xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 568d4100e717a9a6df163def887aca52a127806c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 
71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                              llvm::Module &M, const llvm::DataLayout &TD,
73                              DiagnosticsEngine &diags)
74   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75     Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76     ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77     TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78     ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80     RRData(0), CFConstantStringClassRef(0),
81     ConstantStringClassRef(0), NSConstantStringType(0),
82     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83     BlockObjectAssign(0), BlockObjectDispose(0),
84     BlockDescriptorType(0), GenericBlockLiteralType(0),
85     LifetimeStartFn(0), LifetimeEndFn(0),
86     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87     SanOpts(SanitizerBlacklist.isIn(M) ?
88             SanitizerOptions::Disabled : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::Release() {
176   EmitDeferred();
177   EmitCXXGlobalInitFunc();
178   EmitCXXGlobalDtorFunc();
179   if (ObjCRuntime)
180     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
181       AddGlobalCtor(ObjCInitFunction);
182   EmitCtorList(GlobalCtors, "llvm.global_ctors");
183   EmitCtorList(GlobalDtors, "llvm.global_dtors");
184   EmitGlobalAnnotations();
185   EmitStaticExternCAliases();
186   EmitLLVMUsed();
187 
188   if (CodeGenOpts.Autolink && Context.getLangOpts().Modules) {
189     EmitModuleLinkOptions();
190   }
191 
192   SimplifyPersonality();
193 
194   if (getCodeGenOpts().EmitDeclMetadata)
195     EmitDeclMetadata();
196 
197   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
198     EmitCoverageFile();
199 
200   if (DebugInfo)
201     DebugInfo->finalize();
202 }
203 
204 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
205   // Make sure that this type is translated.
206   Types.UpdateCompletedType(TD);
207 }
208 
209 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
210   if (!TBAA)
211     return 0;
212   return TBAA->getTBAAInfo(QTy);
213 }
214 
215 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
216   if (!TBAA)
217     return 0;
218   return TBAA->getTBAAInfoForVTablePtr();
219 }
220 
221 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
222   if (!TBAA)
223     return 0;
224   return TBAA->getTBAAStructInfo(QTy);
225 }
226 
227 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
228   if (!TBAA)
229     return 0;
230   return TBAA->getTBAAStructTypeInfo(QTy);
231 }
232 
233 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
234                                                   llvm::MDNode *AccessN,
235                                                   uint64_t O) {
236   if (!TBAA)
237     return 0;
238   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
239 }
240 
241 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
242 /// is the same as the type. For struct-path aware TBAA, the tag
243 /// is different from the type: base type, access type and offset.
244 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
245 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
246                                         llvm::MDNode *TBAAInfo,
247                                         bool ConvertTypeToTag) {
248   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
249     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
250                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
251   else
252     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
253 }
254 
255 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
256   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
257   getDiags().Report(Context.getFullLoc(loc), diagID);
258 }
259 
260 /// ErrorUnsupported - Print out an error that codegen doesn't support the
261 /// specified stmt yet.
262 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
263                                      bool OmitOnError) {
264   if (OmitOnError && getDiags().hasErrorOccurred())
265     return;
266   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
267                                                "cannot compile this %0 yet");
268   std::string Msg = Type;
269   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
270     << Msg << S->getSourceRange();
271 }
272 
273 /// ErrorUnsupported - Print out an error that codegen doesn't support the
274 /// specified decl yet.
275 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
276                                      bool OmitOnError) {
277   if (OmitOnError && getDiags().hasErrorOccurred())
278     return;
279   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
280                                                "cannot compile this %0 yet");
281   std::string Msg = Type;
282   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
283 }
284 
285 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
286   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
287 }
288 
289 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
290                                         const NamedDecl *D) const {
291   // Internal definitions always have default visibility.
292   if (GV->hasLocalLinkage()) {
293     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
294     return;
295   }
296 
297   // Set visibility for definitions.
298   LinkageInfo LV = D->getLinkageAndVisibility();
299   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
300     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
301 }
302 
303 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
304   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
305       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
306       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
307       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
308       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
309 }
310 
311 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
312     CodeGenOptions::TLSModel M) {
313   switch (M) {
314   case CodeGenOptions::GeneralDynamicTLSModel:
315     return llvm::GlobalVariable::GeneralDynamicTLSModel;
316   case CodeGenOptions::LocalDynamicTLSModel:
317     return llvm::GlobalVariable::LocalDynamicTLSModel;
318   case CodeGenOptions::InitialExecTLSModel:
319     return llvm::GlobalVariable::InitialExecTLSModel;
320   case CodeGenOptions::LocalExecTLSModel:
321     return llvm::GlobalVariable::LocalExecTLSModel;
322   }
323   llvm_unreachable("Invalid TLS model!");
324 }
325 
326 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
327                                const VarDecl &D) const {
328   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
329 
330   llvm::GlobalVariable::ThreadLocalMode TLM;
331   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
332 
333   // Override the TLS model if it is explicitly specified.
334   if (D.hasAttr<TLSModelAttr>()) {
335     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
336     TLM = GetLLVMTLSModel(Attr->getModel());
337   }
338 
339   GV->setThreadLocalMode(TLM);
340 }
341 
342 /// Set the symbol visibility of type information (vtable and RTTI)
343 /// associated with the given type.
344 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
345                                       const CXXRecordDecl *RD,
346                                       TypeVisibilityKind TVK) const {
347   setGlobalVisibility(GV, RD);
348 
349   if (!CodeGenOpts.HiddenWeakVTables)
350     return;
351 
352   // We never want to drop the visibility for RTTI names.
353   if (TVK == TVK_ForRTTIName)
354     return;
355 
356   // We want to drop the visibility to hidden for weak type symbols.
357   // This isn't possible if there might be unresolved references
358   // elsewhere that rely on this symbol being visible.
359 
360   // This should be kept roughly in sync with setThunkVisibility
361   // in CGVTables.cpp.
362 
363   // Preconditions.
364   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
365       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
366     return;
367 
368   // Don't override an explicit visibility attribute.
369   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
370     return;
371 
372   switch (RD->getTemplateSpecializationKind()) {
373   // We have to disable the optimization if this is an EI definition
374   // because there might be EI declarations in other shared objects.
375   case TSK_ExplicitInstantiationDefinition:
376   case TSK_ExplicitInstantiationDeclaration:
377     return;
378 
379   // Every use of a non-template class's type information has to emit it.
380   case TSK_Undeclared:
381     break;
382 
383   // In theory, implicit instantiations can ignore the possibility of
384   // an explicit instantiation declaration because there necessarily
385   // must be an EI definition somewhere with default visibility.  In
386   // practice, it's possible to have an explicit instantiation for
387   // an arbitrary template class, and linkers aren't necessarily able
388   // to deal with mixed-visibility symbols.
389   case TSK_ExplicitSpecialization:
390   case TSK_ImplicitInstantiation:
391     return;
392   }
393 
394   // If there's a key function, there may be translation units
395   // that don't have the key function's definition.  But ignore
396   // this if we're emitting RTTI under -fno-rtti.
397   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
398     // FIXME: what should we do if we "lose" the key function during
399     // the emission of the file?
400     if (Context.getCurrentKeyFunction(RD))
401       return;
402   }
403 
404   // Otherwise, drop the visibility to hidden.
405   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
406   GV->setUnnamedAddr(true);
407 }
408 
409 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
410   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
411 
412   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
413   if (!Str.empty())
414     return Str;
415 
416   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
417     IdentifierInfo *II = ND->getIdentifier();
418     assert(II && "Attempt to mangle unnamed decl.");
419 
420     Str = II->getName();
421     return Str;
422   }
423 
424   SmallString<256> Buffer;
425   llvm::raw_svector_ostream Out(Buffer);
426   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
427     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
428   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
429     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
430   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
431     getCXXABI().getMangleContext().mangleBlock(BD, Out,
432       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
433   else
434     getCXXABI().getMangleContext().mangleName(ND, Out);
435 
436   // Allocate space for the mangled name.
437   Out.flush();
438   size_t Length = Buffer.size();
439   char *Name = MangledNamesAllocator.Allocate<char>(Length);
440   std::copy(Buffer.begin(), Buffer.end(), Name);
441 
442   Str = StringRef(Name, Length);
443 
444   return Str;
445 }
446 
447 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
448                                         const BlockDecl *BD) {
449   MangleContext &MangleCtx = getCXXABI().getMangleContext();
450   const Decl *D = GD.getDecl();
451   llvm::raw_svector_ostream Out(Buffer.getBuffer());
452   if (D == 0)
453     MangleCtx.mangleGlobalBlock(BD,
454       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
455   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
456     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
457   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
458     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
459   else
460     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
461 }
462 
463 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
464   return getModule().getNamedValue(Name);
465 }
466 
467 /// AddGlobalCtor - Add a function to the list that will be called before
468 /// main() runs.
469 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
470   // FIXME: Type coercion of void()* types.
471   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
472 }
473 
474 /// AddGlobalDtor - Add a function to the list that will be called
475 /// when the module is unloaded.
476 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
477   // FIXME: Type coercion of void()* types.
478   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
479 }
480 
481 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
482   // Ctor function type is void()*.
483   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
484   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
485 
486   // Get the type of a ctor entry, { i32, void ()* }.
487   llvm::StructType *CtorStructTy =
488     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
489 
490   // Construct the constructor and destructor arrays.
491   SmallVector<llvm::Constant*, 8> Ctors;
492   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
493     llvm::Constant *S[] = {
494       llvm::ConstantInt::get(Int32Ty, I->second, false),
495       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
496     };
497     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
498   }
499 
500   if (!Ctors.empty()) {
501     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
502     new llvm::GlobalVariable(TheModule, AT, false,
503                              llvm::GlobalValue::AppendingLinkage,
504                              llvm::ConstantArray::get(AT, Ctors),
505                              GlobalName);
506   }
507 }
508 
509 llvm::GlobalValue::LinkageTypes
510 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
511   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
512 
513   if (Linkage == GVA_Internal)
514     return llvm::Function::InternalLinkage;
515 
516   if (D->hasAttr<DLLExportAttr>())
517     return llvm::Function::DLLExportLinkage;
518 
519   if (D->hasAttr<WeakAttr>())
520     return llvm::Function::WeakAnyLinkage;
521 
522   // In C99 mode, 'inline' functions are guaranteed to have a strong
523   // definition somewhere else, so we can use available_externally linkage.
524   if (Linkage == GVA_C99Inline)
525     return llvm::Function::AvailableExternallyLinkage;
526 
527   // Note that Apple's kernel linker doesn't support symbol
528   // coalescing, so we need to avoid linkonce and weak linkages there.
529   // Normally, this means we just map to internal, but for explicit
530   // instantiations we'll map to external.
531 
532   // In C++, the compiler has to emit a definition in every translation unit
533   // that references the function.  We should use linkonce_odr because
534   // a) if all references in this translation unit are optimized away, we
535   // don't need to codegen it.  b) if the function persists, it needs to be
536   // merged with other definitions. c) C++ has the ODR, so we know the
537   // definition is dependable.
538   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
539     return !Context.getLangOpts().AppleKext
540              ? llvm::Function::LinkOnceODRLinkage
541              : llvm::Function::InternalLinkage;
542 
543   // An explicit instantiation of a template has weak linkage, since
544   // explicit instantiations can occur in multiple translation units
545   // and must all be equivalent. However, we are not allowed to
546   // throw away these explicit instantiations.
