xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 563f0e852c5002ff177aa73802b543d5e3781388)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "TargetInfo.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/AST/CharUnits.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclObjC.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/Mangle.h"
32 #include "clang/AST/RecordLayout.h"
33 #include "clang/AST/RecursiveASTVisitor.h"
34 #include "clang/Basic/Builtins.h"
35 #include "clang/Basic/CharInfo.h"
36 #include "clang/Basic/Diagnostic.h"
37 #include "clang/Basic/Module.h"
38 #include "clang/Basic/SourceManager.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "clang/Basic/Version.h"
41 #include "clang/Frontend/CodeGenOptions.h"
42 #include "clang/Sema/SemaDiagnostic.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/Triple.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/CallingConv.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/ProfileData/InstrProfReader.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/ErrorHandling.h"
54 
55 using namespace clang;
56 using namespace CodeGen;
57 
58 static const char AnnotationSection[] = "llvm.metadata";
59 
60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
61   switch (CGM.getTarget().getCXXABI().getKind()) {
62   case TargetCXXABI::GenericAArch64:
63   case TargetCXXABI::GenericARM:
64   case TargetCXXABI::iOS:
65   case TargetCXXABI::iOS64:
66   case TargetCXXABI::GenericItanium:
67     return CreateItaniumCXXABI(CGM);
68   case TargetCXXABI::Microsoft:
69     return CreateMicrosoftCXXABI(CGM);
70   }
71 
72   llvm_unreachable("invalid C++ ABI kind");
73 }
74 
75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
76                              llvm::Module &M, const llvm::DataLayout &TD,
77                              DiagnosticsEngine &diags)
78     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
79       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
80       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
81       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
82       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
83       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
84       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
85       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
86       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
87       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
88       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
89       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
90       LifetimeEndFn(nullptr),
91       SanitizerBlacklist(
92           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
93       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
94                                           : LangOpts.Sanitize) {
95 
96   // Initialize the type cache.
97   llvm::LLVMContext &LLVMContext = M.getContext();
98   VoidTy = llvm::Type::getVoidTy(LLVMContext);
99   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
100   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
101   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
102   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
103   FloatTy = llvm::Type::getFloatTy(LLVMContext);
104   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
105   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
106   PointerAlignInBytes =
107   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
108   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
109   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
110   Int8PtrTy = Int8Ty->getPointerTo(0);
111   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
112 
113   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
114 
115   if (LangOpts.ObjC1)
116     createObjCRuntime();
117   if (LangOpts.OpenCL)
118     createOpenCLRuntime();
119   if (LangOpts.OpenMP)
120     createOpenMPRuntime();
121   if (LangOpts.CUDA)
122     createCUDARuntime();
123 
124   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
125   if (SanOpts.Thread ||
126       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
127     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
128                            getCXXABI().getMangleContext());
129 
130   // If debug info or coverage generation is enabled, create the CGDebugInfo
131   // object.
132   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
133       CodeGenOpts.EmitGcovArcs ||
134       CodeGenOpts.EmitGcovNotes)
135     DebugInfo = new CGDebugInfo(*this);
136 
137   Block.GlobalUniqueCount = 0;
138 
139   if (C.getLangOpts().ObjCAutoRefCount)
140     ARCData = new ARCEntrypoints();
141   RRData = new RREntrypoints();
142 
143   if (!CodeGenOpts.InstrProfileInput.empty()) {
144     if (llvm::error_code EC = llvm::IndexedInstrProfReader::create(
145             CodeGenOpts.InstrProfileInput, PGOReader)) {
146       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
147                                               "Could not read profile: %0");
148       getDiags().Report(DiagID) << EC.message();
149     }
150   }
151 }
152 
153 CodeGenModule::~CodeGenModule() {
154   delete ObjCRuntime;
155   delete OpenCLRuntime;
156   delete OpenMPRuntime;
157   delete CUDARuntime;
158   delete TheTargetCodeGenInfo;
159   delete TBAA;
160   delete DebugInfo;
161   delete ARCData;
162   delete RRData;
163 }
164 
165 void CodeGenModule::createObjCRuntime() {
166   // This is just isGNUFamily(), but we want to force implementors of
167   // new ABIs to decide how best to do this.
168   switch (LangOpts.ObjCRuntime.getKind()) {
169   case ObjCRuntime::GNUstep:
170   case ObjCRuntime::GCC:
171   case ObjCRuntime::ObjFW:
172     ObjCRuntime = CreateGNUObjCRuntime(*this);
173     return;
174 
175   case ObjCRuntime::FragileMacOSX:
176   case ObjCRuntime::MacOSX:
177   case ObjCRuntime::iOS:
178     ObjCRuntime = CreateMacObjCRuntime(*this);
179     return;
180   }
181   llvm_unreachable("bad runtime kind");
182 }
183 
184 void CodeGenModule::createOpenCLRuntime() {
185   OpenCLRuntime = new CGOpenCLRuntime(*this);
186 }
187 
188 void CodeGenModule::createOpenMPRuntime() {
189   OpenMPRuntime = new CGOpenMPRuntime(*this);
190 }
191 
192 void CodeGenModule::createCUDARuntime() {
193   CUDARuntime = CreateNVCUDARuntime(*this);
194 }
195 
196 void CodeGenModule::applyReplacements() {
197   for (ReplacementsTy::iterator I = Replacements.begin(),
198                                 E = Replacements.end();
199        I != E; ++I) {
200     StringRef MangledName = I->first();
201     llvm::Constant *Replacement = I->second;
202     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
203     if (!Entry)
204       continue;
205     auto *OldF = cast<llvm::Function>(Entry);
206     auto *NewF = dyn_cast<llvm::Function>(Replacement);
207     if (!NewF) {
208       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
209         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
210       } else {
211         auto *CE = cast<llvm::ConstantExpr>(Replacement);
212         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
213                CE->getOpcode() == llvm::Instruction::GetElementPtr);
214         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
215       }
216     }
217 
218     // Replace old with new, but keep the old order.
219     OldF->replaceAllUsesWith(Replacement);
220     if (NewF) {
221       NewF->removeFromParent();
222       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
223     }
224     OldF->eraseFromParent();
225   }
226 }
227 
228 void CodeGenModule::checkAliases() {
229   // Check if the constructed aliases are well formed. It is really unfortunate
230   // that we have to do this in CodeGen, but we only construct mangled names
231   // and aliases during codegen.
232   bool Error = false;
233   DiagnosticsEngine &Diags = getDiags();
234   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
235          E = Aliases.end(); I != E; ++I) {
236     const GlobalDecl &GD = *I;
237     const auto *D = cast<ValueDecl>(GD.getDecl());
238     const AliasAttr *AA = D->getAttr<AliasAttr>();
239     StringRef MangledName = getMangledName(GD);
240     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
241     auto *Alias = cast<llvm::GlobalAlias>(Entry);
242     llvm::GlobalValue *GV = Alias->getAliasee();
243     if (GV->isDeclaration()) {
244       Error = true;
245       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
246     }
247 
248     llvm::GlobalObject *Aliasee = Alias->getAliasee();
249     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
250       StringRef AliasSection = SA->getName();
251       if (AliasSection != Aliasee->getSection())
252         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
253             << AliasSection;
254     }
255   }
256   if (!Error)
257     return;
258 
259   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
260          E = Aliases.end(); I != E; ++I) {
261     const GlobalDecl &GD = *I;
262     StringRef MangledName = getMangledName(GD);
263     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
264     auto *Alias = cast<llvm::GlobalAlias>(Entry);
265     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
266     Alias->eraseFromParent();
267   }
268 }
269 
270 void CodeGenModule::clear() {
271   DeferredDeclsToEmit.clear();
272 }
273 
274 void CodeGenModule::Release() {
275   EmitDeferred();
276   applyReplacements();
277   checkAliases();
278   EmitCXXGlobalInitFunc();
279   EmitCXXGlobalDtorFunc();
280   EmitCXXThreadLocalInitFunc();
281   if (ObjCRuntime)
282     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
283       AddGlobalCtor(ObjCInitFunction);
284   if (getCodeGenOpts().ProfileInstrGenerate)
285     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
286       AddGlobalCtor(PGOInit, 0);
287   if (PGOReader && PGOStats.isOutOfDate())
288     getDiags().Report(diag::warn_profile_data_out_of_date)
289         << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched;
290   EmitCtorList(GlobalCtors, "llvm.global_ctors");
291   EmitCtorList(GlobalDtors, "llvm.global_dtors");
292   EmitGlobalAnnotations();
293   EmitStaticExternCAliases();
294   emitLLVMUsed();
295 
296   if (CodeGenOpts.Autolink &&
297       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
298     EmitModuleLinkOptions();
299   }
300   if (CodeGenOpts.DwarfVersion)
301     // We actually want the latest version when there are conflicts.
302     // We can change from Warning to Latest if such mode is supported.
303     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
304                               CodeGenOpts.DwarfVersion);
305   if (DebugInfo)
306     // We support a single version in the linked module. The LLVM
307     // parser will drop debug info with a different version number
308     // (and warn about it, too).
309     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
310                               llvm::DEBUG_METADATA_VERSION);
311 
312   SimplifyPersonality();
313 
314   if (getCodeGenOpts().EmitDeclMetadata)
315     EmitDeclMetadata();
316 
317   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
318     EmitCoverageFile();
319 
320   if (DebugInfo)
321     DebugInfo->finalize();
322 
323   EmitVersionIdentMetadata();
324 }
325 
326 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
327   // Make sure that this type is translated.
328   Types.UpdateCompletedType(TD);
329 }
330 
331 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
332   if (!TBAA)
333     return nullptr;
334   return TBAA->getTBAAInfo(QTy);
335 }
336 
337 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
338   if (!TBAA)
339     return nullptr;
340   return TBAA->getTBAAInfoForVTablePtr();
341 }
342 
343 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
344   if (!TBAA)
345     return nullptr;
346   return TBAA->getTBAAStructInfo(QTy);
347 }
348 
349 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
350   if (!TBAA)
351     return nullptr;
352   return TBAA->getTBAAStructTypeInfo(QTy);
353 }
354 
355 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
356                                                   llvm::MDNode *AccessN,
357                                                   uint64_t O) {
358   if (!TBAA)
359     return nullptr;
360   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
361 }
362 
363 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
364 /// and struct-path aware TBAA, the tag has the same format:
365 /// base type, access type and offset.
366 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
367 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
368                                         llvm::MDNode *TBAAInfo,
369                                         bool ConvertTypeToTag) {
370   if (ConvertTypeToTag && TBAA)
371     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
372                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
373   else
374     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
375 }
376 
377 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
378   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
379   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
380 }
381 
382 /// ErrorUnsupported - Print out an error that codegen doesn't support the
383 /// specified stmt yet.
384 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
385   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
386                                                "cannot compile this %0 yet");
387   std::string Msg = Type;
388   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
389     << Msg << S->getSourceRange();
390 }
391 
392 /// ErrorUnsupported - Print out an error that codegen doesn't support the
393 /// specified decl yet.
394 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
395   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
396                                                "cannot compile this %0 yet");
397   std::string Msg = Type;
398   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
399 }
400 
401 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
402   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
403 }
404 
405 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
406                                         const NamedDecl *D) const {
407   // Internal definitions always have default visibility.
408   if (GV->hasLocalLinkage()) {
409     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
410     return;
411   }
412 
413   // Set visibility for definitions.
414   LinkageInfo LV = D->getLinkageAndVisibility();
415   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
416     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
417 }
418 
419 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
420   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
421       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
422       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
423       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
424       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
425 }
426 
427 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
428     CodeGenOptions::TLSModel M) {
429   switch (M) {
430   case CodeGenOptions::GeneralDynamicTLSModel:
431     return llvm::GlobalVariable::GeneralDynamicTLSModel;
432   case CodeGenOptions::LocalDynamicTLSModel:
433     return llvm::GlobalVariable::LocalDynamicTLSModel;
434   case CodeGenOptions::InitialExecTLSModel:
435     return llvm::GlobalVariable::InitialExecTLSModel;
436   case CodeGenOptions::LocalExecTLSModel:
437     return llvm::GlobalVariable::LocalExecTLSModel;
438   }
439   llvm_unreachable("Invalid TLS model!");
440 }
441 
442 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
443                                const VarDecl &D) const {
444   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
445 
446   llvm::GlobalVariable::ThreadLocalMode TLM;
447   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
448 
449   // Override the TLS model if it is explicitly specified.
450   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
451     TLM = GetLLVMTLSModel(Attr->getModel());
452   }
453 
454   GV->setThreadLocalMode(TLM);
455 }
456 
457 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
458   const auto *ND = cast<NamedDecl>(GD.getDecl());
459 
460   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
461   if (!Str.empty())
462     return Str;
463 
464   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
465     IdentifierInfo *II = ND->getIdentifier();
466     assert(II && "Attempt to mangle unnamed decl.");
467 
468     Str = II->getName();
469     return Str;
470   }
471 
472   SmallString<256> Buffer;
473   llvm::raw_svector_ostream Out(Buffer);
474   if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
475     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
476   else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
477     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
478   else
479     getCXXABI().getMangleContext().mangleName(ND, Out);
480 
481   // Allocate space for the mangled name.
