1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGCXXABI.h" 19 #include "CGObjCRuntime.h" 20 #include "Mangle.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/RecordLayout.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/Diagnostic.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Basic/ConvertUTF.h" 34 #include "llvm/CallingConv.h" 35 #include "llvm/Module.h" 36 #include "llvm/Intrinsics.h" 37 #include "llvm/LLVMContext.h" 38 #include "llvm/ADT/Triple.h" 39 #include "llvm/Target/TargetData.h" 40 #include "llvm/Support/CallSite.h" 41 #include "llvm/Support/ErrorHandling.h" 42 using namespace clang; 43 using namespace CodeGen; 44 45 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 46 switch (CGM.getContext().Target.getCXXABI()) { 47 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 48 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 49 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 50 } 51 52 llvm_unreachable("invalid C++ ABI kind"); 53 return *CreateItaniumCXXABI(CGM); 54 } 55 56 57 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 58 llvm::Module &M, const llvm::TargetData &TD, 59 Diagnostic &diags) 60 : BlockModule(C, M, TD, Types, *this), Context(C), 61 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 62 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 63 ABI(createCXXABI(*this)), 64 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 65 VTables(*this), Runtime(0), 66 CFConstantStringClassRef(0), NSConstantStringClassRef(0), 67 VMContext(M.getContext()), 68 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 69 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 70 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 71 BlockObjectAssign(0), BlockObjectDispose(0){ 72 73 if (!Features.ObjC1) 74 Runtime = 0; 75 else if (!Features.NeXTRuntime) 76 Runtime = CreateGNUObjCRuntime(*this); 77 else if (Features.ObjCNonFragileABI) 78 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 79 else 80 Runtime = CreateMacObjCRuntime(*this); 81 82 // If debug info generation is enabled, create the CGDebugInfo object. 83 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 84 } 85 86 CodeGenModule::~CodeGenModule() { 87 delete Runtime; 88 delete &ABI; 89 delete DebugInfo; 90 } 91 92 void CodeGenModule::createObjCRuntime() { 93 if (!Features.NeXTRuntime) 94 Runtime = CreateGNUObjCRuntime(*this); 95 else if (Features.ObjCNonFragileABI) 96 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 97 else 98 Runtime = CreateMacObjCRuntime(*this); 99 } 100 101 void CodeGenModule::Release() { 102 EmitDeferred(); 103 EmitCXXGlobalInitFunc(); 104 EmitCXXGlobalDtorFunc(); 105 if (Runtime) 106 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 107 AddGlobalCtor(ObjCInitFunction); 108 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 109 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 110 EmitAnnotations(); 111 EmitLLVMUsed(); 112 113 if (getCodeGenOpts().EmitDeclMetadata) 114 EmitDeclMetadata(); 115 } 116 117 bool CodeGenModule::isTargetDarwin() const { 118 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 119 } 120 121 /// ErrorUnsupported - Print out an error that codegen doesn't support the 122 /// specified stmt yet. 123 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 124 bool OmitOnError) { 125 if (OmitOnError && getDiags().hasErrorOccurred()) 126 return; 127 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 128 "cannot compile this %0 yet"); 129 std::string Msg = Type; 130 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 131 << Msg << S->getSourceRange(); 132 } 133 134 /// ErrorUnsupported - Print out an error that codegen doesn't support the 135 /// specified decl yet. 136 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 137 bool OmitOnError) { 138 if (OmitOnError && getDiags().hasErrorOccurred()) 139 return; 140 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 141 "cannot compile this %0 yet"); 142 std::string Msg = Type; 143 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 144 } 145 146 LangOptions::VisibilityMode 147 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 148 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 149 if (VD->getStorageClass() == SC_PrivateExtern) 150 return LangOptions::Hidden; 151 152 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 153 switch (attr->getVisibility()) { 154 default: assert(0 && "Unknown visibility!"); 155 case VisibilityAttr::Default: 156 return LangOptions::Default; 157 case VisibilityAttr::Hidden: 158 return LangOptions::Hidden; 159 case VisibilityAttr::Protected: 160 return LangOptions::Protected; 161 } 162 } 163 164 if (getLangOptions().CPlusPlus) { 165 // Entities subject to an explicit instantiation declaration get default 166 // visibility. 167 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 168 if (Function->getTemplateSpecializationKind() 169 == TSK_ExplicitInstantiationDeclaration) 170 return LangOptions::Default; 171 } else if (const ClassTemplateSpecializationDecl *ClassSpec 172 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 173 if (ClassSpec->getSpecializationKind() 174 == TSK_ExplicitInstantiationDeclaration) 175 return LangOptions::Default; 176 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 177 if (Record->getTemplateSpecializationKind() 178 == TSK_ExplicitInstantiationDeclaration) 179 return LangOptions::Default; 180 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 181 if (Var->isStaticDataMember() && 182 (Var->getTemplateSpecializationKind() 183 == TSK_ExplicitInstantiationDeclaration)) 184 return LangOptions::Default; 185 } 186 187 // If -fvisibility-inlines-hidden was provided, then inline C++ member 188 // functions get "hidden" visibility by default. 189 if (getLangOptions().InlineVisibilityHidden) 190 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 191 if (Method->isInlined()) 192 return LangOptions::Hidden; 193 } 194 195 // If this decl is contained in a class, it should have the same visibility 196 // as the parent class. 197 if (const DeclContext *DC = D->getDeclContext()) 198 if (DC->isRecord()) 199 return getDeclVisibilityMode(cast<Decl>(DC)); 200 201 return getLangOptions().getVisibilityMode(); 202 } 203 204 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 205 const Decl *D) const { 206 // Internal definitions always have default visibility. 207 if (GV->hasLocalLinkage()) { 208 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 209 return; 210 } 211 212 switch (getDeclVisibilityMode(D)) { 213 default: assert(0 && "Unknown visibility!"); 214 case LangOptions::Default: 215 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 216 case LangOptions::Hidden: 217 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 218 case LangOptions::Protected: 219 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 220 } 221 } 222 223 /// Set the symbol visibility of type information (vtable and RTTI) 224 /// associated with the given type. 225 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 226 const CXXRecordDecl *RD, 227 bool IsForRTTI) const { 228 setGlobalVisibility(GV, RD); 229 230 if (!CodeGenOpts.HiddenWeakVTables) 231 return; 232 233 // We want to drop the visibility to hidden for weak type symbols. 234 // This isn't possible if there might be unresolved references 235 // elsewhere that rely on this symbol being visible. 236 237 // This should be kept roughly in sync with setThunkVisibility 238 // in CGVTables.cpp. 239 240 // Preconditions. 241 if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage || 242 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 243 return; 244 245 // Don't override an explicit visibility attribute. 246 if (RD->hasAttr<VisibilityAttr>()) 247 return; 248 249 switch (RD->getTemplateSpecializationKind()) { 250 // We have to disable the optimization if this is an EI definition 251 // because there might be EI declarations in other shared objects. 252 case TSK_ExplicitInstantiationDefinition: 253 case TSK_ExplicitInstantiationDeclaration: 254 return; 255 256 // Every use of a non-template class's type information has to emit it. 257 case TSK_Undeclared: 258 break; 259 260 // In theory, implicit instantiations can ignore the possibility of 261 // an explicit instantiation declaration because there necessarily 262 // must be an EI definition somewhere with default visibility. In 263 // practice, it's possible to have an explicit instantiation for 264 // an arbitrary template class, and linkers aren't necessarily able 265 // to deal with mixed-visibility symbols. 266 case TSK_ExplicitSpecialization: 267 case TSK_ImplicitInstantiation: 268 if (!CodeGenOpts.HiddenWeakTemplateVTables) 269 return; 270 break; 271 } 272 273 // If there's a key function, there may be translation units 274 // that don't have the key function's definition. But ignore 275 // this if we're emitting RTTI under -fno-rtti. 276 if (!IsForRTTI || Features.RTTI) 277 if (Context.getKeyFunction(RD)) 278 return; 279 280 // Otherwise, drop the visibility to hidden. 