage. However, this currently
1049         // breaks LLVM's build due to undefined symbols.
1050         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1051         return llvm::GlobalVariable::WeakODRLinkage;
1052     }
1053   }
1054 
1055   switch (RD->getTemplateSpecializationKind()) {
1056   case TSK_Undeclared:
1057   case TSK_ExplicitSpecialization:
1058   case TSK_ImplicitInstantiation:
1059   case TSK_ExplicitInstantiationDefinition:
1060     return llvm::GlobalVariable::WeakODRLinkage;
1061 
1062   case TSK_ExplicitInstantiationDeclaration:
1063     // FIXME: Use available_externally linkage. However, this currently
1064     // breaks LLVM's build due to undefined symbols.
1065     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1066     return llvm::GlobalVariable::WeakODRLinkage;
1067   }
1068 
1069   // Silence GCC warning.
1070   return llvm::GlobalVariable::WeakODRLinkage;
1071 }
1072 
1073 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1074     return CharUnits::fromQuantity(
1075       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1076 }
1077 
1078 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1079   llvm::Constant *Init = 0;
1080   QualType ASTTy = D->getType();
1081   bool NonConstInit = false;
1082 
1083   const Expr *InitExpr = D->getAnyInitializer();
1084 
1085   if (!InitExpr) {
1086     // This is a tentative definition; tentative definitions are
1087     // implicitly initialized with { 0 }.
1088     //
1089     // Note that tentative definitions are only emitted at the end of
1090     // a translation unit, so they should never have incomplete
1091     // type. In addition, EmitTentativeDefinition makes sure that we
1092     // never attempt to emit a tentative definition if a real one
1093     // exists. A use may still exists, however, so we still may need
1094     // to do a RAUW.
1095     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1096     Init = EmitNullConstant(D->getType());
1097   } else {
1098     Init = EmitConstantExpr(InitExpr, D->getType());
1099     if (!Init) {
1100       QualType T = InitExpr->getType();
1101       if (D->getType()->isReferenceType())
1102         T = D->getType();
1103 
1104       if (getLangOptions().CPlusPlus) {
1105         EmitCXXGlobalVarDeclInitFunc(D);
1106         Init = EmitNullConstant(T);
1107         NonConstInit = true;
1108       } else {
1109         ErrorUnsupported(D, "static initializer");
1110         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1111       }
1112     } else {
1113       // We don't need an initializer, so remove the entry for the delayed
1114       // initializer position (just in case this entry was delayed).
1115       if (getLangOptions().CPlusPlus)
1116         DelayedCXXInitPosition.erase(D);
1117     }
1118   }
1119 
1120   const llvm::Type* InitType = Init->getType();
1121   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1122 
1123   // Strip off a bitcast if we got one back.
1124   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1125     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1126            // all zero index gep.
1127            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1128     Entry = CE->getOperand(0);
1129   }
1130 
1131   // Entry is now either a Function or GlobalVariable.
1132   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1133 
1134   // We have a definition after a declaration with the wrong type.
1135   // We must make a new GlobalVariable* and update everything that used OldGV
1136   // (a declaration or tentative definition) with the new GlobalVariable*
1137   // (which will be a definition).
1138   //
1139   // This happens if there is a prototype for a global (e.g.
1140   // "extern int x[];") and then a definition of a different type (e.g.
1141   // "int x[10];"). This also happens when an initializer has a different type
1142   // from the type of the global (this happens with unions).
1143   if (GV == 0 ||
1144       GV->getType()->getElementType() != InitType ||
1145       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1146 
1147     // Move the old entry aside so that we'll create a new one.
1148     Entry->setName(llvm::StringRef());
1149 
1150     // Make a new global with the correct type, this is now guaranteed to work.
1151     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1152 
1153     // Replace all uses of the old global with the new global
1154     llvm::Constant *NewPtrForOldDecl =
1155         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1156     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1157 
1158     // Erase the old global, since it is no longer used.
1159     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1160   }
1161 
1162   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1163     SourceManager &SM = Context.getSourceManager();
1164     AddAnnotation(EmitAnnotateAttr(GV, AA,
1165                               SM.getInstantiationLineNumber(D->getLocation())));
1166   }
1167 
1168   GV->setInitializer(Init);
1169 
1170   // If it is safe to mark the global 'constant', do so now.
