1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 127 IntPtrTy = llvm::IntegerType::get(LLVMContext, 128 C.getTargetInfo().getMaxPointerWidth()); 129 Int8PtrTy = Int8Ty->getPointerTo(0); 130 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 131 AllocaInt8PtrTy = Int8Ty->getPointerTo( 132 M.getDataLayout().getAllocaAddrSpace()); 133 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 134 135 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 136 137 if (LangOpts.ObjC) 138 createObjCRuntime(); 139 if (LangOpts.OpenCL) 140 createOpenCLRuntime(); 141 if (LangOpts.OpenMP) 142 createOpenMPRuntime(); 143 if (LangOpts.CUDA) 144 createCUDARuntime(); 145 146 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 147 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 148 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 149 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 150 getCXXABI().getMangleContext())); 151 152 // If debug info or coverage generation is enabled, create the CGDebugInfo 153 // object. 154 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 155 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 156 DebugInfo.reset(new CGDebugInfo(*this)); 157 158 Block.GlobalUniqueCount = 0; 159 160 if (C.getLangOpts().ObjC) 161 ObjCData.reset(new ObjCEntrypoints()); 162 163 if (CodeGenOpts.hasProfileClangUse()) { 164 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 165 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 166 if (auto E = ReaderOrErr.takeError()) { 167 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 168 "Could not read profile %0: %1"); 169 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 170 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 171 << EI.message(); 172 }); 173 } else 174 PGOReader = std::move(ReaderOrErr.get()); 175 } 176 177 // If coverage mapping generation is enabled, create the 178 // CoverageMappingModuleGen object. 179 if (CodeGenOpts.CoverageMapping) 180 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 181 } 182 183 CodeGenModule::~CodeGenModule() {} 184 185 void CodeGenModule::createObjCRuntime() { 186 // This is just isGNUFamily(), but we want to force implementors of 187 // new ABIs to decide how best to do this. 188 switch (LangOpts.ObjCRuntime.getKind()) { 189 case ObjCRuntime::GNUstep: 190 case ObjCRuntime::GCC: 191 case ObjCRuntime::ObjFW: 192 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 193 return; 194 195 case ObjCRuntime::FragileMacOSX: 196 case ObjCRuntime::MacOSX: 197 case ObjCRuntime::iOS: 198 case ObjCRuntime::WatchOS: 199 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 200 return; 201 } 202 llvm_unreachable("bad runtime kind"); 203 } 204 205 void CodeGenModule::createOpenCLRuntime() { 206 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 207 } 208 209 void CodeGenModule::createOpenMPRuntime() { 210 // Select a specialized code generation class based on the target, if any. 211 // If it does not exist use the default implementation. 212 switch (getTriple().getArch()) { 213 case llvm::Triple::nvptx: 214 case llvm::Triple::nvptx64: 215 assert(getLangOpts().OpenMPIsDevice && 216 "OpenMP NVPTX is only prepared to deal with device code."); 217 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 218 break; 219 case llvm::Triple::amdgcn: 220 assert(getLangOpts().OpenMPIsDevice && 221 "OpenMP AMDGCN is only prepared to deal with device code."); 222 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 223 break; 224 default: 225 if (LangOpts.OpenMPSimd) 226 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 227 else 228 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 229 break; 230 } 231 } 232 233 void CodeGenModule::createCUDARuntime() { 234 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 235 } 236 237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 238 Replacements[Name] = C; 239 } 240 241 void CodeGenModule::applyReplacements() { 242 for (auto &I : Replacements) { 243 StringRef MangledName = I.first(); 244 llvm::Constant *Replacement = I.second; 245 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 246 if (!Entry) 247 continue; 248 auto *OldF = cast<llvm::Function>(Entry); 249 auto *NewF = dyn_cast<llvm::Function>(Replacement); 250 if (!NewF) { 251 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 252 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 253 } else { 254 auto *CE = cast<llvm::ConstantExpr>(Replacement); 255 assert(CE->getOpcode() == llvm::Instruction::BitCast || 256 CE->getOpcode() == llvm::Instruction::GetElementPtr); 257 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 258 } 259 } 260 261 // Replace old with new, but keep the old order. 262 OldF->replaceAllUsesWith(Replacement); 263 if (NewF) { 264 NewF->removeFromParent(); 265 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 266 NewF); 267 } 268 OldF->eraseFromParent(); 269 } 270 } 271 272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 273 GlobalValReplacements.push_back(std::make_pair(GV, C)); 274 } 275 276 void CodeGenModule::applyGlobalValReplacements() { 277 for (auto &I : GlobalValReplacements) { 278 llvm::GlobalValue *GV = I.first; 279 llvm::Constant *C = I.second; 280 281 GV->replaceAllUsesWith(C); 282 GV->eraseFromParent(); 283 } 284 } 285 286 // This is only used in aliases that we created and we know they have a 287 // linear structure. 288 static const llvm::GlobalObject *getAliasedGlobal( 289 const llvm::GlobalIndirectSymbol &GIS) { 290 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 291 const llvm::Constant *C = &GIS; 292 for (;;) { 293 C = C->stripPointerCasts(); 294 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 295 return GO; 296 // stripPointerCasts will not walk over weak aliases. 297 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 298 if (!GIS2) 299 return nullptr; 300 if (!Visited.insert(GIS2).second) 301 return nullptr; 302 C = GIS2->getIndirectSymbol(); 303 } 304 } 305 306 void CodeGenModule::checkAliases() { 307 // Check if the constructed aliases are well formed. It is really unfortunate 308 // that we have to do this in CodeGen, but we only construct mangled names 309 // and aliases during codegen. 310 bool Error = false; 311 DiagnosticsEngine &Diags = getDiags(); 312 for (const GlobalDecl &GD : Aliases) { 313 const auto *D = cast<ValueDecl>(GD.getDecl()); 314 SourceLocation Location; 315 bool IsIFunc = D->hasAttr<IFuncAttr>(); 316 if (const Attr *A = D->getDefiningAttr()) 317 Location = A->getLocation(); 318 else 319 llvm_unreachable("Not an alias or ifunc?"); 320 StringRef MangledName = getMangledName(GD); 321 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 322 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 323 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 324 if (!GV) { 325 Error = true; 326 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 327 } else if (GV->isDeclaration()) { 328 Error = true; 329 Diags.Report(Location, diag::err_alias_to_undefined) 330 << IsIFunc << IsIFunc; 331 } else if (IsIFunc) { 332 // Check resolver function type. 333 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 334 GV->getType()->getPointerElementType()); 335 assert(FTy); 336 if (!FTy->getReturnType()->isPointerTy()) 337 Diags.Report(Location, diag::err_ifunc_resolver_return); 338 } 339 340 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 341 llvm::GlobalValue *AliaseeGV; 342 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 343 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 344 else 345 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 346 347 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 348 StringRef AliasSection = SA->getName(); 349 if (AliasSection != AliaseeGV->getSection()) 350 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 351 << AliasSection << IsIFunc << IsIFunc; 352 } 353 354 // We have to handle alias to weak aliases in here. LLVM itself disallows 355 // this since the object semantics would not match the IL one. For 356 // compatibility with gcc we implement it by just pointing the alias 357 // to its aliasee's aliasee. We also warn, since the user is probably 358 // expecting the link to be weak. 359 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 360 if (GA->isInterposable()) { 361 Diags.Report(Location, diag::warn_alias_to_weak_alias) 362 << GV->getName() << GA->getName() << IsIFunc; 363 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 364 GA->getIndirectSymbol(), Alias->getType()); 365 Alias->setIndirectSymbol(Aliasee); 366 } 367 } 368 } 369 if (!Error) 370 return; 371 372 for (const GlobalDecl &GD : Aliases) { 373 StringRef MangledName = getMangledName(GD); 374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 375 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 376 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 377 Alias->eraseFromParent(); 378 } 379 } 380 381 void CodeGenModule::clear() { 382 DeferredDeclsToEmit.clear(); 383 if (OpenMPRuntime) 384 OpenMPRuntime->clear(); 385 } 386 387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 388 StringRef MainFile) { 389 if (!hasDiagnostics()) 390 return; 391 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 392 if (MainFile.empty()) 393 MainFile = "<stdin>"; 394 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 395 } else { 396 if (Mismatched > 0) 397 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 398 399 if (Missing > 0) 400 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 401 } 402 } 403 404 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 405 llvm::Module &M) { 406 if (!LO.VisibilityFromDLLStorageClass) 407 return; 408 409 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 410 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 411 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 412 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 413 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 414 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 415 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 416 CodeGenModule::GetLLVMVisibility( 417 LO.getExternDeclNoDLLStorageClassVisibility()); 418 419 for (llvm::GlobalValue &GV : M.global_values()) { 420 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 421 continue; 422 423 // Reset DSO locality before setting the visibility. This removes 424 // any effects that visibility options and annotations may have 425 // had on the DSO locality. Setting the visibility will implicitly set 426 // appropriate globals to DSO Local; however, this will be pessimistic 427 // w.r.t. to the normal compiler IRGen. 428 GV.setDSOLocal(false); 429 430 if (GV.isDeclarationForLinker()) { 431 GV.setVisibility(GV.getDLLStorageClass() == 432 llvm::GlobalValue::DLLImportStorageClass 433 ? ExternDeclDLLImportVisibility 434 : ExternDeclNoDLLStorageClassVisibility); 435 } else { 436 GV.setVisibility(GV.getDLLStorageClass() == 437 llvm::GlobalValue::DLLExportStorageClass 438 ? DLLExportVisibility 439 : NoDLLStorageClassVisibility); 440 } 441 442 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 443 } 444 } 445 446 void CodeGenModule::Release() { 447 EmitDeferred(); 448 EmitVTablesOpportunistically(); 449 applyGlobalValReplacements(); 450 applyReplacements(); 451 checkAliases(); 452 emitMultiVersionFunctions(); 453 EmitCXXGlobalInitFunc(); 454 EmitCXXGlobalCleanUpFunc(); 455 registerGlobalDtorsWithAtExit(); 456 EmitCXXThreadLocalInitFunc(); 457 if (ObjCRuntime) 458 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 459 AddGlobalCtor(ObjCInitFunction); 460 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 461 CUDARuntime) { 462 if (llvm::Function *CudaCtorFunction = 463 CUDARuntime->makeModuleCtorFunction()) 464 AddGlobalCtor(CudaCtorFunction); 465 } 466 if (OpenMPRuntime) { 467 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 468 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 469 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 470 } 471 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 472 OpenMPRuntime->clear(); 473 } 474 if (PGOReader) { 475 getModule().setProfileSummary( 476 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 477 llvm::ProfileSummary::PSK_Instr); 478 if (PGOStats.hasDiagnostics()) 479 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 480 } 481 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 482 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 483 EmitGlobalAnnotations(); 484 EmitStaticExternCAliases(); 485 EmitDeferredUnusedCoverageMappings(); 486 if (CoverageMapping) 487 CoverageMapping->emit(); 488 if (CodeGenOpts.SanitizeCfiCrossDso) { 489 CodeGenFunction(*this).EmitCfiCheckFail(); 490 CodeGenFunction(*this).EmitCfiCheckStub(); 491 } 492 emitAtAvailableLinkGuard(); 493 if (Context.getTargetInfo().getTriple().isWasm() && 494 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 495 EmitMainVoidAlias(); 496 } 497 emitLLVMUsed(); 498 if (SanStats) 499 SanStats->finish(); 500 501 if (CodeGenOpts.Autolink && 502 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 503 EmitModuleLinkOptions(); 504 } 505 506 // On ELF we pass the dependent library specifiers directly to the linker 507 // without manipulating them. This is in contrast to other platforms where 508 // they are mapped to a specific linker option by the compiler. This 509 // difference is a result of the greater variety of ELF linkers and the fact 510 // that ELF linkers tend to handle libraries in a more complicated fashion 511 // than on other platforms. This forces us to defer handling the dependent 512 // libs to the linker. 513 // 514 // CUDA/HIP device and host libraries are different. Currently there is no 515 // way to differentiate dependent libraries for host or device. Existing 516 // usage of #pragma comment(lib, *) is intended for host libraries on 517 // Windows. Therefore emit llvm.dependent-libraries only for host. 518 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 519 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 520 for (auto *MD : ELFDependentLibraries) 521 NMD->addOperand(MD); 522 } 523 524 // Record mregparm value now so it is visible through rest of codegen. 525 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 526 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 527 CodeGenOpts.NumRegisterParameters); 528 529 if (CodeGenOpts.DwarfVersion) { 530 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 531 CodeGenOpts.DwarfVersion); 532 } 533 534 if (Context.getLangOpts().SemanticInterposition) 535 // Require various optimization to respect semantic interposition. 536 getModule().setSemanticInterposition(1); 537 else if (Context.getLangOpts().ExplicitNoSemanticInterposition) 538 // Allow dso_local on applicable targets. 539 getModule().setSemanticInterposition(0); 540 541 if (CodeGenOpts.EmitCodeView) { 542 // Indicate that we want CodeView in the metadata. 543 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 544 } 545 if (CodeGenOpts.CodeViewGHash) { 546 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 547 } 548 if (CodeGenOpts.ControlFlowGuard) { 549 // Function ID tables and checks for Control Flow Guard (cfguard=2). 550 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 551 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 552 // Function ID tables for Control Flow Guard (cfguard=1). 553 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 554 } 555 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 556 // We don't support LTO with 2 with different StrictVTablePointers 557 // FIXME: we could support it by stripping all the information introduced 558 // by StrictVTablePointers. 559 560 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 561 562 llvm::Metadata *Ops[2] = { 563 llvm::MDString::get(VMContext, "StrictVTablePointers"), 564 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 565 llvm::Type::getInt32Ty(VMContext), 1))}; 566 567 getModule().addModuleFlag(llvm::Module::Require, 568 "StrictVTablePointersRequirement", 569 llvm::MDNode::get(VMContext, Ops)); 570 } 571 if (getModuleDebugInfo()) 572 // We support a single version in the linked module. The LLVM 573 // parser will drop debug info with a different version number 574 // (and warn about it, too). 575 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 576 llvm::DEBUG_METADATA_VERSION); 577 578 // We need to record the widths of enums and wchar_t, so that we can generate 579 // the correct build attributes in the ARM backend. wchar_size is also used by 580 // TargetLibraryInfo. 581 uint64_t WCharWidth = 582 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 583 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 584 585 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 586 if ( Arch == llvm::Triple::arm 587 || Arch == llvm::Triple::armeb 588 || Arch == llvm::Triple::thumb 589 || Arch == llvm::Triple::thumbeb) { 590 // The minimum width of an enum in bytes 591 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 592 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 593 } 594 595 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 596 StringRef ABIStr = Target.getABI(); 597 llvm::LLVMContext &Ctx = TheModule.getContext(); 598 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 599 llvm::MDString::get(Ctx, ABIStr)); 600 } 601 602 if (CodeGenOpts.SanitizeCfiCrossDso) { 603 // Indicate that we want cross-DSO control flow integrity checks. 604 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 605 } 606 607 if (CodeGenOpts.WholeProgramVTables) { 608 // Indicate whether VFE was enabled for this module, so that the 609 // vcall_visibility metadata added under whole program vtables is handled 610 // appropriately in the optimizer. 611 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 612 CodeGenOpts.VirtualFunctionElimination); 613 } 614 615 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 616 getModule().addModuleFlag(llvm::Module::Override, 617 "CFI Canonical Jump Tables", 618 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 619 } 620 621 if (CodeGenOpts.CFProtectionReturn && 622 Target.checkCFProtectionReturnSupported(getDiags())) { 623 // Indicate that we want to instrument return control flow protection. 624 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 625 1); 626 } 627 628 if (CodeGenOpts.CFProtectionBranch && 629 Target.checkCFProtectionBranchSupported(getDiags())) { 630 // Indicate that we want to instrument branch control flow protection. 631 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 632 1); 633 } 634 635 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 636 Arch == llvm::Triple::aarch64_be) { 637 getModule().addModuleFlag(llvm::Module::Error, 638 "branch-target-enforcement", 639 LangOpts.BranchTargetEnforcement); 640 641 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 642 LangOpts.hasSignReturnAddress()); 643 644 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 645 LangOpts.isSignReturnAddressScopeAll()); 646 647 getModule().addModuleFlag(llvm::Module::Error, 648 "sign-return-address-with-bkey", 649 !LangOpts.isSignReturnAddressWithAKey()); 650 } 651 652 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 653 llvm::LLVMContext &Ctx = TheModule.getContext(); 654 getModule().addModuleFlag( 655 llvm::Module::Error, "MemProfProfileFilename", 656 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 657 } 658 659 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 660 // Indicate whether __nvvm_reflect should be configured to flush denormal 661 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 662 // property.) 663 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 664 CodeGenOpts.FP32DenormalMode.Output != 665 llvm::DenormalMode::IEEE); 666 } 667 668 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 669 if (LangOpts.OpenCL) { 670 EmitOpenCLMetadata(); 671 // Emit SPIR version. 672 if (getTriple().isSPIR()) { 673 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 674 // opencl.spir.version named metadata. 675 // C++ is backwards compatible with OpenCL v2.0. 676 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 677 llvm::Metadata *SPIRVerElts[] = { 678 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 679 Int32Ty, Version / 100)), 680 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 681 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 682 llvm::NamedMDNode *SPIRVerMD = 683 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 684 llvm::LLVMContext &Ctx = TheModule.getContext(); 685 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 686 } 687 } 688 689 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 690 assert(PLevel < 3 && "Invalid PIC Level"); 691 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 692 if (Context.getLangOpts().PIE) 693 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 694 } 695 696 if (getCodeGenOpts().CodeModel.size() > 0) { 697 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 698 .Case("tiny", llvm::CodeModel::Tiny) 699 .Case("small", llvm::CodeModel::Small) 700 .Case("kernel", llvm::CodeModel::Kernel) 701 .Case("medium", llvm::CodeModel::Medium) 702 .Case("large", llvm::CodeModel::Large) 703 .Default(~0u); 704 if (CM != ~0u) { 705 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 706 getModule().setCodeModel(codeModel); 707 } 708 } 709 710 if (CodeGenOpts.NoPLT) 711 getModule().setRtLibUseGOT(); 712 713 SimplifyPersonality(); 714 715 if (getCodeGenOpts().EmitDeclMetadata) 716 EmitDeclMetadata(); 717 718 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 719 EmitCoverageFile(); 720 721 if (CGDebugInfo *DI = getModuleDebugInfo()) 722 DI->finalize(); 723 724 if (getCodeGenOpts().EmitVersionIdentMetadata) 725 EmitVersionIdentMetadata(); 726 727 if (!getCodeGenOpts().RecordCommandLine.empty()) 728 EmitCommandLineMetadata(); 729 730 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 731 732 EmitBackendOptionsMetadata(getCodeGenOpts()); 733 734 // Set visibility from DLL storage class 735 // We do this at the end of LLVM IR generation; after any operation 736 // that might affect the DLL storage class or the visibility, and 737 // before anything that might act on these. 738 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 739 } 740 741 void CodeGenModule::EmitOpenCLMetadata() { 742 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 743 // opencl.ocl.version named metadata node. 744 // C++ is backwards compatible with OpenCL v2.0. 745 // FIXME: We might need to add CXX version at some point too? 746 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 747 llvm::Metadata *OCLVerElts[] = { 748 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 749 Int32Ty, Version / 100)), 750 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 751 Int32Ty, (Version % 100) / 10))}; 752 llvm::NamedMDNode *OCLVerMD = 753 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 754 llvm::LLVMContext &Ctx = TheModule.getContext(); 755 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 756 } 757 758 void CodeGenModule::EmitBackendOptionsMetadata( 759 const CodeGenOptions CodeGenOpts) { 760 switch (getTriple().getArch()) { 761 default: 762 break; 763 case llvm::Triple::riscv32: 764 case llvm::Triple::riscv64: 765 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 766 CodeGenOpts.SmallDataLimit); 767 break; 768 } 769 } 770 771 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 772 // Make sure that this type is translated. 773 Types.UpdateCompletedType(TD); 774 } 775 776 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 777 // Make sure that this type is translated. 778 Types.RefreshTypeCacheForClass(RD); 779 } 780 781 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 782 if (!TBAA) 783 return nullptr; 784 return TBAA->getTypeInfo(QTy); 785 } 786 787 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 788 if (!TBAA) 789 return TBAAAccessInfo(); 790 if (getLangOpts().CUDAIsDevice) { 791 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 792 // access info. 793 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 794 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 795 nullptr) 796 return TBAAAccessInfo(); 797 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 798 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 799 nullptr) 800 return TBAAAccessInfo(); 801 } 802 } 803 return TBAA->getAccessInfo(AccessType); 804 } 805 806 TBAAAccessInfo 807 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 808 if (!TBAA) 809 return TBAAAccessInfo(); 810 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 811 } 812 813 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 814 if (!TBAA) 815 return nullptr; 816 return TBAA->getTBAAStructInfo(QTy); 817 } 818 819 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 820 if (!TBAA) 821 return nullptr; 822 return TBAA->getBaseTypeInfo(QTy); 823 } 824 825 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 826 if (!TBAA) 827 return nullptr; 828 return TBAA->getAccessTagInfo(Info); 829 } 830 831 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 832 TBAAAccessInfo TargetInfo) { 833 if (!TBAA) 834 return TBAAAccessInfo(); 835 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 836 } 837 838 TBAAAccessInfo 839 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 840 TBAAAccessInfo InfoB) { 841 if (!TBAA) 842 return TBAAAccessInfo(); 843 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 844 } 845 846 TBAAAccessInfo 847 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 848 TBAAAccessInfo SrcInfo) { 849 if (!TBAA) 850 return TBAAAccessInfo(); 851 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 852 } 853 854 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 855 TBAAAccessInfo TBAAInfo) { 856 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 857 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 858 } 859 860 void CodeGenModule::DecorateInstructionWithInvariantGroup( 861 llvm::Instruction *I, const CXXRecordDecl *RD) { 862 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 863 llvm::MDNode::get(getLLVMContext(), {})); 864 } 865 866 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 867 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 868 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 869 } 870 871 /// ErrorUnsupported - Print out an error that codegen doesn't support the 872 /// specified stmt yet. 873 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 874 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 875 "cannot compile this %0 yet"); 876 std::string Msg = Type; 877 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 878 << Msg << S->getSourceRange(); 879 } 880 881 /// ErrorUnsupported - Print out an error that codegen doesn't support the 882 /// specified decl yet. 883 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 884 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 885 "cannot compile this %0 yet"); 886 std::string Msg = Type; 887 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 888 } 889 890 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 891 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 892 } 893 894 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 895 const NamedDecl *D) const { 896 if (GV->hasDLLImportStorageClass()) 897 return; 898 // Internal definitions always have default visibility. 899 if (GV->hasLocalLinkage()) { 900 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 901 return; 902 } 903 if (!D) 904 return; 905 // Set visibility for definitions, and for declarations if requested globally 906 // or set explicitly. 907 LinkageInfo LV = D->getLinkageAndVisibility(); 908 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 909 !GV->isDeclarationForLinker()) 910 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 911 } 912 913 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 914 llvm::GlobalValue *GV) { 915 if (GV->hasLocalLinkage()) 916 return true; 917 918 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 919 return true; 920 921 // DLLImport explicitly marks the GV as external. 