xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 56fc62bf01a8f2a9ff9590fa768b3e9ff7ad4c0b)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "TargetInfo.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/AST/CharUnits.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclObjC.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Mangle.h"
32 #include "clang/AST/RecordLayout.h"
33 #include "clang/AST/RecursiveASTVisitor.h"
34 #include "clang/Basic/Builtins.h"
35 #include "clang/Basic/CharInfo.h"
36 #include "clang/Basic/Diagnostic.h"
37 #include "clang/Basic/Module.h"
38 #include "clang/Basic/SourceManager.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "clang/Basic/Version.h"
41 #include "clang/Frontend/CodeGenOptions.h"
42 #include "clang/Sema/SemaDiagnostic.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/Triple.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/CallingConv.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/ProfileData/InstrProfReader.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/ErrorHandling.h"
54 
55 using namespace clang;
56 using namespace CodeGen;
57 
58 static const char AnnotationSection[] = "llvm.metadata";
59 
60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
61   switch (CGM.getTarget().getCXXABI().getKind()) {
62   case TargetCXXABI::GenericAArch64:
63   case TargetCXXABI::GenericARM:
64   case TargetCXXABI::iOS:
65   case TargetCXXABI::iOS64:
66   case TargetCXXABI::GenericItanium:
67     return CreateItaniumCXXABI(CGM);
68   case TargetCXXABI::Microsoft:
69     return CreateMicrosoftCXXABI(CGM);
70   }
71 
72   llvm_unreachable("invalid C++ ABI kind");
73 }
74 
75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
76                              llvm::Module &M, const llvm::DataLayout &TD,
77                              DiagnosticsEngine &diags)
78     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
79       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
80       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
81       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
82       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
83       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
84       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
85       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
86       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
87       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
88       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
89       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
90       LifetimeEndFn(nullptr), SanitizerBL(llvm::SpecialCaseList::createOrDie(
91                                   CGO.SanitizerBlacklistFile)) {
92 
93   // Initialize the type cache.
94   llvm::LLVMContext &LLVMContext = M.getContext();
95   VoidTy = llvm::Type::getVoidTy(LLVMContext);
96   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100   FloatTy = llvm::Type::getFloatTy(LLVMContext);
101   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103   PointerAlignInBytes =
104   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
106   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
107   Int8PtrTy = Int8Ty->getPointerTo(0);
108   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
109 
110   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
111 
112   if (LangOpts.ObjC1)
113     createObjCRuntime();
114   if (LangOpts.OpenCL)
115     createOpenCLRuntime();
116   if (LangOpts.OpenMP)
117     createOpenMPRuntime();
118   if (LangOpts.CUDA)
119     createCUDARuntime();
120 
121   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
122   if (LangOpts.Sanitize.Thread ||
123       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
124     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
125                            getCXXABI().getMangleContext());
126 
127   // If debug info or coverage generation is enabled, create the CGDebugInfo
128   // object.
129   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
130       CodeGenOpts.EmitGcovArcs ||
131       CodeGenOpts.EmitGcovNotes)
132     DebugInfo = new CGDebugInfo(*this);
133 
134   Block.GlobalUniqueCount = 0;
135 
136   if (C.getLangOpts().ObjCAutoRefCount)
137     ARCData = new ARCEntrypoints();
138   RRData = new RREntrypoints();
139 
140   if (!CodeGenOpts.InstrProfileInput.empty()) {
141     if (std::error_code EC = llvm::IndexedInstrProfReader::create(
142             CodeGenOpts.InstrProfileInput, PGOReader)) {
143       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
144                                               "Could not read profile: %0");
145       getDiags().Report(DiagID) << EC.message();
146     }
147   }
148 }
149 
150 CodeGenModule::~CodeGenModule() {
151   delete ObjCRuntime;
152   delete OpenCLRuntime;
153   delete OpenMPRuntime;
154   delete CUDARuntime;
155   delete TheTargetCodeGenInfo;
156   delete TBAA;
157   delete DebugInfo;
158   delete ARCData;
159   delete RRData;
160 }
161 
162 void CodeGenModule::createObjCRuntime() {
163   // This is just isGNUFamily(), but we want to force implementors of
164   // new ABIs to decide how best to do this.
165   switch (LangOpts.ObjCRuntime.getKind()) {
166   case ObjCRuntime::GNUstep:
167   case ObjCRuntime::GCC:
168   case ObjCRuntime::ObjFW:
169     ObjCRuntime = CreateGNUObjCRuntime(*this);
170     return;
171 
172   case ObjCRuntime::FragileMacOSX:
173   case ObjCRuntime::MacOSX:
174   case ObjCRuntime::iOS:
175     ObjCRuntime = CreateMacObjCRuntime(*this);
176     return;
177   }
178   llvm_unreachable("bad runtime kind");
179 }
180 
181 void CodeGenModule::createOpenCLRuntime() {
182   OpenCLRuntime = new CGOpenCLRuntime(*this);
183 }
184 
185 void CodeGenModule::createOpenMPRuntime() {
186   OpenMPRuntime = new CGOpenMPRuntime(*this);
187 }
188 
189 void CodeGenModule::createCUDARuntime() {
190   CUDARuntime = CreateNVCUDARuntime(*this);
191 }
192 
193 void CodeGenModule::applyReplacements() {
194   for (ReplacementsTy::iterator I = Replacements.begin(),
195                                 E = Replacements.end();
196        I != E; ++I) {
197     StringRef MangledName = I->first();
198     llvm::Constant *Replacement = I->second;
199     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
200     if (!Entry)
201       continue;
202     auto *OldF = cast<llvm::Function>(Entry);
203     auto *NewF = dyn_cast<llvm::Function>(Replacement);
204     if (!NewF) {
205       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
206         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
207       } else {
208         auto *CE = cast<llvm::ConstantExpr>(Replacement);
209         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
210                CE->getOpcode() == llvm::Instruction::GetElementPtr);
211         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
212       }
213     }
214 
215     // Replace old with new, but keep the old order.
216     OldF->replaceAllUsesWith(Replacement);
217     if (NewF) {
218       NewF->removeFromParent();
219       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
220     }
221     OldF->eraseFromParent();
222   }
223 }
224 
225 // This is only used in aliases that we created and we know they have a
226 // linear structure.
227 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
228   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
229   const llvm::Constant *C = &GA;
230   for (;;) {
231     C = C->stripPointerCasts();
232     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
233       return GO;
234     // stripPointerCasts will not walk over weak aliases.
235     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
236     if (!GA2)
237       return nullptr;
238     if (!Visited.insert(GA2))
239       return nullptr;
240     C = GA2->getAliasee();
241   }
242 }
243 
244 void CodeGenModule::checkAliases() {
245   // Check if the constructed aliases are well formed. It is really unfortunate
246   // that we have to do this in CodeGen, but we only construct mangled names
247   // and aliases during codegen.
248   bool Error = false;
249   DiagnosticsEngine &Diags = getDiags();
250   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
251          E = Aliases.end(); I != E; ++I) {
252     const GlobalDecl &GD = *I;
253     const auto *D = cast<ValueDecl>(GD.getDecl());
254     const AliasAttr *AA = D->getAttr<AliasAttr>();
255     StringRef MangledName = getMangledName(GD);
256     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
257     auto *Alias = cast<llvm::GlobalAlias>(Entry);
258     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
259     if (!GV) {
260       Error = true;
261       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
262     } else if (GV->isDeclaration()) {
263       Error = true;
264       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
265     }
266 
267     llvm::Constant *Aliasee = Alias->getAliasee();
268     llvm::GlobalValue *AliaseeGV;
269     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
270       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
271     else
272       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
273 
274     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
275       StringRef AliasSection = SA->getName();
276       if (AliasSection != AliaseeGV->getSection())
277         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
278             << AliasSection;
279     }
280 
281     // We have to handle alias to weak aliases in here. LLVM itself disallows
282     // this since the object semantics would not match the IL one. For
283     // compatibility with gcc we implement it by just pointing the alias
284     // to its aliasee's aliasee. We also warn, since the user is probably
285     // expecting the link to be weak.
286     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
287       if (GA->mayBeOverridden()) {
288         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
289             << GV->getName() << GA->getName();
290         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
291             GA->getAliasee(), Alias->getType());
292         Alias->setAliasee(Aliasee);
293       }
294     }
295   }
296   if (!Error)
297     return;
298 
299   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
300          E = Aliases.end(); I != E; ++I) {
301     const GlobalDecl &GD = *I;
302     StringRef MangledName = getMangledName(GD);
303     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
304     auto *Alias = cast<llvm::GlobalAlias>(Entry);
305     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
306     Alias->eraseFromParent();
307   }
308 }
309 
310 void CodeGenModule::clear() {
311   DeferredDeclsToEmit.clear();
312 }
313 
314 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
315                                        StringRef MainFile) {
316   if (!hasDiagnostics())
317     return;
318   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
319     if (MainFile.empty())
320       MainFile = "<stdin>";
321     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
322   } else
323     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
324                                                       << Mismatched;
325 }
326 
327 void CodeGenModule::Release() {
328   EmitDeferred();
329   applyReplacements();
330   checkAliases();
331   EmitCXXGlobalInitFunc();
332   EmitCXXGlobalDtorFunc();
333   EmitCXXThreadLocalInitFunc();
334   if (ObjCRuntime)
335     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
336       AddGlobalCtor(ObjCInitFunction);
337   if (getCodeGenOpts().ProfileInstrGenerate)
338     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
339       AddGlobalCtor(PGOInit, 0);
340   if (PGOReader && PGOStats.hasDiagnostics())
341     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
342   EmitCtorList(GlobalCtors, "llvm.global_ctors");
343   EmitCtorList(GlobalDtors, "llvm.global_dtors");
344   EmitGlobalAnnotations();
345   EmitStaticExternCAliases();
346   emitLLVMUsed();
347 
348   if (CodeGenOpts.Autolink &&
349       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
350     EmitModuleLinkOptions();
351   }
352   if (CodeGenOpts.DwarfVersion)
353     // We actually want the latest version when there are conflicts.
354     // We can change from Warning to Latest if such mode is supported.
355     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
356                               CodeGenOpts.DwarfVersion);
357   if (DebugInfo)
358     // We support a single version in the linked module. The LLVM
359     // parser will drop debug info with a different version number
360     // (and warn about it, too).
361     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
362                               llvm::DEBUG_METADATA_VERSION);
363 
364   // We need to record the widths of enums and wchar_t, so that we can generate
365   // the correct build attributes in the ARM backend.
366   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
367   if (   Arch == llvm::Triple::arm
368       || Arch == llvm::Triple::armeb
369       || Arch == llvm::Triple::thumb
370       || Arch == llvm::Triple::thumbeb) {
371     // Width of wchar_t in bytes
372     uint64_t WCharWidth =
373         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
374     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
375 
376     // The minimum width of an enum in bytes
377     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
378     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
379   }
380 
381   SimplifyPersonality();
382 
383   if (getCodeGenOpts().EmitDeclMetadata)
384     EmitDeclMetadata();
385 
386   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
387     EmitCoverageFile();
388 
389   if (DebugInfo)
390     DebugInfo->finalize();
391 
392   EmitVersionIdentMetadata();
393 
394   EmitTargetMetadata();
395 }
396 
397 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
398   // Make sure that this type is translated.
399   Types.UpdateCompletedType(TD);
400 }
401 
402 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
403   if (!TBAA)
404     return nullptr;
405   return TBAA->getTBAAInfo(QTy);
406 }
407 
408 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
409   if (!TBAA)
410     return nullptr;
411   return TBAA->getTBAAInfoForVTablePtr();
412 }
413 
414 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
415   if (!TBAA)
416     return nullptr;
417   return TBAA->getTBAAStructInfo(QTy);
418 }
419 
420 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
421   if (!TBAA)
422     return nullptr;
423   return TBAA->getTBAAStructTypeInfo(QTy);
424 }
425 
426 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
427                                                   llvm::MDNode *AccessN,
428                                                   uint64_t O) {
429   if (!TBAA)
430     return nullptr;
431   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
432 }
433 
434 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
435 /// and struct-path aware TBAA, the tag has the same format:
436 /// base type, access type and offset.
437 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
438 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
439                                         llvm::MDNode *TBAAInfo,
440                                         bool ConvertTypeToTag) {
441   if (ConvertTypeToTag && TBAA)
442     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
443                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
444   else
445     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
446 }
447 
448 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
449   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
450   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
451 }
452 
453 /// ErrorUnsupported - Print out an error that codegen doesn't support the
454 /// specified stmt yet.
455 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
456   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
457                                                "cannot compile this %0 yet");
458   std::string Msg = Type;
459   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
460     << Msg << S->getSourceRange();
461 }
462 
463 /// ErrorUnsupported - Print out an error that codegen doesn't support the
464 /// specified decl yet.
465 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
466   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
467                                                "cannot compile this %0 yet");
468   std::string Msg = Type;
469   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
470 }
471 
472 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
473   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
474 }
475 
476 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
477                                         const NamedDecl *D) const {
478   // Internal definitions always have default visibility.
479   if (GV->hasLocalLinkage()) {
480     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
481     return;
482   }
483 
484   // Set visibility for definitions.
