xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 5553d0d4cadc35733a910e7af5f8911105ff529d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenPGO.h"
23 #include "CodeGenTBAA.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/CharInfo.h"
35 #include "clang/Basic/Diagnostic.h"
36 #include "clang/Basic/Module.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Version.h"
40 #include "clang/Frontend/CodeGenOptions.h"
41 #include "clang/Sema/SemaDiagnostic.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/IR/CallingConv.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/CallSite.h"
50 #include "llvm/Support/ConvertUTF.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Target/Mangler.h"
53 
54 using namespace clang;
55 using namespace CodeGen;
56 
57 static const char AnnotationSection[] = "llvm.metadata";
58 
59 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
60   switch (CGM.getTarget().getCXXABI().getKind()) {
61   case TargetCXXABI::GenericAArch64:
62   case TargetCXXABI::GenericARM:
63   case TargetCXXABI::iOS:
64   case TargetCXXABI::GenericItanium:
65     return CreateItaniumCXXABI(CGM);
66   case TargetCXXABI::Microsoft:
67     return CreateMicrosoftCXXABI(CGM);
68   }
69 
70   llvm_unreachable("invalid C++ ABI kind");
71 }
72 
73 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
74                              llvm::Module &M, const llvm::DataLayout &TD,
75                              DiagnosticsEngine &diags)
76     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
77       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
78       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
79       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
80       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
81       NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0),
82       CFConstantStringClassRef(0),
83       ConstantStringClassRef(0), NSConstantStringType(0),
84       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
85       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
86       LifetimeStartFn(0), LifetimeEndFn(0),
87       SanitizerBlacklist(
88           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
89       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
90                                           : LangOpts.Sanitize) {
91 
92   // Initialize the type cache.
93   llvm::LLVMContext &LLVMContext = M.getContext();
94   VoidTy = llvm::Type::getVoidTy(LLVMContext);
95   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
96   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
97   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
98   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
99   FloatTy = llvm::Type::getFloatTy(LLVMContext);
100   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
101   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
102   PointerAlignInBytes =
103   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
104   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
105   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
106   Int8PtrTy = Int8Ty->getPointerTo(0);
107   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
108 
109   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
110 
111   if (LangOpts.ObjC1)
112     createObjCRuntime();
113   if (LangOpts.OpenCL)
114     createOpenCLRuntime();
115   if (LangOpts.CUDA)
116     createCUDARuntime();
117 
118   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
119   if (SanOpts.Thread ||
120       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
121     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
122                            getCXXABI().getMangleContext());
123 
124   // If debug info or coverage generation is enabled, create the CGDebugInfo
125   // object.
126   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
127       CodeGenOpts.EmitGcovArcs ||
128       CodeGenOpts.EmitGcovNotes)
129     DebugInfo = new CGDebugInfo(*this);
130 
131   Block.GlobalUniqueCount = 0;
132 
133   if (C.getLangOpts().ObjCAutoRefCount)
134     ARCData = new ARCEntrypoints();
135   RRData = new RREntrypoints();
136 
137   if (!CodeGenOpts.InstrProfileInput.empty())
138     PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput);
139 }
140 
141 CodeGenModule::~CodeGenModule() {
142   delete ObjCRuntime;
143   delete OpenCLRuntime;
144   delete CUDARuntime;
145   delete TheTargetCodeGenInfo;
146   delete TBAA;
147   delete DebugInfo;
148   delete ARCData;
149   delete RRData;
150 }
151 
152 void CodeGenModule::createObjCRuntime() {
153   // This is just isGNUFamily(), but we want to force implementors of
154   // new ABIs to decide how best to do this.
155   switch (LangOpts.ObjCRuntime.getKind()) {
156   case ObjCRuntime::GNUstep:
157   case ObjCRuntime::GCC:
158   case ObjCRuntime::ObjFW:
159     ObjCRuntime = CreateGNUObjCRuntime(*this);
160     return;
161 
162   case ObjCRuntime::FragileMacOSX:
163   case ObjCRuntime::MacOSX:
164   case ObjCRuntime::iOS:
165     ObjCRuntime = CreateMacObjCRuntime(*this);
166     return;
167   }
168   llvm_unreachable("bad runtime kind");
169 }
170 
171 void CodeGenModule::createOpenCLRuntime() {
172   OpenCLRuntime = new CGOpenCLRuntime(*this);
173 }
174 
175 void CodeGenModule::createCUDARuntime() {
176   CUDARuntime = CreateNVCUDARuntime(*this);
177 }
178 
179 void CodeGenModule::applyReplacements() {
180   for (ReplacementsTy::iterator I = Replacements.begin(),
181                                 E = Replacements.end();
182        I != E; ++I) {
183     StringRef MangledName = I->first();
184     llvm::Constant *Replacement = I->second;
185     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
186     if (!Entry)
187       continue;
188     llvm::Function *OldF = cast<llvm::Function>(Entry);
189     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
190     if (!NewF) {
191       llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
192       assert(CE->getOpcode() == llvm::Instruction::BitCast ||
193              CE->getOpcode() == llvm::Instruction::GetElementPtr);
194       NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
195     }
196 
197     // Replace old with new, but keep the old order.
198     OldF->replaceAllUsesWith(Replacement);
199     if (NewF) {
200       NewF->removeFromParent();
201       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
202     }
203     OldF->eraseFromParent();
204   }
205 }
206 
207 void CodeGenModule::checkAliases() {
208   bool Error = false;
209   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
210          E = Aliases.end(); I != E; ++I) {
211     const GlobalDecl &GD = *I;
212     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
213     const AliasAttr *AA = D->getAttr<AliasAttr>();
214     StringRef MangledName = getMangledName(GD);
215     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
216     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
217     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
218     if (GV->isDeclaration()) {
219       Error = true;
220       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
221     } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) {
222       Error = true;
223       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
224     }
225   }
226   if (!Error)
227     return;
228 
229   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
230          E = Aliases.end(); I != E; ++I) {
231     const GlobalDecl &GD = *I;
232     StringRef MangledName = getMangledName(GD);
233     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
234     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
235     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
236     Alias->eraseFromParent();
237   }
238 }
239 
240 void CodeGenModule::clear() {
241   DeferredDeclsToEmit.clear();
242 }
243 
244 void CodeGenModule::Release() {
245   EmitDeferred();
246   applyReplacements();
247   checkAliases();
248   EmitCXXGlobalInitFunc();
249   EmitCXXGlobalDtorFunc();
250   EmitCXXThreadLocalInitFunc();
251   if (ObjCRuntime)
252     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
253       AddGlobalCtor(ObjCInitFunction);
254   EmitCtorList(GlobalCtors, "llvm.global_ctors");
255   EmitCtorList(GlobalDtors, "llvm.global_dtors");
256   EmitGlobalAnnotations();
257   EmitStaticExternCAliases();
258   EmitLLVMUsed();
259 
260   if (CodeGenOpts.Autolink &&
261       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
262     EmitModuleLinkOptions();
263   }
264   if (CodeGenOpts.DwarfVersion)
265     // We actually want the latest version when there are conflicts.
266     // We can change from Warning to Latest if such mode is supported.
267     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
268                               CodeGenOpts.DwarfVersion);
269   if (DebugInfo)
270     // We support a single version in the linked module: error out when
271     // modules do not have the same version. We are going to implement dropping
272     // debug info when the version number is not up-to-date. Once that is
273     // done, the bitcode linker is not going to see modules with different
274     // version numbers.
275     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
276                               llvm::DEBUG_METADATA_VERSION);
277 
278   SimplifyPersonality();
279 
280   if (getCodeGenOpts().EmitDeclMetadata)
281     EmitDeclMetadata();
282 
283   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
284     EmitCoverageFile();
285 
286   if (DebugInfo)
287     DebugInfo->finalize();
288 
289   EmitVersionIdentMetadata();
290 }
291 
292 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
293   // Make sure that this type is translated.
294   Types.UpdateCompletedType(TD);
295 }
296 
297 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
298   if (!TBAA)
299     return 0;
300   return TBAA->getTBAAInfo(QTy);
301 }
302 
303 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
304   if (!TBAA)
305     return 0;
306   return TBAA->getTBAAInfoForVTablePtr();
307 }
308 
309 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
310   if (!TBAA)
311     return 0;
312   return TBAA->getTBAAStructInfo(QTy);
313 }
314 
315 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
316   if (!TBAA)
317     return 0;
318   return TBAA->getTBAAStructTypeInfo(QTy);
319 }
320 
321 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
322                                                   llvm::MDNode *AccessN,
323                                                   uint64_t O) {
324   if (!TBAA)
325     return 0;
326   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
327 }
328 
329 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
330 /// and struct-path aware TBAA, the tag has the same format:
331 /// base type, access type and offset.
332 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
333 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
334                                         llvm::MDNode *TBAAInfo,
335                                         bool ConvertTypeToTag) {
336   if (ConvertTypeToTag && TBAA)
337     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
338                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
339   else
340     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
341 }
342 
343 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
344   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
345   getDiags().Report(Context.getFullLoc(loc), diagID);
346 }
347 
348 /// ErrorUnsupported - Print out an error that codegen doesn't support the
349 /// specified stmt yet.
350 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
351   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
352                                                "cannot compile this %0 yet");
353   std::string Msg = Type;
354   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
355     << Msg << S->getSourceRange();
356 }
357 
358 /// ErrorUnsupported - Print out an error that codegen doesn't support the
359 /// specified decl yet.
360 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
361   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
362                                                "cannot compile this %0 yet");
363   std::string Msg = Type;
364   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
365 }
366 
367 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
368   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
369 }
370 
371 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
372                                         const NamedDecl *D) const {
373   // Internal definitions always have default visibility.
374   if (GV->hasLocalLinkage()) {
375     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
376     return;
377   }
378 
379   // Set visibility for definitions.
380   LinkageInfo LV = D->getLinkageAndVisibility();
381   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
382     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
383 }
384 
385 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
386   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
387       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
388       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
389       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
390       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
391 }
392 
393 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
394     CodeGenOptions::TLSModel M) {
395   switch (M) {
396   case CodeGenOptions::GeneralDynamicTLSModel:
397     return llvm::GlobalVariable::GeneralDynamicTLSModel;
398   case CodeGenOptions::LocalDynamicTLSModel:
399     return llvm::GlobalVariable::LocalDynamicTLSModel;
400   case CodeGenOptions::InitialExecTLSModel:
401     return llvm::GlobalVariable::InitialExecTLSModel;
402   case CodeGenOptions::LocalExecTLSModel:
403     return llvm::GlobalVariable::LocalExecTLSModel;
404   }
405   llvm_unreachable("Invalid TLS model!");
406 }
407 
408 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
409                                const VarDecl &D) const {
410   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
411 
412   llvm::GlobalVariable::ThreadLocalMode TLM;
413   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
414 
415   // Override the TLS model if it is explicitly specified.
416   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
417     TLM = GetLLVMTLSModel(Attr->getModel());
418   }
419 
420   GV->setThreadLocalMode(TLM);
421 }
422 
423 /// Set the symbol visibility of type information (vtable and RTTI)
424 /// associated with the given type.
425 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
426                                       const CXXRecordDecl *RD,
427                                       TypeVisibilityKind TVK) const {
428   setGlobalVisibility(GV, RD);
429 
430   if (!CodeGenOpts.HiddenWeakVTables)
431     return;
432 
433   // We never want to drop the visibility for RTTI names.
434   if (TVK == TVK_ForRTTIName)
435     return;
436 
437   // We want to drop the visibility to hidden for weak type symbols.
438   // This isn't possible if there might be unresolved references
439   // elsewhere that rely on this symbol being visible.
440 
441   // This should be kept roughly in sync with setThunkVisibility
442   // in CGVTables.cpp.
443 
444   // Preconditions.
445   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
446       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
447     return;
448 
449   // Don't override an explicit visibility attribute.
450   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
451     return;
452 
453   switch (RD->getTemplateSpecializationKind()) {
454   // We have to disable the optimization if this is an EI definition
455   // because there might be EI declarations in other shared objects.
456   case TSK_ExplicitInstantiationDefinition:
457   case TSK_ExplicitInstantiationDeclaration:
458     return;
459 
460   // Every use of a non-template class's type information has to emit it.
461   case TSK_Undeclared:
462     break;
463 
464   // In theory, implicit instantiations can ignore the possibility of
465   // an explicit instantiation declaration because there necessarily
466   // must be an EI definition somewhere with default visibility.  In
467   // practice, it's possible to have an explicit instantiation for
468   // an arbitrary template class, and linkers aren't necessarily able
469   // to deal with mixed-visibility symbols.
