xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 537fdceded86b5c4c06eb0ac0ff80189c82d7193)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/TargetData.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/ErrorHandling.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
47   switch (CGM.getContext().Target.getCXXABI()) {
48   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
49   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
50   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
51   }
52 
53   llvm_unreachable("invalid C++ ABI kind");
54   return *CreateItaniumCXXABI(CGM);
55 }
56 
57 
58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
59                              llvm::Module &M, const llvm::TargetData &TD,
60                              Diagnostic &diags)
61   : BlockModule(C, M, TD, Types, *this), Context(C),
62     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0){
74 
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info generation is enabled, create the CGDebugInfo object.
90   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91 }
92 
93 CodeGenModule::~CodeGenModule() {
94   delete Runtime;
95   delete &ABI;
96   delete TBAA;
97   delete DebugInfo;
98 }
99 
100 void CodeGenModule::createObjCRuntime() {
101   if (!Features.NeXTRuntime)
102     Runtime = CreateGNUObjCRuntime(*this);
103   else if (Features.ObjCNonFragileABI)
104     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
105   else
106     Runtime = CreateMacObjCRuntime(*this);
107 }
108 
109 void CodeGenModule::Release() {
110   EmitDeferred();
111   EmitCXXGlobalInitFunc();
112   EmitCXXGlobalDtorFunc();
113   if (Runtime)
114     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
115       AddGlobalCtor(ObjCInitFunction);
116   EmitCtorList(GlobalCtors, "llvm.global_ctors");
117   EmitCtorList(GlobalDtors, "llvm.global_dtors");
118   EmitAnnotations();
119   EmitLLVMUsed();
120 
121   SimplifyPersonality();
122 
123   if (getCodeGenOpts().EmitDeclMetadata)
124     EmitDeclMetadata();
125 }
126 
127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
128   if (!TBAA)
129     return 0;
130   return TBAA->getTBAAInfo(QTy);
131 }
132 
133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
134                                         llvm::MDNode *TBAAInfo) {
135   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
136 }
137 
138 bool CodeGenModule::isTargetDarwin() const {
139   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
140 }
141 
142 /// ErrorUnsupported - Print out an error that codegen doesn't support the
143 /// specified stmt yet.
144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
145                                      bool OmitOnError) {
146   if (OmitOnError && getDiags().hasErrorOccurred())
147     return;
148   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
149                                                "cannot compile this %0 yet");
150   std::string Msg = Type;
151   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
152     << Msg << S->getSourceRange();
153 }
154 
155 /// ErrorUnsupported - Print out an error that codegen doesn't support the
156 /// specified decl yet.
157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
158                                      bool OmitOnError) {
159   if (OmitOnError && getDiags().hasErrorOccurred())
160     return;
161   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
162                                                "cannot compile this %0 yet");
163   std::string Msg = Type;
164   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
165 }
166 
167 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
168                                         const NamedDecl *D) const {
169   // Internal definitions always have default visibility.
170   if (GV->hasLocalLinkage()) {
171     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
172     return;
173   }
174 
175   // Set visibility for definitions.
176   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
177   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
178     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
179 }
180 
181 /// Set the symbol visibility of type information (vtable and RTTI)
182 /// associated with the given type.
183 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
184                                       const CXXRecordDecl *RD,
185                                       TypeVisibilityKind TVK) const {
186   setGlobalVisibility(GV, RD);
187 
188   if (!CodeGenOpts.HiddenWeakVTables)
189     return;
190 
191   // We never want to drop the visibility for RTTI names.
192   if (TVK == TVK_ForRTTIName)
193     return;
194 
195   // We want to drop the visibility to hidden for weak type symbols.
196   // This isn't possible if there might be unresolved references
197   // elsewhere that rely on this symbol being visible.
198 
199   // This should be kept roughly in sync with setThunkVisibility
200   // in CGVTables.cpp.
201 
202   // Preconditions.
203   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
204       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
205     return;
206 
207   // Don't override an explicit visibility attribute.
208   if (RD->hasAttr<VisibilityAttr>())
209     return;
210 
211   switch (RD->getTemplateSpecializationKind()) {
212   // We have to disable the optimization if this is an EI definition
213   // because there might be EI declarations in other shared objects.
214   case TSK_ExplicitInstantiationDefinition:
215   case TSK_ExplicitInstantiationDeclaration:
216     return;
217 
218   // Every use of a non-template class's type information has to emit it.
219   case TSK_Undeclared:
220     break;
221 
222   // In theory, implicit instantiations can ignore the possibility of
223   // an explicit instantiation declaration because there necessarily
224   // must be an EI definition somewhere with default visibility.  In
225   // practice, it's possible to have an explicit instantiation for
226   // an arbitrary template class, and linkers aren't necessarily able
227   // to deal with mixed-visibility symbols.
228   case TSK_ExplicitSpecialization:
229   case TSK_ImplicitInstantiation:
230     if (!CodeGenOpts.HiddenWeakTemplateVTables)
231       return;
232     break;
233   }
234 
235   // If there's a key function, there may be translation units
236   // that don't have the key function's definition.  But ignore
237   // this if we're emitting RTTI under -fno-rtti.
238   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
239     if (Context.getKeyFunction(RD))
240       return;
241   }
242 
243   // Otherwise, drop the visibility to hidden.
244   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
245   GV->setUnnamedAddr(true);
246 }
247 
248 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
249   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
250 
251   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
252   if (!Str.empty())
253     return Str;
254 
255   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
256     IdentifierInfo *II = ND->getIdentifier();
257     assert(II && "Attempt to mangle unnamed decl.");
258 
259     Str = II->getName();
260     return Str;
261   }
262 
263   llvm::SmallString<256> Buffer;
264   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
265     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
266   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
267     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
268   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
269     getCXXABI().getMangleContext().mangleBlock(BD, Buffer);
270   else
271     getCXXABI().getMangleContext().mangleName(ND, Buffer);
272 
273   // Allocate space for the mangled name.
274   size_t Length = Buffer.size();
275   char *Name = MangledNamesAllocator.Allocate<char>(Length);
276   std::copy(Buffer.begin(), Buffer.end(), Name);
277 
278   Str = llvm::StringRef(Name, Length);
279 
280   return Str;
281 }
282 
283 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
284                                         const BlockDecl *BD) {
285   MangleContext &MangleCtx = getCXXABI().getMangleContext();
286   const Decl *D = GD.getDecl();
287   if (D == 0)
288     MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer());
289   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
290     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer());
291   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
292     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer());
293   else
294     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer());
295 }
296 
297 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
298   return getModule().getNamedValue(Name);
299 }
300 
301 /// AddGlobalCtor - Add a function to the list that will be called before
302 /// main() runs.
303 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
304   // FIXME: Type coercion of void()* types.
305   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
306 }
307 
308 /// AddGlobalDtor - Add a function to the list that will be called
309 /// when the module is unloaded.
310 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
311   // FIXME: Type coercion of void()* types.
312   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
313 }
314 
315 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
316   // Ctor function type is void()*.
317   llvm::FunctionType* CtorFTy =
318     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
319   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
320 
321   // Get the type of a ctor entry, { i32, void ()* }.
322   llvm::StructType* CtorStructTy =
323     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
324                           llvm::PointerType::getUnqual(CtorFTy), NULL);
325 
326   // Construct the constructor and destructor arrays.
327   std::vector<llvm::Constant*> Ctors;
328   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
329     std::vector<llvm::Constant*> S;
330     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
331                 I->second, false));
332     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
333     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
334   }
335 
336   if (!Ctors.empty()) {
337     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
338     new llvm::GlobalVariable(TheModule, AT, false,
339                              llvm::GlobalValue::AppendingLinkage,
340                              llvm::ConstantArray::get(AT, Ctors),
341                              GlobalName);
342   }
343 }
344 
345 void CodeGenModule::EmitAnnotations() {
346   if (Annotations.empty())
347     return;
348 
349   // Create a new global variable for the ConstantStruct in the Module.
350   llvm::Constant *Array =
351   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
352                                                 Annotations.size()),
353                            Annotations);
354   llvm::GlobalValue *gv =
355   new llvm::GlobalVariable(TheModule, Array->getType(), false,
356                            llvm::GlobalValue::AppendingLinkage, Array,
357                            "llvm.global.annotations");
358   gv->setSection("llvm.metadata");
359 }
360 
361 llvm::GlobalValue::LinkageTypes
362 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
363   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
364 
365   if (Linkage == GVA_Internal)
366     return llvm::Function::InternalLinkage;
367 
368   if (D->hasAttr<DLLExportAttr>())
369     return llvm::Function::DLLExportLinkage;
370 
371   if (D->hasAttr<WeakAttr>())
372     return llvm::Function::WeakAnyLinkage;
373 
374   // In C99 mode, 'inline' functions are guaranteed to have a strong
375   // definition somewhere else, so we can use available_externally linkage.