547   if (Linkage == GVA_ExplicitTemplateInstantiation)
548     return !Context.getLangOpts().AppleKext
549              ? llvm::Function::WeakODRLinkage
550              : llvm::Function::ExternalLinkage;
551 
552   // Otherwise, we have strong external linkage.
553   assert(Linkage == GVA_StrongExternal);
554   return llvm::Function::ExternalLinkage;
555 }
556 
557 
558 /// SetFunctionDefinitionAttributes - Set attributes for a global.
559 ///
560 /// FIXME: This is currently only done for aliases and functions, but not for
561 /// variables (these details are set in EmitGlobalVarDefinition for variables).
562 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
563                                                     llvm::GlobalValue *GV) {
564   SetCommonAttributes(D, GV);
565 }
566 
567 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
568                                               const CGFunctionInfo &Info,
569                                               llvm::Function *F) {
570   unsigned CallingConv;
571   AttributeListType AttributeList;
572   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
573   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
574   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
575 }
576 
577 /// Determines whether the language options require us to model
578 /// unwind exceptions.  We treat -fexceptions as mandating this
579 /// except under the fragile ObjC ABI with only ObjC exceptions
580 /// enabled.  This means, for example, that C with -fexceptions
581 /// enables this.
582 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
583   // If exceptions are completely disabled, obviously this is false.
584   if (!LangOpts.Exceptions) return false;
585 
586   // If C++ exceptions are enabled, this is true.
587   if (LangOpts.CXXExceptions) return true;
588 
589   // If ObjC exceptions are enabled, this depends on the ABI.
590   if (LangOpts.ObjCExceptions) {
591     return LangOpts.ObjCRuntime.hasUnwindExceptions();
592   }
593 
594   return true;
595 }
596 
597 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
598                                                            llvm::Function *F) {
599   if (CodeGenOpts.UnwindTables)
600     F->setHasUWTable();
601 
602   if (!hasUnwindExceptions(LangOpts))
603     F->addFnAttr(llvm::Attribute::NoUnwind);
604 
605   if (D->hasAttr<NakedAttr>()) {
606     // Naked implies noinline: we should not be inlining such functions.
607     F->addFnAttr(llvm::Attribute::Naked);
608     F->addFnAttr(llvm::Attribute::NoInline);
609   }
610 
611   if (D->hasAttr<NoInlineAttr>())
612     F->addFnAttr(llvm::Attribute::NoInline);
613 
614   // (noinline wins over always_inline, and we can't specify both in IR)
615   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
616       !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
617                                        llvm::Attribute::NoInline))
618     F->addFnAttr(llvm::Attribute::AlwaysInline);
619 
620   // FIXME: Communicate hot and cold attributes to LLVM more directly.
621   if (D->hasAttr<ColdAttr>())
622     F->addFnAttr(llvm::Attribute::OptimizeForSize);
623 
624   if (D->hasAttr<MinSizeAttr>())
625     F->addFnAttr(llvm::Attribute::MinSize);
626 
627   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
628     F->setUnnamedAddr(true);
629 
630   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
631     if (MD->isVirtual())
632       F->setUnnamedAddr(true);
633 
634   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
635     F->addFnAttr(llvm::Attribute::StackProtect);
636   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
637     F->addFnAttr(llvm::Attribute::StackProtectReq);
638 
639   // Add sanitizer attributes if function is not blacklisted.
640   if (!SanitizerBlacklist.isIn(*F)) {
641     // When AddressSanitizer is enabled, set SanitizeAddress attribute
642     // unless __attribute__((no_sanitize_address)) is used.
643     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
644       F->addFnAttr(llvm::Attribute::SanitizeAddress);
645     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
646     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
647       F->addFnAttr(llvm::Attribute::SanitizeThread);
648     }
649     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
650     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
651       F->addFnAttr(llvm::Attribute::SanitizeMemory);
652   }
653 
654   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
655   if (alignment)
656     F->setAlignment(alignment);
657 
658   // C++ ABI requires 2-byte alignment for member functions.
659   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
660     F->setAlignment(2);
661 }
662 
663 void CodeGenModule::SetCommonAttributes(const Decl *D,
664                                         llvm::GlobalValue *GV) {
665   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
666     setGlobalVisibility(GV, ND);
667   else
668     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
669 
670   if (D->hasAttr<UsedAttr>())
671     AddUsedGlobal(GV);
672 
673   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
674     GV->setSection(SA->getName());
675 
676   // Alias cannot have attributes. Filter them here.
677   if (!isa<llvm::GlobalAlias>(GV))
678     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
679 }
680 
681 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
682                                                   llvm::Function *F,
683                                                   const CGFunctionInfo &FI) {
684   SetLLVMFunctionAttributes(D, FI, F);
685   SetLLVMFunctionAttributesForDefinition(D, F);
686 
687   F->setLinkage(llvm::Function::InternalLinkage);
688 
689   SetCommonAttributes(D, F);
690 }
691 
692 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
693                                           llvm::Function *F,
694                                           bool IsIncompleteFunction) {
695   if (unsigned IID = F->getIntrinsicID()) {
696     // If this is an intrinsic function, set the function's attributes
697     // to the intrinsic's attributes.
698     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
699                                                     (llvm::Intrinsic::ID)IID));
700     return;
701   }
702 
703   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
704 
705   if (!IsIncompleteFunction)
706     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
707 
708   // Only a few attributes are set on declarations; these may later be
709   // overridden by a definition.
710 
711   if (FD->hasAttr<DLLImportAttr>()) {
712     F->setLinkage(llvm::Function::DLLImportLinkage);
713   } else if (FD->hasAttr<WeakAttr>() ||
714              FD->isWeakImported()) {
715     // "extern_weak" is overloaded in LLVM; we probably should have
716     // separate linkage types for this.
717     F->setLinkage(llvm::Function::ExternalWeakLinkage);
718   } else {
719     F->setLinkage(llvm::Function::ExternalLinkage);
720 
721     LinkageInfo LV = FD->getLinkageAndVisibility();
722     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
723       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
724     }
725   }
726 
727   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
728     F->setSection(SA->getName());
729 }
730 
731 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
732   assert(!GV->isDeclaration() &&
733          "Only globals with definition can force usage.");
734   LLVMUsed.push_back(GV);
735 }
736 
737 void CodeGenModule::EmitLLVMUsed() {
738   // Don't create llvm.used if there is no need.
739   if (LLVMUsed.empty())
740     return;
741 
742   // Convert LLVMUsed to what ConstantArray needs.
743   SmallVector<llvm::Constant*, 8> UsedArray;
744   UsedArray.resize(LLVMUsed.size());
745   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
746     UsedArray[i] =
747      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
748                                     Int8PtrTy);
749   }
750 
751   if (UsedArray.empty())
752     return;
753   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
754 
755   llvm::GlobalVariable *GV =
756     new llvm::GlobalVariable(getModule(), ATy, false,
757                              llvm::GlobalValue::AppendingLinkage,
758                              llvm::ConstantArray::get(ATy, UsedArray),
759                              "llvm.used");
760 
761   GV->setSection("llvm.metadata");
762 }
763 
764 /// \brief Add link options implied by the given module, including modules
765 /// it depends on, using a postorder walk.
766 static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
767                                     Module *Mod,
768                                     SmallVectorImpl<llvm::Value *> &Metadata,
769                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
770   // Import this module's parent.
771   if (Mod->Parent && Visited.insert(Mod->Parent)) {
772     addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
773   }
774 
775   // Import this module's dependencies.
776   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
777     if (Visited.insert(Mod->Imports[I-1]))
778       addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
779   }
780 
781   // Add linker options to link against the libraries/frameworks
782   // described by this module.
783   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
784     // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
785     // We need to know more about the linker to know how to encode these
786     // options propertly.
787 
788     // Link against a framework.
789     if (Mod->LinkLibraries[I-1].IsFramework) {
790       llvm::Value *Args[2] = {
791         llvm::MDString::get(Context, "-framework"),
792         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
793       };
794 
795       Metadata.push_back(llvm::MDNode::get(Context, Args));
796       continue;
797     }
798 
799     // Link against a library.
800     llvm::Value *OptString
801     = llvm::MDString::get(Context,
802                           "-l" + Mod->LinkLibraries[I-1].Library);
803     Metadata.push_back(llvm::MDNode::get(Context, OptString));
804   }
805 }
806 
807 void CodeGenModule::EmitModuleLinkOptions() {
808   // Collect the set of all of the modules we want to visit to emit link
809   // options, which is essentially the imported modules and all of their
810   // non-explicit child modules.
811   llvm::SetVector<clang::Module *> LinkModules;
812   llvm::SmallPtrSet<clang::Module *, 16> Visited;
813   SmallVector<clang::Module *, 16> Stack;
814 
815   // Seed the stack with imported modules.
816   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
817                                                MEnd = ImportedModules.end();
818        M != MEnd; ++M) {
819     if (Visited.insert(*M))
820       Stack.push_back(*M);
821   }
822 
823   // Find all of the modules to import, making a little effort to prune
824   // non-leaf modules.
825   while (!Stack.empty()) {
826     clang::Module *Mod = Stack.back();
827     Stack.pop_back();
828 
829     bool AnyChildren = false;
830 
831     // Visit the submodules of this module.
832     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
833                                         SubEnd = Mod->submodule_end();
834          Sub != SubEnd; ++Sub) {
835       // Skip explicit children; they need to be explicitly imported to be
836       // linked against.
837       if ((*Sub)->IsExplicit)
838         continue;
839 
840       if (Visited.insert(*Sub)) {
841         Stack.push_back(*Sub);
842         AnyChildren = true;
843       }
844     }
845 
846     // We didn't find any children, so add this module to the list of
847     // modules to link against.
848     if (!AnyChildren) {
849       LinkModules.insert(Mod);
850     }
851   }
852 
853   // Add link options for all of the imported modules in reverse topological
854   // order.
855   SmallVector<llvm::Value *, 16> MetadataArgs;
856   Visited.clear();
857   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
858                                                MEnd = LinkModules.end();
859        M != MEnd; ++M) {
860     if (Visited.insert(*M))
861       addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
862   }
863   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
864 
865   // Add the linker options metadata flag.
866   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
867                             llvm::MDNode::get(getLLVMContext(), MetadataArgs));
868 }
869 
870 void CodeGenModule::EmitDeferred() {
871   // Emit code for any potentially referenced deferred decls.  Since a
872   // previously unused static decl may become used during the generation of code
873   // for a static function, iterate until no changes are made.
874 
875   while (true) {
876     if (!DeferredVTables.empty()) {
877       EmitDeferredVTables();
878 
879       // Emitting a v-table doesn't directly cause more v-tables to
880       // become deferred, although it can cause functions to be
881       // emitted that then need those v-tables.
882       assert(DeferredVTables.empty());
883     }
884 
885     // Stop if we're out of both deferred v-tables and deferred declarations.
886     if (DeferredDeclsToEmit.empty()) break;
887 
888     GlobalDecl D = DeferredDeclsToEmit.back();
889     DeferredDeclsToEmit.pop_back();
890 
891     // Check to see if we've already emitted this.  This is necessary
892     // for a couple of reasons: first, decls can end up in the
893     // deferred-decls queue multiple times, and second, decls can end
894     // up with definitions in unusual ways (e.g. by an extern inline
895     // function acquiring a strong function redefinition).  Just
896     // ignore these cases.
897     //
898     // TODO: That said, looking this up multiple times is very wasteful.