470   case TSK_ExplicitSpecialization:
471   case TSK_ImplicitInstantiation:
472     return;
473   }
474 
475   // If there's a key function, there may be translation units
476   // that don't have the key function's definition.  But ignore
477   // this if we're emitting RTTI under -fno-rtti.
478   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
479     // FIXME: what should we do if we "lose" the key function during
480     // the emission of the file?
481     if (Context.getCurrentKeyFunction(RD))
482       return;
483   }
484 
485   // Otherwise, drop the visibility to hidden.
486   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
487   GV->setUnnamedAddr(true);
488 }
489 
490 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
491   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
492 
493   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
494   if (!Str.empty())
495     return Str;
496 
497   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
498     IdentifierInfo *II = ND->getIdentifier();
499     assert(II && "Attempt to mangle unnamed decl.");
500 
501     Str = II->getName();
502     return Str;
503   }
504 
505   SmallString<256> Buffer;
506   llvm::raw_svector_ostream Out(Buffer);
507   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
508     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
509   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
510     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
511   else
512     getCXXABI().getMangleContext().mangleName(ND, Out);
513 
514   // Allocate space for the mangled name.
515   Out.flush();
516   size_t Length = Buffer.size();
517   char *Name = MangledNamesAllocator.Allocate<char>(Length);
518   std::copy(Buffer.begin(), Buffer.end(), Name);
519 
520   Str = StringRef(Name, Length);
521 
522   return Str;
523 }
524 
525 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
526                                         const BlockDecl *BD) {
527   MangleContext &MangleCtx = getCXXABI().getMangleContext();
528   const Decl *D = GD.getDecl();
529   llvm::raw_svector_ostream Out(Buffer.getBuffer());
530   if (D == 0)
531     MangleCtx.mangleGlobalBlock(BD,
532       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
533   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
534     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
535   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
536     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
537   else
538     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
539 }
540 
541 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
542   return getModule().getNamedValue(Name);
543 }
544 
545 /// AddGlobalCtor - Add a function to the list that will be called before
546 /// main() runs.
547 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
548   // FIXME: Type coercion of void()* types.
549   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
550 }
551 
552 /// AddGlobalDtor - Add a function to the list that will be called
553 /// when the module is unloaded.
554 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
555   // FIXME: Type coercion of void()* types.
556   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
557 }
558 
559 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
560   // Ctor function type is void()*.
561   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
562   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
563 
564   // Get the type of a ctor entry, { i32, void ()* }.
565   llvm::StructType *CtorStructTy =
566     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
567 
568   // Construct the constructor and destructor arrays.
569   SmallVector<llvm::Constant*, 8> Ctors;
570   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
571     llvm::Constant *S[] = {
572       llvm::ConstantInt::get(Int32Ty, I->second, false),
573       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
574     };
575     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
576   }
577 
578   if (!Ctors.empty()) {
579     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
580     new llvm::GlobalVariable(TheModule, AT, false,
581                              llvm::GlobalValue::AppendingLinkage,
582                              llvm::ConstantArray::get(AT, Ctors),
583                              GlobalName);
584   }
585 }
586 
587 llvm::GlobalValue::LinkageTypes
588 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
589   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
590 
591   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
592 
593   if (Linkage == GVA_Internal)
594     return llvm::Function::InternalLinkage;
595 
596   if (D->hasAttr<DLLExportAttr>())
597     return llvm::Function::DLLExportLinkage;
598 
599   if (D->hasAttr<WeakAttr>())
600     return llvm::Function::WeakAnyLinkage;
601 
602   // In C99 mode, 'inline' functions are guaranteed to have a strong
603   // definition somewhere else, so we can use available_externally linkage.
604   if (Linkage == GVA_C99Inline)
605     return llvm::Function::AvailableExternallyLinkage;
606 
607   // Note that Apple's kernel linker doesn't support symbol
608   // coalescing, so we need to avoid linkonce and weak linkages there.
609   // Normally, this means we just map to internal, but for explicit
610   // instantiations we'll map to external.
611 
612   // In C++, the compiler has to emit a definition in every translation unit
613   // that references the function.  We should use linkonce_odr because
614   // a) if all references in this translation unit are optimized away, we
615   // don't need to codegen it.  b) if the function persists, it needs to be
616   // merged with other definitions. c) C++ has the ODR, so we know the
617   // definition is dependable.
618   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
619     return !Context.getLangOpts().AppleKext
620              ? llvm::Function::LinkOnceODRLinkage
621              : llvm::Function::InternalLinkage;
622 
623   // An explicit instantiation of a template has weak linkage, since
624   // explicit instantiations can occur in multiple translation units
625   // and must all be equivalent. However, we are not allowed to
626   // throw away these explicit instantiations.
627   if (Linkage == GVA_ExplicitTemplateInstantiation)
628     return !Context.getLangOpts().AppleKext
629              ? llvm::Function::WeakODRLinkage
630              : llvm::Function::ExternalLinkage;
631 
632   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
633   // emitted on an as-needed basis.
634   if (isa<CXXDestructorDecl>(D) &&
635       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
636                                          GD.getDtorType()))
637     return llvm::Function::LinkOnceODRLinkage;
638 
639   // Otherwise, we have strong external linkage.
640   assert(Linkage == GVA_StrongExternal);
641   return llvm::Function::ExternalLinkage;
642 }
643 
644 
645 /// SetFunctionDefinitionAttributes - Set attributes for a global.
646 ///
647 /// FIXME: This is currently only done for aliases and functions, but not for
648 /// variables (these details are set in EmitGlobalVarDefinition for variables).
649 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
650                                                     llvm::GlobalValue *GV) {
651   SetCommonAttributes(D, GV);
652 }
653 
654 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
655                                               const CGFunctionInfo &Info,
656                                               llvm::Function *F) {
657   unsigned CallingConv;
658   AttributeListType AttributeList;
659   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
660   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
661   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
662 }
663 
664 /// Determines whether the language options require us to model
665 /// unwind exceptions.  We treat -fexceptions as mandating this
666 /// except under the fragile ObjC ABI with only ObjC exceptions
667 /// enabled.  This means, for example, that C with -fexceptions
668 /// enables this.
669 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
670   // If exceptions are completely disabled, obviously this is false.
671   if (!LangOpts.Exceptions) return false;
672 
673   // If C++ exceptions are enabled, this is true.
674   if (LangOpts.CXXExceptions) return true;
675 
676   // If ObjC exceptions are enabled, this depends on the ABI.
677   if (LangOpts.ObjCExceptions) {
678     return LangOpts.ObjCRuntime.hasUnwindExceptions();
679   }
680 
681   return true;
682 }
683 
684 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
685                                                            llvm::Function *F) {
686   llvm::AttrBuilder B;
687 
688   if (CodeGenOpts.UnwindTables)
689     B.addAttribute(llvm::Attribute::UWTable);
690 
691   if (!hasUnwindExceptions(LangOpts))
692     B.addAttribute(llvm::Attribute::NoUnwind);
693 
694   if (D->hasAttr<NakedAttr>()) {
695     // Naked implies noinline: we should not be inlining such functions.
696     B.addAttribute(llvm::Attribute::Naked);
697     B.addAttribute(llvm::Attribute::NoInline);
698   } else if (D->hasAttr<NoInlineAttr>()) {
699     B.addAttribute(llvm::Attribute::NoInline);
700   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
701               D->hasAttr<ForceInlineAttr>()) &&
702              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
703                                               llvm::Attribute::NoInline)) {
704     // (noinline wins over always_inline, and we can't specify both in IR)
705     B.addAttribute(llvm::Attribute::AlwaysInline);
706   }
707 
708   if (D->hasAttr<ColdAttr>()) {
709     B.addAttribute(llvm::Attribute::OptimizeForSize);
710     B.addAttribute(llvm::Attribute::Cold);
711   }
712 
713   if (D->hasAttr<MinSizeAttr>())
714     B.addAttribute(llvm::Attribute::MinSize);
715 
716   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
717     B.addAttribute(llvm::Attribute::StackProtect);
718   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
719     B.addAttribute(llvm::Attribute::StackProtectReq);
720 
721   // Add sanitizer attributes if function is not blacklisted.
722   if (!SanitizerBlacklist->isIn(*F)) {
723     // When AddressSanitizer is enabled, set SanitizeAddress attribute
724     // unless __attribute__((no_sanitize_address)) is used.
725     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
726       B.addAttribute(llvm::Attribute::SanitizeAddress);
727     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
728     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
729       B.addAttribute(llvm::Attribute::SanitizeThread);
730     }
731     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
732     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
733       B.addAttribute(llvm::Attribute::SanitizeMemory);
734   }
735 
736   F->addAttributes(llvm::AttributeSet::FunctionIndex,
737                    llvm::AttributeSet::get(
738                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
739 
740   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
741     F->setUnnamedAddr(true);
742   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
743     if (MD->isVirtual())
744       F->setUnnamedAddr(true);
745 
746   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
747   if (alignment)
748     F->setAlignment(alignment);
749 
750   // C++ ABI requires 2-byte alignment for member functions.
751   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
752     F->setAlignment(2);
753 }
754 
755 void CodeGenModule::SetCommonAttributes(const Decl *D,
756                                         llvm::GlobalValue *GV) {
757   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
758     setGlobalVisibility(GV, ND);
759   else
760     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
761 
762   if (D->hasAttr<UsedAttr>())
763     AddUsedGlobal(GV);
764 
765   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
766     GV->setSection(SA->getName());
767 
768   // Alias cannot have attributes. Filter them here.
769   if (!isa<llvm::GlobalAlias>(GV))
770     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
771 }
772 
773 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
774                                                   llvm::Function *F,
775                                                   const CGFunctionInfo &FI) {
776   SetLLVMFunctionAttributes(D, FI, F);
777   SetLLVMFunctionAttributesForDefinition(D, F);
778 
779   F->setLinkage(llvm::Function::InternalLinkage);
780 
781   SetCommonAttributes(D, F);
782 }
783 
784 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
785                                           llvm::Function *F,
786                                           bool IsIncompleteFunction) {
787   if (unsigned IID = F->getIntrinsicID()) {
788     // If this is an intrinsic function, set the function's attributes
789     // to the intrinsic's attributes.
790     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
791                                                     (llvm::Intrinsic::ID)IID));
792     return;
793   }
794 
795   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
796 
797   if (!IsIncompleteFunction)
798     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
799 
800   if (getCXXABI().HasThisReturn(GD)) {
801     assert(!F->arg_empty() &&
802            F->arg_begin()->getType()
803              ->canLosslesslyBitCastTo(F->getReturnType()) &&
804            "unexpected this return");
805     F->addAttribute(1, llvm::Attribute::Returned);
806   }
807 
808   // Only a few attributes are set on declarations; these may later be
809   // overridden by a definition.
810 
811   if (FD->hasAttr<DLLImportAttr>()) {
812     F->setLinkage(llvm::Function::DLLImportLinkage);
813   } else if (FD->hasAttr<WeakAttr>() ||
814              FD->isWeakImported()) {
815     // "extern_weak" is overloaded in LLVM; we probably should have
816     // separate linkage types for this.
817     F->setLinkage(llvm::Function::ExternalWeakLinkage);
818   } else {
819     F->setLinkage(llvm::Function::ExternalLinkage);
820 
821     LinkageInfo LV = FD->getLinkageAndVisibility();
822     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
823       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
824     }
825   }
826 
827   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
828     F->setSection(SA->getName());
829 
830   // A replaceable global allocation function does not act like a builtin by
831   // default, only if it is invoked by a new-expression or delete-expression.
832   if (FD->isReplaceableGlobalAllocationFunction())
833     F->addAttribute(llvm::AttributeSet::FunctionIndex,
834                     llvm::Attribute::NoBuiltin);
835 }
836 
837 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
838   assert(!GV->isDeclaration() &&
839          "Only globals with definition can force usage.");
840   LLVMUsed.push_back(GV);
841 }
842 
843 void CodeGenModule::EmitLLVMUsed() {
844   // Don't create llvm.used if there is no need.
845   if (LLVMUsed.empty())
846     return;
847 
848   // Convert LLVMUsed to what ConstantArray needs.
