1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "CoverageMappingGen.h" 26 #include "TargetInfo.h" 27 #include "clang/AST/ASTContext.h" 28 #include "clang/AST/CharUnits.h" 29 #include "clang/AST/DeclCXX.h" 30 #include "clang/AST/DeclObjC.h" 31 #include "clang/AST/DeclTemplate.h" 32 #include "clang/AST/Mangle.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/RecursiveASTVisitor.h" 35 #include "clang/Basic/Builtins.h" 36 #include "clang/Basic/CharInfo.h" 37 #include "clang/Basic/Diagnostic.h" 38 #include "clang/Basic/Module.h" 39 #include "clang/Basic/SourceManager.h" 40 #include "clang/Basic/TargetInfo.h" 41 #include "clang/Basic/Version.h" 42 #include "clang/Frontend/CodeGenOptions.h" 43 #include "clang/Sema/SemaDiagnostic.h" 44 #include "llvm/ADT/APSInt.h" 45 #include "llvm/ADT/Triple.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/CallingConv.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/ProfileData/InstrProfReader.h" 53 #include "llvm/Support/ConvertUTF.h" 54 #include "llvm/Support/ErrorHandling.h" 55 56 using namespace clang; 57 using namespace CodeGen; 58 59 static const char AnnotationSection[] = "llvm.metadata"; 60 61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 62 switch (CGM.getTarget().getCXXABI().getKind()) { 63 case TargetCXXABI::GenericAArch64: 64 case TargetCXXABI::GenericARM: 65 case TargetCXXABI::iOS: 66 case TargetCXXABI::iOS64: 67 case TargetCXXABI::GenericMIPS: 68 case TargetCXXABI::GenericItanium: 69 return CreateItaniumCXXABI(CGM); 70 case TargetCXXABI::Microsoft: 71 return CreateMicrosoftCXXABI(CGM); 72 } 73 74 llvm_unreachable("invalid C++ ABI kind"); 75 } 76 77 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 78 llvm::Module &M, const llvm::DataLayout &TD, 79 DiagnosticsEngine &diags, 80 CoverageSourceInfo *CoverageInfo) 81 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 82 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 83 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 84 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 85 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 86 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 87 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 88 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 89 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 90 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 91 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 92 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 93 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 94 95 // Initialize the type cache. 96 llvm::LLVMContext &LLVMContext = M.getContext(); 97 VoidTy = llvm::Type::getVoidTy(LLVMContext); 98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 99 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 100 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 101 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 102 FloatTy = llvm::Type::getFloatTy(LLVMContext); 103 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 104 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 105 PointerAlignInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 107 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 108 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 109 Int8PtrTy = Int8Ty->getPointerTo(0); 110 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 111 112 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 113 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 114 115 if (LangOpts.ObjC1) 116 createObjCRuntime(); 117 if (LangOpts.OpenCL) 118 createOpenCLRuntime(); 119 if (LangOpts.OpenMP) 120 createOpenMPRuntime(); 121 if (LangOpts.CUDA) 122 createCUDARuntime(); 123 124 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 125 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 126 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 127 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 128 getCXXABI().getMangleContext()); 129 130 // If debug info or coverage generation is enabled, create the CGDebugInfo 131 // object. 132 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 133 CodeGenOpts.EmitGcovArcs || 134 CodeGenOpts.EmitGcovNotes) 135 DebugInfo = new CGDebugInfo(*this); 136 137 Block.GlobalUniqueCount = 0; 138 139 if (C.getLangOpts().ObjCAutoRefCount) 140 ARCData = new ARCEntrypoints(); 141 RRData = new RREntrypoints(); 142 143 if (!CodeGenOpts.InstrProfileInput.empty()) { 144 auto ReaderOrErr = 145 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 146 if (std::error_code EC = ReaderOrErr.getError()) { 147 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 148 "Could not read profile: %0"); 149 getDiags().Report(DiagID) << EC.message(); 150 } else 151 PGOReader = std::move(ReaderOrErr.get()); 152 } 153 154 // If coverage mapping generation is enabled, create the 155 // CoverageMappingModuleGen object. 156 if (CodeGenOpts.CoverageMapping) 157 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 158 } 159 160 CodeGenModule::~CodeGenModule() { 161 delete ObjCRuntime; 162 delete OpenCLRuntime; 163 delete OpenMPRuntime; 164 delete CUDARuntime; 165 delete TheTargetCodeGenInfo; 166 delete TBAA; 167 delete DebugInfo; 168 delete ARCData; 169 delete RRData; 170 } 171 172 void CodeGenModule::createObjCRuntime() { 173 // This is just isGNUFamily(), but we want to force implementors of 174 // new ABIs to decide how best to do this. 175 switch (LangOpts.ObjCRuntime.getKind()) { 176 case ObjCRuntime::GNUstep: 177 case ObjCRuntime::GCC: 178 case ObjCRuntime::ObjFW: 179 ObjCRuntime = CreateGNUObjCRuntime(*this); 180 return; 181 182 case ObjCRuntime::FragileMacOSX: 183 case ObjCRuntime::MacOSX: 184 case ObjCRuntime::iOS: 185 ObjCRuntime = CreateMacObjCRuntime(*this); 186 return; 187 } 188 llvm_unreachable("bad runtime kind"); 189 } 190 191 void CodeGenModule::createOpenCLRuntime() { 192 OpenCLRuntime = new CGOpenCLRuntime(*this); 193 } 194 195 void CodeGenModule::createOpenMPRuntime() { 196 OpenMPRuntime = new CGOpenMPRuntime(*this); 197 } 198 199 void CodeGenModule::createCUDARuntime() { 200 CUDARuntime = CreateNVCUDARuntime(*this); 201 } 202 203 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 204 Replacements[Name] = C; 205 } 206 207 void CodeGenModule::applyReplacements() { 208 for (ReplacementsTy::iterator I = Replacements.begin(), 209 E = Replacements.end(); 210 I != E; ++I) { 211 StringRef MangledName = I->first(); 212 llvm::Constant *Replacement = I->second; 213 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 214 if (!Entry) 215 continue; 216 auto *OldF = cast<llvm::Function>(Entry); 217 auto *NewF = dyn_cast<llvm::Function>(Replacement); 218 if (!NewF) { 219 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 220 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 221 } else { 222 auto *CE = cast<llvm::ConstantExpr>(Replacement); 223 assert(CE->getOpcode() == llvm::Instruction::BitCast || 224 CE->getOpcode() == llvm::Instruction::GetElementPtr); 225 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 226 } 227 } 228 229 // Replace old with new, but keep the old order. 230 OldF->replaceAllUsesWith(Replacement); 231 if (NewF) { 232 NewF->removeFromParent(); 233 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 234 } 235 OldF->eraseFromParent(); 236 } 237 } 238 239 // This is only used in aliases that we created and we know they have a 240 // linear structure. 241 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 242 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 243 const llvm::Constant *C = &GA; 244 for (;;) { 245 C = C->stripPointerCasts(); 246 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 247 return GO; 248 // stripPointerCasts will not walk over weak aliases. 249 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 250 if (!GA2) 251 return nullptr; 252 if (!Visited.insert(GA2).second) 253 return nullptr; 254 C = GA2->getAliasee(); 255 } 256 } 257 258 void CodeGenModule::checkAliases() { 259 // Check if the constructed aliases are well formed. It is really unfortunate 260 // that we have to do this in CodeGen, but we only construct mangled names 261 // and aliases during codegen. 262 bool Error = false; 263 DiagnosticsEngine &Diags = getDiags(); 264 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 265 E = Aliases.end(); I != E; ++I) { 266 const GlobalDecl &GD = *I; 267 const auto *D = cast<ValueDecl>(GD.getDecl()); 268 const AliasAttr *AA = D->getAttr<AliasAttr>(); 269 StringRef MangledName = getMangledName(GD); 270 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 271 auto *Alias = cast<llvm::GlobalAlias>(Entry); 272 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 273 if (!GV) { 274 Error = true; 275 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 276 } else if (GV->isDeclaration()) { 277 Error = true; 278 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 279 } 280 281 llvm::Constant *Aliasee = Alias->getAliasee(); 282 llvm::GlobalValue *AliaseeGV; 283 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 284 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 285 else 286 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 287 288 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 289 StringRef AliasSection = SA->getName(); 290 if (AliasSection != AliaseeGV->getSection()) 291 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 292 << AliasSection; 293 } 294 295 // We have to handle alias to weak aliases in here. LLVM itself disallows 296 // this since the object semantics would not match the IL one. For 297 // compatibility with gcc we implement it by just pointing the alias 298 // to its aliasee's aliasee. We also warn, since the user is probably 299 // expecting the link to be weak. 300 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 301 if (GA->mayBeOverridden()) { 302 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 303 << GV->getName() << GA->getName(); 304 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 305 GA->getAliasee(), Alias->getType()); 306 Alias->setAliasee(Aliasee); 307 } 308 } 309 } 310 if (!Error) 311 return; 312 313 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 314 E = Aliases.end(); I != E; ++I) { 315 const GlobalDecl &GD = *I; 316 StringRef MangledName = getMangledName(GD); 317 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 318 auto *Alias = cast<llvm::GlobalAlias>(Entry); 319 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 320 Alias->eraseFromParent(); 321 } 322 } 323 324 void CodeGenModule::clear() { 325 DeferredDeclsToEmit.clear(); 326 if (OpenMPRuntime) 327 OpenMPRuntime->clear(); 328 } 329 330 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 331 StringRef MainFile) { 332 if (!hasDiagnostics()) 333 return; 334 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 335 if (MainFile.empty()) 336 MainFile = "<stdin>"; 337 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 338 } else 339 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 340 << Mismatched; 341 } 342 343 void CodeGenModule::Release() { 344 EmitDeferred(); 345 applyReplacements(); 346 checkAliases(); 347 EmitCXXGlobalInitFunc(); 348 EmitCXXGlobalDtorFunc(); 349 EmitCXXThreadLocalInitFunc(); 350 if (ObjCRuntime) 351 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 352 AddGlobalCtor(ObjCInitFunction); 353 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 354 CUDARuntime) { 355 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 356 AddGlobalCtor(CudaCtorFunction); 357 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 358 AddGlobalDtor(CudaDtorFunction); 359 } 360 if (PGOReader && PGOStats.hasDiagnostics()) 361 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 362 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 363 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 364 EmitGlobalAnnotations(); 365 EmitStaticExternCAliases(); 366 EmitDeferredUnusedCoverageMappings(); 367 if (CoverageMapping) 368 CoverageMapping->emit(); 369 emitLLVMUsed(); 370 371 if (CodeGenOpts.Autolink && 372 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 373 EmitModuleLinkOptions(); 374 } 375 if (CodeGenOpts.DwarfVersion) 376 // We actually want the latest version when there are conflicts. 