899     StringRef Name = getMangledName(D);
900     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
901     assert(CGRef && "Deferred decl wasn't referenced?");
902 
903     if (!CGRef->isDeclaration())
904       continue;
905 
906     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
907     // purposes an alias counts as a definition.
908     if (isa<llvm::GlobalAlias>(CGRef))
909       continue;
910 
911     // Otherwise, emit the definition and move on to the next one.
912     EmitGlobalDefinition(D);
913   }
914 }
915 
916 void CodeGenModule::EmitGlobalAnnotations() {
917   if (Annotations.empty())
918     return;
919 
920   // Create a new global variable for the ConstantStruct in the Module.
921   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
922     Annotations[0]->getType(), Annotations.size()), Annotations);
923   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
924     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
925     "llvm.global.annotations");
926   gv->setSection(AnnotationSection);
927 }
928 
929 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
930   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
931   if (i != AnnotationStrings.end())
932     return i->second;
933 
934   // Not found yet, create a new global.
935   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
936   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
937     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
938   gv->setSection(AnnotationSection);
939   gv->setUnnamedAddr(true);
940   AnnotationStrings[Str] = gv;
941   return gv;
942 }
943 
944 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
945   SourceManager &SM = getContext().getSourceManager();
946   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
947   if (PLoc.isValid())
948     return EmitAnnotationString(PLoc.getFilename());
949   return EmitAnnotationString(SM.getBufferName(Loc));
950 }
951 
952 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
953   SourceManager &SM = getContext().getSourceManager();
954   PresumedLoc PLoc = SM.getPresumedLoc(L);
955   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
956     SM.getExpansionLineNumber(L);
957   return llvm::ConstantInt::get(Int32Ty, LineNo);
958 }
959 
960 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
961                                                 const AnnotateAttr *AA,
962                                                 SourceLocation L) {
963   // Get the globals for file name, annotation, and the line number.
964   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
965                  *UnitGV = EmitAnnotationUnit(L),
966                  *LineNoCst = EmitAnnotationLineNo(L);
967 
968   // Create the ConstantStruct for the global annotation.
969   llvm::Constant *Fields[4] = {
970     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
971     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
972     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
973     LineNoCst
974   };
975   return llvm::ConstantStruct::getAnon(Fields);
976 }
977 
978 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
979                                          llvm::GlobalValue *GV) {
980   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
981   // Get the struct elements for these annotations.
982   for (specific_attr_iterator<AnnotateAttr>
983        ai = D->specific_attr_begin<AnnotateAttr>(),
984        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
985     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
986 }
987 
988 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
989   // Never defer when EmitAllDecls is specified.
990   if (LangOpts.EmitAllDecls)
991     return false;
992 
993   return !getContext().DeclMustBeEmitted(Global);
994 }
995 
996 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
997     const CXXUuidofExpr* E) {
998   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
999   // well-formed.
1000   StringRef Uuid;
1001   if (E->isTypeOperand())
1002     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1003   else {
1004     // Special case: __uuidof(0) means an all-zero GUID.
1005     Expr *Op = E->getExprOperand();
1006     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1007       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1008     else
1009       Uuid = "00000000-0000-0000-0000-000000000000";
1010   }
1011   std::string Name = "__uuid_" + Uuid.str();
1012 
1013   // Look for an existing global.
1014   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1015     return GV;
1016 
1017   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1018   assert(Init && "failed to initialize as constant");
1019 
1020   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1021   // first field is declared as "long", which for many targets is 8 bytes.
1022   // Those architectures are not supported. (With the MS abi, long is always 4
1023   // bytes.)
1024   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1025   if (Init->getType() != GuidType) {
1026     DiagnosticsEngine &Diags = getDiags();
1027     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1028         "__uuidof codegen is not supported on this architecture");
1029     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1030     Init = llvm::UndefValue::get(GuidType);
1031   }
1032 
1033   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1034       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1035   GV->setUnnamedAddr(true);
1036   return GV;
1037 }
1038 
1039 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1040   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1041   assert(AA && "No alias?");
1042 
1043   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1044 
1045   // See if there is already something with the target's name in the module.
1046   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1047   if (Entry) {
1048     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1049     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1050   }
1051 
1052   llvm::Constant *Aliasee;
1053   if (isa<llvm::FunctionType>(DeclTy))
1054     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1055                                       GlobalDecl(cast<FunctionDecl>(VD)),
1056                                       /*ForVTable=*/false);
1057   else
1058     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1059                                     llvm::PointerType::getUnqual(DeclTy), 0);
1060 
1061   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1062   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1063   WeakRefReferences.insert(F);
1064 
1065   return Aliasee;
1066 }
1067 
1068 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1069   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1070 
1071   // Weak references don't produce any output by themselves.
1072   if (Global->hasAttr<WeakRefAttr>())
1073     return;
1074 
1075   // If this is an alias definition (which otherwise looks like a declaration)
1076   // emit it now.
1077   if (Global->hasAttr<AliasAttr>())
1078     return EmitAliasDefinition(GD);
1079 
1080   // If this is CUDA, be selective about which declarations we emit.
1081   if (LangOpts.CUDA) {
1082     if (CodeGenOpts.CUDAIsDevice) {
1083       if (!Global->hasAttr<CUDADeviceAttr>() &&
1084           !Global->hasAttr<CUDAGlobalAttr>() &&
1085           !Global->hasAttr<CUDAConstantAttr>() &&
1086           !Global->hasAttr<CUDASharedAttr>())
1087         return;
1088     } else {
1089       if (!Global->hasAttr<CUDAHostAttr>() && (
1090             Global->hasAttr<CUDADeviceAttr>() ||
1091             Global->hasAttr<CUDAConstantAttr>() ||
1092             Global->hasAttr<CUDASharedAttr>()))
1093         return;
1094     }
1095   }
1096 
1097   // Ignore declarations, they will be emitted on their first use.
1098   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1099     // Forward declarations are emitted lazily on first use.
1100     if (!FD->doesThisDeclarationHaveABody()) {
1101       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1102         return;
1103 
1104       const FunctionDecl *InlineDefinition = 0;
1105       FD->getBody(InlineDefinition);
1106 
1107       StringRef MangledName = getMangledName(GD);
1108       DeferredDecls.erase(MangledName);
1109       EmitGlobalDefinition(InlineDefinition);
1110       return;
1111     }
1112   } else {
1113     const VarDecl *VD = cast<VarDecl>(Global);
1114     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1115 
1116     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1117       return;
1118   }
1119 
1120   // Defer code generation when possible if this is a static definition, inline
1121   // function etc.  These we only want to emit if they are used.
1122   if (!MayDeferGeneration(Global)) {
1123     // Emit the definition if it can't be deferred.
1124     EmitGlobalDefinition(GD);
1125     return;
1126   }
1127 
1128   // If we're deferring emission of a C++ variable with an
1129   // initializer, remember the order in which it appeared in the file.
1130   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1131       cast<VarDecl>(Global)->hasInit()) {
1132     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1133     CXXGlobalInits.push_back(0);
1134   }
1135 
1136   // If the value has already been used, add it directly to the
1137   // DeferredDeclsToEmit list.
1138   StringRef MangledName = getMangledName(GD);
1139   if (GetGlobalValue(MangledName))
1140     DeferredDeclsToEmit.push_back(GD);
1141   else {
1142     // Otherwise, remember that we saw a deferred decl with this name.  The
1143     // first use of the mangled name will cause it to move into
1144     // DeferredDeclsToEmit.
1145     DeferredDecls[MangledName] = GD;
1146   }
1147 }
1148 
1149 namespace {
1150   struct FunctionIsDirectlyRecursive :
1151     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1152     const StringRef Name;
1153     const Builtin::Context &BI;
1154     bool Result;
1155     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1156       Name(N), BI(C), Result(false) {
1157     }
1158     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1159 
1160     bool TraverseCallExpr(CallExpr *E) {
1161       const FunctionDecl *FD = E->getDirectCallee();
1162       if (!FD)
1163         return true;
1164       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1165       if (Attr && Name == Attr->getLabel()) {
1166         Result = true;
1167         return false;
1168       }
1169       unsigned BuiltinID = FD->getBuiltinID();
1170       if (!BuiltinID)
1171         return true;
1172       StringRef BuiltinName = BI.GetName(BuiltinID);
1173       if (BuiltinName.startswith("__builtin_") &&
1174           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1175         Result = true;
1176         return false;
1177       }
1178       return true;
1179     }
1180   };
1181 }
1182 
1183 // isTriviallyRecursive - Check if this function calls another
1184 // decl that, because of the asm attribute or the other decl being a builtin,
1185 // ends up pointing to itself.
1186 bool
1187 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1188   StringRef Name;
1189   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1190     // asm labels are a special kind of mangling we have to support.
1191     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1192     if (!Attr)
1193       return false;
1194     Name = Attr->getLabel();
1195   } else {
1196     Name = FD->getName();
1197   }
1198 
1199   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1200   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1201   return Walker.Result;
1202 }
1203 
1204 bool
1205 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1206   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1207     return true;
1208   if (CodeGenOpts.OptimizationLevel == 0 &&
1209       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1210     return false;
1211   // PR9614. Avoid cases where the source code is lying to us. An available
1212   // externally function should have an equivalent function somewhere else,
1213   // but a function that calls itself is clearly not equivalent to the real
1214   // implementation.
1215   // This happens in glibc's btowc and in some configure checks.
1216   return !isTriviallyRecursive(F);
1217 }
1218 
1219 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1220   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1221 
1222   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1223                                  Context.getSourceManager(),
1224                                  "Generating code for declaration");
1225 
1226   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1227     // At -O0, don't generate IR for functions with available_externally
1228     // linkage.
1229     if (!shouldEmitFunction(Function))
1230       return;
1231 
1232     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1233       // Make sure to emit the definition(s) before we emit the thunks.
1234       // This is necessary for the generation of certain thunks.
1235       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1236         EmitCXXConstructor(CD, GD.getCtorType());
1237       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1238         EmitCXXDestructor(DD, GD.getDtorType());
1239       else
1240         EmitGlobalFunctionDefinition(GD);
1241 
1242       if (Method->isVirtual())
1243         getVTables().EmitThunks(GD);
1244 
1245       return;
1246     }
1247 
1248     return EmitGlobalFunctionDefinition(GD);
1249   }
1250 
1251   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1252     return EmitGlobalVarDefinition(VD);
1253 
1254   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1255 }
1256 
1257 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1258 /// module, create and return an llvm Function with the specified type. If there
1259 /// is something in the module with the specified name, return it potentially
1260 /// bitcasted to the right type.
1261 ///
1262 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1263 /// to set the attributes on the function when it is first created.
1264 llvm::Constant *
1265 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1266                                        llvm::Type *Ty,
1267                                        GlobalDecl D, bool ForVTable,
1268                                        llvm::AttributeSet ExtraAttrs) {
1269   // Lookup the entry, lazily creating it if necessary.
1270   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1271   if (Entry) {
1272     if (WeakRefReferences.erase(Entry)) {
1273       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1274       if (FD && !FD->hasAttr<WeakAttr>())
1275         Entry->setLinkage(llvm::Function::ExternalLinkage);
1276     }
1277 
1278     if (Entry->getType()->getElementType() == Ty)
1279       return Entry;
1280 
1281     // Make sure the result is of the correct type.
1282     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1283   }
1284 
1285   // This function doesn't have a complete type (for example, the return
1286   // type is an incomplete struct). Use a fake type instead, and make
1287   // sure not to try to set attributes.