849   SmallVector<llvm::Constant*, 8> UsedArray;
850   UsedArray.resize(LLVMUsed.size());
851   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
852     UsedArray[i] =
853      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
854                                     Int8PtrTy);
855   }
856 
857   if (UsedArray.empty())
858     return;
859   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
860 
861   llvm::GlobalVariable *GV =
862     new llvm::GlobalVariable(getModule(), ATy, false,
863                              llvm::GlobalValue::AppendingLinkage,
864                              llvm::ConstantArray::get(ATy, UsedArray),
865                              "llvm.used");
866 
867   GV->setSection("llvm.metadata");
868 }
869 
870 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
871   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
872   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
873 }
874 
875 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
876   llvm::SmallString<32> Opt;
877   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
878   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
879   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
880 }
881 
882 void CodeGenModule::AddDependentLib(StringRef Lib) {
883   llvm::SmallString<24> Opt;
884   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
885   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
886   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
887 }
888 
889 /// \brief Add link options implied by the given module, including modules
890 /// it depends on, using a postorder walk.
891 static void addLinkOptionsPostorder(CodeGenModule &CGM,
892                                     Module *Mod,
893                                     SmallVectorImpl<llvm::Value *> &Metadata,
894                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
895   // Import this module's parent.
896   if (Mod->Parent && Visited.insert(Mod->Parent)) {
897     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
898   }
899 
900   // Import this module's dependencies.
901   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
902     if (Visited.insert(Mod->Imports[I-1]))
903       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
904   }
905 
906   // Add linker options to link against the libraries/frameworks
907   // described by this module.
908   llvm::LLVMContext &Context = CGM.getLLVMContext();
909   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
910     // Link against a framework.  Frameworks are currently Darwin only, so we
911     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
912     if (Mod->LinkLibraries[I-1].IsFramework) {
913       llvm::Value *Args[2] = {
914         llvm::MDString::get(Context, "-framework"),
915         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
916       };
917 
918       Metadata.push_back(llvm::MDNode::get(Context, Args));
919       continue;
920     }
921 
922     // Link against a library.
923     llvm::SmallString<24> Opt;
924     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
925       Mod->LinkLibraries[I-1].Library, Opt);
926     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
927     Metadata.push_back(llvm::MDNode::get(Context, OptString));
928   }
929 }
930 
931 void CodeGenModule::EmitModuleLinkOptions() {
932   // Collect the set of all of the modules we want to visit to emit link
933   // options, which is essentially the imported modules and all of their
934   // non-explicit child modules.
935   llvm::SetVector<clang::Module *> LinkModules;
936   llvm::SmallPtrSet<clang::Module *, 16> Visited;
937   SmallVector<clang::Module *, 16> Stack;
938 
939   // Seed the stack with imported modules.
940   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
941                                                MEnd = ImportedModules.end();
942        M != MEnd; ++M) {
943     if (Visited.insert(*M))
944       Stack.push_back(*M);
945   }
946 
947   // Find all of the modules to import, making a little effort to prune
948   // non-leaf modules.
949   while (!Stack.empty()) {
950     clang::Module *Mod = Stack.pop_back_val();
951 
952     bool AnyChildren = false;
953 
954     // Visit the submodules of this module.
955     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
956                                         SubEnd = Mod->submodule_end();
957          Sub != SubEnd; ++Sub) {
958       // Skip explicit children; they need to be explicitly imported to be
959       // linked against.
960       if ((*Sub)->IsExplicit)
961         continue;
962 
963       if (Visited.insert(*Sub)) {
964         Stack.push_back(*Sub);
965         AnyChildren = true;
966       }
967     }
968 
969     // We didn't find any children, so add this module to the list of
970     // modules to link against.
971     if (!AnyChildren) {
972       LinkModules.insert(Mod);
973     }
974   }
975 
976   // Add link options for all of the imported modules in reverse topological
977   // order.  We don't do anything to try to order import link flags with respect
978   // to linker options inserted by things like #pragma comment().
979   SmallVector<llvm::Value *, 16> MetadataArgs;
980   Visited.clear();
981   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
982                                                MEnd = LinkModules.end();
983        M != MEnd; ++M) {
984     if (Visited.insert(*M))
985       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
986   }
987   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
988   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
989 
990   // Add the linker options metadata flag.
991   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
992                             llvm::MDNode::get(getLLVMContext(),
993                                               LinkerOptionsMetadata));
994 }
995 
996 void CodeGenModule::EmitDeferred() {
997   // Emit code for any potentially referenced deferred decls.  Since a
998   // previously unused static decl may become used during the generation of code
999   // for a static function, iterate until no changes are made.
1000 
1001   while (true) {
1002     if (!DeferredVTables.empty()) {
1003       EmitDeferredVTables();
1004 
1005       // Emitting a v-table doesn't directly cause more v-tables to
1006       // become deferred, although it can cause functions to be
1007       // emitted that then need those v-tables.
1008       assert(DeferredVTables.empty());
1009     }
1010 
1011     // Stop if we're out of both deferred v-tables and deferred declarations.
1012     if (DeferredDeclsToEmit.empty()) break;
1013 
1014     DeferredGlobal &G = DeferredDeclsToEmit.back();
1015     GlobalDecl D = G.GD;
1016     llvm::GlobalValue *GV = G.GV;
1017     DeferredDeclsToEmit.pop_back();
1018 
1019     assert(GV == GetGlobalValue(getMangledName(D)));
1020     // Check to see if we've already emitted this.  This is necessary
1021     // for a couple of reasons: first, decls can end up in the
1022     // deferred-decls queue multiple times, and second, decls can end
1023     // up with definitions in unusual ways (e.g. by an extern inline
1024     // function acquiring a strong function redefinition).  Just
1025     // ignore these cases.
1026     if(!GV->isDeclaration())
1027       continue;
1028 
1029     // Otherwise, emit the definition and move on to the next one.
1030     EmitGlobalDefinition(D, GV);
1031   }
1032 }
1033 
1034 void CodeGenModule::EmitGlobalAnnotations() {
1035   if (Annotations.empty())
1036     return;
1037 
1038   // Create a new global variable for the ConstantStruct in the Module.
1039   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1040     Annotations[0]->getType(), Annotations.size()), Annotations);
1041   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1042     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1043     "llvm.global.annotations");
1044   gv->setSection(AnnotationSection);
1045 }
1046 
1047 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1048   llvm::Constant *&AStr = AnnotationStrings[Str];
1049   if (AStr)
1050     return AStr;
1051 
1052   // Not found yet, create a new global.
1053   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1054   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1055     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1056   gv->setSection(AnnotationSection);
1057   gv->setUnnamedAddr(true);
1058   AStr = gv;
1059   return gv;
1060 }
1061 
1062 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1063   SourceManager &SM = getContext().getSourceManager();
1064   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1065   if (PLoc.isValid())
1066     return EmitAnnotationString(PLoc.getFilename());
1067   return EmitAnnotationString(SM.getBufferName(Loc));
1068 }
1069 
1070 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1071   SourceManager &SM = getContext().getSourceManager();
1072   PresumedLoc PLoc = SM.getPresumedLoc(L);
1073   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1074     SM.getExpansionLineNumber(L);
1075   return llvm::ConstantInt::get(Int32Ty, LineNo);
1076 }
1077 
1078 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1079                                                 const AnnotateAttr *AA,
1080                                                 SourceLocation L) {
1081   // Get the globals for file name, annotation, and the line number.
1082   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1083                  *UnitGV = EmitAnnotationUnit(L),
1084                  *LineNoCst = EmitAnnotationLineNo(L);
1085 
1086   // Create the ConstantStruct for the global annotation.
1087   llvm::Constant *Fields[4] = {
1088     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1089     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1090     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1091     LineNoCst
1092   };
1093   return llvm::ConstantStruct::getAnon(Fields);
1094 }
1095 
1096 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1097                                          llvm::GlobalValue *GV) {
1098   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1099   // Get the struct elements for these annotations.
1100   for (specific_attr_iterator<AnnotateAttr>
1101        ai = D->specific_attr_begin<AnnotateAttr>(),
1102        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1103     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1104 }
1105 
1106 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1107   // Never defer when EmitAllDecls is specified.
1108   if (LangOpts.EmitAllDecls)
1109     return false;
1110 
1111   return !getContext().DeclMustBeEmitted(Global);
1112 }
1113 
1114 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1115     const CXXUuidofExpr* E) {
1116   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1117   // well-formed.
1118   StringRef Uuid = E->getUuidAsStringRef(Context);
1119   std::string Name = "_GUID_" + Uuid.lower();
1120   std::replace(Name.begin(), Name.end(), '-', '_');
1121 
1122   // Look for an existing global.
1123   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1124     return GV;
1125 
1126   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1127   assert(Init && "failed to initialize as constant");
1128 
1129   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1130       getModule(), Init->getType(),
1131       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1132   return GV;
1133 }
1134 
1135 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1136   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1137   assert(AA && "No alias?");
1138 
1139   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1140 
1141   // See if there is already something with the target's name in the module.
1142   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1143   if (Entry) {
1144     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1145     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1146   }
1147 
1148   llvm::Constant *Aliasee;
1149   if (isa<llvm::FunctionType>(DeclTy))
1150     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1151                                       GlobalDecl(cast<FunctionDecl>(VD)),
1152                                       /*ForVTable=*/false);
1153   else
1154     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1155                                     llvm::PointerType::getUnqual(DeclTy), 0);
1156 
1157   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1158   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1159   WeakRefReferences.insert(F);
1160 
1161   return Aliasee;
1162 }
1163 
1164 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1165   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1166 
1167   // Weak references don't produce any output by themselves.
1168   if (Global->hasAttr<WeakRefAttr>())
1169     return;
1170 
1171   // If this is an alias definition (which otherwise looks like a declaration)
1172   // emit it now.
1173   if (Global->hasAttr<AliasAttr>())
1174     return EmitAliasDefinition(GD);
1175 
1176   // If this is CUDA, be selective about which declarations we emit.
1177   if (LangOpts.CUDA) {
1178     if (CodeGenOpts.CUDAIsDevice) {
1179       if (!Global->hasAttr<CUDADeviceAttr>() &&
1180           !Global->hasAttr<CUDAGlobalAttr>() &&
1181           !Global->hasAttr<CUDAConstantAttr>() &&
1182           !Global->hasAttr<CUDASharedAttr>())
1183         return;
1184     } else {
1185       if (!Global->hasAttr<CUDAHostAttr>() && (
1186             Global->hasAttr<CUDADeviceAttr>() ||
1187             Global->hasAttr<CUDAConstantAttr>() ||
1188             Global->hasAttr<CUDASharedAttr>()))
1189         return;
1190     }
1191   }
1192 
1193   // Ignore declarations, they will be emitted on their first use.
1194   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1195     // Forward declarations are emitted lazily on first use.
1196     if (!FD->doesThisDeclarationHaveABody()) {
1197       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1198         return;
1199 
1200       const FunctionDecl *InlineDefinition = 0;
1201       FD->getBody(InlineDefinition);
1202 
1203       StringRef MangledName = getMangledName(GD);
1204       DeferredDecls.erase(MangledName);
1205       EmitGlobalDefinition(InlineDefinition);
1206       return;
1207     }
1208   } else {
1209     const VarDecl *VD = cast<VarDecl>(Global);
1210     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1211 
1212     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1213       return;
1214   }
1215 
1216   // Defer code generation when possible if this is a static definition, inline
1217   // function etc.  These we only want to emit if they are used.
1218   if (!MayDeferGeneration(Global)) {
1219     // Emit the definition if it can't be deferred.
1220     EmitGlobalDefinition(GD);
1221     return;
1222   }
1223 
1224   // If we're deferring emission of a C++ variable with an
1225   // initializer, remember the order in which it appeared in the file.
1226   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1227       cast<VarDecl>(Global)->hasInit()) {
1228     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1229     CXXGlobalInits.push_back(0);
1230   }
1231 
1232   // If the value has already been used, add it directly to the
1233   // DeferredDeclsToEmit list.
1234   StringRef MangledName = getMangledName(GD);
1235   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1236     addDeferredDeclToEmit(GV, GD);
1237   else {
1238     // Otherwise, remember that we saw a deferred decl with this name.  The
1239     // first use of the mangled name will cause it to move into
1240     // DeferredDeclsToEmit.