281 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 282 } 283 284 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 285 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 286 287 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 288 if (!Str.empty()) 289 return Str; 290 291 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 292 IdentifierInfo *II = ND->getIdentifier(); 293 assert(II && "Attempt to mangle unnamed decl."); 294 295 Str = II->getName(); 296 return Str; 297 } 298 299 llvm::SmallString<256> Buffer; 300 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 301 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 302 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 303 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 304 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 305 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer); 306 else 307 getCXXABI().getMangleContext().mangleName(ND, Buffer); 308 309 // Allocate space for the mangled name. 310 size_t Length = Buffer.size(); 311 char *Name = MangledNamesAllocator.Allocate<char>(Length); 312 std::copy(Buffer.begin(), Buffer.end(), Name); 313 314 Str = llvm::StringRef(Name, Length); 315 316 return Str; 317 } 318 319 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 320 const BlockDecl *BD) { 321 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 322 } 323 324 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 325 return getModule().getNamedValue(Name); 326 } 327 328 /// AddGlobalCtor - Add a function to the list that will be called before 329 /// main() runs. 330 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 331 // FIXME: Type coercion of void()* types. 332 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 333 } 334 335 /// AddGlobalDtor - Add a function to the list that will be called 336 /// when the module is unloaded. 337 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 338 // FIXME: Type coercion of void()* types. 339 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 340 } 341 342 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 343 // Ctor function type is void()*. 344 llvm::FunctionType* CtorFTy = 345 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 346 std::vector<const llvm::Type*>(), 347 false); 348 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 349 350 // Get the type of a ctor entry, { i32, void ()* }. 351 llvm::StructType* CtorStructTy = 352 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 353 llvm::PointerType::getUnqual(CtorFTy), NULL); 354 355 // Construct the constructor and destructor arrays. 356 std::vector<llvm::Constant*> Ctors; 357 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 358 std::vector<llvm::Constant*> S; 359 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 360 I->second, false)); 361 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 362 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 363 } 364 365 if (!Ctors.empty()) { 366 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 367 new llvm::GlobalVariable(TheModule, AT, false, 368 llvm::GlobalValue::AppendingLinkage, 369 llvm::ConstantArray::get(AT, Ctors), 370 GlobalName); 371 } 372 } 373 374 void CodeGenModule::EmitAnnotations() { 375 if (Annotations.empty()) 376 return; 377 378 // Create a new global variable for the ConstantStruct in the Module. 379 llvm::Constant *Array = 380 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 381 Annotations.size()), 382 Annotations); 383 llvm::GlobalValue *gv = 384 new llvm::GlobalVariable(TheModule, Array->getType(), false, 385 llvm::GlobalValue::AppendingLinkage, Array, 386 "llvm.global.annotations"); 387 gv->setSection("llvm.metadata"); 388 } 389 390 llvm::GlobalValue::LinkageTypes 391 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 392 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 393 394 if (Linkage == GVA_Internal) 395 return llvm::Function::InternalLinkage; 396 397 if (D->hasAttr<DLLExportAttr>()) 398 return llvm::Function::DLLExportLinkage; 399 400 if (D->hasAttr<WeakAttr>()) 401 return llvm::Function::WeakAnyLinkage; 402 403 // In C99 mode, 'inline' functions are guaranteed to have a strong 404 // definition somewhere else, so we can use available_externally linkage. 405 if (Linkage == GVA_C99Inline) 406 return llvm::Function::AvailableExternallyLinkage; 407 408 // In C++, the compiler has to emit a definition in every translation unit 409 // that references the function. We should use linkonce_odr because 410 // a) if all references in this translation unit are optimized away, we 411 // don't need to codegen it. b) if the function persists, it needs to be 412 // merged with other definitions. c) C++ has the ODR, so we know the 413 // definition is dependable. 414 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 415 return llvm::Function::LinkOnceODRLinkage; 416 417 // An explicit instantiation of a template has weak linkage, since 418 // explicit instantiations can occur in multiple translation units 419 // and must all be equivalent. However, we are not allowed to 420 // throw away these explicit instantiations. 421 if (Linkage == GVA_ExplicitTemplateInstantiation) 422 return llvm::Function::WeakODRLinkage; 423 424 // Otherwise, we have strong external linkage. 425 assert(Linkage == GVA_StrongExternal); 426 return llvm::Function::ExternalLinkage; 427 } 428 429 430 /// SetFunctionDefinitionAttributes - Set attributes for a global. 431 /// 432 /// FIXME: This is currently only done for aliases and functions, but not for 433 /// variables (these details are set in EmitGlobalVarDefinition for variables). 434 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 435 llvm::GlobalValue *GV) { 436 SetCommonAttributes(D, GV); 437 } 438 439 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 440 const CGFunctionInfo &Info, 441 llvm::Function *F) { 442 unsigned CallingConv; 443 AttributeListType AttributeList; 444 ConstructAttributeList(Info, D, AttributeList, CallingConv); 445 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 446 AttributeList.size())); 447 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 448 } 449 450 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 451 llvm::Function *F) { 452 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 453 F->addFnAttr(llvm::Attribute::NoUnwind); 454 455 if (D->hasAttr<AlwaysInlineAttr>()) 456 F->addFnAttr(llvm::Attribute::AlwaysInline); 457 458 if (D->hasAttr<NoInlineAttr>()) 459 F->addFnAttr(llvm::Attribute::NoInline); 460 461 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 462 F->addFnAttr(llvm::Attribute::StackProtect); 463 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 464 F->addFnAttr(llvm::Attribute::StackProtectReq); 465 466 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 467 if (alignment) 468 F->setAlignment(alignment); 469 470 // C++ ABI requires 2-byte alignment for member functions. 471 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 472 F->setAlignment(2); 473 } 474 475 void CodeGenModule::SetCommonAttributes(const Decl *D, 476 llvm::GlobalValue *GV) { 477 setGlobalVisibility(GV, D); 478 479 if (D->hasAttr<UsedAttr>()) 480 AddUsedGlobal(GV); 481 482 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 483 GV->setSection(SA->getName()); 484 485 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 486 } 487 488 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 489 llvm::Function *F, 490 const CGFunctionInfo &FI) { 491 SetLLVMFunctionAttributes(D, FI, F); 492 SetLLVMFunctionAttributesForDefinition(D, F); 493 494 F->setLinkage(llvm::Function::InternalLinkage); 495 496 SetCommonAttributes(D, F); 497 } 498 499 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 500 llvm::Function *F, 501 bool IsIncompleteFunction) { 502 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 503 504 if (!IsIncompleteFunction) 505 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 506 507 // Only a few attributes are set on declarations; these may later be 508 // overridden by a definition. 509 510 if (FD->hasAttr<DLLImportAttr>()) { 511 F->setLinkage(llvm::Function::DLLImportLinkage); 512 } else if (FD->hasAttr<WeakAttr>() || 513 FD->hasAttr<WeakImportAttr>()) { 514 // "extern_weak" is overloaded in LLVM; we probably should have 515 // separate linkage types for this. 516 F->setLinkage(llvm::Function::ExternalWeakLinkage); 517 } else { 518 F->setLinkage(llvm::Function::ExternalLinkage); 519 } 520 521 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 522 F->setSection(SA->getName()); 523 } 524 525 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 526 assert(!GV->isDeclaration() && 527 "Only globals with definition can force usage."); 528 LLVMUsed.push_back(GV); 529 } 530 531 void CodeGenModule::EmitLLVMUsed() { 532 // Don't create llvm.used if there is no need. 533 if (LLVMUsed.empty()) 534 return; 535 536 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 537 538 // Convert LLVMUsed to what ConstantArray needs. 539 std::vector<llvm::Constant*> UsedArray; 540 UsedArray.resize(LLVMUsed.size()); 541 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 542 UsedArray[i] = 543 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 544 i8PTy); 545 } 546 547 if (UsedArray.empty()) 548 return; 549 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 550 551 llvm::GlobalVariable *GV = 552 new llvm::GlobalVariable(getModule(), ATy, false, 553 llvm::GlobalValue::AppendingLinkage, 554 llvm::ConstantArray::get(ATy, UsedArray), 555 "llvm.used"); 556 557 GV->setSection("llvm.metadata"); 558 } 559 560 void CodeGenModule::EmitDeferred() { 561 // Emit code for any potentially referenced deferred decls. Since a 562 // previously unused static decl may become used during the generation of code 563 // for a static function, iterate until no changes are made. 564 565 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 566 if (!DeferredVTables.empty()) { 567 const CXXRecordDecl *RD = DeferredVTables.back(); 568 DeferredVTables.pop_back(); 569 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 570 continue; 571 } 572 573 GlobalDecl D = DeferredDeclsToEmit.back(); 574 DeferredDeclsToEmit.pop_back(); 575 576 // Check to see if we've already emitted this. This is necessary 577 // for a couple of reasons: first, decls can end up in the 578 // deferred-decls queue multiple times, and second, decls can end 579 // up with definitions in unusual ways (e.g. by an extern inline 580 // function acquiring a strong function redefinition). Just 581 // ignore these cases. 