1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallSite.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 62 using namespace clang; 63 using namespace CodeGen; 64 65 static llvm::cl::opt<bool> LimitedCoverage( 66 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 67 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 68 llvm::cl::init(false)); 69 70 static const char AnnotationSection[] = "llvm.metadata"; 71 72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 73 switch (CGM.getTarget().getCXXABI().getKind()) { 74 case TargetCXXABI::GenericAArch64: 75 case TargetCXXABI::GenericARM: 76 case TargetCXXABI::iOS: 77 case TargetCXXABI::iOS64: 78 case TargetCXXABI::WatchOS: 79 case TargetCXXABI::GenericMIPS: 80 case TargetCXXABI::GenericItanium: 81 case TargetCXXABI::WebAssembly: 82 return CreateItaniumCXXABI(CGM); 83 case TargetCXXABI::Microsoft: 84 return CreateMicrosoftCXXABI(CGM); 85 } 86 87 llvm_unreachable("invalid C++ ABI kind"); 88 } 89 90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 91 const PreprocessorOptions &PPO, 92 const CodeGenOptions &CGO, llvm::Module &M, 93 DiagnosticsEngine &diags, 94 CoverageSourceInfo *CoverageInfo) 95 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 96 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 97 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 98 VMContext(M.getContext()), Types(*this), VTables(*this), 99 SanitizerMD(new SanitizerMetadata(*this)) { 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 HalfTy = llvm::Type::getHalfTy(LLVMContext); 109 FloatTy = llvm::Type::getFloatTy(LLVMContext); 110 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 111 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 112 PointerAlignInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 114 SizeSizeInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 116 IntAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 118 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 119 IntPtrTy = llvm::IntegerType::get(LLVMContext, 120 C.getTargetInfo().getMaxPointerWidth()); 121 Int8PtrTy = Int8Ty->getPointerTo(0); 122 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 123 AllocaInt8PtrTy = Int8Ty->getPointerTo( 124 M.getDataLayout().getAllocaAddrSpace()); 125 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 126 127 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 128 129 if (LangOpts.ObjC1) 130 createObjCRuntime(); 131 if (LangOpts.OpenCL) 132 createOpenCLRuntime(); 133 if (LangOpts.OpenMP) 134 createOpenMPRuntime(); 135 if (LangOpts.CUDA) 136 createCUDARuntime(); 137 138 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 139 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 140 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 141 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 142 getCXXABI().getMangleContext())); 143 144 // If debug info or coverage generation is enabled, create the CGDebugInfo 145 // object. 146 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 147 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 148 DebugInfo.reset(new CGDebugInfo(*this)); 149 150 Block.GlobalUniqueCount = 0; 151 152 if (C.getLangOpts().ObjC1) 153 ObjCData.reset(new ObjCEntrypoints()); 154 155 if (CodeGenOpts.hasProfileClangUse()) { 156 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 157 CodeGenOpts.ProfileInstrumentUsePath); 158 if (auto E = ReaderOrErr.takeError()) { 159 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 160 "Could not read profile %0: %1"); 161 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 162 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 163 << EI.message(); 164 }); 165 } else 166 PGOReader = std::move(ReaderOrErr.get()); 167 } 168 169 // If coverage mapping generation is enabled, create the 170 // CoverageMappingModuleGen object. 171 if (CodeGenOpts.CoverageMapping) 172 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 173 } 174 175 CodeGenModule::~CodeGenModule() {} 176 177 void CodeGenModule::createObjCRuntime() { 178 // This is just isGNUFamily(), but we want to force implementors of 179 // new ABIs to decide how best to do this. 180 switch (LangOpts.ObjCRuntime.getKind()) { 181 case ObjCRuntime::GNUstep: 182 case ObjCRuntime::GCC: 183 case ObjCRuntime::ObjFW: 184 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 185 return; 186 187 case ObjCRuntime::FragileMacOSX: 188 case ObjCRuntime::MacOSX: 189 case ObjCRuntime::iOS: 190 case ObjCRuntime::WatchOS: 191 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 192 return; 193 } 194 llvm_unreachable("bad runtime kind"); 195 } 196 197 void CodeGenModule::createOpenCLRuntime() { 198 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 199 } 200 201 void CodeGenModule::createOpenMPRuntime() { 202 // Select a specialized code generation class based on the target, if any. 203 // If it does not exist use the default implementation. 204 switch (getTriple().getArch()) { 205 case llvm::Triple::nvptx: 206 case llvm::Triple::nvptx64: 207 assert(getLangOpts().OpenMPIsDevice && 208 "OpenMP NVPTX is only prepared to deal with device code."); 209 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 210 break; 211 default: 212 if (LangOpts.OpenMPSimd) 213 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 214 else 215 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 216 break; 217 } 218 } 219 220 void CodeGenModule::createCUDARuntime() { 221 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 222 } 223 224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 225 Replacements[Name] = C; 226 } 227 228 void CodeGenModule::applyReplacements() { 229 for (auto &I : Replacements) { 230 StringRef MangledName = I.first(); 231 llvm::Constant *Replacement = I.second; 232 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 233 if (!Entry) 234 continue; 235 auto *OldF = cast<llvm::Function>(Entry); 236 auto *NewF = dyn_cast<llvm::Function>(Replacement); 237 if (!NewF) { 238 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 239 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 240 } else { 241 auto *CE = cast<llvm::ConstantExpr>(Replacement); 242 assert(CE->getOpcode() == llvm::Instruction::BitCast || 243 CE->getOpcode() == llvm::Instruction::GetElementPtr); 244 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 245 } 246 } 247 248 // Replace old with new, but keep the old order. 249 OldF->replaceAllUsesWith(Replacement); 250 if (NewF) { 251 NewF->removeFromParent(); 252 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 253 NewF); 254 } 255 OldF->eraseFromParent(); 256 } 257 } 258 259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 260 GlobalValReplacements.push_back(std::make_pair(GV, C)); 261 } 262 263 void CodeGenModule::applyGlobalValReplacements() { 264 for (auto &I : GlobalValReplacements) { 265 llvm::GlobalValue *GV = I.first; 266 llvm::Constant *C = I.second; 267 268 GV->replaceAllUsesWith(C); 269 GV->eraseFromParent(); 270 } 271 } 272 273 // This is only used in aliases that we created and we know they have a 274 // linear structure. 275 static const llvm::GlobalObject *getAliasedGlobal( 276 const llvm::GlobalIndirectSymbol &GIS) { 277 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 278 const llvm::Constant *C = &GIS; 279 for (;;) { 280 C = C->stripPointerCasts(); 281 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 282 return GO; 283 // stripPointerCasts will not walk over weak aliases. 284 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 285 if (!GIS2) 286 return nullptr; 287 if (!Visited.insert(GIS2).second) 288 return nullptr; 289 C = GIS2->getIndirectSymbol(); 290 } 291 } 292 293 void CodeGenModule::checkAliases() { 294 // Check if the constructed aliases are well formed. It is really unfortunate 295 // that we have to do this in CodeGen, but we only construct mangled names 296 // and aliases during codegen. 297 bool Error = false; 298 DiagnosticsEngine &Diags = getDiags(); 299 for (const GlobalDecl &GD : Aliases) { 300 const auto *D = cast<ValueDecl>(GD.getDecl()); 301 SourceLocation Location; 302 bool IsIFunc = D->hasAttr<IFuncAttr>(); 303 if (const Attr *A = D->getDefiningAttr()) 304 Location = A->getLocation(); 305 else 306 llvm_unreachable("Not an alias or ifunc?"); 307 StringRef MangledName = getMangledName(GD); 308 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 309 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 310 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 311 if (!GV) { 312 Error = true; 313 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 314 } else if (GV->isDeclaration()) { 315 Error = true; 316 Diags.Report(Location, diag::err_alias_to_undefined) 317 << IsIFunc << IsIFunc; 318 } else if (IsIFunc) { 319 // Check resolver function type. 320 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 321 GV->getType()->getPointerElementType()); 322 assert(FTy); 323 if (!FTy->getReturnType()->isPointerTy()) 324 Diags.Report(Location, diag::err_ifunc_resolver_return); 325 if (FTy->getNumParams()) 326 Diags.Report(Location, diag::err_ifunc_resolver_params); 327 } 328 329 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 330 llvm::GlobalValue *AliaseeGV; 331 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 332 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 333 else 334 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 335 336 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 337 StringRef AliasSection = SA->getName(); 338 if (AliasSection != AliaseeGV->getSection()) 339 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 340 << AliasSection << IsIFunc << IsIFunc; 341 } 342 343 // We have to handle alias to weak aliases in here. LLVM itself disallows 344 // this since the object semantics would not match the IL one. For 345 // compatibility with gcc we implement it by just pointing the alias 346 // to its aliasee's aliasee. We also warn, since the user is probably 347 // expecting the link to be weak. 348 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 349 if (GA->isInterposable()) { 350 Diags.Report(Location, diag::warn_alias_to_weak_alias) 351 << GV->getName() << GA->getName() << IsIFunc; 352 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 353 GA->getIndirectSymbol(), Alias->getType()); 354 Alias->setIndirectSymbol(Aliasee); 355 } 356 } 357 } 358 if (!Error) 359 return; 360 361 for (const GlobalDecl &GD : Aliases) { 362 StringRef MangledName = getMangledName(GD); 363 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 364 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 365 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 366 Alias->eraseFromParent(); 367 } 368 } 369 370 void CodeGenModule::clear() { 371 DeferredDeclsToEmit.clear(); 372 if (OpenMPRuntime) 373 OpenMPRuntime->clear(); 374 } 375 376 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 377 StringRef MainFile) { 378 if (!hasDiagnostics()) 379 return; 380 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 381 if (MainFile.empty()) 382 MainFile = "<stdin>"; 383 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 384 } else { 385 if (Mismatched > 0) 386 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 387 388 if (Missing > 0) 389 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 390 } 391 } 392 393 void CodeGenModule::Release() { 394 EmitDeferred(); 395 EmitVTablesOpportunistically(); 396 applyGlobalValReplacements(); 397 applyReplacements(); 398 checkAliases(); 399 emitMultiVersionFunctions(); 400 EmitCXXGlobalInitFunc(); 401 EmitCXXGlobalDtorFunc(); 402 registerGlobalDtorsWithAtExit(); 403 EmitCXXThreadLocalInitFunc(); 404 if (ObjCRuntime) 405 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 406 AddGlobalCtor(ObjCInitFunction); 407 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 408 CUDARuntime) { 409 if (llvm::Function *CudaCtorFunction = 410 CUDARuntime->makeModuleCtorFunction()) 411 AddGlobalCtor(CudaCtorFunction); 412 } 413 if (OpenMPRuntime) { 414 if (llvm::Function *OpenMPRegistrationFunction = 415 OpenMPRuntime->emitRegistrationFunction()) { 416 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 417 OpenMPRegistrationFunction : nullptr; 418 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 419 } 420 OpenMPRuntime->clear(); 421 } 422 if (PGOReader) { 423 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 424 if (PGOStats.hasDiagnostics()) 425 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 426 } 427 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 428 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 429 EmitGlobalAnnotations(); 430 EmitStaticExternCAliases(); 431 EmitDeferredUnusedCoverageMappings(); 432 if (CoverageMapping) 433 CoverageMapping->emit(); 434 if (CodeGenOpts.SanitizeCfiCrossDso) { 435 CodeGenFunction(*this).EmitCfiCheckFail(); 436 CodeGenFunction(*this).EmitCfiCheckStub(); 437 } 438 emitAtAvailableLinkGuard(); 439 emitLLVMUsed(); 440 if (SanStats) 441 SanStats->finish(); 442 443 if (CodeGenOpts.Autolink && 444 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 445 EmitModuleLinkOptions(); 446 } 447 448 // Record mregparm value now so it is visible through rest of codegen. 449 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 450 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 451 CodeGenOpts.NumRegisterParameters); 452 453 if (CodeGenOpts.DwarfVersion) { 454 // We actually want the latest version when there are conflicts. 455 // We can change from Warning to Latest if such mode is supported. 456 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 457 CodeGenOpts.DwarfVersion); 458 } 459 if (CodeGenOpts.EmitCodeView) { 460 // Indicate that we want CodeView in the metadata. 461 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 462 } 463 if (CodeGenOpts.ControlFlowGuard) { 464 // We want function ID tables for Control Flow Guard. 465 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 466 } 467 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 468 // We don't support LTO with 2 with different StrictVTablePointers 469 // FIXME: we could support it by stripping all the information introduced 470 // by StrictVTablePointers. 471 472 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 473 474 llvm::Metadata *Ops[2] = { 475 llvm::MDString::get(VMContext, "StrictVTablePointers"), 476 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 477 llvm::Type::getInt32Ty(VMContext), 1))}; 478 479 getModule().addModuleFlag(llvm::Module::Require, 480 "StrictVTablePointersRequirement", 481 llvm::MDNode::get(VMContext, Ops)); 482 } 483 if (DebugInfo) 484 // We support a single version in the linked module. The LLVM 485 // parser will drop debug info with a different version number 486 // (and warn about it, too). 487 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 488 llvm::DEBUG_METADATA_VERSION); 489 490 // We need to record the widths of enums and wchar_t, so that we can generate 491 // the correct build attributes in the ARM backend. wchar_size is also used by 492 // TargetLibraryInfo. 493 uint64_t WCharWidth = 494 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 495 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 496 497 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 498 if ( Arch == llvm::Triple::arm 499 || Arch == llvm::Triple::armeb 500 || Arch == llvm::Triple::thumb 501 || Arch == llvm::Triple::thumbeb) { 502 // The minimum width of an enum in bytes 503 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 504 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 505 } 506 507 if (CodeGenOpts.SanitizeCfiCrossDso) { 508 // Indicate that we want cross-DSO control flow integrity checks. 509 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 510 } 511 512 if (CodeGenOpts.CFProtectionReturn && 513 Target.checkCFProtectionReturnSupported(getDiags())) { 514 // Indicate that we want to instrument return control flow protection. 515 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 516 1); 517 } 518 519 if (CodeGenOpts.CFProtectionBranch && 520 Target.checkCFProtectionBranchSupported(getDiags())) { 521 // Indicate that we want to instrument branch control flow protection. 522 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 523 1); 524 } 525 526 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 527 // Indicate whether __nvvm_reflect should be configured to flush denormal 528 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 529 // property.) 530 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 531 CodeGenOpts.FlushDenorm ? 1 : 0); 532 } 533 534 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 535 if (LangOpts.OpenCL) { 536 EmitOpenCLMetadata(); 537 // Emit SPIR version. 538 if (getTriple().getArch() == llvm::Triple::spir || 539 getTriple().getArch() == llvm::Triple::spir64) { 540 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 541 // opencl.spir.version named metadata. 542 llvm::Metadata *SPIRVerElts[] = { 543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 544 Int32Ty, LangOpts.OpenCLVersion / 100)), 545 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 546 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 547 llvm::NamedMDNode *SPIRVerMD = 548 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 549 llvm::LLVMContext &Ctx = TheModule.getContext(); 550 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 551 } 552 } 553 554 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 555 assert(PLevel < 3 && "Invalid PIC Level"); 556 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 557 if (Context.getLangOpts().PIE) 558 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 559 } 560 561 if (getCodeGenOpts().CodeModel.size() > 0) { 562 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 563 .Case("tiny", llvm::CodeModel::Tiny) 564 .Case("small", llvm::CodeModel::Small) 565 .Case("kernel", llvm::CodeModel::Kernel) 566 .Case("medium", llvm::CodeModel::Medium) 567 .Case("large", llvm::CodeModel::Large) 568 .Default(~0u); 569 if (CM != ~0u) { 570 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 571 getModule().setCodeModel(codeModel); 572 } 573 } 574 575 if (CodeGenOpts.NoPLT) 576 getModule().setRtLibUseGOT(); 577 578 SimplifyPersonality(); 579 580 if (getCodeGenOpts().EmitDeclMetadata) 581 EmitDeclMetadata(); 582 583 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 584 EmitCoverageFile(); 585 586 if (DebugInfo) 587 DebugInfo->finalize(); 588 589 if (getCodeGenOpts().EmitVersionIdentMetadata) 590 EmitVersionIdentMetadata(); 591 592 EmitTargetMetadata(); 593 } 594 595 void CodeGenModule::EmitOpenCLMetadata() { 596 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 597 // opencl.ocl.version named metadata node. 598 llvm::Metadata *OCLVerElts[] = { 599 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 600 Int32Ty, LangOpts.OpenCLVersion / 100)), 601 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 602 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 603 llvm::NamedMDNode *OCLVerMD = 604 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 605 llvm::LLVMContext &Ctx = TheModule.getContext(); 606 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 607 } 608 609 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 610 // Make sure that this type is translated. 611 Types.UpdateCompletedType(TD); 612 } 613 614 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 615 // Make sure that this type is translated. 616 Types.RefreshTypeCacheForClass(RD); 617 } 618 619 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 620 if (!TBAA) 621 return nullptr; 622 return TBAA->getTypeInfo(QTy); 623 } 624 625 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 626 if (!TBAA) 627 return TBAAAccessInfo(); 628 return TBAA->getAccessInfo(AccessType); 629 } 630 631 TBAAAccessInfo 632 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 633 if (!TBAA) 634 return TBAAAccessInfo(); 635 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 636 } 637 638 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 639 if (!TBAA) 640 return nullptr; 641 return TBAA->getTBAAStructInfo(QTy); 642 } 643 644 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 645 if (!TBAA) 646 return nullptr; 647 return TBAA->getBaseTypeInfo(QTy); 648 } 649 650 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 651 if (!TBAA) 652 return nullptr; 653 return TBAA->getAccessTagInfo(Info); 654 } 655 656 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 657 TBAAAccessInfo TargetInfo) { 658 if (!TBAA) 659 return TBAAAccessInfo(); 660 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 661 } 662 663 TBAAAccessInfo 664 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 665 TBAAAccessInfo InfoB) { 666 if (!TBAA) 667 return TBAAAccessInfo(); 668 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 669 } 670 671 TBAAAccessInfo 672 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 673 TBAAAccessInfo SrcInfo) { 674 if (!TBAA) 675 return TBAAAccessInfo(); 676 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 677 } 678 679 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 680 TBAAAccessInfo TBAAInfo) { 681 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 682 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 683 } 684 685 void CodeGenModule::DecorateInstructionWithInvariantGroup( 686 llvm::Instruction *I, const CXXRecordDecl *RD) { 687 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 688 llvm::MDNode::get(getLLVMContext(), {})); 689 } 690 691 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 692 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 693 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 694 } 695 696 /// ErrorUnsupported - Print out an error that codegen doesn't support the 697 /// specified stmt yet. 698 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 699 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 700 "cannot compile this %0 yet"); 701 std::string Msg = Type; 702 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 703 << Msg << S->getSourceRange(); 704 } 705 706 /// ErrorUnsupported - Print out an error that codegen doesn't support the 707 /// specified decl yet. 708 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 709 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 710 "cannot compile this %0 yet"); 711 std::string Msg = Type; 712 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 713 } 714 715 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 716 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 717 } 718 719 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 720 const NamedDecl *D) const { 721 if (GV->hasDLLImportStorageClass()) 722 return; 723 // Internal definitions always have default visibility. 724 if (GV->hasLocalLinkage()) { 725 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 726 return; 727 } 728 if (!D) 729 return; 730 // Set visibility for definitions. 731 LinkageInfo LV = D->getLinkageAndVisibility(); 732 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 733 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 734 } 735 736 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 737 llvm::GlobalValue *GV) { 738 if (GV->hasLocalLinkage()) 739 return true; 740 741 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 742 return true; 743 744 // DLLImport explicitly marks the GV as external. 745 if (GV->hasDLLImportStorageClass()) 746 return false; 747 748 const llvm::Triple &TT = CGM.getTriple(); 749 if (TT.isWindowsGNUEnvironment()) { 750 // In MinGW, variables without DLLImport can still be automatically 751 // imported from a DLL by the linker; don't mark variables that 752 // potentially could come from another DLL as DSO local. 753 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 754 !GV->isThreadLocal()) 755 return false; 756 } 757 // Every other GV is local on COFF. 758 // Make an exception for windows OS in the triple: Some firmware builds use 759 // *-win32-macho triples. This (accidentally?) produced windows relocations 760 // without GOT tables in older clang versions; Keep this behaviour. 761 // FIXME: even thread local variables? 