1241     DeferredDecls[MangledName] = GD;
1242   }
1243 }
1244 
1245 namespace {
1246   struct FunctionIsDirectlyRecursive :
1247     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1248     const StringRef Name;
1249     const Builtin::Context &BI;
1250     bool Result;
1251     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1252       Name(N), BI(C), Result(false) {
1253     }
1254     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1255 
1256     bool TraverseCallExpr(CallExpr *E) {
1257       const FunctionDecl *FD = E->getDirectCallee();
1258       if (!FD)
1259         return true;
1260       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1261       if (Attr && Name == Attr->getLabel()) {
1262         Result = true;
1263         return false;
1264       }
1265       unsigned BuiltinID = FD->getBuiltinID();
1266       if (!BuiltinID)
1267         return true;
1268       StringRef BuiltinName = BI.GetName(BuiltinID);
1269       if (BuiltinName.startswith("__builtin_") &&
1270           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1271         Result = true;
1272         return false;
1273       }
1274       return true;
1275     }
1276   };
1277 }
1278 
1279 // isTriviallyRecursive - Check if this function calls another
1280 // decl that, because of the asm attribute or the other decl being a builtin,
1281 // ends up pointing to itself.
1282 bool
1283 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1284   StringRef Name;
1285   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1286     // asm labels are a special kind of mangling we have to support.
1287     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1288     if (!Attr)
1289       return false;
1290     Name = Attr->getLabel();
1291   } else {
1292     Name = FD->getName();
1293   }
1294 
1295   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1296   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1297   return Walker.Result;
1298 }
1299 
1300 bool
1301 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1302   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1303     return true;
1304   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1305   if (CodeGenOpts.OptimizationLevel == 0 &&
1306       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1307     return false;
1308   // PR9614. Avoid cases where the source code is lying to us. An available
1309   // externally function should have an equivalent function somewhere else,
1310   // but a function that calls itself is clearly not equivalent to the real
1311   // implementation.
1312   // This happens in glibc's btowc and in some configure checks.
1313   return !isTriviallyRecursive(F);
1314 }
1315 
1316 /// If the type for the method's class was generated by
1317 /// CGDebugInfo::createContextChain(), the cache contains only a
1318 /// limited DIType without any declarations. Since EmitFunctionStart()
1319 /// needs to find the canonical declaration for each method, we need
1320 /// to construct the complete type prior to emitting the method.
1321 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1322   if (!D->isInstance())
1323     return;
1324 
1325   if (CGDebugInfo *DI = getModuleDebugInfo())
1326     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1327       const PointerType *ThisPtr =
1328         cast<PointerType>(D->getThisType(getContext()));
1329       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1330     }
1331 }
1332 
1333 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1334   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1335 
1336   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1337                                  Context.getSourceManager(),
1338                                  "Generating code for declaration");
1339 
1340   if (isa<FunctionDecl>(D)) {
1341     // At -O0, don't generate IR for functions with available_externally
1342     // linkage.
1343     if (!shouldEmitFunction(GD))
1344       return;
1345 
1346     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1347       CompleteDIClassType(Method);
1348       // Make sure to emit the definition(s) before we emit the thunks.
1349       // This is necessary for the generation of certain thunks.
1350       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1351         EmitCXXConstructor(CD, GD.getCtorType());
1352       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1353         EmitCXXDestructor(DD, GD.getDtorType());
1354       else
1355         EmitGlobalFunctionDefinition(GD, GV);
1356 
1357       if (Method->isVirtual())
1358         getVTables().EmitThunks(GD);
1359 
1360       return;
1361     }
1362 
1363     return EmitGlobalFunctionDefinition(GD, GV);
1364   }
1365 
1366   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1367     return EmitGlobalVarDefinition(VD);
1368 
1369   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1370 }
1371 
1372 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1373 /// module, create and return an llvm Function with the specified type. If there
1374 /// is something in the module with the specified name, return it potentially
1375 /// bitcasted to the right type.
1376 ///
1377 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1378 /// to set the attributes on the function when it is first created.
1379 llvm::Constant *
1380 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1381                                        llvm::Type *Ty,
1382                                        GlobalDecl GD, bool ForVTable,
1383                                        bool DontDefer,
1384                                        llvm::AttributeSet ExtraAttrs) {
1385   const Decl *D = GD.getDecl();
1386 
1387   // Lookup the entry, lazily creating it if necessary.
1388   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1389   if (Entry) {
1390     if (WeakRefReferences.erase(Entry)) {
1391       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1392       if (FD && !FD->hasAttr<WeakAttr>())
1393         Entry->setLinkage(llvm::Function::ExternalLinkage);
1394     }
1395 
1396     if (Entry->getType()->getElementType() == Ty)
1397       return Entry;
1398 
1399     // Make sure the result is of the correct type.
1400     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1401   }
1402 
1403   // This function doesn't have a complete type (for example, the return
1404   // type is an incomplete struct). Use a fake type instead, and make
1405   // sure not to try to set attributes.
1406   bool IsIncompleteFunction = false;
1407 
1408   llvm::FunctionType *FTy;
1409   if (isa<llvm::FunctionType>(Ty)) {
1410     FTy = cast<llvm::FunctionType>(Ty);
1411   } else {
1412     FTy = llvm::FunctionType::get(VoidTy, false);
1413     IsIncompleteFunction = true;
1414   }
1415 
1416   llvm::Function *F = llvm::Function::Create(FTy,
1417                                              llvm::Function::ExternalLinkage,
1418                                              MangledName, &getModule());
1419   assert(F->getName() == MangledName && "name was uniqued!");
1420   if (D)
1421     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1422   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1423     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1424     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1425                      llvm::AttributeSet::get(VMContext,
1426                                              llvm::AttributeSet::FunctionIndex,
1427                                              B));
1428   }
1429 
1430   if (!DontDefer) {
1431     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1432     // each other bottoming out with the base dtor.  Therefore we emit non-base
1433     // dtors on usage, even if there is no dtor definition in the TU.
1434     if (D && isa<CXXDestructorDecl>(D) &&
1435         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1436                                            GD.getDtorType()))
1437       addDeferredDeclToEmit(F, GD);
1438 
1439     // This is the first use or definition of a mangled name.  If there is a
1440     // deferred decl with this name, remember that we need to emit it at the end
1441     // of the file.
1442     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1443     if (DDI != DeferredDecls.end()) {
1444       // Move the potentially referenced deferred decl to the
1445       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1446       // don't need it anymore).
1447       addDeferredDeclToEmit(F, DDI->second);
1448       DeferredDecls.erase(DDI);
1449 
1450       // Otherwise, if this is a sized deallocation function, emit a weak
1451       // definition
1452       // for it at the end of the translation unit.
1453     } else if (D && cast<FunctionDecl>(D)
1454                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1455       addDeferredDeclToEmit(F, GD);
1456 
1457       // Otherwise, there are cases we have to worry about where we're
1458       // using a declaration for which we must emit a definition but where
1459       // we might not find a top-level definition:
1460       //   - member functions defined inline in their classes
1461       //   - friend functions defined inline in some class
1462       //   - special member functions with implicit definitions
1463       // If we ever change our AST traversal to walk into class methods,
1464       // this will be unnecessary.
1465       //
1466       // We also don't emit a definition for a function if it's going to be an
1467       // entry
1468       // in a vtable, unless it's already marked as used.
1469     } else if (getLangOpts().CPlusPlus && D) {
1470       // Look for a declaration that's lexically in a record.
1471       const FunctionDecl *FD = cast<FunctionDecl>(D);
1472       FD = FD->getMostRecentDecl();
1473       do {
1474         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1475           if (FD->isImplicit() && !ForVTable) {
1476             assert(FD->isUsed() &&
1477                    "Sema didn't mark implicit function as used!");
1478             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1479             break;
1480           } else if (FD->doesThisDeclarationHaveABody()) {
1481             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1482             break;
1483           }
1484         }
1485         FD = FD->getPreviousDecl();
1486       } while (FD);
1487     }
1488   }
1489 
1490   // Make sure the result is of the requested type.
1491   if (!IsIncompleteFunction) {
1492     assert(F->getType()->getElementType() == Ty);
1493     return F;
1494   }
1495 
1496   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1497   return llvm::ConstantExpr::getBitCast(F, PTy);
1498 }
1499 
1500 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1501 /// non-null, then this function will use the specified type if it has to
1502 /// create it (this occurs when we see a definition of the function).
1503 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1504                                                  llvm::Type *Ty,
1505                                                  bool ForVTable,
1506                                                  bool DontDefer) {
1507   // If there was no specific requested type, just convert it now.
1508   if (!Ty)
1509     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1510 
1511   StringRef MangledName = getMangledName(GD);
1512   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1513 }
1514 
1515 /// CreateRuntimeFunction - Create a new runtime function with the specified
1516 /// type and name.
1517 llvm::Constant *
1518 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1519                                      StringRef Name,
1520                                      llvm::AttributeSet ExtraAttrs) {
1521   llvm::Constant *C =
1522       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1523                               /*DontDefer=*/false, ExtraAttrs);
1524   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1525     if (F->empty())
1526       F->setCallingConv(getRuntimeCC());
1527   return C;
1528 }
1529 
1530 /// isTypeConstant - Determine whether an object of this type can be emitted
1531 /// as a constant.
1532 ///
1533 /// If ExcludeCtor is true, the duration when the object's constructor runs
1534 /// will not be considered. The caller will need to verify that the object is
1535 /// not written to during its construction.
1536 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1537   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1538     return false;
1539 
1540   if (Context.getLangOpts().CPlusPlus) {
1541     if (const CXXRecordDecl *Record
1542           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1543       return ExcludeCtor && !Record->hasMutableFields() &&
1544              Record->hasTrivialDestructor();
1545   }
1546 
1547   return true;
1548 }
1549 
1550 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1551 /// create and return an llvm GlobalVariable with the specified type.  If there
1552 /// is something in the module with the specified name, return it potentially
1553 /// bitcasted to the right type.
1554 ///
1555 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1556 /// to set the attributes on the global when it is first created.
1557 llvm::Constant *
1558 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1559                                      llvm::PointerType *Ty,
1560                                      const VarDecl *D,
1561                                      bool UnnamedAddr) {
1562   // Lookup the entry, lazily creating it if necessary.
1563   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1564   if (Entry) {
1565     if (WeakRefReferences.erase(Entry)) {
1566       if (D && !D->hasAttr<WeakAttr>())
1567         Entry->setLinkage(llvm::Function::ExternalLinkage);
1568     }
1569 
1570     if (UnnamedAddr)
1571       Entry->setUnnamedAddr(true);
1572 
1573     if (Entry->getType() == Ty)
1574       return Entry;
1575 
1576     // Make sure the result is of the correct type.
1577     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1578       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1579 
1580     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1581   }
1582 
1583   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1584   llvm::GlobalVariable *GV =
1585     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1586                              llvm::GlobalValue::ExternalLinkage,
1587                              0, MangledName, 0,
1588                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1589 
1590   // This is the first use or definition of a mangled name.  If there is a
1591   // deferred decl with this name, remember that we need to emit it at the end
1592   // of the file.
1593   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1594   if (DDI != DeferredDecls.end()) {
1595     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1596     // list, and remove it from DeferredDecls (since we don't need it anymore).
1597     addDeferredDeclToEmit(GV, DDI->second);
1598     DeferredDecls.erase(DDI);
1599   }
1600 
1601   // Handle things which are present even on external declarations.
1602   if (D) {
1603     // FIXME: This code is overly simple and should be merged with other global
1604     // handling.
1605     GV->setConstant(isTypeConstant(D->getType(), false));
1606 
1607     // Set linkage and visibility in case we never see a definition.
1608     LinkageInfo LV = D->getLinkageAndVisibility();
1609     if (LV.getLinkage() != ExternalLinkage) {
1610       // Don't set internal linkage on declarations.
1611     } else {
1612       if (D->hasAttr<DLLImportAttr>())
1613         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1614       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1615         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1616 
1617       // Set visibility on a declaration only if it's explicit.
1618       if (LV.isVisibilityExplicit())
1619         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1620     }
1621 
1622     if (D->getTLSKind()) {
1623       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1624         CXXThreadLocals.push_back(std::make_pair(D, GV));
1625       setTLSMode(GV, *D);
1626     }
1627 
1628     // If required by the ABI, treat declarations of static data members with
1629     // inline initializers as definitions.
1630     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1631         D->isStaticDataMember() && D->hasInit() &&
1632         !D->isThisDeclarationADefinition())
1633       EmitGlobalVarDefinition(D);
1634   }
1635 
1636   if (AddrSpace != Ty->getAddressSpace())
1637     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1638 
1639   return GV;
1640 }
1641 
1642 
1643 llvm::GlobalVariable *
1644 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1645                                       llvm::Type *Ty,
1646                                       llvm::GlobalValue::LinkageTypes Linkage) {
1647   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1648   llvm::GlobalVariable *OldGV = 0;
1649 
1650 
1651   if (GV) {
1652     // Check if the variable has the right type.