485   LinkageInfo LV = D->getLinkageAndVisibility();
486   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
487     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
488 }
489 
490 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
491   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
492       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
493       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
494       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
495       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
496 }
497 
498 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
499     CodeGenOptions::TLSModel M) {
500   switch (M) {
501   case CodeGenOptions::GeneralDynamicTLSModel:
502     return llvm::GlobalVariable::GeneralDynamicTLSModel;
503   case CodeGenOptions::LocalDynamicTLSModel:
504     return llvm::GlobalVariable::LocalDynamicTLSModel;
505   case CodeGenOptions::InitialExecTLSModel:
506     return llvm::GlobalVariable::InitialExecTLSModel;
507   case CodeGenOptions::LocalExecTLSModel:
508     return llvm::GlobalVariable::LocalExecTLSModel;
509   }
510   llvm_unreachable("Invalid TLS model!");
511 }
512 
513 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
514                                const VarDecl &D) const {
515   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
516 
517   llvm::GlobalVariable::ThreadLocalMode TLM;
518   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
519 
520   // Override the TLS model if it is explicitly specified.
521   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
522     TLM = GetLLVMTLSModel(Attr->getModel());
523   }
524 
525   GV->setThreadLocalMode(TLM);
526 }
527 
528 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
529   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
530   if (!FoundStr.empty())
531     return FoundStr;
532 
533   const auto *ND = cast<NamedDecl>(GD.getDecl());
534   SmallString<256> Buffer;
535   StringRef Str;
536   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
537     llvm::raw_svector_ostream Out(Buffer);
538     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
539       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
540     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
541       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
542     else
543       getCXXABI().getMangleContext().mangleName(ND, Out);
544     Str = Out.str();
545   } else {
546     IdentifierInfo *II = ND->getIdentifier();
547     assert(II && "Attempt to mangle unnamed decl.");
548     Str = II->getName();
549   }
550 
551   auto &Mangled = Manglings.GetOrCreateValue(Str);
552   Mangled.second = GD;
553   return FoundStr = Mangled.first();
554 }
555 
556 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
557                                              const BlockDecl *BD) {
558   MangleContext &MangleCtx = getCXXABI().getMangleContext();
559   const Decl *D = GD.getDecl();
560 
561   SmallString<256> Buffer;
562   llvm::raw_svector_ostream Out(Buffer);
563   if (!D)
564     MangleCtx.mangleGlobalBlock(BD,
565       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
566   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
567     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
568   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
569     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
570   else
571     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
572 
573   auto &Mangled = Manglings.GetOrCreateValue(Out.str());
574   Mangled.second = BD;
575   return Mangled.first();
576 }
577 
578 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
579   return getModule().getNamedValue(Name);
580 }
581 
582 /// AddGlobalCtor - Add a function to the list that will be called before
583 /// main() runs.
584 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
585                                   llvm::Constant *AssociatedData) {
586   // FIXME: Type coercion of void()* types.
587   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
588 }
589 
590 /// AddGlobalDtor - Add a function to the list that will be called
591 /// when the module is unloaded.
592 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
593   // FIXME: Type coercion of void()* types.
594   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
595 }
596 
597 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
598   // Ctor function type is void()*.
599   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
600   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
601 
602   // Get the type of a ctor entry, { i32, void ()*, i8* }.
603   llvm::StructType *CtorStructTy = llvm::StructType::get(
604       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL);
605 
606   // Construct the constructor and destructor arrays.
607   SmallVector<llvm::Constant*, 8> Ctors;
608   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
609     llvm::Constant *S[] = {
610       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
611       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
612       (I->AssociatedData
613            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
614            : llvm::Constant::getNullValue(VoidPtrTy))
615     };
616     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
617   }
618 
619   if (!Ctors.empty()) {
620     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
621     new llvm::GlobalVariable(TheModule, AT, false,
622                              llvm::GlobalValue::AppendingLinkage,
623                              llvm::ConstantArray::get(AT, Ctors),
624                              GlobalName);
625   }
626 }
627 
628 llvm::GlobalValue::LinkageTypes
629 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
630   const auto *D = cast<FunctionDecl>(GD.getDecl());
631 
632   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
633 
634   if (isa<CXXDestructorDecl>(D) &&
635       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
636                                          GD.getDtorType())) {
637     // Destructor variants in the Microsoft C++ ABI are always internal or
638     // linkonce_odr thunks emitted on an as-needed basis.
639     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
640                                    : llvm::GlobalValue::LinkOnceODRLinkage;
641   }
642 
643   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
644 }
645 
646 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
647                                                     llvm::Function *F) {
648   setNonAliasAttributes(D, F);
649 }
650 
651 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
652                                               const CGFunctionInfo &Info,
653                                               llvm::Function *F) {
654   unsigned CallingConv;
655   AttributeListType AttributeList;
656   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
657   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
658   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
659 }
660 
661 /// Determines whether the language options require us to model
662 /// unwind exceptions.  We treat -fexceptions as mandating this
663 /// except under the fragile ObjC ABI with only ObjC exceptions
664 /// enabled.  This means, for example, that C with -fexceptions
665 /// enables this.
666 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
667   // If exceptions are completely disabled, obviously this is false.
668   if (!LangOpts.Exceptions) return false;
669 
670   // If C++ exceptions are enabled, this is true.
671   if (LangOpts.CXXExceptions) return true;
672 
673   // If ObjC exceptions are enabled, this depends on the ABI.
674   if (LangOpts.ObjCExceptions) {
675     return LangOpts.ObjCRuntime.hasUnwindExceptions();
676   }
677 
678   return true;
679 }
680 
681 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
682                                                            llvm::Function *F) {
683   llvm::AttrBuilder B;
684 
685   if (CodeGenOpts.UnwindTables)
686     B.addAttribute(llvm::Attribute::UWTable);
687 
688   if (!hasUnwindExceptions(LangOpts))
689     B.addAttribute(llvm::Attribute::NoUnwind);
690 
691   if (D->hasAttr<NakedAttr>()) {
692     // Naked implies noinline: we should not be inlining such functions.
693     B.addAttribute(llvm::Attribute::Naked);
694     B.addAttribute(llvm::Attribute::NoInline);
695   } else if (D->hasAttr<OptimizeNoneAttr>()) {
696     // OptimizeNone implies noinline; we should not be inlining such functions.
697     B.addAttribute(llvm::Attribute::OptimizeNone);
698     B.addAttribute(llvm::Attribute::NoInline);
699   } else if (D->hasAttr<NoDuplicateAttr>()) {
700     B.addAttribute(llvm::Attribute::NoDuplicate);
701   } else if (D->hasAttr<NoInlineAttr>()) {
702     B.addAttribute(llvm::Attribute::NoInline);
703   } else if (D->hasAttr<AlwaysInlineAttr>() &&
704              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
705                                               llvm::Attribute::NoInline)) {
706     // (noinline wins over always_inline, and we can't specify both in IR)
707     B.addAttribute(llvm::Attribute::AlwaysInline);
708   }
709 
710   if (D->hasAttr<ColdAttr>()) {
711     B.addAttribute(llvm::Attribute::OptimizeForSize);
712     B.addAttribute(llvm::Attribute::Cold);
713   }
714 
715   if (D->hasAttr<MinSizeAttr>())
716     B.addAttribute(llvm::Attribute::MinSize);
717 
718   if (D->hasAttr<OptimizeNoneAttr>()) {
719     // OptimizeNone wins over OptimizeForSize and MinSize.
720     B.removeAttribute(llvm::Attribute::OptimizeForSize);
721     B.removeAttribute(llvm::Attribute::MinSize);
722   }
723 
724   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
725     B.addAttribute(llvm::Attribute::StackProtect);
726   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
727     B.addAttribute(llvm::Attribute::StackProtectStrong);
728   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
729     B.addAttribute(llvm::Attribute::StackProtectReq);
730 
731   // Add sanitizer attributes if function is not blacklisted.
732   if (!SanitizerBL.isIn(*F)) {
733     // When AddressSanitizer is enabled, set SanitizeAddress attribute
734     // unless __attribute__((no_sanitize_address)) is used.
735     if (LangOpts.Sanitize.Address && !D->hasAttr<NoSanitizeAddressAttr>())
736       B.addAttribute(llvm::Attribute::SanitizeAddress);
737     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
738     if (LangOpts.Sanitize.Thread && !D->hasAttr<NoSanitizeThreadAttr>())
739       B.addAttribute(llvm::Attribute::SanitizeThread);
740     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
741     if (LangOpts.Sanitize.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
742       B.addAttribute(llvm::Attribute::SanitizeMemory);
743   }
744 
745   F->addAttributes(llvm::AttributeSet::FunctionIndex,
746                    llvm::AttributeSet::get(
747                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
748 
749   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
750     F->setUnnamedAddr(true);
751   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
752     if (MD->isVirtual())
753       F->setUnnamedAddr(true);
754 
755   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
756   if (alignment)
757     F->setAlignment(alignment);
758 
759   // C++ ABI requires 2-byte alignment for member functions.
760   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
761     F->setAlignment(2);
762 }
763 
764 void CodeGenModule::SetCommonAttributes(const Decl *D,
765                                         llvm::GlobalValue *GV) {
766   if (const auto *ND = dyn_cast<NamedDecl>(D))
767     setGlobalVisibility(GV, ND);
768   else
769     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
770 
771   if (D->hasAttr<UsedAttr>())
772     addUsedGlobal(GV);
773 }
774 
775 void CodeGenModule::setNonAliasAttributes(const Decl *D,
776                                           llvm::GlobalObject *GO) {
777   SetCommonAttributes(D, GO);
778 
779   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
780     GO->setSection(SA->getName());
781 
782   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
783 }
784 
785 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
786                                                   llvm::Function *F,
787                                                   const CGFunctionInfo &FI) {
788   SetLLVMFunctionAttributes(D, FI, F);
789   SetLLVMFunctionAttributesForDefinition(D, F);
790 
791   F->setLinkage(llvm::Function::InternalLinkage);
792 
793   setNonAliasAttributes(D, F);
794 }
795 
796 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
797                                          const NamedDecl *ND) {
798   // Set linkage and visibility in case we never see a definition.
799   LinkageInfo LV = ND->getLinkageAndVisibility();
800   if (LV.getLinkage() != ExternalLinkage) {
801     // Don't set internal linkage on declarations.
802   } else {
803     if (ND->hasAttr<DLLImportAttr>()) {
804       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
805       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
806     } else if (ND->hasAttr<DLLExportAttr>()) {
807       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
808       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
809     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
810       // "extern_weak" is overloaded in LLVM; we probably should have
811       // separate linkage types for this.
812       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
813     }
814 
815     // Set visibility on a declaration only if it's explicit.
816     if (LV.isVisibilityExplicit())
817       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
818   }
819 }
820 
821 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
822                                           llvm::Function *F,
823                                           bool IsIncompleteFunction) {
824   if (unsigned IID = F->getIntrinsicID()) {
825     // If this is an intrinsic function, set the function's attributes
826     // to the intrinsic's attributes.
827     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
828                                                     (llvm::Intrinsic::ID)IID));
829     return;
830   }
831 
832   const auto *FD = cast<FunctionDecl>(GD.getDecl());
833 
834   if (!IsIncompleteFunction)
835     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
836 
837   // Add the Returned attribute for "this", except for iOS 5 and earlier
838   // where substantial code, including the libstdc++ dylib, was compiled with
839   // GCC and does not actually return "this".
840   if (getCXXABI().HasThisReturn(GD) &&
841       !(getTarget().getTriple().isiOS() &&
842         getTarget().getTriple().isOSVersionLT(6))) {
843     assert(!F->arg_empty() &&
844            F->arg_begin()->getType()
845              ->canLosslesslyBitCastTo(F->getReturnType()) &&
846            "unexpected this return");
847     F->addAttribute(1, llvm::Attribute::Returned);
848   }
849 
850   // Only a few attributes are set on declarations; these may later be
851   // overridden by a definition.
852 
853   setLinkageAndVisibilityForGV(F, FD);
854 
855   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
856     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
857       // Don't dllexport/import destructor thunks.
858       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
859     }
860   }
861 
862   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
863     F->setSection(SA->getName());
864 
865   // A replaceable global allocation function does not act like a builtin by
866   // default, only if it is invoked by a new-expression or delete-expression.
867   if (FD->isReplaceableGlobalAllocationFunction())
868     F->addAttribute(llvm::AttributeSet::FunctionIndex,
869                     llvm::Attribute::NoBuiltin);
870 }
871 
872 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
873   assert(!GV->isDeclaration() &&
874          "Only globals with definition can force usage.");
875   LLVMUsed.push_back(GV);
876 }
877 
878 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
879   assert(!GV->isDeclaration() &&
880          "Only globals with definition can force usage.");
881   LLVMCompilerUsed.push_back(GV);
882 }
883 
884 static void emitUsed(CodeGenModule &CGM, StringRef Name,
885                      std::vector<llvm::WeakVH> &List) {
886   // Don't create llvm.used if there is no need.
887   if (List.empty())
888     return;
889 
890   // Convert List to what ConstantArray needs.
891   SmallVector<llvm::Constant*, 8> UsedArray;
892   UsedArray.resize(List.size());
893   for (unsigned i = 0, e = List.size(); i != e; ++i) {
894     UsedArray[i] =
895      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
896                                     CGM.Int8PtrTy);
897   }
898 
899   if (UsedArray.empty())
900     return;
901   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
902 
903   auto *GV = new llvm::GlobalVariable(
904       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
905       llvm::ConstantArray::get(ATy, UsedArray), Name);
906 
907   GV->setSection("llvm.metadata");
908 }
909 
910 void CodeGenModule::emitLLVMUsed() {
911   emitUsed(*this, "llvm.used", LLVMUsed);
912   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
913 }
914 
915 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
916   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
917   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
918 }
919 
920 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
921   llvm::SmallString<32> Opt;
922   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
923   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
924   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
925 }
926 
927 void CodeGenModule::AddDependentLib(StringRef Lib) {
928   llvm::SmallString<24> Opt;
929   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
930   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
931   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
932 }
933 
934 /// \brief Add link options implied by the given module, including modules
935 /// it depends on, using a postorder walk.