377 // We can change from Warning to Latest if such mode is supported. 378 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 379 CodeGenOpts.DwarfVersion); 380 if (DebugInfo) 381 // We support a single version in the linked module. The LLVM 382 // parser will drop debug info with a different version number 383 // (and warn about it, too). 384 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 385 llvm::DEBUG_METADATA_VERSION); 386 387 // We need to record the widths of enums and wchar_t, so that we can generate 388 // the correct build attributes in the ARM backend. 389 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 390 if ( Arch == llvm::Triple::arm 391 || Arch == llvm::Triple::armeb 392 || Arch == llvm::Triple::thumb 393 || Arch == llvm::Triple::thumbeb) { 394 // Width of wchar_t in bytes 395 uint64_t WCharWidth = 396 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 397 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 398 399 // The minimum width of an enum in bytes 400 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 401 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 402 } 403 404 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 405 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 406 switch (PLevel) { 407 case 0: break; 408 case 1: PL = llvm::PICLevel::Small; break; 409 case 2: PL = llvm::PICLevel::Large; break; 410 default: llvm_unreachable("Invalid PIC Level"); 411 } 412 413 getModule().setPICLevel(PL); 414 } 415 416 SimplifyPersonality(); 417 418 if (getCodeGenOpts().EmitDeclMetadata) 419 EmitDeclMetadata(); 420 421 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 422 EmitCoverageFile(); 423 424 if (DebugInfo) 425 DebugInfo->finalize(); 426 427 EmitVersionIdentMetadata(); 428 429 EmitTargetMetadata(); 430 } 431 432 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 433 // Make sure that this type is translated. 434 Types.UpdateCompletedType(TD); 435 } 436 437 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 438 if (!TBAA) 439 return nullptr; 440 return TBAA->getTBAAInfo(QTy); 441 } 442 443 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 444 if (!TBAA) 445 return nullptr; 446 return TBAA->getTBAAInfoForVTablePtr(); 447 } 448 449 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 450 if (!TBAA) 451 return nullptr; 452 return TBAA->getTBAAStructInfo(QTy); 453 } 454 455 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 456 if (!TBAA) 457 return nullptr; 458 return TBAA->getTBAAStructTypeInfo(QTy); 459 } 460 461 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 462 llvm::MDNode *AccessN, 463 uint64_t O) { 464 if (!TBAA) 465 return nullptr; 466 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 467 } 468 469 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 470 /// and struct-path aware TBAA, the tag has the same format: 471 /// base type, access type and offset. 472 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 473 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 474 llvm::MDNode *TBAAInfo, 475 bool ConvertTypeToTag) { 476 if (ConvertTypeToTag && TBAA) 477 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 478 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 479 else 480 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 481 } 482 483 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 484 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 485 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 486 } 487 488 /// ErrorUnsupported - Print out an error that codegen doesn't support the 489 /// specified stmt yet. 490 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 491 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 492 "cannot compile this %0 yet"); 493 std::string Msg = Type; 494 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 495 << Msg << S->getSourceRange(); 496 } 497 498 /// ErrorUnsupported - Print out an error that codegen doesn't support the 499 /// specified decl yet. 500 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 501 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 502 "cannot compile this %0 yet"); 503 std::string Msg = Type; 504 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 505 } 506 507 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 508 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 509 } 510 511 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 512 const NamedDecl *D) const { 513 // Internal definitions always have default visibility. 514 if (GV->hasLocalLinkage()) { 515 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 516 return; 517 } 518 519 // Set visibility for definitions. 520 LinkageInfo LV = D->getLinkageAndVisibility(); 521 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 522 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 523 } 524 525 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 526 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 527 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 528 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 529 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 530 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 531 } 532 533 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 534 CodeGenOptions::TLSModel M) { 535 switch (M) { 536 case CodeGenOptions::GeneralDynamicTLSModel: 537 return llvm::GlobalVariable::GeneralDynamicTLSModel; 538 case CodeGenOptions::LocalDynamicTLSModel: 539 return llvm::GlobalVariable::LocalDynamicTLSModel; 540 case CodeGenOptions::InitialExecTLSModel: 541 return llvm::GlobalVariable::InitialExecTLSModel; 542 case CodeGenOptions::LocalExecTLSModel: 543 return llvm::GlobalVariable::LocalExecTLSModel; 544 } 545 llvm_unreachable("Invalid TLS model!"); 546 } 547 548 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 549 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 550 551 llvm::GlobalValue::ThreadLocalMode TLM; 552 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 553 554 // Override the TLS model if it is explicitly specified. 555 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 556 TLM = GetLLVMTLSModel(Attr->getModel()); 557 } 558 559 GV->setThreadLocalMode(TLM); 560 } 561 562 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 563 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 564 if (!FoundStr.empty()) 565 return FoundStr; 566 567 const auto *ND = cast<NamedDecl>(GD.getDecl()); 568 SmallString<256> Buffer; 569 StringRef Str; 570 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 571 llvm::raw_svector_ostream Out(Buffer); 572 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 573 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 574 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 575 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 576 else 577 getCXXABI().getMangleContext().mangleName(ND, Out); 578 Str = Out.str(); 579 } else { 580 IdentifierInfo *II = ND->getIdentifier(); 581 assert(II && "Attempt to mangle unnamed decl."); 582 Str = II->getName(); 583 } 584 585 // Keep the first result in the case of a mangling collision. 586 auto Result = Manglings.insert(std::make_pair(Str, GD)); 587 return FoundStr = Result.first->first(); 588 } 589 590 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 591 const BlockDecl *BD) { 592 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 593 const Decl *D = GD.getDecl(); 594 595 SmallString<256> Buffer; 596 llvm::raw_svector_ostream Out(Buffer); 597 if (!D) 598 MangleCtx.mangleGlobalBlock(BD, 599 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 600 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 601 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 602 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 603 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 604 else 605 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 606 607 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 608 return Result.first->first(); 609 } 610 611 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 612 return getModule().getNamedValue(Name); 613 } 614 615 /// AddGlobalCtor - Add a function to the list that will be called before 616 /// main() runs. 617 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 618 llvm::Constant *AssociatedData) { 619 // FIXME: Type coercion of void()* types. 620 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 621 } 622 623 /// AddGlobalDtor - Add a function to the list that will be called 624 /// when the module is unloaded. 625 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 626 // FIXME: Type coercion of void()* types. 627 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 628 } 629 630 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 631 // Ctor function type is void()*. 632 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 633 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 634 635 // Get the type of a ctor entry, { i32, void ()*, i8* }. 636 llvm::StructType *CtorStructTy = llvm::StructType::get( 637 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 638 639 // Construct the constructor and destructor arrays. 640 SmallVector<llvm::Constant*, 8> Ctors; 641 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 642 llvm::Constant *S[] = { 643 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 644 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 645 (I->AssociatedData 646 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 647 : llvm::Constant::getNullValue(VoidPtrTy)) 648 }; 649 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 650 } 651 652 if (!Ctors.empty()) { 653 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 654 new llvm::GlobalVariable(TheModule, AT, false, 655 llvm::GlobalValue::AppendingLinkage, 656 llvm::ConstantArray::get(AT, Ctors), 657 GlobalName); 658 } 659 } 660 661 llvm::GlobalValue::LinkageTypes 662 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 663 const auto *D = cast<FunctionDecl>(GD.getDecl()); 664 665 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 666 667 if (isa<CXXDestructorDecl>(D) && 668 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 669 GD.getDtorType())) { 670 // Destructor variants in the Microsoft C++ ABI are always internal or 671 // linkonce_odr thunks emitted on an as-needed basis. 