922 if (GV->hasDLLImportStorageClass()) 923 return false; 924 925 const llvm::Triple &TT = CGM.getTriple(); 926 if (TT.isWindowsGNUEnvironment()) { 927 // In MinGW, variables without DLLImport can still be automatically 928 // imported from a DLL by the linker; don't mark variables that 929 // potentially could come from another DLL as DSO local. 930 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 931 !GV->isThreadLocal()) 932 return false; 933 } 934 935 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 936 // remain unresolved in the link, they can be resolved to zero, which is 937 // outside the current DSO. 938 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 939 return false; 940 941 // Every other GV is local on COFF. 942 // Make an exception for windows OS in the triple: Some firmware builds use 943 // *-win32-macho triples. This (accidentally?) produced windows relocations 944 // without GOT tables in older clang versions; Keep this behaviour. 945 // FIXME: even thread local variables? 946 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 947 return true; 948 949 // Only handle COFF and ELF for now. 950 if (!TT.isOSBinFormatELF()) 951 return false; 952 953 // If this is not an executable, don't assume anything is local. 954 const auto &CGOpts = CGM.getCodeGenOpts(); 955 llvm::Reloc::Model RM = CGOpts.RelocationModel; 956 const auto &LOpts = CGM.getLangOpts(); 957 if (RM != llvm::Reloc::Static && !LOpts.PIE) 958 return false; 959 960 // A definition cannot be preempted from an executable. 961 if (!GV->isDeclarationForLinker()) 962 return true; 963 964 // Most PIC code sequences that assume that a symbol is local cannot produce a 965 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 966 // depended, it seems worth it to handle it here. 967 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 968 return false; 969 970 // PowerPC64 prefers TOC indirection to avoid copy relocations. 971 if (TT.isPPC64()) 972 return false; 973 974 // If we can use copy relocations we can assume it is local. 975 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 976 if (!Var->isThreadLocal() && 977 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 978 return true; 979 980 // If we can use a plt entry as the symbol address we can assume it 981 // is local. 982 // FIXME: This should work for PIE, but the gold linker doesn't support it. 983 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 984 return true; 985 986 // Otherwise don't assume it is local. 987 return false; 988 } 989 990 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 991 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 992 } 993 994 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 995 GlobalDecl GD) const { 996 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 997 // C++ destructors have a few C++ ABI specific special cases. 998 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 999 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1000 return; 1001 } 1002 setDLLImportDLLExport(GV, D); 1003 } 1004 1005 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1006 const NamedDecl *D) const { 1007 if (D && D->isExternallyVisible()) { 1008 if (D->hasAttr<DLLImportAttr>()) 1009 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1010 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1011 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1012 } 1013 } 1014 1015 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1016 GlobalDecl GD) const { 1017 setDLLImportDLLExport(GV, GD); 1018 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1019 } 1020 1021 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1022 const NamedDecl *D) const { 1023 setDLLImportDLLExport(GV, D); 1024 setGVPropertiesAux(GV, D); 1025 } 1026 1027 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1028 const NamedDecl *D) const { 1029 setGlobalVisibility(GV, D); 1030 setDSOLocal(GV); 1031 GV->setPartition(CodeGenOpts.SymbolPartition); 1032 } 1033 1034 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1035 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1036 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1037 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1038 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1039 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1040 } 1041 1042 llvm::GlobalVariable::ThreadLocalMode 1043 CodeGenModule::GetDefaultLLVMTLSModel() const { 1044 switch (CodeGenOpts.getDefaultTLSModel()) { 1045 case CodeGenOptions::GeneralDynamicTLSModel: 1046 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1047 case CodeGenOptions::LocalDynamicTLSModel: 1048 return llvm::GlobalVariable::LocalDynamicTLSModel; 1049 case CodeGenOptions::InitialExecTLSModel: 1050 return llvm::GlobalVariable::InitialExecTLSModel; 1051 case CodeGenOptions::LocalExecTLSModel: 1052 return llvm::GlobalVariable::LocalExecTLSModel; 1053 } 1054 llvm_unreachable("Invalid TLS model!"); 1055 } 1056 1057 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1058 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1059 1060 llvm::GlobalValue::ThreadLocalMode TLM; 1061 TLM = GetDefaultLLVMTLSModel(); 1062 1063 // Override the TLS model if it is explicitly specified. 1064 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1065 TLM = GetLLVMTLSModel(Attr->getModel()); 1066 } 1067 1068 GV->setThreadLocalMode(TLM); 1069 } 1070 1071 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1072 StringRef Name) { 1073 const TargetInfo &Target = CGM.getTarget(); 1074 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1075 } 1076 1077 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1078 const CPUSpecificAttr *Attr, 1079 unsigned CPUIndex, 1080 raw_ostream &Out) { 1081 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1082 // supported. 1083 if (Attr) 1084 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1085 else if (CGM.getTarget().supportsIFunc()) 1086 Out << ".resolver"; 1087 } 1088 1089 static void AppendTargetMangling(const CodeGenModule &CGM, 1090 const TargetAttr *Attr, raw_ostream &Out) { 1091 if (Attr->isDefaultVersion()) 1092 return; 1093 1094 Out << '.'; 1095 const TargetInfo &Target = CGM.getTarget(); 1096 ParsedTargetAttr Info = 1097 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1098 // Multiversioning doesn't allow "no-${feature}", so we can 1099 // only have "+" prefixes here. 1100 assert(LHS.startswith("+") && RHS.startswith("+") && 1101 "Features should always have a prefix."); 1102 return Target.multiVersionSortPriority(LHS.substr(1)) > 1103 Target.multiVersionSortPriority(RHS.substr(1)); 1104 }); 1105 1106 bool IsFirst = true; 1107 1108 if (!Info.Architecture.empty()) { 1109 IsFirst = false; 1110 Out << "arch_" << Info.Architecture; 1111 } 1112 1113 for (StringRef Feat : Info.Features) { 1114 if (!IsFirst) 1115 Out << '_'; 1116 IsFirst = false; 1117 Out << Feat.substr(1); 1118 } 1119 } 1120 1121 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1122 const NamedDecl *ND, 1123 bool OmitMultiVersionMangling = false) { 1124 SmallString<256> Buffer; 1125 llvm::raw_svector_ostream Out(Buffer); 1126 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1127 if (MC.shouldMangleDeclName(ND)) 1128 MC.mangleName(GD.getWithDecl(ND), Out); 1129 else { 1130 IdentifierInfo *II = ND->getIdentifier(); 1131 assert(II && "Attempt to mangle unnamed decl."); 1132 const auto *FD = dyn_cast<FunctionDecl>(ND); 1133 1134 if (FD && 1135 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1136 Out << "__regcall3__" << II->getName(); 1137 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1138 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1139 Out << "__device_stub__" << II->getName(); 1140 } else { 1141 Out << II->getName(); 1142 } 1143 } 1144 1145 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1146 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1147 switch (FD->getMultiVersionKind()) { 1148 case MultiVersionKind::CPUDispatch: 1149 case MultiVersionKind::CPUSpecific: 1150 AppendCPUSpecificCPUDispatchMangling(CGM, 1151 FD->getAttr<CPUSpecificAttr>(), 1152 GD.getMultiVersionIndex(), Out); 1153 break; 1154 case MultiVersionKind::Target: 1155 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1156 break; 1157 case MultiVersionKind::None: 1158 llvm_unreachable("None multiversion type isn't valid here"); 1159 } 1160 } 1161 1162 return std::string(Out.str()); 1163 } 1164 1165 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1166 const FunctionDecl *FD) { 1167 if (!FD->isMultiVersion()) 1168 return; 1169 1170 // Get the name of what this would be without the 'target' attribute. This 1171 // allows us to lookup the version that was emitted when this wasn't a 1172 // multiversion function. 1173 std::string NonTargetName = 1174 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1175 GlobalDecl OtherGD; 1176 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1177 assert(OtherGD.getCanonicalDecl() 1178 .getDecl() 1179 ->getAsFunction() 1180 ->isMultiVersion() && 1181 "Other GD should now be a multiversioned function"); 1182 // OtherFD is the version of this function that was mangled BEFORE 1183 // becoming a MultiVersion function. It potentially needs to be updated. 1184 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1185 .getDecl() 1186 ->getAsFunction() 1187 ->getMostRecentDecl(); 1188 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1189 // This is so that if the initial version was already the 'default' 1190 // version, we don't try to update it. 1191 if (OtherName != NonTargetName) { 1192 // Remove instead of erase, since others may have stored the StringRef 1193 // to this. 1194 const auto ExistingRecord = Manglings.find(NonTargetName); 1195 if (ExistingRecord != std::end(Manglings)) 1196 Manglings.remove(&(*ExistingRecord)); 1197 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1198 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1199 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1200 Entry->setName(OtherName); 1201 } 1202 } 1203 } 1204 1205 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1206 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1207 1208 // Some ABIs don't have constructor variants. Make sure that base and 1209 // complete constructors get mangled the same. 1210 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1211 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1212 CXXCtorType OrigCtorType = GD.getCtorType(); 1213 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1214 if (OrigCtorType == Ctor_Base) 1215 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1216 } 1217 } 1218 1219 auto FoundName = MangledDeclNames.find(CanonicalGD); 1220 if (FoundName != MangledDeclNames.end()) 1221 return FoundName->second; 1222 1223 // Keep the first result in the case of a mangling collision. 1224 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1225 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1226 1227 // Ensure either we have different ABIs between host and device compilations, 1228 // says host compilation following MSVC ABI but device compilation follows 1229 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1230 // mangling should be the same after name stubbing. The later checking is 1231 // very important as the device kernel name being mangled in host-compilation 1232 // is used to resolve the device binaries to be executed. Inconsistent naming 1233 // result in undefined behavior. Even though we cannot check that naming 1234 // directly between host- and device-compilations, the host- and 1235 // device-mangling in host compilation could help catching certain ones. 1236 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1237 getLangOpts().CUDAIsDevice || 1238 (getContext().getAuxTargetInfo() && 1239 (getContext().getAuxTargetInfo()->getCXXABI() != 1240 getContext().getTargetInfo().getCXXABI())) || 1241 getCUDARuntime().getDeviceSideName(ND) == 1242 getMangledNameImpl( 1243 *this, 1244 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1245 ND)); 1246 1247 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1248 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1249 } 1250 1251 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1252 const BlockDecl *BD) { 1253 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1254 const Decl *D = GD.getDecl(); 1255 1256 SmallString<256> Buffer; 1257 llvm::raw_svector_ostream Out(Buffer); 1258 if (!D) 1259 MangleCtx.mangleGlobalBlock(BD, 1260 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1261 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1262 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1263 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1264 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1265 else 1266 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1267 1268 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1269 return Result.first->first(); 1270 } 1271 1272 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1273 return getModule().getNamedValue(Name); 1274 } 1275 1276 /// AddGlobalCtor - Add a function to the list that will be called before 1277 /// main() runs. 1278 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1279 llvm::Constant *AssociatedData) { 1280 // FIXME: Type coercion of void()* types. 1281 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1282 } 1283 1284 /// AddGlobalDtor - Add a function to the list that will be called 1285 /// when the module is unloaded. 1286 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1287 bool IsDtorAttrFunc) { 1288 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1289 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1290 DtorsUsingAtExit[Priority].push_back(Dtor); 1291 return; 1292 } 1293 1294 // FIXME: Type coercion of void()* types. 1295 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1296 } 1297 1298 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1299 if (Fns.empty()) return; 1300 1301 // Ctor function type is void()*. 1302 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1303 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1304 TheModule.getDataLayout().getProgramAddressSpace()); 1305 1306 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1307 llvm::StructType *CtorStructTy = llvm::StructType::get( 1308 Int32Ty, CtorPFTy, VoidPtrTy); 1309 1310 // Construct the constructor and destructor arrays. 1311 ConstantInitBuilder builder(*this); 1312 auto ctors = builder.beginArray(CtorStructTy); 1313 for (const auto &I : Fns) { 1314 auto ctor = ctors.beginStruct(CtorStructTy); 1315 ctor.addInt(Int32Ty, I.Priority); 1316 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1317 if (I.AssociatedData) 1318 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1319 else 1320 ctor.addNullPointer(VoidPtrTy); 1321 ctor.finishAndAddTo(ctors); 1322 } 1323 1324 auto list = 1325 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1326 /*constant*/ false, 1327 llvm::GlobalValue::AppendingLinkage); 1328 1329 // The LTO linker doesn't seem to like it when we set an alignment 1330 // on appending variables. Take it off as a workaround. 1331 list->setAlignment(llvm::None); 1332 1333 Fns.clear(); 1334 } 1335 1336 llvm::GlobalValue::LinkageTypes 1337 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1338 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1339 1340 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1341 1342 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1343 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1344 1345 if (isa<CXXConstructorDecl>(D) && 1346 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1347 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1348 // Our approach to inheriting constructors is fundamentally different from 1349 // that used by the MS ABI, so keep our inheriting constructor thunks 1350 // internal rather than trying to pick an unambiguous mangling for them. 1351 return llvm::GlobalValue::InternalLinkage; 1352 } 1353 1354 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1355 } 1356 1357 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1358 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1359 if (!MDS) return nullptr; 1360 1361 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1362 } 1363 1364 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1365 const CGFunctionInfo &Info, 1366 llvm::Function *F) { 1367 unsigned CallingConv; 1368 llvm::AttributeList PAL; 1369 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1370 F->setAttributes(PAL); 1371 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1372 } 1373 1374 static void removeImageAccessQualifier(std::string& TyName) { 1375 std::string ReadOnlyQual("__read_only"); 1376 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1377 if (ReadOnlyPos != std::string::npos) 1378 // "+ 1" for the space after access qualifier. 1379 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1380 else { 1381 std::string WriteOnlyQual("__write_only"); 1382 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1383 if (WriteOnlyPos != std::string::npos) 1384 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1385 else { 1386 std::string ReadWriteQual("__read_write"); 1387 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1388 if (ReadWritePos != std::string::npos) 1389 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1390 } 1391 } 1392 } 1393 1394 // Returns the address space id that should be produced to the 1395 // kernel_arg_addr_space metadata. This is always fixed to the ids 1396 // as specified in the SPIR 2.0 specification in order to differentiate 1397 // for example in clGetKernelArgInfo() implementation between the address 1398 // spaces with targets without unique mapping to the OpenCL address spaces 1399 // (basically all single AS CPUs). 1400 static unsigned ArgInfoAddressSpace(LangAS AS) { 1401 switch (AS) { 1402 case LangAS::opencl_global: 1403 return 1; 1404 case LangAS::opencl_constant: 1405 return 2; 1406 case LangAS::opencl_local: 1407 return 3; 1408 case LangAS::opencl_generic: 1409 return 4; // Not in SPIR 2.0 specs. 1410 case LangAS::opencl_global_device: 1411 return 5; 1412 case LangAS::opencl_global_host: 1413 return 6; 1414 default: 1415 return 0; // Assume private. 1416 } 1417 } 1418 1419 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1420 const FunctionDecl *FD, 1421 CodeGenFunction *CGF) { 1422 assert(((FD && CGF) || (!FD && !CGF)) && 1423 "Incorrect use - FD and CGF should either be both null or not!"); 1424 // Create MDNodes that represent the kernel arg metadata. 1425 // Each MDNode is a list in the form of "key", N number of values which is 1426 // the same number of values as their are kernel arguments. 1427 1428 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1429 1430 // MDNode for the kernel argument address space qualifiers. 1431 SmallVector<llvm::Metadata *, 8> addressQuals; 1432 1433 // MDNode for the kernel argument access qualifiers (images only). 1434 SmallVector<llvm::Metadata *, 8> accessQuals; 1435 1436 // MDNode for the kernel argument type names. 1437 SmallVector<llvm::Metadata *, 8> argTypeNames; 1438 1439 // MDNode for the kernel argument base type names. 1440 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1441 1442 // MDNode for the kernel argument type qualifiers. 1443 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1444 1445 // MDNode for the kernel argument names. 1446 SmallVector<llvm::Metadata *, 8> argNames; 1447 1448 if (FD && CGF) 1449 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1450 const ParmVarDecl *parm = FD->getParamDecl(i); 1451 QualType ty = parm->getType(); 1452 std::string typeQuals; 1453 1454 if (ty->isPointerType()) { 1455 QualType pointeeTy = ty->getPointeeType(); 1456 1457 // Get address qualifier. 1458 addressQuals.push_back( 1459 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1460 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1461 1462 // Get argument type name. 1463 std::string typeName = 1464 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1465 1466 // Turn "unsigned type" to "utype" 1467 std::string::size_type pos = typeName.find("unsigned"); 1468 if (pointeeTy.isCanonical() && pos != std::string::npos) 1469 typeName.erase(pos + 1, 8); 1470 1471 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1472 1473 std::string baseTypeName = 1474 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1475 Policy) + 1476 "*"; 1477 1478 // Turn "unsigned type" to "utype" 1479 pos = baseTypeName.find("unsigned"); 1480 if (pos != std::string::npos) 1481 baseTypeName.erase(pos + 1, 8); 1482 1483 argBaseTypeNames.push_back( 1484 llvm::MDString::get(VMContext, baseTypeName)); 1485 1486 // Get argument type qualifiers: 1487 if (ty.isRestrictQualified()) 1488 typeQuals = "restrict"; 1489 if (pointeeTy.isConstQualified() || 1490 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1491 typeQuals += typeQuals.empty() ? "const" : " const"; 1492 if (pointeeTy.isVolatileQualified()) 1493 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1494 } else { 1495 uint32_t AddrSpc = 0; 1496 bool isPipe = ty->isPipeType(); 1497 if (ty->isImageType() || isPipe) 1498 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1499 1500 addressQuals.push_back( 1501 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1502 1503 // Get argument type name. 1504 std::string typeName; 1505 if (isPipe) 1506 typeName = ty.getCanonicalType() 1507 ->castAs<PipeType>() 1508 ->getElementType() 1509 .getAsString(Policy); 1510 else 1511 typeName = ty.getUnqualifiedType().getAsString(Policy); 1512 1513 // Turn "unsigned type" to "utype" 1514 std::string::size_type pos = typeName.find("unsigned"); 1515 if (ty.isCanonical() && pos != std::string::npos) 1516 typeName.erase(pos + 1, 8); 1517 1518 std::string baseTypeName; 1519 if (isPipe) 1520 baseTypeName = ty.getCanonicalType() 1521 ->castAs<PipeType>() 1522 ->getElementType() 1523 .getCanonicalType() 1524 .getAsString(Policy); 1525 else 1526 baseTypeName = 1527 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1528 1529 // Remove access qualifiers on images 1530 // (as they are inseparable from type in clang implementation, 1531 // but OpenCL spec provides a special query to get access qualifier 1532 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1533 if (ty->isImageType()) { 1534 removeImageAccessQualifier(typeName); 1535 removeImageAccessQualifier(baseTypeName); 1536 } 1537 1538 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1539 1540 // Turn "unsigned type" to "utype" 1541 pos = baseTypeName.find("unsigned"); 1542 if (pos != std::string::npos) 1543 baseTypeName.erase(pos + 1, 8); 1544 1545 argBaseTypeNames.push_back( 1546 llvm::MDString::get(VMContext, baseTypeName)); 1547 1548 if (isPipe) 1549 typeQuals = "pipe"; 1550 } 1551 1552 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1553 1554 // Get image and pipe access qualifier: 1555 if (ty->isImageType() || ty->isPipeType()) { 1556 const Decl *PDecl = parm; 1557 if (auto *TD = dyn_cast<TypedefType>(ty)) 1558 PDecl = TD->getDecl(); 1559 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1560 if (A && A->isWriteOnly()) 1561 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1562 else if (A && A->isReadWrite()) 1563 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1564 else 1565 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1566 } else 1567 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1568 1569 // Get argument name. 1570 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1571 } 1572 1573 Fn->setMetadata("kernel_arg_addr_space", 1574 llvm::MDNode::get(VMContext, addressQuals)); 1575 Fn->setMetadata("kernel_arg_access_qual", 1576 llvm::MDNode::get(VMContext, accessQuals)); 1577 Fn->setMetadata("kernel_arg_type", 1578 llvm::MDNode::get(VMContext, argTypeNames)); 1579 Fn->setMetadata("kernel_arg_base_type", 1580 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1581 Fn->setMetadata("kernel_arg_type_qual", 1582 llvm::MDNode::get(VMContext, argTypeQuals)); 1583 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1584 Fn->setMetadata("kernel_arg_name", 1585 llvm::MDNode::get(VMContext, argNames)); 1586 } 1587 1588 /// Determines whether the language options require us to model 1589 /// unwind exceptions. We treat -fexceptions as mandating this 1590 /// except under the fragile ObjC ABI with only ObjC exceptions 1591 /// enabled. This means, for example, that C with -fexceptions 1592 /// enables this. 1593 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1594 // If exceptions are completely disabled, obviously this is false. 1595 if (!LangOpts.Exceptions) return false; 1596 1597 // If C++ exceptions are enabled, this is true. 1598 if (LangOpts.CXXExceptions) return true; 1599 1600 // If ObjC exceptions are enabled, this depends on the ABI. 1601 if (LangOpts.ObjCExceptions) { 1602 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1603 } 1604 1605 return true; 1606 } 1607 1608 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1609 const CXXMethodDecl *MD) { 1610 // Check that the type metadata can ever actually be used by a call. 1611 if (!CGM.getCodeGenOpts().LTOUnit || 1612 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1613 return false; 1614 1615 // Only functions whose address can be taken with a member function pointer 1616 // need this sort of type metadata. 1617 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1618 !isa<CXXDestructorDecl>(MD); 1619 } 1620 1621 std::vector<const CXXRecordDecl *> 1622 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1623 llvm::SetVector<const CXXRecordDecl *> MostBases; 1624 1625 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1626 CollectMostBases = [&](const CXXRecordDecl *RD) { 1627 if (RD->getNumBases() == 0) 1628 MostBases.insert(RD); 1629 for (const CXXBaseSpecifier &B : RD->bases()) 1630 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1631 }; 1632 CollectMostBases(RD); 1633 return MostBases.takeVector(); 1634 } 1635 1636 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1637 llvm::Function *F) { 1638 llvm::AttrBuilder B; 1639 1640 if (CodeGenOpts.UnwindTables) 1641 B.addAttribute(llvm::Attribute::UWTable); 1642 1643 if (CodeGenOpts.StackClashProtector) 1644 B.addAttribute("probe-stack", "inline-asm"); 1645 1646 if (!hasUnwindExceptions(LangOpts)) 1647 B.addAttribute(llvm::Attribute::NoUnwind); 1648 1649 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1650 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1651 B.addAttribute(llvm::Attribute::StackProtect); 1652 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1653 B.addAttribute(llvm::Attribute::StackProtectStrong); 1654 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1655 B.addAttribute(llvm::Attribute::StackProtectReq); 1656 } 1657 1658 if (!D) { 1659 // If we don't have a declaration to control inlining, the function isn't 1660 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1661 // disabled, mark the function as noinline. 1662 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1663 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1664 B.addAttribute(llvm::Attribute::NoInline); 1665 1666 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1667 return; 1668 } 1669 1670 // Track whether we need to add the optnone LLVM attribute, 1671 // starting with the default for this optimization level. 1672 bool ShouldAddOptNone = 1673 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1674 // We can't add optnone in the following cases, it won't pass the verifier. 1675 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1676 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1677 1678 // Add optnone, but do so only if the function isn't always_inline. 1679 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1680 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1681 B.addAttribute(llvm::Attribute::OptimizeNone); 1682 1683 // OptimizeNone implies noinline; we should not be inlining such functions. 1684 B.addAttribute(llvm::Attribute::NoInline); 1685 1686 // We still need to handle naked functions even though optnone subsumes 1687 // much of their semantics. 1688 if (D->hasAttr<NakedAttr>()) 1689 B.addAttribute(llvm::Attribute::Naked); 1690 1691 // OptimizeNone wins over OptimizeForSize and MinSize. 