762 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 763 return true; 764 765 // Only handle COFF and ELF for now. 766 if (!TT.isOSBinFormatELF()) 767 return false; 768 769 // If this is not an executable, don't assume anything is local. 770 const auto &CGOpts = CGM.getCodeGenOpts(); 771 llvm::Reloc::Model RM = CGOpts.RelocationModel; 772 const auto &LOpts = CGM.getLangOpts(); 773 if (RM != llvm::Reloc::Static && !LOpts.PIE) 774 return false; 775 776 // A definition cannot be preempted from an executable. 777 if (!GV->isDeclarationForLinker()) 778 return true; 779 780 // Most PIC code sequences that assume that a symbol is local cannot produce a 781 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 782 // depended, it seems worth it to handle it here. 783 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 784 return false; 785 786 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 787 llvm::Triple::ArchType Arch = TT.getArch(); 788 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 789 Arch == llvm::Triple::ppc64le) 790 return false; 791 792 // If we can use copy relocations we can assume it is local. 793 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 794 if (!Var->isThreadLocal() && 795 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 796 return true; 797 798 // If we can use a plt entry as the symbol address we can assume it 799 // is local. 800 // FIXME: This should work for PIE, but the gold linker doesn't support it. 801 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 802 return true; 803 804 // Otherwise don't assue it is local. 805 return false; 806 } 807 808 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 809 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 810 } 811 812 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 813 GlobalDecl GD) const { 814 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 815 // C++ destructors have a few C++ ABI specific special cases. 816 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 817 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 818 return; 819 } 820 setDLLImportDLLExport(GV, D); 821 } 822 823 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 824 const NamedDecl *D) const { 825 if (D && D->isExternallyVisible()) { 826 if (D->hasAttr<DLLImportAttr>()) 827 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 828 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 829 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 830 } 831 } 832 833 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 834 GlobalDecl GD) const { 835 setDLLImportDLLExport(GV, GD); 836 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 837 } 838 839 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 840 const NamedDecl *D) const { 841 setDLLImportDLLExport(GV, D); 842 setGlobalVisibilityAndLocal(GV, D); 843 } 844 845 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 846 const NamedDecl *D) const { 847 setGlobalVisibility(GV, D); 848 setDSOLocal(GV); 849 } 850 851 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 852 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 853 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 854 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 855 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 856 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 857 } 858 859 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 860 CodeGenOptions::TLSModel M) { 861 switch (M) { 862 case CodeGenOptions::GeneralDynamicTLSModel: 863 return llvm::GlobalVariable::GeneralDynamicTLSModel; 864 case CodeGenOptions::LocalDynamicTLSModel: 865 return llvm::GlobalVariable::LocalDynamicTLSModel; 866 case CodeGenOptions::InitialExecTLSModel: 867 return llvm::GlobalVariable::InitialExecTLSModel; 868 case CodeGenOptions::LocalExecTLSModel: 869 return llvm::GlobalVariable::LocalExecTLSModel; 870 } 871 llvm_unreachable("Invalid TLS model!"); 872 } 873 874 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 875 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 876 877 llvm::GlobalValue::ThreadLocalMode TLM; 878 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 879 880 // Override the TLS model if it is explicitly specified. 881 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 882 TLM = GetLLVMTLSModel(Attr->getModel()); 883 } 884 885 GV->setThreadLocalMode(TLM); 886 } 887 888 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 889 StringRef Name) { 890 const TargetInfo &Target = CGM.getTarget(); 891 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 892 } 893 894 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 895 const CPUSpecificAttr *Attr, 896 raw_ostream &Out) { 897 // cpu_specific gets the current name, dispatch gets the resolver. 898 if (Attr) 899 Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName()); 900 else 901 Out << ".resolver"; 902 } 903 904 static void AppendTargetMangling(const CodeGenModule &CGM, 905 const TargetAttr *Attr, raw_ostream &Out) { 906 if (Attr->isDefaultVersion()) 907 return; 908 909 Out << '.'; 910 const TargetInfo &Target = CGM.getTarget(); 911 TargetAttr::ParsedTargetAttr Info = 912 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 913 // Multiversioning doesn't allow "no-${feature}", so we can 914 // only have "+" prefixes here. 915 assert(LHS.startswith("+") && RHS.startswith("+") && 916 "Features should always have a prefix."); 917 return Target.multiVersionSortPriority(LHS.substr(1)) > 918 Target.multiVersionSortPriority(RHS.substr(1)); 919 }); 920 921 bool IsFirst = true; 922 923 if (!Info.Architecture.empty()) { 924 IsFirst = false; 925 Out << "arch_" << Info.Architecture; 926 } 927 928 for (StringRef Feat : Info.Features) { 929 if (!IsFirst) 930 Out << '_'; 931 IsFirst = false; 932 Out << Feat.substr(1); 933 } 934 } 935 936 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 937 const NamedDecl *ND, 938 bool OmitMultiVersionMangling = false) { 939 SmallString<256> Buffer; 940 llvm::raw_svector_ostream Out(Buffer); 941 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 942 if (MC.shouldMangleDeclName(ND)) { 943 llvm::raw_svector_ostream Out(Buffer); 944 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 945 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 946 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 947 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 948 else 949 MC.mangleName(ND, Out); 950 } else { 951 IdentifierInfo *II = ND->getIdentifier(); 952 assert(II && "Attempt to mangle unnamed decl."); 953 const auto *FD = dyn_cast<FunctionDecl>(ND); 954 955 if (FD && 956 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 957 llvm::raw_svector_ostream Out(Buffer); 958 Out << "__regcall3__" << II->getName(); 959 } else { 960 Out << II->getName(); 961 } 962 } 963 964 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 965 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 966 if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()) 967 AppendCPUSpecificCPUDispatchMangling( 968 CGM, FD->getAttr<CPUSpecificAttr>(), Out); 969 else 970 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 971 } 972 973 return Out.str(); 974 } 975 976 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 977 const FunctionDecl *FD) { 978 if (!FD->isMultiVersion()) 979 return; 980 981 // Get the name of what this would be without the 'target' attribute. This 982 // allows us to lookup the version that was emitted when this wasn't a 983 // multiversion function. 984 std::string NonTargetName = 985 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 986 GlobalDecl OtherGD; 987 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 988 assert(OtherGD.getCanonicalDecl() 989 .getDecl() 990 ->getAsFunction() 991 ->isMultiVersion() && 992 "Other GD should now be a multiversioned function"); 993 // OtherFD is the version of this function that was mangled BEFORE 994 // becoming a MultiVersion function. It potentially needs to be updated. 995 const FunctionDecl *OtherFD = 996 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 997 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 998 // This is so that if the initial version was already the 'default' 999 // version, we don't try to update it. 1000 if (OtherName != NonTargetName) { 1001 // Remove instead of erase, since others may have stored the StringRef 1002 // to this. 1003 const auto ExistingRecord = Manglings.find(NonTargetName); 1004 if (ExistingRecord != std::end(Manglings)) 1005 Manglings.remove(&(*ExistingRecord)); 1006 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1007 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1008 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1009 Entry->setName(OtherName); 1010 } 1011 } 1012 } 1013 1014 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1015 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1016 1017 // Some ABIs don't have constructor variants. Make sure that base and 1018 // complete constructors get mangled the same. 1019 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1020 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1021 CXXCtorType OrigCtorType = GD.getCtorType(); 1022 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1023 if (OrigCtorType == Ctor_Base) 1024 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1025 } 1026 } 1027 1028 const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()); 1029 // Since CPUSpecific can require multiple emits per decl, store the manglings 1030 // separately. 1031 if (FD && 1032 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) { 1033 const auto *SD = FD->getAttr<CPUSpecificAttr>(); 1034 1035 std::pair<GlobalDecl, unsigned> SpecCanonicalGD{ 1036 CanonicalGD, 1037 SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()}; 1038 1039 auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD); 1040 if (FoundName != CPUSpecificMangledDeclNames.end()) 1041 return FoundName->second; 1042 1043 auto Result = CPUSpecificManglings.insert( 1044 std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD)); 1045 return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first(); 1046 } 1047 1048 auto FoundName = MangledDeclNames.find(CanonicalGD); 1049 if (FoundName != MangledDeclNames.end()) 1050 return FoundName->second; 1051 1052 // Keep the first result in the case of a mangling collision. 1053 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1054 auto Result = 1055 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 1056 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1057 } 1058 1059 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1060 const BlockDecl *BD) { 1061 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1062 const Decl *D = GD.getDecl(); 1063 1064 SmallString<256> Buffer; 1065 llvm::raw_svector_ostream Out(Buffer); 1066 if (!D) 1067 MangleCtx.mangleGlobalBlock(BD, 1068 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1069 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1070 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1071 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1072 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1073 else 1074 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1075 1076 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1077 return Result.first->first(); 1078 } 1079 1080 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1081 return getModule().getNamedValue(Name); 1082 } 1083 1084 /// AddGlobalCtor - Add a function to the list that will be called before 1085 /// main() runs. 1086 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1087 llvm::Constant *AssociatedData) { 1088 // FIXME: Type coercion of void()* types. 1089 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1090 } 1091 1092 /// AddGlobalDtor - Add a function to the list that will be called 1093 /// when the module is unloaded. 1094 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1095 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1096 DtorsUsingAtExit[Priority].push_back(Dtor); 1097 return; 1098 } 1099 1100 // FIXME: Type coercion of void()* types. 1101 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1102 } 1103 1104 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1105 if (Fns.empty()) return; 1106 1107 // Ctor function type is void()*. 1108 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1109 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1110 1111 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1112 llvm::StructType *CtorStructTy = llvm::StructType::get( 1113 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1114 1115 // Construct the constructor and destructor arrays. 1116 ConstantInitBuilder builder(*this); 1117 auto ctors = builder.beginArray(CtorStructTy); 1118 for (const auto &I : Fns) { 1119 auto ctor = ctors.beginStruct(CtorStructTy); 1120 ctor.addInt(Int32Ty, I.Priority); 1121 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1122 if (I.AssociatedData) 1123 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1124 else 1125 ctor.addNullPointer(VoidPtrTy); 1126 ctor.finishAndAddTo(ctors); 1127 } 1128 1129 auto list = 1130 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1131 /*constant*/ false, 1132 llvm::GlobalValue::AppendingLinkage); 1133 1134 // The LTO linker doesn't seem to like it when we set an alignment 1135 // on appending variables. Take it off as a workaround. 1136 list->setAlignment(0); 1137 1138 Fns.clear(); 1139 } 1140 1141 llvm::GlobalValue::LinkageTypes 1142 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1143 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1144 1145 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1146 1147 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1148 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1149 1150 if (isa<CXXConstructorDecl>(D) && 1151 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1152 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1153 // Our approach to inheriting constructors is fundamentally different from 1154 // that used by the MS ABI, so keep our inheriting constructor thunks 1155 // internal rather than trying to pick an unambiguous mangling for them. 1156 return llvm::GlobalValue::InternalLinkage; 1157 } 1158 1159 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1160 } 1161 1162 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1163 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1164 if (!MDS) return nullptr; 1165 1166 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1167 } 1168 1169 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1170 const CGFunctionInfo &Info, 1171 llvm::Function *F) { 1172 unsigned CallingConv; 1173 llvm::AttributeList PAL; 1174 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1175 F->setAttributes(PAL); 1176 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1177 } 1178 1179 /// Determines whether the language options require us to model 1180 /// unwind exceptions. We treat -fexceptions as mandating this 1181 /// except under the fragile ObjC ABI with only ObjC exceptions 1182 /// enabled. This means, for example, that C with -fexceptions 1183 /// enables this. 1184 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1185 // If exceptions are completely disabled, obviously this is false. 1186 if (!LangOpts.Exceptions) return false; 1187 1188 // If C++ exceptions are enabled, this is true. 1189 if (LangOpts.CXXExceptions) return true; 1190 1191 // If ObjC exceptions are enabled, this depends on the ABI. 1192 if (LangOpts.ObjCExceptions) { 1193 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1194 } 1195 1196 return true; 1197 } 1198 1199 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1200 const CXXMethodDecl *MD) { 1201 // Check that the type metadata can ever actually be used by a call. 1202 if (!CGM.getCodeGenOpts().LTOUnit || 1203 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1204 return false; 1205 1206 // Only functions whose address can be taken with a member function pointer 1207 // need this sort of type metadata. 1208 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1209 !isa<CXXDestructorDecl>(MD); 1210 } 1211 1212 std::vector<const CXXRecordDecl *> 1213 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1214 llvm::SetVector<const CXXRecordDecl *> MostBases; 1215 1216 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1217 CollectMostBases = [&](const CXXRecordDecl *RD) { 1218 if (RD->getNumBases() == 0) 1219 MostBases.insert(RD); 1220 for (const CXXBaseSpecifier &B : RD->bases()) 1221 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1222 }; 1223 CollectMostBases(RD); 1224 return MostBases.takeVector(); 1225 } 1226 1227 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1228 llvm::Function *F) { 1229 llvm::AttrBuilder B; 1230 1231 if (CodeGenOpts.UnwindTables) 1232 B.addAttribute(llvm::Attribute::UWTable); 1233 1234 if (!hasUnwindExceptions(LangOpts)) 1235 B.addAttribute(llvm::Attribute::NoUnwind); 1236 1237 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1238 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1239 B.addAttribute(llvm::Attribute::StackProtect); 1240 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1241 B.addAttribute(llvm::Attribute::StackProtectStrong); 1242 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1243 B.addAttribute(llvm::Attribute::StackProtectReq); 1244 } 1245 1246 if (!D) { 1247 // If we don't have a declaration to control inlining, the function isn't 1248 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1249 // disabled, mark the function as noinline. 1250 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1251 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1252 B.addAttribute(llvm::Attribute::NoInline); 1253 1254 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1255 return; 1256 } 1257 1258 // Track whether we need to add the optnone LLVM attribute, 1259 // starting with the default for this optimization level. 1260 bool ShouldAddOptNone = 1261 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1262 // We can't add optnone in the following cases, it won't pass the verifier. 1263 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1264 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1265 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1266 1267 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1268 B.addAttribute(llvm::Attribute::OptimizeNone); 1269 1270 // OptimizeNone implies noinline; we should not be inlining such functions. 1271 B.addAttribute(llvm::Attribute::NoInline); 1272 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1273 "OptimizeNone and AlwaysInline on same function!"); 1274 1275 // We still need to handle naked functions even though optnone subsumes 1276 // much of their semantics. 1277 if (D->hasAttr<NakedAttr>()) 1278 B.addAttribute(llvm::Attribute::Naked); 1279 1280 // OptimizeNone wins over OptimizeForSize and MinSize. 1281 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1282 F->removeFnAttr(llvm::Attribute::MinSize); 1283 } else if (D->hasAttr<NakedAttr>()) { 1284 // Naked implies noinline: we should not be inlining such functions. 1285 B.addAttribute(llvm::Attribute::Naked); 1286 B.addAttribute(llvm::Attribute::NoInline); 1287 } else if (D->hasAttr<NoDuplicateAttr>()) { 1288 B.addAttribute(llvm::Attribute::NoDuplicate); 1289 } else if (D->hasAttr<NoInlineAttr>()) { 1290 B.addAttribute(llvm::Attribute::NoInline); 1291 } else if (D->hasAttr<AlwaysInlineAttr>() && 1292 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1293 // (noinline wins over always_inline, and we can't specify both in IR) 1294 B.addAttribute(llvm::Attribute::AlwaysInline); 1295 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1296 // If we're not inlining, then force everything that isn't always_inline to 1297 // carry an explicit noinline attribute. 1298 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1299 B.addAttribute(llvm::Attribute::NoInline); 1300 } else { 1301 // Otherwise, propagate the inline hint attribute and potentially use its 1302 // absence to mark things as noinline. 1303 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1304 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1305 return Redecl->isInlineSpecified(); 1306 })) { 1307 B.addAttribute(llvm::Attribute::InlineHint); 1308 } else if (CodeGenOpts.getInlining() == 1309 CodeGenOptions::OnlyHintInlining && 1310 !FD->isInlined() && 1311 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1312 B.addAttribute(llvm::Attribute::NoInline); 1313 } 1314 } 1315 } 1316 1317 // Add other optimization related attributes if we are optimizing this 1318 // function. 1319 if (!D->hasAttr<OptimizeNoneAttr>()) { 1320 if (D->hasAttr<ColdAttr>()) { 1321 if (!ShouldAddOptNone) 1322 B.addAttribute(llvm::Attribute::OptimizeForSize); 1323 B.addAttribute(llvm::Attribute::Cold); 1324 } 1325 1326 if (D->hasAttr<MinSizeAttr>()) 1327 B.addAttribute(llvm::Attribute::MinSize); 1328 } 1329 1330 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1331 1332 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1333 if (alignment) 1334 F->setAlignment(alignment); 1335 1336 if (!D->hasAttr<AlignedAttr>()) 1337 if (LangOpts.FunctionAlignment) 1338 F->setAlignment(1 << LangOpts.FunctionAlignment); 1339 1340 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1341 // reserve a bit for differentiating between virtual and non-virtual member 1342 // functions. If the current target's C++ ABI requires this and this is a 1343 // member function, set its alignment accordingly. 1344 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1345 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1346 F->setAlignment(2); 1347 } 1348 1349 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1350 if (CodeGenOpts.SanitizeCfiCrossDso) 1351 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1352 CreateFunctionTypeMetadataForIcall(FD, F); 1353 1354 // Emit type metadata on member functions for member function pointer checks. 1355 // These are only ever necessary on definitions; we're guaranteed that the 1356 // definition will be present in the LTO unit as a result of LTO visibility. 1357 auto *MD = dyn_cast<CXXMethodDecl>(D); 1358 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1359 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1360 llvm::Metadata *Id = 1361 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1362 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1363 F->addTypeMetadata(0, Id); 1364 } 1365 } 1366 } 1367 1368 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1369 const Decl *D = GD.getDecl(); 1370 if (dyn_cast_or_null<NamedDecl>(D)) 1371 setGVProperties(GV, GD); 1372 else 1373 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1374 1375 if (D && D->hasAttr<UsedAttr>()) 1376 addUsedGlobal(GV); 1377 1378 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1379 const auto *VD = cast<VarDecl>(D); 1380 if (VD->getType().isConstQualified() && VD->getStorageClass() == SC_Static) 1381 addUsedGlobal(GV); 1382 } 1383 } 1384 1385 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1386 llvm::AttrBuilder &Attrs) { 1387 // Add target-cpu and target-features attributes to functions. If 1388 // we have a decl for the function and it has a target attribute then 1389 // parse that and add it to the feature set. 1390 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1391 std::vector<std::string> Features; 1392 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1393 FD = FD ? FD->getMostRecentDecl() : FD; 1394 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1395 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1396 bool AddedAttr = false; 1397 if (TD || SD) { 1398 llvm::StringMap<bool> FeatureMap; 1399 getFunctionFeatureMap(FeatureMap, FD); 1400 1401 // Produce the canonical string for this set of features. 1402 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1403 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1404 1405 // Now add the target-cpu and target-features to the function. 1406 // While we populated the feature map above, we still need to 1407 // get and parse the target attribute so we can get the cpu for 1408 // the function. 