1653     if (GV->getType()->getElementType() == Ty)
1654       return GV;
1655 
1656     // Because C++ name mangling, the only way we can end up with an already
1657     // existing global with the same name is if it has been declared extern "C".
1658     assert(GV->isDeclaration() && "Declaration has wrong type!");
1659     OldGV = GV;
1660   }
1661 
1662   // Create a new variable.
1663   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1664                                 Linkage, 0, Name);
1665 
1666   if (OldGV) {
1667     // Replace occurrences of the old variable if needed.
1668     GV->takeName(OldGV);
1669 
1670     if (!OldGV->use_empty()) {
1671       llvm::Constant *NewPtrForOldDecl =
1672       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1673       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1674     }
1675 
1676     OldGV->eraseFromParent();
1677   }
1678 
1679   return GV;
1680 }
1681 
1682 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1683 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1684 /// then it will be created with the specified type instead of whatever the
1685 /// normal requested type would be.
1686 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1687                                                   llvm::Type *Ty) {
1688   assert(D->hasGlobalStorage() && "Not a global variable");
1689   QualType ASTTy = D->getType();
1690   if (Ty == 0)
1691     Ty = getTypes().ConvertTypeForMem(ASTTy);
1692 
1693   llvm::PointerType *PTy =
1694     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1695 
1696   StringRef MangledName = getMangledName(D);
1697   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1698 }
1699 
1700 /// CreateRuntimeVariable - Create a new runtime global variable with the
1701 /// specified type and name.
1702 llvm::Constant *
1703 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1704                                      StringRef Name) {
1705   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1706                                true);
1707 }
1708 
1709 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1710   assert(!D->getInit() && "Cannot emit definite definitions here!");
1711 
1712   if (MayDeferGeneration(D)) {
1713     // If we have not seen a reference to this variable yet, place it
1714     // into the deferred declarations table to be emitted if needed
1715     // later.
1716     StringRef MangledName = getMangledName(D);
1717     if (!GetGlobalValue(MangledName)) {
1718       DeferredDecls[MangledName] = D;
1719       return;
1720     }
1721   }
1722 
1723   // The tentative definition is the only definition.
1724   EmitGlobalVarDefinition(D);
1725 }
1726 
1727 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1728     return Context.toCharUnitsFromBits(
1729       TheDataLayout.getTypeStoreSizeInBits(Ty));
1730 }
1731 
1732 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1733                                                  unsigned AddrSpace) {
1734   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1735     if (D->hasAttr<CUDAConstantAttr>())
1736       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1737     else if (D->hasAttr<CUDASharedAttr>())
1738       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1739     else
1740       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1741   }
1742 
1743   return AddrSpace;
1744 }
1745 
1746 template<typename SomeDecl>
1747 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1748                                                llvm::GlobalValue *GV) {
1749   if (!getLangOpts().CPlusPlus)
1750     return;
1751 
1752   // Must have 'used' attribute, or else inline assembly can't rely on
1753   // the name existing.
1754   if (!D->template hasAttr<UsedAttr>())
1755     return;
1756 
1757   // Must have internal linkage and an ordinary name.
1758   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1759     return;
1760 
1761   // Must be in an extern "C" context. Entities declared directly within
1762   // a record are not extern "C" even if the record is in such a context.
1763   const SomeDecl *First = D->getFirstDecl();
1764   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1765     return;
1766 
1767   // OK, this is an internal linkage entity inside an extern "C" linkage
1768   // specification. Make a note of that so we can give it the "expected"
1769   // mangled name if nothing else is using that name.
1770   std::pair<StaticExternCMap::iterator, bool> R =
1771       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1772 
1773   // If we have multiple internal linkage entities with the same name
1774   // in extern "C" regions, none of them gets that name.
1775   if (!R.second)
1776     R.first->second = 0;
1777 }
1778 
1779 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1780   llvm::Constant *Init = 0;
1781   QualType ASTTy = D->getType();
1782   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1783   bool NeedsGlobalCtor = false;
1784   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1785 
1786   const VarDecl *InitDecl;
1787   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1788 
1789   if (!InitExpr) {
1790     // This is a tentative definition; tentative definitions are
1791     // implicitly initialized with { 0 }.
1792     //
1793     // Note that tentative definitions are only emitted at the end of
1794     // a translation unit, so they should never have incomplete
1795     // type. In addition, EmitTentativeDefinition makes sure that we
1796     // never attempt to emit a tentative definition if a real one
1797     // exists. A use may still exists, however, so we still may need
1798     // to do a RAUW.
1799     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1800     Init = EmitNullConstant(D->getType());
1801   } else {
1802     initializedGlobalDecl = GlobalDecl(D);
1803     Init = EmitConstantInit(*InitDecl);
1804 
1805     if (!Init) {
1806       QualType T = InitExpr->getType();
1807       if (D->getType()->isReferenceType())
1808         T = D->getType();
1809 
1810       if (getLangOpts().CPlusPlus) {
1811         Init = EmitNullConstant(T);
1812         NeedsGlobalCtor = true;
1813       } else {
1814         ErrorUnsupported(D, "static initializer");
1815         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1816       }
1817     } else {
1818       // We don't need an initializer, so remove the entry for the delayed
1819       // initializer position (just in case this entry was delayed) if we
1820       // also don't need to register a destructor.
1821       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1822         DelayedCXXInitPosition.erase(D);
1823     }
1824   }
1825 
1826   llvm::Type* InitType = Init->getType();
1827   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1828 
1829   // Strip off a bitcast if we got one back.
1830   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1831     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1832            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1833            // All zero index gep.
1834            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1835     Entry = CE->getOperand(0);
1836   }
1837 
1838   // Entry is now either a Function or GlobalVariable.
1839   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1840 
1841   // We have a definition after a declaration with the wrong type.
1842   // We must make a new GlobalVariable* and update everything that used OldGV
1843   // (a declaration or tentative definition) with the new GlobalVariable*
1844   // (which will be a definition).
1845   //
1846   // This happens if there is a prototype for a global (e.g.
1847   // "extern int x[];") and then a definition of a different type (e.g.
1848   // "int x[10];"). This also happens when an initializer has a different type
1849   // from the type of the global (this happens with unions).
1850   if (GV == 0 ||
1851       GV->getType()->getElementType() != InitType ||
1852       GV->getType()->getAddressSpace() !=
1853        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1854 
1855     // Move the old entry aside so that we'll create a new one.
1856     Entry->setName(StringRef());
1857 
1858     // Make a new global with the correct type, this is now guaranteed to work.
1859     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1860 
1861     // Replace all uses of the old global with the new global
1862     llvm::Constant *NewPtrForOldDecl =
1863         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1864     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1865 
1866     // Erase the old global, since it is no longer used.
1867     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1868   }
1869 
1870   MaybeHandleStaticInExternC(D, GV);
1871 
1872   if (D->hasAttr<AnnotateAttr>())
1873     AddGlobalAnnotations(D, GV);
1874 
1875   GV->setInitializer(Init);
1876 
1877   // If it is safe to mark the global 'constant', do so now.
1878   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1879                   isTypeConstant(D->getType(), true));
1880 
1881   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1882 
1883   // Set the llvm linkage type as appropriate.
1884   llvm::GlobalValue::LinkageTypes Linkage =
1885     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1886   GV->setLinkage(Linkage);
1887 
1888   // If required by the ABI, give definitions of static data members with inline
1889   // initializers linkonce_odr linkage.
1890   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1891       D->isStaticDataMember() && InitExpr &&
1892       !InitDecl->isThisDeclarationADefinition())
1893     GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage);
1894 
1895   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1896     // common vars aren't constant even if declared const.
1897     GV->setConstant(false);
1898 
1899   SetCommonAttributes(D, GV);
1900 
1901   // Emit the initializer function if necessary.
1902   if (NeedsGlobalCtor || NeedsGlobalDtor)
1903     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1904 
1905   // If we are compiling with ASan, add metadata indicating dynamically
1906   // initialized globals.
1907   if (SanOpts.Address && NeedsGlobalCtor) {
1908     llvm::Module &M = getModule();
1909 
1910     llvm::NamedMDNode *DynamicInitializers =
1911         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1912     llvm::Value *GlobalToAdd[] = { GV };
1913     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1914     DynamicInitializers->addOperand(ThisGlobal);
1915   }
1916 
1917   // Emit global variable debug information.
1918   if (CGDebugInfo *DI = getModuleDebugInfo())
1919     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1920       DI->EmitGlobalVariable(GV, D);
1921 }
1922 
1923 llvm::GlobalValue::LinkageTypes
1924 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1925   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1926   if (Linkage == GVA_Internal)
1927     return llvm::Function::InternalLinkage;
1928   else if (D->hasAttr<DLLImportAttr>())
1929     return llvm::Function::DLLImportLinkage;
1930   else if (D->hasAttr<DLLExportAttr>())
1931     return llvm::Function::DLLExportLinkage;
1932   else if (D->hasAttr<SelectAnyAttr>()) {
1933     // selectany symbols are externally visible, so use weak instead of
1934     // linkonce.  MSVC optimizes away references to const selectany globals, so
1935     // all definitions should be the same and ODR linkage should be used.
1936     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1937     return llvm::GlobalVariable::WeakODRLinkage;
1938   } else if (D->hasAttr<WeakAttr>()) {
1939     if (isConstant)
1940       return llvm::GlobalVariable::WeakODRLinkage;
1941     else
1942       return llvm::GlobalVariable::WeakAnyLinkage;
1943   } else if (Linkage == GVA_TemplateInstantiation ||
1944              Linkage == GVA_ExplicitTemplateInstantiation)
1945     return llvm::GlobalVariable::WeakODRLinkage;
1946   else if (!getLangOpts().CPlusPlus &&
1947            ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) ||
1948              D->hasAttr<CommonAttr>()) &&
1949            !D->hasExternalStorage() && !D->getInit() &&
1950            !D->hasAttr<SectionAttr>() && !D->getTLSKind() &&
1951            !D->hasAttr<WeakImportAttr>()) {
1952     // Thread local vars aren't considered common linkage.
1953     return llvm::GlobalVariable::CommonLinkage;
1954   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1955              getTarget().getTriple().isMacOSX())
1956     // On Darwin, the backing variable for a C++11 thread_local variable always
1957     // has internal linkage; all accesses should just be calls to the
1958     // Itanium-specified entry point, which has the normal linkage of the
1959     // variable.
1960     return llvm::GlobalValue::InternalLinkage;
1961   return llvm::GlobalVariable::ExternalLinkage;
1962 }
1963 
1964 /// Replace the uses of a function that was declared with a non-proto type.
1965 /// We want to silently drop extra arguments from call sites
1966 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1967                                           llvm::Function *newFn) {
1968   // Fast path.
1969   if (old->use_empty()) return;
1970 
1971   llvm::Type *newRetTy = newFn->getReturnType();
1972   SmallVector<llvm::Value*, 4> newArgs;
1973 
1974   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1975          ui != ue; ) {
1976     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1977     llvm::User *user = *use;
1978 
1979     // Recognize and replace uses of bitcasts.  Most calls to
1980     // unprototyped functions will use bitcasts.
1981     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1982       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1983         replaceUsesOfNonProtoConstant(bitcast, newFn);
1984       continue;
1985     }
1986 
1987     // Recognize calls to the function.
1988     llvm::CallSite callSite(user);
1989     if (!callSite) continue;
1990     if (!callSite.isCallee(use)) continue;
1991 
1992     // If the return types don't match exactly, then we can't
1993     // transform this call unless it's dead.
1994     if (callSite->getType() != newRetTy && !callSite->use_empty())
1995       continue;
1996 
1997     // Get the call site's attribute list.
1998     SmallVector<llvm::AttributeSet, 8> newAttrs;
1999     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2000 
2001     // Collect any return attributes from the call.
2002     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2003       newAttrs.push_back(
2004         llvm::AttributeSet::get(newFn->getContext(),
2005                                 oldAttrs.getRetAttributes()));
2006 
2007     // If the function was passed too few arguments, don't transform.
2008     unsigned newNumArgs = newFn->arg_size();
2009     if (callSite.arg_size() < newNumArgs) continue;
2010 
2011     // If extra arguments were passed, we silently drop them.
2012     // If any of the types mismatch, we don't transform.