1288   bool IsIncompleteFunction = false;
1289 
1290   llvm::FunctionType *FTy;
1291   if (isa<llvm::FunctionType>(Ty)) {
1292     FTy = cast<llvm::FunctionType>(Ty);
1293   } else {
1294     FTy = llvm::FunctionType::get(VoidTy, false);
1295     IsIncompleteFunction = true;
1296   }
1297 
1298   llvm::Function *F = llvm::Function::Create(FTy,
1299                                              llvm::Function::ExternalLinkage,
1300                                              MangledName, &getModule());
1301   assert(F->getName() == MangledName && "name was uniqued!");
1302   if (D.getDecl())
1303     SetFunctionAttributes(D, F, IsIncompleteFunction);
1304   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1305     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1306     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1307                      llvm::AttributeSet::get(VMContext,
1308                                              llvm::AttributeSet::FunctionIndex,
1309                                              B));
1310   }
1311 
1312   // This is the first use or definition of a mangled name.  If there is a
1313   // deferred decl with this name, remember that we need to emit it at the end
1314   // of the file.
1315   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1316   if (DDI != DeferredDecls.end()) {
1317     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1318     // list, and remove it from DeferredDecls (since we don't need it anymore).
1319     DeferredDeclsToEmit.push_back(DDI->second);
1320     DeferredDecls.erase(DDI);
1321 
1322   // Otherwise, there are cases we have to worry about where we're
1323   // using a declaration for which we must emit a definition but where
1324   // we might not find a top-level definition:
1325   //   - member functions defined inline in their classes
1326   //   - friend functions defined inline in some class
1327   //   - special member functions with implicit definitions
1328   // If we ever change our AST traversal to walk into class methods,
1329   // this will be unnecessary.
1330   //
1331   // We also don't emit a definition for a function if it's going to be an entry
1332   // in a vtable, unless it's already marked as used.
1333   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1334     // Look for a declaration that's lexically in a record.
1335     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1336     FD = FD->getMostRecentDecl();
1337     do {
1338       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1339         if (FD->isImplicit() && !ForVTable) {
1340           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1341           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1342           break;
1343         } else if (FD->doesThisDeclarationHaveABody()) {
1344           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1345           break;
1346         }
1347       }
1348       FD = FD->getPreviousDecl();
1349     } while (FD);
1350   }
1351 
1352   // Make sure the result is of the requested type.
1353   if (!IsIncompleteFunction) {
1354     assert(F->getType()->getElementType() == Ty);
1355     return F;
1356   }
1357 
1358   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1359   return llvm::ConstantExpr::getBitCast(F, PTy);
1360 }
1361 
1362 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1363 /// non-null, then this function will use the specified type if it has to
1364 /// create it (this occurs when we see a definition of the function).
1365 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1366                                                  llvm::Type *Ty,
1367                                                  bool ForVTable) {
1368   // If there was no specific requested type, just convert it now.
1369   if (!Ty)
1370     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1371 
1372   StringRef MangledName = getMangledName(GD);
1373   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1374 }
1375 
1376 /// CreateRuntimeFunction - Create a new runtime function with the specified
1377 /// type and name.
1378 llvm::Constant *
1379 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1380                                      StringRef Name,
1381                                      llvm::AttributeSet ExtraAttrs) {
1382   llvm::Constant *C
1383     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1384                               ExtraAttrs);
1385   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1386     if (F->empty())
1387       F->setCallingConv(getRuntimeCC());
1388   return C;
1389 }
1390 
1391 /// isTypeConstant - Determine whether an object of this type can be emitted
1392 /// as a constant.
1393 ///
1394 /// If ExcludeCtor is true, the duration when the object's constructor runs
1395 /// will not be considered. The caller will need to verify that the object is
1396 /// not written to during its construction.
1397 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1398   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1399     return false;
1400 
1401   if (Context.getLangOpts().CPlusPlus) {
1402     if (const CXXRecordDecl *Record
1403           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1404       return ExcludeCtor && !Record->hasMutableFields() &&
1405              Record->hasTrivialDestructor();
1406   }
1407 
1408   return true;
1409 }
1410 
1411 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1412 /// create and return an llvm GlobalVariable with the specified type.  If there
1413 /// is something in the module with the specified name, return it potentially
1414 /// bitcasted to the right type.
1415 ///
1416 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1417 /// to set the attributes on the global when it is first created.
1418 llvm::Constant *
1419 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1420                                      llvm::PointerType *Ty,
1421                                      const VarDecl *D,
1422                                      bool UnnamedAddr) {
1423   // Lookup the entry, lazily creating it if necessary.
1424   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1425   if (Entry) {
1426     if (WeakRefReferences.erase(Entry)) {
1427       if (D && !D->hasAttr<WeakAttr>())
1428         Entry->setLinkage(llvm::Function::ExternalLinkage);
1429     }
1430 
1431     if (UnnamedAddr)
1432       Entry->setUnnamedAddr(true);
1433 
1434     if (Entry->getType() == Ty)
1435       return Entry;
1436 
1437     // Make sure the result is of the correct type.
1438     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1439   }
1440 
1441   // This is the first use or definition of a mangled name.  If there is a
1442   // deferred decl with this name, remember that we need to emit it at the end
1443   // of the file.
1444   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1445   if (DDI != DeferredDecls.end()) {
1446     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1447     // list, and remove it from DeferredDecls (since we don't need it anymore).
1448     DeferredDeclsToEmit.push_back(DDI->second);
1449     DeferredDecls.erase(DDI);
1450   }
1451 
1452   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1453   llvm::GlobalVariable *GV =
1454     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1455                              llvm::GlobalValue::ExternalLinkage,
1456                              0, MangledName, 0,
1457                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1458 
1459   // Handle things which are present even on external declarations.
1460   if (D) {
1461     // FIXME: This code is overly simple and should be merged with other global
1462     // handling.
1463     GV->setConstant(isTypeConstant(D->getType(), false));
1464 
1465     // Set linkage and visibility in case we never see a definition.
1466     LinkageInfo LV = D->getLinkageAndVisibility();
1467     if (LV.getLinkage() != ExternalLinkage) {
1468       // Don't set internal linkage on declarations.
1469     } else {
1470       if (D->hasAttr<DLLImportAttr>())
1471         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1472       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1473         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1474 
1475       // Set visibility on a declaration only if it's explicit.
1476       if (LV.isVisibilityExplicit())
1477         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1478     }
1479 
1480     if (D->getTLSKind())
1481       setTLSMode(GV, *D);
1482   }
1483 
1484   if (AddrSpace != Ty->getAddressSpace())
1485     return llvm::ConstantExpr::getBitCast(GV, Ty);
1486   else
1487     return GV;
1488 }
1489 
1490 
1491 llvm::GlobalVariable *
1492 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1493                                       llvm::Type *Ty,
1494                                       llvm::GlobalValue::LinkageTypes Linkage) {
1495   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1496   llvm::GlobalVariable *OldGV = 0;
1497 
1498 
1499   if (GV) {
1500     // Check if the variable has the right type.
1501     if (GV->getType()->getElementType() == Ty)
1502       return GV;
1503 
1504     // Because C++ name mangling, the only way we can end up with an already
1505     // existing global with the same name is if it has been declared extern "C".
1506     assert(GV->isDeclaration() && "Declaration has wrong type!");
1507     OldGV = GV;
1508   }
1509 
1510   // Create a new variable.
1511   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1512                                 Linkage, 0, Name);
1513 
1514   if (OldGV) {
1515     // Replace occurrences of the old variable if needed.
1516     GV->takeName(OldGV);
1517 
1518     if (!OldGV->use_empty()) {
1519       llvm::Constant *NewPtrForOldDecl =
1520       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1521       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1522     }
1523 
1524     OldGV->eraseFromParent();
1525   }
1526 
1527   return GV;
1528 }
1529 
1530 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1531 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1532 /// then it will be created with the specified type instead of whatever the
1533 /// normal requested type would be.
1534 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1535                                                   llvm::Type *Ty) {
1536   assert(D->hasGlobalStorage() && "Not a global variable");
1537   QualType ASTTy = D->getType();
1538   if (Ty == 0)
1539     Ty = getTypes().ConvertTypeForMem(ASTTy);
1540 
1541   llvm::PointerType *PTy =
1542     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1543 
1544   StringRef MangledName = getMangledName(D);
1545   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1546 }
1547 
1548 /// CreateRuntimeVariable - Create a new runtime global variable with the
1549 /// specified type and name.
1550 llvm::Constant *
1551 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1552                                      StringRef Name) {
1553   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1554                                true);
1555 }
1556 
1557 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1558   assert(!D->getInit() && "Cannot emit definite definitions here!");
1559 
1560   if (MayDeferGeneration(D)) {
1561     // If we have not seen a reference to this variable yet, place it
1562     // into the deferred declarations table to be emitted if needed
1563     // later.
1564     StringRef MangledName = getMangledName(D);
1565     if (!GetGlobalValue(MangledName)) {
1566       DeferredDecls[MangledName] = D;
1567       return;
1568     }
1569   }
1570 
1571   // The tentative definition is the only definition.
1572   EmitGlobalVarDefinition(D);
1573 }
1574 
1575 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1576     return Context.toCharUnitsFromBits(
1577       TheDataLayout.getTypeStoreSizeInBits(Ty));
1578 }
1579 
1580 llvm::Constant *
1581 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1582                                                        const Expr *rawInit) {
1583   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1584   if (const ExprWithCleanups *withCleanups =
1585           dyn_cast<ExprWithCleanups>(rawInit)) {
1586     cleanups = withCleanups->getObjects();
1587     rawInit = withCleanups->getSubExpr();
1588   }
1589 
1590   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1591   if (!init || !init->initializesStdInitializerList() ||
1592       init->getNumInits() == 0)
1593     return 0;
1594 
1595   ASTContext &ctx = getContext();
1596   unsigned numInits = init->getNumInits();
1597   // FIXME: This check is here because we would otherwise silently miscompile
1598   // nested global std::initializer_lists. Better would be to have a real
1599   // implementation.
1600   for (unsigned i = 0; i < numInits; ++i) {
1601     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1602     if (inner && inner->initializesStdInitializerList()) {
1603       ErrorUnsupported(inner, "nested global std::initializer_list");
1604       return 0;
1605     }
1606   }
1607 
1608   // Synthesize a fake VarDecl for the array and initialize that.
1609   QualType elementType = init->getInit(0)->getType();
1610   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1611   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1612                                                 ArrayType::Normal, 0);
1613 
1614   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1615   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1616                                               arrayType, D->getLocation());
1617   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1618                                                           D->getDeclContext()),
1619                                           D->getLocStart(), D->getLocation(),
1620                                           name, arrayType, sourceInfo,
1621                                           SC_Static);
1622   backingArray->setTLSKind(D->getTLSKind());
1623 
1624   // Now clone the InitListExpr to initialize the array instead.
1625   // Incredible hack: we want to use the existing InitListExpr here, so we need
1626   // to tell it that it no longer initializes a std::initializer_list.
1627   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1628                         init->getNumInits());
1629   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1630                                            init->getRBraceLoc());
1631   arrayInit->setType(arrayType);
1632 
1633   if (!cleanups.empty())
1634     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1635 
1636   backingArray->setInit(arrayInit);
1637 
1638   // Emit the definition of the array.
1639   EmitGlobalVarDefinition(backingArray);
1640 
1641   // Inspect the initializer list to validate it and determine its type.