482   Out.flush();
483   size_t Length = Buffer.size();
484   char *Name = MangledNamesAllocator.Allocate<char>(Length);
485   std::copy(Buffer.begin(), Buffer.end(), Name);
486 
487   Str = StringRef(Name, Length);
488 
489   return Str;
490 }
491 
492 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
493                                         const BlockDecl *BD) {
494   MangleContext &MangleCtx = getCXXABI().getMangleContext();
495   const Decl *D = GD.getDecl();
496   llvm::raw_svector_ostream Out(Buffer.getBuffer());
497   if (!D)
498     MangleCtx.mangleGlobalBlock(BD,
499       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
500   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
501     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
502   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
503     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
504   else
505     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
506 }
507 
508 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
509   return getModule().getNamedValue(Name);
510 }
511 
512 /// AddGlobalCtor - Add a function to the list that will be called before
513 /// main() runs.
514 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
515                                   llvm::Constant *AssociatedData) {
516   // FIXME: Type coercion of void()* types.
517   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
518 }
519 
520 /// AddGlobalDtor - Add a function to the list that will be called
521 /// when the module is unloaded.
522 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
523   // FIXME: Type coercion of void()* types.
524   GlobalDtors.push_back(Structor(Priority, Dtor, 0));
525 }
526 
527 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
528   // Ctor function type is void()*.
529   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
530   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
531 
532   // Get the type of a ctor entry, { i32, void ()*, i8* }.
533   llvm::StructType *CtorStructTy = llvm::StructType::get(
534       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL);
535 
536   // Construct the constructor and destructor arrays.
537   SmallVector<llvm::Constant*, 8> Ctors;
538   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
539     llvm::Constant *S[] = {
540       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
541       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
542       (I->AssociatedData
543            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
544            : llvm::Constant::getNullValue(VoidPtrTy))
545     };
546     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
547   }
548 
549   if (!Ctors.empty()) {
550     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
551     new llvm::GlobalVariable(TheModule, AT, false,
552                              llvm::GlobalValue::AppendingLinkage,
553                              llvm::ConstantArray::get(AT, Ctors),
554                              GlobalName);
555   }
556 }
557 
558 llvm::GlobalValue::LinkageTypes
559 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
560   const auto *D = cast<FunctionDecl>(GD.getDecl());
561 
562   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
563 
564   bool UseThunkForDtorVariant =
565       isa<CXXDestructorDecl>(D) &&
566       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
567                                          GD.getDtorType());
568 
569   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false,
570                                      UseThunkForDtorVariant);
571 }
572 
573 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
574                                                     llvm::Function *F) {
575   setNonAliasAttributes(D, F);
576 }
577 
578 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
579                                               const CGFunctionInfo &Info,
580                                               llvm::Function *F) {
581   unsigned CallingConv;
582   AttributeListType AttributeList;
583   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
584   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
585   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
586 }
587 
588 /// Determines whether the language options require us to model
589 /// unwind exceptions.  We treat -fexceptions as mandating this
590 /// except under the fragile ObjC ABI with only ObjC exceptions
591 /// enabled.  This means, for example, that C with -fexceptions
592 /// enables this.
593 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
594   // If exceptions are completely disabled, obviously this is false.
595   if (!LangOpts.Exceptions) return false;
596 
597   // If C++ exceptions are enabled, this is true.
598   if (LangOpts.CXXExceptions) return true;
599 
600   // If ObjC exceptions are enabled, this depends on the ABI.
601   if (LangOpts.ObjCExceptions) {
602     return LangOpts.ObjCRuntime.hasUnwindExceptions();
603   }
604 
605   return true;
606 }
607 
608 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
609                                                            llvm::Function *F) {
610   llvm::AttrBuilder B;
611 
612   if (CodeGenOpts.UnwindTables)
613     B.addAttribute(llvm::Attribute::UWTable);
614 
615   if (!hasUnwindExceptions(LangOpts))
616     B.addAttribute(llvm::Attribute::NoUnwind);
617 
618   if (D->hasAttr<NakedAttr>()) {
619     // Naked implies noinline: we should not be inlining such functions.
620     B.addAttribute(llvm::Attribute::Naked);
621     B.addAttribute(llvm::Attribute::NoInline);
622   } else if (D->hasAttr<OptimizeNoneAttr>()) {
623     // OptimizeNone implies noinline; we should not be inlining such functions.
624     B.addAttribute(llvm::Attribute::OptimizeNone);
625     B.addAttribute(llvm::Attribute::NoInline);
626   } else if (D->hasAttr<NoDuplicateAttr>()) {
627     B.addAttribute(llvm::Attribute::NoDuplicate);
628   } else if (D->hasAttr<NoInlineAttr>()) {
629     B.addAttribute(llvm::Attribute::NoInline);
630   } else if (D->hasAttr<AlwaysInlineAttr>() &&
631              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
632                                               llvm::Attribute::NoInline)) {
633     // (noinline wins over always_inline, and we can't specify both in IR)
634     B.addAttribute(llvm::Attribute::AlwaysInline);
635   }
636 
637   if (D->hasAttr<ColdAttr>()) {
638     B.addAttribute(llvm::Attribute::OptimizeForSize);
639     B.addAttribute(llvm::Attribute::Cold);
640   }
641 
642   if (D->hasAttr<MinSizeAttr>())
643     B.addAttribute(llvm::Attribute::MinSize);
644 
645   if (D->hasAttr<OptimizeNoneAttr>()) {
646     // OptimizeNone wins over OptimizeForSize and MinSize.
647     B.removeAttribute(llvm::Attribute::OptimizeForSize);
648     B.removeAttribute(llvm::Attribute::MinSize);
649   }
650 
651   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
652     B.addAttribute(llvm::Attribute::StackProtect);
653   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
654     B.addAttribute(llvm::Attribute::StackProtectStrong);
655   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
656     B.addAttribute(llvm::Attribute::StackProtectReq);
657 
658   // Add sanitizer attributes if function is not blacklisted.
659   if (!SanitizerBlacklist->isIn(*F)) {
660     // When AddressSanitizer is enabled, set SanitizeAddress attribute
661     // unless __attribute__((no_sanitize_address)) is used.
662     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
663       B.addAttribute(llvm::Attribute::SanitizeAddress);
664     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
665     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
666       B.addAttribute(llvm::Attribute::SanitizeThread);
667     }
668     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
669     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
670       B.addAttribute(llvm::Attribute::SanitizeMemory);
671   }
672 
673   F->addAttributes(llvm::AttributeSet::FunctionIndex,
674                    llvm::AttributeSet::get(
675                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
676 
677   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
678     F->setUnnamedAddr(true);
679   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
680     if (MD->isVirtual())
681       F->setUnnamedAddr(true);
682 
683   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
684   if (alignment)
685     F->setAlignment(alignment);
686 
687   // C++ ABI requires 2-byte alignment for member functions.
688   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
689     F->setAlignment(2);
690 }
691 
692 void CodeGenModule::SetCommonAttributes(const Decl *D,
693                                         llvm::GlobalValue *GV) {
694   if (const auto *ND = dyn_cast<NamedDecl>(D))
695     setGlobalVisibility(GV, ND);
696   else
697     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
698 
699   if (D->hasAttr<UsedAttr>())
700     addUsedGlobal(GV);
701 }
702 
703 void CodeGenModule::setNonAliasAttributes(const Decl *D,
704                                           llvm::GlobalObject *GO) {
705   SetCommonAttributes(D, GO);
706 
707   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
708     GO->setSection(SA->getName());
709 
710   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
711 }
712 
713 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
714                                                   llvm::Function *F,
715                                                   const CGFunctionInfo &FI) {
716   SetLLVMFunctionAttributes(D, FI, F);
717   SetLLVMFunctionAttributesForDefinition(D, F);
718 
719   F->setLinkage(llvm::Function::InternalLinkage);
720 
721   setNonAliasAttributes(D, F);
722 }
723 
724 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
725                                          const NamedDecl *ND) {
726   // Set linkage and visibility in case we never see a definition.
727   LinkageInfo LV = ND->getLinkageAndVisibility();
728   if (LV.getLinkage() != ExternalLinkage) {
729     // Don't set internal linkage on declarations.
730   } else {
731     if (ND->hasAttr<DLLImportAttr>()) {
732       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
733       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
734     } else if (ND->hasAttr<DLLExportAttr>()) {
735       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
736       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
737     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
738       // "extern_weak" is overloaded in LLVM; we probably should have
739       // separate linkage types for this.
740       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
741     }
742 
743     // Set visibility on a declaration only if it's explicit.
744     if (LV.isVisibilityExplicit())
745       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
746   }
747 }
748 
749 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
750                                           llvm::Function *F,
751                                           bool IsIncompleteFunction) {
752   if (unsigned IID = F->getIntrinsicID()) {
753     // If this is an intrinsic function, set the function's attributes
754     // to the intrinsic's attributes.
755     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
756                                                     (llvm::Intrinsic::ID)IID));
757     return;
758   }
759 
760   const auto *FD = cast<FunctionDecl>(GD.getDecl());
761 
762   if (!IsIncompleteFunction)
763     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
764 
765   // Add the Returned attribute for "this", except for iOS 5 and earlier
766   // where substantial code, including the libstdc++ dylib, was compiled with
767   // GCC and does not actually return "this".
768   if (getCXXABI().HasThisReturn(GD) &&
769       !(getTarget().getTriple().isiOS() &&
770         getTarget().getTriple().isOSVersionLT(6))) {
771     assert(!F->arg_empty() &&
772            F->arg_begin()->getType()
773              ->canLosslesslyBitCastTo(F->getReturnType()) &&
774            "unexpected this return");
775     F->addAttribute(1, llvm::Attribute::Returned);
776   }
777 
778   // Only a few attributes are set on declarations; these may later be
779   // overridden by a definition.
780 
781   setLinkageAndVisibilityForGV(F, FD);
782 
783   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
784     F->setSection(SA->getName());
785 
786   // A replaceable global allocation function does not act like a builtin by
787   // default, only if it is invoked by a new-expression or delete-expression.
788   if (FD->isReplaceableGlobalAllocationFunction())
789     F->addAttribute(llvm::AttributeSet::FunctionIndex,
790                     llvm::Attribute::NoBuiltin);
791 }
792 
793 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
794   assert(!GV->isDeclaration() &&
795          "Only globals with definition can force usage.");
796   LLVMUsed.push_back(GV);
797 }
798 
799 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
800   assert(!GV->isDeclaration() &&
801          "Only globals with definition can force usage.");
802   LLVMCompilerUsed.push_back(GV);
803 }
804 
805 static void emitUsed(CodeGenModule &CGM, StringRef Name,
806                      std::vector<llvm::WeakVH> &List) {
807   // Don't create llvm.used if there is no need.
808   if (List.empty())
809     return;
810 
811   // Convert List to what ConstantArray needs.
812   SmallVector<llvm::Constant*, 8> UsedArray;
813   UsedArray.resize(List.size());
814   for (unsigned i = 0, e = List.size(); i != e; ++i) {
815     UsedArray[i] =
816      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
817                                     CGM.Int8PtrTy);
818   }
819 
820   if (UsedArray.empty())
821     return;
822   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
823 
824   auto *GV = new llvm::GlobalVariable(
825       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
826       llvm::ConstantArray::get(ATy, UsedArray), Name);
827 
828   GV->setSection("llvm.metadata");
829 }
830 
831 void CodeGenModule::emitLLVMUsed() {
832   emitUsed(*this, "llvm.used", LLVMUsed);
833   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
834 }
835 
836 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
837   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
838   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
839 }
840 
841 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
842   llvm::SmallString<32> Opt;
843   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
844   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
845   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
846 }
847 
848 void CodeGenModule::AddDependentLib(StringRef Lib) {
849   llvm::SmallString<24> Opt;
850   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
851   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
852   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
853 }
854 
855 /// \brief Add link options implied by the given module, including modules
856 /// it depends on, using a postorder walk.
857 static void addLinkOptionsPostorder(CodeGenModule &CGM,
858                                     Module *Mod,
859                                     SmallVectorImpl<llvm::Value *> &Metadata,
860                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
861   // Import this module's parent.
862   if (Mod->Parent && Visited.insert(Mod->Parent)) {
863     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
864   }
865 
866   // Import this module's dependencies.
867   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
868     if (Visited.insert(Mod->Imports[I-1]))
869       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
870   }
871 
872   // Add linker options to link against the libraries/frameworks
873   // described by this module.
874   llvm::LLVMContext &Context = CGM.getLLVMContext();
875   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
876     // Link against a framework.  Frameworks are currently Darwin only, so we
877     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
878     if (Mod->LinkLibraries[I-1].IsFramework) {
879       llvm::Value *Args[2] = {
880         llvm::MDString::get(Context, "-framework"),
881         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
882       };
883 
884       Metadata.push_back(llvm::MDNode::get(Context, Args));
885       continue;
886     }
887 
888     // Link against a library.