1692 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1693 F->removeFnAttr(llvm::Attribute::MinSize); 1694 } else if (D->hasAttr<NakedAttr>()) { 1695 // Naked implies noinline: we should not be inlining such functions. 1696 B.addAttribute(llvm::Attribute::Naked); 1697 B.addAttribute(llvm::Attribute::NoInline); 1698 } else if (D->hasAttr<NoDuplicateAttr>()) { 1699 B.addAttribute(llvm::Attribute::NoDuplicate); 1700 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1701 // Add noinline if the function isn't always_inline. 1702 B.addAttribute(llvm::Attribute::NoInline); 1703 } else if (D->hasAttr<AlwaysInlineAttr>() && 1704 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1705 // (noinline wins over always_inline, and we can't specify both in IR) 1706 B.addAttribute(llvm::Attribute::AlwaysInline); 1707 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1708 // If we're not inlining, then force everything that isn't always_inline to 1709 // carry an explicit noinline attribute. 1710 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1711 B.addAttribute(llvm::Attribute::NoInline); 1712 } else { 1713 // Otherwise, propagate the inline hint attribute and potentially use its 1714 // absence to mark things as noinline. 1715 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1716 // Search function and template pattern redeclarations for inline. 1717 auto CheckForInline = [](const FunctionDecl *FD) { 1718 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1719 return Redecl->isInlineSpecified(); 1720 }; 1721 if (any_of(FD->redecls(), CheckRedeclForInline)) 1722 return true; 1723 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1724 if (!Pattern) 1725 return false; 1726 return any_of(Pattern->redecls(), CheckRedeclForInline); 1727 }; 1728 if (CheckForInline(FD)) { 1729 B.addAttribute(llvm::Attribute::InlineHint); 1730 } else if (CodeGenOpts.getInlining() == 1731 CodeGenOptions::OnlyHintInlining && 1732 !FD->isInlined() && 1733 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1734 B.addAttribute(llvm::Attribute::NoInline); 1735 } 1736 } 1737 } 1738 1739 // Add other optimization related attributes if we are optimizing this 1740 // function. 1741 if (!D->hasAttr<OptimizeNoneAttr>()) { 1742 if (D->hasAttr<ColdAttr>()) { 1743 if (!ShouldAddOptNone) 1744 B.addAttribute(llvm::Attribute::OptimizeForSize); 1745 B.addAttribute(llvm::Attribute::Cold); 1746 } 1747 if (D->hasAttr<HotAttr>()) { 1748 if (!ShouldAddOptNone) 1749 B.addAttribute(llvm::Attribute::OptimizeForSize); 1750 // xur 1751 // B.addAttribute(llvm::Attribute::Hot); 1752 fprintf(stderr, "hihi 1\n"); 1753 } 1754 1755 if (D->hasAttr<MinSizeAttr>()) 1756 B.addAttribute(llvm::Attribute::MinSize); 1757 } 1758 1759 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1760 1761 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1762 if (alignment) 1763 F->setAlignment(llvm::Align(alignment)); 1764 1765 if (!D->hasAttr<AlignedAttr>()) 1766 if (LangOpts.FunctionAlignment) 1767 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1768 1769 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1770 // reserve a bit for differentiating between virtual and non-virtual member 1771 // functions. If the current target's C++ ABI requires this and this is a 1772 // member function, set its alignment accordingly. 1773 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1774 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1775 F->setAlignment(llvm::Align(2)); 1776 } 1777 1778 // In the cross-dso CFI mode with canonical jump tables, we want !type 1779 // attributes on definitions only. 1780 if (CodeGenOpts.SanitizeCfiCrossDso && 1781 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1782 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1783 // Skip available_externally functions. They won't be codegen'ed in the 1784 // current module anyway. 1785 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1786 CreateFunctionTypeMetadataForIcall(FD, F); 1787 } 1788 } 1789 1790 // Emit type metadata on member functions for member function pointer checks. 1791 // These are only ever necessary on definitions; we're guaranteed that the 1792 // definition will be present in the LTO unit as a result of LTO visibility. 1793 auto *MD = dyn_cast<CXXMethodDecl>(D); 1794 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1795 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1796 llvm::Metadata *Id = 1797 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1798 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1799 F->addTypeMetadata(0, Id); 1800 } 1801 } 1802 } 1803 1804 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1805 llvm::Function *F) { 1806 if (D->hasAttr<StrictFPAttr>()) { 1807 llvm::AttrBuilder FuncAttrs; 1808 FuncAttrs.addAttribute("strictfp"); 1809 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1810 } 1811 } 1812 1813 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1814 const Decl *D = GD.getDecl(); 1815 if (dyn_cast_or_null<NamedDecl>(D)) 1816 setGVProperties(GV, GD); 1817 else 1818 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1819 1820 if (D && D->hasAttr<UsedAttr>()) 1821 addUsedGlobal(GV); 1822 1823 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1824 const auto *VD = cast<VarDecl>(D); 1825 if (VD->getType().isConstQualified() && 1826 VD->getStorageDuration() == SD_Static) 1827 addUsedGlobal(GV); 1828 } 1829 } 1830 1831 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1832 llvm::AttrBuilder &Attrs) { 1833 // Add target-cpu and target-features attributes to functions. If 1834 // we have a decl for the function and it has a target attribute then 1835 // parse that and add it to the feature set. 1836 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1837 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1838 std::vector<std::string> Features; 1839 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1840 FD = FD ? FD->getMostRecentDecl() : FD; 1841 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1842 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1843 bool AddedAttr = false; 1844 if (TD || SD) { 1845 llvm::StringMap<bool> FeatureMap; 1846 getContext().getFunctionFeatureMap(FeatureMap, GD); 1847 1848 // Produce the canonical string for this set of features. 1849 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1850 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1851 1852 // Now add the target-cpu and target-features to the function. 1853 // While we populated the feature map above, we still need to 1854 // get and parse the target attribute so we can get the cpu for 1855 // the function. 1856 if (TD) { 1857 ParsedTargetAttr ParsedAttr = TD->parse(); 1858 if (!ParsedAttr.Architecture.empty() && 1859 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1860 TargetCPU = ParsedAttr.Architecture; 1861 TuneCPU = ""; // Clear the tune CPU. 1862 } 1863 if (!ParsedAttr.Tune.empty() && 1864 getTarget().isValidCPUName(ParsedAttr.Tune)) 1865 TuneCPU = ParsedAttr.Tune; 1866 } 1867 } else { 1868 // Otherwise just add the existing target cpu and target features to the 1869 // function. 1870 Features = getTarget().getTargetOpts().Features; 1871 } 1872 1873 if (!TargetCPU.empty()) { 1874 Attrs.addAttribute("target-cpu", TargetCPU); 1875 AddedAttr = true; 1876 } 1877 if (!TuneCPU.empty()) { 1878 Attrs.addAttribute("tune-cpu", TuneCPU); 1879 AddedAttr = true; 1880 } 1881 if (!Features.empty()) { 1882 llvm::sort(Features); 1883 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1884 AddedAttr = true; 1885 } 1886 1887 return AddedAttr; 1888 } 1889 1890 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1891 llvm::GlobalObject *GO) { 1892 const Decl *D = GD.getDecl(); 1893 SetCommonAttributes(GD, GO); 1894 1895 if (D) { 1896 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1897 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1898 GV->addAttribute("bss-section", SA->getName()); 1899 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1900 GV->addAttribute("data-section", SA->getName()); 1901 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1902 GV->addAttribute("rodata-section", SA->getName()); 1903 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1904 GV->addAttribute("relro-section", SA->getName()); 1905 } 1906 1907 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1908 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1909 if (!D->getAttr<SectionAttr>()) 1910 F->addFnAttr("implicit-section-name", SA->getName()); 1911 1912 llvm::AttrBuilder Attrs; 1913 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1914 // We know that GetCPUAndFeaturesAttributes will always have the 1915 // newest set, since it has the newest possible FunctionDecl, so the 1916 // new ones should replace the old. 1917 llvm::AttrBuilder RemoveAttrs; 1918 RemoveAttrs.addAttribute("target-cpu"); 1919 RemoveAttrs.addAttribute("target-features"); 1920 RemoveAttrs.addAttribute("tune-cpu"); 1921 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1922 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1923 } 1924 } 1925 1926 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1927 GO->setSection(CSA->getName()); 1928 else if (const auto *SA = D->getAttr<SectionAttr>()) 1929 GO->setSection(SA->getName()); 1930 } 1931 1932 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1933 } 1934 1935 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1936 llvm::Function *F, 1937 const CGFunctionInfo &FI) { 1938 const Decl *D = GD.getDecl(); 1939 SetLLVMFunctionAttributes(GD, FI, F); 1940 SetLLVMFunctionAttributesForDefinition(D, F); 1941 1942 F->setLinkage(llvm::Function::InternalLinkage); 1943 1944 setNonAliasAttributes(GD, F); 1945 } 1946 1947 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1948 // Set linkage and visibility in case we never see a definition. 1949 LinkageInfo LV = ND->getLinkageAndVisibility(); 1950 // Don't set internal linkage on declarations. 1951 // "extern_weak" is overloaded in LLVM; we probably should have 1952 // separate linkage types for this. 1953 if (isExternallyVisible(LV.getLinkage()) && 1954 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1955 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1956 } 1957 1958 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1959 llvm::Function *F) { 1960 // Only if we are checking indirect calls. 1961 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1962 return; 1963 1964 // Non-static class methods are handled via vtable or member function pointer 1965 // checks elsewhere. 1966 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1967 return; 1968 1969 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1970 F->addTypeMetadata(0, MD); 1971 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1972 1973 // Emit a hash-based bit set entry for cross-DSO calls. 1974 if (CodeGenOpts.SanitizeCfiCrossDso) 1975 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1976 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1977 } 1978 1979 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1980 bool IsIncompleteFunction, 1981 bool IsThunk) { 1982 1983 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1984 // If this is an intrinsic function, set the function's attributes 1985 // to the intrinsic's attributes. 1986 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1987 return; 1988 } 1989 1990 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1991 1992 if (!IsIncompleteFunction) 1993 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1994 1995 // Add the Returned attribute for "this", except for iOS 5 and earlier 1996 // where substantial code, including the libstdc++ dylib, was compiled with 1997 // GCC and does not actually return "this". 1998 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1999 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2000 assert(!F->arg_empty() && 2001 F->arg_begin()->getType() 2002 ->canLosslesslyBitCastTo(F->getReturnType()) && 2003 "unexpected this return"); 2004 F->addAttribute(1, llvm::Attribute::Returned); 2005 } 2006 2007 // Only a few attributes are set on declarations; these may later be 2008 // overridden by a definition. 2009 2010 setLinkageForGV(F, FD); 2011 setGVProperties(F, FD); 2012 2013 // Setup target-specific attributes. 2014 if (!IsIncompleteFunction && F->isDeclaration()) 2015 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2016 2017 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2018 F->setSection(CSA->getName()); 2019 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2020 F->setSection(SA->getName()); 2021 2022 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2023 if (FD->isInlineBuiltinDeclaration()) { 2024 const FunctionDecl *FDBody; 2025 bool HasBody = FD->hasBody(FDBody); 2026 (void)HasBody; 2027 assert(HasBody && "Inline builtin declarations should always have an " 2028 "available body!"); 2029 if (shouldEmitFunction(FDBody)) 2030 F->addAttribute(llvm::AttributeList::FunctionIndex, 2031 llvm::Attribute::NoBuiltin); 2032 } 2033 2034 if (FD->isReplaceableGlobalAllocationFunction()) { 2035 // A replaceable global allocation function does not act like a builtin by 2036 // default, only if it is invoked by a new-expression or delete-expression. 2037 F->addAttribute(llvm::AttributeList::FunctionIndex, 2038 llvm::Attribute::NoBuiltin); 2039 } 2040 2041 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2042 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2043 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2044 if (MD->isVirtual()) 2045 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2046 2047 // Don't emit entries for function declarations in the cross-DSO mode. This 2048 // is handled with better precision by the receiving DSO. But if jump tables 2049 // are non-canonical then we need type metadata in order to produce the local 2050 // jump table. 2051 if (!CodeGenOpts.SanitizeCfiCrossDso || 2052 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2053 CreateFunctionTypeMetadataForIcall(FD, F); 2054 2055 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2056 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2057 2058 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2059 // Annotate the callback behavior as metadata: 2060 // - The callback callee (as argument number). 2061 // - The callback payloads (as argument numbers). 2062 llvm::LLVMContext &Ctx = F->getContext(); 2063 llvm::MDBuilder MDB(Ctx); 2064 2065 // The payload indices are all but the first one in the encoding. The first 2066 // identifies the callback callee. 2067 int CalleeIdx = *CB->encoding_begin(); 2068 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2069 F->addMetadata(llvm::LLVMContext::MD_callback, 2070 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2071 CalleeIdx, PayloadIndices, 2072 /* VarArgsArePassed */ false)})); 2073 } 2074 } 2075 2076 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2077 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2078 "Only globals with definition can force usage."); 2079 LLVMUsed.emplace_back(GV); 2080 } 2081 2082 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2083 assert(!GV->isDeclaration() && 2084 "Only globals with definition can force usage."); 2085 LLVMCompilerUsed.emplace_back(GV); 2086 } 2087 2088 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2089 std::vector<llvm::WeakTrackingVH> &List) { 2090 // Don't create llvm.used if there is no need. 2091 if (List.empty()) 2092 return; 2093 2094 // Convert List to what ConstantArray needs. 2095 SmallVector<llvm::Constant*, 8> UsedArray; 2096 UsedArray.resize(List.size()); 2097 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2098 UsedArray[i] = 2099 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2100 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2101 } 2102 2103 if (UsedArray.empty()) 2104 return; 2105 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2106 2107 auto *GV = new llvm::GlobalVariable( 2108 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2109 llvm::ConstantArray::get(ATy, UsedArray), Name); 2110 2111 GV->setSection("llvm.metadata"); 2112 } 2113 2114 void CodeGenModule::emitLLVMUsed() { 2115 emitUsed(*this, "llvm.used", LLVMUsed); 2116 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2117 } 2118 2119 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2120 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2121 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2122 } 2123 2124 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2125 llvm::SmallString<32> Opt; 2126 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2127 if (Opt.empty()) 2128 return; 2129 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2130 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2131 } 2132 2133 void CodeGenModule::AddDependentLib(StringRef Lib) { 2134 auto &C = getLLVMContext(); 2135 if (getTarget().getTriple().isOSBinFormatELF()) { 2136 ELFDependentLibraries.push_back( 2137 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2138 return; 2139 } 2140 2141 llvm::SmallString<24> Opt; 2142 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2143 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2144 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2145 } 2146 2147 /// Add link options implied by the given module, including modules 2148 /// it depends on, using a postorder walk. 2149 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2150 SmallVectorImpl<llvm::MDNode *> &Metadata, 2151 llvm::SmallPtrSet<Module *, 16> &Visited) { 2152 // Import this module's parent. 2153 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2154 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2155 } 2156 2157 // Import this module's dependencies. 2158 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2159 if (Visited.insert(Mod->Imports[I - 1]).second) 2160 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2161 } 2162 2163 // Add linker options to link against the libraries/frameworks 2164 // described by this module. 2165 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2166 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2167 2168 // For modules that use export_as for linking, use that module 2169 // name instead. 2170 if (Mod->UseExportAsModuleLinkName) 2171 return; 2172 2173 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2174 // Link against a framework. Frameworks are currently Darwin only, so we 2175 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2176 if (Mod->LinkLibraries[I-1].IsFramework) { 2177 llvm::Metadata *Args[2] = { 2178 llvm::MDString::get(Context, "-framework"), 2179 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2180 2181 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2182 continue; 2183 } 2184 2185 // Link against a library. 2186 if (IsELF) { 2187 llvm::Metadata *Args[2] = { 2188 llvm::MDString::get(Context, "lib"), 2189 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2190 }; 2191 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2192 } else { 2193 llvm::SmallString<24> Opt; 2194 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2195 Mod->LinkLibraries[I - 1].Library, Opt); 2196 auto *OptString = llvm::MDString::get(Context, Opt); 2197 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2198 } 2199 } 2200 } 2201 2202 void CodeGenModule::EmitModuleLinkOptions() { 2203 // Collect the set of all of the modules we want to visit to emit link 2204 // options, which is essentially the imported modules and all of their 2205 // non-explicit child modules. 2206 llvm::SetVector<clang::Module *> LinkModules; 2207 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2208 SmallVector<clang::Module *, 16> Stack; 2209 2210 // Seed the stack with imported modules. 2211 for (Module *M : ImportedModules) { 2212 // Do not add any link flags when an implementation TU of a module imports 2213 // a header of that same module. 2214 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2215 !getLangOpts().isCompilingModule()) 2216 continue; 2217 if (Visited.insert(M).second) 2218 Stack.push_back(M); 2219 } 2220 2221 // Find all of the modules to import, making a little effort to prune 2222 // non-leaf modules. 2223 while (!Stack.empty()) { 2224 clang::Module *Mod = Stack.pop_back_val(); 2225 2226 bool AnyChildren = false; 2227 2228 // Visit the submodules of this module. 2229 for (const auto &SM : Mod->submodules()) { 2230 // Skip explicit children; they need to be explicitly imported to be 2231 // linked against. 2232 if (SM->IsExplicit) 2233 continue; 2234 2235 if (Visited.insert(SM).second) { 2236 Stack.push_back(SM); 2237 AnyChildren = true; 2238 } 2239 } 2240 2241 // We didn't find any children, so add this module to the list of 2242 // modules to link against. 2243 if (!AnyChildren) { 2244 LinkModules.insert(Mod); 2245 } 2246 } 2247 2248 // Add link options for all of the imported modules in reverse topological 2249 // order. We don't do anything to try to order import link flags with respect 2250 // to linker options inserted by things like #pragma comment(). 2251 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2252 Visited.clear(); 2253 for (Module *M : LinkModules) 2254 if (Visited.insert(M).second) 2255 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2256 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2257 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2258 2259 // Add the linker options metadata flag. 2260 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2261 for (auto *MD : LinkerOptionsMetadata) 2262 NMD->addOperand(MD); 2263 } 2264 2265 void CodeGenModule::EmitDeferred() { 2266 // Emit deferred declare target declarations. 2267 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2268 getOpenMPRuntime().emitDeferredTargetDecls(); 2269 2270 // Emit code for any potentially referenced deferred decls. Since a 2271 // previously unused static decl may become used during the generation of code 2272 // for a static function, iterate until no changes are made. 2273 2274 if (!DeferredVTables.empty()) { 2275 EmitDeferredVTables(); 2276 2277 // Emitting a vtable doesn't directly cause more vtables to 2278 // become deferred, although it can cause functions to be 2279 // emitted that then need those vtables. 2280 assert(DeferredVTables.empty()); 2281 } 2282 2283 // Emit CUDA/HIP static device variables referenced by host code only. 2284 if (getLangOpts().CUDA) 2285 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2286 DeferredDeclsToEmit.push_back(V); 2287 2288 // Stop if we're out of both deferred vtables and deferred declarations. 2289 if (DeferredDeclsToEmit.empty()) 2290 return; 2291 2292 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2293 // work, it will not interfere with this. 2294 std::vector<GlobalDecl> CurDeclsToEmit; 2295 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2296 2297 for (GlobalDecl &D : CurDeclsToEmit) { 2298 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2299 // to get GlobalValue with exactly the type we need, not something that 2300 // might had been created for another decl with the same mangled name but 2301 // different type. 2302 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2303 GetAddrOfGlobal(D, ForDefinition)); 2304 2305 // In case of different address spaces, we may still get a cast, even with 2306 // IsForDefinition equal to true. Query mangled names table to get 2307 // GlobalValue. 2308 if (!GV) 2309 GV = GetGlobalValue(getMangledName(D)); 2310 2311 // Make sure GetGlobalValue returned non-null. 2312 assert(GV); 2313 2314 // Check to see if we've already emitted this. This is necessary 2315 // for a couple of reasons: first, decls can end up in the 2316 // deferred-decls queue multiple times, and second, decls can end 2317 // up with definitions in unusual ways (e.g. by an extern inline 2318 // function acquiring a strong function redefinition). Just 2319 // ignore these cases. 2320 if (!GV->isDeclaration()) 2321 continue; 2322 2323 // If this is OpenMP, check if it is legal to emit this global normally. 2324 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2325 continue; 2326 2327 // Otherwise, emit the definition and move on to the next one. 2328 EmitGlobalDefinition(D, GV); 2329 2330 // If we found out that we need to emit more decls, do that recursively. 2331 // This has the advantage that the decls are emitted in a DFS and related 2332 // ones are close together, which is convenient for testing. 2333 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2334 EmitDeferred(); 2335 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2336 } 2337 } 2338 } 2339 2340 void CodeGenModule::EmitVTablesOpportunistically() { 2341 // Try to emit external vtables as available_externally if they have emitted 2342 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2343 // is not allowed to create new references to things that need to be emitted 2344 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2345 2346 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2347 && "Only emit opportunistic vtables with optimizations"); 2348 2349 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2350 assert(getVTables().isVTableExternal(RD) && 2351 "This queue should only contain external vtables"); 2352 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2353 VTables.GenerateClassData(RD); 2354 } 2355 OpportunisticVTables.clear(); 2356 } 2357 2358 void CodeGenModule::EmitGlobalAnnotations() { 2359 if (Annotations.empty()) 2360 return; 2361 2362 // Create a new global variable for the ConstantStruct in the Module. 2363 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2364 Annotations[0]->getType(), Annotations.size()), Annotations); 2365 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2366 llvm::GlobalValue::AppendingLinkage, 2367 Array, "llvm.global.annotations"); 2368 gv->setSection(AnnotationSection); 2369 } 2370 2371 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2372 llvm::Constant *&AStr = AnnotationStrings[Str]; 2373 if (AStr) 2374 return AStr; 2375 2376 // Not found yet, create a new global. 2377 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2378 auto *gv = 2379 new llvm::GlobalVariable(getModule(), s->getType(), true, 2380 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2381 gv->setSection(AnnotationSection); 2382 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2383 AStr = gv; 2384 return gv; 2385 } 2386 2387 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2388 SourceManager &SM = getContext().getSourceManager(); 2389 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2390 if (PLoc.isValid()) 2391 return EmitAnnotationString(PLoc.getFilename()); 2392 return EmitAnnotationString(SM.getBufferName(Loc)); 2393 } 2394 2395 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2396 SourceManager &SM = getContext().getSourceManager(); 2397 PresumedLoc PLoc = SM.getPresumedLoc(L); 2398 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2399 SM.getExpansionLineNumber(L); 2400 return llvm::ConstantInt::get(Int32Ty, LineNo); 2401 } 2402 2403 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2404 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2405 if (Exprs.empty()) 2406 return llvm::ConstantPointerNull::get(Int8PtrTy); 2407 2408 llvm::FoldingSetNodeID ID; 2409 for (Expr *E : Exprs) { 2410 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2411 } 2412 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2413 if (Lookup) 2414 return Lookup; 2415 2416 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2417 LLVMArgs.reserve(Exprs.size()); 2418 ConstantEmitter ConstEmiter(*this); 2419 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2420 const auto *CE = cast<clang::ConstantExpr>(E); 2421 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2422 CE->getType()); 2423 }); 2424 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2425 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2426 llvm::GlobalValue::PrivateLinkage, Struct, 2427 ".args"); 2428 GV->setSection(AnnotationSection); 2429 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2430 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2431 2432 Lookup = Bitcasted; 2433 return Bitcasted; 2434 } 2435 2436 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2437 const AnnotateAttr *AA, 2438 SourceLocation L) { 2439 // Get the globals for file name, annotation, and the line number. 