1642   // FIXME: doing this every time is probably inefficient; caching would be nice
1643   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1644   RecordDecl::field_iterator field = record->field_begin();
1645   if (field == record->field_end()) {
1646     ErrorUnsupported(D, "weird std::initializer_list");
1647     return 0;
1648   }
1649   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1650   // Start pointer.
1651   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1652     ErrorUnsupported(D, "weird std::initializer_list");
1653     return 0;
1654   }
1655   ++field;
1656   if (field == record->field_end()) {
1657     ErrorUnsupported(D, "weird std::initializer_list");
1658     return 0;
1659   }
1660   bool isStartEnd = false;
1661   if (ctx.hasSameType(field->getType(), elementPtr)) {
1662     // End pointer.
1663     isStartEnd = true;
1664   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1665     ErrorUnsupported(D, "weird std::initializer_list");
1666     return 0;
1667   }
1668 
1669   // Now build an APValue representing the std::initializer_list.
1670   APValue initListValue(APValue::UninitStruct(), 0, 2);
1671   APValue &startField = initListValue.getStructField(0);
1672   APValue::LValuePathEntry startOffsetPathEntry;
1673   startOffsetPathEntry.ArrayIndex = 0;
1674   startField = APValue(APValue::LValueBase(backingArray),
1675                        CharUnits::fromQuantity(0),
1676                        llvm::makeArrayRef(startOffsetPathEntry),
1677                        /*IsOnePastTheEnd=*/false, 0);
1678 
1679   if (isStartEnd) {
1680     APValue &endField = initListValue.getStructField(1);
1681     APValue::LValuePathEntry endOffsetPathEntry;
1682     endOffsetPathEntry.ArrayIndex = numInits;
1683     endField = APValue(APValue::LValueBase(backingArray),
1684                        ctx.getTypeSizeInChars(elementType) * numInits,
1685                        llvm::makeArrayRef(endOffsetPathEntry),
1686                        /*IsOnePastTheEnd=*/true, 0);
1687   } else {
1688     APValue &sizeField = initListValue.getStructField(1);
1689     sizeField = APValue(llvm::APSInt(numElements));
1690   }
1691 
1692   // Emit the constant for the initializer_list.
1693   llvm::Constant *llvmInit =
1694       EmitConstantValueForMemory(initListValue, D->getType());
1695   assert(llvmInit && "failed to initialize as constant");
1696   return llvmInit;
1697 }
1698 
1699 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1700                                                  unsigned AddrSpace) {
1701   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1702     if (D->hasAttr<CUDAConstantAttr>())
1703       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1704     else if (D->hasAttr<CUDASharedAttr>())
1705       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1706     else
1707       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1708   }
1709 
1710   return AddrSpace;
1711 }
1712 
1713 template<typename SomeDecl>
1714 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1715                                                llvm::GlobalValue *GV) {
1716   if (!getLangOpts().CPlusPlus)
1717     return;
1718 
1719   // Must have 'used' attribute, or else inline assembly can't rely on
1720   // the name existing.
1721   if (!D->template hasAttr<UsedAttr>())
1722     return;
1723 
1724   // Must have internal linkage and an ordinary name.
1725   if (!D->getIdentifier() || D->getLinkage() != InternalLinkage)
1726     return;
1727 
1728   // Must be in an extern "C" context. Entities declared directly within
1729   // a record are not extern "C" even if the record is in such a context.
1730   const DeclContext *DC = D->getFirstDeclaration()->getDeclContext();
1731   if (DC->isRecord() || !DC->isExternCContext())
1732     return;
1733 
1734   // OK, this is an internal linkage entity inside an extern "C" linkage
1735   // specification. Make a note of that so we can give it the "expected"
1736   // mangled name if nothing else is using that name.
1737   std::pair<StaticExternCMap::iterator, bool> R =
1738       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1739 
1740   // If we have multiple internal linkage entities with the same name
1741   // in extern "C" regions, none of them gets that name.
1742   if (!R.second)
1743     R.first->second = 0;
1744 }
1745 
1746 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1747   llvm::Constant *Init = 0;
1748   QualType ASTTy = D->getType();
1749   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1750   bool NeedsGlobalCtor = false;
1751   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1752 
1753   const VarDecl *InitDecl;
1754   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1755 
1756   if (!InitExpr) {
1757     // This is a tentative definition; tentative definitions are
1758     // implicitly initialized with { 0 }.
1759     //
1760     // Note that tentative definitions are only emitted at the end of
1761     // a translation unit, so they should never have incomplete
1762     // type. In addition, EmitTentativeDefinition makes sure that we
1763     // never attempt to emit a tentative definition if a real one
1764     // exists. A use may still exists, however, so we still may need
1765     // to do a RAUW.
1766     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1767     Init = EmitNullConstant(D->getType());
1768   } else {
1769     // If this is a std::initializer_list, emit the special initializer.
1770     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1771     // An empty init list will perform zero-initialization, which happens
1772     // to be exactly what we want.
1773     // FIXME: It does so in a global constructor, which is *not* what we
1774     // want.
1775 
1776     if (!Init) {
1777       initializedGlobalDecl = GlobalDecl(D);
1778       Init = EmitConstantInit(*InitDecl);
1779     }
1780     if (!Init) {
1781       QualType T = InitExpr->getType();
1782       if (D->getType()->isReferenceType())
1783         T = D->getType();
1784 
1785       if (getLangOpts().CPlusPlus) {
1786         Init = EmitNullConstant(T);
1787         NeedsGlobalCtor = true;
1788       } else {
1789         ErrorUnsupported(D, "static initializer");
1790         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1791       }
1792     } else {
1793       // We don't need an initializer, so remove the entry for the delayed
1794       // initializer position (just in case this entry was delayed) if we
1795       // also don't need to register a destructor.
1796       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1797         DelayedCXXInitPosition.erase(D);
1798     }
1799   }
1800 
1801   llvm::Type* InitType = Init->getType();
1802   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1803 
1804   // Strip off a bitcast if we got one back.
1805   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1806     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1807            // all zero index gep.
1808            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1809     Entry = CE->getOperand(0);
1810   }
1811 
1812   // Entry is now either a Function or GlobalVariable.
1813   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1814 
1815   // We have a definition after a declaration with the wrong type.
1816   // We must make a new GlobalVariable* and update everything that used OldGV
1817   // (a declaration or tentative definition) with the new GlobalVariable*
1818   // (which will be a definition).
1819   //
1820   // This happens if there is a prototype for a global (e.g.
1821   // "extern int x[];") and then a definition of a different type (e.g.
1822   // "int x[10];"). This also happens when an initializer has a different type
1823   // from the type of the global (this happens with unions).
1824   if (GV == 0 ||
1825       GV->getType()->getElementType() != InitType ||
1826       GV->getType()->getAddressSpace() !=
1827        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1828 
1829     // Move the old entry aside so that we'll create a new one.
1830     Entry->setName(StringRef());
1831 
1832     // Make a new global with the correct type, this is now guaranteed to work.
1833     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1834 
1835     // Replace all uses of the old global with the new global
1836     llvm::Constant *NewPtrForOldDecl =
1837         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1838     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1839 
1840     // Erase the old global, since it is no longer used.
1841     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1842   }
1843 
1844   MaybeHandleStaticInExternC(D, GV);
1845 
1846   if (D->hasAttr<AnnotateAttr>())
1847     AddGlobalAnnotations(D, GV);
1848 
1849   GV->setInitializer(Init);
1850 
1851   // If it is safe to mark the global 'constant', do so now.
1852   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1853                   isTypeConstant(D->getType(), true));
1854 
1855   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1856 
1857   // Set the llvm linkage type as appropriate.
1858   llvm::GlobalValue::LinkageTypes Linkage =
1859     GetLLVMLinkageVarDefinition(D, GV);
1860   GV->setLinkage(Linkage);
1861   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1862     // common vars aren't constant even if declared const.
1863     GV->setConstant(false);
1864 
1865   SetCommonAttributes(D, GV);
1866 
1867   // Emit the initializer function if necessary.
1868   if (NeedsGlobalCtor || NeedsGlobalDtor)
1869     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1870 
1871   // If we are compiling with ASan, add metadata indicating dynamically
1872   // initialized globals.
1873   if (SanOpts.Address && NeedsGlobalCtor) {
1874     llvm::Module &M = getModule();
1875 
1876     llvm::NamedMDNode *DynamicInitializers =
1877         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1878     llvm::Value *GlobalToAdd[] = { GV };
1879     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1880     DynamicInitializers->addOperand(ThisGlobal);
1881   }
1882 
1883   // Emit global variable debug information.
1884   if (CGDebugInfo *DI = getModuleDebugInfo())
1885     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1886       DI->EmitGlobalVariable(GV, D);
1887 }
1888 
1889 llvm::GlobalValue::LinkageTypes
1890 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1891                                            llvm::GlobalVariable *GV) {
1892   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1893   if (Linkage == GVA_Internal)
1894     return llvm::Function::InternalLinkage;
1895   else if (D->hasAttr<DLLImportAttr>())
1896     return llvm::Function::DLLImportLinkage;
1897   else if (D->hasAttr<DLLExportAttr>())
1898     return llvm::Function::DLLExportLinkage;
1899   else if (D->hasAttr<WeakAttr>()) {
1900     if (GV->isConstant())
1901       return llvm::GlobalVariable::WeakODRLinkage;
1902     else
1903       return llvm::GlobalVariable::WeakAnyLinkage;
1904   } else if (Linkage == GVA_TemplateInstantiation ||
1905              Linkage == GVA_ExplicitTemplateInstantiation)
1906     return llvm::GlobalVariable::WeakODRLinkage;
1907   else if (!getLangOpts().CPlusPlus &&
1908            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1909              D->getAttr<CommonAttr>()) &&
1910            !D->hasExternalStorage() && !D->getInit() &&
1911            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1912            !D->getAttr<WeakImportAttr>()) {
1913     // Thread local vars aren't considered common linkage.
1914     return llvm::GlobalVariable::CommonLinkage;
1915   }
1916   return llvm::GlobalVariable::ExternalLinkage;
1917 }
1918 
1919 /// Replace the uses of a function that was declared with a non-proto type.
1920 /// We want to silently drop extra arguments from call sites
1921 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1922                                           llvm::Function *newFn) {
1923   // Fast path.
1924   if (old->use_empty()) return;
1925 
1926   llvm::Type *newRetTy = newFn->getReturnType();
1927   SmallVector<llvm::Value*, 4> newArgs;
1928 
1929   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1930          ui != ue; ) {
1931     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1932     llvm::User *user = *use;
1933 
1934     // Recognize and replace uses of bitcasts.  Most calls to
1935     // unprototyped functions will use bitcasts.
1936     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1937       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1938         replaceUsesOfNonProtoConstant(bitcast, newFn);
1939       continue;
1940     }
1941 
1942     // Recognize calls to the function.
1943     llvm::CallSite callSite(user);
1944     if (!callSite) continue;
1945     if (!callSite.isCallee(use)) continue;
1946 
1947     // If the return types don't match exactly, then we can't
1948     // transform this call unless it's dead.
1949     if (callSite->getType() != newRetTy && !callSite->use_empty())
1950       continue;
1951 
1952     // Get the call site's attribute list.
1953     SmallVector<llvm::AttributeSet, 8> newAttrs;
1954     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1955 
1956     // Collect any return attributes from the call.
1957     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1958       newAttrs.push_back(
1959         llvm::AttributeSet::get(newFn->getContext(),
1960                                 oldAttrs.getRetAttributes()));
1961 
1962     // If the function was passed too few arguments, don't transform.