1409 if (TD) { 1410 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1411 if (ParsedAttr.Architecture != "" && 1412 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1413 TargetCPU = ParsedAttr.Architecture; 1414 } 1415 } else { 1416 // Otherwise just add the existing target cpu and target features to the 1417 // function. 1418 Features = getTarget().getTargetOpts().Features; 1419 } 1420 1421 if (TargetCPU != "") { 1422 Attrs.addAttribute("target-cpu", TargetCPU); 1423 AddedAttr = true; 1424 } 1425 if (!Features.empty()) { 1426 llvm::sort(Features); 1427 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1428 AddedAttr = true; 1429 } 1430 1431 return AddedAttr; 1432 } 1433 1434 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1435 llvm::GlobalObject *GO) { 1436 const Decl *D = GD.getDecl(); 1437 SetCommonAttributes(GD, GO); 1438 1439 if (D) { 1440 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1441 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1442 GV->addAttribute("bss-section", SA->getName()); 1443 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1444 GV->addAttribute("data-section", SA->getName()); 1445 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1446 GV->addAttribute("rodata-section", SA->getName()); 1447 } 1448 1449 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1450 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1451 if (!D->getAttr<SectionAttr>()) 1452 F->addFnAttr("implicit-section-name", SA->getName()); 1453 1454 llvm::AttrBuilder Attrs; 1455 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1456 // We know that GetCPUAndFeaturesAttributes will always have the 1457 // newest set, since it has the newest possible FunctionDecl, so the 1458 // new ones should replace the old. 1459 F->removeFnAttr("target-cpu"); 1460 F->removeFnAttr("target-features"); 1461 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1462 } 1463 } 1464 1465 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1466 GO->setSection(CSA->getName()); 1467 else if (const auto *SA = D->getAttr<SectionAttr>()) 1468 GO->setSection(SA->getName()); 1469 } 1470 1471 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1472 } 1473 1474 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1475 llvm::Function *F, 1476 const CGFunctionInfo &FI) { 1477 const Decl *D = GD.getDecl(); 1478 SetLLVMFunctionAttributes(D, FI, F); 1479 SetLLVMFunctionAttributesForDefinition(D, F); 1480 1481 F->setLinkage(llvm::Function::InternalLinkage); 1482 1483 setNonAliasAttributes(GD, F); 1484 } 1485 1486 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1487 // Set linkage and visibility in case we never see a definition. 1488 LinkageInfo LV = ND->getLinkageAndVisibility(); 1489 // Don't set internal linkage on declarations. 1490 // "extern_weak" is overloaded in LLVM; we probably should have 1491 // separate linkage types for this. 1492 if (isExternallyVisible(LV.getLinkage()) && 1493 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1494 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1495 } 1496 1497 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1498 llvm::Function *F) { 1499 // Only if we are checking indirect calls. 1500 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1501 return; 1502 1503 // Non-static class methods are handled via vtable or member function pointer 1504 // checks elsewhere. 1505 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1506 return; 1507 1508 // Additionally, if building with cross-DSO support... 1509 if (CodeGenOpts.SanitizeCfiCrossDso) { 1510 // Skip available_externally functions. They won't be codegen'ed in the 1511 // current module anyway. 1512 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1513 return; 1514 } 1515 1516 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1517 F->addTypeMetadata(0, MD); 1518 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1519 1520 // Emit a hash-based bit set entry for cross-DSO calls. 1521 if (CodeGenOpts.SanitizeCfiCrossDso) 1522 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1523 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1524 } 1525 1526 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1527 bool IsIncompleteFunction, 1528 bool IsThunk) { 1529 1530 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1531 // If this is an intrinsic function, set the function's attributes 1532 // to the intrinsic's attributes. 1533 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1534 return; 1535 } 1536 1537 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1538 1539 if (!IsIncompleteFunction) { 1540 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1541 // Setup target-specific attributes. 1542 if (F->isDeclaration()) 1543 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1544 } 1545 1546 // Add the Returned attribute for "this", except for iOS 5 and earlier 1547 // where substantial code, including the libstdc++ dylib, was compiled with 1548 // GCC and does not actually return "this". 1549 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1550 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1551 assert(!F->arg_empty() && 1552 F->arg_begin()->getType() 1553 ->canLosslesslyBitCastTo(F->getReturnType()) && 1554 "unexpected this return"); 1555 F->addAttribute(1, llvm::Attribute::Returned); 1556 } 1557 1558 // Only a few attributes are set on declarations; these may later be 1559 // overridden by a definition. 1560 1561 setLinkageForGV(F, FD); 1562 setGVProperties(F, FD); 1563 1564 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1565 F->setSection(CSA->getName()); 1566 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1567 F->setSection(SA->getName()); 1568 1569 if (FD->isReplaceableGlobalAllocationFunction()) { 1570 // A replaceable global allocation function does not act like a builtin by 1571 // default, only if it is invoked by a new-expression or delete-expression. 1572 F->addAttribute(llvm::AttributeList::FunctionIndex, 1573 llvm::Attribute::NoBuiltin); 1574 1575 // A sane operator new returns a non-aliasing pointer. 1576 // FIXME: Also add NonNull attribute to the return value 1577 // for the non-nothrow forms? 1578 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1579 if (getCodeGenOpts().AssumeSaneOperatorNew && 1580 (Kind == OO_New || Kind == OO_Array_New)) 1581 F->addAttribute(llvm::AttributeList::ReturnIndex, 1582 llvm::Attribute::NoAlias); 1583 } 1584 1585 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1586 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1587 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1588 if (MD->isVirtual()) 1589 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1590 1591 // Don't emit entries for function declarations in the cross-DSO mode. This 1592 // is handled with better precision by the receiving DSO. 1593 if (!CodeGenOpts.SanitizeCfiCrossDso) 1594 CreateFunctionTypeMetadataForIcall(FD, F); 1595 1596 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1597 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1598 } 1599 1600 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1601 assert(!GV->isDeclaration() && 1602 "Only globals with definition can force usage."); 1603 LLVMUsed.emplace_back(GV); 1604 } 1605 1606 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1607 assert(!GV->isDeclaration() && 1608 "Only globals with definition can force usage."); 1609 LLVMCompilerUsed.emplace_back(GV); 1610 } 1611 1612 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1613 std::vector<llvm::WeakTrackingVH> &List) { 1614 // Don't create llvm.used if there is no need. 1615 if (List.empty()) 1616 return; 1617 1618 // Convert List to what ConstantArray needs. 1619 SmallVector<llvm::Constant*, 8> UsedArray; 1620 UsedArray.resize(List.size()); 1621 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1622 UsedArray[i] = 1623 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1624 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1625 } 1626 1627 if (UsedArray.empty()) 1628 return; 1629 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1630 1631 auto *GV = new llvm::GlobalVariable( 1632 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1633 llvm::ConstantArray::get(ATy, UsedArray), Name); 1634 1635 GV->setSection("llvm.metadata"); 1636 } 1637 1638 void CodeGenModule::emitLLVMUsed() { 1639 emitUsed(*this, "llvm.used", LLVMUsed); 1640 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1641 } 1642 1643 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1644 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1645 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1646 } 1647 1648 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1649 llvm::SmallString<32> Opt; 1650 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1651 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1652 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1653 } 1654 1655 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1656 auto &C = getLLVMContext(); 1657 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1658 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1659 } 1660 1661 void CodeGenModule::AddDependentLib(StringRef Lib) { 1662 llvm::SmallString<24> Opt; 1663 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1664 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1665 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1666 } 1667 1668 /// Add link options implied by the given module, including modules 1669 /// it depends on, using a postorder walk. 1670 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1671 SmallVectorImpl<llvm::MDNode *> &Metadata, 1672 llvm::SmallPtrSet<Module *, 16> &Visited) { 1673 // Import this module's parent. 1674 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1675 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1676 } 1677 1678 // Import this module's dependencies. 1679 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1680 if (Visited.insert(Mod->Imports[I - 1]).second) 1681 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1682 } 1683 1684 // Add linker options to link against the libraries/frameworks 1685 // described by this module. 1686 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1687 1688 // For modules that use export_as for linking, use that module 1689 // name instead. 1690 if (Mod->UseExportAsModuleLinkName) 1691 return; 1692 1693 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1694 // Link against a framework. Frameworks are currently Darwin only, so we 1695 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1696 if (Mod->LinkLibraries[I-1].IsFramework) { 1697 llvm::Metadata *Args[2] = { 1698 llvm::MDString::get(Context, "-framework"), 1699 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1700 1701 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1702 continue; 1703 } 1704 1705 // Link against a library. 1706 llvm::SmallString<24> Opt; 1707 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1708 Mod->LinkLibraries[I-1].Library, Opt); 1709 auto *OptString = llvm::MDString::get(Context, Opt); 1710 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1711 } 1712 } 1713 1714 void CodeGenModule::EmitModuleLinkOptions() { 1715 // Collect the set of all of the modules we want to visit to emit link 1716 // options, which is essentially the imported modules and all of their 1717 // non-explicit child modules. 1718 llvm::SetVector<clang::Module *> LinkModules; 1719 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1720 SmallVector<clang::Module *, 16> Stack; 1721 1722 // Seed the stack with imported modules. 1723 for (Module *M : ImportedModules) { 1724 // Do not add any link flags when an implementation TU of a module imports 1725 // a header of that same module. 1726 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1727 !getLangOpts().isCompilingModule()) 1728 continue; 1729 if (Visited.insert(M).second) 1730 Stack.push_back(M); 1731 } 1732 1733 // Find all of the modules to import, making a little effort to prune 1734 // non-leaf modules. 1735 while (!Stack.empty()) { 1736 clang::Module *Mod = Stack.pop_back_val(); 1737 1738 bool AnyChildren = false; 1739 1740 // Visit the submodules of this module. 1741 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1742 SubEnd = Mod->submodule_end(); 1743 Sub != SubEnd; ++Sub) { 1744 // Skip explicit children; they need to be explicitly imported to be 1745 // linked against. 1746 if ((*Sub)->IsExplicit) 1747 continue; 1748 1749 if (Visited.insert(*Sub).second) { 1750 Stack.push_back(*Sub); 1751 AnyChildren = true; 1752 } 1753 } 1754 1755 // We didn't find any children, so add this module to the list of 1756 // modules to link against. 1757 if (!AnyChildren) { 1758 LinkModules.insert(Mod); 1759 } 1760 } 1761 1762 // Add link options for all of the imported modules in reverse topological 1763 // order. We don't do anything to try to order import link flags with respect 1764 // to linker options inserted by things like #pragma comment(). 1765 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1766 Visited.clear(); 1767 for (Module *M : LinkModules) 1768 if (Visited.insert(M).second) 1769 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1770 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1771 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1772 1773 // Add the linker options metadata flag. 1774 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1775 for (auto *MD : LinkerOptionsMetadata) 1776 NMD->addOperand(MD); 1777 } 1778 1779 void CodeGenModule::EmitDeferred() { 1780 // Emit deferred declare target declarations. 1781 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1782 getOpenMPRuntime().emitDeferredTargetDecls(); 1783 1784 // Emit code for any potentially referenced deferred decls. Since a 1785 // previously unused static decl may become used during the generation of code 1786 // for a static function, iterate until no changes are made. 1787 1788 if (!DeferredVTables.empty()) { 1789 EmitDeferredVTables(); 1790 1791 // Emitting a vtable doesn't directly cause more vtables to 1792 // become deferred, although it can cause functions to be 1793 // emitted that then need those vtables. 1794 assert(DeferredVTables.empty()); 1795 } 1796 1797 // Stop if we're out of both deferred vtables and deferred declarations. 1798 if (DeferredDeclsToEmit.empty()) 1799 return; 1800 1801 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1802 // work, it will not interfere with this. 1803 std::vector<GlobalDecl> CurDeclsToEmit; 1804 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1805 1806 for (GlobalDecl &D : CurDeclsToEmit) { 1807 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1808 // to get GlobalValue with exactly the type we need, not something that 1809 // might had been created for another decl with the same mangled name but 1810 // different type. 1811 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1812 GetAddrOfGlobal(D, ForDefinition)); 1813 1814 // In case of different address spaces, we may still get a cast, even with 1815 // IsForDefinition equal to true. Query mangled names table to get 1816 // GlobalValue. 1817 if (!GV) 1818 GV = GetGlobalValue(getMangledName(D)); 1819 1820 // Make sure GetGlobalValue returned non-null. 1821 assert(GV); 1822 1823 // Check to see if we've already emitted this. This is necessary 1824 // for a couple of reasons: first, decls can end up in the 1825 // deferred-decls queue multiple times, and second, decls can end 1826 // up with definitions in unusual ways (e.g. by an extern inline 1827 // function acquiring a strong function redefinition). Just 1828 // ignore these cases. 1829 if (!GV->isDeclaration()) 1830 continue; 1831 1832 // Otherwise, emit the definition and move on to the next one. 1833 EmitGlobalDefinition(D, GV); 1834 1835 // If we found out that we need to emit more decls, do that recursively. 1836 // This has the advantage that the decls are emitted in a DFS and related 1837 // ones are close together, which is convenient for testing. 1838 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1839 EmitDeferred(); 1840 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1841 } 1842 } 1843 } 1844 1845 void CodeGenModule::EmitVTablesOpportunistically() { 1846 // Try to emit external vtables as available_externally if they have emitted 1847 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1848 // is not allowed to create new references to things that need to be emitted 1849 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1850 1851 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1852 && "Only emit opportunistic vtables with optimizations"); 1853 1854 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1855 assert(getVTables().isVTableExternal(RD) && 1856 "This queue should only contain external vtables"); 1857 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1858 VTables.GenerateClassData(RD); 1859 } 1860 OpportunisticVTables.clear(); 1861 } 1862 1863 void CodeGenModule::EmitGlobalAnnotations() { 1864 if (Annotations.empty()) 1865 return; 1866 1867 // Create a new global variable for the ConstantStruct in the Module. 1868 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1869 Annotations[0]->getType(), Annotations.size()), Annotations); 1870 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1871 llvm::GlobalValue::AppendingLinkage, 1872 Array, "llvm.global.annotations"); 1873 gv->setSection(AnnotationSection); 1874 } 1875 1876 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1877 llvm::Constant *&AStr = AnnotationStrings[Str]; 1878 if (AStr) 1879 return AStr; 1880 1881 // Not found yet, create a new global. 1882 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1883 auto *gv = 1884 new llvm::GlobalVariable(getModule(), s->getType(), true, 1885 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1886 gv->setSection(AnnotationSection); 1887 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1888 AStr = gv; 1889 return gv; 1890 } 1891 1892 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1893 SourceManager &SM = getContext().getSourceManager(); 1894 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1895 if (PLoc.isValid()) 1896 return EmitAnnotationString(PLoc.getFilename()); 1897 return EmitAnnotationString(SM.getBufferName(Loc)); 1898 } 1899 1900 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1901 SourceManager &SM = getContext().getSourceManager(); 1902 PresumedLoc PLoc = SM.getPresumedLoc(L); 1903 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1904 SM.getExpansionLineNumber(L); 1905 return llvm::ConstantInt::get(Int32Ty, LineNo); 1906 } 1907 1908 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1909 const AnnotateAttr *AA, 1910 SourceLocation L) { 1911 // Get the globals for file name, annotation, and the line number. 1912 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1913 *UnitGV = EmitAnnotationUnit(L), 1914 *LineNoCst = EmitAnnotationLineNo(L); 1915 1916 // Create the ConstantStruct for the global annotation. 1917 llvm::Constant *Fields[4] = { 1918 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1919 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1920 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1921 LineNoCst 1922 }; 1923 return llvm::ConstantStruct::getAnon(Fields); 1924 } 1925 1926 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1927 llvm::GlobalValue *GV) { 1928 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1929 // Get the struct elements for these annotations. 1930 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1931 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1932 } 1933 1934 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1935 llvm::Function *Fn, 1936 SourceLocation Loc) const { 1937 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1938 // Blacklist by function name. 1939 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1940 return true; 1941 // Blacklist by location. 1942 if (Loc.isValid()) 1943 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1944 // If location is unknown, this may be a compiler-generated function. Assume 1945 // it's located in the main file. 1946 auto &SM = Context.getSourceManager(); 1947 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1948 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1949 } 1950 return false; 1951 } 1952 1953 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1954 SourceLocation Loc, QualType Ty, 1955 StringRef Category) const { 1956 // For now globals can be blacklisted only in ASan and KASan. 1957 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1958 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1959 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1960 if (!EnabledAsanMask) 1961 return false; 1962 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1963 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1964 return true; 1965 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1966 return true; 1967 // Check global type. 1968 if (!Ty.isNull()) { 1969 // Drill down the array types: if global variable of a fixed type is 1970 // blacklisted, we also don't instrument arrays of them. 1971 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1972 Ty = AT->getElementType(); 1973 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1974 // We allow to blacklist only record types (classes, structs etc.) 1975 if (Ty->isRecordType()) { 1976 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1977 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1978 return true; 1979 } 1980 } 1981 return false; 1982 } 1983 1984 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1985 StringRef Category) const { 1986 const auto &XRayFilter = getContext().getXRayFilter(); 1987 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1988 auto Attr = ImbueAttr::NONE; 1989 if (Loc.isValid()) 1990 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1991 if (Attr == ImbueAttr::NONE) 1992 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1993 switch (Attr) { 1994 case ImbueAttr::NONE: 1995 return false; 1996 case ImbueAttr::ALWAYS: 1997 Fn->addFnAttr("function-instrument", "xray-always"); 1998 break; 1999 case ImbueAttr::ALWAYS_ARG1: 2000 Fn->addFnAttr("function-instrument", "xray-always"); 2001 Fn->addFnAttr("xray-log-args", "1"); 2002 break; 2003 case ImbueAttr::NEVER: 2004 Fn->addFnAttr("function-instrument", "xray-never"); 2005 break; 2006 } 2007 return true; 2008 } 2009 2010 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2011 // Never defer when EmitAllDecls is specified. 2012 if (LangOpts.EmitAllDecls) 2013 return true; 2014 2015 if (CodeGenOpts.KeepStaticConsts) { 2016 const auto *VD = dyn_cast<VarDecl>(Global); 2017 if (VD && VD->getType().isConstQualified() && 2018 VD->getStorageClass() == SC_Static) 2019 return true; 2020 } 2021 2022 return getContext().DeclMustBeEmitted(Global); 2023 } 2024 2025 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2026 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2027 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2028 // Implicit template instantiations may change linkage if they are later 2029 // explicitly instantiated, so they should not be emitted eagerly. 2030 return false; 2031 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2032 if (Context.getInlineVariableDefinitionKind(VD) == 2033 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2034 // A definition of an inline constexpr static data member may change 2035 // linkage later if it's redeclared outside the class. 2036 return false; 2037 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2038 // codegen for global variables, because they may be marked as threadprivate. 2039 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2040 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2041 !isTypeConstant(Global->getType(), false) && 2042 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2043 return false; 2044 2045 return true; 2046 } 2047 2048 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2049 const CXXUuidofExpr* E) { 2050 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2051 // well-formed. 