889     llvm::SmallString<24> Opt;
890     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
891       Mod->LinkLibraries[I-1].Library, Opt);
892     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
893     Metadata.push_back(llvm::MDNode::get(Context, OptString));
894   }
895 }
896 
897 void CodeGenModule::EmitModuleLinkOptions() {
898   // Collect the set of all of the modules we want to visit to emit link
899   // options, which is essentially the imported modules and all of their
900   // non-explicit child modules.
901   llvm::SetVector<clang::Module *> LinkModules;
902   llvm::SmallPtrSet<clang::Module *, 16> Visited;
903   SmallVector<clang::Module *, 16> Stack;
904 
905   // Seed the stack with imported modules.
906   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
907                                                MEnd = ImportedModules.end();
908        M != MEnd; ++M) {
909     if (Visited.insert(*M))
910       Stack.push_back(*M);
911   }
912 
913   // Find all of the modules to import, making a little effort to prune
914   // non-leaf modules.
915   while (!Stack.empty()) {
916     clang::Module *Mod = Stack.pop_back_val();
917 
918     bool AnyChildren = false;
919 
920     // Visit the submodules of this module.
921     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
922                                         SubEnd = Mod->submodule_end();
923          Sub != SubEnd; ++Sub) {
924       // Skip explicit children; they need to be explicitly imported to be
925       // linked against.
926       if ((*Sub)->IsExplicit)
927         continue;
928 
929       if (Visited.insert(*Sub)) {
930         Stack.push_back(*Sub);
931         AnyChildren = true;
932       }
933     }
934 
935     // We didn't find any children, so add this module to the list of
936     // modules to link against.
937     if (!AnyChildren) {
938       LinkModules.insert(Mod);
939     }
940   }
941 
942   // Add link options for all of the imported modules in reverse topological
943   // order.  We don't do anything to try to order import link flags with respect
944   // to linker options inserted by things like #pragma comment().
945   SmallVector<llvm::Value *, 16> MetadataArgs;
946   Visited.clear();
947   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
948                                                MEnd = LinkModules.end();
949        M != MEnd; ++M) {
950     if (Visited.insert(*M))
951       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
952   }
953   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
954   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
955 
956   // Add the linker options metadata flag.
957   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
958                             llvm::MDNode::get(getLLVMContext(),
959                                               LinkerOptionsMetadata));
960 }
961 
962 void CodeGenModule::EmitDeferred() {
963   // Emit code for any potentially referenced deferred decls.  Since a
964   // previously unused static decl may become used during the generation of code
965   // for a static function, iterate until no changes are made.
966 
967   while (true) {
968     if (!DeferredVTables.empty()) {
969       EmitDeferredVTables();
970 
971       // Emitting a v-table doesn't directly cause more v-tables to
972       // become deferred, although it can cause functions to be
973       // emitted that then need those v-tables.
974       assert(DeferredVTables.empty());
975     }
976 
977     // Stop if we're out of both deferred v-tables and deferred declarations.
978     if (DeferredDeclsToEmit.empty()) break;
979 
980     DeferredGlobal &G = DeferredDeclsToEmit.back();
981     GlobalDecl D = G.GD;
982     llvm::GlobalValue *GV = G.GV;
983     DeferredDeclsToEmit.pop_back();
984 
985     assert(GV == GetGlobalValue(getMangledName(D)));
986     // Check to see if we've already emitted this.  This is necessary
987     // for a couple of reasons: first, decls can end up in the
988     // deferred-decls queue multiple times, and second, decls can end
989     // up with definitions in unusual ways (e.g. by an extern inline
990     // function acquiring a strong function redefinition).  Just
991     // ignore these cases.
992     if(!GV->isDeclaration())
993       continue;
994 
995     // Otherwise, emit the definition and move on to the next one.
996     EmitGlobalDefinition(D, GV);
997   }
998 }
999 
1000 void CodeGenModule::EmitGlobalAnnotations() {
1001   if (Annotations.empty())
1002     return;
1003 
1004   // Create a new global variable for the ConstantStruct in the Module.
1005   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1006     Annotations[0]->getType(), Annotations.size()), Annotations);
1007   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1008                                       llvm::GlobalValue::AppendingLinkage,
1009                                       Array, "llvm.global.annotations");
1010   gv->setSection(AnnotationSection);
1011 }
1012 
1013 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1014   llvm::Constant *&AStr = AnnotationStrings[Str];
1015   if (AStr)
1016     return AStr;
1017 
1018   // Not found yet, create a new global.
1019   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1020   auto *gv =
1021       new llvm::GlobalVariable(getModule(), s->getType(), true,
1022                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1023   gv->setSection(AnnotationSection);
1024   gv->setUnnamedAddr(true);
1025   AStr = gv;
1026   return gv;
1027 }
1028 
1029 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1030   SourceManager &SM = getContext().getSourceManager();
1031   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1032   if (PLoc.isValid())
1033     return EmitAnnotationString(PLoc.getFilename());
1034   return EmitAnnotationString(SM.getBufferName(Loc));
1035 }
1036 
1037 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1038   SourceManager &SM = getContext().getSourceManager();
1039   PresumedLoc PLoc = SM.getPresumedLoc(L);
1040   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1041     SM.getExpansionLineNumber(L);
1042   return llvm::ConstantInt::get(Int32Ty, LineNo);
1043 }
1044 
1045 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1046                                                 const AnnotateAttr *AA,
1047                                                 SourceLocation L) {
1048   // Get the globals for file name, annotation, and the line number.
1049   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1050                  *UnitGV = EmitAnnotationUnit(L),
1051                  *LineNoCst = EmitAnnotationLineNo(L);
1052 
1053   // Create the ConstantStruct for the global annotation.
1054   llvm::Constant *Fields[4] = {
1055     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1056     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1057     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1058     LineNoCst
1059   };
1060   return llvm::ConstantStruct::getAnon(Fields);
1061 }
1062 
1063 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1064                                          llvm::GlobalValue *GV) {
1065   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1066   // Get the struct elements for these annotations.
1067   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1068     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1069 }
1070 
1071 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1072   // Never defer when EmitAllDecls is specified.
1073   if (LangOpts.EmitAllDecls)
1074     return false;
1075 
1076   return !getContext().DeclMustBeEmitted(Global);
1077 }
1078 
1079 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1080     const CXXUuidofExpr* E) {
1081   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1082   // well-formed.
1083   StringRef Uuid = E->getUuidAsStringRef(Context);
1084   std::string Name = "_GUID_" + Uuid.lower();
1085   std::replace(Name.begin(), Name.end(), '-', '_');
1086 
1087   // Look for an existing global.
1088   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1089     return GV;
1090 
1091   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1092   assert(Init && "failed to initialize as constant");
1093 
1094   auto *GV = new llvm::GlobalVariable(
1095       getModule(), Init->getType(),
1096       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1097   return GV;
1098 }
1099 
1100 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1101   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1102   assert(AA && "No alias?");
1103 
1104   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1105 
1106   // See if there is already something with the target's name in the module.
1107   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1108   if (Entry) {
1109     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1110     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1111   }
1112 
1113   llvm::Constant *Aliasee;
1114   if (isa<llvm::FunctionType>(DeclTy))
1115     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1116                                       GlobalDecl(cast<FunctionDecl>(VD)),
1117                                       /*ForVTable=*/false);
1118   else
1119     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1120                                     llvm::PointerType::getUnqual(DeclTy),
1121                                     nullptr);
1122 
1123   auto *F = cast<llvm::GlobalValue>(Aliasee);
1124   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1125   WeakRefReferences.insert(F);
1126 
1127   return Aliasee;
1128 }
1129 
1130 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1131   const auto *Global = cast<ValueDecl>(GD.getDecl());
1132 
1133   // Weak references don't produce any output by themselves.
1134   if (Global->hasAttr<WeakRefAttr>())
1135     return;
1136 
1137   // If this is an alias definition (which otherwise looks like a declaration)
1138   // emit it now.
1139   if (Global->hasAttr<AliasAttr>())
1140     return EmitAliasDefinition(GD);
1141 
1142   // If this is CUDA, be selective about which declarations we emit.
1143   if (LangOpts.CUDA) {
1144     if (CodeGenOpts.CUDAIsDevice) {
1145       if (!Global->hasAttr<CUDADeviceAttr>() &&
1146           !Global->hasAttr<CUDAGlobalAttr>() &&
1147           !Global->hasAttr<CUDAConstantAttr>() &&
1148           !Global->hasAttr<CUDASharedAttr>())
1149         return;
1150     } else {
1151       if (!Global->hasAttr<CUDAHostAttr>() && (
1152             Global->hasAttr<CUDADeviceAttr>() ||
1153             Global->hasAttr<CUDAConstantAttr>() ||
1154             Global->hasAttr<CUDASharedAttr>()))
1155         return;
1156     }
1157   }
1158 
1159   // Ignore declarations, they will be emitted on their first use.
1160   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1161     // Forward declarations are emitted lazily on first use.
1162     if (!FD->doesThisDeclarationHaveABody()) {
1163       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1164         return;
1165 
1166       StringRef MangledName = getMangledName(GD);
1167 
1168       // Compute the function info and LLVM type.
1169       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1170       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1171 
1172       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1173                               /*DontDefer=*/false);
1174       return;
1175     }
1176   } else {
1177     const auto *VD = cast<VarDecl>(Global);
1178     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1179 
1180     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1181       return;
1182   }
1183 
1184   // Defer code generation when possible if this is a static definition, inline
1185   // function etc.  These we only want to emit if they are used.
1186   if (!MayDeferGeneration(Global)) {
1187     // Emit the definition if it can't be deferred.
1188     EmitGlobalDefinition(GD);
1189     return;
1190   }
1191 
1192   // If we're deferring emission of a C++ variable with an
1193   // initializer, remember the order in which it appeared in the file.
1194   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1195       cast<VarDecl>(Global)->hasInit()) {
1196     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1197     CXXGlobalInits.push_back(nullptr);
1198   }
1199 
1200   // If the value has already been used, add it directly to the
1201   // DeferredDeclsToEmit list.
1202   StringRef MangledName = getMangledName(GD);
1203   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1204     addDeferredDeclToEmit(GV, GD);
1205   else {
1206     // Otherwise, remember that we saw a deferred decl with this name.  The
1207     // first use of the mangled name will cause it to move into
1208     // DeferredDeclsToEmit.
1209     DeferredDecls[MangledName] = GD;
1210   }
1211 }
1212 
1213 namespace {
1214   struct FunctionIsDirectlyRecursive :
1215     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1216     const StringRef Name;
1217     const Builtin::Context &BI;
1218     bool Result;
1219     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1220       Name(N), BI(C), Result(false) {
1221     }
1222     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1223 
1224     bool TraverseCallExpr(CallExpr *E) {
1225       const FunctionDecl *FD = E->getDirectCallee();
1226       if (!FD)
1227         return true;
1228       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1229       if (Attr && Name == Attr->getLabel()) {
1230         Result = true;
1231         return false;
1232       }
1233       unsigned BuiltinID = FD->getBuiltinID();
1234       if (!BuiltinID)
1235         return true;
1236       StringRef BuiltinName = BI.GetName(BuiltinID);
1237       if (BuiltinName.startswith("__builtin_") &&
1238           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1239         Result = true;
1240         return false;
1241       }
1242       return true;
1243     }
1244   };
1245 }
1246 
1247 // isTriviallyRecursive - Check if this function calls another
1248 // decl that, because of the asm attribute or the other decl being a builtin,
1249 // ends up pointing to itself.
1250 bool
1251 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1252   StringRef Name;
1253   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1254     // asm labels are a special kind of mangling we have to support.
1255     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1256     if (!Attr)
1257       return false;
1258     Name = Attr->getLabel();
1259   } else {
1260     Name = FD->getName();
1261   }
1262 
1263   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1264   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1265   return Walker.Result;
1266 }
1267 
1268 bool
1269 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1270   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1271     return true;
1272   const auto *F = cast<FunctionDecl>(GD.getDecl());
1273   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1274     return false;
1275   // PR9614. Avoid cases where the source code is lying to us. An available
1276   // externally function should have an equivalent function somewhere else,
1277   // but a function that calls itself is clearly not equivalent to the real
1278   // implementation.
1279   // This happens in glibc's btowc and in some configure checks.
1280   return !isTriviallyRecursive(F);
1281 }
1282 
1283 /// If the type for the method's class was generated by
1284 /// CGDebugInfo::createContextChain(), the cache contains only a
1285 /// limited DIType without any declarations. Since EmitFunctionStart()
1286 /// needs to find the canonical declaration for each method, we need
1287 /// to construct the complete type prior to emitting the method.
1288 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1289   if (!D->isInstance())
1290     return;
1291 
1292   if (CGDebugInfo *DI = getModuleDebugInfo())
1293     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1294       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1295       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1296     }
1297 }
1298 
1299 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1300   const auto *D = cast<ValueDecl>(GD.getDecl());
1301 
1302   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1303                                  Context.getSourceManager(),
1304                                  "Generating code for declaration");
1305 
1306   if (isa<FunctionDecl>(D)) {
1307     // At -O0, don't generate IR for functions with available_externally
1308     // linkage.