376   if (Linkage == GVA_C99Inline)
377     return llvm::Function::AvailableExternallyLinkage;
378 
379   // In C++, the compiler has to emit a definition in every translation unit
380   // that references the function.  We should use linkonce_odr because
381   // a) if all references in this translation unit are optimized away, we
382   // don't need to codegen it.  b) if the function persists, it needs to be
383   // merged with other definitions. c) C++ has the ODR, so we know the
384   // definition is dependable.
385   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
386     return llvm::Function::LinkOnceODRLinkage;
387 
388   // An explicit instantiation of a template has weak linkage, since
389   // explicit instantiations can occur in multiple translation units
390   // and must all be equivalent. However, we are not allowed to
391   // throw away these explicit instantiations.
392   if (Linkage == GVA_ExplicitTemplateInstantiation)
393     return llvm::Function::WeakODRLinkage;
394 
395   // Otherwise, we have strong external linkage.
396   assert(Linkage == GVA_StrongExternal);
397   return llvm::Function::ExternalLinkage;
398 }
399 
400 
401 /// SetFunctionDefinitionAttributes - Set attributes for a global.
402 ///
403 /// FIXME: This is currently only done for aliases and functions, but not for
404 /// variables (these details are set in EmitGlobalVarDefinition for variables).
405 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
406                                                     llvm::GlobalValue *GV) {
407   SetCommonAttributes(D, GV);
408 }
409 
410 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
411                                               const CGFunctionInfo &Info,
412                                               llvm::Function *F) {
413   unsigned CallingConv;
414   AttributeListType AttributeList;
415   ConstructAttributeList(Info, D, AttributeList, CallingConv);
416   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
417                                           AttributeList.size()));
418   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
419 }
420 
421 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
422                                                            llvm::Function *F) {
423   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
424     F->addFnAttr(llvm::Attribute::NoUnwind);
425 
426   if (D->hasAttr<AlwaysInlineAttr>())
427     F->addFnAttr(llvm::Attribute::AlwaysInline);
428 
429   if (D->hasAttr<NakedAttr>())
430     F->addFnAttr(llvm::Attribute::Naked);
431 
432   if (D->hasAttr<NoInlineAttr>())
433     F->addFnAttr(llvm::Attribute::NoInline);
434 
435   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
436     F->setUnnamedAddr(true);
437 
438   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
439     F->addFnAttr(llvm::Attribute::StackProtect);
440   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
441     F->addFnAttr(llvm::Attribute::StackProtectReq);
442 
443   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
444   if (alignment)
445     F->setAlignment(alignment);
446 
447   // C++ ABI requires 2-byte alignment for member functions.
448   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
449     F->setAlignment(2);
450 }
451 
452 void CodeGenModule::SetCommonAttributes(const Decl *D,
453                                         llvm::GlobalValue *GV) {
454   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
455     setGlobalVisibility(GV, ND);
456   else
457     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
458 
459   if (D->hasAttr<UsedAttr>())
460     AddUsedGlobal(GV);
461 
462   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
463     GV->setSection(SA->getName());
464 
465   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
466 }
467 
468 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
469                                                   llvm::Function *F,
470                                                   const CGFunctionInfo &FI) {
471   SetLLVMFunctionAttributes(D, FI, F);
472   SetLLVMFunctionAttributesForDefinition(D, F);
473 
474   F->setLinkage(llvm::Function::InternalLinkage);
475 
476   SetCommonAttributes(D, F);
477 }
478 
479 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
480                                           llvm::Function *F,
481                                           bool IsIncompleteFunction) {
482   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
483 
484   if (!IsIncompleteFunction)
485     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
486 
487   // Only a few attributes are set on declarations; these may later be
488   // overridden by a definition.
489 
490   if (FD->hasAttr<DLLImportAttr>()) {
491     F->setLinkage(llvm::Function::DLLImportLinkage);
492   } else if (FD->hasAttr<WeakAttr>() ||
493              FD->hasAttr<WeakImportAttr>()) {
494     // "extern_weak" is overloaded in LLVM; we probably should have
495     // separate linkage types for this.
496     F->setLinkage(llvm::Function::ExternalWeakLinkage);
497   } else {
498     F->setLinkage(llvm::Function::ExternalLinkage);
499 
500     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
501     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
502       F->setVisibility(GetLLVMVisibility(LV.visibility()));
503     }
504   }
505 
506   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
507     F->setSection(SA->getName());
508 }
509 
510 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
511   assert(!GV->isDeclaration() &&
512          "Only globals with definition can force usage.");
513   LLVMUsed.push_back(GV);
514 }
515 
516 void CodeGenModule::EmitLLVMUsed() {
517   // Don't create llvm.used if there is no need.
518   if (LLVMUsed.empty())
519     return;
520 
521   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
522 
523   // Convert LLVMUsed to what ConstantArray needs.
524   std::vector<llvm::Constant*> UsedArray;
525   UsedArray.resize(LLVMUsed.size());
526   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
527     UsedArray[i] =
528      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
529                                       i8PTy);
530   }
531 
532   if (UsedArray.empty())
533     return;
534   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
535 
536   llvm::GlobalVariable *GV =
537     new llvm::GlobalVariable(getModule(), ATy, false,
538                              llvm::GlobalValue::AppendingLinkage,
539                              llvm::ConstantArray::get(ATy, UsedArray),
540                              "llvm.used");
541 
542   GV->setSection("llvm.metadata");
543 }
544 
545 void CodeGenModule::EmitDeferred() {
546   // Emit code for any potentially referenced deferred decls.  Since a
547   // previously unused static decl may become used during the generation of code
548   // for a static function, iterate until no  changes are made.
549 
550   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
551     if (!DeferredVTables.empty()) {
552       const CXXRecordDecl *RD = DeferredVTables.back();
553       DeferredVTables.pop_back();
554       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
555       continue;
556     }
557 
558     GlobalDecl D = DeferredDeclsToEmit.back();
559     DeferredDeclsToEmit.pop_back();
560 
561     // Check to see if we've already emitted this.  This is necessary
562     // for a couple of reasons: first, decls can end up in the
563     // deferred-decls queue multiple times, and second, decls can end
564     // up with definitions in unusual ways (e.g. by an extern inline
565     // function acquiring a strong function redefinition).  Just
566     // ignore these cases.
567     //
568     // TODO: That said, looking this up multiple times is very wasteful.
569     llvm::StringRef Name = getMangledName(D);
570     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
571     assert(CGRef && "Deferred decl wasn't referenced?");
572 
573     if (!CGRef->isDeclaration())
574       continue;
575 
576     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
577     // purposes an alias counts as a definition.
578     if (isa<llvm::GlobalAlias>(CGRef))
579       continue;
580 
581     // Otherwise, emit the definition and move on to the next one.
582     EmitGlobalDefinition(D);
583   }
584 }
585 
586 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
587 /// annotation information for a given GlobalValue.  The annotation struct is
588 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
589 /// GlobalValue being annotated.  The second field is the constant string
590 /// created from the AnnotateAttr's annotation.  The third field is a constant
591 /// string containing the name of the translation unit.  The fourth field is
592 /// the line number in the file of the annotated value declaration.
593 ///
594 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
595 ///        appears to.
596 ///
597 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
598                                                 const AnnotateAttr *AA,
599                                                 unsigned LineNo) {
600   llvm::Module *M = &getModule();
601 
602   // get [N x i8] constants for the annotation string, and the filename string
603   // which are the 2nd and 3rd elements of the global annotation structure.
604   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
605   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
606                                                   AA->getAnnotation(), true);
607   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
608                                                   M->getModuleIdentifier(),
609                                                   true);
610 
611   // Get the two global values corresponding to the ConstantArrays we just
612   // created to hold the bytes of the strings.
613   llvm::GlobalValue *annoGV =
614     new llvm::GlobalVariable(*M, anno->getType(), false,
615                              llvm::GlobalValue::PrivateLinkage, anno,
616                              GV->getName());
617   // translation unit name string, emitted into the llvm.metadata section.