2052 StringRef Uuid = E->getUuidStr(); 2053 std::string Name = "_GUID_" + Uuid.lower(); 2054 std::replace(Name.begin(), Name.end(), '-', '_'); 2055 2056 // The UUID descriptor should be pointer aligned. 2057 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2058 2059 // Look for an existing global. 2060 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2061 return ConstantAddress(GV, Alignment); 2062 2063 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2064 assert(Init && "failed to initialize as constant"); 2065 2066 auto *GV = new llvm::GlobalVariable( 2067 getModule(), Init->getType(), 2068 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2069 if (supportsCOMDAT()) 2070 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2071 setDSOLocal(GV); 2072 return ConstantAddress(GV, Alignment); 2073 } 2074 2075 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2076 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2077 assert(AA && "No alias?"); 2078 2079 CharUnits Alignment = getContext().getDeclAlign(VD); 2080 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2081 2082 // See if there is already something with the target's name in the module. 2083 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2084 if (Entry) { 2085 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2086 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2087 return ConstantAddress(Ptr, Alignment); 2088 } 2089 2090 llvm::Constant *Aliasee; 2091 if (isa<llvm::FunctionType>(DeclTy)) 2092 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2093 GlobalDecl(cast<FunctionDecl>(VD)), 2094 /*ForVTable=*/false); 2095 else 2096 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2097 llvm::PointerType::getUnqual(DeclTy), 2098 nullptr); 2099 2100 auto *F = cast<llvm::GlobalValue>(Aliasee); 2101 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2102 WeakRefReferences.insert(F); 2103 2104 return ConstantAddress(Aliasee, Alignment); 2105 } 2106 2107 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2108 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2109 2110 // Weak references don't produce any output by themselves. 2111 if (Global->hasAttr<WeakRefAttr>()) 2112 return; 2113 2114 // If this is an alias definition (which otherwise looks like a declaration) 2115 // emit it now. 2116 if (Global->hasAttr<AliasAttr>()) 2117 return EmitAliasDefinition(GD); 2118 2119 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2120 if (Global->hasAttr<IFuncAttr>()) 2121 return emitIFuncDefinition(GD); 2122 2123 // If this is a cpu_dispatch multiversion function, emit the resolver. 2124 if (Global->hasAttr<CPUDispatchAttr>()) 2125 return emitCPUDispatchDefinition(GD); 2126 2127 // If this is CUDA, be selective about which declarations we emit. 2128 if (LangOpts.CUDA) { 2129 if (LangOpts.CUDAIsDevice) { 2130 if (!Global->hasAttr<CUDADeviceAttr>() && 2131 !Global->hasAttr<CUDAGlobalAttr>() && 2132 !Global->hasAttr<CUDAConstantAttr>() && 2133 !Global->hasAttr<CUDASharedAttr>()) 2134 return; 2135 } else { 2136 // We need to emit host-side 'shadows' for all global 2137 // device-side variables because the CUDA runtime needs their 2138 // size and host-side address in order to provide access to 2139 // their device-side incarnations. 2140 2141 // So device-only functions are the only things we skip. 2142 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2143 Global->hasAttr<CUDADeviceAttr>()) 2144 return; 2145 2146 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2147 "Expected Variable or Function"); 2148 } 2149 } 2150 2151 if (LangOpts.OpenMP) { 2152 // If this is OpenMP device, check if it is legal to emit this global 2153 // normally. 2154 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2155 return; 2156 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2157 if (MustBeEmitted(Global)) 2158 EmitOMPDeclareReduction(DRD); 2159 return; 2160 } 2161 } 2162 2163 // Ignore declarations, they will be emitted on their first use. 2164 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2165 // Forward declarations are emitted lazily on first use. 2166 if (!FD->doesThisDeclarationHaveABody()) { 2167 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2168 return; 2169 2170 StringRef MangledName = getMangledName(GD); 2171 2172 // Compute the function info and LLVM type. 2173 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2174 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2175 2176 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2177 /*DontDefer=*/false); 2178 return; 2179 } 2180 } else { 2181 const auto *VD = cast<VarDecl>(Global); 2182 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2183 // We need to emit device-side global CUDA variables even if a 2184 // variable does not have a definition -- we still need to define 2185 // host-side shadow for it. 2186 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2187 !VD->hasDefinition() && 2188 (VD->hasAttr<CUDAConstantAttr>() || 2189 VD->hasAttr<CUDADeviceAttr>()); 2190 if (!MustEmitForCuda && 2191 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2192 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2193 if (LangOpts.OpenMP) { 2194 // Emit declaration of the must-be-emitted declare target variable. 2195 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2196 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2197 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2198 (void)GetAddrOfGlobalVar(VD); 2199 } else { 2200 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2201 "link claue expected."); 2202 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2203 } 2204 return; 2205 } 2206 } 2207 // If this declaration may have caused an inline variable definition to 2208 // change linkage, make sure that it's emitted. 2209 if (Context.getInlineVariableDefinitionKind(VD) == 2210 ASTContext::InlineVariableDefinitionKind::Strong) 2211 GetAddrOfGlobalVar(VD); 2212 return; 2213 } 2214 } 2215 2216 // Defer code generation to first use when possible, e.g. if this is an inline 2217 // function. If the global must always be emitted, do it eagerly if possible 2218 // to benefit from cache locality. 2219 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2220 // Emit the definition if it can't be deferred. 2221 EmitGlobalDefinition(GD); 2222 return; 2223 } 2224 2225 // If we're deferring emission of a C++ variable with an 2226 // initializer, remember the order in which it appeared in the file. 2227 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2228 cast<VarDecl>(Global)->hasInit()) { 2229 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2230 CXXGlobalInits.push_back(nullptr); 2231 } 2232 2233 StringRef MangledName = getMangledName(GD); 2234 if (GetGlobalValue(MangledName) != nullptr) { 2235 // The value has already been used and should therefore be emitted. 2236 addDeferredDeclToEmit(GD); 2237 } else if (MustBeEmitted(Global)) { 2238 // The value must be emitted, but cannot be emitted eagerly. 2239 assert(!MayBeEmittedEagerly(Global)); 2240 addDeferredDeclToEmit(GD); 2241 } else { 2242 // Otherwise, remember that we saw a deferred decl with this name. The 2243 // first use of the mangled name will cause it to move into 2244 // DeferredDeclsToEmit. 2245 DeferredDecls[MangledName] = GD; 2246 } 2247 } 2248 2249 // Check if T is a class type with a destructor that's not dllimport. 2250 static bool HasNonDllImportDtor(QualType T) { 2251 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2252 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2253 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2254 return true; 2255 2256 return false; 2257 } 2258 2259 namespace { 2260 struct FunctionIsDirectlyRecursive : 2261 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2262 const StringRef Name; 2263 const Builtin::Context &BI; 2264 bool Result; 2265 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2266 Name(N), BI(C), Result(false) { 2267 } 2268 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2269 2270 bool TraverseCallExpr(CallExpr *E) { 2271 const FunctionDecl *FD = E->getDirectCallee(); 2272 if (!FD) 2273 return true; 2274 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2275 if (Attr && Name == Attr->getLabel()) { 2276 Result = true; 2277 return false; 2278 } 2279 unsigned BuiltinID = FD->getBuiltinID(); 2280 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2281 return true; 2282 StringRef BuiltinName = BI.getName(BuiltinID); 2283 if (BuiltinName.startswith("__builtin_") && 2284 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2285 Result = true; 2286 return false; 2287 } 2288 return true; 2289 } 2290 }; 2291 2292 // Make sure we're not referencing non-imported vars or functions. 2293 struct DLLImportFunctionVisitor 2294 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2295 bool SafeToInline = true; 2296 2297 bool shouldVisitImplicitCode() const { return true; } 2298 2299 bool VisitVarDecl(VarDecl *VD) { 2300 if (VD->getTLSKind()) { 2301 // A thread-local variable cannot be imported. 2302 SafeToInline = false; 2303 return SafeToInline; 2304 } 2305 2306 // A variable definition might imply a destructor call. 2307 if (VD->isThisDeclarationADefinition()) 2308 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2309 2310 return SafeToInline; 2311 } 2312 2313 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2314 if (const auto *D = E->getTemporary()->getDestructor()) 2315 SafeToInline = D->hasAttr<DLLImportAttr>(); 2316 return SafeToInline; 2317 } 2318 2319 bool VisitDeclRefExpr(DeclRefExpr *E) { 2320 ValueDecl *VD = E->getDecl(); 2321 if (isa<FunctionDecl>(VD)) 2322 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2323 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2324 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2325 return SafeToInline; 2326 } 2327 2328 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2329 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2330 return SafeToInline; 2331 } 2332 2333 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2334 CXXMethodDecl *M = E->getMethodDecl(); 2335 if (!M) { 2336 // Call through a pointer to member function. This is safe to inline. 2337 SafeToInline = true; 2338 } else { 2339 SafeToInline = M->hasAttr<DLLImportAttr>(); 2340 } 2341 return SafeToInline; 2342 } 2343 2344 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2345 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2346 return SafeToInline; 2347 } 2348 2349 bool VisitCXXNewExpr(CXXNewExpr *E) { 2350 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2351 return SafeToInline; 2352 } 2353 }; 2354 } 2355 2356 // isTriviallyRecursive - Check if this function calls another 2357 // decl that, because of the asm attribute or the other decl being a builtin, 2358 // ends up pointing to itself. 2359 bool 2360 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2361 StringRef Name; 2362 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2363 // asm labels are a special kind of mangling we have to support. 2364 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2365 if (!Attr) 2366 return false; 2367 Name = Attr->getLabel(); 2368 } else { 2369 Name = FD->getName(); 2370 } 2371 2372 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2373 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2374 return Walker.Result; 2375 } 2376 2377 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2378 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2379 return true; 2380 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2381 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2382 return false; 2383 2384 if (F->hasAttr<DLLImportAttr>()) { 2385 // Check whether it would be safe to inline this dllimport function. 2386 DLLImportFunctionVisitor Visitor; 2387 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2388 if (!Visitor.SafeToInline) 2389 return false; 2390 2391 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2392 // Implicit destructor invocations aren't captured in the AST, so the 2393 // check above can't see them. Check for them manually here. 2394 for (const Decl *Member : Dtor->getParent()->decls()) 2395 if (isa<FieldDecl>(Member)) 2396 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2397 return false; 2398 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2399 if (HasNonDllImportDtor(B.getType())) 2400 return false; 2401 } 2402 } 2403 2404 // PR9614. Avoid cases where the source code is lying to us. An available 2405 // externally function should have an equivalent function somewhere else, 2406 // but a function that calls itself is clearly not equivalent to the real 2407 // implementation. 2408 // This happens in glibc's btowc and in some configure checks. 2409 return !isTriviallyRecursive(F); 2410 } 2411 2412 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2413 return CodeGenOpts.OptimizationLevel > 0; 2414 } 2415 2416 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2417 const auto *D = cast<ValueDecl>(GD.getDecl()); 2418 2419 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2420 Context.getSourceManager(), 2421 "Generating code for declaration"); 2422 2423 if (isa<FunctionDecl>(D)) { 2424 // At -O0, don't generate IR for functions with available_externally 2425 // linkage. 2426 if (!shouldEmitFunction(GD)) 2427 return; 2428 2429 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2430 // Make sure to emit the definition(s) before we emit the thunks. 2431 // This is necessary for the generation of certain thunks. 2432 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2433 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2434 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2435 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2436 else 2437 EmitGlobalFunctionDefinition(GD, GV); 2438 2439 if (Method->isVirtual()) 2440 getVTables().EmitThunks(GD); 2441 2442 return; 2443 } 2444 2445 return EmitGlobalFunctionDefinition(GD, GV); 2446 } 2447 2448 if (const auto *VD = dyn_cast<VarDecl>(D)) 2449 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2450 2451 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2452 } 2453 2454 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2455 llvm::Function *NewFn); 2456 2457 static unsigned 2458 TargetMVPriority(const TargetInfo &TI, 2459 const CodeGenFunction::MultiVersionResolverOption &RO) { 2460 unsigned Priority = 0; 2461 for (StringRef Feat : RO.Conditions.Features) 2462 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2463 2464 if (!RO.Conditions.Architecture.empty()) 2465 Priority = std::max( 2466 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2467 return Priority; 2468 } 2469 2470 void CodeGenModule::emitMultiVersionFunctions() { 2471 for (GlobalDecl GD : MultiVersionFuncs) { 2472 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2473 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2474 getContext().forEachMultiversionedFunctionVersion( 2475 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2476 GlobalDecl CurGD{ 2477 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2478 StringRef MangledName = getMangledName(CurGD); 2479 llvm::Constant *Func = GetGlobalValue(MangledName); 2480 if (!Func) { 2481 if (CurFD->isDefined()) { 2482 EmitGlobalFunctionDefinition(CurGD, nullptr); 2483 Func = GetGlobalValue(MangledName); 2484 } else { 2485 const CGFunctionInfo &FI = 2486 getTypes().arrangeGlobalDeclaration(GD); 2487 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2488 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2489 /*DontDefer=*/false, ForDefinition); 2490 } 2491 assert(Func && "This should have just been created"); 2492 } 2493 2494 const auto *TA = CurFD->getAttr<TargetAttr>(); 2495 llvm::SmallVector<StringRef, 8> Feats; 2496 TA->getAddedFeatures(Feats); 2497 2498 Options.emplace_back(cast<llvm::Function>(Func), 2499 TA->getArchitecture(), Feats); 2500 }); 2501 2502 llvm::Function *ResolverFunc = cast<llvm::Function>( 2503 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2504 if (supportsCOMDAT()) 2505 ResolverFunc->setComdat( 2506 getModule().getOrInsertComdat(ResolverFunc->getName())); 2507 2508 const TargetInfo &TI = getTarget(); 2509 std::stable_sort( 2510 Options.begin(), Options.end(), 2511 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2512 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2513 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2514 }); 2515 CodeGenFunction CGF(*this); 2516 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2517 } 2518 } 2519 2520 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2521 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2522 assert(FD && "Not a FunctionDecl?"); 2523 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2524 assert(DD && "Not a cpu_dispatch Function?"); 2525 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(FD->getType()); 2526 2527 StringRef ResolverName = getMangledName(GD); 2528 llvm::Type *ResolverType = llvm::FunctionType::get( 2529 llvm::PointerType::get(DeclTy, 2530 Context.getTargetAddressSpace(FD->getType())), 2531 false); 2532 auto *ResolverFunc = cast<llvm::Function>( 2533 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2534 /*ForVTable=*/false)); 2535 2536 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2537 const TargetInfo &Target = getTarget(); 2538 for (const IdentifierInfo *II : DD->cpus()) { 2539 // Get the name of the target function so we can look it up/create it. 2540 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2541 getCPUSpecificMangling(*this, II->getName()); 2542 llvm::Constant *Func = GetOrCreateLLVMFunction( 2543 MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/false, 2544 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2545 llvm::SmallVector<StringRef, 32> Features; 2546 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2547 llvm::transform(Features, Features.begin(), 2548 [](StringRef Str) { return Str.substr(1); }); 2549 Features.erase(std::remove_if( 2550 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2551 return !Target.validateCpuSupports(Feat); 2552 }), Features.end()); 2553 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2554 } 2555 2556 llvm::sort( 2557 Options.begin(), Options.end(), 2558 [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2559 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2560 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2561 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2562 }); 2563 CodeGenFunction CGF(*this); 2564 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2565 } 2566 2567 /// If an ifunc for the specified mangled name is not in the module, create and 2568 /// return an llvm IFunc Function with the specified type. 2569 llvm::Constant * 2570 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2571 const FunctionDecl *FD) { 2572 std::string MangledName = 2573 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2574 std::string IFuncName = MangledName + ".ifunc"; 2575 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2576 return IFuncGV; 2577 2578 // Since this is the first time we've created this IFunc, make sure 2579 // that we put this multiversioned function into the list to be 2580 // replaced later if necessary (target multiversioning only). 2581 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2582 MultiVersionFuncs.push_back(GD); 2583 2584 std::string ResolverName = MangledName + ".resolver"; 2585 llvm::Type *ResolverType = llvm::FunctionType::get( 2586 llvm::PointerType::get(DeclTy, 2587 Context.getTargetAddressSpace(FD->getType())), 2588 false); 2589 llvm::Constant *Resolver = 2590 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2591 /*ForVTable=*/false); 2592 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2593 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2594 GIF->setName(IFuncName); 2595 SetCommonAttributes(FD, GIF); 2596 2597 return GIF; 2598 } 2599 2600 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2601 /// module, create and return an llvm Function with the specified type. If there 2602 /// is something in the module with the specified name, return it potentially 2603 /// bitcasted to the right type. 2604 /// 2605 /// If D is non-null, it specifies a decl that correspond to this. This is used 2606 /// to set the attributes on the function when it is first created. 2607 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2608 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2609 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2610 ForDefinition_t IsForDefinition) { 2611 const Decl *D = GD.getDecl(); 2612 2613 // Any attempts to use a MultiVersion function should result in retrieving 2614 // the iFunc instead. Name Mangling will handle the rest of the changes. 2615 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2616 // For the device mark the function as one that should be emitted. 2617 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2618 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2619 !DontDefer && !IsForDefinition) { 2620 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2621 GlobalDecl GDDef; 2622 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2623 GDDef = GlobalDecl(CD, GD.getCtorType()); 2624 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2625 GDDef = GlobalDecl(DD, GD.getDtorType()); 2626 else 2627 GDDef = GlobalDecl(FDDef); 2628 EmitGlobal(GDDef); 2629 } 2630 } 2631 2632 if (FD->isMultiVersion()) { 2633 const auto *TA = FD->getAttr<TargetAttr>(); 2634 if (TA && TA->isDefaultVersion()) 2635 UpdateMultiVersionNames(GD, FD); 2636 if (!IsForDefinition) 2637 return GetOrCreateMultiVersionIFunc(GD, Ty, FD); 2638 } 2639 } 2640 2641 // Lookup the entry, lazily creating it if necessary. 2642 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2643 if (Entry) { 2644 if (WeakRefReferences.erase(Entry)) { 2645 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2646 if (FD && !FD->hasAttr<WeakAttr>()) 2647 Entry->setLinkage(llvm::Function::ExternalLinkage); 2648 } 2649 2650 // Handle dropped DLL attributes. 2651 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2652 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2653 setDSOLocal(Entry); 2654 } 2655 2656 // If there are two attempts to define the same mangled name, issue an 2657 // error. 2658 if (IsForDefinition && !Entry->isDeclaration()) { 2659 GlobalDecl OtherGD; 2660 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2661 // to make sure that we issue an error only once. 2662 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2663 (GD.getCanonicalDecl().getDecl() != 2664 OtherGD.getCanonicalDecl().getDecl()) && 2665 DiagnosedConflictingDefinitions.insert(GD).second) { 2666 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2667 << MangledName; 2668 getDiags().Report(OtherGD.getDecl()->getLocation(), 2669 diag::note_previous_definition); 2670 } 2671 } 2672 2673 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2674 (Entry->getType()->getElementType() == Ty)) { 2675 return Entry; 2676 } 2677 2678 // Make sure the result is of the correct type. 2679 // (If function is requested for a definition, we always need to create a new 2680 // function, not just return a bitcast.) 2681 if (!IsForDefinition) 2682 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2683 } 2684 2685 // This function doesn't have a complete type (for example, the return 2686 // type is an incomplete struct). Use a fake type instead, and make 2687 // sure not to try to set attributes. 2688 bool IsIncompleteFunction = false; 2689 2690 llvm::FunctionType *FTy; 2691 if (isa<llvm::FunctionType>(Ty)) { 2692 FTy = cast<llvm::FunctionType>(Ty); 2693 } else { 2694 FTy = llvm::FunctionType::get(VoidTy, false); 2695 IsIncompleteFunction = true; 2696 } 2697 2698 llvm::Function *F = 2699 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2700 Entry ? StringRef() : MangledName, &getModule()); 2701 2702 // If we already created a function with the same mangled name (but different 2703 // type) before, take its name and add it to the list of functions to be 2704 // replaced with F at the end of CodeGen. 