582 // 583 // TODO: That said, looking this up multiple times is very wasteful. 584 llvm::StringRef Name = getMangledName(D); 585 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 586 assert(CGRef && "Deferred decl wasn't referenced?"); 587 588 if (!CGRef->isDeclaration()) 589 continue; 590 591 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 592 // purposes an alias counts as a definition. 593 if (isa<llvm::GlobalAlias>(CGRef)) 594 continue; 595 596 // Otherwise, emit the definition and move on to the next one. 597 EmitGlobalDefinition(D); 598 } 599 } 600 601 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 602 /// annotation information for a given GlobalValue. The annotation struct is 603 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 604 /// GlobalValue being annotated. The second field is the constant string 605 /// created from the AnnotateAttr's annotation. The third field is a constant 606 /// string containing the name of the translation unit. The fourth field is 607 /// the line number in the file of the annotated value declaration. 608 /// 609 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 610 /// appears to. 611 /// 612 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 613 const AnnotateAttr *AA, 614 unsigned LineNo) { 615 llvm::Module *M = &getModule(); 616 617 // get [N x i8] constants for the annotation string, and the filename string 618 // which are the 2nd and 3rd elements of the global annotation structure. 619 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 620 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 621 AA->getAnnotation(), true); 622 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 623 M->getModuleIdentifier(), 624 true); 625 626 // Get the two global values corresponding to the ConstantArrays we just 627 // created to hold the bytes of the strings. 628 llvm::GlobalValue *annoGV = 629 new llvm::GlobalVariable(*M, anno->getType(), false, 630 llvm::GlobalValue::PrivateLinkage, anno, 631 GV->getName()); 632 // translation unit name string, emitted into the llvm.metadata section. 633 llvm::GlobalValue *unitGV = 634 new llvm::GlobalVariable(*M, unit->getType(), false, 635 llvm::GlobalValue::PrivateLinkage, unit, 636 ".str"); 637 638 // Create the ConstantStruct for the global annotation. 639 llvm::Constant *Fields[4] = { 640 llvm::ConstantExpr::getBitCast(GV, SBP), 641 llvm::ConstantExpr::getBitCast(annoGV, SBP), 642 llvm::ConstantExpr::getBitCast(unitGV, SBP), 643 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 644 }; 645 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 646 } 647 648 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 649 // Never defer when EmitAllDecls is specified. 650 if (Features.EmitAllDecls) 651 return false; 652 653 return !getContext().DeclMustBeEmitted(Global); 654 } 655 656 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 657 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 658 assert(AA && "No alias?"); 659 660 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 661 662 // See if there is already something with the target's name in the module. 663 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 664 665 llvm::Constant *Aliasee; 666 if (isa<llvm::FunctionType>(DeclTy)) 667 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 668 else 669 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 670 llvm::PointerType::getUnqual(DeclTy), 0); 671 if (!Entry) { 672 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 673 F->setLinkage(llvm::Function::ExternalWeakLinkage); 674 WeakRefReferences.insert(F); 675 } 676 677 return Aliasee; 678 } 679 680 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 681 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 682 683 // Weak references don't produce any output by themselves. 684 if (Global->hasAttr<WeakRefAttr>()) 685 return; 686 687 // If this is an alias definition (which otherwise looks like a declaration) 688 // emit it now. 689 if (Global->hasAttr<AliasAttr>()) 690 return EmitAliasDefinition(GD); 691 692 // Ignore declarations, they will be emitted on their first use. 693 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 694 if (FD->getIdentifier()) { 695 llvm::StringRef Name = FD->getName(); 696 if (Name == "_Block_object_assign") { 697 BlockObjectAssignDecl = FD; 698 } else if (Name == "_Block_object_dispose") { 699 BlockObjectDisposeDecl = FD; 700 } 701 } 702 703 // Forward declarations are emitted lazily on first use. 704 if (!FD->isThisDeclarationADefinition()) 705 return; 706 } else { 707 const VarDecl *VD = cast<VarDecl>(Global); 708 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 709 710 if (VD->getIdentifier()) { 711 llvm::StringRef Name = VD->getName(); 712 if (Name == "_NSConcreteGlobalBlock") { 713 NSConcreteGlobalBlockDecl = VD; 714 } else if (Name == "_NSConcreteStackBlock") { 715 NSConcreteStackBlockDecl = VD; 716 } 717 } 718 719 720 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 721 return; 722 } 723 724 // Defer code generation when possible if this is a static definition, inline 725 // function etc. These we only want to emit if they are used. 726 if (!MayDeferGeneration(Global)) { 727 // Emit the definition if it can't be deferred. 728 EmitGlobalDefinition(GD); 729 return; 730 } 731 732 // If we're deferring emission of a C++ variable with an 733 // initializer, remember the order in which it appeared in the file. 734 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 735 cast<VarDecl>(Global)->hasInit()) { 736 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 737 CXXGlobalInits.push_back(0); 738 } 739 740 // If the value has already been used, add it directly to the 741 // DeferredDeclsToEmit list. 742 llvm::StringRef MangledName = getMangledName(GD); 743 if (GetGlobalValue(MangledName)) 744 DeferredDeclsToEmit.push_back(GD); 745 else { 746 // Otherwise, remember that we saw a deferred decl with this name. The 747 // first use of the mangled name will cause it to move into 748 // DeferredDeclsToEmit. 749 DeferredDecls[MangledName] = GD; 750 } 751 } 752 753 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 754 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 755 756 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 757 Context.getSourceManager(), 758 "Generating code for declaration"); 759 760 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 761 // At -O0, don't generate IR for functions with available_externally 762 // linkage. 763 if (CodeGenOpts.OptimizationLevel == 0 && 764 !Function->hasAttr<AlwaysInlineAttr>() && 765 getFunctionLinkage(Function) 766 == llvm::Function::AvailableExternallyLinkage) 767 return; 768 769 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 770 if (Method->isVirtual()) 771 getVTables().EmitThunks(GD); 772 773 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 774 return EmitCXXConstructor(CD, GD.getCtorType()); 775 776 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 777 return EmitCXXDestructor(DD, GD.getDtorType()); 778 } 779 780 return EmitGlobalFunctionDefinition(GD); 781 } 782 783 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 784 return EmitGlobalVarDefinition(VD); 785 786 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 787 } 788 789 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 790 /// module, create and return an llvm Function with the specified type. If there 791 /// is something in the module with the specified name, return it potentially 792 /// bitcasted to the right type. 793 /// 794 /// If D is non-null, it specifies a decl that correspond to this. This is used 795 /// to set the attributes on the function when it is first created. 796 llvm::Constant * 797 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 798 const llvm::Type *Ty, 799 GlobalDecl D) { 800 // Lookup the entry, lazily creating it if necessary. 801 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 802 if (Entry) { 803 if (WeakRefReferences.count(Entry)) { 804 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 805 if (FD && !FD->hasAttr<WeakAttr>()) 806 Entry->setLinkage(llvm::Function::ExternalLinkage); 807 808 WeakRefReferences.erase(Entry); 809 } 810 811 if (Entry->getType()->getElementType() == Ty) 812 return Entry; 813 814 // Make sure the result is of the correct type. 815 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 816 return llvm::ConstantExpr::getBitCast(Entry, PTy); 817 } 818 819 // This function doesn't have a complete type (for example, the return 820 // type is an incomplete struct). Use a fake type instead, and make 821 // sure not to try to set attributes. 