2013     unsigned argNo = 0;
2014     bool dontTransform = false;
2015     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2016            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2017       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2018         dontTransform = true;
2019         break;
2020       }
2021 
2022       // Add any parameter attributes.
2023       if (oldAttrs.hasAttributes(argNo + 1))
2024         newAttrs.
2025           push_back(llvm::
2026                     AttributeSet::get(newFn->getContext(),
2027                                       oldAttrs.getParamAttributes(argNo + 1)));
2028     }
2029     if (dontTransform)
2030       continue;
2031 
2032     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2033       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2034                                                  oldAttrs.getFnAttributes()));
2035 
2036     // Okay, we can transform this.  Create the new call instruction and copy
2037     // over the required information.
2038     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2039 
2040     llvm::CallSite newCall;
2041     if (callSite.isCall()) {
2042       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2043                                        callSite.getInstruction());
2044     } else {
2045       llvm::InvokeInst *oldInvoke =
2046         cast<llvm::InvokeInst>(callSite.getInstruction());
2047       newCall = llvm::InvokeInst::Create(newFn,
2048                                          oldInvoke->getNormalDest(),
2049                                          oldInvoke->getUnwindDest(),
2050                                          newArgs, "",
2051                                          callSite.getInstruction());
2052     }
2053     newArgs.clear(); // for the next iteration
2054 
2055     if (!newCall->getType()->isVoidTy())
2056       newCall->takeName(callSite.getInstruction());
2057     newCall.setAttributes(
2058                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2059     newCall.setCallingConv(callSite.getCallingConv());
2060 
2061     // Finally, remove the old call, replacing any uses with the new one.
2062     if (!callSite->use_empty())
2063       callSite->replaceAllUsesWith(newCall.getInstruction());
2064 
2065     // Copy debug location attached to CI.
2066     if (!callSite->getDebugLoc().isUnknown())
2067       newCall->setDebugLoc(callSite->getDebugLoc());
2068     callSite->eraseFromParent();
2069   }
2070 }
2071 
2072 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2073 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2074 /// existing call uses of the old function in the module, this adjusts them to
2075 /// call the new function directly.
2076 ///
2077 /// This is not just a cleanup: the always_inline pass requires direct calls to
2078 /// functions to be able to inline them.  If there is a bitcast in the way, it
2079 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2080 /// run at -O0.
2081 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2082                                                       llvm::Function *NewFn) {
2083   // If we're redefining a global as a function, don't transform it.
2084   if (!isa<llvm::Function>(Old)) return;
2085 
2086   replaceUsesOfNonProtoConstant(Old, NewFn);
2087 }
2088 
2089 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2090   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2091   // If we have a definition, this might be a deferred decl. If the
2092   // instantiation is explicit, make sure we emit it at the end.
2093   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2094     GetAddrOfGlobalVar(VD);
2095 
2096   EmitTopLevelDecl(VD);
2097 }
2098 
2099 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2100                                                  llvm::GlobalValue *GV) {
2101   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2102 
2103   // Compute the function info and LLVM type.
2104   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2105   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2106 
2107   // Get or create the prototype for the function.
2108   llvm::Constant *Entry =
2109       GV ? GV
2110          : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2111 
2112   // Strip off a bitcast if we got one back.
2113   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2114     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2115     Entry = CE->getOperand(0);
2116   }
2117 
2118   if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) {
2119     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2120     return;
2121   }
2122 
2123   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2124     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2125 
2126     // If the types mismatch then we have to rewrite the definition.
2127     assert(OldFn->isDeclaration() &&
2128            "Shouldn't replace non-declaration");
2129 
2130     // F is the Function* for the one with the wrong type, we must make a new
2131     // Function* and update everything that used F (a declaration) with the new
2132     // Function* (which will be a definition).
2133     //
2134     // This happens if there is a prototype for a function
2135     // (e.g. "int f()") and then a definition of a different type
2136     // (e.g. "int f(int x)").  Move the old function aside so that it
2137     // doesn't interfere with GetAddrOfFunction.
2138     OldFn->setName(StringRef());
2139     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2140 
2141     // This might be an implementation of a function without a
2142     // prototype, in which case, try to do special replacement of
2143     // calls which match the new prototype.  The really key thing here
2144     // is that we also potentially drop arguments from the call site
2145     // so as to make a direct call, which makes the inliner happier
2146     // and suppresses a number of optimizer warnings (!) about
2147     // dropping arguments.
2148     if (!OldFn->use_empty()) {
2149       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2150       OldFn->removeDeadConstantUsers();
2151     }
2152 
2153     // Replace uses of F with the Function we will endow with a body.
2154     if (!Entry->use_empty()) {
2155       llvm::Constant *NewPtrForOldDecl =
2156         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2157       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2158     }
2159 
2160     // Ok, delete the old function now, which is dead.
2161     OldFn->eraseFromParent();
2162 
2163     Entry = NewFn;
2164   }
2165 
2166   // We need to set linkage and visibility on the function before
2167   // generating code for it because various parts of IR generation
2168   // want to propagate this information down (e.g. to local static
2169   // declarations).
2170   llvm::Function *Fn = cast<llvm::Function>(Entry);
2171   setFunctionLinkage(GD, Fn);
2172 
2173   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2174   setGlobalVisibility(Fn, D);
2175 
2176   MaybeHandleStaticInExternC(D, Fn);
2177 
2178   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2179 
2180   SetFunctionDefinitionAttributes(D, Fn);
2181   SetLLVMFunctionAttributesForDefinition(D, Fn);
2182 
2183   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2184     AddGlobalCtor(Fn, CA->getPriority());
2185   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2186     AddGlobalDtor(Fn, DA->getPriority());
2187   if (D->hasAttr<AnnotateAttr>())
2188     AddGlobalAnnotations(D, Fn);
2189 
2190   llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this);
2191   if (PGOInit)
2192     AddGlobalCtor(PGOInit, 0);
2193 }
2194 
2195 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2196   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2197   const AliasAttr *AA = D->getAttr<AliasAttr>();
2198   assert(AA && "Not an alias?");
2199 
2200   StringRef MangledName = getMangledName(GD);
2201 
2202   // If there is a definition in the module, then it wins over the alias.
2203   // This is dubious, but allow it to be safe.  Just ignore the alias.
2204   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2205   if (Entry && !Entry->isDeclaration())
2206     return;
2207 
2208   Aliases.push_back(GD);
2209 
2210   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2211 
2212   // Create a reference to the named value.  This ensures that it is emitted
2213   // if a deferred decl.
2214   llvm::Constant *Aliasee;
2215   if (isa<llvm::FunctionType>(DeclTy))
2216     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2217                                       /*ForVTable=*/false);
2218   else
2219     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2220                                     llvm::PointerType::getUnqual(DeclTy), 0);
2221 
2222   // Create the new alias itself, but don't set a name yet.
2223   llvm::GlobalValue *GA =
2224     new llvm::GlobalAlias(Aliasee->getType(),
2225                           llvm::Function::ExternalLinkage,
2226                           "", Aliasee, &getModule());
2227 
2228   if (Entry) {
2229     assert(Entry->isDeclaration());
2230 
2231     // If there is a declaration in the module, then we had an extern followed
2232     // by the alias, as in:
2233     //   extern int test6();
2234     //   ...
2235     //   int test6() __attribute__((alias("test7")));
2236     //
2237     // Remove it and replace uses of it with the alias.
2238     GA->takeName(Entry);
2239 
2240     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2241                                                           Entry->getType()));
2242     Entry->eraseFromParent();
2243   } else {
2244     GA->setName(MangledName);
2245   }
2246 
2247   // Set attributes which are particular to an alias; this is a
2248   // specialization of the attributes which may be set on a global
2249   // variable/function.
2250   if (D->hasAttr<DLLExportAttr>()) {
2251     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2252       // The dllexport attribute is ignored for undefined symbols.
2253       if (FD->hasBody())
2254         GA->setLinkage(llvm::Function::DLLExportLinkage);
2255     } else {
2256       GA->setLinkage(llvm::Function::DLLExportLinkage);
2257     }
2258   } else if (D->hasAttr<WeakAttr>() ||
2259              D->hasAttr<WeakRefAttr>() ||
2260              D->isWeakImported()) {
2261     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2262   }
2263 
2264   SetCommonAttributes(D, GA);
2265 }
2266 
2267 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2268                                             ArrayRef<llvm::Type*> Tys) {
2269   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2270                                          Tys);
2271 }
2272 
2273 static llvm::StringMapEntry<llvm::Constant*> &
2274 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2275                          const StringLiteral *Literal,
2276                          bool TargetIsLSB,
2277                          bool &IsUTF16,
2278                          unsigned &StringLength) {
2279   StringRef String = Literal->getString();
2280   unsigned NumBytes = String.size();
2281 
2282   // Check for simple case.
2283   if (!Literal->containsNonAsciiOrNull()) {
2284     StringLength = NumBytes;
2285     return Map.GetOrCreateValue(String);
2286   }
2287 
2288   // Otherwise, convert the UTF8 literals into a string of shorts.
2289   IsUTF16 = true;
2290 
2291   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2292   const UTF8 *FromPtr = (const UTF8 *)String.data();
2293   UTF16 *ToPtr = &ToBuf[0];
2294 
2295   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2296                            &ToPtr, ToPtr + NumBytes,
2297                            strictConversion);
2298 
2299   // ConvertUTF8toUTF16 returns the length in ToPtr.
2300   StringLength = ToPtr - &ToBuf[0];
2301 
2302   // Add an explicit null.
2303   *ToPtr = 0;
2304   return Map.
2305     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2306                                (StringLength + 1) * 2));
2307 }
2308 
2309 static llvm::StringMapEntry<llvm::Constant*> &
2310 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2311                        const StringLiteral *Literal,
2312                        unsigned &StringLength) {
2313   StringRef String = Literal->getString();
2314   StringLength = String.size();
2315   return Map.GetOrCreateValue(String);
2316 }
2317 
2318 llvm::Constant *
2319 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2320   unsigned StringLength = 0;
2321   bool isUTF16 = false;
2322   llvm::StringMapEntry<llvm::Constant*> &Entry =
2323     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2324                              getDataLayout().isLittleEndian(),
2325                              isUTF16, StringLength);
2326 
2327   if (llvm::Constant *C = Entry.getValue())
2328     return C;
2329 
2330   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2331   llvm::Constant *Zeros[] = { Zero, Zero };
2332   llvm::Value *V;
2333 
2334   // If we don't already have it, get __CFConstantStringClassReference.
2335   if (!CFConstantStringClassRef) {
2336     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2337     Ty = llvm::ArrayType::get(Ty, 0);
2338     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2339                                            "__CFConstantStringClassReference");
2340     // Decay array -> ptr
2341     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2342     CFConstantStringClassRef = V;
2343   }
2344   else
2345     V = CFConstantStringClassRef;
2346 
2347   QualType CFTy = getContext().getCFConstantStringType();
2348 
2349   llvm::StructType *STy =
2350     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2351 
2352   llvm::Constant *Fields[4];
2353 
2354   // Class pointer.
2355   Fields[0] = cast<llvm::ConstantExpr>(V);
2356 
2357   // Flags.
2358   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2359   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2360     llvm::ConstantInt::get(Ty, 0x07C8);
2361 
2362   // String pointer.
2363   llvm::Constant *C = 0;
2364   if (isUTF16) {
2365     ArrayRef<uint16_t> Arr =
2366       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2367                                      const_cast<char *>(Entry.getKey().data())),
2368                                    Entry.getKey().size() / 2);
2369     C = llvm::ConstantDataArray::get(VMContext, Arr);
2370   } else {
2371     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2372   }
2373 
2374   llvm::GlobalValue::LinkageTypes Linkage;
2375   if (isUTF16)
2376     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2377     Linkage = llvm::GlobalValue::InternalLinkage;
2378   else
2379     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2380     // when using private linkage. It is not clear if this is a bug in ld
2381     // or a reasonable new restriction.
2382     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2383 
2384   // Note: -fwritable-strings doesn't make the backing store strings of
2385   // CFStrings writable. (See <rdar://problem/10657500>)
2386   llvm::GlobalVariable *GV =
2387     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2388                              Linkage, C, ".str");
2389   GV->setUnnamedAddr(true);
2390   // Don't enforce the target's minimum global alignment, since the only use
2391   // of the string is via this class initializer.
2392   if (isUTF16) {
2393     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2394     GV->setAlignment(Align.getQuantity());
2395   } else {
2396     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2397     GV->setAlignment(Align.getQuantity());
2398   }
2399 
2400   // String.