618   llvm::GlobalValue *unitGV =
619     new llvm::GlobalVariable(*M, unit->getType(), false,
620                              llvm::GlobalValue::PrivateLinkage, unit,
621                              ".str");
622   unitGV->setUnnamedAddr(true);
623 
624   // Create the ConstantStruct for the global annotation.
625   llvm::Constant *Fields[4] = {
626     llvm::ConstantExpr::getBitCast(GV, SBP),
627     llvm::ConstantExpr::getBitCast(annoGV, SBP),
628     llvm::ConstantExpr::getBitCast(unitGV, SBP),
629     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
630   };
631   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
632 }
633 
634 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
635   // Never defer when EmitAllDecls is specified.
636   if (Features.EmitAllDecls)
637     return false;
638 
639   return !getContext().DeclMustBeEmitted(Global);
640 }
641 
642 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
643   const AliasAttr *AA = VD->getAttr<AliasAttr>();
644   assert(AA && "No alias?");
645 
646   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
647 
648   // See if there is already something with the target's name in the module.
649   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
650 
651   llvm::Constant *Aliasee;
652   if (isa<llvm::FunctionType>(DeclTy))
653     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
654   else
655     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
656                                     llvm::PointerType::getUnqual(DeclTy), 0);
657   if (!Entry) {
658     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
659     F->setLinkage(llvm::Function::ExternalWeakLinkage);
660     WeakRefReferences.insert(F);
661   }
662 
663   return Aliasee;
664 }
665 
666 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
667   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
668 
669   // Weak references don't produce any output by themselves.
670   if (Global->hasAttr<WeakRefAttr>())
671     return;
672 
673   // If this is an alias definition (which otherwise looks like a declaration)
674   // emit it now.
675   if (Global->hasAttr<AliasAttr>())
676     return EmitAliasDefinition(GD);
677 
678   // Ignore declarations, they will be emitted on their first use.
679   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
680     if (FD->getIdentifier()) {
681       llvm::StringRef Name = FD->getName();
682       if (Name == "_Block_object_assign") {
683         BlockObjectAssignDecl = FD;
684       } else if (Name == "_Block_object_dispose") {
685         BlockObjectDisposeDecl = FD;
686       }
687     }
688 
689     // Forward declarations are emitted lazily on first use.
690     if (!FD->isThisDeclarationADefinition())
691       return;
692   } else {
693     const VarDecl *VD = cast<VarDecl>(Global);
694     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
695 
696     if (VD->getIdentifier()) {
697       llvm::StringRef Name = VD->getName();
698       if (Name == "_NSConcreteGlobalBlock") {
699         NSConcreteGlobalBlockDecl = VD;
700       } else if (Name == "_NSConcreteStackBlock") {
701         NSConcreteStackBlockDecl = VD;
702       }
703     }
704 
705 
706     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
707       return;
708   }
709 
710   // Defer code generation when possible if this is a static definition, inline
711   // function etc.  These we only want to emit if they are used.
712   if (!MayDeferGeneration(Global)) {
713     // Emit the definition if it can't be deferred.
714     EmitGlobalDefinition(GD);
715     return;
716   }
717 
718   // If we're deferring emission of a C++ variable with an
719   // initializer, remember the order in which it appeared in the file.
720   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
721       cast<VarDecl>(Global)->hasInit()) {
722     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
723     CXXGlobalInits.push_back(0);
724   }
725 
726   // If the value has already been used, add it directly to the
727   // DeferredDeclsToEmit list.
728   llvm::StringRef MangledName = getMangledName(GD);
729   if (GetGlobalValue(MangledName))
730     DeferredDeclsToEmit.push_back(GD);
731   else {
732     // Otherwise, remember that we saw a deferred decl with this name.  The
733     // first use of the mangled name will cause it to move into
734     // DeferredDeclsToEmit.
735     DeferredDecls[MangledName] = GD;
736   }
737 }
738 
739 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
740   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
741 
742   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
743                                  Context.getSourceManager(),
744                                  "Generating code for declaration");
745 
746   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
747     // At -O0, don't generate IR for functions with available_externally
748     // linkage.
749     if (CodeGenOpts.OptimizationLevel == 0 &&
750         !Function->hasAttr<AlwaysInlineAttr>() &&
751         getFunctionLinkage(Function)
752                                   == llvm::Function::AvailableExternallyLinkage)
753       return;
754 
755     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
756       if (Method->isVirtual())
757         getVTables().EmitThunks(GD);
758 
759       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
760         return EmitCXXConstructor(CD, GD.getCtorType());
761 
762       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
763         return EmitCXXDestructor(DD, GD.getDtorType());
764     }
765 
766     return EmitGlobalFunctionDefinition(GD);
767   }
768 
769   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
770     return EmitGlobalVarDefinition(VD);
771 
772   assert(0 && "Invalid argument to EmitGlobalDefinition()");
773 }
774 
775 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
776 /// module, create and return an llvm Function with the specified type. If there
777 /// is something in the module with the specified name, return it potentially
778 /// bitcasted to the right type.
779 ///
780 /// If D is non-null, it specifies a decl that correspond to this.  This is used
781 /// to set the attributes on the function when it is first created.
782 llvm::Constant *
783 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
784                                        const llvm::Type *Ty,
785                                        GlobalDecl D) {
786   // Lookup the entry, lazily creating it if necessary.
787   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
788   if (Entry) {
789     if (WeakRefReferences.count(Entry)) {
790       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
791       if (FD && !FD->hasAttr<WeakAttr>())
792         Entry->setLinkage(llvm::Function::ExternalLinkage);
793 
794       WeakRefReferences.erase(Entry);
795     }
796 
797     if (Entry->getType()->getElementType() == Ty)
798       return Entry;
799 
800     // Make sure the result is of the correct type.
801     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
802     return llvm::ConstantExpr::getBitCast(Entry, PTy);
803   }
804 
805   // This function doesn't have a complete type (for example, the return
806   // type is an incomplete struct). Use a fake type instead, and make
807   // sure not to try to set attributes.
808   bool IsIncompleteFunction = false;
809 
810   const llvm::FunctionType *FTy;
811   if (isa<llvm::FunctionType>(Ty)) {
812     FTy = cast<llvm::FunctionType>(Ty);
813   } else {
814     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
815     IsIncompleteFunction = true;
816   }
817 
818   llvm::Function *F = llvm::Function::Create(FTy,
819                                              llvm::Function::ExternalLinkage,
820                                              MangledName, &getModule());
821   assert(F->getName() == MangledName && "name was uniqued!");
822   if (D.getDecl())
823     SetFunctionAttributes(D, F, IsIncompleteFunction);
824 
825   // This is the first use or definition of a mangled name.  If there is a
826   // deferred decl with this name, remember that we need to emit it at the end
827   // of the file.
828   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
829   if (DDI != DeferredDecls.end()) {
830     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
831     // list, and remove it from DeferredDecls (since we don't need it anymore).
832     DeferredDeclsToEmit.push_back(DDI->second);
833     DeferredDecls.erase(DDI);
834 
835   // Otherwise, there are cases we have to worry about where we're
836   // using a declaration for which we must emit a definition but where
837   // we might not find a top-level definition:
838   //   - member functions defined inline in their classes
839   //   - friend functions defined inline in some class
840   //   - special member functions with implicit definitions
841   // If we ever change our AST traversal to walk into class methods,
842   // this will be unnecessary.
843   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
844     // Look for a declaration that's lexically in a record.
845     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
846     do {
847       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
848         if (FD->isImplicit()) {
849           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
850           DeferredDeclsToEmit.push_back(D);
851           break;
852         } else if (FD->isThisDeclarationADefinition()) {
853           DeferredDeclsToEmit.push_back(D);
854           break;
855         }
856       }
857       FD = FD->getPreviousDeclaration();
858     } while (FD);
859   }
860 
861   // Make sure the result is of the requested type.
862   if (!IsIncompleteFunction) {
863     assert(F->getType()->getElementType() == Ty);
864     return F;
865   }
866 
867   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
868   return llvm::ConstantExpr::getBitCast(F, PTy);
869 }
870 
871 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
872 /// non-null, then this function will use the specified type if it has to
873 /// create it (this occurs when we see a definition of the function).
874 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
875                                                  const llvm::Type *Ty) {
876   // If there was no specific requested type, just convert it now.
877   if (!Ty)
878     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
879 
880   llvm::StringRef MangledName = getMangledName(GD);
881   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
882 }
883 
884 /// CreateRuntimeFunction - Create a new runtime function with the specified
885 /// type and name.