822 bool IsIncompleteFunction = false; 823 824 const llvm::FunctionType *FTy; 825 if (isa<llvm::FunctionType>(Ty)) { 826 FTy = cast<llvm::FunctionType>(Ty); 827 } else { 828 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 829 std::vector<const llvm::Type*>(), false); 830 IsIncompleteFunction = true; 831 } 832 833 llvm::Function *F = llvm::Function::Create(FTy, 834 llvm::Function::ExternalLinkage, 835 MangledName, &getModule()); 836 assert(F->getName() == MangledName && "name was uniqued!"); 837 if (D.getDecl()) 838 SetFunctionAttributes(D, F, IsIncompleteFunction); 839 840 // This is the first use or definition of a mangled name. If there is a 841 // deferred decl with this name, remember that we need to emit it at the end 842 // of the file. 843 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 844 if (DDI != DeferredDecls.end()) { 845 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 846 // list, and remove it from DeferredDecls (since we don't need it anymore). 847 DeferredDeclsToEmit.push_back(DDI->second); 848 DeferredDecls.erase(DDI); 849 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 850 // If this the first reference to a C++ inline function in a class, queue up 851 // the deferred function body for emission. These are not seen as 852 // top-level declarations. 853 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 854 DeferredDeclsToEmit.push_back(D); 855 // A called constructor which has no definition or declaration need be 856 // synthesized. 857 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 858 if (CD->isImplicit()) { 859 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 860 DeferredDeclsToEmit.push_back(D); 861 } 862 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 863 if (DD->isImplicit()) { 864 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 865 DeferredDeclsToEmit.push_back(D); 866 } 867 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 868 if (MD->isCopyAssignment() && MD->isImplicit()) { 869 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 870 DeferredDeclsToEmit.push_back(D); 871 } 872 } 873 } 874 875 // Make sure the result is of the requested type. 876 if (!IsIncompleteFunction) { 877 assert(F->getType()->getElementType() == Ty); 878 return F; 879 } 880 881 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 882 return llvm::ConstantExpr::getBitCast(F, PTy); 883 } 884 885 /// GetAddrOfFunction - Return the address of the given function. If Ty is 886 /// non-null, then this function will use the specified type if it has to 887 /// create it (this occurs when we see a definition of the function). 888 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 889 const llvm::Type *Ty) { 890 // If there was no specific requested type, just convert it now. 891 if (!Ty) 892 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 893 894 llvm::StringRef MangledName = getMangledName(GD); 895 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 896 } 897 898 /// CreateRuntimeFunction - Create a new runtime function with the specified 899 /// type and name. 900 llvm::Constant * 901 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 902 llvm::StringRef Name) { 903 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 904 } 905 906 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 907 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 908 return false; 909 if (Context.getLangOptions().CPlusPlus && 910 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 911 // FIXME: We should do something fancier here! 912 return false; 913 } 914 return true; 915 } 916 917 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 918 /// create and return an llvm GlobalVariable with the specified type. If there 919 /// is something in the module with the specified name, return it potentially 920 /// bitcasted to the right type. 921 /// 922 /// If D is non-null, it specifies a decl that correspond to this. This is used 923 /// to set the attributes on the global when it is first created. 924 llvm::Constant * 925 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 926 const llvm::PointerType *Ty, 927 const VarDecl *D) { 928 // Lookup the entry, lazily creating it if necessary. 929 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 930 if (Entry) { 931 if (WeakRefReferences.count(Entry)) { 932 if (D && !D->hasAttr<WeakAttr>()) 933 Entry->setLinkage(llvm::Function::ExternalLinkage); 934 935 WeakRefReferences.erase(Entry); 936 } 937 938 if (Entry->getType() == Ty) 939 return Entry; 940 941 // Make sure the result is of the correct type. 942 return llvm::ConstantExpr::getBitCast(Entry, Ty); 943 } 944 945 // This is the first use or definition of a mangled name. If there is a 946 // deferred decl with this name, remember that we need to emit it at the end 947 // of the file. 948 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 949 if (DDI != DeferredDecls.end()) { 950 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 951 // list, and remove it from DeferredDecls (since we don't need it anymore). 952 DeferredDeclsToEmit.push_back(DDI->second); 953 DeferredDecls.erase(DDI); 954 } 955 956 llvm::GlobalVariable *GV = 957 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 958 llvm::GlobalValue::ExternalLinkage, 959 0, MangledName, 0, 960 false, Ty->getAddressSpace()); 961 962 // Handle things which are present even on external declarations. 963 if (D) { 964 // FIXME: This code is overly simple and should be merged with other global 965 // handling. 966 GV->setConstant(DeclIsConstantGlobal(Context, D)); 967 968 // FIXME: Merge with other attribute handling code. 969 if (D->getStorageClass() == SC_PrivateExtern) 970 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 971 972 if (D->hasAttr<WeakAttr>() || 973 D->hasAttr<WeakImportAttr>()) 974 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 975 976 GV->setThreadLocal(D->isThreadSpecified()); 977 } 978 979 return GV; 980 } 981 982 983 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 984 /// given global variable. If Ty is non-null and if the global doesn't exist, 985 /// then it will be greated with the specified type instead of whatever the 986 /// normal requested type would be. 987 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 988 const llvm::Type *Ty) { 989 assert(D->hasGlobalStorage() && "Not a global variable"); 990 QualType ASTTy = D->getType(); 991 if (Ty == 0) 992 Ty = getTypes().ConvertTypeForMem(ASTTy); 993 994 const llvm::PointerType *PTy = 995 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 996 997 llvm::StringRef MangledName = getMangledName(D); 998 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 999 } 1000 1001 /// CreateRuntimeVariable - Create a new runtime global variable with the 1002 /// specified type and name. 1003 llvm::Constant * 1004 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1005 llvm::StringRef Name) { 1006 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1007 } 1008 1009 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1010 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1011 1012 if (MayDeferGeneration(D)) { 1013 // If we have not seen a reference to this variable yet, place it 1014 // into the deferred declarations table to be emitted if needed 1015 // later. 1016 llvm::StringRef MangledName = getMangledName(D); 1017 if (!GetGlobalValue(MangledName)) { 1018 DeferredDecls[MangledName] = D; 1019 return; 1020 } 1021 } 1022 1023 // The tentative definition is the only definition. 1024 EmitGlobalVarDefinition(D); 1025 } 1026 1027 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1028 if (DefinitionRequired) 1029 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1030 } 1031 1032 llvm::GlobalVariable::LinkageTypes 1033 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1034 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1035 return llvm::GlobalVariable::InternalLinkage; 1036 1037 if (const CXXMethodDecl *KeyFunction 1038 = RD->getASTContext().getKeyFunction(RD)) { 1039 // If this class has a key function, use that to determine the linkage of 1040 // the vtable. 1041 const FunctionDecl *Def = 0; 1042 if (KeyFunction->hasBody(Def)) 1043 KeyFunction = cast<CXXMethodDecl>(Def); 1044 1045 switch (KeyFunction->getTemplateSpecializationKind()) { 1046 case TSK_Undeclared: 1047 case TSK_ExplicitSpecialization: 1048 if (KeyFunction->isInlined()) 1049 return llvm::GlobalVariable::WeakODRLinkage; 1050 1051 return llvm::GlobalVariable::ExternalLinkage; 1052 1053 case TSK_ImplicitInstantiation: 1054 case TSK_ExplicitInstantiationDefinition: 1055 return llvm::GlobalVariable::WeakODRLinkage; 1056 1057 case TSK_ExplicitInstantiationDeclaration: 1058 // FIXME: Use available_externally linkage. However, this currently 1059 // breaks LLVM's build due to undefined symbols. 1060 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1061 return llvm::GlobalVariable::WeakODRLinkage; 1062 } 1063 } 1064 1065 switch (RD->getTemplateSpecializationKind()) { 1066 case TSK_Undeclared: 1067 case TSK_ExplicitSpecialization: 1068 case TSK_ImplicitInstantiation: 1069 case TSK_ExplicitInstantiationDefinition: 1070 return llvm::GlobalVariable::WeakODRLinkage; 1071 1072 case TSK_ExplicitInstantiationDeclaration: 1073 // FIXME: Use available_externally linkage. However, this currently 1074 // breaks LLVM's build due to undefined symbols. 1075 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1076 return llvm::GlobalVariable::WeakODRLinkage; 1077 } 1078 1079 // Silence GCC warning. 