1171   GV->setConstant(false);
1172   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1173     GV->setConstant(true);
1174 
1175   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1176 
1177   // Set the llvm linkage type as appropriate.
1178   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1179   if (Linkage == GVA_Internal)
1180     GV->setLinkage(llvm::Function::InternalLinkage);
1181   else if (D->hasAttr<DLLImportAttr>())
1182     GV->setLinkage(llvm::Function::DLLImportLinkage);
1183   else if (D->hasAttr<DLLExportAttr>())
1184     GV->setLinkage(llvm::Function::DLLExportLinkage);
1185   else if (D->hasAttr<WeakAttr>()) {
1186     if (GV->isConstant())
1187       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1188     else
1189       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1190   } else if (Linkage == GVA_TemplateInstantiation ||
1191              Linkage == GVA_ExplicitTemplateInstantiation)
1192     // FIXME: It seems like we can provide more specific linkage here
1193     // (LinkOnceODR, WeakODR).
1194     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1195   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1196            !D->hasExternalStorage() && !D->getInit() &&
1197            !D->getAttr<SectionAttr>()) {
1198     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1199     // common vars aren't constant even if declared const.
1200     GV->setConstant(false);
1201   } else
1202     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1203 
1204   SetCommonAttributes(D, GV);
1205 
1206   // Emit global variable debug information.
1207   if (CGDebugInfo *DI = getDebugInfo()) {
1208     DI->setLocation(D->getLocation());
1209     DI->EmitGlobalVariable(GV, D);
1210   }
1211 }
1212 
1213 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1214 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1215 /// existing call uses of the old function in the module, this adjusts them to
1216 /// call the new function directly.
1217 ///
1218 /// This is not just a cleanup: the always_inline pass requires direct calls to
1219 /// functions to be able to inline them.  If there is a bitcast in the way, it
1220 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1221 /// run at -O0.
1222 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1223                                                       llvm::Function *NewFn) {
1224   // If we're redefining a global as a function, don't transform it.
1225   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1226   if (OldFn == 0) return;
1227 
1228   const llvm::Type *NewRetTy = NewFn->getReturnType();
1229   llvm::SmallVector<llvm::Value*, 4> ArgList;
1230 
1231   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1232        UI != E; ) {
1233     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1234     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1235     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1236     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1237     llvm::CallSite CS(CI);
1238     if (!CI || !CS.isCallee(I)) continue;
1239 
1240     // If the return types don't match exactly, and if the call isn't dead, then
1241     // we can't transform this call.
1242     if (CI->getType() != NewRetTy && !CI->use_empty())
1243       continue;
1244 
1245     // If the function was passed too few arguments, don't transform.  If extra
1246     // arguments were passed, we silently drop them.  If any of the types
1247     // mismatch, we don't transform.
1248     unsigned ArgNo = 0;
1249     bool DontTransform = false;
1250     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1251          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1252       if (CS.arg_size() == ArgNo ||
1253           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1254         DontTransform = true;
1255         break;
1256       }
1257     }
1258     if (DontTransform)
1259       continue;
1260 
1261     // Okay, we can transform this.  Create the new call instruction and copy
1262     // over the required information.
1263     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1264     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1265                                                      ArgList.end(), "", CI);
1266     ArgList.clear();
1267     if (!NewCall->getType()->isVoidTy())
1268       NewCall->takeName(CI);
1269     NewCall->setAttributes(CI->getAttributes());
1270     NewCall->setCallingConv(CI->getCallingConv());
1271 
1272     // Finally, remove the old call, replacing any uses with the new one.
1273     if (!CI->use_empty())
1274       CI->replaceAllUsesWith(NewCall);
1275 
1276     // Copy debug location attached to CI.
1277     if (!CI->getDebugLoc().isUnknown())
1278       NewCall->setDebugLoc(CI->getDebugLoc());
1279     CI->eraseFromParent();
1280   }
1281 }
1282 
1283 
1284 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1285   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1286   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1287   getMangleContext().mangleInitDiscriminator();
1288   // Get or create the prototype for the function.
1289   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1290 
1291   // Strip off a bitcast if we got one back.
1292   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1293     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1294     Entry = CE->getOperand(0);
1295   }
1296 
1297 
1298   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1299     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1300 
1301     // If the types mismatch then we have to rewrite the definition.