672 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 673 : llvm::GlobalValue::LinkOnceODRLinkage; 674 } 675 676 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 677 } 678 679 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 680 llvm::Function *F) { 681 setNonAliasAttributes(D, F); 682 } 683 684 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 685 const CGFunctionInfo &Info, 686 llvm::Function *F) { 687 unsigned CallingConv; 688 AttributeListType AttributeList; 689 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 690 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 691 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 692 } 693 694 /// Determines whether the language options require us to model 695 /// unwind exceptions. We treat -fexceptions as mandating this 696 /// except under the fragile ObjC ABI with only ObjC exceptions 697 /// enabled. This means, for example, that C with -fexceptions 698 /// enables this. 699 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 700 // If exceptions are completely disabled, obviously this is false. 701 if (!LangOpts.Exceptions) return false; 702 703 // If C++ exceptions are enabled, this is true. 704 if (LangOpts.CXXExceptions) return true; 705 706 // If ObjC exceptions are enabled, this depends on the ABI. 707 if (LangOpts.ObjCExceptions) { 708 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 709 } 710 711 return true; 712 } 713 714 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 715 llvm::Function *F) { 716 llvm::AttrBuilder B; 717 718 if (CodeGenOpts.UnwindTables) 719 B.addAttribute(llvm::Attribute::UWTable); 720 721 if (!hasUnwindExceptions(LangOpts)) 722 B.addAttribute(llvm::Attribute::NoUnwind); 723 724 if (D->hasAttr<NakedAttr>()) { 725 // Naked implies noinline: we should not be inlining such functions. 726 B.addAttribute(llvm::Attribute::Naked); 727 B.addAttribute(llvm::Attribute::NoInline); 728 } else if (D->hasAttr<NoDuplicateAttr>()) { 729 B.addAttribute(llvm::Attribute::NoDuplicate); 730 } else if (D->hasAttr<NoInlineAttr>()) { 731 B.addAttribute(llvm::Attribute::NoInline); 732 } else if (D->hasAttr<AlwaysInlineAttr>() && 733 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 734 llvm::Attribute::NoInline)) { 735 // (noinline wins over always_inline, and we can't specify both in IR) 736 B.addAttribute(llvm::Attribute::AlwaysInline); 737 } 738 739 if (D->hasAttr<ColdAttr>()) { 740 if (!D->hasAttr<OptimizeNoneAttr>()) 741 B.addAttribute(llvm::Attribute::OptimizeForSize); 742 B.addAttribute(llvm::Attribute::Cold); 743 } 744 745 if (D->hasAttr<MinSizeAttr>()) 746 B.addAttribute(llvm::Attribute::MinSize); 747 748 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 749 B.addAttribute(llvm::Attribute::StackProtect); 750 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 751 B.addAttribute(llvm::Attribute::StackProtectStrong); 752 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 753 B.addAttribute(llvm::Attribute::StackProtectReq); 754 755 // Add sanitizer attributes if function is not blacklisted. 756 if (!isInSanitizerBlacklist(F, D->getLocation())) { 757 // When AddressSanitizer is enabled, set SanitizeAddress attribute 758 // unless __attribute__((no_sanitize_address)) is used. 759 if (LangOpts.Sanitize.has(SanitizerKind::Address) && 760 !D->hasAttr<NoSanitizeAddressAttr>()) 761 B.addAttribute(llvm::Attribute::SanitizeAddress); 762 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 763 if (LangOpts.Sanitize.has(SanitizerKind::Thread) && 764 !D->hasAttr<NoSanitizeThreadAttr>()) 765 B.addAttribute(llvm::Attribute::SanitizeThread); 766 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 767 if (LangOpts.Sanitize.has(SanitizerKind::Memory) && 768 !D->hasAttr<NoSanitizeMemoryAttr>()) 769 B.addAttribute(llvm::Attribute::SanitizeMemory); 770 } 771 772 F->addAttributes(llvm::AttributeSet::FunctionIndex, 773 llvm::AttributeSet::get( 774 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 775 776 if (D->hasAttr<OptimizeNoneAttr>()) { 777 // OptimizeNone implies noinline; we should not be inlining such functions. 778 F->addFnAttr(llvm::Attribute::OptimizeNone); 779 F->addFnAttr(llvm::Attribute::NoInline); 780 781 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 782 assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) && 783 "OptimizeNone and OptimizeForSize on same function!"); 784 assert(!F->hasFnAttribute(llvm::Attribute::MinSize) && 785 "OptimizeNone and MinSize on same function!"); 786 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 787 "OptimizeNone and AlwaysInline on same function!"); 788 789 // Attribute 'inlinehint' has no effect on 'optnone' functions. 790 // Explicitly remove it from the set of function attributes. 791 F->removeFnAttr(llvm::Attribute::InlineHint); 792 } 793 794 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 795 F->setUnnamedAddr(true); 796 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 797 if (MD->isVirtual()) 798 F->setUnnamedAddr(true); 799 800 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 801 if (alignment) 802 F->setAlignment(alignment); 803 804 // C++ ABI requires 2-byte alignment for member functions. 805 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 806 F->setAlignment(2); 807 } 808 809 void CodeGenModule::SetCommonAttributes(const Decl *D, 810 llvm::GlobalValue *GV) { 811 if (const auto *ND = dyn_cast<NamedDecl>(D)) 812 setGlobalVisibility(GV, ND); 813 else 814 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 815 816 if (D->hasAttr<UsedAttr>()) 817 addUsedGlobal(GV); 818 } 819 820 void CodeGenModule::setAliasAttributes(const Decl *D, 821 llvm::GlobalValue *GV) { 822 SetCommonAttributes(D, GV); 823 824 // Process the dllexport attribute based on whether the original definition 825 // (not necessarily the aliasee) was exported. 826 if (D->hasAttr<DLLExportAttr>()) 827 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 828 } 829 830 void CodeGenModule::setNonAliasAttributes(const Decl *D, 831 llvm::GlobalObject *GO) { 832 SetCommonAttributes(D, GO); 833 834 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 835 GO->setSection(SA->getName()); 836 837 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 838 } 839 840 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 841 llvm::Function *F, 842 const CGFunctionInfo &FI) { 843 SetLLVMFunctionAttributes(D, FI, F); 844 SetLLVMFunctionAttributesForDefinition(D, F); 845 846 F->setLinkage(llvm::Function::InternalLinkage); 847 848 setNonAliasAttributes(D, F); 849 } 850 851 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 852 const NamedDecl *ND) { 853 // Set linkage and visibility in case we never see a definition. 854 LinkageInfo LV = ND->getLinkageAndVisibility(); 855 if (LV.getLinkage() != ExternalLinkage) { 856 // Don't set internal linkage on declarations. 857 } else { 858 if (ND->hasAttr<DLLImportAttr>()) { 859 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 860 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 861 } else if (ND->hasAttr<DLLExportAttr>()) { 862 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 863 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 864 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 865 // "extern_weak" is overloaded in LLVM; we probably should have 866 // separate linkage types for this. 867 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 868 } 869 870 // Set visibility on a declaration only if it's explicit. 871 if (LV.isVisibilityExplicit()) 872 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 873 } 874 } 875 876 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 877 bool IsIncompleteFunction, 878 bool IsThunk) { 879 if (unsigned IID = F->getIntrinsicID()) { 880 // If this is an intrinsic function, set the function's attributes 881 // to the intrinsic's attributes. 882 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 883 (llvm::Intrinsic::ID)IID)); 884 return; 885 } 886 887 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 888 889 if (!IsIncompleteFunction) 890 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 891 892 // Add the Returned attribute for "this", except for iOS 5 and earlier 893 // where substantial code, including the libstdc++ dylib, was compiled with 894 // GCC and does not actually return "this". 895 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 896 !(getTarget().getTriple().isiOS() && 897 getTarget().getTriple().isOSVersionLT(6))) { 898 assert(!F->arg_empty() && 899 F->arg_begin()->getType() 900 ->canLosslesslyBitCastTo(F->getReturnType()) && 901 "unexpected this return"); 902 F->addAttribute(1, llvm::Attribute::Returned); 903 } 904 905 // Only a few attributes are set on declarations; these may later be 906 // overridden by a definition. 907 908 setLinkageAndVisibilityForGV(F, FD); 909 910 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 911 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 912 // Don't dllexport/import destructor thunks. 913 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 914 } 915 } 916 917 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 918 F->setSection(SA->getName()); 919 920 // A replaceable global allocation function does not act like a builtin by 921 // default, only if it is invoked by a new-expression or delete-expression. 922 if (FD->isReplaceableGlobalAllocationFunction()) 923 F->addAttribute(llvm::AttributeSet::FunctionIndex, 924 llvm::Attribute::NoBuiltin); 925 } 926 927 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 928 assert(!GV->isDeclaration() && 929 "Only globals with definition can force usage."); 930 LLVMUsed.push_back(GV); 931 } 932 933 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 934 assert(!GV->isDeclaration() && 935 "Only globals with definition can force usage."); 936 LLVMCompilerUsed.push_back(GV); 937 } 938 939 static void emitUsed(CodeGenModule &CGM, StringRef Name, 940 std::vector<llvm::WeakVH> &List) { 941 // Don't create llvm.used if there is no need. 942 if (List.empty()) 943 return; 944 945 // Convert List to what ConstantArray needs. 946 SmallVector<llvm::Constant*, 8> UsedArray; 947 UsedArray.resize(List.size()); 948 for (unsigned i = 0, e = List.size(); i != e; ++i) { 949 UsedArray[i] = 950 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 951 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 952 } 953 954 if (UsedArray.empty()) 955 return; 956 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 957 958 auto *GV = new llvm::GlobalVariable( 959 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 960 llvm::ConstantArray::get(ATy, UsedArray), Name); 961 962 GV->setSection("llvm.metadata"); 963 } 964 965 void CodeGenModule::emitLLVMUsed() { 966 emitUsed(*this, "llvm.used", LLVMUsed); 967 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 968 } 969 970 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 971 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 972 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 973 } 974 975 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 976 llvm::SmallString<32> Opt; 977 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 978 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 979 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 980 } 981 982 void CodeGenModule::AddDependentLib(StringRef Lib) { 983 llvm::SmallString<24> Opt; 984 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 985 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 986 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 987 } 988 989 /// \brief Add link options implied by the given module, including modules 990 /// it depends on, using a postorder walk. 991 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 992 SmallVectorImpl<llvm::Metadata *> &Metadata, 993 llvm::SmallPtrSet<Module *, 16> &Visited) { 994 // Import this module's parent. 