2440 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2441 *UnitGV = EmitAnnotationUnit(L), 2442 *LineNoCst = EmitAnnotationLineNo(L), 2443 *Args = EmitAnnotationArgs(AA); 2444 2445 llvm::Constant *ASZeroGV = GV; 2446 if (GV->getAddressSpace() != 0) { 2447 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2448 GV, GV->getValueType()->getPointerTo(0)); 2449 } 2450 2451 // Create the ConstantStruct for the global annotation. 2452 llvm::Constant *Fields[] = { 2453 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2454 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2455 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2456 LineNoCst, 2457 Args, 2458 }; 2459 return llvm::ConstantStruct::getAnon(Fields); 2460 } 2461 2462 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2463 llvm::GlobalValue *GV) { 2464 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2465 // Get the struct elements for these annotations. 2466 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2467 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2468 } 2469 2470 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2471 llvm::Function *Fn, 2472 SourceLocation Loc) const { 2473 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2474 // Blacklist by function name. 2475 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2476 return true; 2477 // Blacklist by location. 2478 if (Loc.isValid()) 2479 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2480 // If location is unknown, this may be a compiler-generated function. Assume 2481 // it's located in the main file. 2482 auto &SM = Context.getSourceManager(); 2483 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2484 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2485 } 2486 return false; 2487 } 2488 2489 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2490 SourceLocation Loc, QualType Ty, 2491 StringRef Category) const { 2492 // For now globals can be blacklisted only in ASan and KASan. 2493 const SanitizerMask EnabledAsanMask = 2494 LangOpts.Sanitize.Mask & 2495 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2496 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2497 SanitizerKind::MemTag); 2498 if (!EnabledAsanMask) 2499 return false; 2500 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2501 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2502 return true; 2503 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2504 return true; 2505 // Check global type. 2506 if (!Ty.isNull()) { 2507 // Drill down the array types: if global variable of a fixed type is 2508 // blacklisted, we also don't instrument arrays of them. 2509 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2510 Ty = AT->getElementType(); 2511 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2512 // We allow to blacklist only record types (classes, structs etc.) 2513 if (Ty->isRecordType()) { 2514 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2515 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2516 return true; 2517 } 2518 } 2519 return false; 2520 } 2521 2522 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2523 StringRef Category) const { 2524 const auto &XRayFilter = getContext().getXRayFilter(); 2525 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2526 auto Attr = ImbueAttr::NONE; 2527 if (Loc.isValid()) 2528 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2529 if (Attr == ImbueAttr::NONE) 2530 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2531 switch (Attr) { 2532 case ImbueAttr::NONE: 2533 return false; 2534 case ImbueAttr::ALWAYS: 2535 Fn->addFnAttr("function-instrument", "xray-always"); 2536 break; 2537 case ImbueAttr::ALWAYS_ARG1: 2538 Fn->addFnAttr("function-instrument", "xray-always"); 2539 Fn->addFnAttr("xray-log-args", "1"); 2540 break; 2541 case ImbueAttr::NEVER: 2542 Fn->addFnAttr("function-instrument", "xray-never"); 2543 break; 2544 } 2545 return true; 2546 } 2547 2548 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2549 // Never defer when EmitAllDecls is specified. 2550 if (LangOpts.EmitAllDecls) 2551 return true; 2552 2553 if (CodeGenOpts.KeepStaticConsts) { 2554 const auto *VD = dyn_cast<VarDecl>(Global); 2555 if (VD && VD->getType().isConstQualified() && 2556 VD->getStorageDuration() == SD_Static) 2557 return true; 2558 } 2559 2560 return getContext().DeclMustBeEmitted(Global); 2561 } 2562 2563 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2564 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2565 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2566 // Implicit template instantiations may change linkage if they are later 2567 // explicitly instantiated, so they should not be emitted eagerly. 2568 return false; 2569 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2570 // not emit them eagerly unless we sure that the function must be emitted on 2571 // the host. 2572 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2573 !LangOpts.OpenMPIsDevice && 2574 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2575 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2576 return false; 2577 } 2578 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2579 if (Context.getInlineVariableDefinitionKind(VD) == 2580 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2581 // A definition of an inline constexpr static data member may change 2582 // linkage later if it's redeclared outside the class. 2583 return false; 2584 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2585 // codegen for global variables, because they may be marked as threadprivate. 2586 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2587 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2588 !isTypeConstant(Global->getType(), false) && 2589 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2590 return false; 2591 2592 return true; 2593 } 2594 2595 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2596 StringRef Name = getMangledName(GD); 2597 2598 // The UUID descriptor should be pointer aligned. 2599 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2600 2601 // Look for an existing global. 2602 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2603 return ConstantAddress(GV, Alignment); 2604 2605 ConstantEmitter Emitter(*this); 2606 llvm::Constant *Init; 2607 2608 APValue &V = GD->getAsAPValue(); 2609 if (!V.isAbsent()) { 2610 // If possible, emit the APValue version of the initializer. In particular, 2611 // this gets the type of the constant right. 2612 Init = Emitter.emitForInitializer( 2613 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2614 } else { 2615 // As a fallback, directly construct the constant. 2616 // FIXME: This may get padding wrong under esoteric struct layout rules. 2617 // MSVC appears to create a complete type 'struct __s_GUID' that it 2618 // presumably uses to represent these constants. 2619 MSGuidDecl::Parts Parts = GD->getParts(); 2620 llvm::Constant *Fields[4] = { 2621 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2622 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2623 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2624 llvm::ConstantDataArray::getRaw( 2625 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2626 Int8Ty)}; 2627 Init = llvm::ConstantStruct::getAnon(Fields); 2628 } 2629 2630 auto *GV = new llvm::GlobalVariable( 2631 getModule(), Init->getType(), 2632 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2633 if (supportsCOMDAT()) 2634 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2635 setDSOLocal(GV); 2636 2637 llvm::Constant *Addr = GV; 2638 if (!V.isAbsent()) { 2639 Emitter.finalize(GV); 2640 } else { 2641 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2642 Addr = llvm::ConstantExpr::getBitCast( 2643 GV, Ty->getPointerTo(GV->getAddressSpace())); 2644 } 2645 return ConstantAddress(Addr, Alignment); 2646 } 2647 2648 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2649 const TemplateParamObjectDecl *TPO) { 2650 StringRef Name = getMangledName(TPO); 2651 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2652 2653 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2654 return ConstantAddress(GV, Alignment); 2655 2656 ConstantEmitter Emitter(*this); 2657 llvm::Constant *Init = Emitter.emitForInitializer( 2658 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2659 2660 if (!Init) { 2661 ErrorUnsupported(TPO, "template parameter object"); 2662 return ConstantAddress::invalid(); 2663 } 2664 2665 auto *GV = new llvm::GlobalVariable( 2666 getModule(), Init->getType(), 2667 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2668 if (supportsCOMDAT()) 2669 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2670 Emitter.finalize(GV); 2671 2672 return ConstantAddress(GV, Alignment); 2673 } 2674 2675 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2676 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2677 assert(AA && "No alias?"); 2678 2679 CharUnits Alignment = getContext().getDeclAlign(VD); 2680 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2681 2682 // See if there is already something with the target's name in the module. 2683 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2684 if (Entry) { 2685 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2686 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2687 return ConstantAddress(Ptr, Alignment); 2688 } 2689 2690 llvm::Constant *Aliasee; 2691 if (isa<llvm::FunctionType>(DeclTy)) 2692 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2693 GlobalDecl(cast<FunctionDecl>(VD)), 2694 /*ForVTable=*/false); 2695 else 2696 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2697 llvm::PointerType::getUnqual(DeclTy), 2698 nullptr); 2699 2700 auto *F = cast<llvm::GlobalValue>(Aliasee); 2701 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2702 WeakRefReferences.insert(F); 2703 2704 return ConstantAddress(Aliasee, Alignment); 2705 } 2706 2707 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2708 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2709 2710 // Weak references don't produce any output by themselves. 2711 if (Global->hasAttr<WeakRefAttr>()) 2712 return; 2713 2714 // If this is an alias definition (which otherwise looks like a declaration) 2715 // emit it now. 2716 if (Global->hasAttr<AliasAttr>()) 2717 return EmitAliasDefinition(GD); 2718 2719 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2720 if (Global->hasAttr<IFuncAttr>()) 2721 return emitIFuncDefinition(GD); 2722 2723 // If this is a cpu_dispatch multiversion function, emit the resolver. 2724 if (Global->hasAttr<CPUDispatchAttr>()) 2725 return emitCPUDispatchDefinition(GD); 2726 2727 // If this is CUDA, be selective about which declarations we emit. 2728 if (LangOpts.CUDA) { 2729 if (LangOpts.CUDAIsDevice) { 2730 if (!Global->hasAttr<CUDADeviceAttr>() && 2731 !Global->hasAttr<CUDAGlobalAttr>() && 2732 !Global->hasAttr<CUDAConstantAttr>() && 2733 !Global->hasAttr<CUDASharedAttr>() && 2734 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2735 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2736 return; 2737 } else { 2738 // We need to emit host-side 'shadows' for all global 2739 // device-side variables because the CUDA runtime needs their 2740 // size and host-side address in order to provide access to 2741 // their device-side incarnations. 2742 2743 // So device-only functions are the only things we skip. 2744 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2745 Global->hasAttr<CUDADeviceAttr>()) 2746 return; 2747 2748 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2749 "Expected Variable or Function"); 2750 } 2751 } 2752 2753 if (LangOpts.OpenMP) { 2754 // If this is OpenMP, check if it is legal to emit this global normally. 2755 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2756 return; 2757 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2758 if (MustBeEmitted(Global)) 2759 EmitOMPDeclareReduction(DRD); 2760 return; 2761 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2762 if (MustBeEmitted(Global)) 2763 EmitOMPDeclareMapper(DMD); 2764 return; 2765 } 2766 } 2767 2768 // Ignore declarations, they will be emitted on their first use. 2769 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2770 // Forward declarations are emitted lazily on first use. 2771 if (!FD->doesThisDeclarationHaveABody()) { 2772 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2773 return; 2774 2775 StringRef MangledName = getMangledName(GD); 2776 2777 // Compute the function info and LLVM type. 2778 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2779 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2780 2781 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2782 /*DontDefer=*/false); 2783 return; 2784 } 2785 } else { 2786 const auto *VD = cast<VarDecl>(Global); 2787 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2788 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2789 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2790 if (LangOpts.OpenMP) { 2791 // Emit declaration of the must-be-emitted declare target variable. 2792 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2793 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2794 bool UnifiedMemoryEnabled = 2795 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2796 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2797 !UnifiedMemoryEnabled) { 2798 (void)GetAddrOfGlobalVar(VD); 2799 } else { 2800 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2801 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2802 UnifiedMemoryEnabled)) && 2803 "Link clause or to clause with unified memory expected."); 2804 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2805 } 2806 2807 return; 2808 } 2809 } 2810 // If this declaration may have caused an inline variable definition to 2811 // change linkage, make sure that it's emitted. 2812 if (Context.getInlineVariableDefinitionKind(VD) == 2813 ASTContext::InlineVariableDefinitionKind::Strong) 2814 GetAddrOfGlobalVar(VD); 2815 return; 2816 } 2817 } 2818 2819 // Defer code generation to first use when possible, e.g. if this is an inline 2820 // function. If the global must always be emitted, do it eagerly if possible 2821 // to benefit from cache locality. 2822 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2823 // Emit the definition if it can't be deferred. 2824 EmitGlobalDefinition(GD); 2825 return; 2826 } 2827 2828 // If we're deferring emission of a C++ variable with an 2829 // initializer, remember the order in which it appeared in the file. 2830 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2831 cast<VarDecl>(Global)->hasInit()) { 2832 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2833 CXXGlobalInits.push_back(nullptr); 2834 } 2835 2836 StringRef MangledName = getMangledName(GD); 2837 if (GetGlobalValue(MangledName) != nullptr) { 2838 // The value has already been used and should therefore be emitted. 2839 addDeferredDeclToEmit(GD); 2840 } else if (MustBeEmitted(Global)) { 2841 // The value must be emitted, but cannot be emitted eagerly. 2842 assert(!MayBeEmittedEagerly(Global)); 2843 addDeferredDeclToEmit(GD); 2844 } else { 2845 // Otherwise, remember that we saw a deferred decl with this name. The 2846 // first use of the mangled name will cause it to move into 2847 // DeferredDeclsToEmit. 2848 DeferredDecls[MangledName] = GD; 2849 } 2850 } 2851 2852 // Check if T is a class type with a destructor that's not dllimport. 2853 static bool HasNonDllImportDtor(QualType T) { 2854 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2855 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2856 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2857 return true; 2858 2859 return false; 2860 } 2861 2862 namespace { 2863 struct FunctionIsDirectlyRecursive 2864 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2865 const StringRef Name; 2866 const Builtin::Context &BI; 2867 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2868 : Name(N), BI(C) {} 2869 2870 bool VisitCallExpr(const CallExpr *E) { 2871 const FunctionDecl *FD = E->getDirectCallee(); 2872 if (!FD) 2873 return false; 2874 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2875 if (Attr && Name == Attr->getLabel()) 2876 return true; 2877 unsigned BuiltinID = FD->getBuiltinID(); 2878 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2879 return false; 2880 StringRef BuiltinName = BI.getName(BuiltinID); 2881 if (BuiltinName.startswith("__builtin_") && 2882 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2883 return true; 2884 } 2885 return false; 2886 } 2887 2888 bool VisitStmt(const Stmt *S) { 2889 for (const Stmt *Child : S->children()) 2890 if (Child && this->Visit(Child)) 2891 return true; 2892 return false; 2893 } 2894 }; 2895 2896 // Make sure we're not referencing non-imported vars or functions. 2897 struct DLLImportFunctionVisitor 2898 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2899 bool SafeToInline = true; 2900 2901 bool shouldVisitImplicitCode() const { return true; } 2902 2903 bool VisitVarDecl(VarDecl *VD) { 2904 if (VD->getTLSKind()) { 2905 // A thread-local variable cannot be imported. 2906 SafeToInline = false; 2907 return SafeToInline; 2908 } 2909 2910 // A variable definition might imply a destructor call. 2911 if (VD->isThisDeclarationADefinition()) 2912 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2913 2914 return SafeToInline; 2915 } 2916 2917 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2918 if (const auto *D = E->getTemporary()->getDestructor()) 2919 SafeToInline = D->hasAttr<DLLImportAttr>(); 2920 return SafeToInline; 2921 } 2922 2923 bool VisitDeclRefExpr(DeclRefExpr *E) { 2924 ValueDecl *VD = E->getDecl(); 2925 if (isa<FunctionDecl>(VD)) 2926 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2927 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2928 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2929 return SafeToInline; 2930 } 2931 2932 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2933 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2934 return SafeToInline; 2935 } 2936 2937 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2938 CXXMethodDecl *M = E->getMethodDecl(); 2939 if (!M) { 2940 // Call through a pointer to member function. This is safe to inline. 2941 SafeToInline = true; 2942 } else { 2943 SafeToInline = M->hasAttr<DLLImportAttr>(); 2944 } 2945 return SafeToInline; 2946 } 2947 2948 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2949 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2950 return SafeToInline; 2951 } 2952 2953 bool VisitCXXNewExpr(CXXNewExpr *E) { 2954 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2955 return SafeToInline; 2956 } 2957 }; 2958 } 2959 2960 // isTriviallyRecursive - Check if this function calls another 2961 // decl that, because of the asm attribute or the other decl being a builtin, 2962 // ends up pointing to itself. 2963 bool 2964 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2965 StringRef Name; 2966 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2967 // asm labels are a special kind of mangling we have to support. 2968 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2969 if (!Attr) 2970 return false; 2971 Name = Attr->getLabel(); 2972 } else { 2973 Name = FD->getName(); 2974 } 2975 2976 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2977 const Stmt *Body = FD->getBody(); 2978 return Body ? Walker.Visit(Body) : false; 2979 } 2980 2981 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2982 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2983 return true; 2984 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2985 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2986 return false; 2987 2988 if (F->hasAttr<DLLImportAttr>()) { 2989 // Check whether it would be safe to inline this dllimport function. 2990 DLLImportFunctionVisitor Visitor; 2991 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2992 if (!Visitor.SafeToInline) 2993 return false; 2994 2995 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2996 // Implicit destructor invocations aren't captured in the AST, so the 2997 // check above can't see them. Check for them manually here. 2998 for (const Decl *Member : Dtor->getParent()->decls()) 2999 if (isa<FieldDecl>(Member)) 3000 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3001 return false; 3002 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3003 if (HasNonDllImportDtor(B.getType())) 3004 return false; 3005 } 3006 } 3007 3008 // PR9614. Avoid cases where the source code is lying to us. An available 3009 // externally function should have an equivalent function somewhere else, 3010 // but a function that calls itself through asm label/`__builtin_` trickery is 3011 // clearly not equivalent to the real implementation. 3012 // This happens in glibc's btowc and in some configure checks. 3013 return !isTriviallyRecursive(F); 3014 } 3015 3016 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3017 return CodeGenOpts.OptimizationLevel > 0; 3018 } 3019 3020 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3021 llvm::GlobalValue *GV) { 3022 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3023 3024 if (FD->isCPUSpecificMultiVersion()) { 3025 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3026 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3027 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3028 // Requires multiple emits. 3029 } else 3030 EmitGlobalFunctionDefinition(GD, GV); 3031 } 3032 3033 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3034 const auto *D = cast<ValueDecl>(GD.getDecl()); 3035 3036 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3037 Context.getSourceManager(), 3038 "Generating code for declaration"); 3039 3040 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3041 // At -O0, don't generate IR for functions with available_externally 3042 // linkage. 3043 if (!shouldEmitFunction(GD)) 3044 return; 3045 3046 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3047 std::string Name; 3048 llvm::raw_string_ostream OS(Name); 3049 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3050 /*Qualified=*/true); 3051 return Name; 3052 }); 3053 3054 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3055 // Make sure to emit the definition(s) before we emit the thunks. 3056 // This is necessary for the generation of certain thunks. 3057 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3058 ABI->emitCXXStructor(GD); 3059 else if (FD->isMultiVersion()) 3060 EmitMultiVersionFunctionDefinition(GD, GV); 3061 else 3062 EmitGlobalFunctionDefinition(GD, GV); 3063 3064 if (Method->isVirtual()) 3065 getVTables().EmitThunks(GD); 3066 3067 return; 3068 } 3069 3070 if (FD->isMultiVersion()) 3071 return EmitMultiVersionFunctionDefinition(GD, GV); 3072 return EmitGlobalFunctionDefinition(GD, GV); 3073 } 3074 3075 if (const auto *VD = dyn_cast<VarDecl>(D)) 3076 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3077 3078 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3079 } 3080 3081 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3082 llvm::Function *NewFn); 3083 3084 static unsigned 3085 TargetMVPriority(const TargetInfo &TI, 3086 const CodeGenFunction::MultiVersionResolverOption &RO) { 3087 unsigned Priority = 0; 3088 for (StringRef Feat : RO.Conditions.Features) 3089 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3090 3091 if (!RO.Conditions.Architecture.empty()) 3092 Priority = std::max( 3093 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3094 return Priority; 3095 } 3096 3097 void CodeGenModule::emitMultiVersionFunctions() { 3098 for (GlobalDecl GD : MultiVersionFuncs) { 3099 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3100 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3101 getContext().forEachMultiversionedFunctionVersion( 3102 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3103 GlobalDecl CurGD{ 3104 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3105 StringRef MangledName = getMangledName(CurGD); 3106 llvm::Constant *Func = GetGlobalValue(MangledName); 3107 if (!Func) { 3108 if (CurFD->isDefined()) { 3109 EmitGlobalFunctionDefinition(CurGD, nullptr); 3110 Func = GetGlobalValue(MangledName); 3111 } else { 3112 const CGFunctionInfo &FI = 3113 getTypes().arrangeGlobalDeclaration(GD); 3114 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3115 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3116 /*DontDefer=*/false, ForDefinition); 3117 } 3118 assert(Func && "This should have just been created"); 3119 } 3120 3121 const auto *TA = CurFD->getAttr<TargetAttr>(); 3122 llvm::SmallVector<StringRef, 8> Feats; 3123 TA->getAddedFeatures(Feats); 3124 3125 Options.emplace_back(cast<llvm::Function>(Func), 3126 TA->getArchitecture(), Feats); 3127 }); 3128 3129 llvm::Function *ResolverFunc; 3130 const TargetInfo &TI = getTarget(); 3131 3132 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3133 ResolverFunc = cast<llvm::Function>( 3134 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3135 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3136 } else { 3137 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3138 } 3139 3140 if (supportsCOMDAT()) 3141 ResolverFunc->setComdat( 3142 getModule().getOrInsertComdat(ResolverFunc->getName())); 3143 3144 llvm::stable_sort( 3145 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3146 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3147 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3148 }); 3149 CodeGenFunction CGF(*this); 3150 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3151 } 3152 } 3153 3154 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3155 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3156 assert(FD && "Not a FunctionDecl?"); 3157 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3158 assert(DD && "Not a cpu_dispatch Function?"); 3159 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3160 3161 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3162 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3163 DeclTy = getTypes().GetFunctionType(FInfo); 3164 } 3165 3166 StringRef ResolverName = getMangledName(GD); 3167 3168 llvm::Type *ResolverType; 3169 GlobalDecl ResolverGD; 3170 if (getTarget().supportsIFunc()) 3171 ResolverType = llvm::FunctionType::get( 3172 llvm::PointerType::get(DeclTy, 3173 Context.getTargetAddressSpace(FD->getType())), 3174 false); 3175 else { 3176 ResolverType = DeclTy; 3177 ResolverGD = GD; 3178 } 3179 3180 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3181 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3182 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3183 if (supportsCOMDAT()) 3184 ResolverFunc->setComdat( 3185 getModule().getOrInsertComdat(ResolverFunc->getName())); 3186 3187 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3188 const TargetInfo &Target = getTarget(); 3189 unsigned Index = 0; 3190 for (const IdentifierInfo *II : DD->cpus()) { 3191 // Get the name of the target function so we can look it up/create it. 3192 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3193 getCPUSpecificMangling(*this, II->getName()); 3194 3195 llvm::Constant *Func = GetGlobalValue(MangledName); 3196 3197 if (!Func) { 3198 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3199 if (ExistingDecl.getDecl() && 3200 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3201 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3202 Func = GetGlobalValue(MangledName); 3203 } else { 3204 if (!ExistingDecl.getDecl()) 3205 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3206 3207 Func = GetOrCreateLLVMFunction( 3208 MangledName, DeclTy, ExistingDecl, 3209 /*ForVTable=*/false, /*DontDefer=*/true, 3210 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3211 } 3212 } 3213 3214 llvm::SmallVector<StringRef, 32> Features; 3215 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3216 llvm::transform(Features, Features.begin(), 3217 [](StringRef Str) { return Str.substr(1); }); 3218 Features.erase(std::remove_if( 3219 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3220 return !Target.validateCpuSupports(Feat); 3221 }), Features.end()); 3222 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3223 ++Index; 3224 } 3225 3226 llvm::sort( 3227 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3228 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3229 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3230 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3231 }); 3232 3233 // If the list contains multiple 'default' versions, such as when it contains 3234 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3235 // always run on at least a 'pentium'). We do this by deleting the 'least 3236 // advanced' (read, lowest mangling letter). 