886 llvm::Constant *
887 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
888                                      llvm::StringRef Name) {
889   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
890 }
891 
892 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
893   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
894     return false;
895   if (Context.getLangOptions().CPlusPlus &&
896       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
897     // FIXME: We should do something fancier here!
898     return false;
899   }
900   return true;
901 }
902 
903 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
904 /// create and return an llvm GlobalVariable with the specified type.  If there
905 /// is something in the module with the specified name, return it potentially
906 /// bitcasted to the right type.
907 ///
908 /// If D is non-null, it specifies a decl that correspond to this.  This is used
909 /// to set the attributes on the global when it is first created.
910 llvm::Constant *
911 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
912                                      const llvm::PointerType *Ty,
913                                      const VarDecl *D,
914                                      bool UnnamedAddr) {
915   // Lookup the entry, lazily creating it if necessary.
916   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
917   if (Entry) {
918     if (WeakRefReferences.count(Entry)) {
919       if (D && !D->hasAttr<WeakAttr>())
920         Entry->setLinkage(llvm::Function::ExternalLinkage);
921 
922       WeakRefReferences.erase(Entry);
923     }
924 
925     if (UnnamedAddr)
926       Entry->setUnnamedAddr(true);
927 
928     if (Entry->getType() == Ty)
929       return Entry;
930 
931     // Make sure the result is of the correct type.
932     return llvm::ConstantExpr::getBitCast(Entry, Ty);
933   }
934 
935   // This is the first use or definition of a mangled name.  If there is a
936   // deferred decl with this name, remember that we need to emit it at the end
937   // of the file.
938   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
939   if (DDI != DeferredDecls.end()) {
940     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
941     // list, and remove it from DeferredDecls (since we don't need it anymore).
942     DeferredDeclsToEmit.push_back(DDI->second);
943     DeferredDecls.erase(DDI);
944   }
945 
946   llvm::GlobalVariable *GV =
947     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
948                              llvm::GlobalValue::ExternalLinkage,
949                              0, MangledName, 0,
950                              false, Ty->getAddressSpace());
951 
952   // Handle things which are present even on external declarations.
953   if (D) {
954     // FIXME: This code is overly simple and should be merged with other global
955     // handling.
956     GV->setConstant(DeclIsConstantGlobal(Context, D));
957 
958     // Set linkage and visibility in case we never see a definition.
959     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
960     if (LV.linkage() != ExternalLinkage) {
961       GV->setLinkage(llvm::GlobalValue::InternalLinkage);
962     } else {
963       if (D->hasAttr<DLLImportAttr>())
964         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
965       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
966         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
967 
968       // Set visibility on a declaration only if it's explicit.
969       if (LV.visibilityExplicit())
970         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
971     }
972 
973     GV->setThreadLocal(D->isThreadSpecified());
974   }
975 
976   return GV;
977 }
978 
979 
980 llvm::GlobalVariable *
981 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
982                                       const llvm::Type *Ty,
983                                       llvm::GlobalValue::LinkageTypes Linkage) {
984   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
985   llvm::GlobalVariable *OldGV = 0;
986 
987 
988   if (GV) {
989     // Check if the variable has the right type.
990     if (GV->getType()->getElementType() == Ty)
991       return GV;
992 
993     // Because C++ name mangling, the only way we can end up with an already
994     // existing global with the same name is if it has been declared extern "C".
995       assert(GV->isDeclaration() && "Declaration has wrong type!");
996     OldGV = GV;
997   }
998 
999   // Create a new variable.
1000   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1001                                 Linkage, 0, Name);
1002 
1003   if (OldGV) {
1004     // Replace occurrences of the old variable if needed.
1005     GV->takeName(OldGV);
1006 
1007     if (!OldGV->use_empty()) {
1008       llvm::Constant *NewPtrForOldDecl =
1009       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1010       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1011     }
1012 
1013     OldGV->eraseFromParent();
1014   }
1015 
1016   return GV;
1017 }
1018 
1019 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1020 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1021 /// then it will be greated with the specified type instead of whatever the
1022 /// normal requested type would be.
1023 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1024                                                   const llvm::Type *Ty) {
1025   assert(D->hasGlobalStorage() && "Not a global variable");
1026   QualType ASTTy = D->getType();
1027   if (Ty == 0)
1028     Ty = getTypes().ConvertTypeForMem(ASTTy);
1029 
1030   const llvm::PointerType *PTy =
1031     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1032 
1033   llvm::StringRef MangledName = getMangledName(D);
1034   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1035 }
1036 
1037 /// CreateRuntimeVariable - Create a new runtime global variable with the
1038 /// specified type and name.
1039 llvm::Constant *
1040 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1041                                      llvm::StringRef Name) {
1042   return GetOrCreateLLVMGlobal(Name,  llvm::PointerType::getUnqual(Ty), 0,
1043                                true);
1044 }
1045 
1046 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1047   assert(!D->getInit() && "Cannot emit definite definitions here!");
1048 
1049   if (MayDeferGeneration(D)) {
1050     // If we have not seen a reference to this variable yet, place it
1051     // into the deferred declarations table to be emitted if needed
1052     // later.
1053     llvm::StringRef MangledName = getMangledName(D);
1054     if (!GetGlobalValue(MangledName)) {
1055       DeferredDecls[MangledName] = D;
1056       return;
1057     }
1058   }
1059 
1060   // The tentative definition is the only definition.
1061   EmitGlobalVarDefinition(D);
1062 }
1063 
1064 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1065   if (DefinitionRequired)
1066     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1067 }
1068 
1069 llvm::GlobalVariable::LinkageTypes
1070 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1071   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1072     return llvm::GlobalVariable::InternalLinkage;
1073 
1074   if (const CXXMethodDecl *KeyFunction
1075                                     = RD->getASTContext().getKeyFunction(RD)) {
1076     // If this class has a key function, use that to determine the linkage of
1077     // the vtable.
1078     const FunctionDecl *Def = 0;
1079     if (KeyFunction->hasBody(Def))
1080       KeyFunction = cast<CXXMethodDecl>(Def);
1081 
1082     switch (KeyFunction->getTemplateSpecializationKind()) {
1083       case TSK_Undeclared:
1084       case TSK_ExplicitSpecialization:
1085         if (KeyFunction->isInlined())
1086           return llvm::GlobalVariable::LinkOnceODRLinkage;
1087 
1088         return llvm::GlobalVariable::ExternalLinkage;
1089 
1090       case TSK_ImplicitInstantiation:
1091         return llvm::GlobalVariable::LinkOnceODRLinkage;
1092 
1093       case TSK_ExplicitInstantiationDefinition:
1094         return llvm::GlobalVariable::WeakODRLinkage;
1095 
1096       case TSK_ExplicitInstantiationDeclaration:
1097         // FIXME: Use available_externally linkage. However, this currently
1098         // breaks LLVM's build due to undefined symbols.
1099         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1100         return llvm::GlobalVariable::LinkOnceODRLinkage;
1101     }
1102   }
1103 
1104   switch (RD->getTemplateSpecializationKind()) {
1105   case TSK_Undeclared:
1106   case TSK_ExplicitSpecialization:
1107   case TSK_ImplicitInstantiation:
1108     return llvm::GlobalVariable::LinkOnceODRLinkage;
1109 
1110   case TSK_ExplicitInstantiationDefinition:
1111     return llvm::GlobalVariable::WeakODRLinkage;
1112 
1113   case TSK_ExplicitInstantiationDeclaration:
1114     // FIXME: Use available_externally linkage. However, this currently
1115     // breaks LLVM's build due to undefined symbols.
1116     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1117     return llvm::GlobalVariable::LinkOnceODRLinkage;
1118   }
1119 
1120   // Silence GCC warning.
1121   return llvm::GlobalVariable::LinkOnceODRLinkage;
1122 }
1123 
1124 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1125     return Context.toCharUnitsFromBits(
1126       TheTargetData.getTypeStoreSizeInBits(Ty));
1127 }
1128 
1129 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1130   llvm::Constant *Init = 0;
1131   QualType ASTTy = D->getType();
1132   bool NonConstInit = false;
1133 
1134   const Expr *InitExpr = D->getAnyInitializer();
1135 
1136   if (!InitExpr) {
1137     // This is a tentative definition; tentative definitions are
1138     // implicitly initialized with { 0 }.
1139     //
1140     // Note that tentative definitions are only emitted at the end of
1141     // a translation unit, so they should never have incomplete
1142     // type. In addition, EmitTentativeDefinition makes sure that we
1143     // never attempt to emit a tentative definition if a real one
1144     // exists. A use may still exists, however, so we still may need
1145     // to do a RAUW.