1309     if (!shouldEmitFunction(GD))
1310       return;
1311 
1312     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1313       CompleteDIClassType(Method);
1314       // Make sure to emit the definition(s) before we emit the thunks.
1315       // This is necessary for the generation of certain thunks.
1316       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1317         EmitCXXConstructor(CD, GD.getCtorType());
1318       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1319         EmitCXXDestructor(DD, GD.getDtorType());
1320       else
1321         EmitGlobalFunctionDefinition(GD, GV);
1322 
1323       if (Method->isVirtual())
1324         getVTables().EmitThunks(GD);
1325 
1326       return;
1327     }
1328 
1329     return EmitGlobalFunctionDefinition(GD, GV);
1330   }
1331 
1332   if (const auto *VD = dyn_cast<VarDecl>(D))
1333     return EmitGlobalVarDefinition(VD);
1334 
1335   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1336 }
1337 
1338 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1339 /// module, create and return an llvm Function with the specified type. If there
1340 /// is something in the module with the specified name, return it potentially
1341 /// bitcasted to the right type.
1342 ///
1343 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1344 /// to set the attributes on the function when it is first created.
1345 llvm::Constant *
1346 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1347                                        llvm::Type *Ty,
1348                                        GlobalDecl GD, bool ForVTable,
1349                                        bool DontDefer,
1350                                        llvm::AttributeSet ExtraAttrs) {
1351   const Decl *D = GD.getDecl();
1352 
1353   // Lookup the entry, lazily creating it if necessary.
1354   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1355   if (Entry) {
1356     if (WeakRefReferences.erase(Entry)) {
1357       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1358       if (FD && !FD->hasAttr<WeakAttr>())
1359         Entry->setLinkage(llvm::Function::ExternalLinkage);
1360     }
1361 
1362     if (Entry->getType()->getElementType() == Ty)
1363       return Entry;
1364 
1365     // Make sure the result is of the correct type.
1366     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1367   }
1368 
1369   // This function doesn't have a complete type (for example, the return
1370   // type is an incomplete struct). Use a fake type instead, and make
1371   // sure not to try to set attributes.
1372   bool IsIncompleteFunction = false;
1373 
1374   llvm::FunctionType *FTy;
1375   if (isa<llvm::FunctionType>(Ty)) {
1376     FTy = cast<llvm::FunctionType>(Ty);
1377   } else {
1378     FTy = llvm::FunctionType::get(VoidTy, false);
1379     IsIncompleteFunction = true;
1380   }
1381 
1382   llvm::Function *F = llvm::Function::Create(FTy,
1383                                              llvm::Function::ExternalLinkage,
1384                                              MangledName, &getModule());
1385   assert(F->getName() == MangledName && "name was uniqued!");
1386   if (D)
1387     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1388   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1389     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1390     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1391                      llvm::AttributeSet::get(VMContext,
1392                                              llvm::AttributeSet::FunctionIndex,
1393                                              B));
1394   }
1395 
1396   if (!DontDefer) {
1397     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1398     // each other bottoming out with the base dtor.  Therefore we emit non-base
1399     // dtors on usage, even if there is no dtor definition in the TU.
1400     if (D && isa<CXXDestructorDecl>(D) &&
1401         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1402                                            GD.getDtorType()))
1403       addDeferredDeclToEmit(F, GD);
1404 
1405     // This is the first use or definition of a mangled name.  If there is a
1406     // deferred decl with this name, remember that we need to emit it at the end
1407     // of the file.
1408     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1409     if (DDI != DeferredDecls.end()) {
1410       // Move the potentially referenced deferred decl to the
1411       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1412       // don't need it anymore).
1413       addDeferredDeclToEmit(F, DDI->second);
1414       DeferredDecls.erase(DDI);
1415 
1416       // Otherwise, if this is a sized deallocation function, emit a weak
1417       // definition
1418       // for it at the end of the translation unit.
1419     } else if (D && cast<FunctionDecl>(D)
1420                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1421       addDeferredDeclToEmit(F, GD);
1422 
1423       // Otherwise, there are cases we have to worry about where we're
1424       // using a declaration for which we must emit a definition but where
1425       // we might not find a top-level definition:
1426       //   - member functions defined inline in their classes
1427       //   - friend functions defined inline in some class
1428       //   - special member functions with implicit definitions
1429       // If we ever change our AST traversal to walk into class methods,
1430       // this will be unnecessary.
1431       //
1432       // We also don't emit a definition for a function if it's going to be an
1433       // entry
1434       // in a vtable, unless it's already marked as used.
1435     } else if (getLangOpts().CPlusPlus && D) {
1436       // Look for a declaration that's lexically in a record.
1437       const auto *FD = cast<FunctionDecl>(D);
1438       FD = FD->getMostRecentDecl();
1439       do {
1440         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1441           if (FD->isImplicit() && !ForVTable) {
1442             assert(FD->isUsed() &&
1443                    "Sema didn't mark implicit function as used!");
1444             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1445             break;
1446           } else if (FD->doesThisDeclarationHaveABody()) {
1447             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1448             break;
1449           }
1450         }
1451         FD = FD->getPreviousDecl();
1452       } while (FD);
1453     }
1454   }
1455 
1456   getTargetCodeGenInfo().emitTargetMD(D, F, *this);
1457 
1458   // Make sure the result is of the requested type.
1459   if (!IsIncompleteFunction) {
1460     assert(F->getType()->getElementType() == Ty);
1461     return F;
1462   }
1463 
1464   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1465   return llvm::ConstantExpr::getBitCast(F, PTy);
1466 }
1467 
1468 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1469 /// non-null, then this function will use the specified type if it has to
1470 /// create it (this occurs when we see a definition of the function).
1471 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1472                                                  llvm::Type *Ty,
1473                                                  bool ForVTable,
1474                                                  bool DontDefer) {
1475   // If there was no specific requested type, just convert it now.
1476   if (!Ty)
1477     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1478 
1479   StringRef MangledName = getMangledName(GD);
1480   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1481 }
1482 
1483 /// CreateRuntimeFunction - Create a new runtime function with the specified
1484 /// type and name.
1485 llvm::Constant *
1486 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1487                                      StringRef Name,
1488                                      llvm::AttributeSet ExtraAttrs) {
1489   llvm::Constant *C =
1490       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1491                               /*DontDefer=*/false, ExtraAttrs);
1492   if (auto *F = dyn_cast<llvm::Function>(C))
1493     if (F->empty())
1494       F->setCallingConv(getRuntimeCC());
1495   return C;
1496 }
1497 
1498 /// isTypeConstant - Determine whether an object of this type can be emitted
1499 /// as a constant.
1500 ///
1501 /// If ExcludeCtor is true, the duration when the object's constructor runs
1502 /// will not be considered. The caller will need to verify that the object is
1503 /// not written to during its construction.
1504 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1505   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1506     return false;
1507 
1508   if (Context.getLangOpts().CPlusPlus) {
1509     if (const CXXRecordDecl *Record
1510           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1511       return ExcludeCtor && !Record->hasMutableFields() &&
1512              Record->hasTrivialDestructor();
1513   }
1514 
1515   return true;
1516 }
1517 
1518 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) {
1519   if (!VD->isStaticDataMember())
1520     return false;
1521   const VarDecl *InitDecl;
1522   const Expr *InitExpr = VD->getAnyInitializer(InitDecl);
1523   if (!InitExpr)
1524     return false;
1525   if (InitDecl->isThisDeclarationADefinition())
1526     return false;
1527   return true;
1528 }
1529 
1530 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1531 /// create and return an llvm GlobalVariable with the specified type.  If there
1532 /// is something in the module with the specified name, return it potentially
1533 /// bitcasted to the right type.
1534 ///
1535 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1536 /// to set the attributes on the global when it is first created.
1537 llvm::Constant *
1538 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1539                                      llvm::PointerType *Ty,
1540                                      const VarDecl *D) {
1541   // Lookup the entry, lazily creating it if necessary.
1542   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1543   if (Entry) {
1544     if (WeakRefReferences.erase(Entry)) {
1545       if (D && !D->hasAttr<WeakAttr>())
1546         Entry->setLinkage(llvm::Function::ExternalLinkage);
1547     }
1548 
1549     if (Entry->getType() == Ty)
1550       return Entry;
1551 
1552     // Make sure the result is of the correct type.
1553     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1554       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1555 
1556     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1557   }
1558 
1559   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1560   auto *GV = new llvm::GlobalVariable(
1561       getModule(), Ty->getElementType(), false,
1562       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1563       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1564 
1565   // This is the first use or definition of a mangled name.  If there is a
1566   // deferred decl with this name, remember that we need to emit it at the end
1567   // of the file.
1568   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1569   if (DDI != DeferredDecls.end()) {
1570     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1571     // list, and remove it from DeferredDecls (since we don't need it anymore).
1572     addDeferredDeclToEmit(GV, DDI->second);
1573     DeferredDecls.erase(DDI);
1574   }
1575 
1576   // Handle things which are present even on external declarations.
1577   if (D) {
1578     // FIXME: This code is overly simple and should be merged with other global
1579     // handling.
1580     GV->setConstant(isTypeConstant(D->getType(), false));
1581 
1582     setLinkageAndVisibilityForGV(GV, D);
1583 
1584     if (D->getTLSKind()) {
1585       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1586         CXXThreadLocals.push_back(std::make_pair(D, GV));
1587       setTLSMode(GV, *D);
1588     }
1589 
1590     // If required by the ABI, treat declarations of static data members with
1591     // inline initializers as definitions.
1592     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1593         isVarDeclInlineInitializedStaticDataMember(D))
1594       EmitGlobalVarDefinition(D);
1595 
1596     // Handle XCore specific ABI requirements.
1597     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1598         D->getLanguageLinkage() == CLanguageLinkage &&
1599         D->getType().isConstant(Context) &&
1600         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1601       GV->setSection(".cp.rodata");
1602   }
1603 
1604   if (AddrSpace != Ty->getAddressSpace())
1605     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1606 
1607   getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
1608 
1609   return GV;
1610 }
1611 
1612 
1613 llvm::GlobalVariable *
1614 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1615                                       llvm::Type *Ty,
1616                                       llvm::GlobalValue::LinkageTypes Linkage) {
1617   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1618   llvm::GlobalVariable *OldGV = nullptr;
1619 
1620   if (GV) {
1621     // Check if the variable has the right type.
1622     if (GV->getType()->getElementType() == Ty)
1623       return GV;
1624 
1625     // Because C++ name mangling, the only way we can end up with an already
1626     // existing global with the same name is if it has been declared extern "C".
1627     assert(GV->isDeclaration() && "Declaration has wrong type!");
1628     OldGV = GV;
1629   }
1630 
1631   // Create a new variable.
1632   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1633                                 Linkage, nullptr, Name);
1634 
1635   if (OldGV) {
1636     // Replace occurrences of the old variable if needed.
1637     GV->takeName(OldGV);
1638 
1639     if (!OldGV->use_empty()) {
1640       llvm::Constant *NewPtrForOldDecl =
1641       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1642       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1643     }
1644 
1645     OldGV->eraseFromParent();
1646   }
1647 
1648   return GV;
1649 }
1650 
1651 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1652 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1653 /// then it will be created with the specified type instead of whatever the
1654 /// normal requested type would be.
1655 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1656                                                   llvm::Type *Ty) {
1657   assert(D->hasGlobalStorage() && "Not a global variable");
1658   QualType ASTTy = D->getType();
1659   if (!Ty)
1660     Ty = getTypes().ConvertTypeForMem(ASTTy);
1661 
1662   llvm::PointerType *PTy =
1663     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1664 
1665   StringRef MangledName = getMangledName(D);
1666   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1667 }
1668 
1669 /// CreateRuntimeVariable - Create a new runtime global variable with the
1670 /// specified type and name.
1671 llvm::Constant *
1672 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1673                                      StringRef Name) {
1674   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1675 }
1676 
1677 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1678   assert(!D->getInit() && "Cannot emit definite definitions here!");
1679 
1680   if (MayDeferGeneration(D)) {
1681     // If we have not seen a reference to this variable yet, place it
1682     // into the deferred declarations table to be emitted if needed
1683     // later.
1684     StringRef MangledName = getMangledName(D);
1685     if (!GetGlobalValue(MangledName)) {
1686       DeferredDecls[MangledName] = D;
1687       return;
1688     }
1689   }
1690 
1691   // The tentative definition is the only definition.
1692   EmitGlobalVarDefinition(D);
1693 }
1694 
1695 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1696     return Context.toCharUnitsFromBits(
1697       TheDataLayout.getTypeStoreSizeInBits(Ty));
1698 }
1699 
1700 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1701                                                  unsigned AddrSpace) {
1702   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1703     if (D->hasAttr<CUDAConstantAttr>())
1704       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1705     else if (D->hasAttr<CUDASharedAttr>())
1706       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1707     else
1708       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1709   }
1710 
1711   return AddrSpace;
1712 }
1713 
1714 template<typename SomeDecl>
1715 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1716                                                llvm::GlobalValue *GV) {
1717   if (!getLangOpts().CPlusPlus)
1718     return;
1719 
1720   // Must have 'used' attribute, or else inline assembly can't rely on
1721   // the name existing.