3237 while (Options.size() > 1 && 3238 CodeGenFunction::GetX86CpuSupportsMask( 3239 (Options.end() - 2)->Conditions.Features) == 0) { 3240 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3241 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3242 if (LHSName.compare(RHSName) < 0) 3243 Options.erase(Options.end() - 2); 3244 else 3245 Options.erase(Options.end() - 1); 3246 } 3247 3248 CodeGenFunction CGF(*this); 3249 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3250 3251 if (getTarget().supportsIFunc()) { 3252 std::string AliasName = getMangledNameImpl( 3253 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3254 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3255 if (!AliasFunc) { 3256 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3257 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3258 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3259 auto *GA = llvm::GlobalAlias::create( 3260 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3261 GA->setLinkage(llvm::Function::WeakODRLinkage); 3262 SetCommonAttributes(GD, GA); 3263 } 3264 } 3265 } 3266 3267 /// If a dispatcher for the specified mangled name is not in the module, create 3268 /// and return an llvm Function with the specified type. 3269 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3270 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3271 std::string MangledName = 3272 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3273 3274 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3275 // a separate resolver). 3276 std::string ResolverName = MangledName; 3277 if (getTarget().supportsIFunc()) 3278 ResolverName += ".ifunc"; 3279 else if (FD->isTargetMultiVersion()) 3280 ResolverName += ".resolver"; 3281 3282 // If this already exists, just return that one. 3283 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3284 return ResolverGV; 3285 3286 // Since this is the first time we've created this IFunc, make sure 3287 // that we put this multiversioned function into the list to be 3288 // replaced later if necessary (target multiversioning only). 3289 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3290 MultiVersionFuncs.push_back(GD); 3291 3292 if (getTarget().supportsIFunc()) { 3293 llvm::Type *ResolverType = llvm::FunctionType::get( 3294 llvm::PointerType::get( 3295 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3296 false); 3297 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3298 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3299 /*ForVTable=*/false); 3300 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3301 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3302 GIF->setName(ResolverName); 3303 SetCommonAttributes(FD, GIF); 3304 3305 return GIF; 3306 } 3307 3308 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3309 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3310 assert(isa<llvm::GlobalValue>(Resolver) && 3311 "Resolver should be created for the first time"); 3312 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3313 return Resolver; 3314 } 3315 3316 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3317 /// module, create and return an llvm Function with the specified type. If there 3318 /// is something in the module with the specified name, return it potentially 3319 /// bitcasted to the right type. 3320 /// 3321 /// If D is non-null, it specifies a decl that correspond to this. This is used 3322 /// to set the attributes on the function when it is first created. 3323 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3324 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3325 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3326 ForDefinition_t IsForDefinition) { 3327 const Decl *D = GD.getDecl(); 3328 3329 // Any attempts to use a MultiVersion function should result in retrieving 3330 // the iFunc instead. Name Mangling will handle the rest of the changes. 3331 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3332 // For the device mark the function as one that should be emitted. 3333 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3334 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3335 !DontDefer && !IsForDefinition) { 3336 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3337 GlobalDecl GDDef; 3338 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3339 GDDef = GlobalDecl(CD, GD.getCtorType()); 3340 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3341 GDDef = GlobalDecl(DD, GD.getDtorType()); 3342 else 3343 GDDef = GlobalDecl(FDDef); 3344 EmitGlobal(GDDef); 3345 } 3346 } 3347 3348 if (FD->isMultiVersion()) { 3349 if (FD->hasAttr<TargetAttr>()) 3350 UpdateMultiVersionNames(GD, FD); 3351 if (!IsForDefinition) 3352 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3353 } 3354 } 3355 3356 // Lookup the entry, lazily creating it if necessary. 3357 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3358 if (Entry) { 3359 if (WeakRefReferences.erase(Entry)) { 3360 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3361 if (FD && !FD->hasAttr<WeakAttr>()) 3362 Entry->setLinkage(llvm::Function::ExternalLinkage); 3363 } 3364 3365 // Handle dropped DLL attributes. 3366 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3367 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3368 setDSOLocal(Entry); 3369 } 3370 3371 // If there are two attempts to define the same mangled name, issue an 3372 // error. 3373 if (IsForDefinition && !Entry->isDeclaration()) { 3374 GlobalDecl OtherGD; 3375 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3376 // to make sure that we issue an error only once. 3377 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3378 (GD.getCanonicalDecl().getDecl() != 3379 OtherGD.getCanonicalDecl().getDecl()) && 3380 DiagnosedConflictingDefinitions.insert(GD).second) { 3381 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3382 << MangledName; 3383 getDiags().Report(OtherGD.getDecl()->getLocation(), 3384 diag::note_previous_definition); 3385 } 3386 } 3387 3388 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3389 (Entry->getValueType() == Ty)) { 3390 return Entry; 3391 } 3392 3393 // Make sure the result is of the correct type. 3394 // (If function is requested for a definition, we always need to create a new 3395 // function, not just return a bitcast.) 3396 if (!IsForDefinition) 3397 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3398 } 3399 3400 // This function doesn't have a complete type (for example, the return 3401 // type is an incomplete struct). Use a fake type instead, and make 3402 // sure not to try to set attributes. 3403 bool IsIncompleteFunction = false; 3404 3405 llvm::FunctionType *FTy; 3406 if (isa<llvm::FunctionType>(Ty)) { 3407 FTy = cast<llvm::FunctionType>(Ty); 3408 } else { 3409 FTy = llvm::FunctionType::get(VoidTy, false); 3410 IsIncompleteFunction = true; 3411 } 3412 3413 llvm::Function *F = 3414 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3415 Entry ? StringRef() : MangledName, &getModule()); 3416 3417 // If we already created a function with the same mangled name (but different 3418 // type) before, take its name and add it to the list of functions to be 3419 // replaced with F at the end of CodeGen. 3420 // 3421 // This happens if there is a prototype for a function (e.g. "int f()") and 3422 // then a definition of a different type (e.g. "int f(int x)"). 3423 if (Entry) { 3424 F->takeName(Entry); 3425 3426 // This might be an implementation of a function without a prototype, in 3427 // which case, try to do special replacement of calls which match the new 3428 // prototype. The really key thing here is that we also potentially drop 3429 // arguments from the call site so as to make a direct call, which makes the 3430 // inliner happier and suppresses a number of optimizer warnings (!) about 3431 // dropping arguments. 3432 if (!Entry->use_empty()) { 3433 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3434 Entry->removeDeadConstantUsers(); 3435 } 3436 3437 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3438 F, Entry->getValueType()->getPointerTo()); 3439 addGlobalValReplacement(Entry, BC); 3440 } 3441 3442 assert(F->getName() == MangledName && "name was uniqued!"); 3443 if (D) 3444 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3445 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3446 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3447 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3448 } 3449 3450 if (!DontDefer) { 3451 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3452 // each other bottoming out with the base dtor. Therefore we emit non-base 3453 // dtors on usage, even if there is no dtor definition in the TU. 3454 if (D && isa<CXXDestructorDecl>(D) && 3455 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3456 GD.getDtorType())) 3457 addDeferredDeclToEmit(GD); 3458 3459 // This is the first use or definition of a mangled name. If there is a 3460 // deferred decl with this name, remember that we need to emit it at the end 3461 // of the file. 3462 auto DDI = DeferredDecls.find(MangledName); 3463 if (DDI != DeferredDecls.end()) { 3464 // Move the potentially referenced deferred decl to the 3465 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3466 // don't need it anymore). 3467 addDeferredDeclToEmit(DDI->second); 3468 DeferredDecls.erase(DDI); 3469 3470 // Otherwise, there are cases we have to worry about where we're 3471 // using a declaration for which we must emit a definition but where 3472 // we might not find a top-level definition: 3473 // - member functions defined inline in their classes 3474 // - friend functions defined inline in some class 3475 // - special member functions with implicit definitions 3476 // If we ever change our AST traversal to walk into class methods, 3477 // this will be unnecessary. 3478 // 3479 // We also don't emit a definition for a function if it's going to be an 3480 // entry in a vtable, unless it's already marked as used. 3481 } else if (getLangOpts().CPlusPlus && D) { 3482 // Look for a declaration that's lexically in a record. 3483 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3484 FD = FD->getPreviousDecl()) { 3485 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3486 if (FD->doesThisDeclarationHaveABody()) { 3487 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3488 break; 3489 } 3490 } 3491 } 3492 } 3493 } 3494 3495 // Make sure the result is of the requested type. 3496 if (!IsIncompleteFunction) { 3497 assert(F->getFunctionType() == Ty); 3498 return F; 3499 } 3500 3501 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3502 return llvm::ConstantExpr::getBitCast(F, PTy); 3503 } 3504 3505 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3506 /// non-null, then this function will use the specified type if it has to 3507 /// create it (this occurs when we see a definition of the function). 3508 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3509 llvm::Type *Ty, 3510 bool ForVTable, 3511 bool DontDefer, 3512 ForDefinition_t IsForDefinition) { 3513 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3514 "consteval function should never be emitted"); 3515 // If there was no specific requested type, just convert it now. 3516 if (!Ty) { 3517 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3518 Ty = getTypes().ConvertType(FD->getType()); 3519 } 3520 3521 // Devirtualized destructor calls may come through here instead of via 3522 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3523 // of the complete destructor when necessary. 3524 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3525 if (getTarget().getCXXABI().isMicrosoft() && 3526 GD.getDtorType() == Dtor_Complete && 3527 DD->getParent()->getNumVBases() == 0) 3528 GD = GlobalDecl(DD, Dtor_Base); 3529 } 3530 3531 StringRef MangledName = getMangledName(GD); 3532 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3533 /*IsThunk=*/false, llvm::AttributeList(), 3534 IsForDefinition); 3535 } 3536 3537 static const FunctionDecl * 3538 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3539 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3540 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3541 3542 IdentifierInfo &CII = C.Idents.get(Name); 3543 for (const auto &Result : DC->lookup(&CII)) 3544 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3545 return FD; 3546 3547 if (!C.getLangOpts().CPlusPlus) 3548 return nullptr; 3549 3550 // Demangle the premangled name from getTerminateFn() 3551 IdentifierInfo &CXXII = 3552 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3553 ? C.Idents.get("terminate") 3554 : C.Idents.get(Name); 3555 3556 for (const auto &N : {"__cxxabiv1", "std"}) { 3557 IdentifierInfo &NS = C.Idents.get(N); 3558 for (const auto &Result : DC->lookup(&NS)) { 3559 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3560 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3561 for (const auto &Result : LSD->lookup(&NS)) 3562 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3563 break; 3564 3565 if (ND) 3566 for (const auto &Result : ND->lookup(&CXXII)) 3567 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3568 return FD; 3569 } 3570 } 3571 3572 return nullptr; 3573 } 3574 3575 /// CreateRuntimeFunction - Create a new runtime function with the specified 3576 /// type and name. 3577 llvm::FunctionCallee 3578 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3579 llvm::AttributeList ExtraAttrs, bool Local, 3580 bool AssumeConvergent) { 3581 if (AssumeConvergent) { 3582 ExtraAttrs = 3583 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3584 llvm::Attribute::Convergent); 3585 } 3586 3587 llvm::Constant *C = 3588 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3589 /*DontDefer=*/false, /*IsThunk=*/false, 3590 ExtraAttrs); 3591 3592 if (auto *F = dyn_cast<llvm::Function>(C)) { 3593 if (F->empty()) { 3594 F->setCallingConv(getRuntimeCC()); 3595 3596 // In Windows Itanium environments, try to mark runtime functions 3597 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3598 // will link their standard library statically or dynamically. Marking 3599 // functions imported when they are not imported can cause linker errors 3600 // and warnings. 3601 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3602 !getCodeGenOpts().LTOVisibilityPublicStd) { 3603 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3604 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3605 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3606 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3607 } 3608 } 3609 setDSOLocal(F); 3610 } 3611 } 3612 3613 return {FTy, C}; 3614 } 3615 3616 /// isTypeConstant - Determine whether an object of this type can be emitted 3617 /// as a constant. 3618 /// 3619 /// If ExcludeCtor is true, the duration when the object's constructor runs 3620 /// will not be considered. The caller will need to verify that the object is 3621 /// not written to during its construction. 3622 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3623 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3624 return false; 3625 3626 if (Context.getLangOpts().CPlusPlus) { 3627 if (const CXXRecordDecl *Record 3628 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3629 return ExcludeCtor && !Record->hasMutableFields() && 3630 Record->hasTrivialDestructor(); 3631 } 3632 3633 return true; 3634 } 3635 3636 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3637 /// create and return an llvm GlobalVariable with the specified type. If there 3638 /// is something in the module with the specified name, return it potentially 3639 /// bitcasted to the right type. 3640 /// 3641 /// If D is non-null, it specifies a decl that correspond to this. This is used 3642 /// to set the attributes on the global when it is first created. 3643 /// 3644 /// If IsForDefinition is true, it is guaranteed that an actual global with 3645 /// type Ty will be returned, not conversion of a variable with the same 3646 /// mangled name but some other type. 3647 llvm::Constant * 3648 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3649 llvm::PointerType *Ty, 3650 const VarDecl *D, 3651 ForDefinition_t IsForDefinition) { 3652 // Lookup the entry, lazily creating it if necessary. 3653 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3654 if (Entry) { 3655 if (WeakRefReferences.erase(Entry)) { 3656 if (D && !D->hasAttr<WeakAttr>()) 3657 Entry->setLinkage(llvm::Function::ExternalLinkage); 3658 } 3659 3660 // Handle dropped DLL attributes. 3661 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3662 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3663 3664 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3665 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3666 3667 if (Entry->getType() == Ty) 3668 return Entry; 3669 3670 // If there are two attempts to define the same mangled name, issue an 3671 // error. 3672 if (IsForDefinition && !Entry->isDeclaration()) { 3673 GlobalDecl OtherGD; 3674 const VarDecl *OtherD; 3675 3676 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3677 // to make sure that we issue an error only once. 3678 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3679 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3680 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3681 OtherD->hasInit() && 3682 DiagnosedConflictingDefinitions.insert(D).second) { 3683 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3684 << MangledName; 3685 getDiags().Report(OtherGD.getDecl()->getLocation(), 3686 diag::note_previous_definition); 3687 } 3688 } 3689 3690 // Make sure the result is of the correct type. 3691 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3692 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3693 3694 // (If global is requested for a definition, we always need to create a new 3695 // global, not just return a bitcast.) 3696 if (!IsForDefinition) 3697 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3698 } 3699 3700 auto AddrSpace = GetGlobalVarAddressSpace(D); 3701 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3702 3703 auto *GV = new llvm::GlobalVariable( 3704 getModule(), Ty->getElementType(), false, 3705 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3706 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3707 3708 // If we already created a global with the same mangled name (but different 3709 // type) before, take its name and remove it from its parent. 3710 if (Entry) { 3711 GV->takeName(Entry); 3712 3713 if (!Entry->use_empty()) { 3714 llvm::Constant *NewPtrForOldDecl = 3715 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3716 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3717 } 3718 3719 Entry->eraseFromParent(); 3720 } 3721 3722 // This is the first use or definition of a mangled name. If there is a 3723 // deferred decl with this name, remember that we need to emit it at the end 3724 // of the file. 3725 auto DDI = DeferredDecls.find(MangledName); 3726 if (DDI != DeferredDecls.end()) { 3727 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3728 // list, and remove it from DeferredDecls (since we don't need it anymore). 3729 addDeferredDeclToEmit(DDI->second); 3730 DeferredDecls.erase(DDI); 3731 } 3732 3733 // Handle things which are present even on external declarations. 3734 if (D) { 3735 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3736 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3737 3738 // FIXME: This code is overly simple and should be merged with other global 3739 // handling. 3740 GV->setConstant(isTypeConstant(D->getType(), false)); 3741 3742 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3743 3744 setLinkageForGV(GV, D); 3745 3746 if (D->getTLSKind()) { 3747 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3748 CXXThreadLocals.push_back(D); 3749 setTLSMode(GV, *D); 3750 } 3751 3752 setGVProperties(GV, D); 3753 3754 // If required by the ABI, treat declarations of static data members with 3755 // inline initializers as definitions. 3756 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3757 EmitGlobalVarDefinition(D); 3758 } 3759 3760 // Emit section information for extern variables. 3761 if (D->hasExternalStorage()) { 3762 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3763 GV->setSection(SA->getName()); 3764 } 3765 3766 // Handle XCore specific ABI requirements. 3767 if (getTriple().getArch() == llvm::Triple::xcore && 3768 D->getLanguageLinkage() == CLanguageLinkage && 3769 D->getType().isConstant(Context) && 3770 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3771 GV->setSection(".cp.rodata"); 3772 3773 // Check if we a have a const declaration with an initializer, we may be 3774 // able to emit it as available_externally to expose it's value to the 3775 // optimizer. 3776 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3777 D->getType().isConstQualified() && !GV->hasInitializer() && 3778 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3779 const auto *Record = 3780 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3781 bool HasMutableFields = Record && Record->hasMutableFields(); 3782 if (!HasMutableFields) { 3783 const VarDecl *InitDecl; 3784 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3785 if (InitExpr) { 3786 ConstantEmitter emitter(*this); 3787 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3788 if (Init) { 3789 auto *InitType = Init->getType(); 3790 if (GV->getValueType() != InitType) { 3791 // The type of the initializer does not match the definition. 3792 // This happens when an initializer has a different type from 3793 // the type of the global (because of padding at the end of a 3794 // structure for instance). 3795 GV->setName(StringRef()); 3796 // Make a new global with the correct type, this is now guaranteed 3797 // to work. 3798 auto *NewGV = cast<llvm::GlobalVariable>( 3799 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3800 ->stripPointerCasts()); 3801 3802 // Erase the old global, since it is no longer used. 3803 GV->eraseFromParent(); 3804 GV = NewGV; 3805 } else { 3806 GV->setInitializer(Init); 3807 GV->setConstant(true); 3808 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3809 } 3810 emitter.finalize(GV); 3811 } 3812 } 3813 } 3814 } 3815 } 3816 3817 if (GV->isDeclaration()) 3818 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3819 3820 LangAS ExpectedAS = 3821 D ? D->getType().getAddressSpace() 3822 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3823 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3824 Ty->getPointerAddressSpace()); 3825 if (AddrSpace != ExpectedAS) 3826 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3827 ExpectedAS, Ty); 3828 3829 return GV; 3830 } 3831 3832 llvm::Constant * 3833 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3834 const Decl *D = GD.getDecl(); 3835 3836 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3837 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3838 /*DontDefer=*/false, IsForDefinition); 3839 3840 if (isa<CXXMethodDecl>(D)) { 3841 auto FInfo = 3842 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3843 auto Ty = getTypes().GetFunctionType(*FInfo); 3844 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3845 IsForDefinition); 3846 } 3847 3848 if (isa<FunctionDecl>(D)) { 3849 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3850 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3851 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3852 IsForDefinition); 3853 } 3854 3855 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3856 } 3857 3858 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3859 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3860 unsigned Alignment) { 3861 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3862 llvm::GlobalVariable *OldGV = nullptr; 3863 3864 if (GV) { 3865 // Check if the variable has the right type. 3866 if (GV->getValueType() == Ty) 3867 return GV; 3868 3869 // Because C++ name mangling, the only way we can end up with an already 3870 // existing global with the same name is if it has been declared extern "C". 3871 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3872 OldGV = GV; 3873 } 3874 3875 // Create a new variable. 3876 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3877 Linkage, nullptr, Name); 3878 3879 if (OldGV) { 3880 // Replace occurrences of the old variable if needed. 3881 GV->takeName(OldGV); 3882 3883 if (!OldGV->use_empty()) { 3884 llvm::Constant *NewPtrForOldDecl = 3885 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3886 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3887 } 3888 3889 OldGV->eraseFromParent(); 3890 } 3891 3892 if (supportsCOMDAT() && GV->isWeakForLinker() && 3893 !GV->hasAvailableExternallyLinkage()) 3894 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3895 3896 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3897 3898 return GV; 3899 } 3900 3901 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3902 /// given global variable. If Ty is non-null and if the global doesn't exist, 3903 /// then it will be created with the specified type instead of whatever the 3904 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3905 /// that an actual global with type Ty will be returned, not conversion of a 3906 /// variable with the same mangled name but some other type. 3907 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3908 llvm::Type *Ty, 3909 ForDefinition_t IsForDefinition) { 3910 assert(D->hasGlobalStorage() && "Not a global variable"); 3911 QualType ASTTy = D->getType(); 3912 if (!Ty) 3913 Ty = getTypes().ConvertTypeForMem(ASTTy); 3914 3915 llvm::PointerType *PTy = 3916 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3917 3918 StringRef MangledName = getMangledName(D); 3919 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3920 } 3921 3922 /// CreateRuntimeVariable - Create a new runtime global variable with the 3923 /// specified type and name. 3924 llvm::Constant * 3925 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3926 StringRef Name) { 3927 auto PtrTy = 3928 getContext().getLangOpts().OpenCL 3929 ? llvm::PointerType::get( 3930 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3931 : llvm::PointerType::getUnqual(Ty); 3932 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3933 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3934 return Ret; 3935 } 3936 3937 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3938 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3939 3940 StringRef MangledName = getMangledName(D); 3941 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3942 3943 // We already have a definition, not declaration, with the same mangled name. 3944 // Emitting of declaration is not required (and actually overwrites emitted 3945 // definition). 3946 if (GV && !GV->isDeclaration()) 3947 return; 3948 3949 // If we have not seen a reference to this variable yet, place it into the 3950 // deferred declarations table to be emitted if needed later. 3951 if (!MustBeEmitted(D) && !GV) { 3952 DeferredDecls[MangledName] = D; 3953 return; 3954 } 3955 3956 // The tentative definition is the only definition. 