1146     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1147     Init = EmitNullConstant(D->getType());
1148   } else {
1149     Init = EmitConstantExpr(InitExpr, D->getType());
1150     if (!Init) {
1151       QualType T = InitExpr->getType();
1152       if (D->getType()->isReferenceType())
1153         T = D->getType();
1154 
1155       if (getLangOptions().CPlusPlus) {
1156         Init = EmitNullConstant(T);
1157         NonConstInit = true;
1158       } else {
1159         ErrorUnsupported(D, "static initializer");
1160         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1161       }
1162     } else {
1163       // We don't need an initializer, so remove the entry for the delayed
1164       // initializer position (just in case this entry was delayed).
1165       if (getLangOptions().CPlusPlus)
1166         DelayedCXXInitPosition.erase(D);
1167     }
1168   }
1169 
1170   const llvm::Type* InitType = Init->getType();
1171   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1172 
1173   // Strip off a bitcast if we got one back.
1174   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1175     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1176            // all zero index gep.
1177            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1178     Entry = CE->getOperand(0);
1179   }
1180 
1181   // Entry is now either a Function or GlobalVariable.
1182   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1183 
1184   // We have a definition after a declaration with the wrong type.
1185   // We must make a new GlobalVariable* and update everything that used OldGV
1186   // (a declaration or tentative definition) with the new GlobalVariable*
1187   // (which will be a definition).
1188   //
1189   // This happens if there is a prototype for a global (e.g.
1190   // "extern int x[];") and then a definition of a different type (e.g.
1191   // "int x[10];"). This also happens when an initializer has a different type
1192   // from the type of the global (this happens with unions).
1193   if (GV == 0 ||
1194       GV->getType()->getElementType() != InitType ||
1195       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1196 
1197     // Move the old entry aside so that we'll create a new one.
1198     Entry->setName(llvm::StringRef());
1199 
1200     // Make a new global with the correct type, this is now guaranteed to work.
1201     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1202 
1203     // Replace all uses of the old global with the new global
1204     llvm::Constant *NewPtrForOldDecl =
1205         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1206     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1207 
1208     // Erase the old global, since it is no longer used.
1209     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1210   }
1211 
1212   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1213     SourceManager &SM = Context.getSourceManager();
1214     AddAnnotation(EmitAnnotateAttr(GV, AA,
1215                               SM.getInstantiationLineNumber(D->getLocation())));
1216   }
1217 
1218   GV->setInitializer(Init);
1219 
1220   // If it is safe to mark the global 'constant', do so now.
1221   GV->setConstant(false);
1222   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1223     GV->setConstant(true);
1224 
1225   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1226 
1227   // Set the llvm linkage type as appropriate.
1228   llvm::GlobalValue::LinkageTypes Linkage =
1229     GetLLVMLinkageVarDefinition(D, GV);
1230   GV->setLinkage(Linkage);
1231   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1232     // common vars aren't constant even if declared const.
1233     GV->setConstant(false);
1234 
1235   SetCommonAttributes(D, GV);
1236 
1237   // Emit the initializer function if necessary.
1238   if (NonConstInit)
1239     EmitCXXGlobalVarDeclInitFunc(D, GV);
1240 
1241   // Emit global variable debug information.
1242   if (CGDebugInfo *DI = getDebugInfo()) {
1243     DI->setLocation(D->getLocation());
1244     DI->EmitGlobalVariable(GV, D);
1245   }
1246 }
1247 
1248 llvm::GlobalValue::LinkageTypes
1249 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1250                                            llvm::GlobalVariable *GV) {
1251   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1252   if (Linkage == GVA_Internal)
1253     return llvm::Function::InternalLinkage;
1254   else if (D->hasAttr<DLLImportAttr>())
1255     return llvm::Function::DLLImportLinkage;
1256   else if (D->hasAttr<DLLExportAttr>())
1257     return llvm::Function::DLLExportLinkage;
1258   else if (D->hasAttr<WeakAttr>()) {
1259     if (GV->isConstant())
1260       return llvm::GlobalVariable::WeakODRLinkage;
1261     else
1262       return llvm::GlobalVariable::WeakAnyLinkage;
1263   } else if (Linkage == GVA_TemplateInstantiation ||
1264              Linkage == GVA_ExplicitTemplateInstantiation)
1265     // FIXME: It seems like we can provide more specific linkage here
1266     // (LinkOnceODR, WeakODR).
1267     return llvm::GlobalVariable::WeakAnyLinkage;
1268   else if (!getLangOptions().CPlusPlus &&
1269            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1270              D->getAttr<CommonAttr>()) &&
1271            !D->hasExternalStorage() && !D->getInit() &&
1272            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1273     // Thread local vars aren't considered common linkage.
1274     return llvm::GlobalVariable::CommonLinkage;
1275   }
1276   return llvm::GlobalVariable::ExternalLinkage;
1277 }
1278 
1279 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1280 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1281 /// existing call uses of the old function in the module, this adjusts them to
1282 /// call the new function directly.
1283 ///
1284 /// This is not just a cleanup: the always_inline pass requires direct calls to
1285 /// functions to be able to inline them.  If there is a bitcast in the way, it
1286 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1287 /// run at -O0.
1288 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1289                                                       llvm::Function *NewFn) {
1290   // If we're redefining a global as a function, don't transform it.
1291   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1292   if (OldFn == 0) return;
1293 
1294   const llvm::Type *NewRetTy = NewFn->getReturnType();
1295   llvm::SmallVector<llvm::Value*, 4> ArgList;
1296 
1297   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1298        UI != E; ) {
1299     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1300     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1301     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1302     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1303     llvm::CallSite CS(CI);
1304     if (!CI || !CS.isCallee(I)) continue;
1305 
1306     // If the return types don't match exactly, and if the call isn't dead, then
1307     // we can't transform this call.
1308     if (CI->getType() != NewRetTy && !CI->use_empty())
1309       continue;
1310 
1311     // If the function was passed too few arguments, don't transform.  If extra
1312     // arguments were passed, we silently drop them.  If any of the types
1313     // mismatch, we don't transform.
1314     unsigned ArgNo = 0;
1315     bool DontTransform = false;
1316     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1317          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1318       if (CS.arg_size() == ArgNo ||
1319           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1320         DontTransform = true;
1321         break;
1322       }
1323     }
1324     if (DontTransform)
1325       continue;
1326 
1327     // Okay, we can transform this.  Create the new call instruction and copy
1328     // over the required information.
1329     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1330     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1331                                                      ArgList.end(), "", CI);
1332     ArgList.clear();
1333     if (!NewCall->getType()->isVoidTy())
1334       NewCall->takeName(CI);
1335     NewCall->setAttributes(CI->getAttributes());
1336     NewCall->setCallingConv(CI->getCallingConv());
1337 
1338     // Finally, remove the old call, replacing any uses with the new one.
1339     if (!CI->use_empty())
1340       CI->replaceAllUsesWith(NewCall);
1341 
1342     // Copy debug location attached to CI.
1343     if (!CI->getDebugLoc().isUnknown())
1344       NewCall->setDebugLoc(CI->getDebugLoc());
1345     CI->eraseFromParent();
1346   }
1347 }
1348 
1349 
1350 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1351   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1352   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1353   // Get or create the prototype for the function.
1354   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1355 
1356   // Strip off a bitcast if we got one back.
1357   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1358     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1359     Entry = CE->getOperand(0);
1360   }
1361 
1362 
1363   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1364     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1365 
1366     // If the types mismatch then we have to rewrite the definition.
1367     assert(OldFn->isDeclaration() &&
1368            "Shouldn't replace non-declaration");
1369 
1370     // F is the Function* for the one with the wrong type, we must make a new
1371     // Function* and update everything that used F (a declaration) with the new
1372     // Function* (which will be a definition).
1373     //
1374     // This happens if there is a prototype for a function
1375     // (e.g. "int f()") and then a definition of a different type
1376     // (e.g. "int f(int x)").  Move the old function aside so that it
1377     // doesn't interfere with GetAddrOfFunction.
1378     OldFn->setName(llvm::StringRef());
1379     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1380 
1381     // If this is an implementation of a function without a prototype, try to
1382     // replace any existing uses of the function (which may be calls) with uses
1383     // of the new function
1384     if (D->getType()->isFunctionNoProtoType()) {
1385       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1386       OldFn->removeDeadConstantUsers();
1387     }
1388 
1389     // Replace uses of F with the Function we will endow with a body.