936 static void addLinkOptionsPostorder(CodeGenModule &CGM,
937                                     Module *Mod,
938                                     SmallVectorImpl<llvm::Value *> &Metadata,
939                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
940   // Import this module's parent.
941   if (Mod->Parent && Visited.insert(Mod->Parent)) {
942     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
943   }
944 
945   // Import this module's dependencies.
946   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
947     if (Visited.insert(Mod->Imports[I-1]))
948       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
949   }
950 
951   // Add linker options to link against the libraries/frameworks
952   // described by this module.
953   llvm::LLVMContext &Context = CGM.getLLVMContext();
954   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
955     // Link against a framework.  Frameworks are currently Darwin only, so we
956     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
957     if (Mod->LinkLibraries[I-1].IsFramework) {
958       llvm::Value *Args[2] = {
959         llvm::MDString::get(Context, "-framework"),
960         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
961       };
962 
963       Metadata.push_back(llvm::MDNode::get(Context, Args));
964       continue;
965     }
966 
967     // Link against a library.
968     llvm::SmallString<24> Opt;
969     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
970       Mod->LinkLibraries[I-1].Library, Opt);
971     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
972     Metadata.push_back(llvm::MDNode::get(Context, OptString));
973   }
974 }
975 
976 void CodeGenModule::EmitModuleLinkOptions() {
977   // Collect the set of all of the modules we want to visit to emit link
978   // options, which is essentially the imported modules and all of their
979   // non-explicit child modules.
980   llvm::SetVector<clang::Module *> LinkModules;
981   llvm::SmallPtrSet<clang::Module *, 16> Visited;
982   SmallVector<clang::Module *, 16> Stack;
983 
984   // Seed the stack with imported modules.
985   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
986                                                MEnd = ImportedModules.end();
987        M != MEnd; ++M) {
988     if (Visited.insert(*M))
989       Stack.push_back(*M);
990   }
991 
992   // Find all of the modules to import, making a little effort to prune
993   // non-leaf modules.
994   while (!Stack.empty()) {
995     clang::Module *Mod = Stack.pop_back_val();
996 
997     bool AnyChildren = false;
998 
999     // Visit the submodules of this module.
1000     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1001                                         SubEnd = Mod->submodule_end();
1002          Sub != SubEnd; ++Sub) {
1003       // Skip explicit children; they need to be explicitly imported to be
1004       // linked against.
1005       if ((*Sub)->IsExplicit)
1006         continue;
1007 
1008       if (Visited.insert(*Sub)) {
1009         Stack.push_back(*Sub);
1010         AnyChildren = true;
1011       }
1012     }
1013 
1014     // We didn't find any children, so add this module to the list of
1015     // modules to link against.
1016     if (!AnyChildren) {
1017       LinkModules.insert(Mod);
1018     }
1019   }
1020 
1021   // Add link options for all of the imported modules in reverse topological
1022   // order.  We don't do anything to try to order import link flags with respect
1023   // to linker options inserted by things like #pragma comment().
1024   SmallVector<llvm::Value *, 16> MetadataArgs;
1025   Visited.clear();
1026   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1027                                                MEnd = LinkModules.end();
1028        M != MEnd; ++M) {
1029     if (Visited.insert(*M))
1030       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1031   }
1032   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1033   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1034 
1035   // Add the linker options metadata flag.
1036   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1037                             llvm::MDNode::get(getLLVMContext(),
1038                                               LinkerOptionsMetadata));
1039 }
1040 
1041 void CodeGenModule::EmitDeferred() {
1042   // Emit code for any potentially referenced deferred decls.  Since a
1043   // previously unused static decl may become used during the generation of code
1044   // for a static function, iterate until no changes are made.
1045 
1046   while (true) {
1047     if (!DeferredVTables.empty()) {
1048       EmitDeferredVTables();
1049 
1050       // Emitting a v-table doesn't directly cause more v-tables to
1051       // become deferred, although it can cause functions to be
1052       // emitted that then need those v-tables.
1053       assert(DeferredVTables.empty());
1054     }
1055 
1056     // Stop if we're out of both deferred v-tables and deferred declarations.
1057     if (DeferredDeclsToEmit.empty()) break;
1058 
1059     DeferredGlobal &G = DeferredDeclsToEmit.back();
1060     GlobalDecl D = G.GD;
1061     llvm::GlobalValue *GV = G.GV;
1062     DeferredDeclsToEmit.pop_back();
1063 
1064     assert(GV == GetGlobalValue(getMangledName(D)));
1065     // Check to see if we've already emitted this.  This is necessary
1066     // for a couple of reasons: first, decls can end up in the
1067     // deferred-decls queue multiple times, and second, decls can end
1068     // up with definitions in unusual ways (e.g. by an extern inline
1069     // function acquiring a strong function redefinition).  Just
1070     // ignore these cases.
1071     if(!GV->isDeclaration())
1072       continue;
1073 
1074     // Otherwise, emit the definition and move on to the next one.
1075     EmitGlobalDefinition(D, GV);
1076   }
1077 }
1078 
1079 void CodeGenModule::EmitGlobalAnnotations() {
1080   if (Annotations.empty())
1081     return;
1082 
1083   // Create a new global variable for the ConstantStruct in the Module.
1084   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1085     Annotations[0]->getType(), Annotations.size()), Annotations);
1086   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1087                                       llvm::GlobalValue::AppendingLinkage,
1088                                       Array, "llvm.global.annotations");
1089   gv->setSection(AnnotationSection);
1090 }
1091 
1092 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1093   llvm::Constant *&AStr = AnnotationStrings[Str];
1094   if (AStr)
1095     return AStr;
1096 
1097   // Not found yet, create a new global.
1098   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1099   auto *gv =
1100       new llvm::GlobalVariable(getModule(), s->getType(), true,
1101                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1102   gv->setSection(AnnotationSection);
1103   gv->setUnnamedAddr(true);
1104   AStr = gv;
1105   return gv;
1106 }
1107 
1108 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1109   SourceManager &SM = getContext().getSourceManager();
1110   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1111   if (PLoc.isValid())
1112     return EmitAnnotationString(PLoc.getFilename());
1113   return EmitAnnotationString(SM.getBufferName(Loc));
1114 }
1115 
1116 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1117   SourceManager &SM = getContext().getSourceManager();
1118   PresumedLoc PLoc = SM.getPresumedLoc(L);
1119   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1120     SM.getExpansionLineNumber(L);
1121   return llvm::ConstantInt::get(Int32Ty, LineNo);
1122 }
1123 
1124 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1125                                                 const AnnotateAttr *AA,
1126                                                 SourceLocation L) {
1127   // Get the globals for file name, annotation, and the line number.
1128   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1129                  *UnitGV = EmitAnnotationUnit(L),
1130                  *LineNoCst = EmitAnnotationLineNo(L);
1131 
1132   // Create the ConstantStruct for the global annotation.
1133   llvm::Constant *Fields[4] = {
1134     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1135     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1136     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1137     LineNoCst
1138   };
1139   return llvm::ConstantStruct::getAnon(Fields);
1140 }
1141 
1142 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1143                                          llvm::GlobalValue *GV) {
1144   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1145   // Get the struct elements for these annotations.
1146   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1147     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1148 }
1149 
1150 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1151   // Never defer when EmitAllDecls is specified.
1152   if (LangOpts.EmitAllDecls)
1153     return false;
1154 
1155   return !getContext().DeclMustBeEmitted(Global);
1156 }
1157 
1158 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1159     const CXXUuidofExpr* E) {
1160   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1161   // well-formed.
1162   StringRef Uuid = E->getUuidAsStringRef(Context);
1163   std::string Name = "_GUID_" + Uuid.lower();
1164   std::replace(Name.begin(), Name.end(), '-', '_');
1165 
1166   // Look for an existing global.
1167   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1168     return GV;
1169 
1170   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1171   assert(Init && "failed to initialize as constant");
1172 
1173   auto *GV = new llvm::GlobalVariable(
1174       getModule(), Init->getType(),
1175       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1176   return GV;
1177 }
1178 
1179 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1180   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1181   assert(AA && "No alias?");
1182 
1183   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1184 
1185   // See if there is already something with the target's name in the module.
1186   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1187   if (Entry) {
1188     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1189     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1190   }
1191 
1192   llvm::Constant *Aliasee;
1193   if (isa<llvm::FunctionType>(DeclTy))
1194     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1195                                       GlobalDecl(cast<FunctionDecl>(VD)),
1196                                       /*ForVTable=*/false);
1197   else
1198     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1199                                     llvm::PointerType::getUnqual(DeclTy),
1200                                     nullptr);
1201 
1202   auto *F = cast<llvm::GlobalValue>(Aliasee);
1203   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1204   WeakRefReferences.insert(F);
1205 
1206   return Aliasee;
1207 }
1208 
1209 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1210   const auto *Global = cast<ValueDecl>(GD.getDecl());
1211 
1212   // Weak references don't produce any output by themselves.
1213   if (Global->hasAttr<WeakRefAttr>())
1214     return;
1215 
1216   // If this is an alias definition (which otherwise looks like a declaration)
1217   // emit it now.
1218   if (Global->hasAttr<AliasAttr>())
1219     return EmitAliasDefinition(GD);
1220 
1221   // If this is CUDA, be selective about which declarations we emit.
1222   if (LangOpts.CUDA) {
1223     if (CodeGenOpts.CUDAIsDevice) {
1224       if (!Global->hasAttr<CUDADeviceAttr>() &&
1225           !Global->hasAttr<CUDAGlobalAttr>() &&
1226           !Global->hasAttr<CUDAConstantAttr>() &&
1227           !Global->hasAttr<CUDASharedAttr>())
1228         return;
1229     } else {
1230       if (!Global->hasAttr<CUDAHostAttr>() && (
1231             Global->hasAttr<CUDADeviceAttr>() ||
1232             Global->hasAttr<CUDAConstantAttr>() ||
1233             Global->hasAttr<CUDASharedAttr>()))
1234         return;
1235     }
1236   }
1237 
1238   // Ignore declarations, they will be emitted on their first use.
1239   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1240     // Forward declarations are emitted lazily on first use.
1241     if (!FD->doesThisDeclarationHaveABody()) {
1242       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1243         return;
1244 
1245       StringRef MangledName = getMangledName(GD);
1246 
1247       // Compute the function info and LLVM type.
1248       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1249       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1250 
1251       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1252                               /*DontDefer=*/false);
1253       return;
1254     }
1255   } else {
1256     const auto *VD = cast<VarDecl>(Global);
1257     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1258 
1259     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1260         !Context.isMSStaticDataMemberInlineDefinition(VD))
1261       return;
1262   }
1263 
1264   // Defer code generation when possible if this is a static definition, inline
1265   // function etc.  These we only want to emit if they are used.
1266   if (!MayDeferGeneration(Global)) {
1267     // Emit the definition if it can't be deferred.
1268     EmitGlobalDefinition(GD);
1269     return;
1270   }
1271 
1272   // If we're deferring emission of a C++ variable with an
1273   // initializer, remember the order in which it appeared in the file.
1274   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1275       cast<VarDecl>(Global)->hasInit()) {
1276     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1277     CXXGlobalInits.push_back(nullptr);
1278   }
1279 
1280   // If the value has already been used, add it directly to the
1281   // DeferredDeclsToEmit list.
1282   StringRef MangledName = getMangledName(GD);
1283   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1284     addDeferredDeclToEmit(GV, GD);
1285   else {
1286     // Otherwise, remember that we saw a deferred decl with this name.  The
1287     // first use of the mangled name will cause it to move into
1288     // DeferredDeclsToEmit.
1289     DeferredDecls[MangledName] = GD;
1290   }
1291 }
1292 
1293 namespace {
1294   struct FunctionIsDirectlyRecursive :
1295     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1296     const StringRef Name;
1297     const Builtin::Context &BI;
1298     bool Result;
1299     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1300       Name(N), BI(C), Result(false) {
1301     }
1302     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1303 
1304     bool TraverseCallExpr(CallExpr *E) {
1305       const FunctionDecl *FD = E->getDirectCallee();
1306       if (!FD)
1307         return true;
1308       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1309       if (Attr && Name == Attr->getLabel()) {
1310         Result = true;
1311         return false;
1312       }
1313       unsigned BuiltinID = FD->getBuiltinID();
1314       if (!BuiltinID)
1315         return true;
1316       StringRef BuiltinName = BI.GetName(BuiltinID);
1317       if (BuiltinName.startswith("__builtin_") &&
1318           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1319         Result = true;
1320         return false;
1321       }
1322       return true;
1323     }
1324   };
1325 }
1326 
1327 // isTriviallyRecursive - Check if this function calls another
1328 // decl that, because of the asm attribute or the other decl being a builtin,
1329 // ends up pointing to itself.
1330 bool
1331 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1332   StringRef Name;
1333   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1334     // asm labels are a special kind of mangling we have to support.