1963     unsigned newNumArgs = newFn->arg_size();
1964     if (callSite.arg_size() < newNumArgs) continue;
1965 
1966     // If extra arguments were passed, we silently drop them.
1967     // If any of the types mismatch, we don't transform.
1968     unsigned argNo = 0;
1969     bool dontTransform = false;
1970     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1971            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1972       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1973         dontTransform = true;
1974         break;
1975       }
1976 
1977       // Add any parameter attributes.
1978       if (oldAttrs.hasAttributes(argNo + 1))
1979         newAttrs.
1980           push_back(llvm::
1981                     AttributeSet::get(newFn->getContext(),
1982                                       oldAttrs.getParamAttributes(argNo + 1)));
1983     }
1984     if (dontTransform)
1985       continue;
1986 
1987     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1988       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1989                                                  oldAttrs.getFnAttributes()));
1990 
1991     // Okay, we can transform this.  Create the new call instruction and copy
1992     // over the required information.
1993     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1994 
1995     llvm::CallSite newCall;
1996     if (callSite.isCall()) {
1997       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1998                                        callSite.getInstruction());
1999     } else {
2000       llvm::InvokeInst *oldInvoke =
2001         cast<llvm::InvokeInst>(callSite.getInstruction());
2002       newCall = llvm::InvokeInst::Create(newFn,
2003                                          oldInvoke->getNormalDest(),
2004                                          oldInvoke->getUnwindDest(),
2005                                          newArgs, "",
2006                                          callSite.getInstruction());
2007     }
2008     newArgs.clear(); // for the next iteration
2009 
2010     if (!newCall->getType()->isVoidTy())
2011       newCall->takeName(callSite.getInstruction());
2012     newCall.setAttributes(
2013                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2014     newCall.setCallingConv(callSite.getCallingConv());
2015 
2016     // Finally, remove the old call, replacing any uses with the new one.
2017     if (!callSite->use_empty())
2018       callSite->replaceAllUsesWith(newCall.getInstruction());
2019 
2020     // Copy debug location attached to CI.
2021     if (!callSite->getDebugLoc().isUnknown())
2022       newCall->setDebugLoc(callSite->getDebugLoc());
2023     callSite->eraseFromParent();
2024   }
2025 }
2026 
2027 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2028 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2029 /// existing call uses of the old function in the module, this adjusts them to
2030 /// call the new function directly.
2031 ///
2032 /// This is not just a cleanup: the always_inline pass requires direct calls to
2033 /// functions to be able to inline them.  If there is a bitcast in the way, it
2034 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2035 /// run at -O0.
2036 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2037                                                       llvm::Function *NewFn) {
2038   // If we're redefining a global as a function, don't transform it.
2039   if (!isa<llvm::Function>(Old)) return;
2040 
2041   replaceUsesOfNonProtoConstant(Old, NewFn);
2042 }
2043 
2044 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2045   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2046   // If we have a definition, this might be a deferred decl. If the
2047   // instantiation is explicit, make sure we emit it at the end.
2048   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2049     GetAddrOfGlobalVar(VD);
2050 
2051   EmitTopLevelDecl(VD);
2052 }
2053 
2054 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2055   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2056 
2057   // Compute the function info and LLVM type.
2058   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2059   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2060 
2061   // Get or create the prototype for the function.
2062   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2063 
2064   // Strip off a bitcast if we got one back.
2065   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2066     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2067     Entry = CE->getOperand(0);
2068   }
2069 
2070 
2071   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2072     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2073 
2074     // If the types mismatch then we have to rewrite the definition.
2075     assert(OldFn->isDeclaration() &&
2076            "Shouldn't replace non-declaration");
2077 
2078     // F is the Function* for the one with the wrong type, we must make a new
2079     // Function* and update everything that used F (a declaration) with the new
2080     // Function* (which will be a definition).
2081     //
2082     // This happens if there is a prototype for a function
2083     // (e.g. "int f()") and then a definition of a different type
2084     // (e.g. "int f(int x)").  Move the old function aside so that it
2085     // doesn't interfere with GetAddrOfFunction.
2086     OldFn->setName(StringRef());
2087     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2088 
2089     // This might be an implementation of a function without a
2090     // prototype, in which case, try to do special replacement of
2091     // calls which match the new prototype.  The really key thing here
2092     // is that we also potentially drop arguments from the call site
2093     // so as to make a direct call, which makes the inliner happier
2094     // and suppresses a number of optimizer warnings (!) about
2095     // dropping arguments.
2096     if (!OldFn->use_empty()) {
2097       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2098       OldFn->removeDeadConstantUsers();
2099     }
2100 
2101     // Replace uses of F with the Function we will endow with a body.
2102     if (!Entry->use_empty()) {
2103       llvm::Constant *NewPtrForOldDecl =
2104         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2105       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2106     }
2107 
2108     // Ok, delete the old function now, which is dead.
2109     OldFn->eraseFromParent();
2110 
2111     Entry = NewFn;
2112   }
2113 
2114   // We need to set linkage and visibility on the function before
2115   // generating code for it because various parts of IR generation
2116   // want to propagate this information down (e.g. to local static
2117   // declarations).
2118   llvm::Function *Fn = cast<llvm::Function>(Entry);
2119   setFunctionLinkage(D, Fn);
2120 
2121   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2122   setGlobalVisibility(Fn, D);
2123 
2124   MaybeHandleStaticInExternC(D, Fn);
2125 
2126   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2127 
2128   SetFunctionDefinitionAttributes(D, Fn);
2129   SetLLVMFunctionAttributesForDefinition(D, Fn);
2130 
2131   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2132     AddGlobalCtor(Fn, CA->getPriority());
2133   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2134     AddGlobalDtor(Fn, DA->getPriority());
2135   if (D->hasAttr<AnnotateAttr>())
2136     AddGlobalAnnotations(D, Fn);
2137 }
2138 
2139 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2140   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2141   const AliasAttr *AA = D->getAttr<AliasAttr>();
2142   assert(AA && "Not an alias?");
2143 
2144   StringRef MangledName = getMangledName(GD);
2145 
2146   // If there is a definition in the module, then it wins over the alias.
2147   // This is dubious, but allow it to be safe.  Just ignore the alias.
2148   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2149   if (Entry && !Entry->isDeclaration())
2150     return;
2151 
2152   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2153 
2154   // Create a reference to the named value.  This ensures that it is emitted
2155   // if a deferred decl.
2156   llvm::Constant *Aliasee;
2157   if (isa<llvm::FunctionType>(DeclTy))
2158     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2159                                       /*ForVTable=*/false);
2160   else
2161     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2162                                     llvm::PointerType::getUnqual(DeclTy), 0);
2163 
2164   // Create the new alias itself, but don't set a name yet.
2165   llvm::GlobalValue *GA =
2166     new llvm::GlobalAlias(Aliasee->getType(),
2167                           llvm::Function::ExternalLinkage,
2168                           "", Aliasee, &getModule());
2169 
2170   if (Entry) {
2171     assert(Entry->isDeclaration());
2172 
2173     // If there is a declaration in the module, then we had an extern followed
2174     // by the alias, as in:
2175     //   extern int test6();
2176     //   ...
2177     //   int test6() __attribute__((alias("test7")));
2178     //
2179     // Remove it and replace uses of it with the alias.
2180     GA->takeName(Entry);
2181 
2182     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2183                                                           Entry->getType()));
2184     Entry->eraseFromParent();
2185   } else {
2186     GA->setName(MangledName);
2187   }
2188 
2189   // Set attributes which are particular to an alias; this is a
2190   // specialization of the attributes which may be set on a global
2191   // variable/function.
2192   if (D->hasAttr<DLLExportAttr>()) {
2193     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2194       // The dllexport attribute is ignored for undefined symbols.
2195       if (FD->hasBody())
2196         GA->setLinkage(llvm::Function::DLLExportLinkage);
2197     } else {
2198       GA->setLinkage(llvm::Function::DLLExportLinkage);
2199     }
2200   } else if (D->hasAttr<WeakAttr>() ||
2201              D->hasAttr<WeakRefAttr>() ||
2202              D->isWeakImported()) {
2203     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2204   }
2205 
2206   SetCommonAttributes(D, GA);
2207 }
2208 
2209 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2210                                             ArrayRef<llvm::Type*> Tys) {
2211   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2212                                          Tys);
2213 }
2214 
2215 static llvm::StringMapEntry<llvm::Constant*> &
2216 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2217                          const StringLiteral *Literal,
2218                          bool TargetIsLSB,
2219                          bool &IsUTF16,
2220                          unsigned &StringLength) {
2221   StringRef String = Literal->getString();
2222   unsigned NumBytes = String.size();
2223 
2224   // Check for simple case.
2225   if (!Literal->containsNonAsciiOrNull()) {
2226     StringLength = NumBytes;
2227     return Map.GetOrCreateValue(String);
2228   }
2229 
2230   // Otherwise, convert the UTF8 literals into a string of shorts.
2231   IsUTF16 = true;
2232 
2233   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2234   const UTF8 *FromPtr = (const UTF8 *)String.data();
2235   UTF16 *ToPtr = &ToBuf[0];
2236 
2237   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2238                            &ToPtr, ToPtr + NumBytes,
2239                            strictConversion);
2240 
2241   // ConvertUTF8toUTF16 returns the length in ToPtr.
2242   StringLength = ToPtr - &ToBuf[0];
2243 
2244   // Add an explicit null.
2245   *ToPtr = 0;
2246   return Map.
2247     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2248                                (StringLength + 1) * 2));
2249 }
2250 
2251 static llvm::StringMapEntry<llvm::Constant*> &
2252 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2253                        const StringLiteral *Literal,
2254                        unsigned &StringLength) {
2255   StringRef String = Literal->getString();
2256   StringLength = String.size();
2257   return Map.GetOrCreateValue(String);
2258 }
2259 
2260 llvm::Constant *
2261 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2262   unsigned StringLength = 0;
2263   bool isUTF16 = false;
2264   llvm::StringMapEntry<llvm::Constant*> &Entry =
2265     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2266                              getDataLayout().isLittleEndian(),
2267                              isUTF16, StringLength);
2268 
2269   if (llvm::Constant *C = Entry.getValue())
2270     return C;
2271 
2272   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2273   llvm::Constant *Zeros[] = { Zero, Zero };
2274   llvm::Value *V;
2275 
2276   // If we don't already have it, get __CFConstantStringClassReference.
2277   if (!CFConstantStringClassRef) {
2278     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2279     Ty = llvm::ArrayType::get(Ty, 0);
2280     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2281                                            "__CFConstantStringClassReference");
2282     // Decay array -> ptr
2283     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2284     CFConstantStringClassRef = V;
2285   }
2286   else
2287     V = CFConstantStringClassRef;
2288 
2289   QualType CFTy = getContext().getCFConstantStringType();
2290 
2291   llvm::StructType *STy =
2292     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2293 
2294   llvm::Constant *Fields[4];
2295 
2296   // Class pointer.
2297   Fields[0] = cast<llvm::ConstantExpr>(V);
2298 
2299   // Flags.
2300   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2301   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2302     llvm::ConstantInt::get(Ty, 0x07C8);
2303 
2304   // String pointer.