1390     if (!Entry->use_empty()) {
1391       llvm::Constant *NewPtrForOldDecl =
1392         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1393       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1394     }
1395 
1396     // Ok, delete the old function now, which is dead.
1397     OldFn->eraseFromParent();
1398 
1399     Entry = NewFn;
1400   }
1401 
1402   // We need to set linkage and visibility on the function before
1403   // generating code for it because various parts of IR generation
1404   // want to propagate this information down (e.g. to local static
1405   // declarations).
1406   llvm::Function *Fn = cast<llvm::Function>(Entry);
1407   setFunctionLinkage(D, Fn);
1408 
1409   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1410   setGlobalVisibility(Fn, D);
1411 
1412   CodeGenFunction(*this).GenerateCode(D, Fn);
1413 
1414   SetFunctionDefinitionAttributes(D, Fn);
1415   SetLLVMFunctionAttributesForDefinition(D, Fn);
1416 
1417   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1418     AddGlobalCtor(Fn, CA->getPriority());
1419   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1420     AddGlobalDtor(Fn, DA->getPriority());
1421 }
1422 
1423 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1424   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1425   const AliasAttr *AA = D->getAttr<AliasAttr>();
1426   assert(AA && "Not an alias?");
1427 
1428   llvm::StringRef MangledName = getMangledName(GD);
1429 
1430   // If there is a definition in the module, then it wins over the alias.
1431   // This is dubious, but allow it to be safe.  Just ignore the alias.
1432   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1433   if (Entry && !Entry->isDeclaration())
1434     return;
1435 
1436   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1437 
1438   // Create a reference to the named value.  This ensures that it is emitted
1439   // if a deferred decl.
1440   llvm::Constant *Aliasee;
1441   if (isa<llvm::FunctionType>(DeclTy))
1442     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1443   else
1444     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1445                                     llvm::PointerType::getUnqual(DeclTy), 0);
1446 
1447   // Create the new alias itself, but don't set a name yet.
1448   llvm::GlobalValue *GA =
1449     new llvm::GlobalAlias(Aliasee->getType(),
1450                           llvm::Function::ExternalLinkage,
1451                           "", Aliasee, &getModule());
1452 
1453   if (Entry) {
1454     assert(Entry->isDeclaration());
1455 
1456     // If there is a declaration in the module, then we had an extern followed
1457     // by the alias, as in:
1458     //   extern int test6();
1459     //   ...
1460     //   int test6() __attribute__((alias("test7")));
1461     //
1462     // Remove it and replace uses of it with the alias.
1463     GA->takeName(Entry);
1464 
1465     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1466                                                           Entry->getType()));
1467     Entry->eraseFromParent();
1468   } else {
1469     GA->setName(MangledName);
1470   }
1471 
1472   // Set attributes which are particular to an alias; this is a
1473   // specialization of the attributes which may be set on a global
1474   // variable/function.
1475   if (D->hasAttr<DLLExportAttr>()) {
1476     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1477       // The dllexport attribute is ignored for undefined symbols.
1478       if (FD->hasBody())
1479         GA->setLinkage(llvm::Function::DLLExportLinkage);
1480     } else {
1481       GA->setLinkage(llvm::Function::DLLExportLinkage);
1482     }
1483   } else if (D->hasAttr<WeakAttr>() ||
1484              D->hasAttr<WeakRefAttr>() ||
1485              D->hasAttr<WeakImportAttr>()) {
1486     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1487   }
1488 
1489   SetCommonAttributes(D, GA);
1490 }
1491 
1492 /// getBuiltinLibFunction - Given a builtin id for a function like
1493 /// "__builtin_fabsf", return a Function* for "fabsf".
1494 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1495                                                   unsigned BuiltinID) {
1496   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1497           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1498          "isn't a lib fn");
1499 
1500   // Get the name, skip over the __builtin_ prefix (if necessary).
1501   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1502   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1503     Name += 10;
1504 
1505   const llvm::FunctionType *Ty =
1506     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1507 
1508   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1509 }
1510 
1511 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1512                                             unsigned NumTys) {
1513   return llvm::Intrinsic::getDeclaration(&getModule(),
1514                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1515 }
1516 
1517 static llvm::StringMapEntry<llvm::Constant*> &
1518 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1519                          const StringLiteral *Literal,
1520                          bool TargetIsLSB,
1521                          bool &IsUTF16,
1522                          unsigned &StringLength) {
1523   llvm::StringRef String = Literal->getString();
1524   unsigned NumBytes = String.size();
1525 
1526   // Check for simple case.
1527   if (!Literal->containsNonAsciiOrNull()) {
1528     StringLength = NumBytes;
1529     return Map.GetOrCreateValue(String);
1530   }
1531 
1532   // Otherwise, convert the UTF8 literals into a byte string.
1533   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1534   const UTF8 *FromPtr = (UTF8 *)String.data();
1535   UTF16 *ToPtr = &ToBuf[0];
1536 
1537   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1538                            &ToPtr, ToPtr + NumBytes,
1539                            strictConversion);
1540 
1541   // ConvertUTF8toUTF16 returns the length in ToPtr.
1542   StringLength = ToPtr - &ToBuf[0];
1543 
1544   // Render the UTF-16 string into a byte array and convert to the target byte
1545   // order.
1546   //
1547   // FIXME: This isn't something we should need to do here.
1548   llvm::SmallString<128> AsBytes;
1549   AsBytes.reserve(StringLength * 2);
1550   for (unsigned i = 0; i != StringLength; ++i) {
1551     unsigned short Val = ToBuf[i];
1552     if (TargetIsLSB) {
1553       AsBytes.push_back(Val & 0xFF);
1554       AsBytes.push_back(Val >> 8);
1555     } else {
1556       AsBytes.push_back(Val >> 8);
1557       AsBytes.push_back(Val & 0xFF);
1558     }
1559   }
1560   // Append one extra null character, the second is automatically added by our
1561   // caller.
1562   AsBytes.push_back(0);
1563 
1564   IsUTF16 = true;
1565   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1566 }
1567 
1568 llvm::Constant *
1569 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1570   unsigned StringLength = 0;
1571   bool isUTF16 = false;
1572   llvm::StringMapEntry<llvm::Constant*> &Entry =
1573     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1574                              getTargetData().isLittleEndian(),
1575                              isUTF16, StringLength);
1576 
1577   if (llvm::Constant *C = Entry.getValue())
1578     return C;
1579 
1580   llvm::Constant *Zero =
1581       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1582   llvm::Constant *Zeros[] = { Zero, Zero };
1583 
1584   // If we don't already have it, get __CFConstantStringClassReference.
1585   if (!CFConstantStringClassRef) {
1586     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1587     Ty = llvm::ArrayType::get(Ty, 0);
1588     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1589                                            "__CFConstantStringClassReference");
1590     // Decay array -> ptr
1591     CFConstantStringClassRef =
1592       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1593   }
1594 
1595   QualType CFTy = getContext().getCFConstantStringType();
1596 
1597   const llvm::StructType *STy =
1598     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1599 
1600   std::vector<llvm::Constant*> Fields(4);
1601 
1602   // Class pointer.
1603   Fields[0] = CFConstantStringClassRef;
1604 
1605   // Flags.
1606   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1607   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1608     llvm::ConstantInt::get(Ty, 0x07C8);
1609 
1610   // String pointer.
1611   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1612 
1613   llvm::GlobalValue::LinkageTypes Linkage;
1614   bool isConstant;
1615   if (isUTF16) {
1616     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1617     Linkage = llvm::GlobalValue::InternalLinkage;
1618     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1619     // does make plain ascii ones writable.
1620     isConstant = true;
1621   } else {
1622     Linkage = llvm::GlobalValue::PrivateLinkage;
1623     isConstant = !Features.WritableStrings;
1624   }
1625 
1626   llvm::GlobalVariable *GV =
1627     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1628                              ".str");
1629   GV->setUnnamedAddr(true);
1630   if (isUTF16) {
1631     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1632     GV->setAlignment(Align.getQuantity());
1633   }
1634   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1635 
1636   // String length.
1637   Ty = getTypes().ConvertType(getContext().LongTy);
1638   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1639 
1640   // The struct.