1335     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1336     if (!Attr)
1337       return false;
1338     Name = Attr->getLabel();
1339   } else {
1340     Name = FD->getName();
1341   }
1342 
1343   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1344   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1345   return Walker.Result;
1346 }
1347 
1348 bool
1349 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1350   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1351     return true;
1352   const auto *F = cast<FunctionDecl>(GD.getDecl());
1353   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1354     return false;
1355   // PR9614. Avoid cases where the source code is lying to us. An available
1356   // externally function should have an equivalent function somewhere else,
1357   // but a function that calls itself is clearly not equivalent to the real
1358   // implementation.
1359   // This happens in glibc's btowc and in some configure checks.
1360   return !isTriviallyRecursive(F);
1361 }
1362 
1363 /// If the type for the method's class was generated by
1364 /// CGDebugInfo::createContextChain(), the cache contains only a
1365 /// limited DIType without any declarations. Since EmitFunctionStart()
1366 /// needs to find the canonical declaration for each method, we need
1367 /// to construct the complete type prior to emitting the method.
1368 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1369   if (!D->isInstance())
1370     return;
1371 
1372   if (CGDebugInfo *DI = getModuleDebugInfo())
1373     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1374       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1375       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1376     }
1377 }
1378 
1379 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1380   const auto *D = cast<ValueDecl>(GD.getDecl());
1381 
1382   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1383                                  Context.getSourceManager(),
1384                                  "Generating code for declaration");
1385 
1386   if (isa<FunctionDecl>(D)) {
1387     // At -O0, don't generate IR for functions with available_externally
1388     // linkage.
1389     if (!shouldEmitFunction(GD))
1390       return;
1391 
1392     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1393       CompleteDIClassType(Method);
1394       // Make sure to emit the definition(s) before we emit the thunks.
1395       // This is necessary for the generation of certain thunks.
1396       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1397         EmitCXXConstructor(CD, GD.getCtorType());
1398       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1399         EmitCXXDestructor(DD, GD.getDtorType());
1400       else
1401         EmitGlobalFunctionDefinition(GD, GV);
1402 
1403       if (Method->isVirtual())
1404         getVTables().EmitThunks(GD);
1405 
1406       return;
1407     }
1408 
1409     return EmitGlobalFunctionDefinition(GD, GV);
1410   }
1411 
1412   if (const auto *VD = dyn_cast<VarDecl>(D))
1413     return EmitGlobalVarDefinition(VD);
1414 
1415   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1416 }
1417 
1418 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1419 /// module, create and return an llvm Function with the specified type. If there
1420 /// is something in the module with the specified name, return it potentially
1421 /// bitcasted to the right type.
1422 ///
1423 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1424 /// to set the attributes on the function when it is first created.
1425 llvm::Constant *
1426 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1427                                        llvm::Type *Ty,
1428                                        GlobalDecl GD, bool ForVTable,
1429                                        bool DontDefer,
1430                                        llvm::AttributeSet ExtraAttrs) {
1431   const Decl *D = GD.getDecl();
1432 
1433   // Lookup the entry, lazily creating it if necessary.
1434   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1435   if (Entry) {
1436     if (WeakRefReferences.erase(Entry)) {
1437       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1438       if (FD && !FD->hasAttr<WeakAttr>())
1439         Entry->setLinkage(llvm::Function::ExternalLinkage);
1440     }
1441 
1442     if (Entry->getType()->getElementType() == Ty)
1443       return Entry;
1444 
1445     // Make sure the result is of the correct type.
1446     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1447   }
1448 
1449   // This function doesn't have a complete type (for example, the return
1450   // type is an incomplete struct). Use a fake type instead, and make
1451   // sure not to try to set attributes.
1452   bool IsIncompleteFunction = false;
1453 
1454   llvm::FunctionType *FTy;
1455   if (isa<llvm::FunctionType>(Ty)) {
1456     FTy = cast<llvm::FunctionType>(Ty);
1457   } else {
1458     FTy = llvm::FunctionType::get(VoidTy, false);
1459     IsIncompleteFunction = true;
1460   }
1461 
1462   llvm::Function *F = llvm::Function::Create(FTy,
1463                                              llvm::Function::ExternalLinkage,
1464                                              MangledName, &getModule());
1465   assert(F->getName() == MangledName && "name was uniqued!");
1466   if (D)
1467     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1468   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1469     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1470     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1471                      llvm::AttributeSet::get(VMContext,
1472                                              llvm::AttributeSet::FunctionIndex,
1473                                              B));
1474   }
1475 
1476   if (!DontDefer) {
1477     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1478     // each other bottoming out with the base dtor.  Therefore we emit non-base
1479     // dtors on usage, even if there is no dtor definition in the TU.
1480     if (D && isa<CXXDestructorDecl>(D) &&
1481         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1482                                            GD.getDtorType()))
1483       addDeferredDeclToEmit(F, GD);
1484 
1485     // This is the first use or definition of a mangled name.  If there is a
1486     // deferred decl with this name, remember that we need to emit it at the end
1487     // of the file.
1488     auto DDI = DeferredDecls.find(MangledName);
1489     if (DDI != DeferredDecls.end()) {
1490       // Move the potentially referenced deferred decl to the
1491       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1492       // don't need it anymore).
1493       addDeferredDeclToEmit(F, DDI->second);
1494       DeferredDecls.erase(DDI);
1495 
1496       // Otherwise, if this is a sized deallocation function, emit a weak
1497       // definition
1498       // for it at the end of the translation unit.
1499     } else if (D && cast<FunctionDecl>(D)
1500                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1501       addDeferredDeclToEmit(F, GD);
1502 
1503       // Otherwise, there are cases we have to worry about where we're
1504       // using a declaration for which we must emit a definition but where
1505       // we might not find a top-level definition:
1506       //   - member functions defined inline in their classes
1507       //   - friend functions defined inline in some class
1508       //   - special member functions with implicit definitions
1509       // If we ever change our AST traversal to walk into class methods,
1510       // this will be unnecessary.
1511       //
1512       // We also don't emit a definition for a function if it's going to be an
1513       // entry
1514       // in a vtable, unless it's already marked as used.
1515     } else if (getLangOpts().CPlusPlus && D) {
1516       // Look for a declaration that's lexically in a record.
1517       const auto *FD = cast<FunctionDecl>(D);
1518       FD = FD->getMostRecentDecl();
1519       do {
1520         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1521           if (FD->isImplicit() && !ForVTable) {
1522             assert(FD->isUsed() &&
1523                    "Sema didn't mark implicit function as used!");
1524             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1525             break;
1526           } else if (FD->doesThisDeclarationHaveABody()) {
1527             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1528             break;
1529           }
1530         }
1531         FD = FD->getPreviousDecl();
1532       } while (FD);
1533     }
1534   }
1535 
1536   // Make sure the result is of the requested type.
1537   if (!IsIncompleteFunction) {
1538     assert(F->getType()->getElementType() == Ty);
1539     return F;
1540   }
1541 
1542   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1543   return llvm::ConstantExpr::getBitCast(F, PTy);
1544 }
1545 
1546 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1547 /// non-null, then this function will use the specified type if it has to
1548 /// create it (this occurs when we see a definition of the function).
1549 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1550                                                  llvm::Type *Ty,
1551                                                  bool ForVTable,
1552                                                  bool DontDefer) {
1553   // If there was no specific requested type, just convert it now.
1554   if (!Ty)
1555     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1556 
1557   StringRef MangledName = getMangledName(GD);
1558   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1559 }
1560 
1561 /// CreateRuntimeFunction - Create a new runtime function with the specified
1562 /// type and name.
1563 llvm::Constant *
1564 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1565                                      StringRef Name,
1566                                      llvm::AttributeSet ExtraAttrs) {
1567   llvm::Constant *C =
1568       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1569                               /*DontDefer=*/false, ExtraAttrs);
1570   if (auto *F = dyn_cast<llvm::Function>(C))
1571     if (F->empty())
1572       F->setCallingConv(getRuntimeCC());
1573   return C;
1574 }
1575 
1576 /// isTypeConstant - Determine whether an object of this type can be emitted
1577 /// as a constant.
1578 ///
1579 /// If ExcludeCtor is true, the duration when the object's constructor runs
1580 /// will not be considered. The caller will need to verify that the object is
1581 /// not written to during its construction.
1582 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1583   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1584     return false;
1585 
1586   if (Context.getLangOpts().CPlusPlus) {
1587     if (const CXXRecordDecl *Record
1588           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1589       return ExcludeCtor && !Record->hasMutableFields() &&
1590              Record->hasTrivialDestructor();
1591   }
1592 
1593   return true;
1594 }
1595 
1596 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1597 /// create and return an llvm GlobalVariable with the specified type.  If there
1598 /// is something in the module with the specified name, return it potentially
1599 /// bitcasted to the right type.
1600 ///
1601 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1602 /// to set the attributes on the global when it is first created.
1603 llvm::Constant *
1604 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1605                                      llvm::PointerType *Ty,
1606                                      const VarDecl *D) {
1607   // Lookup the entry, lazily creating it if necessary.
1608   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1609   if (Entry) {
1610     if (WeakRefReferences.erase(Entry)) {
1611       if (D && !D->hasAttr<WeakAttr>())
1612         Entry->setLinkage(llvm::Function::ExternalLinkage);
1613     }
1614 
1615     if (Entry->getType() == Ty)
1616       return Entry;
1617 
1618     // Make sure the result is of the correct type.
1619     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1620       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1621 
1622     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1623   }
1624 
1625   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1626   auto *GV = new llvm::GlobalVariable(
1627       getModule(), Ty->getElementType(), false,
1628       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1629       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1630 
1631   // This is the first use or definition of a mangled name.  If there is a
1632   // deferred decl with this name, remember that we need to emit it at the end
1633   // of the file.
1634   auto DDI = DeferredDecls.find(MangledName);
1635   if (DDI != DeferredDecls.end()) {
1636     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1637     // list, and remove it from DeferredDecls (since we don't need it anymore).
1638     addDeferredDeclToEmit(GV, DDI->second);
1639     DeferredDecls.erase(DDI);
1640   }
1641 
1642   // Handle things which are present even on external declarations.
1643   if (D) {
1644     // FIXME: This code is overly simple and should be merged with other global
1645     // handling.
1646     GV->setConstant(isTypeConstant(D->getType(), false));
1647 
1648     setLinkageAndVisibilityForGV(GV, D);
1649 
1650     if (D->getTLSKind()) {
1651       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1652         CXXThreadLocals.push_back(std::make_pair(D, GV));
1653       setTLSMode(GV, *D);
1654     }
1655 
1656     // If required by the ABI, treat declarations of static data members with
1657     // inline initializers as definitions.
1658     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1659       EmitGlobalVarDefinition(D);
1660     }
1661 
1662     // Handle XCore specific ABI requirements.
1663     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1664         D->getLanguageLinkage() == CLanguageLinkage &&
1665         D->getType().isConstant(Context) &&
1666         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1667       GV->setSection(".cp.rodata");
1668   }
1669 
1670   if (AddrSpace != Ty->getAddressSpace())
1671     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1672 
1673   return GV;
1674 }
1675 
1676 
1677 llvm::GlobalVariable *
1678 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1679                                       llvm::Type *Ty,
1680                                       llvm::GlobalValue::LinkageTypes Linkage) {
1681   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1682   llvm::GlobalVariable *OldGV = nullptr;
1683 
1684   if (GV) {
1685     // Check if the variable has the right type.
1686     if (GV->getType()->getElementType() == Ty)
1687       return GV;
1688 
1689     // Because C++ name mangling, the only way we can end up with an already
1690     // existing global with the same name is if it has been declared extern "C".
1691     assert(GV->isDeclaration() && "Declaration has wrong type!");
1692     OldGV = GV;
1693   }
1694 
1695   // Create a new variable.
1696   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1697                                 Linkage, nullptr, Name);
1698 
1699   if (OldGV) {
1700     // Replace occurrences of the old variable if needed.
1701     GV->takeName(OldGV);
1702 
1703     if (!OldGV->use_empty()) {
1704       llvm::Constant *NewPtrForOldDecl =
1705       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1706       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1707     }
1708 
1709     OldGV->eraseFromParent();
1710   }
1711 
1712   return GV;
1713 }
1714 
1715 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1716 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1717 /// then it will be created with the specified type instead of whatever the
1718 /// normal requested type would be.
1719 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1720                                                   llvm::Type *Ty) {
1721   assert(D->hasGlobalStorage() && "Not a global variable");
1722   QualType ASTTy = D->getType();
1723   if (!Ty)
1724     Ty = getTypes().ConvertTypeForMem(ASTTy);
1725 
1726   llvm::PointerType *PTy =
1727     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1728 
1729   StringRef MangledName = getMangledName(D);
1730   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1731 }
1732 
1733 /// CreateRuntimeVariable - Create a new runtime global variable with the
1734 /// specified type and name.
1735 llvm::Constant *
1736 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1737                                      StringRef Name) {
1738   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1739 }
1740 
1741 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1742   assert(!D->getInit() && "Cannot emit definite definitions here!");
1743 
1744   if (MayDeferGeneration(D)) {
1745     // If we have not seen a reference to this variable yet, place it
1746     // into the deferred declarations table to be emitted if needed
1747     // later.
1748     StringRef MangledName = getMangledName(D);
1749     if (!GetGlobalValue(MangledName)) {
1750       DeferredDecls[MangledName] = D;
1751       return;
1752     }
1753   }
1754 
1755   // The tentative definition is the only definition.