1722   if (!D->template hasAttr<UsedAttr>())
1723     return;
1724 
1725   // Must have internal linkage and an ordinary name.
1726   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1727     return;
1728 
1729   // Must be in an extern "C" context. Entities declared directly within
1730   // a record are not extern "C" even if the record is in such a context.
1731   const SomeDecl *First = D->getFirstDecl();
1732   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1733     return;
1734 
1735   // OK, this is an internal linkage entity inside an extern "C" linkage
1736   // specification. Make a note of that so we can give it the "expected"
1737   // mangled name if nothing else is using that name.
1738   std::pair<StaticExternCMap::iterator, bool> R =
1739       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1740 
1741   // If we have multiple internal linkage entities with the same name
1742   // in extern "C" regions, none of them gets that name.
1743   if (!R.second)
1744     R.first->second = nullptr;
1745 }
1746 
1747 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1748   llvm::Constant *Init = nullptr;
1749   QualType ASTTy = D->getType();
1750   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1751   bool NeedsGlobalCtor = false;
1752   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1753 
1754   const VarDecl *InitDecl;
1755   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1756 
1757   if (!InitExpr) {
1758     // This is a tentative definition; tentative definitions are
1759     // implicitly initialized with { 0 }.
1760     //
1761     // Note that tentative definitions are only emitted at the end of
1762     // a translation unit, so they should never have incomplete
1763     // type. In addition, EmitTentativeDefinition makes sure that we
1764     // never attempt to emit a tentative definition if a real one
1765     // exists. A use may still exists, however, so we still may need
1766     // to do a RAUW.
1767     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1768     Init = EmitNullConstant(D->getType());
1769   } else {
1770     initializedGlobalDecl = GlobalDecl(D);
1771     Init = EmitConstantInit(*InitDecl);
1772 
1773     if (!Init) {
1774       QualType T = InitExpr->getType();
1775       if (D->getType()->isReferenceType())
1776         T = D->getType();
1777 
1778       if (getLangOpts().CPlusPlus) {
1779         Init = EmitNullConstant(T);
1780         NeedsGlobalCtor = true;
1781       } else {
1782         ErrorUnsupported(D, "static initializer");
1783         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1784       }
1785     } else {
1786       // We don't need an initializer, so remove the entry for the delayed
1787       // initializer position (just in case this entry was delayed) if we
1788       // also don't need to register a destructor.
1789       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1790         DelayedCXXInitPosition.erase(D);
1791     }
1792   }
1793 
1794   llvm::Type* InitType = Init->getType();
1795   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1796 
1797   // Strip off a bitcast if we got one back.
1798   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1799     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1800            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1801            // All zero index gep.
1802            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1803     Entry = CE->getOperand(0);
1804   }
1805 
1806   // Entry is now either a Function or GlobalVariable.
1807   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1808 
1809   // We have a definition after a declaration with the wrong type.
1810   // We must make a new GlobalVariable* and update everything that used OldGV
1811   // (a declaration or tentative definition) with the new GlobalVariable*
1812   // (which will be a definition).
1813   //
1814   // This happens if there is a prototype for a global (e.g.
1815   // "extern int x[];") and then a definition of a different type (e.g.
1816   // "int x[10];"). This also happens when an initializer has a different type
1817   // from the type of the global (this happens with unions).
1818   if (!GV ||
1819       GV->getType()->getElementType() != InitType ||
1820       GV->getType()->getAddressSpace() !=
1821        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1822 
1823     // Move the old entry aside so that we'll create a new one.
1824     Entry->setName(StringRef());
1825 
1826     // Make a new global with the correct type, this is now guaranteed to work.
1827     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1828 
1829     // Replace all uses of the old global with the new global
1830     llvm::Constant *NewPtrForOldDecl =
1831         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1832     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1833 
1834     // Erase the old global, since it is no longer used.
1835     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1836   }
1837 
1838   MaybeHandleStaticInExternC(D, GV);
1839 
1840   if (D->hasAttr<AnnotateAttr>())
1841     AddGlobalAnnotations(D, GV);
1842 
1843   GV->setInitializer(Init);
1844 
1845   // If it is safe to mark the global 'constant', do so now.
1846   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1847                   isTypeConstant(D->getType(), true));
1848 
1849   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1850 
1851   // Set the llvm linkage type as appropriate.
1852   llvm::GlobalValue::LinkageTypes Linkage =
1853       getLLVMLinkageVarDefinition(D, GV->isConstant());
1854   GV->setLinkage(Linkage);
1855   if (D->hasAttr<DLLImportAttr>())
1856     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1857   else if (D->hasAttr<DLLExportAttr>())
1858     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1859 
1860   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1861     // common vars aren't constant even if declared const.
1862     GV->setConstant(false);
1863 
1864   setNonAliasAttributes(D, GV);
1865 
1866   // Emit the initializer function if necessary.
1867   if (NeedsGlobalCtor || NeedsGlobalDtor)
1868     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1869 
1870   // If we are compiling with ASan, add metadata indicating dynamically
1871   // initialized globals.
1872   if (SanOpts.Address && NeedsGlobalCtor) {
1873     llvm::Module &M = getModule();
1874 
1875     llvm::NamedMDNode *DynamicInitializers =
1876         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1877     llvm::Value *GlobalToAdd[] = { GV };
1878     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1879     DynamicInitializers->addOperand(ThisGlobal);
1880   }
1881 
1882   // Emit global variable debug information.
1883   if (CGDebugInfo *DI = getModuleDebugInfo())
1884     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1885       DI->EmitGlobalVariable(GV, D);
1886 }
1887 
1888 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) {
1889   // Don't give variables common linkage if -fno-common was specified unless it
1890   // was overridden by a NoCommon attribute.
1891   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1892     return true;
1893 
1894   // C11 6.9.2/2:
1895   //   A declaration of an identifier for an object that has file scope without
1896   //   an initializer, and without a storage-class specifier or with the
1897   //   storage-class specifier static, constitutes a tentative definition.
1898   if (D->getInit() || D->hasExternalStorage())
1899     return true;
1900 
1901   // A variable cannot be both common and exist in a section.
1902   if (D->hasAttr<SectionAttr>())
1903     return true;
1904 
1905   // Thread local vars aren't considered common linkage.
1906   if (D->getTLSKind())
1907     return true;
1908 
1909   // Tentative definitions marked with WeakImportAttr are true definitions.
1910   if (D->hasAttr<WeakImportAttr>())
1911     return true;
1912 
1913   return false;
1914 }
1915 
1916 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
1917     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable,
1918     bool UseThunkForDtorVariant) {
1919   if (Linkage == GVA_Internal)
1920     return llvm::Function::InternalLinkage;
1921 
1922   if (D->hasAttr<WeakAttr>()) {
1923     if (IsConstantVariable)
1924       return llvm::GlobalVariable::WeakODRLinkage;
1925     else
1926       return llvm::GlobalVariable::WeakAnyLinkage;
1927   }
1928 
1929   // We are guaranteed to have a strong definition somewhere else,
1930   // so we can use available_externally linkage.
1931   if (Linkage == GVA_AvailableExternally)
1932     return llvm::Function::AvailableExternallyLinkage;
1933 
1934   // Note that Apple's kernel linker doesn't support symbol
1935   // coalescing, so we need to avoid linkonce and weak linkages there.
1936   // Normally, this means we just map to internal, but for explicit
1937   // instantiations we'll map to external.
1938 
1939   // In C++, the compiler has to emit a definition in every translation unit
1940   // that references the function.  We should use linkonce_odr because
1941   // a) if all references in this translation unit are optimized away, we
1942   // don't need to codegen it.  b) if the function persists, it needs to be
1943   // merged with other definitions. c) C++ has the ODR, so we know the
1944   // definition is dependable.
1945   if (Linkage == GVA_DiscardableODR)
1946     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
1947                                             : llvm::Function::InternalLinkage;
1948 
1949   // An explicit instantiation of a template has weak linkage, since
1950   // explicit instantiations can occur in multiple translation units
1951   // and must all be equivalent. However, we are not allowed to
1952   // throw away these explicit instantiations.
1953   if (Linkage == GVA_StrongODR)
1954     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
1955                                             : llvm::Function::ExternalLinkage;
1956 
1957   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
1958   // emitted on an as-needed basis.
1959   if (UseThunkForDtorVariant)
1960     return llvm::GlobalValue::LinkOnceODRLinkage;
1961 
1962   // If required by the ABI, give definitions of static data members with inline
1963   // initializers at least linkonce_odr linkage.
1964   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1965       isa<VarDecl>(D) &&
1966       isVarDeclInlineInitializedStaticDataMember(cast<VarDecl>(D)))
1967     return llvm::GlobalValue::LinkOnceODRLinkage;
1968 
1969   // C++ doesn't have tentative definitions and thus cannot have common
1970   // linkage.
1971   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
1972       !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon))
1973     return llvm::GlobalVariable::CommonLinkage;
1974 
1975   // selectany symbols are externally visible, so use weak instead of
1976   // linkonce.  MSVC optimizes away references to const selectany globals, so
1977   // all definitions should be the same and ODR linkage should be used.
1978   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1979   if (D->hasAttr<SelectAnyAttr>())
1980     return llvm::GlobalVariable::WeakODRLinkage;
1981 
1982   // Otherwise, we have strong external linkage.
1983   assert(Linkage == GVA_StrongExternal);
1984   return llvm::GlobalVariable::ExternalLinkage;
1985 }
1986 
1987 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
1988     const VarDecl *VD, bool IsConstant) {
1989   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
1990   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant,
1991                                      /*UseThunkForDtorVariant=*/false);
1992 }
1993 
1994 /// Replace the uses of a function that was declared with a non-proto type.
1995 /// We want to silently drop extra arguments from call sites
1996 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1997                                           llvm::Function *newFn) {
1998   // Fast path.
1999   if (old->use_empty()) return;
2000 
2001   llvm::Type *newRetTy = newFn->getReturnType();
2002   SmallVector<llvm::Value*, 4> newArgs;
2003 
2004   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2005          ui != ue; ) {
2006     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2007     llvm::User *user = use->getUser();
2008 
2009     // Recognize and replace uses of bitcasts.  Most calls to
2010     // unprototyped functions will use bitcasts.
2011     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2012       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2013         replaceUsesOfNonProtoConstant(bitcast, newFn);
2014       continue;
2015     }
2016 
2017     // Recognize calls to the function.
2018     llvm::CallSite callSite(user);
2019     if (!callSite) continue;
2020     if (!callSite.isCallee(&*use)) continue;
2021 
2022     // If the return types don't match exactly, then we can't
2023     // transform this call unless it's dead.
2024     if (callSite->getType() != newRetTy && !callSite->use_empty())
2025       continue;
2026 
2027     // Get the call site's attribute list.
2028     SmallVector<llvm::AttributeSet, 8> newAttrs;
2029     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2030 
2031     // Collect any return attributes from the call.
2032     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2033       newAttrs.push_back(
2034         llvm::AttributeSet::get(newFn->getContext(),
2035                                 oldAttrs.getRetAttributes()));
2036 
2037     // If the function was passed too few arguments, don't transform.
2038     unsigned newNumArgs = newFn->arg_size();
2039     if (callSite.arg_size() < newNumArgs) continue;
2040 
2041     // If extra arguments were passed, we silently drop them.
2042     // If any of the types mismatch, we don't transform.
2043     unsigned argNo = 0;
2044     bool dontTransform = false;
2045     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2046            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2047       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2048         dontTransform = true;
2049         break;
2050       }
2051 
2052       // Add any parameter attributes.
2053       if (oldAttrs.hasAttributes(argNo + 1))
2054         newAttrs.
2055           push_back(llvm::
2056                     AttributeSet::get(newFn->getContext(),
2057                                       oldAttrs.getParamAttributes(argNo + 1)));
2058     }
2059     if (dontTransform)
2060       continue;
2061 
2062     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2063       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2064                                                  oldAttrs.getFnAttributes()));
2065 
2066     // Okay, we can transform this.  Create the new call instruction and copy
2067     // over the required information.
2068     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2069 
2070     llvm::CallSite newCall;
2071     if (callSite.isCall()) {
2072       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2073                                        callSite.getInstruction());
2074     } else {
2075       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2076       newCall = llvm::InvokeInst::Create(newFn,
2077                                          oldInvoke->getNormalDest(),
2078                                          oldInvoke->getUnwindDest(),
2079                                          newArgs, "",
2080                                          callSite.getInstruction());
2081     }
2082     newArgs.clear(); // for the next iteration
2083 
2084     if (!newCall->getType()->isVoidTy())
2085       newCall->takeName(callSite.getInstruction());
2086     newCall.setAttributes(
2087                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2088     newCall.setCallingConv(callSite.getCallingConv());
2089 
2090     // Finally, remove the old call, replacing any uses with the new one.