1641   C = llvm::ConstantStruct::get(STy, Fields);
1642   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1643                                 llvm::GlobalVariable::PrivateLinkage, C,
1644                                 "_unnamed_cfstring_");
1645   if (const char *Sect = getContext().Target.getCFStringSection())
1646     GV->setSection(Sect);
1647   Entry.setValue(GV);
1648 
1649   return GV;
1650 }
1651 
1652 llvm::Constant *
1653 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1654   unsigned StringLength = 0;
1655   bool isUTF16 = false;
1656   llvm::StringMapEntry<llvm::Constant*> &Entry =
1657     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1658                              getTargetData().isLittleEndian(),
1659                              isUTF16, StringLength);
1660 
1661   if (llvm::Constant *C = Entry.getValue())
1662     return C;
1663 
1664   llvm::Constant *Zero =
1665   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1666   llvm::Constant *Zeros[] = { Zero, Zero };
1667 
1668   // If we don't already have it, get _NSConstantStringClassReference.
1669   if (!ConstantStringClassRef) {
1670     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1671     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1672     Ty = llvm::ArrayType::get(Ty, 0);
1673     llvm::Constant *GV;
1674     if (StringClass.empty())
1675       GV = CreateRuntimeVariable(Ty,
1676                                  Features.ObjCNonFragileABI ?
1677                                  "OBJC_CLASS_$_NSConstantString" :
1678                                  "_NSConstantStringClassReference");
1679     else {
1680       std::string str;
1681       if (Features.ObjCNonFragileABI)
1682         str = "OBJC_CLASS_$_" + StringClass;
1683       else
1684         str = "_" + StringClass + "ClassReference";
1685       GV = CreateRuntimeVariable(Ty, str);
1686     }
1687     // Decay array -> ptr
1688     ConstantStringClassRef =
1689     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1690   }
1691 
1692   QualType NSTy = getContext().getNSConstantStringType();
1693 
1694   const llvm::StructType *STy =
1695   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1696 
1697   std::vector<llvm::Constant*> Fields(3);
1698 
1699   // Class pointer.
1700   Fields[0] = ConstantStringClassRef;
1701 
1702   // String pointer.
1703   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1704 
1705   llvm::GlobalValue::LinkageTypes Linkage;
1706   bool isConstant;
1707   if (isUTF16) {
1708     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1709     Linkage = llvm::GlobalValue::InternalLinkage;
1710     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1711     // does make plain ascii ones writable.
1712     isConstant = true;
1713   } else {
1714     Linkage = llvm::GlobalValue::PrivateLinkage;
1715     isConstant = !Features.WritableStrings;
1716   }
1717 
1718   llvm::GlobalVariable *GV =
1719   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1720                            ".str");
1721   GV->setUnnamedAddr(true);
1722   if (isUTF16) {
1723     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1724     GV->setAlignment(Align.getQuantity());
1725   }
1726   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1727 
1728   // String length.
1729   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1730   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1731 
1732   // The struct.
1733   C = llvm::ConstantStruct::get(STy, Fields);
1734   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1735                                 llvm::GlobalVariable::PrivateLinkage, C,
1736                                 "_unnamed_nsstring_");
1737   // FIXME. Fix section.
1738   if (const char *Sect =
1739         Features.ObjCNonFragileABI
1740           ? getContext().Target.getNSStringNonFragileABISection()
1741           : getContext().Target.getNSStringSection())
1742     GV->setSection(Sect);
1743   Entry.setValue(GV);
1744 
1745   return GV;
1746 }
1747 
1748 /// GetStringForStringLiteral - Return the appropriate bytes for a
1749 /// string literal, properly padded to match the literal type.
1750 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1751   const ASTContext &Context = getContext();
1752   const ConstantArrayType *CAT =
1753     Context.getAsConstantArrayType(E->getType());
1754   assert(CAT && "String isn't pointer or array!");
1755 
1756   // Resize the string to the right size.
1757   uint64_t RealLen = CAT->getSize().getZExtValue();
1758 
1759   if (E->isWide())
1760     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1761 
1762   std::string Str = E->getString().str();
1763   Str.resize(RealLen, '\0');
1764 
1765   return Str;
1766 }
1767 
1768 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1769 /// constant array for the given string literal.
1770 llvm::Constant *
1771 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1772   // FIXME: This can be more efficient.
1773   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1774   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1775   if (S->isWide()) {
1776     llvm::Type *DestTy =
1777         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1778     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1779   }
1780   return C;
1781 }
1782 
1783 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1784 /// array for the given ObjCEncodeExpr node.
1785 llvm::Constant *
1786 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1787   std::string Str;
1788   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1789 
1790   return GetAddrOfConstantCString(Str);
1791 }
1792 
1793 
1794 /// GenerateWritableString -- Creates storage for a string literal.
1795 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1796                                              bool constant,
1797                                              CodeGenModule &CGM,
1798                                              const char *GlobalName) {
1799   // Create Constant for this string literal. Don't add a '\0'.
1800   llvm::Constant *C =
1801       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1802 
1803   // Create a global variable for this string
1804   llvm::GlobalVariable *GV =
1805     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1806                              llvm::GlobalValue::PrivateLinkage,
1807                              C, GlobalName);
1808   GV->setUnnamedAddr(true);
1809   return GV;
1810 }
1811 
1812 /// GetAddrOfConstantString - Returns a pointer to a character array
1813 /// containing the literal. This contents are exactly that of the
1814 /// given string, i.e. it will not be null terminated automatically;
1815 /// see GetAddrOfConstantCString. Note that whether the result is
1816 /// actually a pointer to an LLVM constant depends on
1817 /// Feature.WriteableStrings.
1818 ///
1819 /// The result has pointer to array type.
1820 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1821                                                        const char *GlobalName) {
1822   bool IsConstant = !Features.WritableStrings;
1823 
1824   // Get the default prefix if a name wasn't specified.
1825   if (!GlobalName)
1826     GlobalName = ".str";
1827 
1828   // Don't share any string literals if strings aren't constant.
1829   if (!IsConstant)
1830     return GenerateStringLiteral(str, false, *this, GlobalName);
1831 
1832   llvm::StringMapEntry<llvm::Constant *> &Entry =
1833     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1834 
1835   if (Entry.getValue())
1836     return Entry.getValue();
1837 
1838   // Create a global variable for this.
1839   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1840   Entry.setValue(C);
1841   return C;
1842 }
1843 
1844 /// GetAddrOfConstantCString - Returns a pointer to a character
1845 /// array containing the literal and a terminating '\-'
1846 /// character. The result has pointer to array type.
1847 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1848                                                         const char *GlobalName){
1849   return GetAddrOfConstantString(str + '\0', GlobalName);
1850 }
1851 
1852 /// EmitObjCPropertyImplementations - Emit information for synthesized
1853 /// properties for an implementation.
1854 void CodeGenModule::EmitObjCPropertyImplementations(const
1855                                                     ObjCImplementationDecl *D) {
1856   for (ObjCImplementationDecl::propimpl_iterator
1857          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1858     ObjCPropertyImplDecl *PID = *i;
1859 
1860     // Dynamic is just for type-checking.
1861     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1862       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1863 
1864       // Determine which methods need to be implemented, some may have
1865       // been overridden. Note that ::isSynthesized is not the method
1866       // we want, that just indicates if the decl came from a
1867       // property. What we want to know is if the method is defined in
1868       // this implementation.
1869       if (!D->getInstanceMethod(PD->getGetterName()))
1870         CodeGenFunction(*this).GenerateObjCGetter(
1871                                  const_cast<ObjCImplementationDecl *>(D), PID);
1872       if (!PD->isReadOnly() &&
1873           !D->getInstanceMethod(PD->getSetterName()))
1874         CodeGenFunction(*this).GenerateObjCSetter(
1875                                  const_cast<ObjCImplementationDecl *>(D), PID);
1876     }
1877   }
1878 }
1879 
1880 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1881 /// for an implementation.
1882 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1883   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1884     return;
1885   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1886   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1887   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1888   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1889   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1890                                                   D->getLocation(),
1891                                                   D->getLocation(), cxxSelector,
1892                                                   getContext().VoidTy, 0,
1893                                                   DC, true, false, true, false,
1894                                                   ObjCMethodDecl::Required);
1895   D->addInstanceMethod(DTORMethod);
1896   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1897 
1898   II = &getContext().Idents.get(".cxx_construct");
1899   cxxSelector = getContext().Selectors.getSelector(0, &II);
1900   // The constructor returns 'self'.
1901   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1902                                                 D->getLocation(),
1903                                                 D->getLocation(), cxxSelector,
1904                                                 getContext().getObjCIdType(), 0,
1905                                                 DC, true, false, true, false,
1906                                                 ObjCMethodDecl::Required);
1907   D->addInstanceMethod(CTORMethod);
1908   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1909 
1910 
1911 }
1912 
1913 /// EmitNamespace - Emit all declarations in a namespace.