1302     assert(OldFn->isDeclaration() &&
1303            "Shouldn't replace non-declaration");
1304 
1305     // F is the Function* for the one with the wrong type, we must make a new
1306     // Function* and update everything that used F (a declaration) with the new
1307     // Function* (which will be a definition).
1308     //
1309     // This happens if there is a prototype for a function
1310     // (e.g. "int f()") and then a definition of a different type
1311     // (e.g. "int f(int x)").  Move the old function aside so that it
1312     // doesn't interfere with GetAddrOfFunction.
1313     OldFn->setName(llvm::StringRef());
1314     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1315 
1316     // If this is an implementation of a function without a prototype, try to
1317     // replace any existing uses of the function (which may be calls) with uses
1318     // of the new function
1319     if (D->getType()->isFunctionNoProtoType()) {
1320       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1321       OldFn->removeDeadConstantUsers();
1322     }
1323 
1324     // Replace uses of F with the Function we will endow with a body.
1325     if (!Entry->use_empty()) {
1326       llvm::Constant *NewPtrForOldDecl =
1327         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1328       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1329     }
1330 
1331     // Ok, delete the old function now, which is dead.
1332     OldFn->eraseFromParent();
1333 
1334     Entry = NewFn;
1335   }
1336 
1337   llvm::Function *Fn = cast<llvm::Function>(Entry);
1338   setFunctionLinkage(D, Fn);
1339 
1340   CodeGenFunction(*this).GenerateCode(D, Fn);
1341 
1342   SetFunctionDefinitionAttributes(D, Fn);
1343   SetLLVMFunctionAttributesForDefinition(D, Fn);
1344 
1345   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1346     AddGlobalCtor(Fn, CA->getPriority());
1347   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1348     AddGlobalDtor(Fn, DA->getPriority());
1349 }
1350 
1351 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1352   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1353   const AliasAttr *AA = D->getAttr<AliasAttr>();
1354   assert(AA && "Not an alias?");
1355 
1356   llvm::StringRef MangledName = getMangledName(GD);
1357 
1358   // If there is a definition in the module, then it wins over the alias.
1359   // This is dubious, but allow it to be safe.  Just ignore the alias.
1360   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1361   if (Entry && !Entry->isDeclaration())
1362     return;
1363 
1364   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1365 
1366   // Create a reference to the named value.  This ensures that it is emitted
1367   // if a deferred decl.
1368   llvm::Constant *Aliasee;
1369   if (isa<llvm::FunctionType>(DeclTy))
1370     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1371   else
1372     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1373                                     llvm::PointerType::getUnqual(DeclTy), 0);
1374 
1375   // Create the new alias itself, but don't set a name yet.
1376   llvm::GlobalValue *GA =
1377     new llvm::GlobalAlias(Aliasee->getType(),
1378                           llvm::Function::ExternalLinkage,
1379                           "", Aliasee, &getModule());
1380 
1381   if (Entry) {
1382     assert(Entry->isDeclaration());
1383 
1384     // If there is a declaration in the module, then we had an extern followed
1385     // by the alias, as in:
1386     //   extern int test6();
1387     //   ...
1388     //   int test6() __attribute__((alias("test7")));
1389     //
1390     // Remove it and replace uses of it with the alias.
1391     GA->takeName(Entry);
1392 
1393     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1394                                                           Entry->getType()));
1395     Entry->eraseFromParent();
1396   } else {
1397     GA->setName(MangledName);
1398   }
1399 
1400   // Set attributes which are particular to an alias; this is a
1401   // specialization of the attributes which may be set on a global
1402   // variable/function.
1403   if (D->hasAttr<DLLExportAttr>()) {
1404     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1405       // The dllexport attribute is ignored for undefined symbols.
1406       if (FD->hasBody())
1407         GA->setLinkage(llvm::Function::DLLExportLinkage);
1408     } else {
1409       GA->setLinkage(llvm::Function::DLLExportLinkage);
1410     }
1411   } else if (D->hasAttr<WeakAttr>() ||
1412              D->hasAttr<WeakRefAttr>() ||
1413              D->hasAttr<WeakImportAttr>()) {
1414     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1415   }
1416 
1417   SetCommonAttributes(D, GA);
1418 }
1419 
1420 /// getBuiltinLibFunction - Given a builtin id for a function like
1421 /// "__builtin_fabsf", return a Function* for "fabsf".
1422 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1423                                                   unsigned BuiltinID) {
1424   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1425           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1426          "isn't a lib fn");
1427 
1428   // Get the name, skip over the __builtin_ prefix (if necessary).