2091     if (!callSite->use_empty())
2092       callSite->replaceAllUsesWith(newCall.getInstruction());
2093 
2094     // Copy debug location attached to CI.
2095     if (!callSite->getDebugLoc().isUnknown())
2096       newCall->setDebugLoc(callSite->getDebugLoc());
2097     callSite->eraseFromParent();
2098   }
2099 }
2100 
2101 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2102 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2103 /// existing call uses of the old function in the module, this adjusts them to
2104 /// call the new function directly.
2105 ///
2106 /// This is not just a cleanup: the always_inline pass requires direct calls to
2107 /// functions to be able to inline them.  If there is a bitcast in the way, it
2108 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2109 /// run at -O0.
2110 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2111                                                       llvm::Function *NewFn) {
2112   // If we're redefining a global as a function, don't transform it.
2113   if (!isa<llvm::Function>(Old)) return;
2114 
2115   replaceUsesOfNonProtoConstant(Old, NewFn);
2116 }
2117 
2118 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2119   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2120   // If we have a definition, this might be a deferred decl. If the
2121   // instantiation is explicit, make sure we emit it at the end.
2122   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2123     GetAddrOfGlobalVar(VD);
2124 
2125   EmitTopLevelDecl(VD);
2126 }
2127 
2128 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2129                                                  llvm::GlobalValue *GV) {
2130   const auto *D = cast<FunctionDecl>(GD.getDecl());
2131 
2132   // Compute the function info and LLVM type.
2133   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2134   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2135 
2136   // Get or create the prototype for the function.
2137   if (!GV) {
2138     llvm::Constant *C =
2139         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2140 
2141     // Strip off a bitcast if we got one back.
2142     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2143       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2144       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2145     } else {
2146       GV = cast<llvm::GlobalValue>(C);
2147     }
2148   }
2149 
2150   if (!GV->isDeclaration()) {
2151     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2152     return;
2153   }
2154 
2155   if (GV->getType()->getElementType() != Ty) {
2156     // If the types mismatch then we have to rewrite the definition.
2157     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2158 
2159     // F is the Function* for the one with the wrong type, we must make a new
2160     // Function* and update everything that used F (a declaration) with the new
2161     // Function* (which will be a definition).
2162     //
2163     // This happens if there is a prototype for a function
2164     // (e.g. "int f()") and then a definition of a different type
2165     // (e.g. "int f(int x)").  Move the old function aside so that it
2166     // doesn't interfere with GetAddrOfFunction.
2167     GV->setName(StringRef());
2168     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2169 
2170     // This might be an implementation of a function without a
2171     // prototype, in which case, try to do special replacement of
2172     // calls which match the new prototype.  The really key thing here
2173     // is that we also potentially drop arguments from the call site
2174     // so as to make a direct call, which makes the inliner happier
2175     // and suppresses a number of optimizer warnings (!) about
2176     // dropping arguments.
2177     if (!GV->use_empty()) {
2178       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2179       GV->removeDeadConstantUsers();
2180     }
2181 
2182     // Replace uses of F with the Function we will endow with a body.
2183     if (!GV->use_empty()) {
2184       llvm::Constant *NewPtrForOldDecl =
2185           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2186       GV->replaceAllUsesWith(NewPtrForOldDecl);
2187     }
2188 
2189     // Ok, delete the old function now, which is dead.
2190     GV->eraseFromParent();
2191 
2192     GV = NewFn;
2193   }
2194 
2195   // We need to set linkage and visibility on the function before
2196   // generating code for it because various parts of IR generation
2197   // want to propagate this information down (e.g. to local static
2198   // declarations).
2199   auto *Fn = cast<llvm::Function>(GV);
2200   setFunctionLinkage(GD, Fn);
2201 
2202   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2203   setGlobalVisibility(Fn, D);
2204 
2205   MaybeHandleStaticInExternC(D, Fn);
2206 
2207   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2208 
2209   setFunctionDefinitionAttributes(D, Fn);
2210   SetLLVMFunctionAttributesForDefinition(D, Fn);
2211 
2212   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2213     AddGlobalCtor(Fn, CA->getPriority());
2214   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2215     AddGlobalDtor(Fn, DA->getPriority());
2216   if (D->hasAttr<AnnotateAttr>())
2217     AddGlobalAnnotations(D, Fn);
2218 }
2219 
2220 static llvm::GlobalObject &getGlobalObjectInExpr(DiagnosticsEngine &Diags,
2221                                                  const AliasAttr *AA,
2222                                                  llvm::Constant *C) {
2223   if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
2224     return *GO;
2225 
2226   auto *GA = dyn_cast<llvm::GlobalAlias>(C);
2227   if (GA) {
2228     if (GA->mayBeOverridden()) {
2229       Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
2230           << GA->getAliasee()->getName() << GA->getName();
2231     }
2232 
2233     return *GA->getAliasee();
2234   }
2235 
2236   auto *CE = cast<llvm::ConstantExpr>(C);
2237   assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2238          CE->getOpcode() == llvm::Instruction::GetElementPtr ||
2239          CE->getOpcode() == llvm::Instruction::AddrSpaceCast);
2240   return *cast<llvm::GlobalObject>(CE->getOperand(0));
2241 }
2242 
2243 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2244   const auto *D = cast<ValueDecl>(GD.getDecl());
2245   const AliasAttr *AA = D->getAttr<AliasAttr>();
2246   assert(AA && "Not an alias?");
2247 
2248   StringRef MangledName = getMangledName(GD);
2249 
2250   // If there is a definition in the module, then it wins over the alias.
2251   // This is dubious, but allow it to be safe.  Just ignore the alias.
2252   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2253   if (Entry && !Entry->isDeclaration())
2254     return;
2255 
2256   Aliases.push_back(GD);
2257 
2258   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2259 
2260   // Create a reference to the named value.  This ensures that it is emitted
2261   // if a deferred decl.
2262   llvm::Constant *Aliasee;
2263   if (isa<llvm::FunctionType>(DeclTy))
2264     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2265                                       /*ForVTable=*/false);
2266   else
2267     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2268                                     llvm::PointerType::getUnqual(DeclTy),
2269                                     nullptr);
2270 
2271   // Create the new alias itself, but don't set a name yet.
2272   auto *GA = llvm::GlobalAlias::create(
2273       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2274       llvm::Function::ExternalLinkage, "",
2275       &getGlobalObjectInExpr(Diags, AA, Aliasee));
2276 
2277   if (Entry) {
2278     if (GA->getAliasee() == Entry) {
2279       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2280       return;
2281     }
2282 
2283     assert(Entry->isDeclaration());
2284 
2285     // If there is a declaration in the module, then we had an extern followed
2286     // by the alias, as in:
2287     //   extern int test6();
2288     //   ...
2289     //   int test6() __attribute__((alias("test7")));
2290     //
2291     // Remove it and replace uses of it with the alias.
2292     GA->takeName(Entry);
2293 
2294     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2295                                                           Entry->getType()));
2296     Entry->eraseFromParent();
2297   } else {
2298     GA->setName(MangledName);
2299   }
2300 
2301   // Set attributes which are particular to an alias; this is a
2302   // specialization of the attributes which may be set on a global
2303   // variable/function.
2304   if (D->hasAttr<DLLExportAttr>()) {
2305     if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2306       // The dllexport attribute is ignored for undefined symbols.
2307       if (FD->hasBody())
2308         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2309     } else {
2310       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2311     }
2312   } else if (D->hasAttr<WeakAttr>() ||
2313              D->hasAttr<WeakRefAttr>() ||
2314              D->isWeakImported()) {
2315     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2316   }
2317 
2318   SetCommonAttributes(D, GA);
2319 }
2320 
2321 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2322                                             ArrayRef<llvm::Type*> Tys) {
2323   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2324                                          Tys);
2325 }
2326 
2327 static llvm::StringMapEntry<llvm::Constant*> &
2328 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2329                          const StringLiteral *Literal,
2330                          bool TargetIsLSB,
2331                          bool &IsUTF16,
2332                          unsigned &StringLength) {
2333   StringRef String = Literal->getString();
2334   unsigned NumBytes = String.size();
2335 
2336   // Check for simple case.
2337   if (!Literal->containsNonAsciiOrNull()) {
2338     StringLength = NumBytes;
2339     return Map.GetOrCreateValue(String);
2340   }
2341 
2342   // Otherwise, convert the UTF8 literals into a string of shorts.
2343   IsUTF16 = true;
2344 
2345   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2346   const UTF8 *FromPtr = (const UTF8 *)String.data();
2347   UTF16 *ToPtr = &ToBuf[0];
2348 
2349   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2350                            &ToPtr, ToPtr + NumBytes,
2351                            strictConversion);
2352 
2353   // ConvertUTF8toUTF16 returns the length in ToPtr.
2354   StringLength = ToPtr - &ToBuf[0];
2355 
2356   // Add an explicit null.
2357   *ToPtr = 0;
2358   return Map.
2359     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2360                                (StringLength + 1) * 2));
2361 }
2362 
2363 static llvm::StringMapEntry<llvm::Constant*> &
2364 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2365                        const StringLiteral *Literal,
2366                        unsigned &StringLength) {
2367   StringRef String = Literal->getString();
2368   StringLength = String.size();
2369   return Map.GetOrCreateValue(String);
2370 }
2371 
2372 llvm::Constant *
2373 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2374   unsigned StringLength = 0;
2375   bool isUTF16 = false;
2376   llvm::StringMapEntry<llvm::Constant*> &Entry =
2377     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2378                              getDataLayout().isLittleEndian(),
2379                              isUTF16, StringLength);
2380 
2381   if (llvm::Constant *C = Entry.getValue())
2382     return C;
2383 
2384   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2385   llvm::Constant *Zeros[] = { Zero, Zero };
2386   llvm::Value *V;
2387 
2388   // If we don't already have it, get __CFConstantStringClassReference.
2389   if (!CFConstantStringClassRef) {
2390     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2391     Ty = llvm::ArrayType::get(Ty, 0);
2392     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2393                                            "__CFConstantStringClassReference");
2394     // Decay array -> ptr
2395     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2396     CFConstantStringClassRef = V;
2397   }
2398   else
2399     V = CFConstantStringClassRef;
2400 
2401   QualType CFTy = getContext().getCFConstantStringType();
2402 
2403   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2404 
2405   llvm::Constant *Fields[4];
2406 
2407   // Class pointer.
2408   Fields[0] = cast<llvm::ConstantExpr>(V);
2409 
2410   // Flags.
2411   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2412   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2413     llvm::ConstantInt::get(Ty, 0x07C8);
2414 
2415   // String pointer.
2416   llvm::Constant *C = nullptr;
2417   if (isUTF16) {
2418     ArrayRef<uint16_t> Arr =
2419       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2420                                      const_cast<char *>(Entry.getKey().data())),
2421                                    Entry.getKey().size() / 2);
2422     C = llvm::ConstantDataArray::get(VMContext, Arr);
2423   } else {
2424     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2425   }
2426 
2427   // Note: -fwritable-strings doesn't make the backing store strings of
2428   // CFStrings writable. (See <rdar://problem/10657500>)
2429   auto *GV =
2430       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2431                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2432   GV->setUnnamedAddr(true);
2433   // Don't enforce the target's minimum global alignment, since the only use
2434   // of the string is via this class initializer.
2435   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2436   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2437   // that changes the section it ends in, which surprises ld64.
2438   if (isUTF16) {
2439     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2440     GV->setAlignment(Align.getQuantity());
2441     GV->setSection("__TEXT,__ustring");
2442   } else {
2443     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2444     GV->setAlignment(Align.getQuantity());
2445     GV->setSection("__TEXT,__cstring,cstring_literals");
2446   }
2447 
2448   // String.
2449   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2450 
2451   if (isUTF16)
2452     // Cast the UTF16 string to the correct type.
2453     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2454 
2455   // String length.
2456   Ty = getTypes().ConvertType(getContext().LongTy);
2457   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2458 
2459   // The struct.
2460   C = llvm::ConstantStruct::get(STy, Fields);
2461   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2462                                 llvm::GlobalVariable::PrivateLinkage, C,
2463                                 "_unnamed_cfstring_");
2464   GV->setSection("__DATA,__cfstring");
2465   Entry.setValue(GV);
2466 
2467   return GV;
2468 }
2469 
2470 llvm::Constant *
2471 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2472   unsigned StringLength = 0;
2473   llvm::StringMapEntry<llvm::Constant*> &Entry =
2474     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2475 
2476   if (llvm::Constant *C = Entry.getValue())
2477     return C;
2478 
2479   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2480   llvm::Constant *Zeros[] = { Zero, Zero };
2481   llvm::Value *V;
2482   // If we don't already have it, get _NSConstantStringClassReference.
2483   if (!ConstantStringClassRef) {
2484     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2485     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2486     llvm::Constant *GV;
2487     if (LangOpts.ObjCRuntime.isNonFragile()) {
2488       std::string str =
2489         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2490                             : "OBJC_CLASS_$_" + StringClass;
2491       GV = getObjCRuntime().GetClassGlobal(str);
2492       // Make sure the result is of the correct type.