1080 return llvm::GlobalVariable::WeakODRLinkage; 1081 } 1082 1083 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1084 return CharUnits::fromQuantity( 1085 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1086 } 1087 1088 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1089 llvm::Constant *Init = 0; 1090 QualType ASTTy = D->getType(); 1091 bool NonConstInit = false; 1092 1093 const Expr *InitExpr = D->getAnyInitializer(); 1094 1095 if (!InitExpr) { 1096 // This is a tentative definition; tentative definitions are 1097 // implicitly initialized with { 0 }. 1098 // 1099 // Note that tentative definitions are only emitted at the end of 1100 // a translation unit, so they should never have incomplete 1101 // type. In addition, EmitTentativeDefinition makes sure that we 1102 // never attempt to emit a tentative definition if a real one 1103 // exists. A use may still exists, however, so we still may need 1104 // to do a RAUW. 1105 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1106 Init = EmitNullConstant(D->getType()); 1107 } else { 1108 Init = EmitConstantExpr(InitExpr, D->getType()); 1109 if (!Init) { 1110 QualType T = InitExpr->getType(); 1111 if (D->getType()->isReferenceType()) 1112 T = D->getType(); 1113 1114 if (getLangOptions().CPlusPlus) { 1115 EmitCXXGlobalVarDeclInitFunc(D); 1116 Init = EmitNullConstant(T); 1117 NonConstInit = true; 1118 } else { 1119 ErrorUnsupported(D, "static initializer"); 1120 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1121 } 1122 } else { 1123 // We don't need an initializer, so remove the entry for the delayed 1124 // initializer position (just in case this entry was delayed). 1125 if (getLangOptions().CPlusPlus) 1126 DelayedCXXInitPosition.erase(D); 1127 } 1128 } 1129 1130 const llvm::Type* InitType = Init->getType(); 1131 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1132 1133 // Strip off a bitcast if we got one back. 1134 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1135 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1136 // all zero index gep. 1137 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1138 Entry = CE->getOperand(0); 1139 } 1140 1141 // Entry is now either a Function or GlobalVariable. 1142 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1143 1144 // We have a definition after a declaration with the wrong type. 1145 // We must make a new GlobalVariable* and update everything that used OldGV 1146 // (a declaration or tentative definition) with the new GlobalVariable* 1147 // (which will be a definition). 1148 // 1149 // This happens if there is a prototype for a global (e.g. 1150 // "extern int x[];") and then a definition of a different type (e.g. 1151 // "int x[10];"). This also happens when an initializer has a different type 1152 // from the type of the global (this happens with unions). 1153 if (GV == 0 || 1154 GV->getType()->getElementType() != InitType || 1155 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1156 1157 // Move the old entry aside so that we'll create a new one. 1158 Entry->setName(llvm::StringRef()); 1159 1160 // Make a new global with the correct type, this is now guaranteed to work. 1161 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1162 1163 // Replace all uses of the old global with the new global 1164 llvm::Constant *NewPtrForOldDecl = 1165 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1166 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1167 1168 // Erase the old global, since it is no longer used. 1169 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1170 } 1171 1172 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1173 SourceManager &SM = Context.getSourceManager(); 1174 AddAnnotation(EmitAnnotateAttr(GV, AA, 1175 SM.getInstantiationLineNumber(D->getLocation()))); 1176 } 1177 1178 GV->setInitializer(Init); 1179 1180 // If it is safe to mark the global 'constant', do so now. 1181 GV->setConstant(false); 1182 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1183 GV->setConstant(true); 1184 1185 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1186 1187 // Set the llvm linkage type as appropriate. 1188 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1189 if (Linkage == GVA_Internal) 1190 GV->setLinkage(llvm::Function::InternalLinkage); 1191 else if (D->hasAttr<DLLImportAttr>()) 1192 GV->setLinkage(llvm::Function::DLLImportLinkage); 1193 else if (D->hasAttr<DLLExportAttr>()) 1194 GV->setLinkage(llvm::Function::DLLExportLinkage); 1195 else if (D->hasAttr<WeakAttr>()) { 1196 if (GV->isConstant()) 1197 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1198 else 1199 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1200 } else if (Linkage == GVA_TemplateInstantiation || 1201 Linkage == GVA_ExplicitTemplateInstantiation) 1202 // FIXME: It seems like we can provide more specific linkage here 1203 // (LinkOnceODR, WeakODR). 1204 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1205 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1206 !D->hasExternalStorage() && !D->getInit() && 1207 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1208 // Thread local vars aren't considered common linkage. 1209 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1210 // common vars aren't constant even if declared const. 1211 GV->setConstant(false); 1212 } else 1213 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1214 1215 SetCommonAttributes(D, GV); 1216 1217 // Emit global variable debug information. 1218 if (CGDebugInfo *DI = getDebugInfo()) { 1219 DI->setLocation(D->getLocation()); 1220 DI->EmitGlobalVariable(GV, D); 1221 } 1222 } 1223 1224 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1225 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1226 /// existing call uses of the old function in the module, this adjusts them to 1227 /// call the new function directly. 1228 /// 1229 /// This is not just a cleanup: the always_inline pass requires direct calls to 1230 /// functions to be able to inline them. If there is a bitcast in the way, it 1231 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1232 /// run at -O0. 1233 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1234 llvm::Function *NewFn) { 1235 // If we're redefining a global as a function, don't transform it. 1236 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1237 if (OldFn == 0) return; 1238 1239 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1240 llvm::SmallVector<llvm::Value*, 4> ArgList; 1241 1242 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1243 UI != E; ) { 1244 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1245 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1246 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1247 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1248 llvm::CallSite CS(CI); 1249 if (!CI || !CS.isCallee(I)) continue; 1250 1251 // If the return types don't match exactly, and if the call isn't dead, then 1252 // we can't transform this call. 1253 if (CI->getType() != NewRetTy && !CI->use_empty()) 1254 continue; 1255 1256 // If the function was passed too few arguments, don't transform. If extra 1257 // arguments were passed, we silently drop them. If any of the types 1258 // mismatch, we don't transform. 1259 unsigned ArgNo = 0; 1260 bool DontTransform = false; 1261 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1262 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1263 if (CS.arg_size() == ArgNo || 1264 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1265 DontTransform = true; 1266 break; 1267 } 1268 } 1269 if (DontTransform) 1270 continue; 1271 1272 // Okay, we can transform this. Create the new call instruction and copy 1273 // over the required information. 1274 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1275 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1276 ArgList.end(), "", CI); 1277 ArgList.clear(); 1278 if (!NewCall->getType()->isVoidTy()) 1279 NewCall->takeName(CI); 1280 NewCall->setAttributes(CI->getAttributes()); 1281 NewCall->setCallingConv(CI->getCallingConv()); 1282 1283 // Finally, remove the old call, replacing any uses with the new one. 1284 if (!CI->use_empty()) 1285 CI->replaceAllUsesWith(NewCall); 1286 1287 // Copy debug location attached to CI. 1288 if (!CI->getDebugLoc().isUnknown()) 1289 NewCall->setDebugLoc(CI->getDebugLoc()); 1290 CI->eraseFromParent(); 1291 } 1292 } 1293 1294 1295 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1296 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1297 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1298 getCXXABI().getMangleContext().mangleInitDiscriminator(); 1299 // Get or create the prototype for the function. 1300 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1301 1302 // Strip off a bitcast if we got one back. 1303 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1304 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1305 Entry = CE->getOperand(0); 1306 } 1307 1308 1309 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1310 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1311 1312 // If the types mismatch then we have to rewrite the definition. 1313 assert(OldFn->isDeclaration() && 1314 "Shouldn't replace non-declaration"); 1315 1316 // F is the Function* for the one with the wrong type, we must make a new 1317 // Function* and update everything that used F (a declaration) with the new 1318 // Function* (which will be a definition). 1319 // 1320 // This happens if there is a prototype for a function 1321 // (e.g. "int f()") and then a definition of a different type 1322 // (e.g. "int f(int x)"). Move the old function aside so that it 1323 // doesn't interfere with GetAddrOfFunction. 