995 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 996 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 997 } 998 999 // Import this module's dependencies. 1000 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1001 if (Visited.insert(Mod->Imports[I - 1]).second) 1002 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1003 } 1004 1005 // Add linker options to link against the libraries/frameworks 1006 // described by this module. 1007 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1008 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1009 // Link against a framework. Frameworks are currently Darwin only, so we 1010 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1011 if (Mod->LinkLibraries[I-1].IsFramework) { 1012 llvm::Metadata *Args[2] = { 1013 llvm::MDString::get(Context, "-framework"), 1014 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1015 1016 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1017 continue; 1018 } 1019 1020 // Link against a library. 1021 llvm::SmallString<24> Opt; 1022 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1023 Mod->LinkLibraries[I-1].Library, Opt); 1024 auto *OptString = llvm::MDString::get(Context, Opt); 1025 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1026 } 1027 } 1028 1029 void CodeGenModule::EmitModuleLinkOptions() { 1030 // Collect the set of all of the modules we want to visit to emit link 1031 // options, which is essentially the imported modules and all of their 1032 // non-explicit child modules. 1033 llvm::SetVector<clang::Module *> LinkModules; 1034 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1035 SmallVector<clang::Module *, 16> Stack; 1036 1037 // Seed the stack with imported modules. 1038 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 1039 MEnd = ImportedModules.end(); 1040 M != MEnd; ++M) { 1041 if (Visited.insert(*M).second) 1042 Stack.push_back(*M); 1043 } 1044 1045 // Find all of the modules to import, making a little effort to prune 1046 // non-leaf modules. 1047 while (!Stack.empty()) { 1048 clang::Module *Mod = Stack.pop_back_val(); 1049 1050 bool AnyChildren = false; 1051 1052 // Visit the submodules of this module. 1053 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1054 SubEnd = Mod->submodule_end(); 1055 Sub != SubEnd; ++Sub) { 1056 // Skip explicit children; they need to be explicitly imported to be 1057 // linked against. 1058 if ((*Sub)->IsExplicit) 1059 continue; 1060 1061 if (Visited.insert(*Sub).second) { 1062 Stack.push_back(*Sub); 1063 AnyChildren = true; 1064 } 1065 } 1066 1067 // We didn't find any children, so add this module to the list of 1068 // modules to link against. 1069 if (!AnyChildren) { 1070 LinkModules.insert(Mod); 1071 } 1072 } 1073 1074 // Add link options for all of the imported modules in reverse topological 1075 // order. We don't do anything to try to order import link flags with respect 1076 // to linker options inserted by things like #pragma comment(). 1077 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1078 Visited.clear(); 1079 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1080 MEnd = LinkModules.end(); 1081 M != MEnd; ++M) { 1082 if (Visited.insert(*M).second) 1083 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1084 } 1085 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1086 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1087 1088 // Add the linker options metadata flag. 1089 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1090 llvm::MDNode::get(getLLVMContext(), 1091 LinkerOptionsMetadata)); 1092 } 1093 1094 void CodeGenModule::EmitDeferred() { 1095 // Emit code for any potentially referenced deferred decls. Since a 1096 // previously unused static decl may become used during the generation of code 1097 // for a static function, iterate until no changes are made. 1098 1099 if (!DeferredVTables.empty()) { 1100 EmitDeferredVTables(); 1101 1102 // Emitting a v-table doesn't directly cause more v-tables to 1103 // become deferred, although it can cause functions to be 1104 // emitted that then need those v-tables. 1105 assert(DeferredVTables.empty()); 1106 } 1107 1108 // Stop if we're out of both deferred v-tables and deferred declarations. 1109 if (DeferredDeclsToEmit.empty()) 1110 return; 1111 1112 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1113 // work, it will not interfere with this. 1114 std::vector<DeferredGlobal> CurDeclsToEmit; 1115 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1116 1117 for (DeferredGlobal &G : CurDeclsToEmit) { 1118 GlobalDecl D = G.GD; 1119 llvm::GlobalValue *GV = G.GV; 1120 G.GV = nullptr; 1121 1122 assert(!GV || GV == GetGlobalValue(getMangledName(D))); 1123 if (!GV) 1124 GV = GetGlobalValue(getMangledName(D)); 1125 1126 // Check to see if we've already emitted this. This is necessary 1127 // for a couple of reasons: first, decls can end up in the 1128 // deferred-decls queue multiple times, and second, decls can end 1129 // up with definitions in unusual ways (e.g. by an extern inline 1130 // function acquiring a strong function redefinition). Just 1131 // ignore these cases. 1132 if (GV && !GV->isDeclaration()) 1133 continue; 1134 1135 // Otherwise, emit the definition and move on to the next one. 1136 EmitGlobalDefinition(D, GV); 1137 1138 // If we found out that we need to emit more decls, do that recursively. 1139 // This has the advantage that the decls are emitted in a DFS and related 1140 // ones are close together, which is convenient for testing. 1141 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1142 EmitDeferred(); 1143 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1144 } 1145 } 1146 } 1147 1148 void CodeGenModule::EmitGlobalAnnotations() { 1149 if (Annotations.empty()) 1150 return; 1151 1152 // Create a new global variable for the ConstantStruct in the Module. 1153 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1154 Annotations[0]->getType(), Annotations.size()), Annotations); 1155 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1156 llvm::GlobalValue::AppendingLinkage, 1157 Array, "llvm.global.annotations"); 1158 gv->setSection(AnnotationSection); 1159 } 1160 1161 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1162 llvm::Constant *&AStr = AnnotationStrings[Str]; 1163 if (AStr) 1164 return AStr; 1165 1166 // Not found yet, create a new global. 1167 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1168 auto *gv = 1169 new llvm::GlobalVariable(getModule(), s->getType(), true, 1170 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1171 gv->setSection(AnnotationSection); 1172 gv->setUnnamedAddr(true); 1173 AStr = gv; 1174 return gv; 1175 } 1176 1177 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1178 SourceManager &SM = getContext().getSourceManager(); 1179 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1180 if (PLoc.isValid()) 1181 return EmitAnnotationString(PLoc.getFilename()); 1182 return EmitAnnotationString(SM.getBufferName(Loc)); 1183 } 1184 1185 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1186 SourceManager &SM = getContext().getSourceManager(); 1187 PresumedLoc PLoc = SM.getPresumedLoc(L); 1188 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1189 SM.getExpansionLineNumber(L); 1190 return llvm::ConstantInt::get(Int32Ty, LineNo); 1191 } 1192 1193 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1194 const AnnotateAttr *AA, 1195 SourceLocation L) { 1196 // Get the globals for file name, annotation, and the line number. 1197 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1198 *UnitGV = EmitAnnotationUnit(L), 1199 *LineNoCst = EmitAnnotationLineNo(L); 1200 1201 // Create the ConstantStruct for the global annotation. 1202 llvm::Constant *Fields[4] = { 1203 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1204 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1205 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1206 LineNoCst 1207 }; 1208 return llvm::ConstantStruct::getAnon(Fields); 1209 } 1210 1211 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1212 llvm::GlobalValue *GV) { 1213 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1214 // Get the struct elements for these annotations. 1215 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1216 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1217 } 1218 1219 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1220 SourceLocation Loc) const { 1221 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1222 // Blacklist by function name. 1223 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1224 return true; 1225 // Blacklist by location. 1226 if (!Loc.isInvalid()) 1227 return SanitizerBL.isBlacklistedLocation(Loc); 1228 // If location is unknown, this may be a compiler-generated function. Assume 1229 // it's located in the main file. 1230 auto &SM = Context.getSourceManager(); 1231 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1232 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1233 } 1234 return false; 1235 } 1236 1237 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1238 SourceLocation Loc, QualType Ty, 1239 StringRef Category) const { 1240 // For now globals can be blacklisted only in ASan. 1241 if (!LangOpts.Sanitize.has(SanitizerKind::Address)) 1242 return false; 1243 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1244 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1245 return true; 1246 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1247 return true; 1248 // Check global type. 1249 if (!Ty.isNull()) { 1250 // Drill down the array types: if global variable of a fixed type is 1251 // blacklisted, we also don't instrument arrays of them. 1252 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1253 Ty = AT->getElementType(); 1254 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1255 // We allow to blacklist only record types (classes, structs etc.) 1256 if (Ty->isRecordType()) { 1257 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1258 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1259 return true; 1260 } 1261 } 1262 return false; 1263 } 1264 1265 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1266 // Never defer when EmitAllDecls is specified. 1267 if (LangOpts.EmitAllDecls) 1268 return true; 1269 1270 return getContext().DeclMustBeEmitted(Global); 1271 } 1272 1273 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1274 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1275 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1276 // Implicit template instantiations may change linkage if they are later 1277 // explicitly instantiated, so they should not be emitted eagerly. 1278 return false; 1279 1280 return true; 1281 } 1282 1283 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1284 const CXXUuidofExpr* E) { 1285 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1286 // well-formed. 1287 StringRef Uuid = E->getUuidAsStringRef(Context); 1288 std::string Name = "_GUID_" + Uuid.lower(); 1289 std::replace(Name.begin(), Name.end(), '-', '_'); 1290 1291 // Look for an existing global. 