2493       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2494       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2495       ConstantStringClassRef = V;
2496     } else {
2497       std::string str =
2498         StringClass.empty() ? "_NSConstantStringClassReference"
2499                             : "_" + StringClass + "ClassReference";
2500       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2501       GV = CreateRuntimeVariable(PTy, str);
2502       // Decay array -> ptr
2503       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2504       ConstantStringClassRef = V;
2505     }
2506   }
2507   else
2508     V = ConstantStringClassRef;
2509 
2510   if (!NSConstantStringType) {
2511     // Construct the type for a constant NSString.
2512     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2513     D->startDefinition();
2514 
2515     QualType FieldTypes[3];
2516 
2517     // const int *isa;
2518     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2519     // const char *str;
2520     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2521     // unsigned int length;
2522     FieldTypes[2] = Context.UnsignedIntTy;
2523 
2524     // Create fields
2525     for (unsigned i = 0; i < 3; ++i) {
2526       FieldDecl *Field = FieldDecl::Create(Context, D,
2527                                            SourceLocation(),
2528                                            SourceLocation(), nullptr,
2529                                            FieldTypes[i], /*TInfo=*/nullptr,
2530                                            /*BitWidth=*/nullptr,
2531                                            /*Mutable=*/false,
2532                                            ICIS_NoInit);
2533       Field->setAccess(AS_public);
2534       D->addDecl(Field);
2535     }
2536 
2537     D->completeDefinition();
2538     QualType NSTy = Context.getTagDeclType(D);
2539     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2540   }
2541 
2542   llvm::Constant *Fields[3];
2543 
2544   // Class pointer.
2545   Fields[0] = cast<llvm::ConstantExpr>(V);
2546 
2547   // String pointer.
2548   llvm::Constant *C =
2549     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2550 
2551   llvm::GlobalValue::LinkageTypes Linkage;
2552   bool isConstant;
2553   Linkage = llvm::GlobalValue::PrivateLinkage;
2554   isConstant = !LangOpts.WritableStrings;
2555 
2556   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2557                                       Linkage, C, ".str");
2558   GV->setUnnamedAddr(true);
2559   // Don't enforce the target's minimum global alignment, since the only use
2560   // of the string is via this class initializer.
2561   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2562   GV->setAlignment(Align.getQuantity());
2563   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2564 
2565   // String length.
2566   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2567   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2568 
2569   // The struct.
2570   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2571   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2572                                 llvm::GlobalVariable::PrivateLinkage, C,
2573                                 "_unnamed_nsstring_");
2574   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2575   const char *NSStringNonFragileABISection =
2576       "__DATA,__objc_stringobj,regular,no_dead_strip";
2577   // FIXME. Fix section.
2578   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2579                      ? NSStringNonFragileABISection
2580                      : NSStringSection);
2581   Entry.setValue(GV);
2582 
2583   return GV;
2584 }
2585 
2586 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2587   if (ObjCFastEnumerationStateType.isNull()) {
2588     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2589     D->startDefinition();
2590 
2591     QualType FieldTypes[] = {
2592       Context.UnsignedLongTy,
2593       Context.getPointerType(Context.getObjCIdType()),
2594       Context.getPointerType(Context.UnsignedLongTy),
2595       Context.getConstantArrayType(Context.UnsignedLongTy,
2596                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2597     };
2598 
2599     for (size_t i = 0; i < 4; ++i) {
2600       FieldDecl *Field = FieldDecl::Create(Context,
2601                                            D,
2602                                            SourceLocation(),
2603                                            SourceLocation(), nullptr,
2604                                            FieldTypes[i], /*TInfo=*/nullptr,
2605                                            /*BitWidth=*/nullptr,
2606                                            /*Mutable=*/false,
2607                                            ICIS_NoInit);
2608       Field->setAccess(AS_public);
2609       D->addDecl(Field);
2610     }
2611 
2612     D->completeDefinition();
2613     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2614   }
2615 
2616   return ObjCFastEnumerationStateType;
2617 }
2618 
2619 llvm::Constant *
2620 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2621   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2622 
2623   // Don't emit it as the address of the string, emit the string data itself
2624   // as an inline array.
2625   if (E->getCharByteWidth() == 1) {
2626     SmallString<64> Str(E->getString());
2627 
2628     // Resize the string to the right size, which is indicated by its type.
2629     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2630     Str.resize(CAT->getSize().getZExtValue());
2631     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2632   }
2633 
2634   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2635   llvm::Type *ElemTy = AType->getElementType();
2636   unsigned NumElements = AType->getNumElements();
2637 
2638   // Wide strings have either 2-byte or 4-byte elements.
2639   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2640     SmallVector<uint16_t, 32> Elements;
2641     Elements.reserve(NumElements);
2642 
2643     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2644       Elements.push_back(E->getCodeUnit(i));
2645     Elements.resize(NumElements);
2646     return llvm::ConstantDataArray::get(VMContext, Elements);
2647   }
2648 
2649   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2650   SmallVector<uint32_t, 32> Elements;
2651   Elements.reserve(NumElements);
2652 
2653   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2654     Elements.push_back(E->getCodeUnit(i));
2655   Elements.resize(NumElements);
2656   return llvm::ConstantDataArray::get(VMContext, Elements);
2657 }
2658 
2659 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2660 /// constant array for the given string literal.
2661 llvm::Constant *
2662 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2663   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2664 
2665   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2666   llvm::GlobalVariable *GV = nullptr;
2667   if (!LangOpts.WritableStrings) {
2668     llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2669     switch (S->getCharByteWidth()) {
2670     case 1:
2671       ConstantStringMap = &Constant1ByteStringMap;
2672       break;
2673     case 2:
2674       ConstantStringMap = &Constant2ByteStringMap;
2675       break;
2676     case 4:
2677       ConstantStringMap = &Constant4ByteStringMap;
2678       break;
2679     default:
2680       llvm_unreachable("unhandled byte width!");
2681     }
2682     Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes());
2683     GV = Entry->getValue();
2684   }
2685 
2686   if (!GV) {
2687     SmallString<256> MangledNameBuffer;
2688     StringRef GlobalVariableName;
2689     llvm::GlobalValue::LinkageTypes LT;
2690 
2691     // Mangle the string literal if the ABI allows for it.  However, we cannot
2692     // do this if  we are compiling with ASan or -fwritable-strings because they
2693     // rely on strings having normal linkage.
2694     if (!LangOpts.WritableStrings && !SanOpts.Address &&
2695         getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2696       llvm::raw_svector_ostream Out(MangledNameBuffer);
2697       getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2698       Out.flush();
2699 
2700       LT = llvm::GlobalValue::LinkOnceODRLinkage;
2701       GlobalVariableName = MangledNameBuffer;
2702     } else {
2703       LT = llvm::GlobalValue::PrivateLinkage;
2704       GlobalVariableName = ".str";
2705     }
2706 
2707     // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2708     unsigned AddrSpace = 0;
2709     if (getLangOpts().OpenCL)
2710       AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant);
2711 
2712     llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2713     GV = new llvm::GlobalVariable(
2714         getModule(), C->getType(), !LangOpts.WritableStrings, LT, C,
2715         GlobalVariableName, /*InsertBefore=*/nullptr,
2716         llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2717     GV->setUnnamedAddr(true);
2718     if (Entry)
2719       Entry->setValue(GV);
2720   }
2721 
2722   if (Align.getQuantity() > GV->getAlignment())
2723     GV->setAlignment(Align.getQuantity());
2724 
2725   return GV;
2726 }
2727 
2728 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2729 /// array for the given ObjCEncodeExpr node.
2730 llvm::Constant *
2731 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2732   std::string Str;
2733   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2734 
2735   return GetAddrOfConstantCString(Str);
2736 }
2737 
2738 
2739 /// GenerateWritableString -- Creates storage for a string literal.
2740 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2741                                              bool constant,
2742                                              CodeGenModule &CGM,
2743                                              const char *GlobalName,
2744                                              unsigned Alignment) {
2745   // Create Constant for this string literal. Don't add a '\0'.
2746   llvm::Constant *C =
2747       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2748 
2749   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2750   unsigned AddrSpace = 0;
2751   if (CGM.getLangOpts().OpenCL)
2752     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2753 
2754   // Create a global variable for this string
2755   auto *GV = new llvm::GlobalVariable(
2756       CGM.getModule(), C->getType(), constant,
2757       llvm::GlobalValue::PrivateLinkage, C, GlobalName, nullptr,
2758       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2759   GV->setAlignment(Alignment);
2760   GV->setUnnamedAddr(true);
2761   return GV;
2762 }
2763 
2764 /// GetAddrOfConstantString - Returns a pointer to a character array
2765 /// containing the literal. This contents are exactly that of the
2766 /// given string, i.e. it will not be null terminated automatically;
2767 /// see GetAddrOfConstantCString. Note that whether the result is
2768 /// actually a pointer to an LLVM constant depends on
2769 /// Feature.WriteableStrings.
2770 ///
2771 /// The result has pointer to array type.
2772 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2773                                                        const char *GlobalName,
2774                                                        unsigned Alignment) {
2775   // Get the default prefix if a name wasn't specified.
2776   if (!GlobalName)
2777     GlobalName = ".str";
2778 
2779   if (Alignment == 0)
2780     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2781       .getQuantity();
2782 
2783   // Don't share any string literals if strings aren't constant.
2784   if (LangOpts.WritableStrings)
2785     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2786 
2787   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2788     Constant1ByteStringMap.GetOrCreateValue(Str);
2789 
2790   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2791     if (Alignment > GV->getAlignment()) {
2792       GV->setAlignment(Alignment);
2793     }
2794     return GV;
2795   }
2796 
2797   // Create a global variable for this.
2798   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2799                                                    Alignment);
2800   Entry.setValue(GV);
2801   return GV;
2802 }
2803 
2804 /// GetAddrOfConstantCString - Returns a pointer to a character
2805 /// array containing the literal and a terminating '\0'
2806 /// character. The result has pointer to array type.
2807 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2808                                                         const char *GlobalName,
2809                                                         unsigned Alignment) {
2810   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2811   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2812 }
2813 
2814 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2815     const MaterializeTemporaryExpr *E, const Expr *Init) {
2816   assert((E->getStorageDuration() == SD_Static ||
2817           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2818   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
2819 
2820   // If we're not materializing a subobject of the temporary, keep the
2821   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2822   QualType MaterializedType = Init->getType();
2823   if (Init == E->GetTemporaryExpr())
2824     MaterializedType = E->getType();
2825 
2826   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2827   if (Slot)
2828     return Slot;
2829 
2830   // FIXME: If an externally-visible declaration extends multiple temporaries,
2831   // we need to give each temporary the same name in every translation unit (and
2832   // we also need to make the temporaries externally-visible).
2833   SmallString<256> Name;
2834   llvm::raw_svector_ostream Out(Name);
2835   getCXXABI().getMangleContext().mangleReferenceTemporary(
2836       VD, E->getManglingNumber(), Out);
2837   Out.flush();
2838 
2839   APValue *Value = nullptr;
2840   if (E->getStorageDuration() == SD_Static) {
2841     // We might have a cached constant initializer for this temporary. Note
2842     // that this might have a different value from the value computed by
2843     // evaluating the initializer if the surrounding constant expression
2844     // modifies the temporary.
2845     Value = getContext().getMaterializedTemporaryValue(E, false);
2846     if (Value && Value->isUninit())
2847       Value = nullptr;
2848   }
2849 
2850   // Try evaluating it now, it might have a constant initializer.
2851   Expr::EvalResult EvalResult;
2852   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2853       !EvalResult.hasSideEffects())
2854     Value = &EvalResult.Val;
2855 
2856   llvm::Constant *InitialValue = nullptr;
2857   bool Constant = false;
2858   llvm::Type *Type;
2859   if (Value) {
2860     // The temporary has a constant initializer, use it.
2861     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
2862     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2863     Type = InitialValue->getType();
2864   } else {
2865     // No initializer, the initialization will be provided when we
2866     // initialize the declaration which performed lifetime extension.
2867     Type = getTypes().ConvertTypeForMem(MaterializedType);
2868   }
2869 
2870   // Create a global variable for this lifetime-extended temporary.
2871   llvm::GlobalValue::LinkageTypes Linkage =
2872       getLLVMLinkageVarDefinition(VD, Constant);
2873   // There is no need for this temporary to have global linkage if the global
2874   // variable has external linkage.
2875   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2876     Linkage = llvm::GlobalVariable::PrivateLinkage;
2877   unsigned AddrSpace = GetGlobalVarAddressSpace(
2878       VD, getContext().getTargetAddressSpace(MaterializedType));
2879   auto *GV = new llvm::GlobalVariable(
2880       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2881       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2882       AddrSpace);
2883   setGlobalVisibility(GV, VD);
2884   GV->setAlignment(
2885       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2886   if (VD->getTLSKind())
2887     setTLSMode(GV, *VD);
2888   Slot = GV;
2889   return GV;
2890 }
2891 
2892 /// EmitObjCPropertyImplementations - Emit information for synthesized
2893 /// properties for an implementation.