1324 OldFn->setName(llvm::StringRef()); 1325 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1326 1327 // If this is an implementation of a function without a prototype, try to 1328 // replace any existing uses of the function (which may be calls) with uses 1329 // of the new function 1330 if (D->getType()->isFunctionNoProtoType()) { 1331 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1332 OldFn->removeDeadConstantUsers(); 1333 } 1334 1335 // Replace uses of F with the Function we will endow with a body. 1336 if (!Entry->use_empty()) { 1337 llvm::Constant *NewPtrForOldDecl = 1338 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1339 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1340 } 1341 1342 // Ok, delete the old function now, which is dead. 1343 OldFn->eraseFromParent(); 1344 1345 Entry = NewFn; 1346 } 1347 1348 llvm::Function *Fn = cast<llvm::Function>(Entry); 1349 setFunctionLinkage(D, Fn); 1350 1351 CodeGenFunction(*this).GenerateCode(D, Fn); 1352 1353 SetFunctionDefinitionAttributes(D, Fn); 1354 SetLLVMFunctionAttributesForDefinition(D, Fn); 1355 1356 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1357 AddGlobalCtor(Fn, CA->getPriority()); 1358 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1359 AddGlobalDtor(Fn, DA->getPriority()); 1360 } 1361 1362 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1363 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1364 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1365 assert(AA && "Not an alias?"); 1366 1367 llvm::StringRef MangledName = getMangledName(GD); 1368 1369 // If there is a definition in the module, then it wins over the alias. 1370 // This is dubious, but allow it to be safe. Just ignore the alias. 1371 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1372 if (Entry && !Entry->isDeclaration()) 1373 return; 1374 1375 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1376 1377 // Create a reference to the named value. This ensures that it is emitted 1378 // if a deferred decl. 1379 llvm::Constant *Aliasee; 1380 if (isa<llvm::FunctionType>(DeclTy)) 1381 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1382 else 1383 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1384 llvm::PointerType::getUnqual(DeclTy), 0); 1385 1386 // Create the new alias itself, but don't set a name yet. 1387 llvm::GlobalValue *GA = 1388 new llvm::GlobalAlias(Aliasee->getType(), 1389 llvm::Function::ExternalLinkage, 1390 "", Aliasee, &getModule()); 1391 1392 if (Entry) { 1393 assert(Entry->isDeclaration()); 1394 1395 // If there is a declaration in the module, then we had an extern followed 1396 // by the alias, as in: 1397 // extern int test6(); 1398 // ... 1399 // int test6() __attribute__((alias("test7"))); 1400 // 1401 // Remove it and replace uses of it with the alias. 1402 GA->takeName(Entry); 1403 1404 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1405 Entry->getType())); 1406 Entry->eraseFromParent(); 1407 } else { 1408 GA->setName(MangledName); 1409 } 1410 1411 // Set attributes which are particular to an alias; this is a 1412 // specialization of the attributes which may be set on a global 1413 // variable/function. 1414 if (D->hasAttr<DLLExportAttr>()) { 1415 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1416 // The dllexport attribute is ignored for undefined symbols. 1417 if (FD->hasBody()) 1418 GA->setLinkage(llvm::Function::DLLExportLinkage); 1419 } else { 1420 GA->setLinkage(llvm::Function::DLLExportLinkage); 1421 } 1422 } else if (D->hasAttr<WeakAttr>() || 1423 D->hasAttr<WeakRefAttr>() || 1424 D->hasAttr<WeakImportAttr>()) { 1425 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1426 } 1427 1428 SetCommonAttributes(D, GA); 1429 } 1430 1431 /// getBuiltinLibFunction - Given a builtin id for a function like 1432 /// "__builtin_fabsf", return a Function* for "fabsf". 1433 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1434 unsigned BuiltinID) { 1435 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1436 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1437 "isn't a lib fn"); 1438 1439 // Get the name, skip over the __builtin_ prefix (if necessary). 1440 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1441 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1442 Name += 10; 1443 1444 const llvm::FunctionType *Ty = 1445 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1446 1447 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1448 } 1449 1450 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1451 unsigned NumTys) { 1452 return llvm::Intrinsic::getDeclaration(&getModule(), 1453 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1454 } 1455 1456 1457 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1458 const llvm::Type *SrcType, 1459 const llvm::Type *SizeType) { 1460 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1461 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1462 } 1463 1464 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1465 const llvm::Type *SrcType, 1466 const llvm::Type *SizeType) { 1467 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1468 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1469 } 1470 1471 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1472 const llvm::Type *SizeType) { 1473 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1474 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1475 } 1476 1477 static llvm::StringMapEntry<llvm::Constant*> & 1478 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1479 const StringLiteral *Literal, 1480 bool TargetIsLSB, 1481 bool &IsUTF16, 1482 unsigned &StringLength) { 1483 llvm::StringRef String = Literal->getString(); 1484 unsigned NumBytes = String.size(); 1485 1486 // Check for simple case. 1487 if (!Literal->containsNonAsciiOrNull()) { 1488 StringLength = NumBytes; 1489 return Map.GetOrCreateValue(String); 1490 } 1491 1492 // Otherwise, convert the UTF8 literals into a byte string. 1493 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1494 const UTF8 *FromPtr = (UTF8 *)String.data(); 1495 UTF16 *ToPtr = &ToBuf[0]; 1496 1497 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1498 &ToPtr, ToPtr + NumBytes, 1499 strictConversion); 1500 1501 // ConvertUTF8toUTF16 returns the length in ToPtr. 1502 StringLength = ToPtr - &ToBuf[0]; 1503 1504 // Render the UTF-16 string into a byte array and convert to the target byte 1505 // order. 1506 // 1507 // FIXME: This isn't something we should need to do here. 1508 llvm::SmallString<128> AsBytes; 1509 AsBytes.reserve(StringLength * 2); 1510 for (unsigned i = 0; i != StringLength; ++i) { 1511 unsigned short Val = ToBuf[i]; 1512 if (TargetIsLSB) { 1513 AsBytes.push_back(Val & 0xFF); 1514 AsBytes.push_back(Val >> 8); 1515 } else { 1516 AsBytes.push_back(Val >> 8); 1517 AsBytes.push_back(Val & 0xFF); 1518 } 1519 } 1520 // Append one extra null character, the second is automatically added by our 1521 // caller. 1522 AsBytes.push_back(0); 1523 1524 IsUTF16 = true; 1525 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1526 } 1527 1528 llvm::Constant * 1529 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1530 unsigned StringLength = 0; 1531 bool isUTF16 = false; 1532 llvm::StringMapEntry<llvm::Constant*> &Entry = 1533 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1534 getTargetData().isLittleEndian(), 1535 isUTF16, StringLength); 1536 1537 if (llvm::Constant *C = Entry.getValue()) 1538 return C; 1539 1540 llvm::Constant *Zero = 1541 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1542 llvm::Constant *Zeros[] = { Zero, Zero }; 1543 1544 // If we don't already have it, get __CFConstantStringClassReference. 1545 if (!CFConstantStringClassRef) { 1546 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1547 Ty = llvm::ArrayType::get(Ty, 0); 1548 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1549 "__CFConstantStringClassReference"); 1550 // Decay array -> ptr 1551 CFConstantStringClassRef = 1552 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1553 } 1554 1555 QualType CFTy = getContext().getCFConstantStringType(); 1556 1557 const llvm::StructType *STy = 1558 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1559 1560 std::vector<llvm::Constant*> Fields(4); 1561 1562 // Class pointer. 1563 Fields[0] = CFConstantStringClassRef; 1564 1565 // Flags. 1566 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1567 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1568 llvm::ConstantInt::get(Ty, 0x07C8); 1569 1570 // String pointer. 1571 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1572 1573 llvm::GlobalValue::LinkageTypes Linkage; 1574 bool isConstant; 1575 if (isUTF16) { 1576 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1577 Linkage = llvm::GlobalValue::InternalLinkage; 1578 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1579 // does make plain ascii ones writable. 1580 isConstant = true; 1581 } else { 1582 Linkage = llvm::GlobalValue::PrivateLinkage; 1583 isConstant = !Features.WritableStrings; 1584 } 1585 1586 llvm::GlobalVariable *GV = 1587 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1588 ".str"); 1589 if (isUTF16) { 1590 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1591 GV->setAlignment(Align.getQuantity()); 1592 } 1593 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1594 1595 // String length. 1596 Ty = getTypes().ConvertType(getContext().LongTy); 1597 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1598 1599 // The struct. 