1429   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1430   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1431     Name += 10;
1432 
1433   const llvm::FunctionType *Ty =
1434     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1435 
1436   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1437 }
1438 
1439 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1440                                             unsigned NumTys) {
1441   return llvm::Intrinsic::getDeclaration(&getModule(),
1442                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1443 }
1444 
1445 
1446 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1447                                            const llvm::Type *SrcType,
1448                                            const llvm::Type *SizeType) {
1449   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1450   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1451 }
1452 
1453 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1454                                             const llvm::Type *SrcType,
1455                                             const llvm::Type *SizeType) {
1456   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1457   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1458 }
1459 
1460 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1461                                            const llvm::Type *SizeType) {
1462   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1463   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1464 }
1465 
1466 static llvm::StringMapEntry<llvm::Constant*> &
1467 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1468                          const StringLiteral *Literal,
1469                          bool TargetIsLSB,
1470                          bool &IsUTF16,
1471                          unsigned &StringLength) {
1472   unsigned NumBytes = Literal->getByteLength();
1473 
1474   // Check for simple case.
1475   if (!Literal->containsNonAsciiOrNull()) {
1476     StringLength = NumBytes;
1477     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1478                                                 StringLength));
1479   }
1480 
1481   // Otherwise, convert the UTF8 literals into a byte string.
1482   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1483   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1484   UTF16 *ToPtr = &ToBuf[0];
1485 
1486   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1487                                                &ToPtr, ToPtr + NumBytes,
1488                                                strictConversion);
1489 
1490   // Check for conversion failure.
1491   if (Result != conversionOK) {
1492     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1493     // this duplicate code.
1494     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1495     StringLength = NumBytes;
1496     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1497                                                 StringLength));
1498   }
1499 
1500   // ConvertUTF8toUTF16 returns the length in ToPtr.
1501   StringLength = ToPtr - &ToBuf[0];
1502 
1503   // Render the UTF-16 string into a byte array and convert to the target byte
1504   // order.
1505   //
1506   // FIXME: This isn't something we should need to do here.
1507   llvm::SmallString<128> AsBytes;
1508   AsBytes.reserve(StringLength * 2);
1509   for (unsigned i = 0; i != StringLength; ++i) {
1510     unsigned short Val = ToBuf[i];
1511     if (TargetIsLSB) {
1512       AsBytes.push_back(Val & 0xFF);
1513       AsBytes.push_back(Val >> 8);
1514     } else {
1515       AsBytes.push_back(Val >> 8);
1516       AsBytes.push_back(Val & 0xFF);
1517     }
1518   }
1519   // Append one extra null character, the second is automatically added by our
1520   // caller.
1521   AsBytes.push_back(0);
1522 
1523   IsUTF16 = true;
1524   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1525 }
1526 
1527 llvm::Constant *
1528 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1529   unsigned StringLength = 0;
1530   bool isUTF16 = false;
1531   llvm::StringMapEntry<llvm::Constant*> &Entry =
1532     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1533                              getTargetData().isLittleEndian(),
1534                              isUTF16, StringLength);
1535 
1536   if (llvm::Constant *C = Entry.getValue())
1537     return C;
1538 
1539   llvm::Constant *Zero =
1540       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1541   llvm::Constant *Zeros[] = { Zero, Zero };
1542 
1543   // If we don't already have it, get __CFConstantStringClassReference.
1544   if (!CFConstantStringClassRef) {
1545     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1546     Ty = llvm::ArrayType::get(Ty, 0);
1547     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1548                                            "__CFConstantStringClassReference");
1549     // Decay array -> ptr
1550     CFConstantStringClassRef =
1551       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1552   }
1553 
1554   QualType CFTy = getContext().getCFConstantStringType();
1555 
1556   const llvm::StructType *STy =
1557     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1558 
1559   std::vector<llvm::Constant*> Fields(4);
1560 
1561   // Class pointer.
1562   Fields[0] = CFConstantStringClassRef;
1563 
1564   // Flags.
1565   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1566   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1567     llvm::ConstantInt::get(Ty, 0x07C8);
1568 
1569   // String pointer.
1570   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1571 
1572   llvm::GlobalValue::LinkageTypes Linkage;
1573   bool isConstant;
1574   if (isUTF16) {
1575     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1576     Linkage = llvm::GlobalValue::InternalLinkage;
1577     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1578     // does make plain ascii ones writable.