2894 void CodeGenModule::EmitObjCPropertyImplementations(const
2895                                                     ObjCImplementationDecl *D) {
2896   for (const auto *PID : D->property_impls()) {
2897     // Dynamic is just for type-checking.
2898     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2899       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2900 
2901       // Determine which methods need to be implemented, some may have
2902       // been overridden. Note that ::isPropertyAccessor is not the method
2903       // we want, that just indicates if the decl came from a
2904       // property. What we want to know is if the method is defined in
2905       // this implementation.
2906       if (!D->getInstanceMethod(PD->getGetterName()))
2907         CodeGenFunction(*this).GenerateObjCGetter(
2908                                  const_cast<ObjCImplementationDecl *>(D), PID);
2909       if (!PD->isReadOnly() &&
2910           !D->getInstanceMethod(PD->getSetterName()))
2911         CodeGenFunction(*this).GenerateObjCSetter(
2912                                  const_cast<ObjCImplementationDecl *>(D), PID);
2913     }
2914   }
2915 }
2916 
2917 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2918   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2919   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2920        ivar; ivar = ivar->getNextIvar())
2921     if (ivar->getType().isDestructedType())
2922       return true;
2923 
2924   return false;
2925 }
2926 
2927 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2928 /// for an implementation.
2929 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2930   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2931   if (needsDestructMethod(D)) {
2932     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2933     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2934     ObjCMethodDecl *DTORMethod =
2935       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2936                              cxxSelector, getContext().VoidTy, nullptr, D,
2937                              /*isInstance=*/true, /*isVariadic=*/false,
2938                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2939                              /*isDefined=*/false, ObjCMethodDecl::Required);
2940     D->addInstanceMethod(DTORMethod);
2941     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2942     D->setHasDestructors(true);
2943   }
2944 
2945   // If the implementation doesn't have any ivar initializers, we don't need
2946   // a .cxx_construct.
2947   if (D->getNumIvarInitializers() == 0)
2948     return;
2949 
2950   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2951   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2952   // The constructor returns 'self'.
2953   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2954                                                 D->getLocation(),
2955                                                 D->getLocation(),
2956                                                 cxxSelector,
2957                                                 getContext().getObjCIdType(),
2958                                                 nullptr, D, /*isInstance=*/true,
2959                                                 /*isVariadic=*/false,
2960                                                 /*isPropertyAccessor=*/true,
2961                                                 /*isImplicitlyDeclared=*/true,
2962                                                 /*isDefined=*/false,
2963                                                 ObjCMethodDecl::Required);
2964   D->addInstanceMethod(CTORMethod);
2965   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2966   D->setHasNonZeroConstructors(true);
2967 }
2968 
2969 /// EmitNamespace - Emit all declarations in a namespace.
2970 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2971   for (auto *I : ND->decls()) {
2972     if (const auto *VD = dyn_cast<VarDecl>(I))
2973       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2974           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2975         continue;
2976     EmitTopLevelDecl(I);
2977   }
2978 }
2979 
2980 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2981 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2982   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2983       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2984     ErrorUnsupported(LSD, "linkage spec");
2985     return;
2986   }
2987 
2988   for (auto *I : LSD->decls()) {
2989     // Meta-data for ObjC class includes references to implemented methods.
2990     // Generate class's method definitions first.
2991     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
2992       for (auto *M : OID->methods())
2993         EmitTopLevelDecl(M);
2994     }
2995     EmitTopLevelDecl(I);
2996   }
2997 }
2998 
2999 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3000 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3001   // Ignore dependent declarations.
3002   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3003     return;
3004 
3005   switch (D->getKind()) {
3006   case Decl::CXXConversion:
3007   case Decl::CXXMethod:
3008   case Decl::Function:
3009     // Skip function templates
3010     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3011         cast<FunctionDecl>(D)->isLateTemplateParsed())
3012       return;
3013 
3014     EmitGlobal(cast<FunctionDecl>(D));
3015     break;
3016 
3017   case Decl::Var:
3018     // Skip variable templates
3019     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3020       return;
3021   case Decl::VarTemplateSpecialization:
3022     EmitGlobal(cast<VarDecl>(D));
3023     break;
3024 
3025   // Indirect fields from global anonymous structs and unions can be
3026   // ignored; only the actual variable requires IR gen support.
3027   case Decl::IndirectField:
3028     break;
3029 
3030   // C++ Decls
3031   case Decl::Namespace:
3032     EmitNamespace(cast<NamespaceDecl>(D));
3033     break;
3034     // No code generation needed.
3035   case Decl::UsingShadow:
3036   case Decl::ClassTemplate:
3037   case Decl::VarTemplate:
3038   case Decl::VarTemplatePartialSpecialization:
3039   case Decl::FunctionTemplate:
3040   case Decl::TypeAliasTemplate:
3041   case Decl::Block:
3042   case Decl::Empty:
3043     break;
3044   case Decl::Using:          // using X; [C++]
3045     if (CGDebugInfo *DI = getModuleDebugInfo())
3046         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3047     return;
3048   case Decl::NamespaceAlias:
3049     if (CGDebugInfo *DI = getModuleDebugInfo())
3050         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3051     return;
3052   case Decl::UsingDirective: // using namespace X; [C++]
3053     if (CGDebugInfo *DI = getModuleDebugInfo())
3054       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3055     return;
3056   case Decl::CXXConstructor:
3057     // Skip function templates
3058     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3059         cast<FunctionDecl>(D)->isLateTemplateParsed())
3060       return;
3061 
3062     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3063     break;
3064   case Decl::CXXDestructor:
3065     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3066       return;
3067     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3068     break;
3069 
3070   case Decl::StaticAssert:
3071     // Nothing to do.
3072     break;
3073 
3074   // Objective-C Decls
3075 
3076   // Forward declarations, no (immediate) code generation.
3077   case Decl::ObjCInterface:
3078   case Decl::ObjCCategory:
3079     break;
3080 
3081   case Decl::ObjCProtocol: {
3082     auto *Proto = cast<ObjCProtocolDecl>(D);
3083     if (Proto->isThisDeclarationADefinition())
3084       ObjCRuntime->GenerateProtocol(Proto);
3085     break;
3086   }
3087 
3088   case Decl::ObjCCategoryImpl:
3089     // Categories have properties but don't support synthesize so we
3090     // can ignore them here.
3091     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3092     break;
3093 
3094   case Decl::ObjCImplementation: {
3095     auto *OMD = cast<ObjCImplementationDecl>(D);
3096     EmitObjCPropertyImplementations(OMD);
3097     EmitObjCIvarInitializations(OMD);
3098     ObjCRuntime->GenerateClass(OMD);
3099     // Emit global variable debug information.
3100     if (CGDebugInfo *DI = getModuleDebugInfo())
3101       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3102         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3103             OMD->getClassInterface()), OMD->getLocation());
3104     break;
3105   }
3106   case Decl::ObjCMethod: {
3107     auto *OMD = cast<ObjCMethodDecl>(D);
3108     // If this is not a prototype, emit the body.
3109     if (OMD->getBody())
3110       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3111     break;
3112   }
3113   case Decl::ObjCCompatibleAlias:
3114     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3115     break;
3116 
3117   case Decl::LinkageSpec:
3118     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3119     break;
3120 
3121   case Decl::FileScopeAsm: {
3122     auto *AD = cast<FileScopeAsmDecl>(D);
3123     StringRef AsmString = AD->getAsmString()->getString();
3124 
3125     const std::string &S = getModule().getModuleInlineAsm();
3126     if (S.empty())
3127       getModule().setModuleInlineAsm(AsmString);
3128     else if (S.end()[-1] == '\n')
3129       getModule().setModuleInlineAsm(S + AsmString.str());
3130     else
3131       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3132     break;
3133   }
3134 
3135   case Decl::Import: {
3136     auto *Import = cast<ImportDecl>(D);
3137 
3138     // Ignore import declarations that come from imported modules.
3139     if (clang::Module *Owner = Import->getOwningModule()) {
3140       if (getLangOpts().CurrentModule.empty() ||
3141           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3142         break;
3143     }
3144 
3145     ImportedModules.insert(Import->getImportedModule());
3146     break;
3147   }
3148 
3149   case Decl::ClassTemplateSpecialization: {
3150     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3151     if (DebugInfo &&
3152         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3153       DebugInfo->completeTemplateDefinition(*Spec);
3154   }
3155 
3156   default:
3157     // Make sure we handled everything we should, every other kind is a
3158     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3159     // function. Need to recode Decl::Kind to do that easily.
3160     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3161   }
3162 }
3163 
3164 /// Turns the given pointer into a constant.
3165 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3166                                           const void *Ptr) {
3167   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3168   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3169   return llvm::ConstantInt::get(i64, PtrInt);
3170 }
3171 
3172 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3173                                    llvm::NamedMDNode *&GlobalMetadata,
3174                                    GlobalDecl D,
3175                                    llvm::GlobalValue *Addr) {
3176   if (!GlobalMetadata)
3177     GlobalMetadata =
3178       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3179 
3180   // TODO: should we report variant information for ctors/dtors?
3181   llvm::Value *Ops[] = {
3182     Addr,
3183     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3184   };
3185   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3186 }
3187 
3188 /// For each function which is declared within an extern "C" region and marked
3189 /// as 'used', but has internal linkage, create an alias from the unmangled
3190 /// name to the mangled name if possible. People expect to be able to refer
3191 /// to such functions with an unmangled name from inline assembly within the
3192 /// same translation unit.
3193 void CodeGenModule::EmitStaticExternCAliases() {
3194   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3195                                   E = StaticExternCValues.end();
3196        I != E; ++I) {
3197     IdentifierInfo *Name = I->first;
3198     llvm::GlobalValue *Val = I->second;
3199     if (Val && !getModule().getNamedValue(Name->getName()))
3200       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(),
3201                                               cast<llvm::GlobalObject>(Val)));
3202   }
3203 }
3204 
3205 /// Emits metadata nodes associating all the global values in the
3206 /// current module with the Decls they came from.  This is useful for
3207 /// projects using IR gen as a subroutine.
3208 ///
3209 /// Since there's currently no way to associate an MDNode directly
3210 /// with an llvm::GlobalValue, we create a global named metadata
3211 /// with the name 'clang.global.decl.ptrs'.
3212 void CodeGenModule::EmitDeclMetadata() {
3213   llvm::NamedMDNode *GlobalMetadata = nullptr;
3214 
3215   // StaticLocalDeclMap
3216   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3217          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3218        I != E; ++I) {
3219     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3220     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3221   }
3222 }
3223 
3224 /// Emits metadata nodes for all the local variables in the current
3225 /// function.
3226 void CodeGenFunction::EmitDeclMetadata() {
3227   if (LocalDeclMap.empty()) return;
3228 
3229   llvm::LLVMContext &Context = getLLVMContext();
3230 
3231   // Find the unique metadata ID for this name.
3232   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3233 
3234   llvm::NamedMDNode *GlobalMetadata = nullptr;
3235 
3236   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3237          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3238     const Decl *D = I->first;
3239     llvm::Value *Addr = I->second;
3240 
3241     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3242       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3243       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3244     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3245       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3246       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3247     }
3248   }
3249 }
3250 
3251 void CodeGenModule::EmitVersionIdentMetadata() {
3252   llvm::NamedMDNode *IdentMetadata =
3253     TheModule.getOrInsertNamedMetadata("llvm.ident");
3254   std::string Version = getClangFullVersion();
3255   llvm::LLVMContext &Ctx = TheModule.getContext();
3256 
3257   llvm::Value *IdentNode[] = {
3258     llvm::MDString::get(Ctx, Version)
3259   };
3260   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3261 }
3262 
3263 void CodeGenModule::EmitCoverageFile() {
3264   if (!getCodeGenOpts().CoverageFile.empty()) {
3265     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3266       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3267       llvm::LLVMContext &Ctx = TheModule.getContext();
3268       llvm::MDString *CoverageFile =
3269           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3270       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3271         llvm::MDNode *CU = CUNode->getOperand(i);
3272         llvm::Value *node[] = { CoverageFile, CU };
3273         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3274         GCov->addOperand(N);
3275       }
3276     }
3277   }
3278 }
3279 
3280 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3281                                                      QualType GuidType) {
3282   // Sema has checked that all uuid strings are of the form
3283   // "12345678-1234-1234-1234-1234567890ab".
3284   assert(Uuid.size() == 36);
3285   for (unsigned i = 0; i < 36; ++i) {
3286     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3287     else                                         assert(isHexDigit(Uuid[i]));
3288   }
3289 
3290   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3291 
3292   llvm::Constant *Field3[8];
3293   for (unsigned Idx = 0; Idx < 8; ++Idx)
3294     Field3[Idx] = llvm::ConstantInt::get(
3295         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3296 
3297   llvm::Constant *Fields[4] = {
3298     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3299     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3300     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3301     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3302   };
3303 
3304   return llvm::ConstantStruct::getAnon(Fields);
3305 }
3306