3957 EmitGlobalVarDefinition(D); 3958 } 3959 3960 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3961 EmitExternalVarDeclaration(D); 3962 } 3963 3964 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3965 return Context.toCharUnitsFromBits( 3966 getDataLayout().getTypeStoreSizeInBits(Ty)); 3967 } 3968 3969 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3970 LangAS AddrSpace = LangAS::Default; 3971 if (LangOpts.OpenCL) { 3972 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3973 assert(AddrSpace == LangAS::opencl_global || 3974 AddrSpace == LangAS::opencl_global_device || 3975 AddrSpace == LangAS::opencl_global_host || 3976 AddrSpace == LangAS::opencl_constant || 3977 AddrSpace == LangAS::opencl_local || 3978 AddrSpace >= LangAS::FirstTargetAddressSpace); 3979 return AddrSpace; 3980 } 3981 3982 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3983 if (D && D->hasAttr<CUDAConstantAttr>()) 3984 return LangAS::cuda_constant; 3985 else if (D && D->hasAttr<CUDASharedAttr>()) 3986 return LangAS::cuda_shared; 3987 else if (D && D->hasAttr<CUDADeviceAttr>()) 3988 return LangAS::cuda_device; 3989 else if (D && D->getType().isConstQualified()) 3990 return LangAS::cuda_constant; 3991 else 3992 return LangAS::cuda_device; 3993 } 3994 3995 if (LangOpts.OpenMP) { 3996 LangAS AS; 3997 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3998 return AS; 3999 } 4000 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4001 } 4002 4003 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 4004 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4005 if (LangOpts.OpenCL) 4006 return LangAS::opencl_constant; 4007 if (auto AS = getTarget().getConstantAddressSpace()) 4008 return AS.getValue(); 4009 return LangAS::Default; 4010 } 4011 4012 // In address space agnostic languages, string literals are in default address 4013 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4014 // emitted in constant address space in LLVM IR. To be consistent with other 4015 // parts of AST, string literal global variables in constant address space 4016 // need to be casted to default address space before being put into address 4017 // map and referenced by other part of CodeGen. 4018 // In OpenCL, string literals are in constant address space in AST, therefore 4019 // they should not be casted to default address space. 4020 static llvm::Constant * 4021 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4022 llvm::GlobalVariable *GV) { 4023 llvm::Constant *Cast = GV; 4024 if (!CGM.getLangOpts().OpenCL) { 4025 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4026 if (AS != LangAS::Default) 4027 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4028 CGM, GV, AS.getValue(), LangAS::Default, 4029 GV->getValueType()->getPointerTo( 4030 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4031 } 4032 } 4033 return Cast; 4034 } 4035 4036 template<typename SomeDecl> 4037 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4038 llvm::GlobalValue *GV) { 4039 if (!getLangOpts().CPlusPlus) 4040 return; 4041 4042 // Must have 'used' attribute, or else inline assembly can't rely on 4043 // the name existing. 4044 if (!D->template hasAttr<UsedAttr>()) 4045 return; 4046 4047 // Must have internal linkage and an ordinary name. 4048 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4049 return; 4050 4051 // Must be in an extern "C" context. Entities declared directly within 4052 // a record are not extern "C" even if the record is in such a context. 4053 const SomeDecl *First = D->getFirstDecl(); 4054 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4055 return; 4056 4057 // OK, this is an internal linkage entity inside an extern "C" linkage 4058 // specification. Make a note of that so we can give it the "expected" 4059 // mangled name if nothing else is using that name. 4060 std::pair<StaticExternCMap::iterator, bool> R = 4061 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4062 4063 // If we have multiple internal linkage entities with the same name 4064 // in extern "C" regions, none of them gets that name. 4065 if (!R.second) 4066 R.first->second = nullptr; 4067 } 4068 4069 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4070 if (!CGM.supportsCOMDAT()) 4071 return false; 4072 4073 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4074 // them being "merged" by the COMDAT Folding linker optimization. 4075 if (D.hasAttr<CUDAGlobalAttr>()) 4076 return false; 4077 4078 if (D.hasAttr<SelectAnyAttr>()) 4079 return true; 4080 4081 GVALinkage Linkage; 4082 if (auto *VD = dyn_cast<VarDecl>(&D)) 4083 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4084 else 4085 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4086 4087 switch (Linkage) { 4088 case GVA_Internal: 4089 case GVA_AvailableExternally: 4090 case GVA_StrongExternal: 4091 return false; 4092 case GVA_DiscardableODR: 4093 case GVA_StrongODR: 4094 return true; 4095 } 4096 llvm_unreachable("No such linkage"); 4097 } 4098 4099 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4100 llvm::GlobalObject &GO) { 4101 if (!shouldBeInCOMDAT(*this, D)) 4102 return; 4103 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4104 } 4105 4106 /// Pass IsTentative as true if you want to create a tentative definition. 4107 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4108 bool IsTentative) { 4109 // OpenCL global variables of sampler type are translated to function calls, 4110 // therefore no need to be translated. 4111 QualType ASTTy = D->getType(); 4112 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4113 return; 4114 4115 // If this is OpenMP device, check if it is legal to emit this global 4116 // normally. 4117 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4118 OpenMPRuntime->emitTargetGlobalVariable(D)) 4119 return; 4120 4121 llvm::Constant *Init = nullptr; 4122 bool NeedsGlobalCtor = false; 4123 bool NeedsGlobalDtor = 4124 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4125 4126 const VarDecl *InitDecl; 4127 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4128 4129 Optional<ConstantEmitter> emitter; 4130 4131 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4132 // as part of their declaration." Sema has already checked for 4133 // error cases, so we just need to set Init to UndefValue. 4134 bool IsCUDASharedVar = 4135 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4136 // Shadows of initialized device-side global variables are also left 4137 // undefined. 4138 bool IsCUDAShadowVar = 4139 !getLangOpts().CUDAIsDevice && 4140 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4141 D->hasAttr<CUDASharedAttr>()); 4142 bool IsCUDADeviceShadowVar = 4143 getLangOpts().CUDAIsDevice && 4144 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4145 D->getType()->isCUDADeviceBuiltinTextureType()); 4146 // HIP pinned shadow of initialized host-side global variables are also 4147 // left undefined. 4148 if (getLangOpts().CUDA && 4149 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4150 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4151 else if (D->hasAttr<LoaderUninitializedAttr>()) 4152 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4153 else if (!InitExpr) { 4154 // This is a tentative definition; tentative definitions are 4155 // implicitly initialized with { 0 }. 4156 // 4157 // Note that tentative definitions are only emitted at the end of 4158 // a translation unit, so they should never have incomplete 4159 // type. In addition, EmitTentativeDefinition makes sure that we 4160 // never attempt to emit a tentative definition if a real one 4161 // exists. A use may still exists, however, so we still may need 4162 // to do a RAUW. 4163 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4164 Init = EmitNullConstant(D->getType()); 4165 } else { 4166 initializedGlobalDecl = GlobalDecl(D); 4167 emitter.emplace(*this); 4168 Init = emitter->tryEmitForInitializer(*InitDecl); 4169 4170 if (!Init) { 4171 QualType T = InitExpr->getType(); 4172 if (D->getType()->isReferenceType()) 4173 T = D->getType(); 4174 4175 if (getLangOpts().CPlusPlus) { 4176 Init = EmitNullConstant(T); 4177 NeedsGlobalCtor = true; 4178 } else { 4179 ErrorUnsupported(D, "static initializer"); 4180 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4181 } 4182 } else { 4183 // We don't need an initializer, so remove the entry for the delayed 4184 // initializer position (just in case this entry was delayed) if we 4185 // also don't need to register a destructor. 4186 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4187 DelayedCXXInitPosition.erase(D); 4188 } 4189 } 4190 4191 llvm::Type* InitType = Init->getType(); 4192 llvm::Constant *Entry = 4193 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4194 4195 // Strip off pointer casts if we got them. 4196 Entry = Entry->stripPointerCasts(); 4197 4198 // Entry is now either a Function or GlobalVariable. 4199 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4200 4201 // We have a definition after a declaration with the wrong type. 4202 // We must make a new GlobalVariable* and update everything that used OldGV 4203 // (a declaration or tentative definition) with the new GlobalVariable* 4204 // (which will be a definition). 4205 // 4206 // This happens if there is a prototype for a global (e.g. 4207 // "extern int x[];") and then a definition of a different type (e.g. 4208 // "int x[10];"). This also happens when an initializer has a different type 4209 // from the type of the global (this happens with unions). 4210 if (!GV || GV->getValueType() != InitType || 4211 GV->getType()->getAddressSpace() != 4212 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4213 4214 // Move the old entry aside so that we'll create a new one. 4215 Entry->setName(StringRef()); 4216 4217 // Make a new global with the correct type, this is now guaranteed to work. 4218 GV = cast<llvm::GlobalVariable>( 4219 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4220 ->stripPointerCasts()); 4221 4222 // Replace all uses of the old global with the new global 4223 llvm::Constant *NewPtrForOldDecl = 4224 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4225 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4226 4227 // Erase the old global, since it is no longer used. 4228 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4229 } 4230 4231 MaybeHandleStaticInExternC(D, GV); 4232 4233 if (D->hasAttr<AnnotateAttr>()) 4234 AddGlobalAnnotations(D, GV); 4235 4236 // Set the llvm linkage type as appropriate. 4237 llvm::GlobalValue::LinkageTypes Linkage = 4238 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4239 4240 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4241 // the device. [...]" 4242 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4243 // __device__, declares a variable that: [...] 4244 // Is accessible from all the threads within the grid and from the host 4245 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4246 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4247 if (GV && LangOpts.CUDA) { 4248 if (LangOpts.CUDAIsDevice) { 4249 if (Linkage != llvm::GlobalValue::InternalLinkage && 4250 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4251 GV->setExternallyInitialized(true); 4252 } else { 4253 // Host-side shadows of external declarations of device-side 4254 // global variables become internal definitions. These have to 4255 // be internal in order to prevent name conflicts with global 4256 // host variables with the same name in a different TUs. 4257 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 4258 Linkage = llvm::GlobalValue::InternalLinkage; 4259 // Shadow variables and their properties must be registered with CUDA 4260 // runtime. Skip Extern global variables, which will be registered in 4261 // the TU where they are defined. 4262 // 4263 // Don't register a C++17 inline variable. The local symbol can be 4264 // discarded and referencing a discarded local symbol from outside the 4265 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 4266 // TODO: Reject __device__ constexpr and __device__ inline in Sema. 4267 if (!D->hasExternalStorage() && !D->isInline()) 4268 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4269 D->hasAttr<CUDAConstantAttr>()); 4270 } else if (D->hasAttr<CUDASharedAttr>()) { 4271 // __shared__ variables are odd. Shadows do get created, but 4272 // they are not registered with the CUDA runtime, so they 4273 // can't really be used to access their device-side 4274 // counterparts. It's not clear yet whether it's nvcc's bug or 4275 // a feature, but we've got to do the same for compatibility. 4276 Linkage = llvm::GlobalValue::InternalLinkage; 4277 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4278 D->getType()->isCUDADeviceBuiltinTextureType()) { 4279 // Builtin surfaces and textures and their template arguments are 4280 // also registered with CUDA runtime. 4281 Linkage = llvm::GlobalValue::InternalLinkage; 4282 const ClassTemplateSpecializationDecl *TD = 4283 cast<ClassTemplateSpecializationDecl>( 4284 D->getType()->getAs<RecordType>()->getDecl()); 4285 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4286 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4287 assert(Args.size() == 2 && 4288 "Unexpected number of template arguments of CUDA device " 4289 "builtin surface type."); 4290 auto SurfType = Args[1].getAsIntegral(); 4291 if (!D->hasExternalStorage()) 4292 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4293 SurfType.getSExtValue()); 4294 } else { 4295 assert(Args.size() == 3 && 4296 "Unexpected number of template arguments of CUDA device " 4297 "builtin texture type."); 4298 auto TexType = Args[1].getAsIntegral(); 4299 auto Normalized = Args[2].getAsIntegral(); 4300 if (!D->hasExternalStorage()) 4301 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4302 TexType.getSExtValue(), 4303 Normalized.getZExtValue()); 4304 } 4305 } 4306 } 4307 } 4308 4309 GV->setInitializer(Init); 4310 if (emitter) 4311 emitter->finalize(GV); 4312 4313 // If it is safe to mark the global 'constant', do so now. 4314 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4315 isTypeConstant(D->getType(), true)); 4316 4317 // If it is in a read-only section, mark it 'constant'. 4318 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4319 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4320 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4321 GV->setConstant(true); 4322 } 4323 4324 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4325 4326 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4327 // function is only defined alongside the variable, not also alongside 4328 // callers. Normally, all accesses to a thread_local go through the 4329 // thread-wrapper in order to ensure initialization has occurred, underlying 4330 // variable will never be used other than the thread-wrapper, so it can be 4331 // converted to internal linkage. 4332 // 4333 // However, if the variable has the 'constinit' attribute, it _can_ be 4334 // referenced directly, without calling the thread-wrapper, so the linkage 4335 // must not be changed. 4336 // 4337 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4338 // weak or linkonce, the de-duplication semantics are important to preserve, 4339 // so we don't change the linkage. 4340 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4341 Linkage == llvm::GlobalValue::ExternalLinkage && 4342 Context.getTargetInfo().getTriple().isOSDarwin() && 4343 !D->hasAttr<ConstInitAttr>()) 4344 Linkage = llvm::GlobalValue::InternalLinkage; 4345 4346 GV->setLinkage(Linkage); 4347 if (D->hasAttr<DLLImportAttr>()) 4348 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4349 else if (D->hasAttr<DLLExportAttr>()) 4350 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4351 else 4352 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4353 4354 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4355 // common vars aren't constant even if declared const. 4356 GV->setConstant(false); 4357 // Tentative definition of global variables may be initialized with 4358 // non-zero null pointers. In this case they should have weak linkage 4359 // since common linkage must have zero initializer and must not have 4360 // explicit section therefore cannot have non-zero initial value. 4361 if (!GV->getInitializer()->isNullValue()) 4362 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4363 } 4364 4365 setNonAliasAttributes(D, GV); 4366 4367 if (D->getTLSKind() && !GV->isThreadLocal()) { 4368 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4369 CXXThreadLocals.push_back(D); 4370 setTLSMode(GV, *D); 4371 } 4372 4373 maybeSetTrivialComdat(*D, *GV); 4374 4375 // Emit the initializer function if necessary. 4376 if (NeedsGlobalCtor || NeedsGlobalDtor) 4377 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4378 4379 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4380 4381 // Emit global variable debug information. 4382 if (CGDebugInfo *DI = getModuleDebugInfo()) 4383 if (getCodeGenOpts().hasReducedDebugInfo()) 4384 DI->EmitGlobalVariable(GV, D); 4385 } 4386 4387 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4388 if (CGDebugInfo *DI = getModuleDebugInfo()) 4389 if (getCodeGenOpts().hasReducedDebugInfo()) { 4390 QualType ASTTy = D->getType(); 4391 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4392 llvm::PointerType *PTy = 4393 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4394 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4395 DI->EmitExternalVariable( 4396 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4397 } 4398 } 4399 4400 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4401 CodeGenModule &CGM, const VarDecl *D, 4402 bool NoCommon) { 4403 // Don't give variables common linkage if -fno-common was specified unless it 4404 // was overridden by a NoCommon attribute. 4405 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4406 return true; 4407 4408 // C11 6.9.2/2: 4409 // A declaration of an identifier for an object that has file scope without 4410 // an initializer, and without a storage-class specifier or with the 4411 // storage-class specifier static, constitutes a tentative definition. 4412 if (D->getInit() || D->hasExternalStorage()) 4413 return true; 4414 4415 // A variable cannot be both common and exist in a section. 4416 if (D->hasAttr<SectionAttr>()) 4417 return true; 4418 4419 // A variable cannot be both common and exist in a section. 4420 // We don't try to determine which is the right section in the front-end. 4421 // If no specialized section name is applicable, it will resort to default. 4422 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4423 D->hasAttr<PragmaClangDataSectionAttr>() || 4424 D->hasAttr<PragmaClangRelroSectionAttr>() || 4425 D->hasAttr<PragmaClangRodataSectionAttr>()) 4426 return true; 4427 4428 // Thread local vars aren't considered common linkage. 4429 if (D->getTLSKind()) 4430 return true; 4431 4432 // Tentative definitions marked with WeakImportAttr are true definitions. 4433 if (D->hasAttr<WeakImportAttr>()) 4434 return true; 4435 4436 // A variable cannot be both common and exist in a comdat. 4437 if (shouldBeInCOMDAT(CGM, *D)) 4438 return true; 4439 4440 // Declarations with a required alignment do not have common linkage in MSVC 4441 // mode. 4442 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4443 if (D->hasAttr<AlignedAttr>()) 4444 return true; 4445 QualType VarType = D->getType(); 4446 if (Context.isAlignmentRequired(VarType)) 4447 return true; 4448 4449 if (const auto *RT = VarType->getAs<RecordType>()) { 4450 const RecordDecl *RD = RT->getDecl(); 4451 for (const FieldDecl *FD : RD->fields()) { 4452 if (FD->isBitField()) 4453 continue; 4454 if (FD->hasAttr<AlignedAttr>()) 4455 return true; 4456 if (Context.isAlignmentRequired(FD->getType())) 4457 return true; 4458 } 4459 } 4460 } 4461 4462 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4463 // common symbols, so symbols with greater alignment requirements cannot be 4464 // common. 4465 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4466 // alignments for common symbols via the aligncomm directive, so this 4467 // restriction only applies to MSVC environments. 4468 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4469 Context.getTypeAlignIfKnown(D->getType()) > 4470 Context.toBits(CharUnits::fromQuantity(32))) 4471 return true; 4472 4473 return false; 4474 } 4475 4476 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4477 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4478 if (Linkage == GVA_Internal) 4479 return llvm::Function::InternalLinkage; 4480 4481 if (D->hasAttr<WeakAttr>()) { 4482 if (IsConstantVariable) 4483 return llvm::GlobalVariable::WeakODRLinkage; 4484 else 4485 return llvm::GlobalVariable::WeakAnyLinkage; 4486 } 4487 4488 if (const auto *FD = D->getAsFunction()) 4489 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4490 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4491 4492 // We are guaranteed to have a strong definition somewhere else, 4493 // so we can use available_externally linkage. 4494 if (Linkage == GVA_AvailableExternally) 4495 return llvm::GlobalValue::AvailableExternallyLinkage; 4496 4497 // Note that Apple's kernel linker doesn't support symbol 4498 // coalescing, so we need to avoid linkonce and weak linkages there. 4499 // Normally, this means we just map to internal, but for explicit 4500 // instantiations we'll map to external. 4501 4502 // In C++, the compiler has to emit a definition in every translation unit 4503 // that references the function. We should use linkonce_odr because 4504 // a) if all references in this translation unit are optimized away, we 4505 // don't need to codegen it. b) if the function persists, it needs to be 4506 // merged with other definitions. c) C++ has the ODR, so we know the 4507 // definition is dependable. 4508 if (Linkage == GVA_DiscardableODR) 4509 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4510 : llvm::Function::InternalLinkage; 4511 4512 // An explicit instantiation of a template has weak linkage, since 4513 // explicit instantiations can occur in multiple translation units 4514 // and must all be equivalent. However, we are not allowed to 4515 // throw away these explicit instantiations. 4516 // 4517 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4518 // so say that CUDA templates are either external (for kernels) or internal. 4519 // This lets llvm perform aggressive inter-procedural optimizations. For 4520 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4521 // therefore we need to follow the normal linkage paradigm. 4522 if (Linkage == GVA_StrongODR) { 4523 if (getLangOpts().AppleKext) 4524 return llvm::Function::ExternalLinkage; 4525 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4526 !getLangOpts().GPURelocatableDeviceCode) 4527 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4528 : llvm::Function::InternalLinkage; 4529 return llvm::Function::WeakODRLinkage; 4530 } 4531 4532 // C++ doesn't have tentative definitions and thus cannot have common 4533 // linkage. 4534 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4535 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4536 CodeGenOpts.NoCommon)) 4537 return llvm::GlobalVariable::CommonLinkage; 4538 4539 // selectany symbols are externally visible, so use weak instead of 4540 // linkonce. MSVC optimizes away references to const selectany globals, so 4541 // all definitions should be the same and ODR linkage should be used. 4542 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4543 if (D->hasAttr<SelectAnyAttr>()) 4544 return llvm::GlobalVariable::WeakODRLinkage; 4545 4546 // Otherwise, we have strong external linkage. 4547 assert(Linkage == GVA_StrongExternal); 4548 return llvm::GlobalVariable::ExternalLinkage; 4549 } 4550 4551 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4552 const VarDecl *VD, bool IsConstant) { 4553 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4554 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4555 } 4556 4557 /// Replace the uses of a function that was declared with a non-proto type. 4558 /// We want to silently drop extra arguments from call sites 4559 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4560 llvm::Function *newFn) { 4561 // Fast path. 4562 if (old->use_empty()) return; 4563 4564 llvm::Type *newRetTy = newFn->getReturnType(); 4565 SmallVector<llvm::Value*, 4> newArgs; 4566 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4567 4568 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4569 ui != ue; ) { 4570 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4571 llvm::User *user = use->getUser(); 4572 4573 // Recognize and replace uses of bitcasts. Most calls to 4574 // unprototyped functions will use bitcasts. 4575 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4576 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4577 replaceUsesOfNonProtoConstant(bitcast, newFn); 4578 continue; 4579 } 4580 4581 // Recognize calls to the function. 4582 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4583 if (!callSite) continue; 4584 if (!callSite->isCallee(&*use)) 4585 continue; 4586 4587 // If the return types don't match exactly, then we can't 4588 // transform this call unless it's dead. 4589 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4590 continue; 4591 4592 // Get the call site's attribute list. 4593 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4594 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4595 4596 // If the function was passed too few arguments, don't transform. 4597 unsigned newNumArgs = newFn->arg_size(); 4598 if (callSite->arg_size() < newNumArgs) 4599 continue; 4600 4601 // If extra arguments were passed, we silently drop them. 4602 // If any of the types mismatch, we don't transform. 4603 unsigned argNo = 0; 4604 bool dontTransform = false; 4605 for (llvm::Argument &A : newFn->args()) { 4606 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4607 dontTransform = true; 4608 break; 4609 } 4610 4611 // Add any parameter attributes. 4612 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4613 argNo++; 4614 } 4615 if (dontTransform) 4616 continue; 4617 4618 // Okay, we can transform this. Create the new call instruction and copy 4619 // over the required information. 4620 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4621 4622 // Copy over any operand bundles. 4623 callSite->getOperandBundlesAsDefs(newBundles); 4624 4625 llvm::CallBase *newCall; 4626 if (dyn_cast<llvm::CallInst>(callSite)) { 4627 newCall = 4628 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4629 } else { 4630 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4631 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4632 oldInvoke->getUnwindDest(), newArgs, 4633 newBundles, "", callSite); 4634 } 4635 newArgs.clear(); // for the next iteration 4636 4637 if (!newCall->getType()->isVoidTy()) 4638 newCall->takeName(callSite); 4639 newCall->setAttributes(llvm::AttributeList::get( 4640 newFn->getContext(), oldAttrs.getFnAttributes(), 4641 oldAttrs.getRetAttributes(), newArgAttrs)); 4642 newCall->setCallingConv(callSite->getCallingConv()); 4643 4644 // Finally, remove the old call, replacing any uses with the new one. 4645 if (!callSite->use_empty()) 4646 callSite->replaceAllUsesWith(newCall); 4647 4648 // Copy debug location attached to CI. 4649 if (callSite->getDebugLoc()) 4650 newCall->setDebugLoc(callSite->getDebugLoc()); 4651 4652 callSite->eraseFromParent(); 4653 } 4654 } 4655 4656 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4657 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4658 /// existing call uses of the old function in the module, this adjusts them to 4659 /// call the new function directly. 4660 /// 4661 /// This is not just a cleanup: the always_inline pass requires direct calls to 4662 /// functions to be able to inline them. If there is a bitcast in the way, it 4663 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4664 /// run at -O0. 