1579     isConstant = true;
1580   } else {
1581     Linkage = llvm::GlobalValue::PrivateLinkage;
1582     isConstant = !Features.WritableStrings;
1583   }
1584 
1585   llvm::GlobalVariable *GV =
1586     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1587                              ".str");
1588   if (isUTF16) {
1589     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1590     GV->setAlignment(Align.getQuantity());
1591   }
1592   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1593 
1594   // String length.
1595   Ty = getTypes().ConvertType(getContext().LongTy);
1596   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1597 
1598   // The struct.
1599   C = llvm::ConstantStruct::get(STy, Fields);
1600   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1601                                 llvm::GlobalVariable::PrivateLinkage, C,
1602                                 "_unnamed_cfstring_");
1603   if (const char *Sect = getContext().Target.getCFStringSection())
1604     GV->setSection(Sect);
1605   Entry.setValue(GV);
1606 
1607   return GV;
1608 }
1609 
1610 llvm::Constant *
1611 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1612   unsigned StringLength = 0;
1613   bool isUTF16 = false;
1614   llvm::StringMapEntry<llvm::Constant*> &Entry =
1615     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1616                              getTargetData().isLittleEndian(),
1617                              isUTF16, StringLength);
1618 
1619   if (llvm::Constant *C = Entry.getValue())
1620     return C;
1621 
1622   llvm::Constant *Zero =
1623   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1624   llvm::Constant *Zeros[] = { Zero, Zero };
1625 
1626   // If we don't already have it, get _NSConstantStringClassReference.
1627   if (!NSConstantStringClassRef) {
1628     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1629     Ty = llvm::ArrayType::get(Ty, 0);
1630     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1631                                         Features.ObjCNonFragileABI ?
1632                                         "OBJC_CLASS_$_NSConstantString" :
1633                                         "_NSConstantStringClassReference");
1634     // Decay array -> ptr
1635     NSConstantStringClassRef =
1636       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1637   }
1638 
1639   QualType NSTy = getContext().getNSConstantStringType();
1640 
1641   const llvm::StructType *STy =
1642   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1643 
1644   std::vector<llvm::Constant*> Fields(3);
1645 
1646   // Class pointer.
1647   Fields[0] = NSConstantStringClassRef;
1648 
1649   // String pointer.
1650   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1651 
1652   llvm::GlobalValue::LinkageTypes Linkage;
1653   bool isConstant;
1654   if (isUTF16) {
1655     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1656     Linkage = llvm::GlobalValue::InternalLinkage;
1657     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1658     // does make plain ascii ones writable.
1659     isConstant = true;
1660   } else {
1661     Linkage = llvm::GlobalValue::PrivateLinkage;
1662     isConstant = !Features.WritableStrings;
1663   }
1664 
1665   llvm::GlobalVariable *GV =
1666   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1667                            ".str");
1668   if (isUTF16) {
1669     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1670     GV->setAlignment(Align.getQuantity());
1671   }
1672   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1673 
1674   // String length.
1675   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1676   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1677 
1678   // The struct.
1679   C = llvm::ConstantStruct::get(STy, Fields);
1680   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1681                                 llvm::GlobalVariable::PrivateLinkage, C,
1682                                 "_unnamed_nsstring_");
1683   // FIXME. Fix section.
1684   if (const char *Sect =
1685         Features.ObjCNonFragileABI
1686           ? getContext().Target.getNSStringNonFragileABISection()
1687           : getContext().Target.getNSStringSection())
1688     GV->setSection(Sect);
1689   Entry.setValue(GV);
1690 
1691   return GV;
1692 }
1693 
1694 /// GetStringForStringLiteral - Return the appropriate bytes for a
1695 /// string literal, properly padded to match the literal type.
1696 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1697   const char *StrData = E->getStrData();
1698   unsigned Len = E->getByteLength();
1699 
1700   const ConstantArrayType *CAT =
1701     getContext().getAsConstantArrayType(E->getType());
1702   assert(CAT && "String isn't pointer or array!");
1703 
1704   // Resize the string to the right size.
1705   std::string Str(StrData, StrData+Len);
1706   uint64_t RealLen = CAT->getSize().getZExtValue();
1707 
1708   if (E->isWide())
1709     RealLen *= getContext().Target.getWCharWidth()/8;
1710 
1711   Str.resize(RealLen, '\0');
1712 
1713   return Str;
1714 }
1715 
1716 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1717 /// constant array for the given string literal.