1756   EmitGlobalVarDefinition(D);
1757 }
1758 
1759 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1760     return Context.toCharUnitsFromBits(
1761       TheDataLayout.getTypeStoreSizeInBits(Ty));
1762 }
1763 
1764 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1765                                                  unsigned AddrSpace) {
1766   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1767     if (D->hasAttr<CUDAConstantAttr>())
1768       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1769     else if (D->hasAttr<CUDASharedAttr>())
1770       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1771     else
1772       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1773   }
1774 
1775   return AddrSpace;
1776 }
1777 
1778 template<typename SomeDecl>
1779 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1780                                                llvm::GlobalValue *GV) {
1781   if (!getLangOpts().CPlusPlus)
1782     return;
1783 
1784   // Must have 'used' attribute, or else inline assembly can't rely on
1785   // the name existing.
1786   if (!D->template hasAttr<UsedAttr>())
1787     return;
1788 
1789   // Must have internal linkage and an ordinary name.
1790   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1791     return;
1792 
1793   // Must be in an extern "C" context. Entities declared directly within
1794   // a record are not extern "C" even if the record is in such a context.
1795   const SomeDecl *First = D->getFirstDecl();
1796   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1797     return;
1798 
1799   // OK, this is an internal linkage entity inside an extern "C" linkage
1800   // specification. Make a note of that so we can give it the "expected"
1801   // mangled name if nothing else is using that name.
1802   std::pair<StaticExternCMap::iterator, bool> R =
1803       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1804 
1805   // If we have multiple internal linkage entities with the same name
1806   // in extern "C" regions, none of them gets that name.
1807   if (!R.second)
1808     R.first->second = nullptr;
1809 }
1810 
1811 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1812   llvm::Constant *Init = nullptr;
1813   QualType ASTTy = D->getType();
1814   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1815   bool NeedsGlobalCtor = false;
1816   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1817 
1818   const VarDecl *InitDecl;
1819   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1820 
1821   if (!InitExpr) {
1822     // This is a tentative definition; tentative definitions are
1823     // implicitly initialized with { 0 }.
1824     //
1825     // Note that tentative definitions are only emitted at the end of
1826     // a translation unit, so they should never have incomplete
1827     // type. In addition, EmitTentativeDefinition makes sure that we
1828     // never attempt to emit a tentative definition if a real one
1829     // exists. A use may still exists, however, so we still may need
1830     // to do a RAUW.
1831     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1832     Init = EmitNullConstant(D->getType());
1833   } else {
1834     initializedGlobalDecl = GlobalDecl(D);
1835     Init = EmitConstantInit(*InitDecl);
1836 
1837     if (!Init) {
1838       QualType T = InitExpr->getType();
1839       if (D->getType()->isReferenceType())
1840         T = D->getType();
1841 
1842       if (getLangOpts().CPlusPlus) {
1843         Init = EmitNullConstant(T);
1844         NeedsGlobalCtor = true;
1845       } else {
1846         ErrorUnsupported(D, "static initializer");
1847         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1848       }
1849     } else {
1850       // We don't need an initializer, so remove the entry for the delayed
1851       // initializer position (just in case this entry was delayed) if we
1852       // also don't need to register a destructor.
1853       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1854         DelayedCXXInitPosition.erase(D);
1855     }
1856   }
1857 
1858   llvm::Type* InitType = Init->getType();
1859   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1860 
1861   // Strip off a bitcast if we got one back.
1862   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1863     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1864            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1865            // All zero index gep.
1866            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1867     Entry = CE->getOperand(0);
1868   }
1869 
1870   // Entry is now either a Function or GlobalVariable.
1871   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1872 
1873   // We have a definition after a declaration with the wrong type.
1874   // We must make a new GlobalVariable* and update everything that used OldGV
1875   // (a declaration or tentative definition) with the new GlobalVariable*
1876   // (which will be a definition).
1877   //
1878   // This happens if there is a prototype for a global (e.g.
1879   // "extern int x[];") and then a definition of a different type (e.g.
1880   // "int x[10];"). This also happens when an initializer has a different type
1881   // from the type of the global (this happens with unions).
1882   if (!GV ||
1883       GV->getType()->getElementType() != InitType ||
1884       GV->getType()->getAddressSpace() !=
1885        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1886 
1887     // Move the old entry aside so that we'll create a new one.
1888     Entry->setName(StringRef());
1889 
1890     // Make a new global with the correct type, this is now guaranteed to work.
1891     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1892 
1893     // Replace all uses of the old global with the new global
1894     llvm::Constant *NewPtrForOldDecl =
1895         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1896     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1897 
1898     // Erase the old global, since it is no longer used.
1899     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1900   }
1901 
1902   MaybeHandleStaticInExternC(D, GV);
1903 
1904   if (D->hasAttr<AnnotateAttr>())
1905     AddGlobalAnnotations(D, GV);
1906 
1907   GV->setInitializer(Init);
1908 
1909   // If it is safe to mark the global 'constant', do so now.
1910   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1911                   isTypeConstant(D->getType(), true));
1912 
1913   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1914 
1915   // Set the llvm linkage type as appropriate.
1916   llvm::GlobalValue::LinkageTypes Linkage =
1917       getLLVMLinkageVarDefinition(D, GV->isConstant());
1918 
1919   // On Darwin, the backing variable for a C++11 thread_local variable always
1920   // has internal linkage; all accesses should just be calls to the
1921   // Itanium-specified entry point, which has the normal linkage of the
1922   // variable.
1923   if (const auto *VD = dyn_cast<VarDecl>(D))
1924     if (!VD->isStaticLocal() && VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1925         Context.getTargetInfo().getTriple().isMacOSX())
1926       Linkage = llvm::GlobalValue::InternalLinkage;
1927 
1928   GV->setLinkage(Linkage);
1929   if (D->hasAttr<DLLImportAttr>())
1930     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1931   else if (D->hasAttr<DLLExportAttr>())
1932     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1933 
1934   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1935     // common vars aren't constant even if declared const.
1936     GV->setConstant(false);
1937 
1938   setNonAliasAttributes(D, GV);
1939 
1940   // Emit the initializer function if necessary.
1941   if (NeedsGlobalCtor || NeedsGlobalDtor)
1942     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1943 
1944   reportGlobalToASan(GV, *D, NeedsGlobalCtor);
1945 
1946   // Emit global variable debug information.
1947   if (CGDebugInfo *DI = getModuleDebugInfo())
1948     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1949       DI->EmitGlobalVariable(GV, D);
1950 }
1951 
1952 void CodeGenModule::reportGlobalToASan(llvm::GlobalVariable *GV,
1953                                        SourceLocation Loc, StringRef Name,
1954                                        bool IsDynInit) {
1955   if (!LangOpts.Sanitize.Address)
1956     return;
1957   IsDynInit &= !SanitizerBL.isIn(*GV, "init");
1958   bool IsBlacklisted = SanitizerBL.isIn(*GV);
1959 
1960   llvm::GlobalVariable *LocDescr = nullptr;
1961   llvm::GlobalVariable *GlobalName = nullptr;
1962   if (!IsBlacklisted) {
1963     // Don't generate source location and global name if it is blacklisted -
1964     // it won't be instrumented anyway.
1965     PresumedLoc PLoc = Context.getSourceManager().getPresumedLoc(Loc);
1966     if (PLoc.isValid()) {
1967       llvm::Constant *LocData[] = {
1968           GetAddrOfConstantCString(PLoc.getFilename()),
1969           llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1970                                  PLoc.getLine()),
1971           llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1972                                  PLoc.getColumn()),
1973       };
1974       auto LocStruct = llvm::ConstantStruct::getAnon(LocData);
1975       LocDescr = new llvm::GlobalVariable(TheModule, LocStruct->getType(), true,
1976                                           llvm::GlobalValue::PrivateLinkage,
1977                                           LocStruct, ".asan_loc_descr");
1978       LocDescr->setUnnamedAddr(true);
1979       // Add LocDescr to llvm.compiler.used, so that it won't be removed by
1980       // the optimizer before the ASan instrumentation pass.
1981       addCompilerUsedGlobal(LocDescr);
1982     }
1983     if (!Name.empty()) {
1984       GlobalName = GetAddrOfConstantCString(Name);
1985       // GlobalName shouldn't be removed by the optimizer.
1986       addCompilerUsedGlobal(GlobalName);
1987     }
1988   }
1989 
1990   llvm::Value *GlobalMetadata[] = {
1991       GV, LocDescr, GlobalName,
1992       llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsDynInit),
1993       llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsBlacklisted)};
1994 
1995   llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalMetadata);
1996   llvm::NamedMDNode *AsanGlobals =
1997       TheModule.getOrInsertNamedMetadata("llvm.asan.globals");
1998   AsanGlobals->addOperand(ThisGlobal);
1999 }
2000 
2001 void CodeGenModule::reportGlobalToASan(llvm::GlobalVariable *GV,
2002                                        const VarDecl &D, bool IsDynInit) {
2003   if (!LangOpts.Sanitize.Address)
2004     return;
2005   std::string QualName;
2006   llvm::raw_string_ostream OS(QualName);
2007   D.printQualifiedName(OS);
2008   reportGlobalToASan(GV, D.getLocation(), OS.str(), IsDynInit);
2009 }
2010 
2011 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) {
2012   // Don't give variables common linkage if -fno-common was specified unless it
2013   // was overridden by a NoCommon attribute.
2014   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2015     return true;
2016 
2017   // C11 6.9.2/2:
2018   //   A declaration of an identifier for an object that has file scope without
2019   //   an initializer, and without a storage-class specifier or with the
2020   //   storage-class specifier static, constitutes a tentative definition.
2021   if (D->getInit() || D->hasExternalStorage())
2022     return true;
2023 
2024   // A variable cannot be both common and exist in a section.
2025   if (D->hasAttr<SectionAttr>())
2026     return true;
2027 
2028   // Thread local vars aren't considered common linkage.
2029   if (D->getTLSKind())
2030     return true;
2031 
2032   // Tentative definitions marked with WeakImportAttr are true definitions.
2033   if (D->hasAttr<WeakImportAttr>())
2034     return true;
2035 
2036   return false;
2037 }
2038 
2039 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2040     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2041   if (Linkage == GVA_Internal)
2042     return llvm::Function::InternalLinkage;
2043 
2044   if (D->hasAttr<WeakAttr>()) {
2045     if (IsConstantVariable)
2046       return llvm::GlobalVariable::WeakODRLinkage;
2047     else
2048       return llvm::GlobalVariable::WeakAnyLinkage;
2049   }
2050 
2051   // We are guaranteed to have a strong definition somewhere else,
2052   // so we can use available_externally linkage.
2053   if (Linkage == GVA_AvailableExternally)
2054     return llvm::Function::AvailableExternallyLinkage;
2055 
2056   // Note that Apple's kernel linker doesn't support symbol
2057   // coalescing, so we need to avoid linkonce and weak linkages there.
2058   // Normally, this means we just map to internal, but for explicit
2059   // instantiations we'll map to external.
2060 
2061   // In C++, the compiler has to emit a definition in every translation unit
2062   // that references the function.  We should use linkonce_odr because
2063   // a) if all references in this translation unit are optimized away, we
2064   // don't need to codegen it.  b) if the function persists, it needs to be
2065   // merged with other definitions. c) C++ has the ODR, so we know the
2066   // definition is dependable.
2067   if (Linkage == GVA_DiscardableODR)
2068     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2069                                             : llvm::Function::InternalLinkage;
2070 
2071   // An explicit instantiation of a template has weak linkage, since
2072   // explicit instantiations can occur in multiple translation units
2073   // and must all be equivalent. However, we are not allowed to
2074   // throw away these explicit instantiations.
2075   if (Linkage == GVA_StrongODR)
2076     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2077                                             : llvm::Function::ExternalLinkage;
2078 
2079   // C++ doesn't have tentative definitions and thus cannot have common
2080   // linkage.
2081   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2082       !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon))
2083     return llvm::GlobalVariable::CommonLinkage;
2084 
2085   // selectany symbols are externally visible, so use weak instead of
2086   // linkonce.  MSVC optimizes away references to const selectany globals, so
2087   // all definitions should be the same and ODR linkage should be used.
2088   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2089   if (D->hasAttr<SelectAnyAttr>())
2090     return llvm::GlobalVariable::WeakODRLinkage;
2091 
2092   // Otherwise, we have strong external linkage.
2093   assert(Linkage == GVA_StrongExternal);
2094   return llvm::GlobalVariable::ExternalLinkage;
2095 }
2096 
2097 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2098     const VarDecl *VD, bool IsConstant) {
2099   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2100   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2101 }
2102 
2103 /// Replace the uses of a function that was declared with a non-proto type.
2104 /// We want to silently drop extra arguments from call sites
2105 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2106                                           llvm::Function *newFn) {
2107   // Fast path.
2108   if (old->use_empty()) return;
2109 
2110   llvm::Type *newRetTy = newFn->getReturnType();
2111   SmallVector<llvm::Value*, 4> newArgs;
2112 
2113   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2114          ui != ue; ) {
2115     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2116     llvm::User *user = use->getUser();
2117 
2118     // Recognize and replace uses of bitcasts.  Most calls to
2119     // unprototyped functions will use bitcasts.
2120     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2121       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2122         replaceUsesOfNonProtoConstant(bitcast, newFn);
2123       continue;
2124     }
2125 
2126     // Recognize calls to the function.
2127     llvm::CallSite callSite(user);
2128     if (!callSite) continue;
2129     if (!callSite.isCallee(&*use)) continue;
2130 
2131     // If the return types don't match exactly, then we can't
2132     // transform this call unless it's dead.