1292 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1293 return GV; 1294 1295 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1296 assert(Init && "failed to initialize as constant"); 1297 1298 auto *GV = new llvm::GlobalVariable( 1299 getModule(), Init->getType(), 1300 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1301 if (supportsCOMDAT()) 1302 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1303 return GV; 1304 } 1305 1306 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1307 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1308 assert(AA && "No alias?"); 1309 1310 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1311 1312 // See if there is already something with the target's name in the module. 1313 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1314 if (Entry) { 1315 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1316 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1317 } 1318 1319 llvm::Constant *Aliasee; 1320 if (isa<llvm::FunctionType>(DeclTy)) 1321 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1322 GlobalDecl(cast<FunctionDecl>(VD)), 1323 /*ForVTable=*/false); 1324 else 1325 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1326 llvm::PointerType::getUnqual(DeclTy), 1327 nullptr); 1328 1329 auto *F = cast<llvm::GlobalValue>(Aliasee); 1330 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1331 WeakRefReferences.insert(F); 1332 1333 return Aliasee; 1334 } 1335 1336 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1337 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1338 1339 // Weak references don't produce any output by themselves. 1340 if (Global->hasAttr<WeakRefAttr>()) 1341 return; 1342 1343 // If this is an alias definition (which otherwise looks like a declaration) 1344 // emit it now. 1345 if (Global->hasAttr<AliasAttr>()) 1346 return EmitAliasDefinition(GD); 1347 1348 // If this is CUDA, be selective about which declarations we emit. 1349 if (LangOpts.CUDA) { 1350 if (LangOpts.CUDAIsDevice) { 1351 if (!Global->hasAttr<CUDADeviceAttr>() && 1352 !Global->hasAttr<CUDAGlobalAttr>() && 1353 !Global->hasAttr<CUDAConstantAttr>() && 1354 !Global->hasAttr<CUDASharedAttr>()) 1355 return; 1356 } else { 1357 if (!Global->hasAttr<CUDAHostAttr>() && ( 1358 Global->hasAttr<CUDADeviceAttr>() || 1359 Global->hasAttr<CUDAConstantAttr>() || 1360 Global->hasAttr<CUDASharedAttr>())) 1361 return; 1362 } 1363 } 1364 1365 // Ignore declarations, they will be emitted on their first use. 1366 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1367 // Forward declarations are emitted lazily on first use. 1368 if (!FD->doesThisDeclarationHaveABody()) { 1369 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1370 return; 1371 1372 StringRef MangledName = getMangledName(GD); 1373 1374 // Compute the function info and LLVM type. 1375 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1376 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1377 1378 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1379 /*DontDefer=*/false); 1380 return; 1381 } 1382 } else { 1383 const auto *VD = cast<VarDecl>(Global); 1384 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1385 1386 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1387 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1388 return; 1389 } 1390 1391 // Defer code generation to first use when possible, e.g. if this is an inline 1392 // function. If the global must always be emitted, do it eagerly if possible 1393 // to benefit from cache locality. 1394 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1395 // Emit the definition if it can't be deferred. 1396 EmitGlobalDefinition(GD); 1397 return; 1398 } 1399 1400 // If we're deferring emission of a C++ variable with an 1401 // initializer, remember the order in which it appeared in the file. 1402 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1403 cast<VarDecl>(Global)->hasInit()) { 1404 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1405 CXXGlobalInits.push_back(nullptr); 1406 } 1407 1408 StringRef MangledName = getMangledName(GD); 1409 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1410 // The value has already been used and should therefore be emitted. 1411 addDeferredDeclToEmit(GV, GD); 1412 } else if (MustBeEmitted(Global)) { 1413 // The value must be emitted, but cannot be emitted eagerly. 1414 assert(!MayBeEmittedEagerly(Global)); 1415 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1416 } else { 1417 // Otherwise, remember that we saw a deferred decl with this name. The 1418 // first use of the mangled name will cause it to move into 1419 // DeferredDeclsToEmit. 1420 DeferredDecls[MangledName] = GD; 1421 } 1422 } 1423 1424 namespace { 1425 struct FunctionIsDirectlyRecursive : 1426 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1427 const StringRef Name; 1428 const Builtin::Context &BI; 1429 bool Result; 1430 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1431 Name(N), BI(C), Result(false) { 1432 } 1433 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1434 1435 bool TraverseCallExpr(CallExpr *E) { 1436 const FunctionDecl *FD = E->getDirectCallee(); 1437 if (!FD) 1438 return true; 1439 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1440 if (Attr && Name == Attr->getLabel()) { 1441 Result = true; 1442 return false; 1443 } 1444 unsigned BuiltinID = FD->getBuiltinID(); 1445 if (!BuiltinID) 1446 return true; 1447 StringRef BuiltinName = BI.GetName(BuiltinID); 1448 if (BuiltinName.startswith("__builtin_") && 1449 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1450 Result = true; 1451 return false; 1452 } 1453 return true; 1454 } 1455 }; 1456 } 1457 1458 // isTriviallyRecursive - Check if this function calls another 1459 // decl that, because of the asm attribute or the other decl being a builtin, 1460 // ends up pointing to itself. 1461 bool 1462 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1463 StringRef Name; 1464 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1465 // asm labels are a special kind of mangling we have to support. 1466 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1467 if (!Attr) 1468 return false; 1469 Name = Attr->getLabel(); 1470 } else { 1471 Name = FD->getName(); 1472 } 1473 1474 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1475 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1476 return Walker.Result; 1477 } 1478 1479 bool 1480 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1481 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1482 return true; 1483 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1484 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1485 return false; 1486 // PR9614. Avoid cases where the source code is lying to us. An available 1487 // externally function should have an equivalent function somewhere else, 1488 // but a function that calls itself is clearly not equivalent to the real 1489 // implementation. 1490 // This happens in glibc's btowc and in some configure checks. 1491 return !isTriviallyRecursive(F); 1492 } 1493 1494 /// If the type for the method's class was generated by 1495 /// CGDebugInfo::createContextChain(), the cache contains only a 1496 /// limited DIType without any declarations. Since EmitFunctionStart() 1497 /// needs to find the canonical declaration for each method, we need 1498 /// to construct the complete type prior to emitting the method. 1499 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1500 if (!D->isInstance()) 1501 return; 1502 1503 if (CGDebugInfo *DI = getModuleDebugInfo()) 1504 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1505 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1506 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1507 } 1508 } 1509 1510 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1511 const auto *D = cast<ValueDecl>(GD.getDecl()); 1512 1513 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1514 Context.getSourceManager(), 1515 "Generating code for declaration"); 1516 1517 if (isa<FunctionDecl>(D)) { 1518 // At -O0, don't generate IR for functions with available_externally 1519 // linkage. 1520 if (!shouldEmitFunction(GD)) 1521 return; 1522 1523 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1524 CompleteDIClassType(Method); 1525 // Make sure to emit the definition(s) before we emit the thunks. 1526 // This is necessary for the generation of certain thunks. 1527 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1528 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1529 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1530 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1531 else 1532 EmitGlobalFunctionDefinition(GD, GV); 1533 1534 if (Method->isVirtual()) 1535 getVTables().EmitThunks(GD); 1536 1537 return; 1538 } 1539 1540 return EmitGlobalFunctionDefinition(GD, GV); 1541 } 1542 1543 if (const auto *VD = dyn_cast<VarDecl>(D)) 1544 return EmitGlobalVarDefinition(VD); 1545 1546 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1547 } 1548 1549 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1550 /// module, create and return an llvm Function with the specified type. If there 1551 /// is something in the module with the specified name, return it potentially 1552 /// bitcasted to the right type. 1553 /// 1554 /// If D is non-null, it specifies a decl that correspond to this. This is used 1555 /// to set the attributes on the function when it is first created. 1556 llvm::Constant * 1557 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1558 llvm::Type *Ty, 1559 GlobalDecl GD, bool ForVTable, 1560 bool DontDefer, bool IsThunk, 1561 llvm::AttributeSet ExtraAttrs) { 1562 const Decl *D = GD.getDecl(); 1563 1564 // Lookup the entry, lazily creating it if necessary. 1565 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1566 if (Entry) { 1567 if (WeakRefReferences.erase(Entry)) { 1568 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1569 if (FD && !FD->hasAttr<WeakAttr>()) 1570 Entry->setLinkage(llvm::Function::ExternalLinkage); 1571 } 1572 1573 // Handle dropped DLL attributes. 1574 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1575 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1576 1577 if (Entry->getType()->getElementType() == Ty) 1578 return Entry; 1579 1580 // Make sure the result is of the correct type. 1581 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1582 } 1583 1584 // This function doesn't have a complete type (for example, the return 1585 // type is an incomplete struct). Use a fake type instead, and make 1586 // sure not to try to set attributes. 1587 bool IsIncompleteFunction = false; 1588 1589 llvm::FunctionType *FTy; 1590 if (isa<llvm::FunctionType>(Ty)) { 1591 FTy = cast<llvm::FunctionType>(Ty); 1592 } else { 1593 FTy = llvm::FunctionType::get(VoidTy, false); 1594 IsIncompleteFunction = true; 1595 } 1596 1597 llvm::Function *F = llvm::Function::Create(FTy, 1598 llvm::Function::ExternalLinkage, 1599 MangledName, &getModule()); 1600 assert(F->getName() == MangledName && "name was uniqued!"); 1601 if (D) 1602 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1603 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1604 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1605 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1606 llvm::AttributeSet::get(VMContext, 1607 llvm::AttributeSet::FunctionIndex, 1608 B)); 1609 } 1610 1611 if (!DontDefer) { 1612 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1613 // each other bottoming out with the base dtor. Therefore we emit non-base 1614 // dtors on usage, even if there is no dtor definition in the TU. 1615 if (D && isa<CXXDestructorDecl>(D) && 1616 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1617 GD.getDtorType())) 1618 addDeferredDeclToEmit(F, GD); 1619 1620 // This is the first use or definition of a mangled name. If there is a 1621 // deferred decl with this name, remember that we need to emit it at the end 1622 // of the file. 1623 auto DDI = DeferredDecls.find(MangledName); 1624 if (DDI != DeferredDecls.end()) { 1625 // Move the potentially referenced deferred decl to the 1626 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1627 // don't need it anymore). 