1718 llvm::Constant *
1719 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1720   // FIXME: This can be more efficient.
1721   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1722   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1723   if (S->isWide()) {
1724     llvm::Type *DestTy =
1725         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1726     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1727   }
1728   return C;
1729 }
1730 
1731 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1732 /// array for the given ObjCEncodeExpr node.
1733 llvm::Constant *
1734 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1735   std::string Str;
1736   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1737 
1738   return GetAddrOfConstantCString(Str);
1739 }
1740 
1741 
1742 /// GenerateWritableString -- Creates storage for a string literal.
1743 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1744                                              bool constant,
1745                                              CodeGenModule &CGM,
1746                                              const char *GlobalName) {
1747   // Create Constant for this string literal. Don't add a '\0'.
1748   llvm::Constant *C =
1749       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1750 
1751   // Create a global variable for this string
1752   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1753                                   llvm::GlobalValue::PrivateLinkage,
1754                                   C, GlobalName);
1755 }
1756 
1757 /// GetAddrOfConstantString - Returns a pointer to a character array
1758 /// containing the literal. This contents are exactly that of the
1759 /// given string, i.e. it will not be null terminated automatically;
1760 /// see GetAddrOfConstantCString. Note that whether the result is
1761 /// actually a pointer to an LLVM constant depends on
1762 /// Feature.WriteableStrings.
1763 ///
1764 /// The result has pointer to array type.
1765 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1766                                                        const char *GlobalName) {
1767   bool IsConstant = !Features.WritableStrings;
1768 
1769   // Get the default prefix if a name wasn't specified.
1770   if (!GlobalName)
1771     GlobalName = ".str";
1772 
1773   // Don't share any string literals if strings aren't constant.
1774   if (!IsConstant)
1775     return GenerateStringLiteral(str, false, *this, GlobalName);
1776 
1777   llvm::StringMapEntry<llvm::Constant *> &Entry =
1778     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1779 
1780   if (Entry.getValue())
1781     return Entry.getValue();
1782 
1783   // Create a global variable for this.
1784   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1785   Entry.setValue(C);
1786   return C;
1787 }
1788 
1789 /// GetAddrOfConstantCString - Returns a pointer to a character
1790 /// array containing the literal and a terminating '\-'
1791 /// character. The result has pointer to array type.
1792 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1793                                                         const char *GlobalName){
1794   return GetAddrOfConstantString(str + '\0', GlobalName);
1795 }
1796 
1797 /// EmitObjCPropertyImplementations - Emit information for synthesized
1798 /// properties for an implementation.
1799 void CodeGenModule::EmitObjCPropertyImplementations(const
1800                                                     ObjCImplementationDecl *D) {
1801   for (ObjCImplementationDecl::propimpl_iterator
1802          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1803     ObjCPropertyImplDecl *PID = *i;
1804 
1805     // Dynamic is just for type-checking.
1806     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1807       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1808 
1809       // Determine which methods need to be implemented, some may have
1810       // been overridden. Note that ::isSynthesized is not the method
1811       // we want, that just indicates if the decl came from a
1812       // property. What we want to know is if the method is defined in
1813       // this implementation.
1814       if (!D->getInstanceMethod(PD->getGetterName()))
1815         CodeGenFunction(*this).GenerateObjCGetter(
1816                                  const_cast<ObjCImplementationDecl *>(D), PID);
1817       if (!PD->isReadOnly() &&
1818           !D->getInstanceMethod(PD->getSetterName()))
1819         CodeGenFunction(*this).GenerateObjCSetter(
1820                                  const_cast<ObjCImplementationDecl *>(D), PID);
1821     }
1822   }
1823 }
1824 
1825 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1826 /// for an implementation.
1827 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1828   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1829     return;
1830   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1831   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1832   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1833   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1834   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1835                                                   D->getLocation(),
1836                                                   D->getLocation(), cxxSelector,
1837                                                   getContext().VoidTy, 0,
1838                                                   DC, true, false, true, false,
1839                                                   ObjCMethodDecl::Required);
1840   D->addInstanceMethod(DTORMethod);
1841   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1842 
1843   II = &getContext().Idents.get(".cxx_construct");
1844   cxxSelector = getContext().Selectors.getSelector(0, &II);
1845   // The constructor returns 'self'.