4665 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4666 llvm::Function *NewFn) { 4667 // If we're redefining a global as a function, don't transform it. 4668 if (!isa<llvm::Function>(Old)) return; 4669 4670 replaceUsesOfNonProtoConstant(Old, NewFn); 4671 } 4672 4673 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4674 auto DK = VD->isThisDeclarationADefinition(); 4675 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4676 return; 4677 4678 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4679 // If we have a definition, this might be a deferred decl. If the 4680 // instantiation is explicit, make sure we emit it at the end. 4681 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4682 GetAddrOfGlobalVar(VD); 4683 4684 EmitTopLevelDecl(VD); 4685 } 4686 4687 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4688 llvm::GlobalValue *GV) { 4689 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4690 4691 // Compute the function info and LLVM type. 4692 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4693 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4694 4695 // Get or create the prototype for the function. 4696 if (!GV || (GV->getValueType() != Ty)) 4697 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4698 /*DontDefer=*/true, 4699 ForDefinition)); 4700 4701 // Already emitted. 4702 if (!GV->isDeclaration()) 4703 return; 4704 4705 // We need to set linkage and visibility on the function before 4706 // generating code for it because various parts of IR generation 4707 // want to propagate this information down (e.g. to local static 4708 // declarations). 4709 auto *Fn = cast<llvm::Function>(GV); 4710 setFunctionLinkage(GD, Fn); 4711 4712 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4713 setGVProperties(Fn, GD); 4714 4715 MaybeHandleStaticInExternC(D, Fn); 4716 4717 maybeSetTrivialComdat(*D, *Fn); 4718 4719 // Set CodeGen attributes that represent floating point environment. 4720 setLLVMFunctionFEnvAttributes(D, Fn); 4721 4722 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4723 4724 setNonAliasAttributes(GD, Fn); 4725 SetLLVMFunctionAttributesForDefinition(D, Fn); 4726 4727 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4728 AddGlobalCtor(Fn, CA->getPriority()); 4729 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4730 AddGlobalDtor(Fn, DA->getPriority(), true); 4731 if (D->hasAttr<AnnotateAttr>()) 4732 AddGlobalAnnotations(D, Fn); 4733 } 4734 4735 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4736 const auto *D = cast<ValueDecl>(GD.getDecl()); 4737 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4738 assert(AA && "Not an alias?"); 4739 4740 StringRef MangledName = getMangledName(GD); 4741 4742 if (AA->getAliasee() == MangledName) { 4743 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4744 return; 4745 } 4746 4747 // If there is a definition in the module, then it wins over the alias. 4748 // This is dubious, but allow it to be safe. Just ignore the alias. 4749 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4750 if (Entry && !Entry->isDeclaration()) 4751 return; 4752 4753 Aliases.push_back(GD); 4754 4755 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4756 4757 // Create a reference to the named value. This ensures that it is emitted 4758 // if a deferred decl. 4759 llvm::Constant *Aliasee; 4760 llvm::GlobalValue::LinkageTypes LT; 4761 if (isa<llvm::FunctionType>(DeclTy)) { 4762 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4763 /*ForVTable=*/false); 4764 LT = getFunctionLinkage(GD); 4765 } else { 4766 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4767 llvm::PointerType::getUnqual(DeclTy), 4768 /*D=*/nullptr); 4769 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4770 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4771 else 4772 LT = getFunctionLinkage(GD); 4773 } 4774 4775 // Create the new alias itself, but don't set a name yet. 4776 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4777 auto *GA = 4778 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4779 4780 if (Entry) { 4781 if (GA->getAliasee() == Entry) { 4782 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4783 return; 4784 } 4785 4786 assert(Entry->isDeclaration()); 4787 4788 // If there is a declaration in the module, then we had an extern followed 4789 // by the alias, as in: 4790 // extern int test6(); 4791 // ... 4792 // int test6() __attribute__((alias("test7"))); 4793 // 4794 // Remove it and replace uses of it with the alias. 4795 GA->takeName(Entry); 4796 4797 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4798 Entry->getType())); 4799 Entry->eraseFromParent(); 4800 } else { 4801 GA->setName(MangledName); 4802 } 4803 4804 // Set attributes which are particular to an alias; this is a 4805 // specialization of the attributes which may be set on a global 4806 // variable/function. 4807 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4808 D->isWeakImported()) { 4809 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4810 } 4811 4812 if (const auto *VD = dyn_cast<VarDecl>(D)) 4813 if (VD->getTLSKind()) 4814 setTLSMode(GA, *VD); 4815 4816 SetCommonAttributes(GD, GA); 4817 } 4818 4819 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4820 const auto *D = cast<ValueDecl>(GD.getDecl()); 4821 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4822 assert(IFA && "Not an ifunc?"); 4823 4824 StringRef MangledName = getMangledName(GD); 4825 4826 if (IFA->getResolver() == MangledName) { 4827 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4828 return; 4829 } 4830 4831 // Report an error if some definition overrides ifunc. 4832 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4833 if (Entry && !Entry->isDeclaration()) { 4834 GlobalDecl OtherGD; 4835 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4836 DiagnosedConflictingDefinitions.insert(GD).second) { 4837 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4838 << MangledName; 4839 Diags.Report(OtherGD.getDecl()->getLocation(), 4840 diag::note_previous_definition); 4841 } 4842 return; 4843 } 4844 4845 Aliases.push_back(GD); 4846 4847 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4848 llvm::Constant *Resolver = 4849 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4850 /*ForVTable=*/false); 4851 llvm::GlobalIFunc *GIF = 4852 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4853 "", Resolver, &getModule()); 4854 if (Entry) { 4855 if (GIF->getResolver() == Entry) { 4856 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4857 return; 4858 } 4859 assert(Entry->isDeclaration()); 4860 4861 // If there is a declaration in the module, then we had an extern followed 4862 // by the ifunc, as in: 4863 // extern int test(); 4864 // ... 4865 // int test() __attribute__((ifunc("resolver"))); 4866 // 4867 // Remove it and replace uses of it with the ifunc. 4868 GIF->takeName(Entry); 4869 4870 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4871 Entry->getType())); 4872 Entry->eraseFromParent(); 4873 } else 4874 GIF->setName(MangledName); 4875 4876 SetCommonAttributes(GD, GIF); 4877 } 4878 4879 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4880 ArrayRef<llvm::Type*> Tys) { 4881 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4882 Tys); 4883 } 4884 4885 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4886 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4887 const StringLiteral *Literal, bool TargetIsLSB, 4888 bool &IsUTF16, unsigned &StringLength) { 4889 StringRef String = Literal->getString(); 4890 unsigned NumBytes = String.size(); 4891 4892 // Check for simple case. 4893 if (!Literal->containsNonAsciiOrNull()) { 4894 StringLength = NumBytes; 4895 return *Map.insert(std::make_pair(String, nullptr)).first; 4896 } 4897 4898 // Otherwise, convert the UTF8 literals into a string of shorts. 4899 IsUTF16 = true; 4900 4901 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4902 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4903 llvm::UTF16 *ToPtr = &ToBuf[0]; 4904 4905 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4906 ToPtr + NumBytes, llvm::strictConversion); 4907 4908 // ConvertUTF8toUTF16 returns the length in ToPtr. 4909 StringLength = ToPtr - &ToBuf[0]; 4910 4911 // Add an explicit null. 4912 *ToPtr = 0; 4913 return *Map.insert(std::make_pair( 4914 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4915 (StringLength + 1) * 2), 4916 nullptr)).first; 4917 } 4918 4919 ConstantAddress 4920 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4921 unsigned StringLength = 0; 4922 bool isUTF16 = false; 4923 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4924 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4925 getDataLayout().isLittleEndian(), isUTF16, 4926 StringLength); 4927 4928 if (auto *C = Entry.second) 4929 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4930 4931 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4932 llvm::Constant *Zeros[] = { Zero, Zero }; 4933 4934 const ASTContext &Context = getContext(); 4935 const llvm::Triple &Triple = getTriple(); 4936 4937 const auto CFRuntime = getLangOpts().CFRuntime; 4938 const bool IsSwiftABI = 4939 static_cast<unsigned>(CFRuntime) >= 4940 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4941 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4942 4943 // If we don't already have it, get __CFConstantStringClassReference. 4944 if (!CFConstantStringClassRef) { 4945 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4946 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4947 Ty = llvm::ArrayType::get(Ty, 0); 4948 4949 switch (CFRuntime) { 4950 default: break; 4951 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4952 case LangOptions::CoreFoundationABI::Swift5_0: 4953 CFConstantStringClassName = 4954 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4955 : "$s10Foundation19_NSCFConstantStringCN"; 4956 Ty = IntPtrTy; 4957 break; 4958 case LangOptions::CoreFoundationABI::Swift4_2: 4959 CFConstantStringClassName = 4960 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4961 : "$S10Foundation19_NSCFConstantStringCN"; 4962 Ty = IntPtrTy; 4963 break; 4964 case LangOptions::CoreFoundationABI::Swift4_1: 4965 CFConstantStringClassName = 4966 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4967 : "__T010Foundation19_NSCFConstantStringCN"; 4968 Ty = IntPtrTy; 4969 break; 4970 } 4971 4972 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4973 4974 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4975 llvm::GlobalValue *GV = nullptr; 4976 4977 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4978 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4979 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4980 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4981 4982 const VarDecl *VD = nullptr; 4983 for (const auto &Result : DC->lookup(&II)) 4984 if ((VD = dyn_cast<VarDecl>(Result))) 4985 break; 4986 4987 if (Triple.isOSBinFormatELF()) { 4988 if (!VD) 4989 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4990 } else { 4991 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4992 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4993 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4994 else 4995 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4996 } 4997 4998 setDSOLocal(GV); 4999 } 5000 } 5001 5002 // Decay array -> ptr 5003 CFConstantStringClassRef = 5004 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5005 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5006 } 5007 5008 QualType CFTy = Context.getCFConstantStringType(); 5009 5010 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5011 5012 ConstantInitBuilder Builder(*this); 5013 auto Fields = Builder.beginStruct(STy); 5014 5015 // Class pointer. 5016 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5017 5018 // Flags. 5019 if (IsSwiftABI) { 5020 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5021 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5022 } else { 5023 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5024 } 5025 5026 // String pointer. 5027 llvm::Constant *C = nullptr; 5028 if (isUTF16) { 5029 auto Arr = llvm::makeArrayRef( 5030 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5031 Entry.first().size() / 2); 5032 C = llvm::ConstantDataArray::get(VMContext, Arr); 5033 } else { 5034 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5035 } 5036 5037 // Note: -fwritable-strings doesn't make the backing store strings of 5038 // CFStrings writable. (See <rdar://problem/10657500>) 5039 auto *GV = 5040 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5041 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5042 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5043 // Don't enforce the target's minimum global alignment, since the only use 5044 // of the string is via this class initializer. 5045 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5046 : Context.getTypeAlignInChars(Context.CharTy); 5047 GV->setAlignment(Align.getAsAlign()); 5048 5049 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5050 // Without it LLVM can merge the string with a non unnamed_addr one during 5051 // LTO. Doing that changes the section it ends in, which surprises ld64. 5052 if (Triple.isOSBinFormatMachO()) 5053 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5054 : "__TEXT,__cstring,cstring_literals"); 5055 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5056 // the static linker to adjust permissions to read-only later on. 5057 else if (Triple.isOSBinFormatELF()) 5058 GV->setSection(".rodata"); 5059 5060 // String. 5061 llvm::Constant *Str = 5062 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5063 5064 if (isUTF16) 5065 // Cast the UTF16 string to the correct type. 5066 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5067 Fields.add(Str); 5068 5069 // String length. 5070 llvm::IntegerType *LengthTy = 5071 llvm::IntegerType::get(getModule().getContext(), 5072 Context.getTargetInfo().getLongWidth()); 5073 if (IsSwiftABI) { 5074 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5075 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5076 LengthTy = Int32Ty; 5077 else 5078 LengthTy = IntPtrTy; 5079 } 5080 Fields.addInt(LengthTy, StringLength); 5081 5082 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5083 // properly aligned on 32-bit platforms. 5084 CharUnits Alignment = 5085 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5086 5087 // The struct. 5088 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5089 /*isConstant=*/false, 5090 llvm::GlobalVariable::PrivateLinkage); 5091 GV->addAttribute("objc_arc_inert"); 5092 switch (Triple.getObjectFormat()) { 5093 case llvm::Triple::UnknownObjectFormat: 5094 llvm_unreachable("unknown file format"); 5095 case llvm::Triple::GOFF: 5096 llvm_unreachable("GOFF is not yet implemented"); 5097 case llvm::Triple::XCOFF: 5098 llvm_unreachable("XCOFF is not yet implemented"); 5099 case llvm::Triple::COFF: 5100 case llvm::Triple::ELF: 5101 case llvm::Triple::Wasm: 5102 GV->setSection("cfstring"); 5103 break; 5104 case llvm::Triple::MachO: 5105 GV->setSection("__DATA,__cfstring"); 5106 break; 5107 } 5108 Entry.second = GV; 5109 5110 return ConstantAddress(GV, Alignment); 5111 } 5112 5113 bool CodeGenModule::getExpressionLocationsEnabled() const { 5114 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5115 } 5116 5117 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5118 if (ObjCFastEnumerationStateType.isNull()) { 5119 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5120 D->startDefinition(); 5121 5122 QualType FieldTypes[] = { 5123 Context.UnsignedLongTy, 5124 Context.getPointerType(Context.getObjCIdType()), 5125 Context.getPointerType(Context.UnsignedLongTy), 5126 Context.getConstantArrayType(Context.UnsignedLongTy, 5127 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5128 }; 5129 5130 for (size_t i = 0; i < 4; ++i) { 5131 FieldDecl *Field = FieldDecl::Create(Context, 5132 D, 5133 SourceLocation(), 5134 SourceLocation(), nullptr, 5135 FieldTypes[i], /*TInfo=*/nullptr, 5136 /*BitWidth=*/nullptr, 5137 /*Mutable=*/false, 5138 ICIS_NoInit); 5139 Field->setAccess(AS_public); 5140 D->addDecl(Field); 5141 } 5142 5143 D->completeDefinition(); 5144 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5145 } 5146 5147 return ObjCFastEnumerationStateType; 5148 } 5149 5150 llvm::Constant * 5151 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5152 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5153 5154 // Don't emit it as the address of the string, emit the string data itself 5155 // as an inline array. 5156 if (E->getCharByteWidth() == 1) { 5157 SmallString<64> Str(E->getString()); 5158 5159 // Resize the string to the right size, which is indicated by its type. 5160 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5161 Str.resize(CAT->getSize().getZExtValue()); 5162 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5163 } 5164 5165 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5166 llvm::Type *ElemTy = AType->getElementType(); 5167 unsigned NumElements = AType->getNumElements(); 5168 5169 // Wide strings have either 2-byte or 4-byte elements. 5170 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5171 SmallVector<uint16_t, 32> Elements; 5172 Elements.reserve(NumElements); 5173 5174 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5175 Elements.push_back(E->getCodeUnit(i)); 5176 Elements.resize(NumElements); 5177 return llvm::ConstantDataArray::get(VMContext, Elements); 5178 } 5179 5180 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5181 SmallVector<uint32_t, 32> Elements; 5182 Elements.reserve(NumElements); 5183 5184 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5185 Elements.push_back(E->getCodeUnit(i)); 5186 Elements.resize(NumElements); 5187 return llvm::ConstantDataArray::get(VMContext, Elements); 5188 } 5189 5190 static llvm::GlobalVariable * 5191 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5192 CodeGenModule &CGM, StringRef GlobalName, 5193 CharUnits Alignment) { 5194 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5195 CGM.getStringLiteralAddressSpace()); 5196 5197 llvm::Module &M = CGM.getModule(); 5198 // Create a global variable for this string 5199 auto *GV = new llvm::GlobalVariable( 5200 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5201 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5202 GV->setAlignment(Alignment.getAsAlign()); 5203 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5204 if (GV->isWeakForLinker()) { 5205 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5206 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5207 } 5208 CGM.setDSOLocal(GV); 5209 5210 return GV; 5211 } 5212 5213 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5214 /// constant array for the given string literal. 5215 ConstantAddress 5216 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5217 StringRef Name) { 5218 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5219 5220 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5221 llvm::GlobalVariable **Entry = nullptr; 5222 if (!LangOpts.WritableStrings) { 5223 Entry = &ConstantStringMap[C]; 5224 if (auto GV = *Entry) { 5225 if (Alignment.getQuantity() > GV->getAlignment()) 5226 GV->setAlignment(Alignment.getAsAlign()); 5227 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5228 Alignment); 5229 } 5230 } 5231 5232 SmallString<256> MangledNameBuffer; 5233 StringRef GlobalVariableName; 5234 llvm::GlobalValue::LinkageTypes LT; 5235 5236 // Mangle the string literal if that's how the ABI merges duplicate strings. 5237 // Don't do it if they are writable, since we don't want writes in one TU to 5238 // affect strings in another. 5239 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5240 !LangOpts.WritableStrings) { 5241 llvm::raw_svector_ostream Out(MangledNameBuffer); 5242 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5243 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5244 GlobalVariableName = MangledNameBuffer; 5245 } else { 5246 LT = llvm::GlobalValue::PrivateLinkage; 5247 GlobalVariableName = Name; 5248 } 5249 5250 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5251 if (Entry) 5252 *Entry = GV; 5253 5254 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5255 QualType()); 5256 5257 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5258 Alignment); 5259 } 5260 5261 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5262 /// array for the given ObjCEncodeExpr node. 5263 ConstantAddress 5264 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5265 std::string Str; 5266 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5267 5268 return GetAddrOfConstantCString(Str); 5269 } 5270 5271 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5272 /// the literal and a terminating '\0' character. 5273 /// The result has pointer to array type. 5274 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5275 const std::string &Str, const char *GlobalName) { 5276 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5277 CharUnits Alignment = 5278 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5279 5280 llvm::Constant *C = 5281 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5282 5283 // Don't share any string literals if strings aren't constant. 5284 llvm::GlobalVariable **Entry = nullptr; 5285 if (!LangOpts.WritableStrings) { 5286 Entry = &ConstantStringMap[C]; 5287 if (auto GV = *Entry) { 5288 if (Alignment.getQuantity() > GV->getAlignment()) 5289 GV->setAlignment(Alignment.getAsAlign()); 5290 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5291 Alignment); 5292 } 5293 } 5294 5295 // Get the default prefix if a name wasn't specified. 5296 if (!GlobalName) 5297 GlobalName = ".str"; 5298 // Create a global variable for this. 5299 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5300 GlobalName, Alignment); 5301 if (Entry) 5302 *Entry = GV; 5303 5304 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5305 Alignment); 5306 } 5307 5308 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5309 const MaterializeTemporaryExpr *E, const Expr *Init) { 5310 assert((E->getStorageDuration() == SD_Static || 5311 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5312 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5313 5314 // If we're not materializing a subobject of the temporary, keep the 5315 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5316 QualType MaterializedType = Init->getType(); 5317 if (Init == E->getSubExpr()) 5318 MaterializedType = E->getType(); 5319 5320 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5321 5322 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5323 return ConstantAddress(Slot, Align); 5324 5325 // FIXME: If an externally-visible declaration extends multiple temporaries, 5326 // we need to give each temporary the same name in every translation unit (and 5327 // we also need to make the temporaries externally-visible). 5328 SmallString<256> Name; 5329 llvm::raw_svector_ostream Out(Name); 5330 getCXXABI().getMangleContext().mangleReferenceTemporary( 5331 VD, E->getManglingNumber(), Out); 5332 5333 APValue *Value = nullptr; 5334 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5335 // If the initializer of the extending declaration is a constant 5336 // initializer, we should have a cached constant initializer for this 5337 // temporary. Note that this might have a different value from the value 5338 // computed by evaluating the initializer if the surrounding constant 5339 // expression modifies the temporary. 5340 Value = E->getOrCreateValue(false); 5341 } 5342 5343 // Try evaluating it now, it might have a constant initializer. 5344 Expr::EvalResult EvalResult; 5345 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5346 !EvalResult.hasSideEffects()) 5347 Value = &EvalResult.Val; 5348 5349 LangAS AddrSpace = 5350 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5351 5352 Optional<ConstantEmitter> emitter; 5353 llvm::Constant *InitialValue = nullptr; 5354 bool Constant = false; 5355 llvm::Type *Type; 5356 if (Value) { 5357 // The temporary has a constant initializer, use it. 5358 emitter.emplace(*this); 5359 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5360 MaterializedType); 5361 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5362 Type = InitialValue->getType(); 5363 } else { 5364 // No initializer, the initialization will be provided when we 5365 // initialize the declaration which performed lifetime extension. 5366 Type = getTypes().ConvertTypeForMem(MaterializedType); 5367 } 5368 5369 // Create a global variable for this lifetime-extended temporary. 5370 llvm::GlobalValue::LinkageTypes Linkage = 5371 getLLVMLinkageVarDefinition(VD, Constant); 5372 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5373 const VarDecl *InitVD; 5374 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5375 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5376 // Temporaries defined inside a class get linkonce_odr linkage because the 5377 // class can be defined in multiple translation units. 5378 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5379 } else { 5380 // There is no need for this temporary to have external linkage if the 5381 // VarDecl has external linkage. 5382 Linkage = llvm::GlobalVariable::InternalLinkage; 5383 } 5384 } 5385 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5386 auto *GV = new llvm::GlobalVariable( 5387 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5388 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5389 if (emitter) emitter->finalize(GV); 5390 setGVProperties(GV, VD); 5391 GV->setAlignment(Align.getAsAlign()); 5392 if (supportsCOMDAT() && GV->isWeakForLinker()) 5393 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5394 if (VD->getTLSKind()) 5395 setTLSMode(GV, *VD); 5396 llvm::Constant *CV = GV; 5397 if (AddrSpace != LangAS::Default) 5398 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5399 *this, GV, AddrSpace, LangAS::Default, 5400 Type->getPointerTo( 5401 getContext().getTargetAddressSpace(LangAS::Default))); 5402 MaterializedGlobalTemporaryMap[E] = CV; 5403 return ConstantAddress(CV, Align); 5404 } 5405 5406 /// EmitObjCPropertyImplementations - Emit information for synthesized 5407 /// properties for an implementation. 5408 void CodeGenModule::EmitObjCPropertyImplementations(const 5409 ObjCImplementationDecl *D) { 5410 for (const auto *PID : D->property_impls()) { 5411 // Dynamic is just for type-checking. 5412 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5413 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5414 5415 // Determine which methods need to be implemented, some may have 5416 // been overridden. Note that ::isPropertyAccessor is not the method 5417 // we want, that just indicates if the decl came from a 5418 // property. What we want to know is if the method is defined in 5419 // this implementation. 5420 auto *Getter = PID->getGetterMethodDecl(); 5421 if (!Getter || Getter->isSynthesizedAccessorStub()) 5422 CodeGenFunction(*this).GenerateObjCGetter( 5423 const_cast<ObjCImplementationDecl *>(D), PID); 5424 auto *Setter = PID->getSetterMethodDecl(); 5425 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5426 CodeGenFunction(*this).GenerateObjCSetter( 5427 const_cast<ObjCImplementationDecl *>(D), PID); 5428 } 5429 } 5430 } 5431 5432 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5433 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5434 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5435 ivar; ivar = ivar->getNextIvar()) 5436 if (ivar->getType().isDestructedType()) 5437 return true; 5438 5439 return false; 5440 } 5441 5442 static bool AllTrivialInitializers(CodeGenModule &CGM, 5443 ObjCImplementationDecl *D) { 5444 CodeGenFunction CGF(CGM); 5445 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5446 E = D->init_end(); B != E; ++B) { 5447 CXXCtorInitializer *CtorInitExp = *B; 5448 Expr *Init = CtorInitExp->getInit(); 5449 if (!CGF.isTrivialInitializer(Init)) 5450 return false; 5451 } 5452 return true; 5453 } 5454 5455 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5456 /// for an implementation. 5457 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5458 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5459 if (needsDestructMethod(D)) { 5460 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5461 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5462 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5463 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5464 getContext().VoidTy, nullptr, D, 5465 /*isInstance=*/true, /*isVariadic=*/false, 5466 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5467 /*isImplicitlyDeclared=*/true, 5468 /*isDefined=*/false, ObjCMethodDecl::Required); 5469 D->addInstanceMethod(DTORMethod); 5470 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5471 D->setHasDestructors(true); 5472 } 5473 5474 // If the implementation doesn't have any ivar initializers, we don't need 5475 // a .cxx_construct. 