2133     if (callSite->getType() != newRetTy && !callSite->use_empty())
2134       continue;
2135 
2136     // Get the call site's attribute list.
2137     SmallVector<llvm::AttributeSet, 8> newAttrs;
2138     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2139 
2140     // Collect any return attributes from the call.
2141     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2142       newAttrs.push_back(
2143         llvm::AttributeSet::get(newFn->getContext(),
2144                                 oldAttrs.getRetAttributes()));
2145 
2146     // If the function was passed too few arguments, don't transform.
2147     unsigned newNumArgs = newFn->arg_size();
2148     if (callSite.arg_size() < newNumArgs) continue;
2149 
2150     // If extra arguments were passed, we silently drop them.
2151     // If any of the types mismatch, we don't transform.
2152     unsigned argNo = 0;
2153     bool dontTransform = false;
2154     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2155            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2156       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2157         dontTransform = true;
2158         break;
2159       }
2160 
2161       // Add any parameter attributes.
2162       if (oldAttrs.hasAttributes(argNo + 1))
2163         newAttrs.
2164           push_back(llvm::
2165                     AttributeSet::get(newFn->getContext(),
2166                                       oldAttrs.getParamAttributes(argNo + 1)));
2167     }
2168     if (dontTransform)
2169       continue;
2170 
2171     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2172       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2173                                                  oldAttrs.getFnAttributes()));
2174 
2175     // Okay, we can transform this.  Create the new call instruction and copy
2176     // over the required information.
2177     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2178 
2179     llvm::CallSite newCall;
2180     if (callSite.isCall()) {
2181       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2182                                        callSite.getInstruction());
2183     } else {
2184       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2185       newCall = llvm::InvokeInst::Create(newFn,
2186                                          oldInvoke->getNormalDest(),
2187                                          oldInvoke->getUnwindDest(),
2188                                          newArgs, "",
2189                                          callSite.getInstruction());
2190     }
2191     newArgs.clear(); // for the next iteration
2192 
2193     if (!newCall->getType()->isVoidTy())
2194       newCall->takeName(callSite.getInstruction());
2195     newCall.setAttributes(
2196                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2197     newCall.setCallingConv(callSite.getCallingConv());
2198 
2199     // Finally, remove the old call, replacing any uses with the new one.
2200     if (!callSite->use_empty())
2201       callSite->replaceAllUsesWith(newCall.getInstruction());
2202 
2203     // Copy debug location attached to CI.
2204     if (!callSite->getDebugLoc().isUnknown())
2205       newCall->setDebugLoc(callSite->getDebugLoc());
2206     callSite->eraseFromParent();
2207   }
2208 }
2209 
2210 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2211 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2212 /// existing call uses of the old function in the module, this adjusts them to
2213 /// call the new function directly.
2214 ///
2215 /// This is not just a cleanup: the always_inline pass requires direct calls to
2216 /// functions to be able to inline them.  If there is a bitcast in the way, it
2217 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2218 /// run at -O0.
2219 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2220                                                       llvm::Function *NewFn) {
2221   // If we're redefining a global as a function, don't transform it.
2222   if (!isa<llvm::Function>(Old)) return;
2223 
2224   replaceUsesOfNonProtoConstant(Old, NewFn);
2225 }
2226 
2227 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2228   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2229   // If we have a definition, this might be a deferred decl. If the
2230   // instantiation is explicit, make sure we emit it at the end.
2231   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2232     GetAddrOfGlobalVar(VD);
2233 
2234   EmitTopLevelDecl(VD);
2235 }
2236 
2237 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2238                                                  llvm::GlobalValue *GV) {
2239   const auto *D = cast<FunctionDecl>(GD.getDecl());
2240 
2241   // Compute the function info and LLVM type.
2242   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2243   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2244 
2245   // Get or create the prototype for the function.
2246   if (!GV) {
2247     llvm::Constant *C =
2248         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2249 
2250     // Strip off a bitcast if we got one back.
2251     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2252       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2253       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2254     } else {
2255       GV = cast<llvm::GlobalValue>(C);
2256     }
2257   }
2258 
2259   if (!GV->isDeclaration()) {
2260     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2261     return;
2262   }
2263 
2264   if (GV->getType()->getElementType() != Ty) {
2265     // If the types mismatch then we have to rewrite the definition.
2266     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2267 
2268     // F is the Function* for the one with the wrong type, we must make a new
2269     // Function* and update everything that used F (a declaration) with the new
2270     // Function* (which will be a definition).
2271     //
2272     // This happens if there is a prototype for a function
2273     // (e.g. "int f()") and then a definition of a different type
2274     // (e.g. "int f(int x)").  Move the old function aside so that it
2275     // doesn't interfere with GetAddrOfFunction.
2276     GV->setName(StringRef());
2277     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2278 
2279     // This might be an implementation of a function without a
2280     // prototype, in which case, try to do special replacement of
2281     // calls which match the new prototype.  The really key thing here
2282     // is that we also potentially drop arguments from the call site
2283     // so as to make a direct call, which makes the inliner happier
2284     // and suppresses a number of optimizer warnings (!) about
2285     // dropping arguments.
2286     if (!GV->use_empty()) {
2287       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2288       GV->removeDeadConstantUsers();
2289     }
2290 
2291     // Replace uses of F with the Function we will endow with a body.
2292     if (!GV->use_empty()) {
2293       llvm::Constant *NewPtrForOldDecl =
2294           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2295       GV->replaceAllUsesWith(NewPtrForOldDecl);
2296     }
2297 
2298     // Ok, delete the old function now, which is dead.
2299     GV->eraseFromParent();
2300 
2301     GV = NewFn;
2302   }
2303 
2304   // We need to set linkage and visibility on the function before
2305   // generating code for it because various parts of IR generation
2306   // want to propagate this information down (e.g. to local static
2307   // declarations).
2308   auto *Fn = cast<llvm::Function>(GV);
2309   setFunctionLinkage(GD, Fn);
2310 
2311   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2312   setGlobalVisibility(Fn, D);
2313 
2314   MaybeHandleStaticInExternC(D, Fn);
2315 
2316   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2317 
2318   setFunctionDefinitionAttributes(D, Fn);
2319   SetLLVMFunctionAttributesForDefinition(D, Fn);
2320 
2321   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2322     AddGlobalCtor(Fn, CA->getPriority());
2323   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2324     AddGlobalDtor(Fn, DA->getPriority());
2325   if (D->hasAttr<AnnotateAttr>())
2326     AddGlobalAnnotations(D, Fn);
2327 }
2328 
2329 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2330   const auto *D = cast<ValueDecl>(GD.getDecl());
2331   const AliasAttr *AA = D->getAttr<AliasAttr>();
2332   assert(AA && "Not an alias?");
2333 
2334   StringRef MangledName = getMangledName(GD);
2335 
2336   // If there is a definition in the module, then it wins over the alias.
2337   // This is dubious, but allow it to be safe.  Just ignore the alias.
2338   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2339   if (Entry && !Entry->isDeclaration())
2340     return;
2341 
2342   Aliases.push_back(GD);
2343 
2344   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2345 
2346   // Create a reference to the named value.  This ensures that it is emitted
2347   // if a deferred decl.
2348   llvm::Constant *Aliasee;
2349   if (isa<llvm::FunctionType>(DeclTy))
2350     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2351                                       /*ForVTable=*/false);
2352   else
2353     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2354                                     llvm::PointerType::getUnqual(DeclTy),
2355                                     nullptr);
2356 
2357   // Create the new alias itself, but don't set a name yet.
2358   auto *GA = llvm::GlobalAlias::create(
2359       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2360       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2361 
2362   if (Entry) {
2363     if (GA->getAliasee() == Entry) {
2364       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2365       return;
2366     }
2367 
2368     assert(Entry->isDeclaration());
2369 
2370     // If there is a declaration in the module, then we had an extern followed
2371     // by the alias, as in:
2372     //   extern int test6();
2373     //   ...
2374     //   int test6() __attribute__((alias("test7")));
2375     //
2376     // Remove it and replace uses of it with the alias.
2377     GA->takeName(Entry);
2378 
2379     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2380                                                           Entry->getType()));
2381     Entry->eraseFromParent();
2382   } else {
2383     GA->setName(MangledName);
2384   }
2385 
2386   // Set attributes which are particular to an alias; this is a
2387   // specialization of the attributes which may be set on a global
2388   // variable/function.
2389   if (D->hasAttr<DLLExportAttr>()) {
2390     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2391       // The dllexport attribute is ignored for undefined symbols.
2392       if (FD->hasBody())
2393         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2394     } else {
2395       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2396     }
2397   } else if (D->hasAttr<WeakAttr>() ||
2398              D->hasAttr<WeakRefAttr>() ||
2399              D->isWeakImported()) {
2400     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2401   }
2402 
2403   SetCommonAttributes(D, GA);
2404 }
2405 
2406 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2407                                             ArrayRef<llvm::Type*> Tys) {
2408   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2409                                          Tys);
2410 }
2411 
2412 static llvm::StringMapEntry<llvm::Constant*> &
2413 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2414                          const StringLiteral *Literal,
2415                          bool TargetIsLSB,
2416                          bool &IsUTF16,
2417                          unsigned &StringLength) {
2418   StringRef String = Literal->getString();
2419   unsigned NumBytes = String.size();
2420 
2421   // Check for simple case.
2422   if (!Literal->containsNonAsciiOrNull()) {
2423     StringLength = NumBytes;
2424     return Map.GetOrCreateValue(String);
2425   }
2426 
2427   // Otherwise, convert the UTF8 literals into a string of shorts.
2428   IsUTF16 = true;
2429 
2430   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2431   const UTF8 *FromPtr = (const UTF8 *)String.data();
2432   UTF16 *ToPtr = &ToBuf[0];
2433 
2434   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2435                            &ToPtr, ToPtr + NumBytes,
2436                            strictConversion);
2437 
2438   // ConvertUTF8toUTF16 returns the length in ToPtr.
2439   StringLength = ToPtr - &ToBuf[0];
2440 
2441   // Add an explicit null.
2442   *ToPtr = 0;
2443   return Map.
2444     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2445                                (StringLength + 1) * 2));
2446 }
2447 
2448 static llvm::StringMapEntry<llvm::Constant*> &
2449 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2450                        const StringLiteral *Literal,
2451                        unsigned &StringLength) {
2452   StringRef String = Literal->getString();
2453   StringLength = String.size();
2454   return Map.GetOrCreateValue(String);
2455 }
2456 
2457 llvm::Constant *
2458 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2459   unsigned StringLength = 0;
2460   bool isUTF16 = false;
2461   llvm::StringMapEntry<llvm::Constant*> &Entry =
2462     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2463                              getDataLayout().isLittleEndian(),
2464                              isUTF16, StringLength);
2465 
2466   if (llvm::Constant *C = Entry.getValue())
2467     return C;
2468 
2469   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2470   llvm::Constant *Zeros[] = { Zero, Zero };
2471   llvm::Value *V;
2472 
2473   // If we don't already have it, get __CFConstantStringClassReference.
2474   if (!CFConstantStringClassRef) {
2475     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2476     Ty = llvm::ArrayType::get(Ty, 0);
2477     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2478                                            "__CFConstantStringClassReference");
2479     // Decay array -> ptr
2480     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2481     CFConstantStringClassRef = V;
2482   }
2483   else
2484     V = CFConstantStringClassRef;
2485 
2486   QualType CFTy = getContext().getCFConstantStringType();
2487 
2488   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2489 
2490   llvm::Constant *Fields[4];
2491 
2492   // Class pointer.
2493   Fields[0] = cast<llvm::ConstantExpr>(V);
2494 
2495   // Flags.
2496   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2497   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2498     llvm::ConstantInt::get(Ty, 0x07C8);
2499 
2500   // String pointer.
2501   llvm::Constant *C = nullptr;
2502   if (isUTF16) {
2503     ArrayRef<uint16_t> Arr =
2504       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2505                                      const_cast<char *>(Entry.getKey().data())),
2506                                    Entry.getKey().size() / 2);
2507     C = llvm::ConstantDataArray::get(VMContext, Arr);
2508   } else {
2509     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2510   }
2511 
2512   // Note: -fwritable-strings doesn't make the backing store strings of
2513   // CFStrings writable. (See <rdar://problem/10657500>)
2514   auto *GV =
2515       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2516                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2517   GV->setUnnamedAddr(true);
2518   // Don't enforce the target's minimum global alignment, since the only use
2519   // of the string is via this class initializer.
2520   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2521   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2522   // that changes the section it ends in, which surprises ld64.
2523   if (isUTF16) {
2524     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2525     GV->setAlignment(Align.getQuantity());
2526     GV->setSection("__TEXT,__ustring");
2527   } else {
2528     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2529     GV->setAlignment(Align.getQuantity());
2530     GV->setSection("__TEXT,__cstring,cstring_literals");
2531   }
2532 
2533   // String.
2534   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2535 
2536   if (isUTF16)
2537     // Cast the UTF16 string to the correct type.
2538     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2539 
2540   // String length.
2541   Ty = getTypes().ConvertType(getContext().LongTy);
2542   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2543 
2544   // The struct.
2545   C = llvm::ConstantStruct::get(STy, Fields);
2546   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2547                                 llvm::GlobalVariable::PrivateLinkage, C,
2548                                 "_unnamed_cfstring_");
2549   GV->setSection("__DATA,__cfstring");
2550   Entry.setValue(GV);
2551 
2552   return GV;
2553 }
2554 
2555 llvm::Constant *
2556 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2557   unsigned StringLength = 0;
2558   llvm::StringMapEntry<llvm::Constant*> &Entry =
2559     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2560 
2561   if (llvm::Constant *C = Entry.getValue())
2562     return C;
2563 
2564   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2565   llvm::Constant *Zeros[] = { Zero, Zero };
2566   llvm::Value *V;
2567   // If we don't already have it, get _NSConstantStringClassReference.