2705 // 2706 // This happens if there is a prototype for a function (e.g. "int f()") and 2707 // then a definition of a different type (e.g. "int f(int x)"). 2708 if (Entry) { 2709 F->takeName(Entry); 2710 2711 // This might be an implementation of a function without a prototype, in 2712 // which case, try to do special replacement of calls which match the new 2713 // prototype. The really key thing here is that we also potentially drop 2714 // arguments from the call site so as to make a direct call, which makes the 2715 // inliner happier and suppresses a number of optimizer warnings (!) about 2716 // dropping arguments. 2717 if (!Entry->use_empty()) { 2718 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2719 Entry->removeDeadConstantUsers(); 2720 } 2721 2722 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2723 F, Entry->getType()->getElementType()->getPointerTo()); 2724 addGlobalValReplacement(Entry, BC); 2725 } 2726 2727 assert(F->getName() == MangledName && "name was uniqued!"); 2728 if (D) 2729 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2730 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2731 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2732 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2733 } 2734 2735 if (!DontDefer) { 2736 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2737 // each other bottoming out with the base dtor. Therefore we emit non-base 2738 // dtors on usage, even if there is no dtor definition in the TU. 2739 if (D && isa<CXXDestructorDecl>(D) && 2740 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2741 GD.getDtorType())) 2742 addDeferredDeclToEmit(GD); 2743 2744 // This is the first use or definition of a mangled name. If there is a 2745 // deferred decl with this name, remember that we need to emit it at the end 2746 // of the file. 2747 auto DDI = DeferredDecls.find(MangledName); 2748 if (DDI != DeferredDecls.end()) { 2749 // Move the potentially referenced deferred decl to the 2750 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2751 // don't need it anymore). 2752 addDeferredDeclToEmit(DDI->second); 2753 DeferredDecls.erase(DDI); 2754 2755 // Otherwise, there are cases we have to worry about where we're 2756 // using a declaration for which we must emit a definition but where 2757 // we might not find a top-level definition: 2758 // - member functions defined inline in their classes 2759 // - friend functions defined inline in some class 2760 // - special member functions with implicit definitions 2761 // If we ever change our AST traversal to walk into class methods, 2762 // this will be unnecessary. 2763 // 2764 // We also don't emit a definition for a function if it's going to be an 2765 // entry in a vtable, unless it's already marked as used. 2766 } else if (getLangOpts().CPlusPlus && D) { 2767 // Look for a declaration that's lexically in a record. 2768 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2769 FD = FD->getPreviousDecl()) { 2770 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2771 if (FD->doesThisDeclarationHaveABody()) { 2772 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2773 break; 2774 } 2775 } 2776 } 2777 } 2778 } 2779 2780 // Make sure the result is of the requested type. 2781 if (!IsIncompleteFunction) { 2782 assert(F->getType()->getElementType() == Ty); 2783 return F; 2784 } 2785 2786 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2787 return llvm::ConstantExpr::getBitCast(F, PTy); 2788 } 2789 2790 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2791 /// non-null, then this function will use the specified type if it has to 2792 /// create it (this occurs when we see a definition of the function). 2793 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2794 llvm::Type *Ty, 2795 bool ForVTable, 2796 bool DontDefer, 2797 ForDefinition_t IsForDefinition) { 2798 // If there was no specific requested type, just convert it now. 2799 if (!Ty) { 2800 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2801 auto CanonTy = Context.getCanonicalType(FD->getType()); 2802 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2803 } 2804 2805 // Devirtualized destructor calls may come through here instead of via 2806 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2807 // of the complete destructor when necessary. 2808 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2809 if (getTarget().getCXXABI().isMicrosoft() && 2810 GD.getDtorType() == Dtor_Complete && 2811 DD->getParent()->getNumVBases() == 0) 2812 GD = GlobalDecl(DD, Dtor_Base); 2813 } 2814 2815 StringRef MangledName = getMangledName(GD); 2816 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2817 /*IsThunk=*/false, llvm::AttributeList(), 2818 IsForDefinition); 2819 } 2820 2821 static const FunctionDecl * 2822 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2823 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2824 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2825 2826 IdentifierInfo &CII = C.Idents.get(Name); 2827 for (const auto &Result : DC->lookup(&CII)) 2828 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2829 return FD; 2830 2831 if (!C.getLangOpts().CPlusPlus) 2832 return nullptr; 2833 2834 // Demangle the premangled name from getTerminateFn() 2835 IdentifierInfo &CXXII = 2836 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2837 ? C.Idents.get("terminate") 2838 : C.Idents.get(Name); 2839 2840 for (const auto &N : {"__cxxabiv1", "std"}) { 2841 IdentifierInfo &NS = C.Idents.get(N); 2842 for (const auto &Result : DC->lookup(&NS)) { 2843 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2844 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2845 for (const auto &Result : LSD->lookup(&NS)) 2846 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2847 break; 2848 2849 if (ND) 2850 for (const auto &Result : ND->lookup(&CXXII)) 2851 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2852 return FD; 2853 } 2854 } 2855 2856 return nullptr; 2857 } 2858 2859 /// CreateRuntimeFunction - Create a new runtime function with the specified 2860 /// type and name. 2861 llvm::Constant * 2862 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2863 llvm::AttributeList ExtraAttrs, 2864 bool Local) { 2865 llvm::Constant *C = 2866 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2867 /*DontDefer=*/false, /*IsThunk=*/false, 2868 ExtraAttrs); 2869 2870 if (auto *F = dyn_cast<llvm::Function>(C)) { 2871 if (F->empty()) { 2872 F->setCallingConv(getRuntimeCC()); 2873 2874 if (!Local && getTriple().isOSBinFormatCOFF() && 2875 !getCodeGenOpts().LTOVisibilityPublicStd && 2876 !getTriple().isWindowsGNUEnvironment()) { 2877 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2878 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2879 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2880 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2881 } 2882 } 2883 setDSOLocal(F); 2884 } 2885 } 2886 2887 return C; 2888 } 2889 2890 /// CreateBuiltinFunction - Create a new builtin function with the specified 2891 /// type and name. 2892 llvm::Constant * 2893 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2894 llvm::AttributeList ExtraAttrs) { 2895 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2896 } 2897 2898 /// isTypeConstant - Determine whether an object of this type can be emitted 2899 /// as a constant. 2900 /// 2901 /// If ExcludeCtor is true, the duration when the object's constructor runs 2902 /// will not be considered. The caller will need to verify that the object is 2903 /// not written to during its construction. 2904 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2905 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2906 return false; 2907 2908 if (Context.getLangOpts().CPlusPlus) { 2909 if (const CXXRecordDecl *Record 2910 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2911 return ExcludeCtor && !Record->hasMutableFields() && 2912 Record->hasTrivialDestructor(); 2913 } 2914 2915 return true; 2916 } 2917 2918 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2919 /// create and return an llvm GlobalVariable with the specified type. If there 2920 /// is something in the module with the specified name, return it potentially 2921 /// bitcasted to the right type. 2922 /// 2923 /// If D is non-null, it specifies a decl that correspond to this. This is used 2924 /// to set the attributes on the global when it is first created. 2925 /// 2926 /// If IsForDefinition is true, it is guaranteed that an actual global with 2927 /// type Ty will be returned, not conversion of a variable with the same 2928 /// mangled name but some other type. 2929 llvm::Constant * 2930 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2931 llvm::PointerType *Ty, 2932 const VarDecl *D, 2933 ForDefinition_t IsForDefinition) { 2934 // Lookup the entry, lazily creating it if necessary. 2935 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2936 if (Entry) { 2937 if (WeakRefReferences.erase(Entry)) { 2938 if (D && !D->hasAttr<WeakAttr>()) 2939 Entry->setLinkage(llvm::Function::ExternalLinkage); 2940 } 2941 2942 // Handle dropped DLL attributes. 2943 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2944 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2945 2946 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2947 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2948 2949 if (Entry->getType() == Ty) 2950 return Entry; 2951 2952 // If there are two attempts to define the same mangled name, issue an 2953 // error. 2954 if (IsForDefinition && !Entry->isDeclaration()) { 2955 GlobalDecl OtherGD; 2956 const VarDecl *OtherD; 2957 2958 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2959 // to make sure that we issue an error only once. 2960 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2961 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2962 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2963 OtherD->hasInit() && 2964 DiagnosedConflictingDefinitions.insert(D).second) { 2965 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2966 << MangledName; 2967 getDiags().Report(OtherGD.getDecl()->getLocation(), 2968 diag::note_previous_definition); 2969 } 2970 } 2971 2972 // Make sure the result is of the correct type. 2973 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2974 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2975 2976 // (If global is requested for a definition, we always need to create a new 2977 // global, not just return a bitcast.) 2978 if (!IsForDefinition) 2979 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2980 } 2981 2982 auto AddrSpace = GetGlobalVarAddressSpace(D); 2983 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2984 2985 auto *GV = new llvm::GlobalVariable( 2986 getModule(), Ty->getElementType(), false, 2987 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2988 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2989 2990 // If we already created a global with the same mangled name (but different 2991 // type) before, take its name and remove it from its parent. 2992 if (Entry) { 2993 GV->takeName(Entry); 2994 2995 if (!Entry->use_empty()) { 2996 llvm::Constant *NewPtrForOldDecl = 2997 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2998 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2999 } 3000 3001 Entry->eraseFromParent(); 3002 } 3003 3004 // This is the first use or definition of a mangled name. If there is a 3005 // deferred decl with this name, remember that we need to emit it at the end 3006 // of the file. 3007 auto DDI = DeferredDecls.find(MangledName); 3008 if (DDI != DeferredDecls.end()) { 3009 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3010 // list, and remove it from DeferredDecls (since we don't need it anymore). 3011 addDeferredDeclToEmit(DDI->second); 3012 DeferredDecls.erase(DDI); 3013 } 3014 3015 // Handle things which are present even on external declarations. 3016 if (D) { 3017 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3018 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3019 3020 // FIXME: This code is overly simple and should be merged with other global 3021 // handling. 3022 GV->setConstant(isTypeConstant(D->getType(), false)); 3023 3024 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3025 3026 setLinkageForGV(GV, D); 3027 3028 if (D->getTLSKind()) { 3029 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3030 CXXThreadLocals.push_back(D); 3031 setTLSMode(GV, *D); 3032 } 3033 3034 setGVProperties(GV, D); 3035 3036 // If required by the ABI, treat declarations of static data members with 3037 // inline initializers as definitions. 3038 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3039 EmitGlobalVarDefinition(D); 3040 } 3041 3042 // Emit section information for extern variables. 3043 if (D->hasExternalStorage()) { 3044 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3045 GV->setSection(SA->getName()); 3046 } 3047 3048 // Handle XCore specific ABI requirements. 3049 if (getTriple().getArch() == llvm::Triple::xcore && 3050 D->getLanguageLinkage() == CLanguageLinkage && 3051 D->getType().isConstant(Context) && 3052 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3053 GV->setSection(".cp.rodata"); 3054 3055 // Check if we a have a const declaration with an initializer, we may be 3056 // able to emit it as available_externally to expose it's value to the 3057 // optimizer. 3058 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3059 D->getType().isConstQualified() && !GV->hasInitializer() && 3060 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3061 const auto *Record = 3062 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3063 bool HasMutableFields = Record && Record->hasMutableFields(); 3064 if (!HasMutableFields) { 3065 const VarDecl *InitDecl; 3066 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3067 if (InitExpr) { 3068 ConstantEmitter emitter(*this); 3069 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3070 if (Init) { 3071 auto *InitType = Init->getType(); 3072 if (GV->getType()->getElementType() != InitType) { 3073 // The type of the initializer does not match the definition. 3074 // This happens when an initializer has a different type from 3075 // the type of the global (because of padding at the end of a 3076 // structure for instance). 3077 GV->setName(StringRef()); 3078 // Make a new global with the correct type, this is now guaranteed 3079 // to work. 3080 auto *NewGV = cast<llvm::GlobalVariable>( 3081 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3082 3083 // Erase the old global, since it is no longer used. 3084 GV->eraseFromParent(); 3085 GV = NewGV; 3086 } else { 3087 GV->setInitializer(Init); 3088 GV->setConstant(true); 3089 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3090 } 3091 emitter.finalize(GV); 3092 } 3093 } 3094 } 3095 } 3096 } 3097 3098 LangAS ExpectedAS = 3099 D ? D->getType().getAddressSpace() 3100 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3101 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3102 Ty->getPointerAddressSpace()); 3103 if (AddrSpace != ExpectedAS) 3104 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3105 ExpectedAS, Ty); 3106 3107 return GV; 3108 } 3109 3110 llvm::Constant * 3111 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3112 ForDefinition_t IsForDefinition) { 3113 const Decl *D = GD.getDecl(); 3114 if (isa<CXXConstructorDecl>(D)) 3115 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 3116 getFromCtorType(GD.getCtorType()), 3117 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3118 /*DontDefer=*/false, IsForDefinition); 3119 else if (isa<CXXDestructorDecl>(D)) 3120 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 3121 getFromDtorType(GD.getDtorType()), 3122 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3123 /*DontDefer=*/false, IsForDefinition); 3124 else if (isa<CXXMethodDecl>(D)) { 3125 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3126 cast<CXXMethodDecl>(D)); 3127 auto Ty = getTypes().GetFunctionType(*FInfo); 3128 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3129 IsForDefinition); 3130 } else if (isa<FunctionDecl>(D)) { 3131 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3132 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3133 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3134 IsForDefinition); 3135 } else 3136 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3137 IsForDefinition); 3138 } 3139 3140 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3141 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3142 unsigned Alignment) { 3143 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3144 llvm::GlobalVariable *OldGV = nullptr; 3145 3146 if (GV) { 3147 // Check if the variable has the right type. 3148 if (GV->getType()->getElementType() == Ty) 3149 return GV; 3150 3151 // Because C++ name mangling, the only way we can end up with an already 3152 // existing global with the same name is if it has been declared extern "C". 3153 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3154 OldGV = GV; 3155 } 3156 3157 // Create a new variable. 3158 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3159 Linkage, nullptr, Name); 3160 3161 if (OldGV) { 3162 // Replace occurrences of the old variable if needed. 3163 GV->takeName(OldGV); 3164 3165 if (!OldGV->use_empty()) { 3166 llvm::Constant *NewPtrForOldDecl = 3167 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3168 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3169 } 3170 3171 OldGV->eraseFromParent(); 3172 } 3173 3174 if (supportsCOMDAT() && GV->isWeakForLinker() && 3175 !GV->hasAvailableExternallyLinkage()) 3176 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3177 3178 GV->setAlignment(Alignment); 3179 3180 return GV; 3181 } 3182 3183 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3184 /// given global variable. If Ty is non-null and if the global doesn't exist, 3185 /// then it will be created with the specified type instead of whatever the 3186 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3187 /// that an actual global with type Ty will be returned, not conversion of a 3188 /// variable with the same mangled name but some other type. 3189 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3190 llvm::Type *Ty, 3191 ForDefinition_t IsForDefinition) { 3192 assert(D->hasGlobalStorage() && "Not a global variable"); 3193 QualType ASTTy = D->getType(); 3194 if (!Ty) 3195 Ty = getTypes().ConvertTypeForMem(ASTTy); 3196 3197 llvm::PointerType *PTy = 3198 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3199 3200 StringRef MangledName = getMangledName(D); 3201 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3202 } 3203 3204 /// CreateRuntimeVariable - Create a new runtime global variable with the 3205 /// specified type and name. 3206 llvm::Constant * 3207 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3208 StringRef Name) { 3209 auto *Ret = 3210 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3211 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3212 return Ret; 3213 } 3214 3215 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3216 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3217 3218 StringRef MangledName = getMangledName(D); 3219 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3220 3221 // We already have a definition, not declaration, with the same mangled name. 3222 // Emitting of declaration is not required (and actually overwrites emitted 3223 // definition). 3224 if (GV && !GV->isDeclaration()) 3225 return; 3226 3227 // If we have not seen a reference to this variable yet, place it into the 3228 // deferred declarations table to be emitted if needed later. 3229 if (!MustBeEmitted(D) && !GV) { 3230 DeferredDecls[MangledName] = D; 3231 return; 3232 } 3233 3234 // The tentative definition is the only definition. 3235 EmitGlobalVarDefinition(D); 3236 } 3237 3238 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3239 return Context.toCharUnitsFromBits( 3240 getDataLayout().getTypeStoreSizeInBits(Ty)); 3241 } 3242 3243 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3244 LangAS AddrSpace = LangAS::Default; 3245 if (LangOpts.OpenCL) { 3246 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3247 assert(AddrSpace == LangAS::opencl_global || 3248 AddrSpace == LangAS::opencl_constant || 3249 AddrSpace == LangAS::opencl_local || 3250 AddrSpace >= LangAS::FirstTargetAddressSpace); 3251 return AddrSpace; 3252 } 3253 3254 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3255 if (D && D->hasAttr<CUDAConstantAttr>()) 3256 return LangAS::cuda_constant; 3257 else if (D && D->hasAttr<CUDASharedAttr>()) 3258 return LangAS::cuda_shared; 3259 else if (D && D->hasAttr<CUDADeviceAttr>()) 3260 return LangAS::cuda_device; 3261 else if (D && D->getType().isConstQualified()) 3262 return LangAS::cuda_constant; 3263 else 3264 return LangAS::cuda_device; 3265 } 3266 3267 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3268 } 3269 3270 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3271 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3272 if (LangOpts.OpenCL) 3273 return LangAS::opencl_constant; 3274 if (auto AS = getTarget().getConstantAddressSpace()) 3275 return AS.getValue(); 3276 return LangAS::Default; 3277 } 3278 3279 // In address space agnostic languages, string literals are in default address 3280 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3281 // emitted in constant address space in LLVM IR. To be consistent with other 3282 // parts of AST, string literal global variables in constant address space 3283 // need to be casted to default address space before being put into address 3284 // map and referenced by other part of CodeGen. 3285 // In OpenCL, string literals are in constant address space in AST, therefore 3286 // they should not be casted to default address space. 3287 static llvm::Constant * 3288 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3289 llvm::GlobalVariable *GV) { 3290 llvm::Constant *Cast = GV; 3291 if (!CGM.getLangOpts().OpenCL) { 3292 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3293 if (AS != LangAS::Default) 3294 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3295 CGM, GV, AS.getValue(), LangAS::Default, 3296 GV->getValueType()->getPointerTo( 3297 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3298 } 3299 } 3300 return Cast; 3301 } 3302 3303 template<typename SomeDecl> 3304 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3305 llvm::GlobalValue *GV) { 3306 if (!getLangOpts().CPlusPlus) 3307 return; 3308 3309 // Must have 'used' attribute, or else inline assembly can't rely on 3310 // the name existing. 3311 if (!D->template hasAttr<UsedAttr>()) 3312 return; 3313 3314 // Must have internal linkage and an ordinary name. 3315 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3316 return; 3317 3318 // Must be in an extern "C" context. Entities declared directly within 3319 // a record are not extern "C" even if the record is in such a context. 3320 const SomeDecl *First = D->getFirstDecl(); 3321 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3322 return; 3323 3324 // OK, this is an internal linkage entity inside an extern "C" linkage 3325 // specification. Make a note of that so we can give it the "expected" 3326 // mangled name if nothing else is using that name. 3327 std::pair<StaticExternCMap::iterator, bool> R = 3328 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3329 3330 // If we have multiple internal linkage entities with the same name 3331 // in extern "C" regions, none of them gets that name. 3332 if (!R.second) 3333 R.first->second = nullptr; 3334 } 3335 3336 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3337 if (!CGM.supportsCOMDAT()) 3338 return false; 3339 3340 if (D.hasAttr<SelectAnyAttr>()) 3341 return true; 3342 3343 GVALinkage Linkage; 3344 if (auto *VD = dyn_cast<VarDecl>(&D)) 3345 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3346 else 3347 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3348 3349 switch (Linkage) { 3350 case GVA_Internal: 3351 case GVA_AvailableExternally: 3352 case GVA_StrongExternal: 3353 return false; 3354 case GVA_DiscardableODR: 3355 case GVA_StrongODR: 3356 return true; 3357 } 3358 llvm_unreachable("No such linkage"); 3359 } 3360 3361 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3362 llvm::GlobalObject &GO) { 3363 if (!shouldBeInCOMDAT(*this, D)) 3364 return; 3365 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3366 } 3367 3368 /// Pass IsTentative as true if you want to create a tentative definition. 