2401   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2402 
2403   if (isUTF16)
2404     // Cast the UTF16 string to the correct type.
2405     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2406 
2407   // String length.
2408   Ty = getTypes().ConvertType(getContext().LongTy);
2409   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2410 
2411   // The struct.
2412   C = llvm::ConstantStruct::get(STy, Fields);
2413   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2414                                 llvm::GlobalVariable::PrivateLinkage, C,
2415                                 "_unnamed_cfstring_");
2416   if (const char *Sect = getTarget().getCFStringSection())
2417     GV->setSection(Sect);
2418   Entry.setValue(GV);
2419 
2420   return GV;
2421 }
2422 
2423 llvm::Constant *
2424 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2425   unsigned StringLength = 0;
2426   llvm::StringMapEntry<llvm::Constant*> &Entry =
2427     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2428 
2429   if (llvm::Constant *C = Entry.getValue())
2430     return C;
2431 
2432   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2433   llvm::Constant *Zeros[] = { Zero, Zero };
2434   llvm::Value *V;
2435   // If we don't already have it, get _NSConstantStringClassReference.
2436   if (!ConstantStringClassRef) {
2437     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2438     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2439     llvm::Constant *GV;
2440     if (LangOpts.ObjCRuntime.isNonFragile()) {
2441       std::string str =
2442         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2443                             : "OBJC_CLASS_$_" + StringClass;
2444       GV = getObjCRuntime().GetClassGlobal(str);
2445       // Make sure the result is of the correct type.
2446       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2447       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2448       ConstantStringClassRef = V;
2449     } else {
2450       std::string str =
2451         StringClass.empty() ? "_NSConstantStringClassReference"
2452                             : "_" + StringClass + "ClassReference";
2453       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2454       GV = CreateRuntimeVariable(PTy, str);
2455       // Decay array -> ptr
2456       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2457       ConstantStringClassRef = V;
2458     }
2459   }
2460   else
2461     V = ConstantStringClassRef;
2462 
2463   if (!NSConstantStringType) {
2464     // Construct the type for a constant NSString.
2465     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2466     D->startDefinition();
2467 
2468     QualType FieldTypes[3];
2469 
2470     // const int *isa;
2471     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2472     // const char *str;
2473     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2474     // unsigned int length;
2475     FieldTypes[2] = Context.UnsignedIntTy;
2476 
2477     // Create fields
2478     for (unsigned i = 0; i < 3; ++i) {
2479       FieldDecl *Field = FieldDecl::Create(Context, D,
2480                                            SourceLocation(),
2481                                            SourceLocation(), 0,
2482                                            FieldTypes[i], /*TInfo=*/0,
2483                                            /*BitWidth=*/0,
2484                                            /*Mutable=*/false,
2485                                            ICIS_NoInit);
2486       Field->setAccess(AS_public);
2487       D->addDecl(Field);
2488     }
2489 
2490     D->completeDefinition();
2491     QualType NSTy = Context.getTagDeclType(D);
2492     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2493   }
2494 
2495   llvm::Constant *Fields[3];
2496 
2497   // Class pointer.
2498   Fields[0] = cast<llvm::ConstantExpr>(V);
2499 
2500   // String pointer.
2501   llvm::Constant *C =
2502     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2503 
2504   llvm::GlobalValue::LinkageTypes Linkage;
2505   bool isConstant;
2506   Linkage = llvm::GlobalValue::PrivateLinkage;
2507   isConstant = !LangOpts.WritableStrings;
2508 
2509   llvm::GlobalVariable *GV =
2510   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2511                            ".str");
2512   GV->setUnnamedAddr(true);
2513   // Don't enforce the target's minimum global alignment, since the only use
2514   // of the string is via this class initializer.
2515   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2516   GV->setAlignment(Align.getQuantity());
2517   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2518 
2519   // String length.
2520   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2521   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2522 
2523   // The struct.
2524   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2525   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2526                                 llvm::GlobalVariable::PrivateLinkage, C,
2527                                 "_unnamed_nsstring_");
2528   // FIXME. Fix section.
2529   if (const char *Sect =
2530         LangOpts.ObjCRuntime.isNonFragile()
2531           ? getTarget().getNSStringNonFragileABISection()
2532           : getTarget().getNSStringSection())
2533     GV->setSection(Sect);
2534   Entry.setValue(GV);
2535 
2536   return GV;
2537 }
2538 
2539 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2540   if (ObjCFastEnumerationStateType.isNull()) {
2541     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2542     D->startDefinition();
2543 
2544     QualType FieldTypes[] = {
2545       Context.UnsignedLongTy,
2546       Context.getPointerType(Context.getObjCIdType()),
2547       Context.getPointerType(Context.UnsignedLongTy),
2548       Context.getConstantArrayType(Context.UnsignedLongTy,
2549                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2550     };
2551 
2552     for (size_t i = 0; i < 4; ++i) {
2553       FieldDecl *Field = FieldDecl::Create(Context,
2554                                            D,
2555                                            SourceLocation(),
2556                                            SourceLocation(), 0,
2557                                            FieldTypes[i], /*TInfo=*/0,
2558                                            /*BitWidth=*/0,
2559                                            /*Mutable=*/false,
2560                                            ICIS_NoInit);
2561       Field->setAccess(AS_public);
2562       D->addDecl(Field);
2563     }
2564 
2565     D->completeDefinition();
2566     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2567   }
2568 
2569   return ObjCFastEnumerationStateType;
2570 }
2571 
2572 llvm::Constant *
2573 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2574   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2575 
2576   // Don't emit it as the address of the string, emit the string data itself
2577   // as an inline array.
2578   if (E->getCharByteWidth() == 1) {
2579     SmallString<64> Str(E->getString());
2580 
2581     // Resize the string to the right size, which is indicated by its type.
2582     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2583     Str.resize(CAT->getSize().getZExtValue());
2584     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2585   }
2586 
2587   llvm::ArrayType *AType =
2588     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2589   llvm::Type *ElemTy = AType->getElementType();
2590   unsigned NumElements = AType->getNumElements();
2591 
2592   // Wide strings have either 2-byte or 4-byte elements.
2593   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2594     SmallVector<uint16_t, 32> Elements;
2595     Elements.reserve(NumElements);
2596 
2597     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2598       Elements.push_back(E->getCodeUnit(i));
2599     Elements.resize(NumElements);
2600     return llvm::ConstantDataArray::get(VMContext, Elements);
2601   }
2602 
2603   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2604   SmallVector<uint32_t, 32> Elements;
2605   Elements.reserve(NumElements);
2606 
2607   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2608     Elements.push_back(E->getCodeUnit(i));
2609   Elements.resize(NumElements);
2610   return llvm::ConstantDataArray::get(VMContext, Elements);
2611 }
2612 
2613 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2614 /// constant array for the given string literal.
2615 llvm::Constant *
2616 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2617   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2618   if (S->isAscii() || S->isUTF8()) {
2619     SmallString<64> Str(S->getString());
2620 
2621     // Resize the string to the right size, which is indicated by its type.
2622     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2623     Str.resize(CAT->getSize().getZExtValue());
2624     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2625   }
2626 
2627   // FIXME: the following does not memoize wide strings.
2628   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2629   llvm::GlobalVariable *GV =
2630     new llvm::GlobalVariable(getModule(),C->getType(),
2631                              !LangOpts.WritableStrings,
2632                              llvm::GlobalValue::PrivateLinkage,
2633                              C,".str");
2634 
2635   GV->setAlignment(Align.getQuantity());
2636   GV->setUnnamedAddr(true);
2637   return GV;
2638 }
2639 
2640 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2641 /// array for the given ObjCEncodeExpr node.
2642 llvm::Constant *
2643 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2644   std::string Str;
2645   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2646 
2647   return GetAddrOfConstantCString(Str);
2648 }
2649 
2650 
2651 /// GenerateWritableString -- Creates storage for a string literal.
2652 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2653                                              bool constant,
2654                                              CodeGenModule &CGM,
2655                                              const char *GlobalName,
2656                                              unsigned Alignment) {
2657   // Create Constant for this string literal. Don't add a '\0'.
2658   llvm::Constant *C =
2659       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2660 
2661   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
2662   unsigned AddrSpace = 0;
2663   if (CGM.getLangOpts().OpenCL)
2664     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2665 
2666   // Create a global variable for this string
2667   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2668       CGM.getModule(), C->getType(), constant,
2669       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2670       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2671   GV->setAlignment(Alignment);
2672   GV->setUnnamedAddr(true);
2673   return GV;
2674 }
2675 
2676 /// GetAddrOfConstantString - Returns a pointer to a character array
2677 /// containing the literal. This contents are exactly that of the
2678 /// given string, i.e. it will not be null terminated automatically;
2679 /// see GetAddrOfConstantCString. Note that whether the result is
2680 /// actually a pointer to an LLVM constant depends on
2681 /// Feature.WriteableStrings.
2682 ///
2683 /// The result has pointer to array type.
2684 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2685                                                        const char *GlobalName,
2686                                                        unsigned Alignment) {
2687   // Get the default prefix if a name wasn't specified.
2688   if (!GlobalName)
2689     GlobalName = ".str";
2690 
2691   if (Alignment == 0)
2692     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2693       .getQuantity();
2694 
2695   // Don't share any string literals if strings aren't constant.
2696   if (LangOpts.WritableStrings)
2697     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2698 
2699   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2700     ConstantStringMap.GetOrCreateValue(Str);
2701 
2702   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2703     if (Alignment > GV->getAlignment()) {
2704       GV->setAlignment(Alignment);
2705     }
2706     return GV;
2707   }
2708 
2709   // Create a global variable for this.
2710   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2711                                                    Alignment);
2712   Entry.setValue(GV);
2713   return GV;
2714 }
2715 
2716 /// GetAddrOfConstantCString - Returns a pointer to a character
2717 /// array containing the literal and a terminating '\0'
2718 /// character. The result has pointer to array type.
2719 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2720                                                         const char *GlobalName,
2721                                                         unsigned Alignment) {
2722   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2723   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2724 }
2725 
2726 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2727     const MaterializeTemporaryExpr *E, const Expr *Init) {
2728   assert((E->getStorageDuration() == SD_Static ||
2729           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2730   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2731 
2732   // If we're not materializing a subobject of the temporary, keep the
2733   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2734   QualType MaterializedType = Init->getType();
2735   if (Init == E->GetTemporaryExpr())
2736     MaterializedType = E->getType();
2737 
2738   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2739   if (Slot)
2740     return Slot;
2741 
2742   // FIXME: If an externally-visible declaration extends multiple temporaries,
2743   // we need to give each temporary the same name in every translation unit (and
2744   // we also need to make the temporaries externally-visible).
2745   SmallString<256> Name;
2746   llvm::raw_svector_ostream Out(Name);
2747   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2748   Out.flush();
2749 
2750   APValue *Value = 0;
2751   if (E->getStorageDuration() == SD_Static) {
2752     // We might have a cached constant initializer for this temporary. Note
2753     // that this might have a different value from the value computed by
2754     // evaluating the initializer if the surrounding constant expression
2755     // modifies the temporary.
2756     Value = getContext().getMaterializedTemporaryValue(E, false);
2757     if (Value && Value->isUninit())
2758       Value = 0;
2759   }
2760 
2761   // Try evaluating it now, it might have a constant initializer.
2762   Expr::EvalResult EvalResult;
2763   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2764       !EvalResult.hasSideEffects())
2765     Value = &EvalResult.Val;
2766 
2767   llvm::Constant *InitialValue = 0;
2768   bool Constant = false;
2769   llvm::Type *Type;
2770   if (Value) {
2771     // The temporary has a constant initializer, use it.
2772     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2773     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2774     Type = InitialValue->getType();
2775   } else {
2776     // No initializer, the initialization will be provided when we
2777     // initialize the declaration which performed lifetime extension.
2778     Type = getTypes().ConvertTypeForMem(MaterializedType);
2779   }
2780 
2781   // Create a global variable for this lifetime-extended temporary.
2782   llvm::GlobalVariable *GV =
2783     new llvm::GlobalVariable(getModule(), Type, Constant,
2784                              llvm::GlobalValue::PrivateLinkage,
2785                              InitialValue, Name.c_str());
2786   GV->setAlignment(
2787       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2788   if (VD->getTLSKind())
2789     setTLSMode(GV, *VD);
2790   Slot = GV;
2791   return GV;
2792 }
2793 
2794 /// EmitObjCPropertyImplementations - Emit information for synthesized
2795 /// properties for an implementation.