1628 addDeferredDeclToEmit(F, DDI->second); 1629 DeferredDecls.erase(DDI); 1630 1631 // Otherwise, there are cases we have to worry about where we're 1632 // using a declaration for which we must emit a definition but where 1633 // we might not find a top-level definition: 1634 // - member functions defined inline in their classes 1635 // - friend functions defined inline in some class 1636 // - special member functions with implicit definitions 1637 // If we ever change our AST traversal to walk into class methods, 1638 // this will be unnecessary. 1639 // 1640 // We also don't emit a definition for a function if it's going to be an 1641 // entry in a vtable, unless it's already marked as used. 1642 } else if (getLangOpts().CPlusPlus && D) { 1643 // Look for a declaration that's lexically in a record. 1644 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1645 FD = FD->getPreviousDecl()) { 1646 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1647 if (FD->doesThisDeclarationHaveABody()) { 1648 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1649 break; 1650 } 1651 } 1652 } 1653 } 1654 } 1655 1656 // Make sure the result is of the requested type. 1657 if (!IsIncompleteFunction) { 1658 assert(F->getType()->getElementType() == Ty); 1659 return F; 1660 } 1661 1662 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1663 return llvm::ConstantExpr::getBitCast(F, PTy); 1664 } 1665 1666 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1667 /// non-null, then this function will use the specified type if it has to 1668 /// create it (this occurs when we see a definition of the function). 1669 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1670 llvm::Type *Ty, 1671 bool ForVTable, 1672 bool DontDefer) { 1673 // If there was no specific requested type, just convert it now. 1674 if (!Ty) 1675 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1676 1677 StringRef MangledName = getMangledName(GD); 1678 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1679 } 1680 1681 /// CreateRuntimeFunction - Create a new runtime function with the specified 1682 /// type and name. 1683 llvm::Constant * 1684 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1685 StringRef Name, 1686 llvm::AttributeSet ExtraAttrs) { 1687 llvm::Constant *C = 1688 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1689 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1690 if (auto *F = dyn_cast<llvm::Function>(C)) 1691 if (F->empty()) 1692 F->setCallingConv(getRuntimeCC()); 1693 return C; 1694 } 1695 1696 /// CreateBuiltinFunction - Create a new builtin function with the specified 1697 /// type and name. 1698 llvm::Constant * 1699 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1700 StringRef Name, 1701 llvm::AttributeSet ExtraAttrs) { 1702 llvm::Constant *C = 1703 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1704 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1705 if (auto *F = dyn_cast<llvm::Function>(C)) 1706 if (F->empty()) 1707 F->setCallingConv(getBuiltinCC()); 1708 return C; 1709 } 1710 1711 /// isTypeConstant - Determine whether an object of this type can be emitted 1712 /// as a constant. 1713 /// 1714 /// If ExcludeCtor is true, the duration when the object's constructor runs 1715 /// will not be considered. The caller will need to verify that the object is 1716 /// not written to during its construction. 1717 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1718 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1719 return false; 1720 1721 if (Context.getLangOpts().CPlusPlus) { 1722 if (const CXXRecordDecl *Record 1723 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1724 return ExcludeCtor && !Record->hasMutableFields() && 1725 Record->hasTrivialDestructor(); 1726 } 1727 1728 return true; 1729 } 1730 1731 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1732 /// create and return an llvm GlobalVariable with the specified type. If there 1733 /// is something in the module with the specified name, return it potentially 1734 /// bitcasted to the right type. 1735 /// 1736 /// If D is non-null, it specifies a decl that correspond to this. This is used 1737 /// to set the attributes on the global when it is first created. 1738 llvm::Constant * 1739 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1740 llvm::PointerType *Ty, 1741 const VarDecl *D) { 1742 // Lookup the entry, lazily creating it if necessary. 1743 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1744 if (Entry) { 1745 if (WeakRefReferences.erase(Entry)) { 1746 if (D && !D->hasAttr<WeakAttr>()) 1747 Entry->setLinkage(llvm::Function::ExternalLinkage); 1748 } 1749 1750 // Handle dropped DLL attributes. 1751 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1752 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1753 1754 if (Entry->getType() == Ty) 1755 return Entry; 1756 1757 // Make sure the result is of the correct type. 1758 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1759 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1760 1761 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1762 } 1763 1764 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1765 auto *GV = new llvm::GlobalVariable( 1766 getModule(), Ty->getElementType(), false, 1767 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1768 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1769 1770 // This is the first use or definition of a mangled name. If there is a 1771 // deferred decl with this name, remember that we need to emit it at the end 1772 // of the file. 1773 auto DDI = DeferredDecls.find(MangledName); 1774 if (DDI != DeferredDecls.end()) { 1775 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1776 // list, and remove it from DeferredDecls (since we don't need it anymore). 1777 addDeferredDeclToEmit(GV, DDI->second); 1778 DeferredDecls.erase(DDI); 1779 } 1780 1781 // Handle things which are present even on external declarations. 1782 if (D) { 1783 // FIXME: This code is overly simple and should be merged with other global 1784 // handling. 1785 GV->setConstant(isTypeConstant(D->getType(), false)); 1786 1787 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1788 1789 setLinkageAndVisibilityForGV(GV, D); 1790 1791 if (D->getTLSKind()) { 1792 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1793 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1794 setTLSMode(GV, *D); 1795 } 1796 1797 // If required by the ABI, treat declarations of static data members with 1798 // inline initializers as definitions. 1799 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1800 EmitGlobalVarDefinition(D); 1801 } 1802 1803 // Handle XCore specific ABI requirements. 1804 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1805 D->getLanguageLinkage() == CLanguageLinkage && 1806 D->getType().isConstant(Context) && 1807 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1808 GV->setSection(".cp.rodata"); 1809 } 1810 1811 if (AddrSpace != Ty->getAddressSpace()) 1812 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1813 1814 return GV; 1815 } 1816 1817 1818 llvm::GlobalVariable * 1819 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1820 llvm::Type *Ty, 1821 llvm::GlobalValue::LinkageTypes Linkage) { 1822 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1823 llvm::GlobalVariable *OldGV = nullptr; 1824 1825 if (GV) { 1826 // Check if the variable has the right type. 1827 if (GV->getType()->getElementType() == Ty) 1828 return GV; 1829 1830 // Because C++ name mangling, the only way we can end up with an already 1831 // existing global with the same name is if it has been declared extern "C". 1832 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1833 OldGV = GV; 1834 } 1835 1836 // Create a new variable. 1837 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1838 Linkage, nullptr, Name); 1839 1840 if (OldGV) { 1841 // Replace occurrences of the old variable if needed. 1842 GV->takeName(OldGV); 1843 1844 if (!OldGV->use_empty()) { 1845 llvm::Constant *NewPtrForOldDecl = 1846 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1847 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1848 } 1849 1850 OldGV->eraseFromParent(); 1851 } 1852 1853 if (supportsCOMDAT() && GV->isWeakForLinker() && 1854 !GV->hasAvailableExternallyLinkage()) 1855 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1856 1857 return GV; 1858 } 1859 1860 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1861 /// given global variable. If Ty is non-null and if the global doesn't exist, 1862 /// then it will be created with the specified type instead of whatever the 1863 /// normal requested type would be. 1864 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1865 llvm::Type *Ty) { 1866 assert(D->hasGlobalStorage() && "Not a global variable"); 1867 QualType ASTTy = D->getType(); 1868 if (!Ty) 1869 Ty = getTypes().ConvertTypeForMem(ASTTy); 1870 1871 llvm::PointerType *PTy = 1872 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1873 1874 StringRef MangledName = getMangledName(D); 1875 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1876 } 1877 1878 /// CreateRuntimeVariable - Create a new runtime global variable with the 1879 /// specified type and name. 1880 llvm::Constant * 1881 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1882 StringRef Name) { 1883 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1884 } 1885 1886 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1887 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1888 1889 if (!MustBeEmitted(D)) { 1890 // If we have not seen a reference to this variable yet, place it 1891 // into the deferred declarations table to be emitted if needed 1892 // later. 1893 StringRef MangledName = getMangledName(D); 1894 if (!GetGlobalValue(MangledName)) { 1895 DeferredDecls[MangledName] = D; 1896 return; 1897 } 1898 } 1899 1900 // The tentative definition is the only definition. 1901 EmitGlobalVarDefinition(D); 1902 } 1903 1904 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1905 return Context.toCharUnitsFromBits( 1906 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1907 } 1908 1909 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1910 unsigned AddrSpace) { 1911 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 1912 if (D->hasAttr<CUDAConstantAttr>()) 1913 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1914 else if (D->hasAttr<CUDASharedAttr>()) 1915 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1916 else 1917 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1918 } 1919 1920 return AddrSpace; 1921 } 1922 1923 template<typename SomeDecl> 1924 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1925 llvm::GlobalValue *GV) { 1926 if (!getLangOpts().CPlusPlus) 1927 return; 1928 1929 // Must have 'used' attribute, or else inline assembly can't rely on 1930 // the name existing. 