2568   if (!ConstantStringClassRef) {
2569     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2570     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2571     llvm::Constant *GV;
2572     if (LangOpts.ObjCRuntime.isNonFragile()) {
2573       std::string str =
2574         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2575                             : "OBJC_CLASS_$_" + StringClass;
2576       GV = getObjCRuntime().GetClassGlobal(str);
2577       // Make sure the result is of the correct type.
2578       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2579       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2580       ConstantStringClassRef = V;
2581     } else {
2582       std::string str =
2583         StringClass.empty() ? "_NSConstantStringClassReference"
2584                             : "_" + StringClass + "ClassReference";
2585       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2586       GV = CreateRuntimeVariable(PTy, str);
2587       // Decay array -> ptr
2588       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2589       ConstantStringClassRef = V;
2590     }
2591   }
2592   else
2593     V = ConstantStringClassRef;
2594 
2595   if (!NSConstantStringType) {
2596     // Construct the type for a constant NSString.
2597     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2598     D->startDefinition();
2599 
2600     QualType FieldTypes[3];
2601 
2602     // const int *isa;
2603     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2604     // const char *str;
2605     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2606     // unsigned int length;
2607     FieldTypes[2] = Context.UnsignedIntTy;
2608 
2609     // Create fields
2610     for (unsigned i = 0; i < 3; ++i) {
2611       FieldDecl *Field = FieldDecl::Create(Context, D,
2612                                            SourceLocation(),
2613                                            SourceLocation(), nullptr,
2614                                            FieldTypes[i], /*TInfo=*/nullptr,
2615                                            /*BitWidth=*/nullptr,
2616                                            /*Mutable=*/false,
2617                                            ICIS_NoInit);
2618       Field->setAccess(AS_public);
2619       D->addDecl(Field);
2620     }
2621 
2622     D->completeDefinition();
2623     QualType NSTy = Context.getTagDeclType(D);
2624     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2625   }
2626 
2627   llvm::Constant *Fields[3];
2628 
2629   // Class pointer.
2630   Fields[0] = cast<llvm::ConstantExpr>(V);
2631 
2632   // String pointer.
2633   llvm::Constant *C =
2634     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2635 
2636   llvm::GlobalValue::LinkageTypes Linkage;
2637   bool isConstant;
2638   Linkage = llvm::GlobalValue::PrivateLinkage;
2639   isConstant = !LangOpts.WritableStrings;
2640 
2641   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2642                                       Linkage, C, ".str");
2643   GV->setUnnamedAddr(true);
2644   // Don't enforce the target's minimum global alignment, since the only use
2645   // of the string is via this class initializer.
2646   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2647   GV->setAlignment(Align.getQuantity());
2648   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2649 
2650   // String length.
2651   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2652   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2653 
2654   // The struct.
2655   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2656   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2657                                 llvm::GlobalVariable::PrivateLinkage, C,
2658                                 "_unnamed_nsstring_");
2659   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2660   const char *NSStringNonFragileABISection =
2661       "__DATA,__objc_stringobj,regular,no_dead_strip";
2662   // FIXME. Fix section.
2663   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2664                      ? NSStringNonFragileABISection
2665                      : NSStringSection);
2666   Entry.setValue(GV);
2667 
2668   return GV;
2669 }
2670 
2671 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2672   if (ObjCFastEnumerationStateType.isNull()) {
2673     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2674     D->startDefinition();
2675 
2676     QualType FieldTypes[] = {
2677       Context.UnsignedLongTy,
2678       Context.getPointerType(Context.getObjCIdType()),
2679       Context.getPointerType(Context.UnsignedLongTy),
2680       Context.getConstantArrayType(Context.UnsignedLongTy,
2681                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2682     };
2683 
2684     for (size_t i = 0; i < 4; ++i) {
2685       FieldDecl *Field = FieldDecl::Create(Context,
2686                                            D,
2687                                            SourceLocation(),
2688                                            SourceLocation(), nullptr,
2689                                            FieldTypes[i], /*TInfo=*/nullptr,
2690                                            /*BitWidth=*/nullptr,
2691                                            /*Mutable=*/false,
2692                                            ICIS_NoInit);
2693       Field->setAccess(AS_public);
2694       D->addDecl(Field);
2695     }
2696 
2697     D->completeDefinition();
2698     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2699   }
2700 
2701   return ObjCFastEnumerationStateType;
2702 }
2703 
2704 llvm::Constant *
2705 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2706   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2707 
2708   // Don't emit it as the address of the string, emit the string data itself
2709   // as an inline array.
2710   if (E->getCharByteWidth() == 1) {
2711     SmallString<64> Str(E->getString());
2712 
2713     // Resize the string to the right size, which is indicated by its type.
2714     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2715     Str.resize(CAT->getSize().getZExtValue());
2716     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2717   }
2718 
2719   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2720   llvm::Type *ElemTy = AType->getElementType();
2721   unsigned NumElements = AType->getNumElements();
2722 
2723   // Wide strings have either 2-byte or 4-byte elements.
2724   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2725     SmallVector<uint16_t, 32> Elements;
2726     Elements.reserve(NumElements);
2727 
2728     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2729       Elements.push_back(E->getCodeUnit(i));
2730     Elements.resize(NumElements);
2731     return llvm::ConstantDataArray::get(VMContext, Elements);
2732   }
2733 
2734   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2735   SmallVector<uint32_t, 32> Elements;
2736   Elements.reserve(NumElements);
2737 
2738   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2739     Elements.push_back(E->getCodeUnit(i));
2740   Elements.resize(NumElements);
2741   return llvm::ConstantDataArray::get(VMContext, Elements);
2742 }
2743 
2744 static llvm::GlobalVariable *
2745 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2746                       CodeGenModule &CGM, StringRef GlobalName,
2747                       unsigned Alignment) {
2748   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2749   unsigned AddrSpace = 0;
2750   if (CGM.getLangOpts().OpenCL)
2751     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2752 
2753   // Create a global variable for this string
2754   auto *GV = new llvm::GlobalVariable(
2755       CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C,
2756       GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2757   GV->setAlignment(Alignment);
2758   GV->setUnnamedAddr(true);
2759   return GV;
2760 }
2761 
2762 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2763 /// constant array for the given string literal.
2764 llvm::GlobalVariable *
2765 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2766   auto Alignment =
2767       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2768 
2769   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2770   if (!LangOpts.WritableStrings) {
2771     Entry = getConstantStringMapEntry(S->getBytes(), S->getCharByteWidth());
2772     if (auto GV = Entry->getValue()) {
2773       if (Alignment > GV->getAlignment())
2774         GV->setAlignment(Alignment);
2775       return GV;
2776     }
2777   }
2778 
2779   SmallString<256> MangledNameBuffer;
2780   StringRef GlobalVariableName;
2781   llvm::GlobalValue::LinkageTypes LT;
2782 
2783   // Mangle the string literal if the ABI allows for it.  However, we cannot
2784   // do this if  we are compiling with ASan or -fwritable-strings because they
2785   // rely on strings having normal linkage.
2786   if (!LangOpts.WritableStrings && !LangOpts.Sanitize.Address &&
2787       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2788     llvm::raw_svector_ostream Out(MangledNameBuffer);
2789     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2790     Out.flush();
2791 
2792     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2793     GlobalVariableName = MangledNameBuffer;
2794   } else {
2795     LT = llvm::GlobalValue::PrivateLinkage;
2796     GlobalVariableName = ".str";
2797   }
2798 
2799   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2800   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2801   if (Entry)
2802     Entry->setValue(GV);
2803 
2804   reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>");
2805   return GV;
2806 }
2807 
2808 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2809 /// array for the given ObjCEncodeExpr node.
2810 llvm::GlobalVariable *
2811 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2812   std::string Str;
2813   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2814 
2815   return GetAddrOfConstantCString(Str);
2816 }
2817 
2818 
2819 llvm::StringMapEntry<llvm::GlobalVariable *> *CodeGenModule::getConstantStringMapEntry(
2820     StringRef Str, int CharByteWidth) {
2821   llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2822   switch (CharByteWidth) {
2823   case 1:
2824     ConstantStringMap = &Constant1ByteStringMap;
2825     break;
2826   case 2:
2827     ConstantStringMap = &Constant2ByteStringMap;
2828     break;
2829   case 4:
2830     ConstantStringMap = &Constant4ByteStringMap;
2831     break;
2832   default:
2833     llvm_unreachable("unhandled byte width!");
2834   }
2835   return &ConstantStringMap->GetOrCreateValue(Str);
2836 }
2837 
2838 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2839 /// the literal and a terminating '\0' character.
2840 /// The result has pointer to array type.
2841 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
2842     const std::string &Str, const char *GlobalName, unsigned Alignment) {
2843   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2844   if (Alignment == 0) {
2845     Alignment = getContext()
2846                     .getAlignOfGlobalVarInChars(getContext().CharTy)
2847                     .getQuantity();
2848   }
2849 
2850   // Don't share any string literals if strings aren't constant.
2851   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2852   if (!LangOpts.WritableStrings) {
2853     Entry = getConstantStringMapEntry(StrWithNull, 1);
2854     if (auto GV = Entry->getValue()) {
2855       if (Alignment > GV->getAlignment())
2856         GV->setAlignment(Alignment);
2857       return GV;
2858     }
2859   }
2860 
2861   llvm::Constant *C =
2862       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
2863   // Get the default prefix if a name wasn't specified.
2864   if (!GlobalName)
2865     GlobalName = ".str";
2866   // Create a global variable for this.
2867   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
2868                                   GlobalName, Alignment);
2869   if (Entry)
2870     Entry->setValue(GV);
2871   return GV;
2872 }
2873 
2874 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2875     const MaterializeTemporaryExpr *E, const Expr *Init) {
2876   assert((E->getStorageDuration() == SD_Static ||
2877           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2878   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2879 
2880   // If we're not materializing a subobject of the temporary, keep the
2881   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2882   QualType MaterializedType = Init->getType();
2883   if (Init == E->GetTemporaryExpr())
2884     MaterializedType = E->getType();
2885 
2886   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2887   if (Slot)
2888     return Slot;
2889 
2890   // FIXME: If an externally-visible declaration extends multiple temporaries,
2891   // we need to give each temporary the same name in every translation unit (and
2892   // we also need to make the temporaries externally-visible).
2893   SmallString<256> Name;
2894   llvm::raw_svector_ostream Out(Name);
2895   getCXXABI().getMangleContext().mangleReferenceTemporary(
2896       VD, E->getManglingNumber(), Out);
2897   Out.flush();
2898 
2899   APValue *Value = nullptr;
2900   if (E->getStorageDuration() == SD_Static) {
2901     // We might have a cached constant initializer for this temporary. Note
2902     // that this might have a different value from the value computed by
2903     // evaluating the initializer if the surrounding constant expression
2904     // modifies the temporary.
2905     Value = getContext().getMaterializedTemporaryValue(E, false);
2906     if (Value && Value->isUninit())
2907       Value = nullptr;
2908   }
2909 
2910   // Try evaluating it now, it might have a constant initializer.
2911   Expr::EvalResult EvalResult;
2912   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2913       !EvalResult.hasSideEffects())
2914     Value = &EvalResult.Val;
2915 
2916   llvm::Constant *InitialValue = nullptr;
2917   bool Constant = false;
2918   llvm::Type *Type;
2919   if (Value) {
2920     // The temporary has a constant initializer, use it.
2921     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
2922     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2923     Type = InitialValue->getType();
2924   } else {
2925     // No initializer, the initialization will be provided when we
2926     // initialize the declaration which performed lifetime extension.
2927     Type = getTypes().ConvertTypeForMem(MaterializedType);
2928   }
2929 
2930   // Create a global variable for this lifetime-extended temporary.
2931   llvm::GlobalValue::LinkageTypes Linkage =
2932       getLLVMLinkageVarDefinition(VD, Constant);
2933   // There is no need for this temporary to have global linkage if the global
2934   // variable has external linkage.
2935   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2936     Linkage = llvm::GlobalVariable::PrivateLinkage;
2937   unsigned AddrSpace = GetGlobalVarAddressSpace(
2938       VD, getContext().getTargetAddressSpace(MaterializedType));
2939   auto *GV = new llvm::GlobalVariable(
2940       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2941       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2942       AddrSpace);
2943   setGlobalVisibility(GV, VD);
2944   GV->setAlignment(
2945       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2946   if (VD->getTLSKind())
2947     setTLSMode(GV, *VD);
2948   Slot = GV;
2949   return GV;
2950 }
2951 
2952 /// EmitObjCPropertyImplementations - Emit information for synthesized
2953 /// properties for an implementation.
2954 void CodeGenModule::EmitObjCPropertyImplementations(const
2955                                                     ObjCImplementationDecl *D) {
2956   for (const auto *PID : D->property_impls()) {
2957     // Dynamic is just for type-checking.
2958     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2959       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2960 
2961       // Determine which methods need to be implemented, some may have
2962       // been overridden. Note that ::isPropertyAccessor is not the method
2963       // we want, that just indicates if the decl came from a
2964       // property. What we want to know is if the method is defined in
2965       // this implementation.