1846   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1847                                                 D->getLocation(),
1848                                                 D->getLocation(), cxxSelector,
1849                                                 getContext().getObjCIdType(), 0,
1850                                                 DC, true, false, true, false,
1851                                                 ObjCMethodDecl::Required);
1852   D->addInstanceMethod(CTORMethod);
1853   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1854 
1855 
1856 }
1857 
1858 /// EmitNamespace - Emit all declarations in a namespace.
1859 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1860   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1861        I != E; ++I)
1862     EmitTopLevelDecl(*I);
1863 }
1864 
1865 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1866 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1867   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1868       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1869     ErrorUnsupported(LSD, "linkage spec");
1870     return;
1871   }
1872 
1873   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1874        I != E; ++I)
1875     EmitTopLevelDecl(*I);
1876 }
1877 
1878 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1879 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1880   // If an error has occurred, stop code generation, but continue
1881   // parsing and semantic analysis (to ensure all warnings and errors
1882   // are emitted).
1883   if (Diags.hasErrorOccurred())
1884     return;
1885 
1886   // Ignore dependent declarations.
1887   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1888     return;
1889 
1890   switch (D->getKind()) {
1891   case Decl::CXXConversion:
1892   case Decl::CXXMethod:
1893   case Decl::Function:
1894     // Skip function templates
1895     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1896       return;
1897 
1898     EmitGlobal(cast<FunctionDecl>(D));
1899     break;
1900 
1901   case Decl::Var:
1902     EmitGlobal(cast<VarDecl>(D));
1903     break;
1904 
1905   // C++ Decls
1906   case Decl::Namespace:
1907     EmitNamespace(cast<NamespaceDecl>(D));
1908     break;
1909     // No code generation needed.
1910   case Decl::UsingShadow:
1911   case Decl::Using:
1912   case Decl::UsingDirective:
1913   case Decl::ClassTemplate:
1914   case Decl::FunctionTemplate:
1915   case Decl::NamespaceAlias:
1916     break;
1917   case Decl::CXXConstructor:
1918     // Skip function templates
1919     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1920       return;
1921 
1922     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1923     break;
1924   case Decl::CXXDestructor:
1925     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1926     break;
1927 
1928   case Decl::StaticAssert:
1929     // Nothing to do.
1930     break;
1931 
1932   // Objective-C Decls
1933 
1934   // Forward declarations, no (immediate) code generation.
1935   case Decl::ObjCClass:
1936   case Decl::ObjCForwardProtocol:
1937   case Decl::ObjCCategory:
1938   case Decl::ObjCInterface:
1939     break;
1940 
1941   case Decl::ObjCProtocol:
1942     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1943     break;
1944 
1945   case Decl::ObjCCategoryImpl:
1946     // Categories have properties but don't support synthesize so we
1947     // can ignore them here.
1948     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1949     break;
1950 
1951   case Decl::ObjCImplementation: {
1952     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1953     EmitObjCPropertyImplementations(OMD);
1954     EmitObjCIvarInitializations(OMD);
1955     Runtime->GenerateClass(OMD);
1956     break;
1957   }
1958   case Decl::ObjCMethod: {
1959     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1960     // If this is not a prototype, emit the body.
1961     if (OMD->getBody())
1962       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1963     break;
1964   }
1965   case Decl::ObjCCompatibleAlias:
1966     // compatibility-alias is a directive and has no code gen.
1967     break;
1968 
1969   case Decl::LinkageSpec:
1970     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1971     break;
1972 
1973   case Decl::FileScopeAsm: {
1974     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1975     llvm::StringRef AsmString = AD->getAsmString()->getString();
1976 
1977     const std::string &S = getModule().getModuleInlineAsm();
1978     if (S.empty())
1979       getModule().setModuleInlineAsm(AsmString);
1980     else
1981       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1982     break;
1983   }
1984 
1985   default:
1986     // Make sure we handled everything we should, every other kind is a
1987     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1988     // function. Need to recode Decl::Kind to do that easily.
1989     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1990   }
1991 }
1992 
1993 /// Turns the given pointer into a constant.