3369 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3370 bool IsTentative) { 3371 // OpenCL global variables of sampler type are translated to function calls, 3372 // therefore no need to be translated. 3373 QualType ASTTy = D->getType(); 3374 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3375 return; 3376 3377 // If this is OpenMP device, check if it is legal to emit this global 3378 // normally. 3379 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3380 OpenMPRuntime->emitTargetGlobalVariable(D)) 3381 return; 3382 3383 llvm::Constant *Init = nullptr; 3384 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3385 bool NeedsGlobalCtor = false; 3386 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3387 3388 const VarDecl *InitDecl; 3389 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3390 3391 Optional<ConstantEmitter> emitter; 3392 3393 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3394 // as part of their declaration." Sema has already checked for 3395 // error cases, so we just need to set Init to UndefValue. 3396 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3397 D->hasAttr<CUDASharedAttr>()) 3398 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3399 else if (!InitExpr) { 3400 // This is a tentative definition; tentative definitions are 3401 // implicitly initialized with { 0 }. 3402 // 3403 // Note that tentative definitions are only emitted at the end of 3404 // a translation unit, so they should never have incomplete 3405 // type. In addition, EmitTentativeDefinition makes sure that we 3406 // never attempt to emit a tentative definition if a real one 3407 // exists. A use may still exists, however, so we still may need 3408 // to do a RAUW. 3409 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3410 Init = EmitNullConstant(D->getType()); 3411 } else { 3412 initializedGlobalDecl = GlobalDecl(D); 3413 emitter.emplace(*this); 3414 Init = emitter->tryEmitForInitializer(*InitDecl); 3415 3416 if (!Init) { 3417 QualType T = InitExpr->getType(); 3418 if (D->getType()->isReferenceType()) 3419 T = D->getType(); 3420 3421 if (getLangOpts().CPlusPlus) { 3422 Init = EmitNullConstant(T); 3423 NeedsGlobalCtor = true; 3424 } else { 3425 ErrorUnsupported(D, "static initializer"); 3426 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3427 } 3428 } else { 3429 // We don't need an initializer, so remove the entry for the delayed 3430 // initializer position (just in case this entry was delayed) if we 3431 // also don't need to register a destructor. 3432 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3433 DelayedCXXInitPosition.erase(D); 3434 } 3435 } 3436 3437 llvm::Type* InitType = Init->getType(); 3438 llvm::Constant *Entry = 3439 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3440 3441 // Strip off a bitcast if we got one back. 3442 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3443 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3444 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3445 // All zero index gep. 3446 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3447 Entry = CE->getOperand(0); 3448 } 3449 3450 // Entry is now either a Function or GlobalVariable. 3451 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3452 3453 // We have a definition after a declaration with the wrong type. 3454 // We must make a new GlobalVariable* and update everything that used OldGV 3455 // (a declaration or tentative definition) with the new GlobalVariable* 3456 // (which will be a definition). 3457 // 3458 // This happens if there is a prototype for a global (e.g. 3459 // "extern int x[];") and then a definition of a different type (e.g. 3460 // "int x[10];"). This also happens when an initializer has a different type 3461 // from the type of the global (this happens with unions). 3462 if (!GV || GV->getType()->getElementType() != InitType || 3463 GV->getType()->getAddressSpace() != 3464 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3465 3466 // Move the old entry aside so that we'll create a new one. 3467 Entry->setName(StringRef()); 3468 3469 // Make a new global with the correct type, this is now guaranteed to work. 3470 GV = cast<llvm::GlobalVariable>( 3471 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3472 3473 // Replace all uses of the old global with the new global 3474 llvm::Constant *NewPtrForOldDecl = 3475 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3476 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3477 3478 // Erase the old global, since it is no longer used. 3479 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3480 } 3481 3482 MaybeHandleStaticInExternC(D, GV); 3483 3484 if (D->hasAttr<AnnotateAttr>()) 3485 AddGlobalAnnotations(D, GV); 3486 3487 // Set the llvm linkage type as appropriate. 3488 llvm::GlobalValue::LinkageTypes Linkage = 3489 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3490 3491 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3492 // the device. [...]" 3493 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3494 // __device__, declares a variable that: [...] 3495 // Is accessible from all the threads within the grid and from the host 3496 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3497 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3498 if (GV && LangOpts.CUDA) { 3499 if (LangOpts.CUDAIsDevice) { 3500 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3501 GV->setExternallyInitialized(true); 3502 } else { 3503 // Host-side shadows of external declarations of device-side 3504 // global variables become internal definitions. These have to 3505 // be internal in order to prevent name conflicts with global 3506 // host variables with the same name in a different TUs. 3507 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3508 Linkage = llvm::GlobalValue::InternalLinkage; 3509 3510 // Shadow variables and their properties must be registered 3511 // with CUDA runtime. 3512 unsigned Flags = 0; 3513 if (!D->hasDefinition()) 3514 Flags |= CGCUDARuntime::ExternDeviceVar; 3515 if (D->hasAttr<CUDAConstantAttr>()) 3516 Flags |= CGCUDARuntime::ConstantDeviceVar; 3517 getCUDARuntime().registerDeviceVar(*GV, Flags); 3518 } else if (D->hasAttr<CUDASharedAttr>()) 3519 // __shared__ variables are odd. Shadows do get created, but 3520 // they are not registered with the CUDA runtime, so they 3521 // can't really be used to access their device-side 3522 // counterparts. It's not clear yet whether it's nvcc's bug or 3523 // a feature, but we've got to do the same for compatibility. 3524 Linkage = llvm::GlobalValue::InternalLinkage; 3525 } 3526 } 3527 3528 GV->setInitializer(Init); 3529 if (emitter) emitter->finalize(GV); 3530 3531 // If it is safe to mark the global 'constant', do so now. 3532 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3533 isTypeConstant(D->getType(), true)); 3534 3535 // If it is in a read-only section, mark it 'constant'. 3536 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3537 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3538 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3539 GV->setConstant(true); 3540 } 3541 3542 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3543 3544 3545 // On Darwin, if the normal linkage of a C++ thread_local variable is 3546 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3547 // copies within a linkage unit; otherwise, the backing variable has 3548 // internal linkage and all accesses should just be calls to the 3549 // Itanium-specified entry point, which has the normal linkage of the 3550 // variable. This is to preserve the ability to change the implementation 3551 // behind the scenes. 3552 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3553 Context.getTargetInfo().getTriple().isOSDarwin() && 3554 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3555 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3556 Linkage = llvm::GlobalValue::InternalLinkage; 3557 3558 GV->setLinkage(Linkage); 3559 if (D->hasAttr<DLLImportAttr>()) 3560 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3561 else if (D->hasAttr<DLLExportAttr>()) 3562 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3563 else 3564 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3565 3566 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3567 // common vars aren't constant even if declared const. 3568 GV->setConstant(false); 3569 // Tentative definition of global variables may be initialized with 3570 // non-zero null pointers. In this case they should have weak linkage 3571 // since common linkage must have zero initializer and must not have 3572 // explicit section therefore cannot have non-zero initial value. 3573 if (!GV->getInitializer()->isNullValue()) 3574 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3575 } 3576 3577 setNonAliasAttributes(D, GV); 3578 3579 if (D->getTLSKind() && !GV->isThreadLocal()) { 3580 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3581 CXXThreadLocals.push_back(D); 3582 setTLSMode(GV, *D); 3583 } 3584 3585 maybeSetTrivialComdat(*D, *GV); 3586 3587 // Emit the initializer function if necessary. 3588 if (NeedsGlobalCtor || NeedsGlobalDtor) 3589 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3590 3591 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3592 3593 // Emit global variable debug information. 3594 if (CGDebugInfo *DI = getModuleDebugInfo()) 3595 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3596 DI->EmitGlobalVariable(GV, D); 3597 } 3598 3599 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3600 CodeGenModule &CGM, const VarDecl *D, 3601 bool NoCommon) { 3602 // Don't give variables common linkage if -fno-common was specified unless it 3603 // was overridden by a NoCommon attribute. 3604 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3605 return true; 3606 3607 // C11 6.9.2/2: 3608 // A declaration of an identifier for an object that has file scope without 3609 // an initializer, and without a storage-class specifier or with the 3610 // storage-class specifier static, constitutes a tentative definition. 3611 if (D->getInit() || D->hasExternalStorage()) 3612 return true; 3613 3614 // A variable cannot be both common and exist in a section. 3615 if (D->hasAttr<SectionAttr>()) 3616 return true; 3617 3618 // A variable cannot be both common and exist in a section. 3619 // We don't try to determine which is the right section in the front-end. 3620 // If no specialized section name is applicable, it will resort to default. 3621 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3622 D->hasAttr<PragmaClangDataSectionAttr>() || 3623 D->hasAttr<PragmaClangRodataSectionAttr>()) 3624 return true; 3625 3626 // Thread local vars aren't considered common linkage. 3627 if (D->getTLSKind()) 3628 return true; 3629 3630 // Tentative definitions marked with WeakImportAttr are true definitions. 3631 if (D->hasAttr<WeakImportAttr>()) 3632 return true; 3633 3634 // A variable cannot be both common and exist in a comdat. 3635 if (shouldBeInCOMDAT(CGM, *D)) 3636 return true; 3637 3638 // Declarations with a required alignment do not have common linkage in MSVC 3639 // mode. 3640 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3641 if (D->hasAttr<AlignedAttr>()) 3642 return true; 3643 QualType VarType = D->getType(); 3644 if (Context.isAlignmentRequired(VarType)) 3645 return true; 3646 3647 if (const auto *RT = VarType->getAs<RecordType>()) { 3648 const RecordDecl *RD = RT->getDecl(); 3649 for (const FieldDecl *FD : RD->fields()) { 3650 if (FD->isBitField()) 3651 continue; 3652 if (FD->hasAttr<AlignedAttr>()) 3653 return true; 3654 if (Context.isAlignmentRequired(FD->getType())) 3655 return true; 3656 } 3657 } 3658 } 3659 3660 return false; 3661 } 3662 3663 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3664 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3665 if (Linkage == GVA_Internal) 3666 return llvm::Function::InternalLinkage; 3667 3668 if (D->hasAttr<WeakAttr>()) { 3669 if (IsConstantVariable) 3670 return llvm::GlobalVariable::WeakODRLinkage; 3671 else 3672 return llvm::GlobalVariable::WeakAnyLinkage; 3673 } 3674 3675 // We are guaranteed to have a strong definition somewhere else, 3676 // so we can use available_externally linkage. 3677 if (Linkage == GVA_AvailableExternally) 3678 return llvm::GlobalValue::AvailableExternallyLinkage; 3679 3680 // Note that Apple's kernel linker doesn't support symbol 3681 // coalescing, so we need to avoid linkonce and weak linkages there. 3682 // Normally, this means we just map to internal, but for explicit 3683 // instantiations we'll map to external. 3684 3685 // In C++, the compiler has to emit a definition in every translation unit 3686 // that references the function. We should use linkonce_odr because 3687 // a) if all references in this translation unit are optimized away, we 3688 // don't need to codegen it. b) if the function persists, it needs to be 3689 // merged with other definitions. c) C++ has the ODR, so we know the 3690 // definition is dependable. 3691 if (Linkage == GVA_DiscardableODR) 3692 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3693 : llvm::Function::InternalLinkage; 3694 3695 // An explicit instantiation of a template has weak linkage, since 3696 // explicit instantiations can occur in multiple translation units 3697 // and must all be equivalent. However, we are not allowed to 3698 // throw away these explicit instantiations. 3699 // 3700 // We don't currently support CUDA device code spread out across multiple TUs, 3701 // so say that CUDA templates are either external (for kernels) or internal. 3702 // This lets llvm perform aggressive inter-procedural optimizations. 3703 if (Linkage == GVA_StrongODR) { 3704 if (Context.getLangOpts().AppleKext) 3705 return llvm::Function::ExternalLinkage; 3706 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3707 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3708 : llvm::Function::InternalLinkage; 3709 return llvm::Function::WeakODRLinkage; 3710 } 3711 3712 // C++ doesn't have tentative definitions and thus cannot have common 3713 // linkage. 3714 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3715 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3716 CodeGenOpts.NoCommon)) 3717 return llvm::GlobalVariable::CommonLinkage; 3718 3719 // selectany symbols are externally visible, so use weak instead of 3720 // linkonce. MSVC optimizes away references to const selectany globals, so 3721 // all definitions should be the same and ODR linkage should be used. 3722 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3723 if (D->hasAttr<SelectAnyAttr>()) 3724 return llvm::GlobalVariable::WeakODRLinkage; 3725 3726 // Otherwise, we have strong external linkage. 3727 assert(Linkage == GVA_StrongExternal); 3728 return llvm::GlobalVariable::ExternalLinkage; 3729 } 3730 3731 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3732 const VarDecl *VD, bool IsConstant) { 3733 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3734 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3735 } 3736 3737 /// Replace the uses of a function that was declared with a non-proto type. 3738 /// We want to silently drop extra arguments from call sites 3739 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3740 llvm::Function *newFn) { 3741 // Fast path. 3742 if (old->use_empty()) return; 3743 3744 llvm::Type *newRetTy = newFn->getReturnType(); 3745 SmallVector<llvm::Value*, 4> newArgs; 3746 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3747 3748 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3749 ui != ue; ) { 3750 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3751 llvm::User *user = use->getUser(); 3752 3753 // Recognize and replace uses of bitcasts. Most calls to 3754 // unprototyped functions will use bitcasts. 3755 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3756 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3757 replaceUsesOfNonProtoConstant(bitcast, newFn); 3758 continue; 3759 } 3760 3761 // Recognize calls to the function. 3762 llvm::CallSite callSite(user); 3763 if (!callSite) continue; 3764 if (!callSite.isCallee(&*use)) continue; 3765 3766 // If the return types don't match exactly, then we can't 3767 // transform this call unless it's dead. 3768 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3769 continue; 3770 3771 // Get the call site's attribute list. 3772 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3773 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3774 3775 // If the function was passed too few arguments, don't transform. 3776 unsigned newNumArgs = newFn->arg_size(); 3777 if (callSite.arg_size() < newNumArgs) continue; 3778 3779 // If extra arguments were passed, we silently drop them. 3780 // If any of the types mismatch, we don't transform. 3781 unsigned argNo = 0; 3782 bool dontTransform = false; 3783 for (llvm::Argument &A : newFn->args()) { 3784 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3785 dontTransform = true; 3786 break; 3787 } 3788 3789 // Add any parameter attributes. 3790 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3791 argNo++; 3792 } 3793 if (dontTransform) 3794 continue; 3795 3796 // Okay, we can transform this. Create the new call instruction and copy 3797 // over the required information. 3798 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3799 3800 // Copy over any operand bundles. 3801 callSite.getOperandBundlesAsDefs(newBundles); 3802 3803 llvm::CallSite newCall; 3804 if (callSite.isCall()) { 3805 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3806 callSite.getInstruction()); 3807 } else { 3808 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3809 newCall = llvm::InvokeInst::Create(newFn, 3810 oldInvoke->getNormalDest(), 3811 oldInvoke->getUnwindDest(), 3812 newArgs, newBundles, "", 3813 callSite.getInstruction()); 3814 } 3815 newArgs.clear(); // for the next iteration 3816 3817 if (!newCall->getType()->isVoidTy()) 3818 newCall->takeName(callSite.getInstruction()); 3819 newCall.setAttributes(llvm::AttributeList::get( 3820 newFn->getContext(), oldAttrs.getFnAttributes(), 3821 oldAttrs.getRetAttributes(), newArgAttrs)); 3822 newCall.setCallingConv(callSite.getCallingConv()); 3823 3824 // Finally, remove the old call, replacing any uses with the new one. 3825 if (!callSite->use_empty()) 3826 callSite->replaceAllUsesWith(newCall.getInstruction()); 3827 3828 // Copy debug location attached to CI. 3829 if (callSite->getDebugLoc()) 3830 newCall->setDebugLoc(callSite->getDebugLoc()); 3831 3832 callSite->eraseFromParent(); 3833 } 3834 } 3835 3836 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3837 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3838 /// existing call uses of the old function in the module, this adjusts them to 3839 /// call the new function directly. 3840 /// 3841 /// This is not just a cleanup: the always_inline pass requires direct calls to 3842 /// functions to be able to inline them. If there is a bitcast in the way, it 3843 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3844 /// run at -O0. 3845 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3846 llvm::Function *NewFn) { 3847 // If we're redefining a global as a function, don't transform it. 3848 if (!isa<llvm::Function>(Old)) return; 3849 3850 replaceUsesOfNonProtoConstant(Old, NewFn); 3851 } 3852 3853 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3854 auto DK = VD->isThisDeclarationADefinition(); 3855 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3856 return; 3857 3858 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3859 // If we have a definition, this might be a deferred decl. If the 3860 // instantiation is explicit, make sure we emit it at the end. 3861 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3862 GetAddrOfGlobalVar(VD); 3863 3864 EmitTopLevelDecl(VD); 3865 } 3866 3867 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3868 llvm::GlobalValue *GV) { 3869 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3870 3871 // Compute the function info and LLVM type. 3872 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3873 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3874 3875 // Get or create the prototype for the function. 3876 if (!GV || (GV->getType()->getElementType() != Ty)) 3877 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3878 /*DontDefer=*/true, 3879 ForDefinition)); 3880 3881 // Already emitted. 3882 if (!GV->isDeclaration()) 3883 return; 3884 3885 // We need to set linkage and visibility on the function before 3886 // generating code for it because various parts of IR generation 3887 // want to propagate this information down (e.g. to local static 3888 // declarations). 3889 auto *Fn = cast<llvm::Function>(GV); 3890 setFunctionLinkage(GD, Fn); 3891 3892 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3893 setGVProperties(Fn, GD); 3894 3895 MaybeHandleStaticInExternC(D, Fn); 3896 3897 3898 maybeSetTrivialComdat(*D, *Fn); 3899 3900 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3901 3902 setNonAliasAttributes(GD, Fn); 3903 SetLLVMFunctionAttributesForDefinition(D, Fn); 3904 3905 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3906 AddGlobalCtor(Fn, CA->getPriority()); 3907 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3908 AddGlobalDtor(Fn, DA->getPriority()); 3909 if (D->hasAttr<AnnotateAttr>()) 3910 AddGlobalAnnotations(D, Fn); 3911 3912 if (D->isCPUSpecificMultiVersion()) { 3913 auto *Spec = D->getAttr<CPUSpecificAttr>(); 3914 // If there is another specific version we need to emit, do so here. 3915 if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) { 3916 ++Spec->ActiveArgIndex; 3917 EmitGlobalFunctionDefinition(GD, nullptr); 3918 } 3919 } 3920 } 3921 3922 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3923 const auto *D = cast<ValueDecl>(GD.getDecl()); 3924 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3925 assert(AA && "Not an alias?"); 3926 3927 StringRef MangledName = getMangledName(GD); 3928 3929 if (AA->getAliasee() == MangledName) { 3930 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3931 return; 3932 } 3933 3934 // If there is a definition in the module, then it wins over the alias. 3935 // This is dubious, but allow it to be safe. Just ignore the alias. 3936 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3937 if (Entry && !Entry->isDeclaration()) 3938 return; 3939 3940 Aliases.push_back(GD); 3941 3942 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3943 3944 // Create a reference to the named value. This ensures that it is emitted 3945 // if a deferred decl. 3946 llvm::Constant *Aliasee; 3947 if (isa<llvm::FunctionType>(DeclTy)) 3948 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3949 /*ForVTable=*/false); 3950 else 3951 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3952 llvm::PointerType::getUnqual(DeclTy), 3953 /*D=*/nullptr); 3954 3955 // Create the new alias itself, but don't set a name yet. 3956 auto *GA = llvm::GlobalAlias::create( 3957 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3958 3959 if (Entry) { 3960 if (GA->getAliasee() == Entry) { 3961 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3962 return; 3963 } 3964 3965 assert(Entry->isDeclaration()); 3966 3967 // If there is a declaration in the module, then we had an extern followed 3968 // by the alias, as in: 3969 // extern int test6(); 3970 // ... 3971 // int test6() __attribute__((alias("test7"))); 3972 // 3973 // Remove it and replace uses of it with the alias. 3974 GA->takeName(Entry); 3975 3976 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3977 Entry->getType())); 3978 Entry->eraseFromParent(); 3979 } else { 3980 GA->setName(MangledName); 3981 } 3982 3983 // Set attributes which are particular to an alias; this is a 3984 // specialization of the attributes which may be set on a global 3985 // variable/function. 