2966       if (!D->getInstanceMethod(PD->getGetterName()))
2967         CodeGenFunction(*this).GenerateObjCGetter(
2968                                  const_cast<ObjCImplementationDecl *>(D), PID);
2969       if (!PD->isReadOnly() &&
2970           !D->getInstanceMethod(PD->getSetterName()))
2971         CodeGenFunction(*this).GenerateObjCSetter(
2972                                  const_cast<ObjCImplementationDecl *>(D), PID);
2973     }
2974   }
2975 }
2976 
2977 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2978   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2979   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2980        ivar; ivar = ivar->getNextIvar())
2981     if (ivar->getType().isDestructedType())
2982       return true;
2983 
2984   return false;
2985 }
2986 
2987 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2988 /// for an implementation.
2989 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2990   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2991   if (needsDestructMethod(D)) {
2992     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2993     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2994     ObjCMethodDecl *DTORMethod =
2995       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2996                              cxxSelector, getContext().VoidTy, nullptr, D,
2997                              /*isInstance=*/true, /*isVariadic=*/false,
2998                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2999                              /*isDefined=*/false, ObjCMethodDecl::Required);
3000     D->addInstanceMethod(DTORMethod);
3001     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3002     D->setHasDestructors(true);
3003   }
3004 
3005   // If the implementation doesn't have any ivar initializers, we don't need
3006   // a .cxx_construct.
3007   if (D->getNumIvarInitializers() == 0)
3008     return;
3009 
3010   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3011   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3012   // The constructor returns 'self'.
3013   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3014                                                 D->getLocation(),
3015                                                 D->getLocation(),
3016                                                 cxxSelector,
3017                                                 getContext().getObjCIdType(),
3018                                                 nullptr, D, /*isInstance=*/true,
3019                                                 /*isVariadic=*/false,
3020                                                 /*isPropertyAccessor=*/true,
3021                                                 /*isImplicitlyDeclared=*/true,
3022                                                 /*isDefined=*/false,
3023                                                 ObjCMethodDecl::Required);
3024   D->addInstanceMethod(CTORMethod);
3025   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3026   D->setHasNonZeroConstructors(true);
3027 }
3028 
3029 /// EmitNamespace - Emit all declarations in a namespace.
3030 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3031   for (auto *I : ND->decls()) {
3032     if (const auto *VD = dyn_cast<VarDecl>(I))
3033       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3034           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3035         continue;
3036     EmitTopLevelDecl(I);
3037   }
3038 }
3039 
3040 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3041 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3042   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3043       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3044     ErrorUnsupported(LSD, "linkage spec");
3045     return;
3046   }
3047 
3048   for (auto *I : LSD->decls()) {
3049     // Meta-data for ObjC class includes references to implemented methods.
3050     // Generate class's method definitions first.
3051     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3052       for (auto *M : OID->methods())
3053         EmitTopLevelDecl(M);
3054     }
3055     EmitTopLevelDecl(I);
3056   }
3057 }
3058 
3059 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3060 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3061   // Ignore dependent declarations.
3062   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3063     return;
3064 
3065   switch (D->getKind()) {
3066   case Decl::CXXConversion:
3067   case Decl::CXXMethod:
3068   case Decl::Function:
3069     // Skip function templates
3070     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3071         cast<FunctionDecl>(D)->isLateTemplateParsed())
3072       return;
3073 
3074     EmitGlobal(cast<FunctionDecl>(D));
3075     break;
3076 
3077   case Decl::Var:
3078     // Skip variable templates
3079     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3080       return;
3081   case Decl::VarTemplateSpecialization:
3082     EmitGlobal(cast<VarDecl>(D));
3083     break;
3084 
3085   // Indirect fields from global anonymous structs and unions can be
3086   // ignored; only the actual variable requires IR gen support.
3087   case Decl::IndirectField:
3088     break;
3089 
3090   // C++ Decls
3091   case Decl::Namespace:
3092     EmitNamespace(cast<NamespaceDecl>(D));
3093     break;
3094     // No code generation needed.
3095   case Decl::UsingShadow:
3096   case Decl::ClassTemplate:
3097   case Decl::VarTemplate:
3098   case Decl::VarTemplatePartialSpecialization:
3099   case Decl::FunctionTemplate:
3100   case Decl::TypeAliasTemplate:
3101   case Decl::Block:
3102   case Decl::Empty:
3103     break;
3104   case Decl::Using:          // using X; [C++]
3105     if (CGDebugInfo *DI = getModuleDebugInfo())
3106         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3107     return;
3108   case Decl::NamespaceAlias:
3109     if (CGDebugInfo *DI = getModuleDebugInfo())
3110         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3111     return;
3112   case Decl::UsingDirective: // using namespace X; [C++]
3113     if (CGDebugInfo *DI = getModuleDebugInfo())
3114       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3115     return;
3116   case Decl::CXXConstructor:
3117     // Skip function templates
3118     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3119         cast<FunctionDecl>(D)->isLateTemplateParsed())
3120       return;
3121 
3122     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3123     break;
3124   case Decl::CXXDestructor:
3125     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3126       return;
3127     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3128     break;
3129 
3130   case Decl::StaticAssert:
3131     // Nothing to do.
3132     break;
3133 
3134   // Objective-C Decls
3135 
3136   // Forward declarations, no (immediate) code generation.
3137   case Decl::ObjCInterface:
3138   case Decl::ObjCCategory:
3139     break;
3140 
3141   case Decl::ObjCProtocol: {
3142     auto *Proto = cast<ObjCProtocolDecl>(D);
3143     if (Proto->isThisDeclarationADefinition())
3144       ObjCRuntime->GenerateProtocol(Proto);
3145     break;
3146   }
3147 
3148   case Decl::ObjCCategoryImpl:
3149     // Categories have properties but don't support synthesize so we
3150     // can ignore them here.
3151     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3152     break;
3153 
3154   case Decl::ObjCImplementation: {
3155     auto *OMD = cast<ObjCImplementationDecl>(D);
3156     EmitObjCPropertyImplementations(OMD);
3157     EmitObjCIvarInitializations(OMD);
3158     ObjCRuntime->GenerateClass(OMD);
3159     // Emit global variable debug information.
3160     if (CGDebugInfo *DI = getModuleDebugInfo())
3161       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3162         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3163             OMD->getClassInterface()), OMD->getLocation());
3164     break;
3165   }
3166   case Decl::ObjCMethod: {
3167     auto *OMD = cast<ObjCMethodDecl>(D);
3168     // If this is not a prototype, emit the body.
3169     if (OMD->getBody())
3170       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3171     break;
3172   }
3173   case Decl::ObjCCompatibleAlias:
3174     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3175     break;
3176 
3177   case Decl::LinkageSpec:
3178     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3179     break;
3180 
3181   case Decl::FileScopeAsm: {
3182     auto *AD = cast<FileScopeAsmDecl>(D);
3183     StringRef AsmString = AD->getAsmString()->getString();
3184 
3185     const std::string &S = getModule().getModuleInlineAsm();
3186     if (S.empty())
3187       getModule().setModuleInlineAsm(AsmString);
3188     else if (S.end()[-1] == '\n')
3189       getModule().setModuleInlineAsm(S + AsmString.str());
3190     else
3191       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3192     break;
3193   }
3194 
3195   case Decl::Import: {
3196     auto *Import = cast<ImportDecl>(D);
3197 
3198     // Ignore import declarations that come from imported modules.
3199     if (clang::Module *Owner = Import->getOwningModule()) {
3200       if (getLangOpts().CurrentModule.empty() ||
3201           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3202         break;
3203     }
3204 
3205     ImportedModules.insert(Import->getImportedModule());
3206     break;
3207   }
3208 
3209   case Decl::ClassTemplateSpecialization: {
3210     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3211     if (DebugInfo &&
3212         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3213       DebugInfo->completeTemplateDefinition(*Spec);
3214   }
3215 
3216   default:
3217     // Make sure we handled everything we should, every other kind is a
3218     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3219     // function. Need to recode Decl::Kind to do that easily.
3220     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3221   }
3222 }
3223 
3224 /// Turns the given pointer into a constant.
3225 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3226                                           const void *Ptr) {
3227   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3228   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3229   return llvm::ConstantInt::get(i64, PtrInt);
3230 }
3231 
3232 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3233                                    llvm::NamedMDNode *&GlobalMetadata,
3234                                    GlobalDecl D,
3235                                    llvm::GlobalValue *Addr) {
3236   if (!GlobalMetadata)
3237     GlobalMetadata =
3238       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3239 
3240   // TODO: should we report variant information for ctors/dtors?
3241   llvm::Value *Ops[] = {
3242     Addr,
3243     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3244   };
3245   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3246 }
3247 
3248 /// For each function which is declared within an extern "C" region and marked
3249 /// as 'used', but has internal linkage, create an alias from the unmangled
3250 /// name to the mangled name if possible. People expect to be able to refer
3251 /// to such functions with an unmangled name from inline assembly within the
3252 /// same translation unit.
3253 void CodeGenModule::EmitStaticExternCAliases() {
3254   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3255                                   E = StaticExternCValues.end();
3256        I != E; ++I) {
3257     IdentifierInfo *Name = I->first;
3258     llvm::GlobalValue *Val = I->second;
3259     if (Val && !getModule().getNamedValue(Name->getName()))
3260       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3261   }
3262 }
3263 
3264 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3265                                              GlobalDecl &Result) const {
3266   auto Res = Manglings.find(MangledName);
3267   if (Res == Manglings.end())
3268     return false;
3269   Result = Res->getValue();
3270   return true;
3271 }
3272 
3273 /// Emits metadata nodes associating all the global values in the
3274 /// current module with the Decls they came from.  This is useful for
3275 /// projects using IR gen as a subroutine.
3276 ///
3277 /// Since there's currently no way to associate an MDNode directly
3278 /// with an llvm::GlobalValue, we create a global named metadata
3279 /// with the name 'clang.global.decl.ptrs'.
3280 void CodeGenModule::EmitDeclMetadata() {
3281   llvm::NamedMDNode *GlobalMetadata = nullptr;
3282 
3283   // StaticLocalDeclMap
3284   for (auto &I : MangledDeclNames) {
3285     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3286     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3287   }
3288 }
3289 
3290 /// Emits metadata nodes for all the local variables in the current
3291 /// function.
3292 void CodeGenFunction::EmitDeclMetadata() {
3293   if (LocalDeclMap.empty()) return;
3294 
3295   llvm::LLVMContext &Context = getLLVMContext();
3296 
3297   // Find the unique metadata ID for this name.
3298   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3299 
3300   llvm::NamedMDNode *GlobalMetadata = nullptr;
3301 
3302   for (auto &I : LocalDeclMap) {
3303     const Decl *D = I.first;
3304     llvm::Value *Addr = I.second;
3305     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3306       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3307       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3308     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3309       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3310       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3311     }
3312   }
3313 }
3314 
3315 void CodeGenModule::EmitVersionIdentMetadata() {
3316   llvm::NamedMDNode *IdentMetadata =
3317     TheModule.getOrInsertNamedMetadata("llvm.ident");
3318   std::string Version = getClangFullVersion();
3319   llvm::LLVMContext &Ctx = TheModule.getContext();
3320 
3321   llvm::Value *IdentNode[] = {
3322     llvm::MDString::get(Ctx, Version)
3323   };
3324   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3325 }
3326 
3327 void CodeGenModule::EmitTargetMetadata() {
3328   for (auto &I : MangledDeclNames) {
3329     const Decl *D = I.first.getDecl()->getMostRecentDecl();
3330     llvm::GlobalValue *GV = GetGlobalValue(I.second);
3331     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3332   }
3333 }
3334 
3335 void CodeGenModule::EmitCoverageFile() {
3336   if (!getCodeGenOpts().CoverageFile.empty()) {
3337     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3338       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3339       llvm::LLVMContext &Ctx = TheModule.getContext();
3340       llvm::MDString *CoverageFile =
3341           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3342       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3343         llvm::MDNode *CU = CUNode->getOperand(i);
3344         llvm::Value *node[] = { CoverageFile, CU };
3345         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3346         GCov->addOperand(N);
3347       }
3348     }
3349   }
3350 }
3351 
3352 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3353                                                      QualType GuidType) {
3354   // Sema has checked that all uuid strings are of the form
3355   // "12345678-1234-1234-1234-1234567890ab".
3356   assert(Uuid.size() == 36);
3357   for (unsigned i = 0; i < 36; ++i) {
3358     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3359     else                                         assert(isHexDigit(Uuid[i]));
3360   }
3361 
3362   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3363 
3364   llvm::Constant *Field3[8];
3365   for (unsigned Idx = 0; Idx < 8; ++Idx)
3366     Field3[Idx] = llvm::ConstantInt::get(
3367         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3368 
3369   llvm::Constant *Fields[4] = {
3370     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3371     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3372     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3373     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3374   };
3375 
3376   return llvm::ConstantStruct::getAnon(Fields);
3377 }
3378 
3379 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3380                                                        bool ForEH) {
3381   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3382   // FIXME: should we even be calling this method if RTTI is disabled
3383   // and it's not for EH?
3384   if (!ForEH && !getLangOpts().RTTI)
3385     return llvm::Constant::getNullValue(Int8PtrTy);
3386 
3387   if (ForEH && Ty->isObjCObjectPointerType() &&
3388       LangOpts.ObjCRuntime.isGNUFamily())
3389     return ObjCRuntime->GetEHType(Ty);
3390 
3391   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3392 }
3393 
3394