2305   llvm::Constant *C = 0;
2306   if (isUTF16) {
2307     ArrayRef<uint16_t> Arr =
2308       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2309                                      const_cast<char *>(Entry.getKey().data())),
2310                                    Entry.getKey().size() / 2);
2311     C = llvm::ConstantDataArray::get(VMContext, Arr);
2312   } else {
2313     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2314   }
2315 
2316   llvm::GlobalValue::LinkageTypes Linkage;
2317   if (isUTF16)
2318     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2319     Linkage = llvm::GlobalValue::InternalLinkage;
2320   else
2321     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2322     // when using private linkage. It is not clear if this is a bug in ld
2323     // or a reasonable new restriction.
2324     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2325 
2326   // Note: -fwritable-strings doesn't make the backing store strings of
2327   // CFStrings writable. (See <rdar://problem/10657500>)
2328   llvm::GlobalVariable *GV =
2329     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2330                              Linkage, C, ".str");
2331   GV->setUnnamedAddr(true);
2332   if (isUTF16) {
2333     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2334     GV->setAlignment(Align.getQuantity());
2335   } else {
2336     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2337     GV->setAlignment(Align.getQuantity());
2338   }
2339 
2340   // String.
2341   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2342 
2343   if (isUTF16)
2344     // Cast the UTF16 string to the correct type.
2345     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2346 
2347   // String length.
2348   Ty = getTypes().ConvertType(getContext().LongTy);
2349   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2350 
2351   // The struct.
2352   C = llvm::ConstantStruct::get(STy, Fields);
2353   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2354                                 llvm::GlobalVariable::PrivateLinkage, C,
2355                                 "_unnamed_cfstring_");
2356   if (const char *Sect = getTarget().getCFStringSection())
2357     GV->setSection(Sect);
2358   Entry.setValue(GV);
2359 
2360   return GV;
2361 }
2362 
2363 static RecordDecl *
2364 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2365                  DeclContext *DC, IdentifierInfo *Id) {
2366   SourceLocation Loc;
2367   if (Ctx.getLangOpts().CPlusPlus)
2368     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2369   else
2370     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2371 }
2372 
2373 llvm::Constant *
2374 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2375   unsigned StringLength = 0;
2376   llvm::StringMapEntry<llvm::Constant*> &Entry =
2377     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2378 
2379   if (llvm::Constant *C = Entry.getValue())
2380     return C;
2381 
2382   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2383   llvm::Constant *Zeros[] = { Zero, Zero };
2384   llvm::Value *V;
2385   // If we don't already have it, get _NSConstantStringClassReference.
2386   if (!ConstantStringClassRef) {
2387     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2388     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2389     llvm::Constant *GV;
2390     if (LangOpts.ObjCRuntime.isNonFragile()) {
2391       std::string str =
2392         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2393                             : "OBJC_CLASS_$_" + StringClass;
2394       GV = getObjCRuntime().GetClassGlobal(str);
2395       // Make sure the result is of the correct type.
2396       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2397       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2398       ConstantStringClassRef = V;
2399     } else {
2400       std::string str =
2401         StringClass.empty() ? "_NSConstantStringClassReference"
2402                             : "_" + StringClass + "ClassReference";
2403       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2404       GV = CreateRuntimeVariable(PTy, str);
2405       // Decay array -> ptr
2406       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2407       ConstantStringClassRef = V;
2408     }
2409   }
2410   else
2411     V = ConstantStringClassRef;
2412 
2413   if (!NSConstantStringType) {
2414     // Construct the type for a constant NSString.
2415     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2416                                      Context.getTranslationUnitDecl(),
2417                                    &Context.Idents.get("__builtin_NSString"));
2418     D->startDefinition();
2419 
2420     QualType FieldTypes[3];
2421 
2422     // const int *isa;
2423     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2424     // const char *str;
2425     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2426     // unsigned int length;
2427     FieldTypes[2] = Context.UnsignedIntTy;
2428 
2429     // Create fields
2430     for (unsigned i = 0; i < 3; ++i) {
2431       FieldDecl *Field = FieldDecl::Create(Context, D,
2432                                            SourceLocation(),
2433                                            SourceLocation(), 0,
2434                                            FieldTypes[i], /*TInfo=*/0,
2435                                            /*BitWidth=*/0,
2436                                            /*Mutable=*/false,
2437                                            ICIS_NoInit);
2438       Field->setAccess(AS_public);
2439       D->addDecl(Field);
2440     }
2441 
2442     D->completeDefinition();
2443     QualType NSTy = Context.getTagDeclType(D);
2444     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2445   }
2446 
2447   llvm::Constant *Fields[3];
2448 
2449   // Class pointer.
2450   Fields[0] = cast<llvm::ConstantExpr>(V);
2451 
2452   // String pointer.
2453   llvm::Constant *C =
2454     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2455 
2456   llvm::GlobalValue::LinkageTypes Linkage;
2457   bool isConstant;
2458   Linkage = llvm::GlobalValue::PrivateLinkage;
2459   isConstant = !LangOpts.WritableStrings;
2460 
2461   llvm::GlobalVariable *GV =
2462   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2463                            ".str");
2464   GV->setUnnamedAddr(true);
2465   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2466   GV->setAlignment(Align.getQuantity());
2467   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2468 
2469   // String length.
2470   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2471   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2472 
2473   // The struct.
2474   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2475   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2476                                 llvm::GlobalVariable::PrivateLinkage, C,
2477                                 "_unnamed_nsstring_");
2478   // FIXME. Fix section.
2479   if (const char *Sect =
2480         LangOpts.ObjCRuntime.isNonFragile()
2481           ? getTarget().getNSStringNonFragileABISection()
2482           : getTarget().getNSStringSection())
2483     GV->setSection(Sect);
2484   Entry.setValue(GV);
2485 
2486   return GV;
2487 }
2488 
2489 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2490   if (ObjCFastEnumerationStateType.isNull()) {
2491     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2492                                      Context.getTranslationUnitDecl(),
2493                       &Context.Idents.get("__objcFastEnumerationState"));
2494     D->startDefinition();
2495 
2496     QualType FieldTypes[] = {
2497       Context.UnsignedLongTy,
2498       Context.getPointerType(Context.getObjCIdType()),
2499       Context.getPointerType(Context.UnsignedLongTy),
2500       Context.getConstantArrayType(Context.UnsignedLongTy,
2501                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2502     };
2503 
2504     for (size_t i = 0; i < 4; ++i) {
2505       FieldDecl *Field = FieldDecl::Create(Context,
2506                                            D,
2507                                            SourceLocation(),
2508                                            SourceLocation(), 0,
2509                                            FieldTypes[i], /*TInfo=*/0,
2510                                            /*BitWidth=*/0,
2511                                            /*Mutable=*/false,
2512                                            ICIS_NoInit);
2513       Field->setAccess(AS_public);
2514       D->addDecl(Field);
2515     }
2516 
2517     D->completeDefinition();
2518     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2519   }
2520 
2521   return ObjCFastEnumerationStateType;
2522 }
2523 
2524 llvm::Constant *
2525 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2526   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2527 
2528   // Don't emit it as the address of the string, emit the string data itself
2529   // as an inline array.
2530   if (E->getCharByteWidth() == 1) {
2531     SmallString<64> Str(E->getString());
2532 
2533     // Resize the string to the right size, which is indicated by its type.
2534     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2535     Str.resize(CAT->getSize().getZExtValue());
2536     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2537   }
2538 
2539   llvm::ArrayType *AType =
2540     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2541   llvm::Type *ElemTy = AType->getElementType();
2542   unsigned NumElements = AType->getNumElements();
2543 
2544   // Wide strings have either 2-byte or 4-byte elements.
2545   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2546     SmallVector<uint16_t, 32> Elements;
2547     Elements.reserve(NumElements);
2548 
2549     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2550       Elements.push_back(E->getCodeUnit(i));
2551     Elements.resize(NumElements);
2552     return llvm::ConstantDataArray::get(VMContext, Elements);
2553   }
2554 
2555   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2556   SmallVector<uint32_t, 32> Elements;
2557   Elements.reserve(NumElements);
2558 
2559   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2560     Elements.push_back(E->getCodeUnit(i));
2561   Elements.resize(NumElements);
2562   return llvm::ConstantDataArray::get(VMContext, Elements);
2563 }
2564 
2565 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2566 /// constant array for the given string literal.
2567 llvm::Constant *
2568 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2569   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2570   if (S->isAscii() || S->isUTF8()) {
2571     SmallString<64> Str(S->getString());
2572 
2573     // Resize the string to the right size, which is indicated by its type.
2574     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2575     Str.resize(CAT->getSize().getZExtValue());
2576     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2577   }
2578 
2579   // FIXME: the following does not memoize wide strings.
2580   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2581   llvm::GlobalVariable *GV =
2582     new llvm::GlobalVariable(getModule(),C->getType(),
2583                              !LangOpts.WritableStrings,
2584                              llvm::GlobalValue::PrivateLinkage,
2585                              C,".str");
2586 
2587   GV->setAlignment(Align.getQuantity());
2588   GV->setUnnamedAddr(true);
2589   return GV;
2590 }
2591 
2592 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2593 /// array for the given ObjCEncodeExpr node.
2594 llvm::Constant *
2595 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2596   std::string Str;
2597   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2598 
2599   return GetAddrOfConstantCString(Str);
2600 }
2601 
2602 
2603 /// GenerateWritableString -- Creates storage for a string literal.
2604 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2605                                              bool constant,
2606                                              CodeGenModule &CGM,
2607                                              const char *GlobalName,
2608                                              unsigned Alignment) {
2609   // Create Constant for this string literal. Don't add a '\0'.
2610   llvm::Constant *C =
2611       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2612 
2613   // Create a global variable for this string
2614   llvm::GlobalVariable *GV =
2615     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2616                              llvm::GlobalValue::PrivateLinkage,
2617                              C, GlobalName);
2618   GV->setAlignment(Alignment);
2619   GV->setUnnamedAddr(true);
2620   return GV;
2621 }
2622 
2623 /// GetAddrOfConstantString - Returns a pointer to a character array
2624 /// containing the literal. This contents are exactly that of the
2625 /// given string, i.e. it will not be null terminated automatically;
2626 /// see GetAddrOfConstantCString. Note that whether the result is
2627 /// actually a pointer to an LLVM constant depends on
2628 /// Feature.WriteableStrings.
2629 ///
2630 /// The result has pointer to array type.
2631 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2632                                                        const char *GlobalName,
2633                                                        unsigned Alignment) {
2634   // Get the default prefix if a name wasn't specified.
2635   if (!GlobalName)
2636     GlobalName = ".str";
2637 
2638   // Don't share any string literals if strings aren't constant.
2639   if (LangOpts.WritableStrings)
2640     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2641 
2642   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2643     ConstantStringMap.GetOrCreateValue(Str);
2644 
2645   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2646     if (Alignment > GV->getAlignment()) {
2647       GV->setAlignment(Alignment);
2648     }
2649     return GV;
2650   }
2651 
2652   // Create a global variable for this.
2653   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2654                                                    Alignment);
2655   Entry.setValue(GV);
2656   return GV;
2657 }
2658 
2659 /// GetAddrOfConstantCString - Returns a pointer to a character
2660 /// array containing the literal and a terminating '\0'
2661 /// character. The result has pointer to array type.
2662 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2663                                                         const char *GlobalName,
2664                                                         unsigned Alignment) {
2665   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2666   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2667 }
2668 
2669 /// EmitObjCPropertyImplementations - Emit information for synthesized
2670 /// properties for an implementation.
2671 void CodeGenModule::EmitObjCPropertyImplementations(const
2672                                                     ObjCImplementationDecl *D) {
2673   for (ObjCImplementationDecl::propimpl_iterator
2674          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2675     ObjCPropertyImplDecl *PID = *i;
2676 
2677     // Dynamic is just for type-checking.