1914 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1915   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1916        I != E; ++I)
1917     EmitTopLevelDecl(*I);
1918 }
1919 
1920 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1921 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1922   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1923       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1924     ErrorUnsupported(LSD, "linkage spec");
1925     return;
1926   }
1927 
1928   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1929        I != E; ++I)
1930     EmitTopLevelDecl(*I);
1931 }
1932 
1933 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1934 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1935   // If an error has occurred, stop code generation, but continue
1936   // parsing and semantic analysis (to ensure all warnings and errors
1937   // are emitted).
1938   if (Diags.hasErrorOccurred())
1939     return;
1940 
1941   // Ignore dependent declarations.
1942   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1943     return;
1944 
1945   switch (D->getKind()) {
1946   case Decl::CXXConversion:
1947   case Decl::CXXMethod:
1948   case Decl::Function:
1949     // Skip function templates
1950     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1951       return;
1952 
1953     EmitGlobal(cast<FunctionDecl>(D));
1954     break;
1955 
1956   case Decl::Var:
1957     EmitGlobal(cast<VarDecl>(D));
1958     break;
1959 
1960   // C++ Decls
1961   case Decl::Namespace:
1962     EmitNamespace(cast<NamespaceDecl>(D));
1963     break;
1964     // No code generation needed.
1965   case Decl::UsingShadow:
1966   case Decl::Using:
1967   case Decl::UsingDirective:
1968   case Decl::ClassTemplate:
1969   case Decl::FunctionTemplate:
1970   case Decl::NamespaceAlias:
1971     break;
1972   case Decl::CXXConstructor:
1973     // Skip function templates
1974     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1975       return;
1976 
1977     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1978     break;
1979   case Decl::CXXDestructor:
1980     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1981     break;
1982 
1983   case Decl::StaticAssert:
1984     // Nothing to do.
1985     break;
1986 
1987   // Objective-C Decls
1988 
1989   // Forward declarations, no (immediate) code generation.
1990   case Decl::ObjCClass:
1991   case Decl::ObjCForwardProtocol:
1992   case Decl::ObjCInterface:
1993     break;
1994 
1995     case Decl::ObjCCategory: {
1996       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
1997       if (CD->IsClassExtension() && CD->hasSynthBitfield())
1998         Context.ResetObjCLayout(CD->getClassInterface());
1999       break;
2000     }
2001 
2002 
2003   case Decl::ObjCProtocol:
2004     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2005     break;
2006 
2007   case Decl::ObjCCategoryImpl:
2008     // Categories have properties but don't support synthesize so we
2009     // can ignore them here.
2010     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2011     break;
2012 
2013   case Decl::ObjCImplementation: {
2014     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2015     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2016       Context.ResetObjCLayout(OMD->getClassInterface());
2017     EmitObjCPropertyImplementations(OMD);
2018     EmitObjCIvarInitializations(OMD);
2019     Runtime->GenerateClass(OMD);
2020     break;
2021   }
2022   case Decl::ObjCMethod: {
2023     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2024     // If this is not a prototype, emit the body.
2025     if (OMD->getBody())
2026       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2027     break;
2028   }
2029   case Decl::ObjCCompatibleAlias:
2030     // compatibility-alias is a directive and has no code gen.
2031     break;
2032 
2033   case Decl::LinkageSpec:
2034     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2035     break;
2036 
2037   case Decl::FileScopeAsm: {
2038     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2039     llvm::StringRef AsmString = AD->getAsmString()->getString();
2040 
2041     const std::string &S = getModule().getModuleInlineAsm();
2042     if (S.empty())
2043       getModule().setModuleInlineAsm(AsmString);
2044     else
2045       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2046     break;
2047   }
2048 
2049   default:
2050     // Make sure we handled everything we should, every other kind is a
2051     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2052     // function. Need to recode Decl::Kind to do that easily.
2053     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2054   }
2055 }
2056 
2057 /// Turns the given pointer into a constant.
2058 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2059                                           const void *Ptr) {
2060   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2061   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2062   return llvm::ConstantInt::get(i64, PtrInt);
2063 }
2064 
2065 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2066                                    llvm::NamedMDNode *&GlobalMetadata,
2067                                    GlobalDecl D,
2068                                    llvm::GlobalValue *Addr) {
2069   if (!GlobalMetadata)
2070     GlobalMetadata =
2071       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2072 
2073   // TODO: should we report variant information for ctors/dtors?
2074   llvm::Value *Ops[] = {
2075     Addr,
2076     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2077   };
2078   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2079 }
2080 
2081 /// Emits metadata nodes associating all the global values in the
2082 /// current module with the Decls they came from.  This is useful for
2083 /// projects using IR gen as a subroutine.
2084 ///
2085 /// Since there's currently no way to associate an MDNode directly
2086 /// with an llvm::GlobalValue, we create a global named metadata
2087 /// with the name 'clang.global.decl.ptrs'.
2088 void CodeGenModule::EmitDeclMetadata() {
2089   llvm::NamedMDNode *GlobalMetadata = 0;
2090 
2091   // StaticLocalDeclMap
2092   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2093          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2094        I != E; ++I) {
2095     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2096     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2097   }
2098 }
2099 
2100 /// Emits metadata nodes for all the local variables in the current
2101 /// function.
2102 void CodeGenFunction::EmitDeclMetadata() {
2103   if (LocalDeclMap.empty()) return;
2104 
2105   llvm::LLVMContext &Context = getLLVMContext();
2106 
2107   // Find the unique metadata ID for this name.
2108   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2109 
2110   llvm::NamedMDNode *GlobalMetadata = 0;
2111 
2112   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2113          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2114     const Decl *D = I->first;
2115     llvm::Value *Addr = I->second;
2116 
2117     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2118       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2119       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2120     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2121       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2122       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2123     }
2124   }
2125 }
2126 
2127 ///@name Custom Runtime Function Interfaces
2128 ///@{
2129 //
2130 // FIXME: These can be eliminated once we can have clients just get the required
2131 // AST nodes from the builtin tables.
2132 
2133 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2134   if (BlockObjectDispose)
2135     return BlockObjectDispose;
2136 
2137   // If we saw an explicit decl, use that.
2138   if (BlockObjectDisposeDecl) {
2139     return BlockObjectDispose = GetAddrOfFunction(
2140       BlockObjectDisposeDecl,
2141       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2142   }
2143 
2144   // Otherwise construct the function by hand.
2145   const llvm::FunctionType *FTy;
2146   std::vector<const llvm::Type*> ArgTys;
2147   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2148   ArgTys.push_back(PtrToInt8Ty);
2149   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2150   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2151   return BlockObjectDispose =
2152     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2153 }
2154 
2155 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2156   if (BlockObjectAssign)
2157     return BlockObjectAssign;
2158 
2159   // If we saw an explicit decl, use that.
2160   if (BlockObjectAssignDecl) {
2161     return BlockObjectAssign = GetAddrOfFunction(
2162       BlockObjectAssignDecl,
2163       getTypes().GetFunctionType(BlockObjectAssignDecl));
2164   }
2165 
2166   // Otherwise construct the function by hand.
2167   const llvm::FunctionType *FTy;
2168   std::vector<const llvm::Type*> ArgTys;
2169   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2170   ArgTys.push_back(PtrToInt8Ty);
2171   ArgTys.push_back(PtrToInt8Ty);
2172   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2173   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2174   return BlockObjectAssign =
2175     CreateRuntimeFunction(FTy, "_Block_object_assign");
2176 }
2177 
2178 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2179   if (NSConcreteGlobalBlock)
2180     return NSConcreteGlobalBlock;
2181 
2182   // If we saw an explicit decl, use that.
2183   if (NSConcreteGlobalBlockDecl) {
2184     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2185       NSConcreteGlobalBlockDecl,
2186       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2187   }
2188 
2189   // Otherwise construct the variable by hand.
2190   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2191     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2192 }
2193 
2194 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2195   if (NSConcreteStackBlock)
2196     return NSConcreteStackBlock;
2197 
2198   // If we saw an explicit decl, use that.
2199   if (NSConcreteStackBlockDecl) {
2200     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2201       NSConcreteStackBlockDecl,
2202       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2203   }
2204 
2205   // Otherwise construct the variable by hand.
2206   return NSConcreteStackBlock = CreateRuntimeVariable(
2207     PtrToInt8Ty, "_NSConcreteStackBlock");
2208 }
2209 
2210 ///@}
2211