5476 if (D->getNumIvarInitializers() == 0 || 5477 AllTrivialInitializers(*this, D)) 5478 return; 5479 5480 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5481 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5482 // The constructor returns 'self'. 5483 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5484 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5485 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5486 /*isVariadic=*/false, 5487 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5488 /*isImplicitlyDeclared=*/true, 5489 /*isDefined=*/false, ObjCMethodDecl::Required); 5490 D->addInstanceMethod(CTORMethod); 5491 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5492 D->setHasNonZeroConstructors(true); 5493 } 5494 5495 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5496 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5497 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5498 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5499 ErrorUnsupported(LSD, "linkage spec"); 5500 return; 5501 } 5502 5503 EmitDeclContext(LSD); 5504 } 5505 5506 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5507 for (auto *I : DC->decls()) { 5508 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5509 // are themselves considered "top-level", so EmitTopLevelDecl on an 5510 // ObjCImplDecl does not recursively visit them. We need to do that in 5511 // case they're nested inside another construct (LinkageSpecDecl / 5512 // ExportDecl) that does stop them from being considered "top-level". 5513 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5514 for (auto *M : OID->methods()) 5515 EmitTopLevelDecl(M); 5516 } 5517 5518 EmitTopLevelDecl(I); 5519 } 5520 } 5521 5522 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5523 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5524 // Ignore dependent declarations. 5525 if (D->isTemplated()) 5526 return; 5527 5528 // Consteval function shouldn't be emitted. 5529 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5530 if (FD->isConsteval()) 5531 return; 5532 5533 switch (D->getKind()) { 5534 case Decl::CXXConversion: 5535 case Decl::CXXMethod: 5536 case Decl::Function: 5537 EmitGlobal(cast<FunctionDecl>(D)); 5538 // Always provide some coverage mapping 5539 // even for the functions that aren't emitted. 5540 AddDeferredUnusedCoverageMapping(D); 5541 break; 5542 5543 case Decl::CXXDeductionGuide: 5544 // Function-like, but does not result in code emission. 5545 break; 5546 5547 case Decl::Var: 5548 case Decl::Decomposition: 5549 case Decl::VarTemplateSpecialization: 5550 EmitGlobal(cast<VarDecl>(D)); 5551 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5552 for (auto *B : DD->bindings()) 5553 if (auto *HD = B->getHoldingVar()) 5554 EmitGlobal(HD); 5555 break; 5556 5557 // Indirect fields from global anonymous structs and unions can be 5558 // ignored; only the actual variable requires IR gen support. 5559 case Decl::IndirectField: 5560 break; 5561 5562 // C++ Decls 5563 case Decl::Namespace: 5564 EmitDeclContext(cast<NamespaceDecl>(D)); 5565 break; 5566 case Decl::ClassTemplateSpecialization: { 5567 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5568 if (CGDebugInfo *DI = getModuleDebugInfo()) 5569 if (Spec->getSpecializationKind() == 5570 TSK_ExplicitInstantiationDefinition && 5571 Spec->hasDefinition()) 5572 DI->completeTemplateDefinition(*Spec); 5573 } LLVM_FALLTHROUGH; 5574 case Decl::CXXRecord: { 5575 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5576 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5577 if (CRD->hasDefinition()) 5578 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5579 if (auto *ES = D->getASTContext().getExternalSource()) 5580 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5581 DI->completeUnusedClass(*CRD); 5582 } 5583 // Emit any static data members, they may be definitions. 5584 for (auto *I : CRD->decls()) 5585 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5586 EmitTopLevelDecl(I); 5587 break; 5588 } 5589 // No code generation needed. 5590 case Decl::UsingShadow: 5591 case Decl::ClassTemplate: 5592 case Decl::VarTemplate: 5593 case Decl::Concept: 5594 case Decl::VarTemplatePartialSpecialization: 5595 case Decl::FunctionTemplate: 5596 case Decl::TypeAliasTemplate: 5597 case Decl::Block: 5598 case Decl::Empty: 5599 case Decl::Binding: 5600 break; 5601 case Decl::Using: // using X; [C++] 5602 if (CGDebugInfo *DI = getModuleDebugInfo()) 5603 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5604 break; 5605 case Decl::NamespaceAlias: 5606 if (CGDebugInfo *DI = getModuleDebugInfo()) 5607 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5608 break; 5609 case Decl::UsingDirective: // using namespace X; [C++] 5610 if (CGDebugInfo *DI = getModuleDebugInfo()) 5611 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5612 break; 5613 case Decl::CXXConstructor: 5614 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5615 break; 5616 case Decl::CXXDestructor: 5617 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5618 break; 5619 5620 case Decl::StaticAssert: 5621 // Nothing to do. 5622 break; 5623 5624 // Objective-C Decls 5625 5626 // Forward declarations, no (immediate) code generation. 5627 case Decl::ObjCInterface: 5628 case Decl::ObjCCategory: 5629 break; 5630 5631 case Decl::ObjCProtocol: { 5632 auto *Proto = cast<ObjCProtocolDecl>(D); 5633 if (Proto->isThisDeclarationADefinition()) 5634 ObjCRuntime->GenerateProtocol(Proto); 5635 break; 5636 } 5637 5638 case Decl::ObjCCategoryImpl: 5639 // Categories have properties but don't support synthesize so we 5640 // can ignore them here. 5641 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5642 break; 5643 5644 case Decl::ObjCImplementation: { 5645 auto *OMD = cast<ObjCImplementationDecl>(D); 5646 EmitObjCPropertyImplementations(OMD); 5647 EmitObjCIvarInitializations(OMD); 5648 ObjCRuntime->GenerateClass(OMD); 5649 // Emit global variable debug information. 5650 if (CGDebugInfo *DI = getModuleDebugInfo()) 5651 if (getCodeGenOpts().hasReducedDebugInfo()) 5652 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5653 OMD->getClassInterface()), OMD->getLocation()); 5654 break; 5655 } 5656 case Decl::ObjCMethod: { 5657 auto *OMD = cast<ObjCMethodDecl>(D); 5658 // If this is not a prototype, emit the body. 5659 if (OMD->getBody()) 5660 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5661 break; 5662 } 5663 case Decl::ObjCCompatibleAlias: 5664 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5665 break; 5666 5667 case Decl::PragmaComment: { 5668 const auto *PCD = cast<PragmaCommentDecl>(D); 5669 switch (PCD->getCommentKind()) { 5670 case PCK_Unknown: 5671 llvm_unreachable("unexpected pragma comment kind"); 5672 case PCK_Linker: 5673 AppendLinkerOptions(PCD->getArg()); 5674 break; 5675 case PCK_Lib: 5676 AddDependentLib(PCD->getArg()); 5677 break; 5678 case PCK_Compiler: 5679 case PCK_ExeStr: 5680 case PCK_User: 5681 break; // We ignore all of these. 5682 } 5683 break; 5684 } 5685 5686 case Decl::PragmaDetectMismatch: { 5687 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5688 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5689 break; 5690 } 5691 5692 case Decl::LinkageSpec: 5693 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5694 break; 5695 5696 case Decl::FileScopeAsm: { 5697 // File-scope asm is ignored during device-side CUDA compilation. 5698 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5699 break; 5700 // File-scope asm is ignored during device-side OpenMP compilation. 5701 if (LangOpts.OpenMPIsDevice) 5702 break; 5703 auto *AD = cast<FileScopeAsmDecl>(D); 5704 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5705 break; 5706 } 5707 5708 case Decl::Import: { 5709 auto *Import = cast<ImportDecl>(D); 5710 5711 // If we've already imported this module, we're done. 5712 if (!ImportedModules.insert(Import->getImportedModule())) 5713 break; 5714 5715 // Emit debug information for direct imports. 5716 if (!Import->getImportedOwningModule()) { 5717 if (CGDebugInfo *DI = getModuleDebugInfo()) 5718 DI->EmitImportDecl(*Import); 5719 } 5720 5721 // Find all of the submodules and emit the module initializers. 5722 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5723 SmallVector<clang::Module *, 16> Stack; 5724 Visited.insert(Import->getImportedModule()); 5725 Stack.push_back(Import->getImportedModule()); 5726 5727 while (!Stack.empty()) { 5728 clang::Module *Mod = Stack.pop_back_val(); 5729 if (!EmittedModuleInitializers.insert(Mod).second) 5730 continue; 5731 5732 for (auto *D : Context.getModuleInitializers(Mod)) 5733 EmitTopLevelDecl(D); 5734 5735 // Visit the submodules of this module. 5736 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5737 SubEnd = Mod->submodule_end(); 5738 Sub != SubEnd; ++Sub) { 5739 // Skip explicit children; they need to be explicitly imported to emit 5740 // the initializers. 5741 if ((*Sub)->IsExplicit) 5742 continue; 5743 5744 if (Visited.insert(*Sub).second) 5745 Stack.push_back(*Sub); 5746 } 5747 } 5748 break; 5749 } 5750 5751 case Decl::Export: 5752 EmitDeclContext(cast<ExportDecl>(D)); 5753 break; 5754 5755 case Decl::OMPThreadPrivate: 5756 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5757 break; 5758 5759 case Decl::OMPAllocate: 5760 break; 5761 5762 case Decl::OMPDeclareReduction: 5763 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5764 break; 5765 5766 case Decl::OMPDeclareMapper: 5767 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5768 break; 5769 5770 case Decl::OMPRequires: 5771 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5772 break; 5773 5774 case Decl::Typedef: 5775 case Decl::TypeAlias: // using foo = bar; [C++11] 5776 if (CGDebugInfo *DI = getModuleDebugInfo()) 5777 DI->EmitAndRetainType( 5778 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5779 break; 5780 5781 case Decl::Record: 5782 if (CGDebugInfo *DI = getModuleDebugInfo()) 5783 if (cast<RecordDecl>(D)->getDefinition()) 5784 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5785 break; 5786 5787 case Decl::Enum: 5788 if (CGDebugInfo *DI = getModuleDebugInfo()) 5789 if (cast<EnumDecl>(D)->getDefinition()) 5790 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5791 break; 5792 5793 default: 5794 // Make sure we handled everything we should, every other kind is a 5795 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5796 // function. Need to recode Decl::Kind to do that easily. 5797 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5798 break; 5799 } 5800 } 5801 5802 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5803 // Do we need to generate coverage mapping? 5804 if (!CodeGenOpts.CoverageMapping) 5805 return; 5806 switch (D->getKind()) { 5807 case Decl::CXXConversion: 5808 case Decl::CXXMethod: 5809 case Decl::Function: 5810 case Decl::ObjCMethod: 5811 case Decl::CXXConstructor: 5812 case Decl::CXXDestructor: { 5813 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5814 break; 5815 SourceManager &SM = getContext().getSourceManager(); 5816 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5817 break; 5818 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5819 if (I == DeferredEmptyCoverageMappingDecls.end()) 5820 DeferredEmptyCoverageMappingDecls[D] = true; 5821 break; 5822 } 5823 default: 5824 break; 5825 }; 5826 } 5827 5828 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5829 // Do we need to generate coverage mapping? 5830 if (!CodeGenOpts.CoverageMapping) 5831 return; 5832 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5833 if (Fn->isTemplateInstantiation()) 5834 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5835 } 5836 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5837 if (I == DeferredEmptyCoverageMappingDecls.end()) 5838 DeferredEmptyCoverageMappingDecls[D] = false; 5839 else 5840 I->second = false; 5841 } 5842 5843 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5844 // We call takeVector() here to avoid use-after-free. 5845 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5846 // we deserialize function bodies to emit coverage info for them, and that 5847 // deserializes more declarations. How should we handle that case? 5848 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5849 if (!Entry.second) 5850 continue; 5851 const Decl *D = Entry.first; 5852 switch (D->getKind()) { 5853 case Decl::CXXConversion: 5854 case Decl::CXXMethod: 5855 case Decl::Function: 5856 case Decl::ObjCMethod: { 5857 CodeGenPGO PGO(*this); 5858 GlobalDecl GD(cast<FunctionDecl>(D)); 5859 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5860 getFunctionLinkage(GD)); 5861 break; 5862 } 5863 case Decl::CXXConstructor: { 5864 CodeGenPGO PGO(*this); 5865 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5866 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5867 getFunctionLinkage(GD)); 5868 break; 5869 } 5870 case Decl::CXXDestructor: { 5871 CodeGenPGO PGO(*this); 5872 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5873 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5874 getFunctionLinkage(GD)); 5875 break; 5876 } 5877 default: 5878 break; 5879 }; 5880 } 5881 } 5882 5883 void CodeGenModule::EmitMainVoidAlias() { 5884 // In order to transition away from "__original_main" gracefully, emit an 5885 // alias for "main" in the no-argument case so that libc can detect when 5886 // new-style no-argument main is in used. 5887 if (llvm::Function *F = getModule().getFunction("main")) { 5888 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5889 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5890 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5891 } 5892 } 5893 5894 /// Turns the given pointer into a constant. 5895 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5896 const void *Ptr) { 5897 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5898 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5899 return llvm::ConstantInt::get(i64, PtrInt); 5900 } 5901 5902 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5903 llvm::NamedMDNode *&GlobalMetadata, 5904 GlobalDecl D, 5905 llvm::GlobalValue *Addr) { 5906 if (!GlobalMetadata) 5907 GlobalMetadata = 5908 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5909 5910 // TODO: should we report variant information for ctors/dtors? 5911 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5912 llvm::ConstantAsMetadata::get(GetPointerConstant( 5913 CGM.getLLVMContext(), D.getDecl()))}; 5914 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5915 } 5916 5917 /// For each function which is declared within an extern "C" region and marked 5918 /// as 'used', but has internal linkage, create an alias from the unmangled 5919 /// name to the mangled name if possible. People expect to be able to refer 5920 /// to such functions with an unmangled name from inline assembly within the 5921 /// same translation unit. 5922 void CodeGenModule::EmitStaticExternCAliases() { 5923 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5924 return; 5925 for (auto &I : StaticExternCValues) { 5926 IdentifierInfo *Name = I.first; 5927 llvm::GlobalValue *Val = I.second; 5928 if (Val && !getModule().getNamedValue(Name->getName())) 5929 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5930 } 5931 } 5932 5933 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5934 GlobalDecl &Result) const { 5935 auto Res = Manglings.find(MangledName); 5936 if (Res == Manglings.end()) 5937 return false; 5938 Result = Res->getValue(); 5939 return true; 5940 } 5941 5942 /// Emits metadata nodes associating all the global values in the 5943 /// current module with the Decls they came from. This is useful for 5944 /// projects using IR gen as a subroutine. 5945 /// 5946 /// Since there's currently no way to associate an MDNode directly 5947 /// with an llvm::GlobalValue, we create a global named metadata 5948 /// with the name 'clang.global.decl.ptrs'. 5949 void CodeGenModule::EmitDeclMetadata() { 5950 llvm::NamedMDNode *GlobalMetadata = nullptr; 5951 5952 for (auto &I : MangledDeclNames) { 5953 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5954 // Some mangled names don't necessarily have an associated GlobalValue 5955 // in this module, e.g. if we mangled it for DebugInfo. 5956 if (Addr) 5957 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5958 } 5959 } 5960 5961 /// Emits metadata nodes for all the local variables in the current 5962 /// function. 5963 void CodeGenFunction::EmitDeclMetadata() { 5964 if (LocalDeclMap.empty()) return; 5965 5966 llvm::LLVMContext &Context = getLLVMContext(); 5967 5968 // Find the unique metadata ID for this name. 5969 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5970 5971 llvm::NamedMDNode *GlobalMetadata = nullptr; 5972 5973 for (auto &I : LocalDeclMap) { 5974 const Decl *D = I.first; 5975 llvm::Value *Addr = I.second.getPointer(); 5976 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5977 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5978 Alloca->setMetadata( 5979 DeclPtrKind, llvm::MDNode::get( 5980 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5981 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5982 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5983 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5984 } 5985 } 5986 } 5987 5988 void CodeGenModule::EmitVersionIdentMetadata() { 5989 llvm::NamedMDNode *IdentMetadata = 5990 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5991 std::string Version = getClangFullVersion(); 5992 llvm::LLVMContext &Ctx = TheModule.getContext(); 5993 5994 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5995 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5996 } 5997 5998 void CodeGenModule::EmitCommandLineMetadata() { 5999 llvm::NamedMDNode *CommandLineMetadata = 6000 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6001 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6002 llvm::LLVMContext &Ctx = TheModule.getContext(); 6003 6004 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6005 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6006 } 6007 6008 void CodeGenModule::EmitCoverageFile() { 6009 if (getCodeGenOpts().CoverageDataFile.empty() && 6010 getCodeGenOpts().CoverageNotesFile.empty()) 6011 return; 6012 6013 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6014 if (!CUNode) 6015 return; 6016 6017 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6018 llvm::LLVMContext &Ctx = TheModule.getContext(); 6019 auto *CoverageDataFile = 6020 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6021 auto *CoverageNotesFile = 6022 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6023 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6024 llvm::MDNode *CU = CUNode->getOperand(i); 6025 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6026 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6027 } 6028 } 6029 6030 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6031 bool ForEH) { 6032 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6033 // FIXME: should we even be calling this method if RTTI is disabled 6034 // and it's not for EH? 6035 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6036 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6037 getTriple().isNVPTX())) 6038 return llvm::Constant::getNullValue(Int8PtrTy); 6039 6040 if (ForEH && Ty->isObjCObjectPointerType() && 6041 LangOpts.ObjCRuntime.isGNUFamily()) 6042 return ObjCRuntime->GetEHType(Ty); 6043 6044 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6045 } 6046 6047 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6048 // Do not emit threadprivates in simd-only mode. 6049 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6050 return; 6051 for (auto RefExpr : D->varlists()) { 6052 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6053 bool PerformInit = 6054 VD->getAnyInitializer() && 6055 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6056 /*ForRef=*/false); 6057 6058 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6059 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6060 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6061 CXXGlobalInits.push_back(InitFunction); 6062 } 6063 } 6064 6065 llvm::Metadata * 6066 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6067 StringRef Suffix) { 6068 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6069 if (InternalId) 6070 return InternalId; 6071 6072 if (isExternallyVisible(T->getLinkage())) { 6073 std::string OutName; 6074 llvm::raw_string_ostream Out(OutName); 6075 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6076 Out << Suffix; 6077 6078 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6079 } else { 6080 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6081 llvm::ArrayRef<llvm::Metadata *>()); 6082 } 6083 6084 return InternalId; 6085 } 6086 6087 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6088 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6089 } 6090 6091 llvm::Metadata * 6092 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6093 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6094 } 6095 6096 // Generalize pointer types to a void pointer with the qualifiers of the 6097 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6098 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6099 // 'void *'. 6100 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6101 if (!Ty->isPointerType()) 6102 return Ty; 6103 6104 return Ctx.getPointerType( 6105 QualType(Ctx.VoidTy).withCVRQualifiers( 6106 Ty->getPointeeType().getCVRQualifiers())); 6107 } 6108 6109 // Apply type generalization to a FunctionType's return and argument types 6110 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6111 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6112 SmallVector<QualType, 8> GeneralizedParams; 6113 for (auto &Param : FnType->param_types()) 6114 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6115 6116 return Ctx.getFunctionType( 6117 GeneralizeType(Ctx, FnType->getReturnType()), 6118 GeneralizedParams, FnType->getExtProtoInfo()); 6119 } 6120 6121 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6122 return Ctx.getFunctionNoProtoType( 6123 GeneralizeType(Ctx, FnType->getReturnType())); 6124 6125 llvm_unreachable("Encountered unknown FunctionType"); 6126 } 6127 6128 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6129 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6130 GeneralizedMetadataIdMap, ".generalized"); 6131 } 6132 6133 /// Returns whether this module needs the "all-vtables" type identifier. 6134 bool CodeGenModule::NeedAllVtablesTypeId() const { 6135 // Returns true if at least one of vtable-based CFI checkers is enabled and 6136 // is not in the trapping mode. 6137 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6138 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6139 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6140 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6141 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6142 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6143 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6144 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6145 } 6146 6147 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6148 CharUnits Offset, 6149 const CXXRecordDecl *RD) { 6150 llvm::Metadata *MD = 6151 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6152 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6153 6154 if (CodeGenOpts.SanitizeCfiCrossDso) 6155 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6156 VTable->addTypeMetadata(Offset.getQuantity(), 6157 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6158 6159 if (NeedAllVtablesTypeId()) { 6160 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6161 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6162 } 6163 } 6164 6165 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6166 if (!SanStats) 6167 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6168 6169 return *SanStats; 6170 } 6171 llvm::Value * 6172 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6173 CodeGenFunction &CGF) { 6174 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6175 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6176 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6177 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6178 "__translate_sampler_initializer"), 6179 {C}); 6180 } 6181 6182 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6183 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6184 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6185 /* forPointeeType= */ true); 6186 } 6187 6188 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6189 LValueBaseInfo *BaseInfo, 6190 TBAAAccessInfo *TBAAInfo, 6191 bool forPointeeType) { 6192 if (TBAAInfo) 6193 *TBAAInfo = getTBAAAccessInfo(T); 6194 6195 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6196 // that doesn't return the information we need to compute BaseInfo. 6197 6198 // Honor alignment typedef attributes even on incomplete types. 6199 // We also honor them straight for C++ class types, even as pointees; 6200 // there's an expressivity gap here. 6201 if (auto TT = T->getAs<TypedefType>()) { 6202 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6203 if (BaseInfo) 6204 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6205 return getContext().toCharUnitsFromBits(Align); 6206 } 6207 } 6208 6209 bool AlignForArray = T->isArrayType(); 6210 6211 // Analyze the base element type, so we don't get confused by incomplete 6212 // array types. 6213 T = getContext().getBaseElementType(T); 6214 6215 if (T->isIncompleteType()) { 6216 // We could try to replicate the logic from 6217 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6218 // type is incomplete, so it's impossible to test. We could try to reuse 6219 // getTypeAlignIfKnown, but that doesn't return the information we need 6220 // to set BaseInfo. So just ignore the possibility that the alignment is 6221 // greater than one. 6222 if (BaseInfo) 6223 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6224 return CharUnits::One(); 6225 } 6226 6227 if (BaseInfo) 6228 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6229 6230 CharUnits Alignment; 6231 const CXXRecordDecl *RD; 6232 if (T.getQualifiers().hasUnaligned()) { 6233 Alignment = CharUnits::One(); 6234 } else if (forPointeeType && !AlignForArray && 6235 (RD = T->getAsCXXRecordDecl())) { 6236 // For C++ class pointees, we don't know whether we're pointing at a 6237 // base or a complete object, so we generally need to use the 6238 // non-virtual alignment. 6239 Alignment = getClassPointerAlignment(RD); 6240 } else { 6241 Alignment = getContext().getTypeAlignInChars(T); 6242 } 6243 6244 // Cap to the global maximum type alignment unless the alignment 6245 // was somehow explicit on the type. 6246 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6247 if (Alignment.getQuantity() > MaxAlign && 6248 !getContext().isAlignmentRequired(T)) 6249 Alignment = CharUnits::fromQuantity(MaxAlign); 6250 } 6251 return Alignment; 6252 } 6253 6254 bool CodeGenModule::stopAutoInit() { 6255 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6256 if (StopAfter) { 6257 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6258 // used 6259 if (NumAutoVarInit >= StopAfter) { 6260 return true; 6261 } 6262 if (!NumAutoVarInit) { 6263 unsigned DiagID = getDiags().getCustomDiagID( 6264 DiagnosticsEngine::Warning, 6265 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6266 "number of times ftrivial-auto-var-init=%1 gets applied."); 6267 getDiags().Report(DiagID) 6268 << StopAfter 6269 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6270 LangOptions::TrivialAutoVarInitKind::Zero 6271 ? "zero" 6272 : "pattern"); 6273 } 6274 ++NumAutoVarInit; 6275 } 6276 return false; 6277 } 6278