3986 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3987 D->isWeakImported()) { 3988 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3989 } 3990 3991 if (const auto *VD = dyn_cast<VarDecl>(D)) 3992 if (VD->getTLSKind()) 3993 setTLSMode(GA, *VD); 3994 3995 SetCommonAttributes(GD, GA); 3996 } 3997 3998 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3999 const auto *D = cast<ValueDecl>(GD.getDecl()); 4000 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4001 assert(IFA && "Not an ifunc?"); 4002 4003 StringRef MangledName = getMangledName(GD); 4004 4005 if (IFA->getResolver() == MangledName) { 4006 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4007 return; 4008 } 4009 4010 // Report an error if some definition overrides ifunc. 4011 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4012 if (Entry && !Entry->isDeclaration()) { 4013 GlobalDecl OtherGD; 4014 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4015 DiagnosedConflictingDefinitions.insert(GD).second) { 4016 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4017 << MangledName; 4018 Diags.Report(OtherGD.getDecl()->getLocation(), 4019 diag::note_previous_definition); 4020 } 4021 return; 4022 } 4023 4024 Aliases.push_back(GD); 4025 4026 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4027 llvm::Constant *Resolver = 4028 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4029 /*ForVTable=*/false); 4030 llvm::GlobalIFunc *GIF = 4031 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4032 "", Resolver, &getModule()); 4033 if (Entry) { 4034 if (GIF->getResolver() == Entry) { 4035 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4036 return; 4037 } 4038 assert(Entry->isDeclaration()); 4039 4040 // If there is a declaration in the module, then we had an extern followed 4041 // by the ifunc, as in: 4042 // extern int test(); 4043 // ... 4044 // int test() __attribute__((ifunc("resolver"))); 4045 // 4046 // Remove it and replace uses of it with the ifunc. 4047 GIF->takeName(Entry); 4048 4049 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4050 Entry->getType())); 4051 Entry->eraseFromParent(); 4052 } else 4053 GIF->setName(MangledName); 4054 4055 SetCommonAttributes(GD, GIF); 4056 } 4057 4058 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4059 ArrayRef<llvm::Type*> Tys) { 4060 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4061 Tys); 4062 } 4063 4064 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4065 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4066 const StringLiteral *Literal, bool TargetIsLSB, 4067 bool &IsUTF16, unsigned &StringLength) { 4068 StringRef String = Literal->getString(); 4069 unsigned NumBytes = String.size(); 4070 4071 // Check for simple case. 4072 if (!Literal->containsNonAsciiOrNull()) { 4073 StringLength = NumBytes; 4074 return *Map.insert(std::make_pair(String, nullptr)).first; 4075 } 4076 4077 // Otherwise, convert the UTF8 literals into a string of shorts. 4078 IsUTF16 = true; 4079 4080 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4081 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4082 llvm::UTF16 *ToPtr = &ToBuf[0]; 4083 4084 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4085 ToPtr + NumBytes, llvm::strictConversion); 4086 4087 // ConvertUTF8toUTF16 returns the length in ToPtr. 4088 StringLength = ToPtr - &ToBuf[0]; 4089 4090 // Add an explicit null. 4091 *ToPtr = 0; 4092 return *Map.insert(std::make_pair( 4093 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4094 (StringLength + 1) * 2), 4095 nullptr)).first; 4096 } 4097 4098 ConstantAddress 4099 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4100 unsigned StringLength = 0; 4101 bool isUTF16 = false; 4102 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4103 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4104 getDataLayout().isLittleEndian(), isUTF16, 4105 StringLength); 4106 4107 if (auto *C = Entry.second) 4108 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4109 4110 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4111 llvm::Constant *Zeros[] = { Zero, Zero }; 4112 4113 // If we don't already have it, get __CFConstantStringClassReference. 4114 if (!CFConstantStringClassRef) { 4115 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4116 Ty = llvm::ArrayType::get(Ty, 0); 4117 llvm::Constant *C = 4118 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 4119 4120 if (getTriple().isOSBinFormatELF() || getTriple().isOSBinFormatCOFF()) { 4121 llvm::GlobalValue *GV = nullptr; 4122 4123 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4124 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 4125 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 4126 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4127 4128 const VarDecl *VD = nullptr; 4129 for (const auto &Result : DC->lookup(&II)) 4130 if ((VD = dyn_cast<VarDecl>(Result))) 4131 break; 4132 4133 if (getTriple().isOSBinFormatELF()) { 4134 if (!VD) 4135 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4136 } 4137 else { 4138 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 4139 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4140 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4141 } else { 4142 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4143 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4144 } 4145 } 4146 4147 setDSOLocal(GV); 4148 } 4149 } 4150 4151 // Decay array -> ptr 4152 CFConstantStringClassRef = 4153 llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4154 } 4155 4156 QualType CFTy = getContext().getCFConstantStringType(); 4157 4158 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4159 4160 ConstantInitBuilder Builder(*this); 4161 auto Fields = Builder.beginStruct(STy); 4162 4163 // Class pointer. 4164 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4165 4166 // Flags. 4167 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4168 4169 // String pointer. 4170 llvm::Constant *C = nullptr; 4171 if (isUTF16) { 4172 auto Arr = llvm::makeArrayRef( 4173 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4174 Entry.first().size() / 2); 4175 C = llvm::ConstantDataArray::get(VMContext, Arr); 4176 } else { 4177 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4178 } 4179 4180 // Note: -fwritable-strings doesn't make the backing store strings of 4181 // CFStrings writable. (See <rdar://problem/10657500>) 4182 auto *GV = 4183 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4184 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4185 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4186 // Don't enforce the target's minimum global alignment, since the only use 4187 // of the string is via this class initializer. 4188 CharUnits Align = isUTF16 4189 ? getContext().getTypeAlignInChars(getContext().ShortTy) 4190 : getContext().getTypeAlignInChars(getContext().CharTy); 4191 GV->setAlignment(Align.getQuantity()); 4192 4193 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4194 // Without it LLVM can merge the string with a non unnamed_addr one during 4195 // LTO. Doing that changes the section it ends in, which surprises ld64. 4196 if (getTriple().isOSBinFormatMachO()) 4197 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4198 : "__TEXT,__cstring,cstring_literals"); 4199 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4200 // the static linker to adjust permissions to read-only later on. 4201 else if (getTriple().isOSBinFormatELF()) 4202 GV->setSection(".rodata"); 4203 4204 // String. 4205 llvm::Constant *Str = 4206 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4207 4208 if (isUTF16) 4209 // Cast the UTF16 string to the correct type. 4210 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4211 Fields.add(Str); 4212 4213 // String length. 4214 auto Ty = getTypes().ConvertType(getContext().LongTy); 4215 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 4216 4217 CharUnits Alignment = getPointerAlign(); 4218 4219 // The struct. 4220 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4221 /*isConstant=*/false, 4222 llvm::GlobalVariable::PrivateLinkage); 4223 switch (getTriple().getObjectFormat()) { 4224 case llvm::Triple::UnknownObjectFormat: 4225 llvm_unreachable("unknown file format"); 4226 case llvm::Triple::COFF: 4227 case llvm::Triple::ELF: 4228 case llvm::Triple::Wasm: 4229 GV->setSection("cfstring"); 4230 break; 4231 case llvm::Triple::MachO: 4232 GV->setSection("__DATA,__cfstring"); 4233 break; 4234 } 4235 Entry.second = GV; 4236 4237 return ConstantAddress(GV, Alignment); 4238 } 4239 4240 bool CodeGenModule::getExpressionLocationsEnabled() const { 4241 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4242 } 4243 4244 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4245 if (ObjCFastEnumerationStateType.isNull()) { 4246 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4247 D->startDefinition(); 4248 4249 QualType FieldTypes[] = { 4250 Context.UnsignedLongTy, 4251 Context.getPointerType(Context.getObjCIdType()), 4252 Context.getPointerType(Context.UnsignedLongTy), 4253 Context.getConstantArrayType(Context.UnsignedLongTy, 4254 llvm::APInt(32, 5), ArrayType::Normal, 0) 4255 }; 4256 4257 for (size_t i = 0; i < 4; ++i) { 4258 FieldDecl *Field = FieldDecl::Create(Context, 4259 D, 4260 SourceLocation(), 4261 SourceLocation(), nullptr, 4262 FieldTypes[i], /*TInfo=*/nullptr, 4263 /*BitWidth=*/nullptr, 4264 /*Mutable=*/false, 4265 ICIS_NoInit); 4266 Field->setAccess(AS_public); 4267 D->addDecl(Field); 4268 } 4269 4270 D->completeDefinition(); 4271 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4272 } 4273 4274 return ObjCFastEnumerationStateType; 4275 } 4276 4277 llvm::Constant * 4278 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4279 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4280 4281 // Don't emit it as the address of the string, emit the string data itself 4282 // as an inline array. 4283 if (E->getCharByteWidth() == 1) { 4284 SmallString<64> Str(E->getString()); 4285 4286 // Resize the string to the right size, which is indicated by its type. 4287 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4288 Str.resize(CAT->getSize().getZExtValue()); 4289 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4290 } 4291 4292 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4293 llvm::Type *ElemTy = AType->getElementType(); 4294 unsigned NumElements = AType->getNumElements(); 4295 4296 // Wide strings have either 2-byte or 4-byte elements. 4297 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4298 SmallVector<uint16_t, 32> Elements; 4299 Elements.reserve(NumElements); 4300 4301 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4302 Elements.push_back(E->getCodeUnit(i)); 4303 Elements.resize(NumElements); 4304 return llvm::ConstantDataArray::get(VMContext, Elements); 4305 } 4306 4307 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4308 SmallVector<uint32_t, 32> Elements; 4309 Elements.reserve(NumElements); 4310 4311 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4312 Elements.push_back(E->getCodeUnit(i)); 4313 Elements.resize(NumElements); 4314 return llvm::ConstantDataArray::get(VMContext, Elements); 4315 } 4316 4317 static llvm::GlobalVariable * 4318 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4319 CodeGenModule &CGM, StringRef GlobalName, 4320 CharUnits Alignment) { 4321 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4322 CGM.getStringLiteralAddressSpace()); 4323 4324 llvm::Module &M = CGM.getModule(); 4325 // Create a global variable for this string 4326 auto *GV = new llvm::GlobalVariable( 4327 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4328 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4329 GV->setAlignment(Alignment.getQuantity()); 4330 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4331 if (GV->isWeakForLinker()) { 4332 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4333 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4334 } 4335 CGM.setDSOLocal(GV); 4336 4337 return GV; 4338 } 4339 4340 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4341 /// constant array for the given string literal. 4342 ConstantAddress 4343 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4344 StringRef Name) { 4345 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4346 4347 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4348 llvm::GlobalVariable **Entry = nullptr; 4349 if (!LangOpts.WritableStrings) { 4350 Entry = &ConstantStringMap[C]; 4351 if (auto GV = *Entry) { 4352 if (Alignment.getQuantity() > GV->getAlignment()) 4353 GV->setAlignment(Alignment.getQuantity()); 4354 return ConstantAddress(GV, Alignment); 4355 } 4356 } 4357 4358 SmallString<256> MangledNameBuffer; 4359 StringRef GlobalVariableName; 4360 llvm::GlobalValue::LinkageTypes LT; 4361 4362 // Mangle the string literal if that's how the ABI merges duplicate strings. 4363 // Don't do it if they are writable, since we don't want writes in one TU to 4364 // affect strings in another. 4365 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4366 !LangOpts.WritableStrings) { 4367 llvm::raw_svector_ostream Out(MangledNameBuffer); 4368 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4369 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4370 GlobalVariableName = MangledNameBuffer; 4371 } else { 4372 LT = llvm::GlobalValue::PrivateLinkage; 4373 GlobalVariableName = Name; 4374 } 4375 4376 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4377 if (Entry) 4378 *Entry = GV; 4379 4380 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4381 QualType()); 4382 4383 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4384 Alignment); 4385 } 4386 4387 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4388 /// array for the given ObjCEncodeExpr node. 4389 ConstantAddress 4390 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4391 std::string Str; 4392 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4393 4394 return GetAddrOfConstantCString(Str); 4395 } 4396 4397 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4398 /// the literal and a terminating '\0' character. 4399 /// The result has pointer to array type. 4400 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4401 const std::string &Str, const char *GlobalName) { 4402 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4403 CharUnits Alignment = 4404 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4405 4406 llvm::Constant *C = 4407 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4408 4409 // Don't share any string literals if strings aren't constant. 4410 llvm::GlobalVariable **Entry = nullptr; 4411 if (!LangOpts.WritableStrings) { 4412 Entry = &ConstantStringMap[C]; 4413 if (auto GV = *Entry) { 4414 if (Alignment.getQuantity() > GV->getAlignment()) 4415 GV->setAlignment(Alignment.getQuantity()); 4416 return ConstantAddress(GV, Alignment); 4417 } 4418 } 4419 4420 // Get the default prefix if a name wasn't specified. 4421 if (!GlobalName) 4422 GlobalName = ".str"; 4423 // Create a global variable for this. 4424 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4425 GlobalName, Alignment); 4426 if (Entry) 4427 *Entry = GV; 4428 4429 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4430 Alignment); 4431 } 4432 4433 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4434 const MaterializeTemporaryExpr *E, const Expr *Init) { 4435 assert((E->getStorageDuration() == SD_Static || 4436 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4437 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4438 4439 // If we're not materializing a subobject of the temporary, keep the 4440 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4441 QualType MaterializedType = Init->getType(); 4442 if (Init == E->GetTemporaryExpr()) 4443 MaterializedType = E->getType(); 4444 4445 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4446 4447 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4448 return ConstantAddress(Slot, Align); 4449 4450 // FIXME: If an externally-visible declaration extends multiple temporaries, 4451 // we need to give each temporary the same name in every translation unit (and 4452 // we also need to make the temporaries externally-visible). 4453 SmallString<256> Name; 4454 llvm::raw_svector_ostream Out(Name); 4455 getCXXABI().getMangleContext().mangleReferenceTemporary( 4456 VD, E->getManglingNumber(), Out); 4457 4458 APValue *Value = nullptr; 4459 if (E->getStorageDuration() == SD_Static) { 4460 // We might have a cached constant initializer for this temporary. Note 4461 // that this might have a different value from the value computed by 4462 // evaluating the initializer if the surrounding constant expression 4463 // modifies the temporary. 4464 Value = getContext().getMaterializedTemporaryValue(E, false); 4465 if (Value && Value->isUninit()) 4466 Value = nullptr; 4467 } 4468 4469 // Try evaluating it now, it might have a constant initializer. 4470 Expr::EvalResult EvalResult; 4471 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4472 !EvalResult.hasSideEffects()) 4473 Value = &EvalResult.Val; 4474 4475 LangAS AddrSpace = 4476 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4477 4478 Optional<ConstantEmitter> emitter; 4479 llvm::Constant *InitialValue = nullptr; 4480 bool Constant = false; 4481 llvm::Type *Type; 4482 if (Value) { 4483 // The temporary has a constant initializer, use it. 4484 emitter.emplace(*this); 4485 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4486 MaterializedType); 4487 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4488 Type = InitialValue->getType(); 4489 } else { 4490 // No initializer, the initialization will be provided when we 4491 // initialize the declaration which performed lifetime extension. 4492 Type = getTypes().ConvertTypeForMem(MaterializedType); 4493 } 4494 4495 // Create a global variable for this lifetime-extended temporary. 4496 llvm::GlobalValue::LinkageTypes Linkage = 4497 getLLVMLinkageVarDefinition(VD, Constant); 4498 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4499 const VarDecl *InitVD; 4500 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4501 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4502 // Temporaries defined inside a class get linkonce_odr linkage because the 4503 // class can be defined in multiple translation units. 4504 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4505 } else { 4506 // There is no need for this temporary to have external linkage if the 4507 // VarDecl has external linkage. 4508 Linkage = llvm::GlobalVariable::InternalLinkage; 4509 } 4510 } 4511 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4512 auto *GV = new llvm::GlobalVariable( 4513 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4514 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4515 if (emitter) emitter->finalize(GV); 4516 setGVProperties(GV, VD); 4517 GV->setAlignment(Align.getQuantity()); 4518 if (supportsCOMDAT() && GV->isWeakForLinker()) 4519 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4520 if (VD->getTLSKind()) 4521 setTLSMode(GV, *VD); 4522 llvm::Constant *CV = GV; 4523 if (AddrSpace != LangAS::Default) 4524 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4525 *this, GV, AddrSpace, LangAS::Default, 4526 Type->getPointerTo( 4527 getContext().getTargetAddressSpace(LangAS::Default))); 4528 MaterializedGlobalTemporaryMap[E] = CV; 4529 return ConstantAddress(CV, Align); 4530 } 4531 4532 /// EmitObjCPropertyImplementations - Emit information for synthesized 4533 /// properties for an implementation. 4534 void CodeGenModule::EmitObjCPropertyImplementations(const 4535 ObjCImplementationDecl *D) { 4536 for (const auto *PID : D->property_impls()) { 4537 // Dynamic is just for type-checking. 4538 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4539 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4540 4541 // Determine which methods need to be implemented, some may have 4542 // been overridden. Note that ::isPropertyAccessor is not the method 4543 // we want, that just indicates if the decl came from a 4544 // property. What we want to know is if the method is defined in 4545 // this implementation. 4546 if (!D->getInstanceMethod(PD->getGetterName())) 4547 CodeGenFunction(*this).GenerateObjCGetter( 4548 const_cast<ObjCImplementationDecl *>(D), PID); 4549 if (!PD->isReadOnly() && 4550 !D->getInstanceMethod(PD->getSetterName())) 4551 CodeGenFunction(*this).GenerateObjCSetter( 4552 const_cast<ObjCImplementationDecl *>(D), PID); 4553 } 4554 } 4555 } 4556 4557 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4558 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4559 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4560 ivar; ivar = ivar->getNextIvar()) 4561 if (ivar->getType().isDestructedType()) 4562 return true; 4563 4564 return false; 4565 } 4566 4567 static bool AllTrivialInitializers(CodeGenModule &CGM, 4568 ObjCImplementationDecl *D) { 4569 CodeGenFunction CGF(CGM); 4570 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4571 E = D->init_end(); B != E; ++B) { 4572 CXXCtorInitializer *CtorInitExp = *B; 4573 Expr *Init = CtorInitExp->getInit(); 4574 if (!CGF.isTrivialInitializer(Init)) 4575 return false; 4576 } 4577 return true; 4578 } 4579 4580 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4581 /// for an implementation. 4582 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4583 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4584 if (needsDestructMethod(D)) { 4585 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4586 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4587 ObjCMethodDecl *DTORMethod = 4588 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4589 cxxSelector, getContext().VoidTy, nullptr, D, 4590 /*isInstance=*/true, /*isVariadic=*/false, 4591 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4592 /*isDefined=*/false, ObjCMethodDecl::Required); 4593 D->addInstanceMethod(DTORMethod); 4594 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4595 D->setHasDestructors(true); 4596 } 4597 4598 // If the implementation doesn't have any ivar initializers, we don't need 4599 // a .cxx_construct. 4600 if (D->getNumIvarInitializers() == 0 || 4601 AllTrivialInitializers(*this, D)) 4602 return; 4603 4604 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4605 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4606 // The constructor returns 'self'. 4607 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4608 D->getLocation(), 4609 D->getLocation(), 4610 cxxSelector, 4611 getContext().getObjCIdType(), 4612 nullptr, D, /*isInstance=*/true, 4613 /*isVariadic=*/false, 4614 /*isPropertyAccessor=*/true, 4615 /*isImplicitlyDeclared=*/true, 4616 /*isDefined=*/false, 4617 ObjCMethodDecl::Required); 4618 D->addInstanceMethod(CTORMethod); 4619 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4620 D->setHasNonZeroConstructors(true); 4621 } 4622 4623 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4624 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4625 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4626 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4627 ErrorUnsupported(LSD, "linkage spec"); 4628 return; 4629 } 4630 4631 EmitDeclContext(LSD); 4632 } 4633 4634 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4635 for (auto *I : DC->decls()) { 4636 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4637 // are themselves considered "top-level", so EmitTopLevelDecl on an 4638 // ObjCImplDecl does not recursively visit them. We need to do that in 4639 // case they're nested inside another construct (LinkageSpecDecl / 4640 // ExportDecl) that does stop them from being considered "top-level". 4641 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4642 for (auto *M : OID->methods()) 4643 EmitTopLevelDecl(M); 4644 } 4645 4646 EmitTopLevelDecl(I); 4647 } 4648 } 4649 4650 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4651 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4652 // Ignore dependent declarations. 