1931 if (!D->template hasAttr<UsedAttr>()) 1932 return; 1933 1934 // Must have internal linkage and an ordinary name. 1935 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1936 return; 1937 1938 // Must be in an extern "C" context. Entities declared directly within 1939 // a record are not extern "C" even if the record is in such a context. 1940 const SomeDecl *First = D->getFirstDecl(); 1941 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1942 return; 1943 1944 // OK, this is an internal linkage entity inside an extern "C" linkage 1945 // specification. Make a note of that so we can give it the "expected" 1946 // mangled name if nothing else is using that name. 1947 std::pair<StaticExternCMap::iterator, bool> R = 1948 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1949 1950 // If we have multiple internal linkage entities with the same name 1951 // in extern "C" regions, none of them gets that name. 1952 if (!R.second) 1953 R.first->second = nullptr; 1954 } 1955 1956 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 1957 if (!CGM.supportsCOMDAT()) 1958 return false; 1959 1960 if (D.hasAttr<SelectAnyAttr>()) 1961 return true; 1962 1963 GVALinkage Linkage; 1964 if (auto *VD = dyn_cast<VarDecl>(&D)) 1965 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 1966 else 1967 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 1968 1969 switch (Linkage) { 1970 case GVA_Internal: 1971 case GVA_AvailableExternally: 1972 case GVA_StrongExternal: 1973 return false; 1974 case GVA_DiscardableODR: 1975 case GVA_StrongODR: 1976 return true; 1977 } 1978 llvm_unreachable("No such linkage"); 1979 } 1980 1981 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 1982 llvm::GlobalObject &GO) { 1983 if (!shouldBeInCOMDAT(*this, D)) 1984 return; 1985 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 1986 } 1987 1988 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1989 llvm::Constant *Init = nullptr; 1990 QualType ASTTy = D->getType(); 1991 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1992 bool NeedsGlobalCtor = false; 1993 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1994 1995 const VarDecl *InitDecl; 1996 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1997 1998 if (!InitExpr) { 1999 // This is a tentative definition; tentative definitions are 2000 // implicitly initialized with { 0 }. 2001 // 2002 // Note that tentative definitions are only emitted at the end of 2003 // a translation unit, so they should never have incomplete 2004 // type. In addition, EmitTentativeDefinition makes sure that we 2005 // never attempt to emit a tentative definition if a real one 2006 // exists. A use may still exists, however, so we still may need 2007 // to do a RAUW. 2008 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2009 Init = EmitNullConstant(D->getType()); 2010 } else { 2011 initializedGlobalDecl = GlobalDecl(D); 2012 Init = EmitConstantInit(*InitDecl); 2013 2014 if (!Init) { 2015 QualType T = InitExpr->getType(); 2016 if (D->getType()->isReferenceType()) 2017 T = D->getType(); 2018 2019 if (getLangOpts().CPlusPlus) { 2020 Init = EmitNullConstant(T); 2021 NeedsGlobalCtor = true; 2022 } else { 2023 ErrorUnsupported(D, "static initializer"); 2024 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2025 } 2026 } else { 2027 // We don't need an initializer, so remove the entry for the delayed 2028 // initializer position (just in case this entry was delayed) if we 2029 // also don't need to register a destructor. 2030 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2031 DelayedCXXInitPosition.erase(D); 2032 } 2033 } 2034 2035 llvm::Type* InitType = Init->getType(); 2036 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2037 2038 // Strip off a bitcast if we got one back. 2039 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2040 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2041 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2042 // All zero index gep. 2043 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2044 Entry = CE->getOperand(0); 2045 } 2046 2047 // Entry is now either a Function or GlobalVariable. 2048 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2049 2050 // We have a definition after a declaration with the wrong type. 2051 // We must make a new GlobalVariable* and update everything that used OldGV 2052 // (a declaration or tentative definition) with the new GlobalVariable* 2053 // (which will be a definition). 2054 // 2055 // This happens if there is a prototype for a global (e.g. 2056 // "extern int x[];") and then a definition of a different type (e.g. 2057 // "int x[10];"). This also happens when an initializer has a different type 2058 // from the type of the global (this happens with unions). 2059 if (!GV || 2060 GV->getType()->getElementType() != InitType || 2061 GV->getType()->getAddressSpace() != 2062 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2063 2064 // Move the old entry aside so that we'll create a new one. 2065 Entry->setName(StringRef()); 2066 2067 // Make a new global with the correct type, this is now guaranteed to work. 2068 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2069 2070 // Replace all uses of the old global with the new global 2071 llvm::Constant *NewPtrForOldDecl = 2072 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2073 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2074 2075 // Erase the old global, since it is no longer used. 2076 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2077 } 2078 2079 MaybeHandleStaticInExternC(D, GV); 2080 2081 if (D->hasAttr<AnnotateAttr>()) 2082 AddGlobalAnnotations(D, GV); 2083 2084 GV->setInitializer(Init); 2085 2086 // If it is safe to mark the global 'constant', do so now. 2087 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2088 isTypeConstant(D->getType(), true)); 2089 2090 // If it is in a read-only section, mark it 'constant'. 2091 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2092 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2093 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2094 GV->setConstant(true); 2095 } 2096 2097 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2098 2099 // Set the llvm linkage type as appropriate. 2100 llvm::GlobalValue::LinkageTypes Linkage = 2101 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2102 2103 // On Darwin, the backing variable for a C++11 thread_local variable always 2104 // has internal linkage; all accesses should just be calls to the 2105 // Itanium-specified entry point, which has the normal linkage of the 2106 // variable. 2107 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2108 Context.getTargetInfo().getTriple().isMacOSX()) 2109 Linkage = llvm::GlobalValue::InternalLinkage; 2110 2111 GV->setLinkage(Linkage); 2112 if (D->hasAttr<DLLImportAttr>()) 2113 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2114 else if (D->hasAttr<DLLExportAttr>()) 2115 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2116 else 2117 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2118 2119 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2120 // common vars aren't constant even if declared const. 2121 GV->setConstant(false); 2122 2123 setNonAliasAttributes(D, GV); 2124 2125 if (D->getTLSKind() && !GV->isThreadLocal()) { 2126 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2127 CXXThreadLocals.push_back(std::make_pair(D, GV)); 2128 setTLSMode(GV, *D); 2129 } 2130 2131 maybeSetTrivialComdat(*D, *GV); 2132 2133 // Emit the initializer function if necessary. 2134 if (NeedsGlobalCtor || NeedsGlobalDtor) 2135 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2136 2137 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2138 2139 // Emit global variable debug information. 2140 if (CGDebugInfo *DI = getModuleDebugInfo()) 2141 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2142 DI->EmitGlobalVariable(GV, D); 2143 } 2144 2145 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2146 CodeGenModule &CGM, const VarDecl *D, 2147 bool NoCommon) { 2148 // Don't give variables common linkage if -fno-common was specified unless it 2149 // was overridden by a NoCommon attribute. 2150 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2151 return true; 2152 2153 // C11 6.9.2/2: 2154 // A declaration of an identifier for an object that has file scope without 2155 // an initializer, and without a storage-class specifier or with the 2156 // storage-class specifier static, constitutes a tentative definition. 2157 if (D->getInit() || D->hasExternalStorage()) 2158 return true; 2159 2160 // A variable cannot be both common and exist in a section. 2161 if (D->hasAttr<SectionAttr>()) 2162 return true; 2163 2164 // Thread local vars aren't considered common linkage. 2165 if (D->getTLSKind()) 2166 return true; 2167 2168 // Tentative definitions marked with WeakImportAttr are true definitions. 2169 if (D->hasAttr<WeakImportAttr>()) 2170 return true; 2171 2172 // A variable cannot be both common and exist in a comdat. 2173 if (shouldBeInCOMDAT(CGM, *D)) 2174 return true; 2175 2176 // Declarations with a required alignment do not have common linakge in MSVC 2177 // mode. 2178 if (Context.getLangOpts().MSVCCompat) { 2179 if (D->hasAttr<AlignedAttr>()) 2180 return true; 2181 QualType VarType = D->getType(); 2182 if (Context.isAlignmentRequired(VarType)) 2183 return true; 2184 2185 if (const auto *RT = VarType->getAs<RecordType>()) { 2186 const RecordDecl *RD = RT->getDecl(); 2187 for (const FieldDecl *FD : RD->fields()) { 2188 if (FD->isBitField()) 2189 continue; 2190 if (FD->hasAttr<AlignedAttr>()) 2191 return true; 2192 if (Context.isAlignmentRequired(FD->getType())) 2193 return true; 2194 } 2195 } 2196 } 2197 2198 return false; 2199 } 2200 2201 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2202 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2203 if (Linkage == GVA_Internal) 2204 return llvm::Function::InternalLinkage; 2205 2206 if (D->hasAttr<WeakAttr>()) { 2207 if (IsConstantVariable) 2208 return llvm::GlobalVariable::WeakODRLinkage; 2209 else 2210 return llvm::GlobalVariable::WeakAnyLinkage; 2211 } 2212 2213 // We are guaranteed to have a strong definition somewhere else, 2214 // so we can use available_externally linkage. 2215 if (Linkage == GVA_AvailableExternally) 2216 return llvm::Function::AvailableExternallyLinkage; 2217 2218 // Note that Apple's kernel linker doesn't support symbol 2219 // coalescing, so we need to avoid linkonce and weak linkages there. 2220 // Normally, this means we just map to internal, but for explicit 2221 // instantiations we'll map to external. 2222 2223 // In C++, the compiler has to emit a definition in every translation unit 2224 // that references the function. We should use linkonce_odr because 2225 // a) if all references in this translation unit are optimized away, we 2226 // don't need to codegen it. b) if the function persists, it needs to be 2227 // merged with other definitions. c) C++ has the ODR, so we know the 2228 // definition is dependable. 2229 if (Linkage == GVA_DiscardableODR) 2230 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2231 : llvm::Function::InternalLinkage; 2232 2233 // An explicit instantiation of a template has weak linkage, since 2234 // explicit instantiations can occur in multiple translation units 2235 // and must all be equivalent. However, we are not allowed to 2236 // throw away these explicit instantiations. 