1600 C = llvm::ConstantStruct::get(STy, Fields); 1601 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1602 llvm::GlobalVariable::PrivateLinkage, C, 1603 "_unnamed_cfstring_"); 1604 if (const char *Sect = getContext().Target.getCFStringSection()) 1605 GV->setSection(Sect); 1606 Entry.setValue(GV); 1607 1608 return GV; 1609 } 1610 1611 llvm::Constant * 1612 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1613 unsigned StringLength = 0; 1614 bool isUTF16 = false; 1615 llvm::StringMapEntry<llvm::Constant*> &Entry = 1616 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1617 getTargetData().isLittleEndian(), 1618 isUTF16, StringLength); 1619 1620 if (llvm::Constant *C = Entry.getValue()) 1621 return C; 1622 1623 llvm::Constant *Zero = 1624 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1625 llvm::Constant *Zeros[] = { Zero, Zero }; 1626 1627 // If we don't already have it, get _NSConstantStringClassReference. 1628 if (!NSConstantStringClassRef) { 1629 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1630 Ty = llvm::ArrayType::get(Ty, 0); 1631 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1632 Features.ObjCNonFragileABI ? 1633 "OBJC_CLASS_$_NSConstantString" : 1634 "_NSConstantStringClassReference"); 1635 // Decay array -> ptr 1636 NSConstantStringClassRef = 1637 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1638 } 1639 1640 QualType NSTy = getContext().getNSConstantStringType(); 1641 1642 const llvm::StructType *STy = 1643 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1644 1645 std::vector<llvm::Constant*> Fields(3); 1646 1647 // Class pointer. 1648 Fields[0] = NSConstantStringClassRef; 1649 1650 // String pointer. 1651 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1652 1653 llvm::GlobalValue::LinkageTypes Linkage; 1654 bool isConstant; 1655 if (isUTF16) { 1656 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1657 Linkage = llvm::GlobalValue::InternalLinkage; 1658 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1659 // does make plain ascii ones writable. 1660 isConstant = true; 1661 } else { 1662 Linkage = llvm::GlobalValue::PrivateLinkage; 1663 isConstant = !Features.WritableStrings; 1664 } 1665 1666 llvm::GlobalVariable *GV = 1667 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1668 ".str"); 1669 if (isUTF16) { 1670 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1671 GV->setAlignment(Align.getQuantity()); 1672 } 1673 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1674 1675 // String length. 1676 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1677 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1678 1679 // The struct. 1680 C = llvm::ConstantStruct::get(STy, Fields); 1681 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1682 llvm::GlobalVariable::PrivateLinkage, C, 1683 "_unnamed_nsstring_"); 1684 // FIXME. Fix section. 1685 if (const char *Sect = 1686 Features.ObjCNonFragileABI 1687 ? getContext().Target.getNSStringNonFragileABISection() 1688 : getContext().Target.getNSStringSection()) 1689 GV->setSection(Sect); 1690 Entry.setValue(GV); 1691 1692 return GV; 1693 } 1694 1695 /// GetStringForStringLiteral - Return the appropriate bytes for a 1696 /// string literal, properly padded to match the literal type. 1697 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1698 const ConstantArrayType *CAT = 1699 getContext().getAsConstantArrayType(E->getType()); 1700 assert(CAT && "String isn't pointer or array!"); 1701 1702 // Resize the string to the right size. 1703 uint64_t RealLen = CAT->getSize().getZExtValue(); 1704 1705 if (E->isWide()) 1706 RealLen *= getContext().Target.getWCharWidth()/8; 1707 1708 std::string Str = E->getString().str(); 1709 Str.resize(RealLen, '\0'); 1710 1711 return Str; 1712 } 1713 1714 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1715 /// constant array for the given string literal. 1716 llvm::Constant * 1717 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1718 // FIXME: This can be more efficient. 1719 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1720 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1721 if (S->isWide()) { 1722 llvm::Type *DestTy = 1723 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1724 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1725 } 1726 return C; 1727 } 1728 1729 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1730 /// array for the given ObjCEncodeExpr node. 1731 llvm::Constant * 1732 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1733 std::string Str; 1734 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1735 1736 return GetAddrOfConstantCString(Str); 1737 } 1738 1739 1740 /// GenerateWritableString -- Creates storage for a string literal. 1741 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1742 bool constant, 1743 CodeGenModule &CGM, 1744 const char *GlobalName) { 1745 // Create Constant for this string literal. Don't add a '\0'. 1746 llvm::Constant *C = 1747 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1748 1749 // Create a global variable for this string 1750 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1751 llvm::GlobalValue::PrivateLinkage, 1752 C, GlobalName); 1753 } 1754 1755 /// GetAddrOfConstantString - Returns a pointer to a character array 1756 /// containing the literal. This contents are exactly that of the 1757 /// given string, i.e. it will not be null terminated automatically; 1758 /// see GetAddrOfConstantCString. Note that whether the result is 1759 /// actually a pointer to an LLVM constant depends on 1760 /// Feature.WriteableStrings. 1761 /// 1762 /// The result has pointer to array type. 1763 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1764 const char *GlobalName) { 1765 bool IsConstant = !Features.WritableStrings; 1766 1767 // Get the default prefix if a name wasn't specified. 1768 if (!GlobalName) 1769 GlobalName = ".str"; 1770 1771 // Don't share any string literals if strings aren't constant. 1772 if (!IsConstant) 1773 return GenerateStringLiteral(str, false, *this, GlobalName); 1774 1775 llvm::StringMapEntry<llvm::Constant *> &Entry = 1776 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1777 1778 if (Entry.getValue()) 1779 return Entry.getValue(); 1780 1781 // Create a global variable for this. 1782 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1783 Entry.setValue(C); 1784 return C; 1785 } 1786 1787 /// GetAddrOfConstantCString - Returns a pointer to a character 1788 /// array containing the literal and a terminating '\-' 1789 /// character. The result has pointer to array type. 1790 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1791 const char *GlobalName){ 1792 return GetAddrOfConstantString(str + '\0', GlobalName); 1793 } 1794 1795 /// EmitObjCPropertyImplementations - Emit information for synthesized 1796 /// properties for an implementation. 1797 void CodeGenModule::EmitObjCPropertyImplementations(const 1798 ObjCImplementationDecl *D) { 1799 for (ObjCImplementationDecl::propimpl_iterator 1800 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1801 ObjCPropertyImplDecl *PID = *i; 1802 1803 // Dynamic is just for type-checking. 1804 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1805 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1806 1807 // Determine which methods need to be implemented, some may have 1808 // been overridden. Note that ::isSynthesized is not the method 1809 // we want, that just indicates if the decl came from a 1810 // property. What we want to know is if the method is defined in 1811 // this implementation. 1812 if (!D->getInstanceMethod(PD->getGetterName())) 1813 CodeGenFunction(*this).GenerateObjCGetter( 1814 const_cast<ObjCImplementationDecl *>(D), PID); 1815 if (!PD->isReadOnly() && 1816 !D->getInstanceMethod(PD->getSetterName())) 1817 CodeGenFunction(*this).GenerateObjCSetter( 1818 const_cast<ObjCImplementationDecl *>(D), PID); 1819 } 1820 } 1821 } 1822 1823 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1824 /// for an implementation. 1825 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1826 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1827 return; 1828 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1829 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1830 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1831 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1832 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1833 D->getLocation(), 1834 D->getLocation(), cxxSelector, 1835 getContext().VoidTy, 0, 1836 DC, true, false, true, false, 1837 ObjCMethodDecl::Required); 1838 D->addInstanceMethod(DTORMethod); 1839 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1840 1841 II = &getContext().Idents.get(".cxx_construct"); 1842 cxxSelector = getContext().Selectors.getSelector(0, &II); 1843 // The constructor returns 'self'. 1844 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1845 D->getLocation(), 1846 D->getLocation(), cxxSelector, 1847 getContext().getObjCIdType(), 0, 1848 DC, true, false, true, false, 1849 ObjCMethodDecl::Required); 1850 D->addInstanceMethod(CTORMethod); 1851 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1852 1853 1854 } 1855 1856 /// EmitNamespace - Emit all declarations in a namespace. 