4653 if (D->isTemplated()) 4654 return; 4655 4656 switch (D->getKind()) { 4657 case Decl::CXXConversion: 4658 case Decl::CXXMethod: 4659 case Decl::Function: 4660 EmitGlobal(cast<FunctionDecl>(D)); 4661 // Always provide some coverage mapping 4662 // even for the functions that aren't emitted. 4663 AddDeferredUnusedCoverageMapping(D); 4664 break; 4665 4666 case Decl::CXXDeductionGuide: 4667 // Function-like, but does not result in code emission. 4668 break; 4669 4670 case Decl::Var: 4671 case Decl::Decomposition: 4672 case Decl::VarTemplateSpecialization: 4673 EmitGlobal(cast<VarDecl>(D)); 4674 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4675 for (auto *B : DD->bindings()) 4676 if (auto *HD = B->getHoldingVar()) 4677 EmitGlobal(HD); 4678 break; 4679 4680 // Indirect fields from global anonymous structs and unions can be 4681 // ignored; only the actual variable requires IR gen support. 4682 case Decl::IndirectField: 4683 break; 4684 4685 // C++ Decls 4686 case Decl::Namespace: 4687 EmitDeclContext(cast<NamespaceDecl>(D)); 4688 break; 4689 case Decl::ClassTemplateSpecialization: { 4690 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4691 if (DebugInfo && 4692 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4693 Spec->hasDefinition()) 4694 DebugInfo->completeTemplateDefinition(*Spec); 4695 } LLVM_FALLTHROUGH; 4696 case Decl::CXXRecord: 4697 if (DebugInfo) { 4698 if (auto *ES = D->getASTContext().getExternalSource()) 4699 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4700 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4701 } 4702 // Emit any static data members, they may be definitions. 4703 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4704 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4705 EmitTopLevelDecl(I); 4706 break; 4707 // No code generation needed. 4708 case Decl::UsingShadow: 4709 case Decl::ClassTemplate: 4710 case Decl::VarTemplate: 4711 case Decl::VarTemplatePartialSpecialization: 4712 case Decl::FunctionTemplate: 4713 case Decl::TypeAliasTemplate: 4714 case Decl::Block: 4715 case Decl::Empty: 4716 break; 4717 case Decl::Using: // using X; [C++] 4718 if (CGDebugInfo *DI = getModuleDebugInfo()) 4719 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4720 return; 4721 case Decl::NamespaceAlias: 4722 if (CGDebugInfo *DI = getModuleDebugInfo()) 4723 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4724 return; 4725 case Decl::UsingDirective: // using namespace X; [C++] 4726 if (CGDebugInfo *DI = getModuleDebugInfo()) 4727 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4728 return; 4729 case Decl::CXXConstructor: 4730 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4731 break; 4732 case Decl::CXXDestructor: 4733 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4734 break; 4735 4736 case Decl::StaticAssert: 4737 // Nothing to do. 4738 break; 4739 4740 // Objective-C Decls 4741 4742 // Forward declarations, no (immediate) code generation. 4743 case Decl::ObjCInterface: 4744 case Decl::ObjCCategory: 4745 break; 4746 4747 case Decl::ObjCProtocol: { 4748 auto *Proto = cast<ObjCProtocolDecl>(D); 4749 if (Proto->isThisDeclarationADefinition()) 4750 ObjCRuntime->GenerateProtocol(Proto); 4751 break; 4752 } 4753 4754 case Decl::ObjCCategoryImpl: 4755 // Categories have properties but don't support synthesize so we 4756 // can ignore them here. 4757 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4758 break; 4759 4760 case Decl::ObjCImplementation: { 4761 auto *OMD = cast<ObjCImplementationDecl>(D); 4762 EmitObjCPropertyImplementations(OMD); 4763 EmitObjCIvarInitializations(OMD); 4764 ObjCRuntime->GenerateClass(OMD); 4765 // Emit global variable debug information. 4766 if (CGDebugInfo *DI = getModuleDebugInfo()) 4767 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4768 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4769 OMD->getClassInterface()), OMD->getLocation()); 4770 break; 4771 } 4772 case Decl::ObjCMethod: { 4773 auto *OMD = cast<ObjCMethodDecl>(D); 4774 // If this is not a prototype, emit the body. 4775 if (OMD->getBody()) 4776 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4777 break; 4778 } 4779 case Decl::ObjCCompatibleAlias: 4780 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4781 break; 4782 4783 case Decl::PragmaComment: { 4784 const auto *PCD = cast<PragmaCommentDecl>(D); 4785 switch (PCD->getCommentKind()) { 4786 case PCK_Unknown: 4787 llvm_unreachable("unexpected pragma comment kind"); 4788 case PCK_Linker: 4789 AppendLinkerOptions(PCD->getArg()); 4790 break; 4791 case PCK_Lib: 4792 if (getTarget().getTriple().isOSBinFormatELF() && 4793 !getTarget().getTriple().isPS4()) 4794 AddELFLibDirective(PCD->getArg()); 4795 else 4796 AddDependentLib(PCD->getArg()); 4797 break; 4798 case PCK_Compiler: 4799 case PCK_ExeStr: 4800 case PCK_User: 4801 break; // We ignore all of these. 4802 } 4803 break; 4804 } 4805 4806 case Decl::PragmaDetectMismatch: { 4807 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4808 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4809 break; 4810 } 4811 4812 case Decl::LinkageSpec: 4813 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4814 break; 4815 4816 case Decl::FileScopeAsm: { 4817 // File-scope asm is ignored during device-side CUDA compilation. 4818 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4819 break; 4820 // File-scope asm is ignored during device-side OpenMP compilation. 4821 if (LangOpts.OpenMPIsDevice) 4822 break; 4823 auto *AD = cast<FileScopeAsmDecl>(D); 4824 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4825 break; 4826 } 4827 4828 case Decl::Import: { 4829 auto *Import = cast<ImportDecl>(D); 4830 4831 // If we've already imported this module, we're done. 4832 if (!ImportedModules.insert(Import->getImportedModule())) 4833 break; 4834 4835 // Emit debug information for direct imports. 4836 if (!Import->getImportedOwningModule()) { 4837 if (CGDebugInfo *DI = getModuleDebugInfo()) 4838 DI->EmitImportDecl(*Import); 4839 } 4840 4841 // Find all of the submodules and emit the module initializers. 4842 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4843 SmallVector<clang::Module *, 16> Stack; 4844 Visited.insert(Import->getImportedModule()); 4845 Stack.push_back(Import->getImportedModule()); 4846 4847 while (!Stack.empty()) { 4848 clang::Module *Mod = Stack.pop_back_val(); 4849 if (!EmittedModuleInitializers.insert(Mod).second) 4850 continue; 4851 4852 for (auto *D : Context.getModuleInitializers(Mod)) 4853 EmitTopLevelDecl(D); 4854 4855 // Visit the submodules of this module. 4856 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4857 SubEnd = Mod->submodule_end(); 4858 Sub != SubEnd; ++Sub) { 4859 // Skip explicit children; they need to be explicitly imported to emit 4860 // the initializers. 4861 if ((*Sub)->IsExplicit) 4862 continue; 4863 4864 if (Visited.insert(*Sub).second) 4865 Stack.push_back(*Sub); 4866 } 4867 } 4868 break; 4869 } 4870 4871 case Decl::Export: 4872 EmitDeclContext(cast<ExportDecl>(D)); 4873 break; 4874 4875 case Decl::OMPThreadPrivate: 4876 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4877 break; 4878 4879 case Decl::OMPDeclareReduction: 4880 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4881 break; 4882 4883 case Decl::OMPRequires: 4884 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 4885 break; 4886 4887 default: 4888 // Make sure we handled everything we should, every other kind is a 4889 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4890 // function. Need to recode Decl::Kind to do that easily. 4891 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4892 break; 4893 } 4894 } 4895 4896 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4897 // Do we need to generate coverage mapping? 4898 if (!CodeGenOpts.CoverageMapping) 4899 return; 4900 switch (D->getKind()) { 4901 case Decl::CXXConversion: 4902 case Decl::CXXMethod: 4903 case Decl::Function: 4904 case Decl::ObjCMethod: 4905 case Decl::CXXConstructor: 4906 case Decl::CXXDestructor: { 4907 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4908 return; 4909 SourceManager &SM = getContext().getSourceManager(); 4910 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 4911 return; 4912 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4913 if (I == DeferredEmptyCoverageMappingDecls.end()) 4914 DeferredEmptyCoverageMappingDecls[D] = true; 4915 break; 4916 } 4917 default: 4918 break; 4919 }; 4920 } 4921 4922 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4923 // Do we need to generate coverage mapping? 4924 if (!CodeGenOpts.CoverageMapping) 4925 return; 4926 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4927 if (Fn->isTemplateInstantiation()) 4928 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4929 } 4930 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4931 if (I == DeferredEmptyCoverageMappingDecls.end()) 4932 DeferredEmptyCoverageMappingDecls[D] = false; 4933 else 4934 I->second = false; 4935 } 4936 4937 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4938 // We call takeVector() here to avoid use-after-free. 4939 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4940 // we deserialize function bodies to emit coverage info for them, and that 4941 // deserializes more declarations. How should we handle that case? 4942 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4943 if (!Entry.second) 4944 continue; 4945 const Decl *D = Entry.first; 4946 switch (D->getKind()) { 4947 case Decl::CXXConversion: 4948 case Decl::CXXMethod: 4949 case Decl::Function: 4950 case Decl::ObjCMethod: { 4951 CodeGenPGO PGO(*this); 4952 GlobalDecl GD(cast<FunctionDecl>(D)); 4953 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4954 getFunctionLinkage(GD)); 4955 break; 4956 } 4957 case Decl::CXXConstructor: { 4958 CodeGenPGO PGO(*this); 4959 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4960 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4961 getFunctionLinkage(GD)); 4962 break; 4963 } 4964 case Decl::CXXDestructor: { 4965 CodeGenPGO PGO(*this); 4966 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4967 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4968 getFunctionLinkage(GD)); 4969 break; 4970 } 4971 default: 4972 break; 4973 }; 4974 } 4975 } 4976 4977 /// Turns the given pointer into a constant. 4978 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4979 const void *Ptr) { 4980 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4981 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4982 return llvm::ConstantInt::get(i64, PtrInt); 4983 } 4984 4985 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4986 llvm::NamedMDNode *&GlobalMetadata, 4987 GlobalDecl D, 4988 llvm::GlobalValue *Addr) { 4989 if (!GlobalMetadata) 4990 GlobalMetadata = 4991 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4992 4993 // TODO: should we report variant information for ctors/dtors? 4994 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4995 llvm::ConstantAsMetadata::get(GetPointerConstant( 4996 CGM.getLLVMContext(), D.getDecl()))}; 4997 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4998 } 4999 5000 /// For each function which is declared within an extern "C" region and marked 5001 /// as 'used', but has internal linkage, create an alias from the unmangled 5002 /// name to the mangled name if possible. People expect to be able to refer 5003 /// to such functions with an unmangled name from inline assembly within the 5004 /// same translation unit. 5005 void CodeGenModule::EmitStaticExternCAliases() { 5006 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5007 return; 5008 for (auto &I : StaticExternCValues) { 5009 IdentifierInfo *Name = I.first; 5010 llvm::GlobalValue *Val = I.second; 5011 if (Val && !getModule().getNamedValue(Name->getName())) 5012 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5013 } 5014 } 5015 5016 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5017 GlobalDecl &Result) const { 5018 auto Res = Manglings.find(MangledName); 5019 if (Res == Manglings.end()) 5020 return false; 5021 Result = Res->getValue(); 5022 return true; 5023 } 5024 5025 /// Emits metadata nodes associating all the global values in the 5026 /// current module with the Decls they came from. This is useful for 5027 /// projects using IR gen as a subroutine. 5028 /// 5029 /// Since there's currently no way to associate an MDNode directly 5030 /// with an llvm::GlobalValue, we create a global named metadata 5031 /// with the name 'clang.global.decl.ptrs'. 5032 void CodeGenModule::EmitDeclMetadata() { 5033 llvm::NamedMDNode *GlobalMetadata = nullptr; 5034 5035 for (auto &I : MangledDeclNames) { 5036 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5037 // Some mangled names don't necessarily have an associated GlobalValue 5038 // in this module, e.g. if we mangled it for DebugInfo. 5039 if (Addr) 5040 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5041 } 5042 } 5043 5044 /// Emits metadata nodes for all the local variables in the current 5045 /// function. 5046 void CodeGenFunction::EmitDeclMetadata() { 5047 if (LocalDeclMap.empty()) return; 5048 5049 llvm::LLVMContext &Context = getLLVMContext(); 5050 5051 // Find the unique metadata ID for this name. 5052 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5053 5054 llvm::NamedMDNode *GlobalMetadata = nullptr; 5055 5056 for (auto &I : LocalDeclMap) { 5057 const Decl *D = I.first; 5058 llvm::Value *Addr = I.second.getPointer(); 5059 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5060 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5061 Alloca->setMetadata( 5062 DeclPtrKind, llvm::MDNode::get( 5063 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5064 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5065 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5066 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5067 } 5068 } 5069 } 5070 5071 void CodeGenModule::EmitVersionIdentMetadata() { 5072 llvm::NamedMDNode *IdentMetadata = 5073 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5074 std::string Version = getClangFullVersion(); 5075 llvm::LLVMContext &Ctx = TheModule.getContext(); 5076 5077 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5078 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5079 } 5080 5081 void CodeGenModule::EmitTargetMetadata() { 5082 // Warning, new MangledDeclNames may be appended within this loop. 5083 // We rely on MapVector insertions adding new elements to the end 5084 // of the container. 5085 // FIXME: Move this loop into the one target that needs it, and only 5086 // loop over those declarations for which we couldn't emit the target 5087 // metadata when we emitted the declaration. 5088 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5089 auto Val = *(MangledDeclNames.begin() + I); 5090 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5091 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5092 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5093 } 5094 } 5095 5096 void CodeGenModule::EmitCoverageFile() { 5097 if (getCodeGenOpts().CoverageDataFile.empty() && 5098 getCodeGenOpts().CoverageNotesFile.empty()) 5099 return; 5100 5101 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5102 if (!CUNode) 5103 return; 5104 5105 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5106 llvm::LLVMContext &Ctx = TheModule.getContext(); 5107 auto *CoverageDataFile = 5108 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5109 auto *CoverageNotesFile = 5110 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5111 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5112 llvm::MDNode *CU = CUNode->getOperand(i); 5113 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5114 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5115 } 5116 } 5117 5118 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5119 // Sema has checked that all uuid strings are of the form 5120 // "12345678-1234-1234-1234-1234567890ab". 5121 assert(Uuid.size() == 36); 5122 for (unsigned i = 0; i < 36; ++i) { 5123 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5124 else assert(isHexDigit(Uuid[i])); 5125 } 5126 5127 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5128 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5129 5130 llvm::Constant *Field3[8]; 5131 for (unsigned Idx = 0; Idx < 8; ++Idx) 5132 Field3[Idx] = llvm::ConstantInt::get( 5133 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5134 5135 llvm::Constant *Fields[4] = { 5136 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5137 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5138 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5139 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5140 }; 5141 5142 return llvm::ConstantStruct::getAnon(Fields); 5143 } 5144 5145 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5146 bool ForEH) { 5147 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5148 // FIXME: should we even be calling this method if RTTI is disabled 5149 // and it's not for EH? 5150 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5151 return llvm::Constant::getNullValue(Int8PtrTy); 5152 5153 if (ForEH && Ty->isObjCObjectPointerType() && 5154 LangOpts.ObjCRuntime.isGNUFamily()) 5155 return ObjCRuntime->GetEHType(Ty); 5156 5157 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5158 } 5159 5160 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5161 // Do not emit threadprivates in simd-only mode. 5162 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5163 return; 5164 for (auto RefExpr : D->varlists()) { 5165 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5166 bool PerformInit = 5167 VD->getAnyInitializer() && 5168 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5169 /*ForRef=*/false); 5170 5171 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5172 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5173 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5174 CXXGlobalInits.push_back(InitFunction); 5175 } 5176 } 5177 5178 llvm::Metadata * 5179 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5180 StringRef Suffix) { 5181 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5182 if (InternalId) 5183 return InternalId; 5184 5185 if (isExternallyVisible(T->getLinkage())) { 5186 std::string OutName; 5187 llvm::raw_string_ostream Out(OutName); 5188 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5189 Out << Suffix; 5190 5191 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5192 } else { 5193 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5194 llvm::ArrayRef<llvm::Metadata *>()); 5195 } 5196 5197 return InternalId; 5198 } 5199 5200 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5201 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5202 } 5203 5204 llvm::Metadata * 5205 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5206 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5207 } 5208 5209 // Generalize pointer types to a void pointer with the qualifiers of the 5210 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5211 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5212 // 'void *'. 5213 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5214 if (!Ty->isPointerType()) 5215 return Ty; 5216 5217 return Ctx.getPointerType( 5218 QualType(Ctx.VoidTy).withCVRQualifiers( 5219 Ty->getPointeeType().getCVRQualifiers())); 5220 } 5221 5222 // Apply type generalization to a FunctionType's return and argument types 5223 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5224 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5225 SmallVector<QualType, 8> GeneralizedParams; 5226 for (auto &Param : FnType->param_types()) 5227 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5228 5229 return Ctx.getFunctionType( 5230 GeneralizeType(Ctx, FnType->getReturnType()), 5231 GeneralizedParams, FnType->getExtProtoInfo()); 5232 } 5233 5234 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5235 return Ctx.getFunctionNoProtoType( 5236 GeneralizeType(Ctx, FnType->getReturnType())); 5237 5238 llvm_unreachable("Encountered unknown FunctionType"); 5239 } 5240 5241 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5242 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5243 GeneralizedMetadataIdMap, ".generalized"); 5244 } 5245 5246 /// Returns whether this module needs the "all-vtables" type identifier. 5247 bool CodeGenModule::NeedAllVtablesTypeId() const { 5248 // Returns true if at least one of vtable-based CFI checkers is enabled and 5249 // is not in the trapping mode. 5250 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5251 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5252 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5253 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5254 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5255 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5256 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5257 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5258 } 5259 5260 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5261 CharUnits Offset, 5262 const CXXRecordDecl *RD) { 5263 llvm::Metadata *MD = 5264 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5265 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5266 5267 if (CodeGenOpts.SanitizeCfiCrossDso) 5268 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5269 VTable->addTypeMetadata(Offset.getQuantity(), 5270 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5271 5272 if (NeedAllVtablesTypeId()) { 5273 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5274 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5275 } 5276 } 5277 5278 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5279 assert(TD != nullptr); 5280 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5281 5282 ParsedAttr.Features.erase( 5283 llvm::remove_if(ParsedAttr.Features, 5284 [&](const std::string &Feat) { 5285 return !Target.isValidFeatureName( 5286 StringRef{Feat}.substr(1)); 5287 }), 5288 ParsedAttr.Features.end()); 5289 return ParsedAttr; 5290 } 5291 5292 5293 // Fills in the supplied string map with the set of target features for the 5294 // passed in function. 5295 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5296 const FunctionDecl *FD) { 5297 StringRef TargetCPU = Target.getTargetOpts().CPU; 5298 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5299 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5300 5301 // Make a copy of the features as passed on the command line into the 5302 // beginning of the additional features from the function to override. 5303 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5304 Target.getTargetOpts().FeaturesAsWritten.begin(), 5305 Target.getTargetOpts().FeaturesAsWritten.end()); 5306 5307 if (ParsedAttr.Architecture != "" && 5308 Target.isValidCPUName(ParsedAttr.Architecture)) 5309 TargetCPU = ParsedAttr.Architecture; 5310 5311 // Now populate the feature map, first with the TargetCPU which is either 5312 // the default or a new one from the target attribute string. Then we'll use 5313 // the passed in features (FeaturesAsWritten) along with the new ones from 5314 // the attribute. 5315 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5316 ParsedAttr.Features); 5317 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5318 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5319 Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(), 5320 FeaturesTmp); 5321 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5322 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5323 } else { 5324 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5325 Target.getTargetOpts().Features); 5326 } 5327 } 5328 5329 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5330 if (!SanStats) 5331 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5332 5333 return *SanStats; 5334 } 5335 llvm::Value * 5336 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5337 CodeGenFunction &CGF) { 5338 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5339 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5340 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5341 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5342 "__translate_sampler_initializer"), 5343 {C}); 5344 } 5345