1994 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
1995                                           const void *Ptr) {
1996   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
1997   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
1998   return llvm::ConstantInt::get(i64, PtrInt);
1999 }
2000 
2001 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2002                                    llvm::NamedMDNode *&GlobalMetadata,
2003                                    GlobalDecl D,
2004                                    llvm::GlobalValue *Addr) {
2005   if (!GlobalMetadata)
2006     GlobalMetadata =
2007       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2008 
2009   // TODO: should we report variant information for ctors/dtors?
2010   llvm::Value *Ops[] = {
2011     Addr,
2012     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2013   };
2014   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2015 }
2016 
2017 /// Emits metadata nodes associating all the global values in the
2018 /// current module with the Decls they came from.  This is useful for
2019 /// projects using IR gen as a subroutine.
2020 ///
2021 /// Since there's currently no way to associate an MDNode directly
2022 /// with an llvm::GlobalValue, we create a global named metadata
2023 /// with the name 'clang.global.decl.ptrs'.
2024 void CodeGenModule::EmitDeclMetadata() {
2025   llvm::NamedMDNode *GlobalMetadata = 0;
2026 
2027   // StaticLocalDeclMap
2028   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2029          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2030        I != E; ++I) {
2031     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2032     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2033   }
2034 }
2035 
2036 /// Emits metadata nodes for all the local variables in the current
2037 /// function.
2038 void CodeGenFunction::EmitDeclMetadata() {
2039   if (LocalDeclMap.empty()) return;
2040 
2041   llvm::LLVMContext &Context = getLLVMContext();
2042 
2043   // Find the unique metadata ID for this name.
2044   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2045 
2046   llvm::NamedMDNode *GlobalMetadata = 0;
2047 
2048   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2049          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2050     const Decl *D = I->first;
2051     llvm::Value *Addr = I->second;
2052 
2053     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2054       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2055       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2056     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2057       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2058       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2059     }
2060   }
2061 }
2062 
2063 ///@name Custom Runtime Function Interfaces
2064 ///@{
2065 //
2066 // FIXME: These can be eliminated once we can have clients just get the required
2067 // AST nodes from the builtin tables.
2068 
2069 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2070   if (BlockObjectDispose)
2071     return BlockObjectDispose;
2072 
2073   // If we saw an explicit decl, use that.
2074   if (BlockObjectDisposeDecl) {
2075     return BlockObjectDispose = GetAddrOfFunction(
2076       BlockObjectDisposeDecl,
2077       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2078   }
2079 
2080   // Otherwise construct the function by hand.
2081   const llvm::FunctionType *FTy;
2082   std::vector<const llvm::Type*> ArgTys;
2083   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2084   ArgTys.push_back(PtrToInt8Ty);
2085   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2086   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2087   return BlockObjectDispose =
2088     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2089 }
2090 
2091 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2092   if (BlockObjectAssign)
2093     return BlockObjectAssign;
2094 
2095   // If we saw an explicit decl, use that.
2096   if (BlockObjectAssignDecl) {
2097     return BlockObjectAssign = GetAddrOfFunction(
2098       BlockObjectAssignDecl,
2099       getTypes().GetFunctionType(BlockObjectAssignDecl));
2100   }
2101 
2102   // Otherwise construct the function by hand.
2103   const llvm::FunctionType *FTy;
2104   std::vector<const llvm::Type*> ArgTys;
2105   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2106   ArgTys.push_back(PtrToInt8Ty);
2107   ArgTys.push_back(PtrToInt8Ty);
2108   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2109   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2110   return BlockObjectAssign =
2111     CreateRuntimeFunction(FTy, "_Block_object_assign");
2112 }
2113 
2114 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2115   if (NSConcreteGlobalBlock)
2116     return NSConcreteGlobalBlock;
2117 
2118   // If we saw an explicit decl, use that.
2119   if (NSConcreteGlobalBlockDecl) {
2120     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2121       NSConcreteGlobalBlockDecl,
2122       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2123   }
2124 
2125   // Otherwise construct the variable by hand.
2126   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2127     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2128 }
2129 
2130 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2131   if (NSConcreteStackBlock)
2132     return NSConcreteStackBlock;
2133 
2134   // If we saw an explicit decl, use that.
2135   if (NSConcreteStackBlockDecl) {
2136     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2137       NSConcreteStackBlockDecl,
2138       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2139   }
2140 
2141   // Otherwise construct the variable by hand.
2142   return NSConcreteStackBlock = CreateRuntimeVariable(
2143     PtrToInt8Ty, "_NSConcreteStackBlock");
2144 }
2145 
2146 ///@}
2147