2678     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2679       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2680 
2681       // Determine which methods need to be implemented, some may have
2682       // been overridden. Note that ::isPropertyAccessor is not the method
2683       // we want, that just indicates if the decl came from a
2684       // property. What we want to know is if the method is defined in
2685       // this implementation.
2686       if (!D->getInstanceMethod(PD->getGetterName()))
2687         CodeGenFunction(*this).GenerateObjCGetter(
2688                                  const_cast<ObjCImplementationDecl *>(D), PID);
2689       if (!PD->isReadOnly() &&
2690           !D->getInstanceMethod(PD->getSetterName()))
2691         CodeGenFunction(*this).GenerateObjCSetter(
2692                                  const_cast<ObjCImplementationDecl *>(D), PID);
2693     }
2694   }
2695 }
2696 
2697 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2698   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2699   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2700        ivar; ivar = ivar->getNextIvar())
2701     if (ivar->getType().isDestructedType())
2702       return true;
2703 
2704   return false;
2705 }
2706 
2707 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2708 /// for an implementation.
2709 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2710   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2711   if (needsDestructMethod(D)) {
2712     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2713     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2714     ObjCMethodDecl *DTORMethod =
2715       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2716                              cxxSelector, getContext().VoidTy, 0, D,
2717                              /*isInstance=*/true, /*isVariadic=*/false,
2718                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2719                              /*isDefined=*/false, ObjCMethodDecl::Required);
2720     D->addInstanceMethod(DTORMethod);
2721     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2722     D->setHasDestructors(true);
2723   }
2724 
2725   // If the implementation doesn't have any ivar initializers, we don't need
2726   // a .cxx_construct.
2727   if (D->getNumIvarInitializers() == 0)
2728     return;
2729 
2730   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2731   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2732   // The constructor returns 'self'.
2733   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2734                                                 D->getLocation(),
2735                                                 D->getLocation(),
2736                                                 cxxSelector,
2737                                                 getContext().getObjCIdType(), 0,
2738                                                 D, /*isInstance=*/true,
2739                                                 /*isVariadic=*/false,
2740                                                 /*isPropertyAccessor=*/true,
2741                                                 /*isImplicitlyDeclared=*/true,
2742                                                 /*isDefined=*/false,
2743                                                 ObjCMethodDecl::Required);
2744   D->addInstanceMethod(CTORMethod);
2745   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2746   D->setHasNonZeroConstructors(true);
2747 }
2748 
2749 /// EmitNamespace - Emit all declarations in a namespace.
2750 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2751   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2752        I != E; ++I)
2753     EmitTopLevelDecl(*I);
2754 }
2755 
2756 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2757 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2758   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2759       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2760     ErrorUnsupported(LSD, "linkage spec");
2761     return;
2762   }
2763 
2764   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2765        I != E; ++I) {
2766     // Meta-data for ObjC class includes references to implemented methods.
2767     // Generate class's method definitions first.
2768     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2769       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2770            MEnd = OID->meth_end();
2771            M != MEnd; ++M)
2772         EmitTopLevelDecl(*M);
2773     }
2774     EmitTopLevelDecl(*I);
2775   }
2776 }
2777 
2778 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2779 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2780   // If an error has occurred, stop code generation, but continue
2781   // parsing and semantic analysis (to ensure all warnings and errors
2782   // are emitted).
2783   if (Diags.hasErrorOccurred())
2784     return;
2785 
2786   // Ignore dependent declarations.
2787   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2788     return;
2789 
2790   switch (D->getKind()) {
2791   case Decl::CXXConversion:
2792   case Decl::CXXMethod:
2793   case Decl::Function:
2794     // Skip function templates
2795     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2796         cast<FunctionDecl>(D)->isLateTemplateParsed())
2797       return;
2798 
2799     EmitGlobal(cast<FunctionDecl>(D));
2800     break;
2801 
2802   case Decl::Var:
2803     EmitGlobal(cast<VarDecl>(D));
2804     break;
2805 
2806   // Indirect fields from global anonymous structs and unions can be
2807   // ignored; only the actual variable requires IR gen support.
2808   case Decl::IndirectField:
2809     break;
2810 
2811   // C++ Decls
2812   case Decl::Namespace:
2813     EmitNamespace(cast<NamespaceDecl>(D));
2814     break;
2815     // No code generation needed.
2816   case Decl::UsingShadow:
2817   case Decl::Using:
2818   case Decl::UsingDirective:
2819   case Decl::ClassTemplate:
2820   case Decl::FunctionTemplate:
2821   case Decl::TypeAliasTemplate:
2822   case Decl::NamespaceAlias:
2823   case Decl::Block:
2824   case Decl::Empty:
2825     break;
2826   case Decl::CXXConstructor:
2827     // Skip function templates
2828     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2829         cast<FunctionDecl>(D)->isLateTemplateParsed())
2830       return;
2831 
2832     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2833     break;
2834   case Decl::CXXDestructor:
2835     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2836       return;
2837     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2838     break;
2839 
2840   case Decl::StaticAssert:
2841     // Nothing to do.
2842     break;
2843 
2844   // Objective-C Decls
2845 
2846   // Forward declarations, no (immediate) code generation.
2847   case Decl::ObjCInterface:
2848   case Decl::ObjCCategory:
2849     break;
2850 
2851   case Decl::ObjCProtocol: {
2852     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2853     if (Proto->isThisDeclarationADefinition())
2854       ObjCRuntime->GenerateProtocol(Proto);
2855     break;
2856   }
2857 
2858   case Decl::ObjCCategoryImpl:
2859     // Categories have properties but don't support synthesize so we
2860     // can ignore them here.
2861     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2862     break;
2863 
2864   case Decl::ObjCImplementation: {
2865     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2866     EmitObjCPropertyImplementations(OMD);
2867     EmitObjCIvarInitializations(OMD);
2868     ObjCRuntime->GenerateClass(OMD);
2869     // Emit global variable debug information.
2870     if (CGDebugInfo *DI = getModuleDebugInfo())
2871       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2872         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2873             OMD->getClassInterface()), OMD->getLocation());
2874     break;
2875   }
2876   case Decl::ObjCMethod: {
2877     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2878     // If this is not a prototype, emit the body.
2879     if (OMD->getBody())
2880       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2881     break;
2882   }
2883   case Decl::ObjCCompatibleAlias:
2884     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2885     break;
2886 
2887   case Decl::LinkageSpec:
2888     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2889     break;
2890 
2891   case Decl::FileScopeAsm: {
2892     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2893     StringRef AsmString = AD->getAsmString()->getString();
2894 
2895     const std::string &S = getModule().getModuleInlineAsm();
2896     if (S.empty())
2897       getModule().setModuleInlineAsm(AsmString);
2898     else if (S.end()[-1] == '\n')
2899       getModule().setModuleInlineAsm(S + AsmString.str());
2900     else
2901       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2902     break;
2903   }
2904 
2905   case Decl::Import: {
2906     ImportDecl *Import = cast<ImportDecl>(D);
2907 
2908     // Ignore import declarations that come from imported modules.
2909     if (clang::Module *Owner = Import->getOwningModule()) {
2910       if (getLangOpts().CurrentModule.empty() ||
2911           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2912         break;
2913     }
2914 
2915     ImportedModules.insert(Import->getImportedModule());
2916     break;
2917  }
2918 
2919   default:
2920     // Make sure we handled everything we should, every other kind is a
2921     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2922     // function. Need to recode Decl::Kind to do that easily.
2923     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2924   }
2925 }
2926 
2927 /// Turns the given pointer into a constant.
2928 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2929                                           const void *Ptr) {
2930   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2931   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2932   return llvm::ConstantInt::get(i64, PtrInt);
2933 }
2934 
2935 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2936                                    llvm::NamedMDNode *&GlobalMetadata,
2937                                    GlobalDecl D,
2938                                    llvm::GlobalValue *Addr) {
2939   if (!GlobalMetadata)
2940     GlobalMetadata =
2941       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2942 
2943   // TODO: should we report variant information for ctors/dtors?
2944   llvm::Value *Ops[] = {
2945     Addr,
2946     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2947   };
2948   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2949 }
2950 
2951 /// For each function which is declared within an extern "C" region and marked
2952 /// as 'used', but has internal linkage, create an alias from the unmangled
2953 /// name to the mangled name if possible. People expect to be able to refer
2954 /// to such functions with an unmangled name from inline assembly within the
2955 /// same translation unit.
2956 void CodeGenModule::EmitStaticExternCAliases() {
2957   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
2958                                   E = StaticExternCValues.end();
2959        I != E; ++I) {
2960     IdentifierInfo *Name = I->first;
2961     llvm::GlobalValue *Val = I->second;
2962     if (Val && !getModule().getNamedValue(Name->getName()))
2963       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
2964                                           Name->getName(), Val, &getModule()));
2965   }
2966 }
2967 
2968 /// Emits metadata nodes associating all the global values in the
2969 /// current module with the Decls they came from.  This is useful for
2970 /// projects using IR gen as a subroutine.
2971 ///
2972 /// Since there's currently no way to associate an MDNode directly
2973 /// with an llvm::GlobalValue, we create a global named metadata
2974 /// with the name 'clang.global.decl.ptrs'.
2975 void CodeGenModule::EmitDeclMetadata() {
2976   llvm::NamedMDNode *GlobalMetadata = 0;
2977 
2978   // StaticLocalDeclMap
2979   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2980          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2981        I != E; ++I) {
2982     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2983     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2984   }
2985 }
2986 
2987 /// Emits metadata nodes for all the local variables in the current
2988 /// function.
2989 void CodeGenFunction::EmitDeclMetadata() {
2990   if (LocalDeclMap.empty()) return;
2991 
2992   llvm::LLVMContext &Context = getLLVMContext();
2993 
2994   // Find the unique metadata ID for this name.
2995   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2996 
2997   llvm::NamedMDNode *GlobalMetadata = 0;
2998 
2999   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3000          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3001     const Decl *D = I->first;
3002     llvm::Value *Addr = I->second;
3003 
3004     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3005       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3006       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3007     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3008       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3009       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3010     }
3011   }
3012 }
3013 
3014 void CodeGenModule::EmitCoverageFile() {
3015   if (!getCodeGenOpts().CoverageFile.empty()) {
3016     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3017       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3018       llvm::LLVMContext &Ctx = TheModule.getContext();
3019       llvm::MDString *CoverageFile =
3020           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3021       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3022         llvm::MDNode *CU = CUNode->getOperand(i);
3023         llvm::Value *node[] = { CoverageFile, CU };
3024         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3025         GCov->addOperand(N);
3026       }
3027     }
3028   }
3029 }
3030 
3031 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3032                                                      QualType GuidType) {
3033   // Sema has checked that all uuid strings are of the form
3034   // "12345678-1234-1234-1234-1234567890ab".
3035   assert(Uuid.size() == 36);
3036   const char *Uuidstr = Uuid.data();
3037   for (int i = 0; i < 36; ++i) {
3038     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3039     else                                         assert(isHexDigit(Uuidstr[i]));
3040   }
3041 
3042   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3043   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3044   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3045   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3046 
3047   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3048   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3049   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3050   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3051   APValue& Arr = InitStruct.getStructField(3);
3052   Arr = APValue(APValue::UninitArray(), 8, 8);
3053   for (int t = 0; t < 8; ++t)
3054     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3055           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3056 
3057   return EmitConstantValue(InitStruct, GuidType);
3058 }
3059