1857 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1858 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1859 I != E; ++I) 1860 EmitTopLevelDecl(*I); 1861 } 1862 1863 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1864 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1865 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1866 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1867 ErrorUnsupported(LSD, "linkage spec"); 1868 return; 1869 } 1870 1871 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1872 I != E; ++I) 1873 EmitTopLevelDecl(*I); 1874 } 1875 1876 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1877 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1878 // If an error has occurred, stop code generation, but continue 1879 // parsing and semantic analysis (to ensure all warnings and errors 1880 // are emitted). 1881 if (Diags.hasErrorOccurred()) 1882 return; 1883 1884 // Ignore dependent declarations. 1885 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1886 return; 1887 1888 switch (D->getKind()) { 1889 case Decl::CXXConversion: 1890 case Decl::CXXMethod: 1891 case Decl::Function: 1892 // Skip function templates 1893 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1894 return; 1895 1896 EmitGlobal(cast<FunctionDecl>(D)); 1897 break; 1898 1899 case Decl::Var: 1900 EmitGlobal(cast<VarDecl>(D)); 1901 break; 1902 1903 // C++ Decls 1904 case Decl::Namespace: 1905 EmitNamespace(cast<NamespaceDecl>(D)); 1906 break; 1907 // No code generation needed. 1908 case Decl::UsingShadow: 1909 case Decl::Using: 1910 case Decl::UsingDirective: 1911 case Decl::ClassTemplate: 1912 case Decl::FunctionTemplate: 1913 case Decl::NamespaceAlias: 1914 break; 1915 case Decl::CXXConstructor: 1916 // Skip function templates 1917 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1918 return; 1919 1920 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1921 break; 1922 case Decl::CXXDestructor: 1923 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1924 break; 1925 1926 case Decl::StaticAssert: 1927 // Nothing to do. 1928 break; 1929 1930 // Objective-C Decls 1931 1932 // Forward declarations, no (immediate) code generation. 1933 case Decl::ObjCClass: 1934 case Decl::ObjCForwardProtocol: 1935 case Decl::ObjCInterface: 1936 break; 1937 1938 case Decl::ObjCCategory: { 1939 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 1940 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 1941 Context.ResetObjCLayout(CD->getClassInterface()); 1942 break; 1943 } 1944 1945 1946 case Decl::ObjCProtocol: 1947 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1948 break; 1949 1950 case Decl::ObjCCategoryImpl: 1951 // Categories have properties but don't support synthesize so we 1952 // can ignore them here. 1953 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1954 break; 1955 1956 case Decl::ObjCImplementation: { 1957 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1958 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 1959 Context.ResetObjCLayout(OMD->getClassInterface()); 1960 EmitObjCPropertyImplementations(OMD); 1961 EmitObjCIvarInitializations(OMD); 1962 Runtime->GenerateClass(OMD); 1963 break; 1964 } 1965 case Decl::ObjCMethod: { 1966 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1967 // If this is not a prototype, emit the body. 1968 if (OMD->getBody()) 1969 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1970 break; 1971 } 1972 case Decl::ObjCCompatibleAlias: 1973 // compatibility-alias is a directive and has no code gen. 1974 break; 1975 1976 case Decl::LinkageSpec: 1977 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1978 break; 1979 1980 case Decl::FileScopeAsm: { 1981 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1982 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1983 1984 const std::string &S = getModule().getModuleInlineAsm(); 1985 if (S.empty()) 1986 getModule().setModuleInlineAsm(AsmString); 1987 else 1988 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1989 break; 1990 } 1991 1992 default: 1993 // Make sure we handled everything we should, every other kind is a 1994 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1995 // function. Need to recode Decl::Kind to do that easily. 1996 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1997 } 1998 } 1999 2000 /// Turns the given pointer into a constant. 2001 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2002 const void *Ptr) { 2003 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2004 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2005 return llvm::ConstantInt::get(i64, PtrInt); 2006 } 2007 2008 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2009 llvm::NamedMDNode *&GlobalMetadata, 2010 GlobalDecl D, 2011 llvm::GlobalValue *Addr) { 2012 if (!GlobalMetadata) 2013 GlobalMetadata = 2014 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2015 2016 // TODO: should we report variant information for ctors/dtors? 2017 llvm::Value *Ops[] = { 2018 Addr, 2019 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2020 }; 2021 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2022 } 2023 2024 /// Emits metadata nodes associating all the global values in the 2025 /// current module with the Decls they came from. This is useful for 2026 /// projects using IR gen as a subroutine. 2027 /// 2028 /// Since there's currently no way to associate an MDNode directly 2029 /// with an llvm::GlobalValue, we create a global named metadata 2030 /// with the name 'clang.global.decl.ptrs'. 2031 void CodeGenModule::EmitDeclMetadata() { 2032 llvm::NamedMDNode *GlobalMetadata = 0; 2033 2034 // StaticLocalDeclMap 2035 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2036 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2037 I != E; ++I) { 2038 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2039 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2040 } 2041 } 2042 2043 /// Emits metadata nodes for all the local variables in the current 2044 /// function. 2045 void CodeGenFunction::EmitDeclMetadata() { 2046 if (LocalDeclMap.empty()) return; 2047 2048 llvm::LLVMContext &Context = getLLVMContext(); 2049 2050 // Find the unique metadata ID for this name. 2051 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2052 2053 llvm::NamedMDNode *GlobalMetadata = 0; 2054 2055 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2056 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2057 const Decl *D = I->first; 2058 llvm::Value *Addr = I->second; 2059 2060 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2061 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2062 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2063 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2064 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2065 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2066 } 2067 } 2068 } 2069 2070 ///@name Custom Runtime Function Interfaces 2071 ///@{ 2072 // 2073 // FIXME: These can be eliminated once we can have clients just get the required 2074 // AST nodes from the builtin tables. 2075 2076 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2077 if (BlockObjectDispose) 2078 return BlockObjectDispose; 2079 2080 // If we saw an explicit decl, use that. 2081 if (BlockObjectDisposeDecl) { 2082 return BlockObjectDispose = GetAddrOfFunction( 2083 BlockObjectDisposeDecl, 2084 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2085 } 2086 2087 // Otherwise construct the function by hand. 2088 const llvm::FunctionType *FTy; 2089 std::vector<const llvm::Type*> ArgTys; 2090 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2091 ArgTys.push_back(PtrToInt8Ty); 2092 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2093 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2094 return BlockObjectDispose = 2095 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2096 } 2097 2098 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2099 if (BlockObjectAssign) 2100 return BlockObjectAssign; 2101 2102 // If we saw an explicit decl, use that. 2103 if (BlockObjectAssignDecl) { 2104 return BlockObjectAssign = GetAddrOfFunction( 2105 BlockObjectAssignDecl, 2106 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2107 } 2108 2109 // Otherwise construct the function by hand. 2110 const llvm::FunctionType *FTy; 2111 std::vector<const llvm::Type*> ArgTys; 2112 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2113 ArgTys.push_back(PtrToInt8Ty); 2114 ArgTys.push_back(PtrToInt8Ty); 2115 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2116 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2117 return BlockObjectAssign = 2118 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2119 } 2120 2121 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2122 if (NSConcreteGlobalBlock) 2123 return NSConcreteGlobalBlock; 2124 2125 // If we saw an explicit decl, use that. 2126 if (NSConcreteGlobalBlockDecl) { 2127 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2128 NSConcreteGlobalBlockDecl, 2129 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2130 } 2131 2132 // Otherwise construct the variable by hand. 2133 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2134 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2135 } 2136 2137 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2138 if (NSConcreteStackBlock) 2139 return NSConcreteStackBlock; 2140 2141 // If we saw an explicit decl, use that. 2142 if (NSConcreteStackBlockDecl) { 2143 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2144 NSConcreteStackBlockDecl, 2145 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2146 } 2147 2148 // Otherwise construct the variable by hand. 2149 return NSConcreteStackBlock = CreateRuntimeVariable( 2150 PtrToInt8Ty, "_NSConcreteStackBlock"); 2151 } 2152 2153 ///@} 2154