2796 void CodeGenModule::EmitObjCPropertyImplementations(const
2797                                                     ObjCImplementationDecl *D) {
2798   for (ObjCImplementationDecl::propimpl_iterator
2799          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2800     ObjCPropertyImplDecl *PID = *i;
2801 
2802     // Dynamic is just for type-checking.
2803     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2804       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2805 
2806       // Determine which methods need to be implemented, some may have
2807       // been overridden. Note that ::isPropertyAccessor is not the method
2808       // we want, that just indicates if the decl came from a
2809       // property. What we want to know is if the method is defined in
2810       // this implementation.
2811       if (!D->getInstanceMethod(PD->getGetterName()))
2812         CodeGenFunction(*this).GenerateObjCGetter(
2813                                  const_cast<ObjCImplementationDecl *>(D), PID);
2814       if (!PD->isReadOnly() &&
2815           !D->getInstanceMethod(PD->getSetterName()))
2816         CodeGenFunction(*this).GenerateObjCSetter(
2817                                  const_cast<ObjCImplementationDecl *>(D), PID);
2818     }
2819   }
2820 }
2821 
2822 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2823   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2824   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2825        ivar; ivar = ivar->getNextIvar())
2826     if (ivar->getType().isDestructedType())
2827       return true;
2828 
2829   return false;
2830 }
2831 
2832 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2833 /// for an implementation.
2834 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2835   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2836   if (needsDestructMethod(D)) {
2837     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2838     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2839     ObjCMethodDecl *DTORMethod =
2840       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2841                              cxxSelector, getContext().VoidTy, 0, D,
2842                              /*isInstance=*/true, /*isVariadic=*/false,
2843                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2844                              /*isDefined=*/false, ObjCMethodDecl::Required);
2845     D->addInstanceMethod(DTORMethod);
2846     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2847     D->setHasDestructors(true);
2848   }
2849 
2850   // If the implementation doesn't have any ivar initializers, we don't need
2851   // a .cxx_construct.
2852   if (D->getNumIvarInitializers() == 0)
2853     return;
2854 
2855   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2856   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2857   // The constructor returns 'self'.
2858   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2859                                                 D->getLocation(),
2860                                                 D->getLocation(),
2861                                                 cxxSelector,
2862                                                 getContext().getObjCIdType(), 0,
2863                                                 D, /*isInstance=*/true,
2864                                                 /*isVariadic=*/false,
2865                                                 /*isPropertyAccessor=*/true,
2866                                                 /*isImplicitlyDeclared=*/true,
2867                                                 /*isDefined=*/false,
2868                                                 ObjCMethodDecl::Required);
2869   D->addInstanceMethod(CTORMethod);
2870   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2871   D->setHasNonZeroConstructors(true);
2872 }
2873 
2874 /// EmitNamespace - Emit all declarations in a namespace.
2875 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2876   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2877        I != E; ++I) {
2878     if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
2879       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2880           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2881         continue;
2882     EmitTopLevelDecl(*I);
2883   }
2884 }
2885 
2886 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2887 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2888   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2889       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2890     ErrorUnsupported(LSD, "linkage spec");
2891     return;
2892   }
2893 
2894   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2895        I != E; ++I) {
2896     // Meta-data for ObjC class includes references to implemented methods.
2897     // Generate class's method definitions first.
2898     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2899       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2900            MEnd = OID->meth_end();
2901            M != MEnd; ++M)
2902         EmitTopLevelDecl(*M);
2903     }
2904     EmitTopLevelDecl(*I);
2905   }
2906 }
2907 
2908 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2909 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2910   // Ignore dependent declarations.
2911   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2912     return;
2913 
2914   switch (D->getKind()) {
2915   case Decl::CXXConversion:
2916   case Decl::CXXMethod:
2917   case Decl::Function:
2918     // Skip function templates
2919     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2920         cast<FunctionDecl>(D)->isLateTemplateParsed())
2921       return;
2922 
2923     EmitGlobal(cast<FunctionDecl>(D));
2924     break;
2925 
2926   case Decl::Var:
2927     // Skip variable templates
2928     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2929       return;
2930   case Decl::VarTemplateSpecialization:
2931     EmitGlobal(cast<VarDecl>(D));
2932     break;
2933 
2934   // Indirect fields from global anonymous structs and unions can be
2935   // ignored; only the actual variable requires IR gen support.
2936   case Decl::IndirectField:
2937     break;
2938 
2939   // C++ Decls
2940   case Decl::Namespace:
2941     EmitNamespace(cast<NamespaceDecl>(D));
2942     break;
2943     // No code generation needed.
2944   case Decl::UsingShadow:
2945   case Decl::Using:
2946   case Decl::ClassTemplate:
2947   case Decl::VarTemplate:
2948   case Decl::VarTemplatePartialSpecialization:
2949   case Decl::FunctionTemplate:
2950   case Decl::TypeAliasTemplate:
2951   case Decl::Block:
2952   case Decl::Empty:
2953     break;
2954   case Decl::NamespaceAlias:
2955     if (CGDebugInfo *DI = getModuleDebugInfo())
2956         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2957     return;
2958   case Decl::UsingDirective: // using namespace X; [C++]
2959     if (CGDebugInfo *DI = getModuleDebugInfo())
2960       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2961     return;
2962   case Decl::CXXConstructor:
2963     // Skip function templates
2964     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2965         cast<FunctionDecl>(D)->isLateTemplateParsed())
2966       return;
2967 
2968     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2969     break;
2970   case Decl::CXXDestructor:
2971     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2972       return;
2973     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2974     break;
2975 
2976   case Decl::StaticAssert:
2977     // Nothing to do.
2978     break;
2979 
2980   // Objective-C Decls
2981 
2982   // Forward declarations, no (immediate) code generation.
2983   case Decl::ObjCInterface:
2984   case Decl::ObjCCategory:
2985     break;
2986 
2987   case Decl::ObjCProtocol: {
2988     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2989     if (Proto->isThisDeclarationADefinition())
2990       ObjCRuntime->GenerateProtocol(Proto);
2991     break;
2992   }
2993 
2994   case Decl::ObjCCategoryImpl:
2995     // Categories have properties but don't support synthesize so we
2996     // can ignore them here.
2997     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2998     break;
2999 
3000   case Decl::ObjCImplementation: {
3001     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
3002     EmitObjCPropertyImplementations(OMD);
3003     EmitObjCIvarInitializations(OMD);
3004     ObjCRuntime->GenerateClass(OMD);
3005     // Emit global variable debug information.
3006     if (CGDebugInfo *DI = getModuleDebugInfo())
3007       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3008         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3009             OMD->getClassInterface()), OMD->getLocation());
3010     break;
3011   }
3012   case Decl::ObjCMethod: {
3013     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
3014     // If this is not a prototype, emit the body.
3015     if (OMD->getBody())
3016       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3017     break;
3018   }
3019   case Decl::ObjCCompatibleAlias:
3020     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3021     break;
3022 
3023   case Decl::LinkageSpec:
3024     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3025     break;
3026 
3027   case Decl::FileScopeAsm: {
3028     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
3029     StringRef AsmString = AD->getAsmString()->getString();
3030 
3031     const std::string &S = getModule().getModuleInlineAsm();
3032     if (S.empty())
3033       getModule().setModuleInlineAsm(AsmString);
3034     else if (S.end()[-1] == '\n')
3035       getModule().setModuleInlineAsm(S + AsmString.str());
3036     else
3037       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3038     break;
3039   }
3040 
3041   case Decl::Import: {
3042     ImportDecl *Import = cast<ImportDecl>(D);
3043 
3044     // Ignore import declarations that come from imported modules.
3045     if (clang::Module *Owner = Import->getOwningModule()) {
3046       if (getLangOpts().CurrentModule.empty() ||
3047           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3048         break;
3049     }
3050 
3051     ImportedModules.insert(Import->getImportedModule());
3052     break;
3053  }
3054 
3055   default:
3056     // Make sure we handled everything we should, every other kind is a
3057     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3058     // function. Need to recode Decl::Kind to do that easily.
3059     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3060   }
3061 }
3062 
3063 /// Turns the given pointer into a constant.
3064 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3065                                           const void *Ptr) {
3066   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3067   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3068   return llvm::ConstantInt::get(i64, PtrInt);
3069 }
3070 
3071 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3072                                    llvm::NamedMDNode *&GlobalMetadata,
3073                                    GlobalDecl D,
3074                                    llvm::GlobalValue *Addr) {
3075   if (!GlobalMetadata)
3076     GlobalMetadata =
3077       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3078 
3079   // TODO: should we report variant information for ctors/dtors?
3080   llvm::Value *Ops[] = {
3081     Addr,
3082     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3083   };
3084   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3085 }
3086 
3087 /// For each function which is declared within an extern "C" region and marked
3088 /// as 'used', but has internal linkage, create an alias from the unmangled
3089 /// name to the mangled name if possible. People expect to be able to refer
3090 /// to such functions with an unmangled name from inline assembly within the
3091 /// same translation unit.
3092 void CodeGenModule::EmitStaticExternCAliases() {
3093   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3094                                   E = StaticExternCValues.end();
3095        I != E; ++I) {
3096     IdentifierInfo *Name = I->first;
3097     llvm::GlobalValue *Val = I->second;
3098     if (Val && !getModule().getNamedValue(Name->getName()))
3099       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3100                                           Name->getName(), Val, &getModule()));
3101   }
3102 }
3103 
3104 /// Emits metadata nodes associating all the global values in the
3105 /// current module with the Decls they came from.  This is useful for
3106 /// projects using IR gen as a subroutine.
3107 ///
3108 /// Since there's currently no way to associate an MDNode directly
3109 /// with an llvm::GlobalValue, we create a global named metadata
3110 /// with the name 'clang.global.decl.ptrs'.
3111 void CodeGenModule::EmitDeclMetadata() {
3112   llvm::NamedMDNode *GlobalMetadata = 0;
3113 
3114   // StaticLocalDeclMap
3115   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3116          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3117        I != E; ++I) {
3118     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3119     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3120   }
3121 }
3122 
3123 /// Emits metadata nodes for all the local variables in the current
3124 /// function.
3125 void CodeGenFunction::EmitDeclMetadata() {
3126   if (LocalDeclMap.empty()) return;
3127 
3128   llvm::LLVMContext &Context = getLLVMContext();
3129 
3130   // Find the unique metadata ID for this name.
3131   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3132 
3133   llvm::NamedMDNode *GlobalMetadata = 0;
3134 
3135   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3136          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3137     const Decl *D = I->first;
3138     llvm::Value *Addr = I->second;
3139 
3140     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3141       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3142       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3143     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3144       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3145       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3146     }
3147   }
3148 }
3149 
3150 void CodeGenModule::EmitVersionIdentMetadata() {
3151   llvm::NamedMDNode *IdentMetadata =
3152     TheModule.getOrInsertNamedMetadata("llvm.ident");
3153   std::string Version = getClangFullVersion();
3154   llvm::LLVMContext &Ctx = TheModule.getContext();
3155 
3156   llvm::Value *IdentNode[] = {
3157     llvm::MDString::get(Ctx, Version)
3158   };
3159   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3160 }
3161 
3162 void CodeGenModule::EmitCoverageFile() {
3163   if (!getCodeGenOpts().CoverageFile.empty()) {
3164     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3165       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3166       llvm::LLVMContext &Ctx = TheModule.getContext();
3167       llvm::MDString *CoverageFile =
3168           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3169       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3170         llvm::MDNode *CU = CUNode->getOperand(i);
3171         llvm::Value *node[] = { CoverageFile, CU };
3172         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3173         GCov->addOperand(N);
3174       }
3175     }
3176   }
3177 }
3178 
3179 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3180                                                      QualType GuidType) {
3181   // Sema has checked that all uuid strings are of the form
3182   // "12345678-1234-1234-1234-1234567890ab".
3183   assert(Uuid.size() == 36);
3184   for (unsigned i = 0; i < 36; ++i) {
3185     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3186     else                                         assert(isHexDigit(Uuid[i]));
3187   }
3188 
3189   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3190 
3191   llvm::Constant *Field3[8];
3192   for (unsigned Idx = 0; Idx < 8; ++Idx)
3193     Field3[Idx] = llvm::ConstantInt::get(
3194         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3195 
3196   llvm::Constant *Fields[4] = {
3197     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3198     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3199     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3200     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3201   };
3202 
3203   return llvm::ConstantStruct::getAnon(Fields);
3204 }
3205