2237 if (Linkage == GVA_StrongODR) 2238 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2239 : llvm::Function::ExternalLinkage; 2240 2241 // C++ doesn't have tentative definitions and thus cannot have common 2242 // linkage. 2243 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2244 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2245 CodeGenOpts.NoCommon)) 2246 return llvm::GlobalVariable::CommonLinkage; 2247 2248 // selectany symbols are externally visible, so use weak instead of 2249 // linkonce. MSVC optimizes away references to const selectany globals, so 2250 // all definitions should be the same and ODR linkage should be used. 2251 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2252 if (D->hasAttr<SelectAnyAttr>()) 2253 return llvm::GlobalVariable::WeakODRLinkage; 2254 2255 // Otherwise, we have strong external linkage. 2256 assert(Linkage == GVA_StrongExternal); 2257 return llvm::GlobalVariable::ExternalLinkage; 2258 } 2259 2260 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2261 const VarDecl *VD, bool IsConstant) { 2262 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2263 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2264 } 2265 2266 /// Replace the uses of a function that was declared with a non-proto type. 2267 /// We want to silently drop extra arguments from call sites 2268 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2269 llvm::Function *newFn) { 2270 // Fast path. 2271 if (old->use_empty()) return; 2272 2273 llvm::Type *newRetTy = newFn->getReturnType(); 2274 SmallVector<llvm::Value*, 4> newArgs; 2275 2276 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2277 ui != ue; ) { 2278 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2279 llvm::User *user = use->getUser(); 2280 2281 // Recognize and replace uses of bitcasts. Most calls to 2282 // unprototyped functions will use bitcasts. 2283 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2284 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2285 replaceUsesOfNonProtoConstant(bitcast, newFn); 2286 continue; 2287 } 2288 2289 // Recognize calls to the function. 2290 llvm::CallSite callSite(user); 2291 if (!callSite) continue; 2292 if (!callSite.isCallee(&*use)) continue; 2293 2294 // If the return types don't match exactly, then we can't 2295 // transform this call unless it's dead. 2296 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2297 continue; 2298 2299 // Get the call site's attribute list. 2300 SmallVector<llvm::AttributeSet, 8> newAttrs; 2301 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2302 2303 // Collect any return attributes from the call. 2304 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2305 newAttrs.push_back( 2306 llvm::AttributeSet::get(newFn->getContext(), 2307 oldAttrs.getRetAttributes())); 2308 2309 // If the function was passed too few arguments, don't transform. 2310 unsigned newNumArgs = newFn->arg_size(); 2311 if (callSite.arg_size() < newNumArgs) continue; 2312 2313 // If extra arguments were passed, we silently drop them. 2314 // If any of the types mismatch, we don't transform. 2315 unsigned argNo = 0; 2316 bool dontTransform = false; 2317 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2318 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2319 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2320 dontTransform = true; 2321 break; 2322 } 2323 2324 // Add any parameter attributes. 2325 if (oldAttrs.hasAttributes(argNo + 1)) 2326 newAttrs. 2327 push_back(llvm:: 2328 AttributeSet::get(newFn->getContext(), 2329 oldAttrs.getParamAttributes(argNo + 1))); 2330 } 2331 if (dontTransform) 2332 continue; 2333 2334 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2335 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2336 oldAttrs.getFnAttributes())); 2337 2338 // Okay, we can transform this. Create the new call instruction and copy 2339 // over the required information. 2340 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2341 2342 llvm::CallSite newCall; 2343 if (callSite.isCall()) { 2344 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2345 callSite.getInstruction()); 2346 } else { 2347 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2348 newCall = llvm::InvokeInst::Create(newFn, 2349 oldInvoke->getNormalDest(), 2350 oldInvoke->getUnwindDest(), 2351 newArgs, "", 2352 callSite.getInstruction()); 2353 } 2354 newArgs.clear(); // for the next iteration 2355 2356 if (!newCall->getType()->isVoidTy()) 2357 newCall->takeName(callSite.getInstruction()); 2358 newCall.setAttributes( 2359 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2360 newCall.setCallingConv(callSite.getCallingConv()); 2361 2362 // Finally, remove the old call, replacing any uses with the new one. 2363 if (!callSite->use_empty()) 2364 callSite->replaceAllUsesWith(newCall.getInstruction()); 2365 2366 // Copy debug location attached to CI. 2367 if (callSite->getDebugLoc()) 2368 newCall->setDebugLoc(callSite->getDebugLoc()); 2369 callSite->eraseFromParent(); 2370 } 2371 } 2372 2373 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2374 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2375 /// existing call uses of the old function in the module, this adjusts them to 2376 /// call the new function directly. 2377 /// 2378 /// This is not just a cleanup: the always_inline pass requires direct calls to 2379 /// functions to be able to inline them. If there is a bitcast in the way, it 2380 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2381 /// run at -O0. 2382 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2383 llvm::Function *NewFn) { 2384 // If we're redefining a global as a function, don't transform it. 2385 if (!isa<llvm::Function>(Old)) return; 2386 2387 replaceUsesOfNonProtoConstant(Old, NewFn); 2388 } 2389 2390 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2391 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2392 // If we have a definition, this might be a deferred decl. If the 2393 // instantiation is explicit, make sure we emit it at the end. 2394 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2395 GetAddrOfGlobalVar(VD); 2396 2397 EmitTopLevelDecl(VD); 2398 } 2399 2400 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2401 llvm::GlobalValue *GV) { 2402 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2403 2404 // Compute the function info and LLVM type. 2405 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2406 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2407 2408 // Get or create the prototype for the function. 2409 if (!GV) { 2410 llvm::Constant *C = 2411 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2412 2413 // Strip off a bitcast if we got one back. 2414 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2415 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2416 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2417 } else { 2418 GV = cast<llvm::GlobalValue>(C); 2419 } 2420 } 2421 2422 if (!GV->isDeclaration()) { 2423 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2424 GlobalDecl OldGD = Manglings.lookup(GV->getName()); 2425 if (auto *Prev = OldGD.getDecl()) 2426 getDiags().Report(Prev->getLocation(), diag::note_previous_definition); 2427 return; 2428 } 2429 2430 if (GV->getType()->getElementType() != Ty) { 2431 // If the types mismatch then we have to rewrite the definition. 2432 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2433 2434 // F is the Function* for the one with the wrong type, we must make a new 2435 // Function* and update everything that used F (a declaration) with the new 2436 // Function* (which will be a definition). 2437 // 2438 // This happens if there is a prototype for a function 2439 // (e.g. "int f()") and then a definition of a different type 2440 // (e.g. "int f(int x)"). Move the old function aside so that it 2441 // doesn't interfere with GetAddrOfFunction. 2442 GV->setName(StringRef()); 2443 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2444 2445 // This might be an implementation of a function without a 2446 // prototype, in which case, try to do special replacement of 2447 // calls which match the new prototype. The really key thing here 2448 // is that we also potentially drop arguments from the call site 2449 // so as to make a direct call, which makes the inliner happier 2450 // and suppresses a number of optimizer warnings (!) about 2451 // dropping arguments. 2452 if (!GV->use_empty()) { 2453 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2454 GV->removeDeadConstantUsers(); 2455 } 2456 2457 // Replace uses of F with the Function we will endow with a body. 2458 if (!GV->use_empty()) { 2459 llvm::Constant *NewPtrForOldDecl = 2460 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2461 GV->replaceAllUsesWith(NewPtrForOldDecl); 2462 } 2463 2464 // Ok, delete the old function now, which is dead. 2465 GV->eraseFromParent(); 2466 2467 GV = NewFn; 2468 } 2469 2470 // We need to set linkage and visibility on the function before 2471 // generating code for it because various parts of IR generation 2472 // want to propagate this information down (e.g. to local static 2473 // declarations). 2474 auto *Fn = cast<llvm::Function>(GV); 2475 setFunctionLinkage(GD, Fn); 2476 if (D->hasAttr<DLLImportAttr>()) 2477 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2478 else if (D->hasAttr<DLLExportAttr>()) 2479 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2480 else 2481 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2482 2483 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2484 setGlobalVisibility(Fn, D); 2485 2486 MaybeHandleStaticInExternC(D, Fn); 2487 2488 maybeSetTrivialComdat(*D, *Fn); 2489 2490 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2491 2492 setFunctionDefinitionAttributes(D, Fn); 2493 SetLLVMFunctionAttributesForDefinition(D, Fn); 2494 2495 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2496 AddGlobalCtor(Fn, CA->getPriority()); 2497 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2498 AddGlobalDtor(Fn, DA->getPriority()); 2499 if (D->hasAttr<AnnotateAttr>()) 2500 AddGlobalAnnotations(D, Fn); 2501 } 2502 2503 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2504 const auto *D = cast<ValueDecl>(GD.getDecl()); 2505 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2506 assert(AA && "Not an alias?"); 2507 2508 StringRef MangledName = getMangledName(GD); 2509 2510 // If there is a definition in the module, then it wins over the alias. 2511 // This is dubious, but allow it to be safe. Just ignore the alias. 2512 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2513 if (Entry && !Entry->isDeclaration()) 2514 return; 2515 2516 Aliases.push_back(GD); 2517 2518 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2519 2520 // Create a reference to the named value. This ensures that it is emitted 2521 // if a deferred decl. 2522 llvm::Constant *Aliasee; 2523 if (isa<llvm::FunctionType>(DeclTy)) 2524 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2525 /*ForVTable=*/false); 2526 else 2527 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2528 llvm::PointerType::getUnqual(DeclTy), 2529 /*D=*/nullptr); 2530 2531 // Create the new alias itself, but don't set a name yet. 2532 auto *GA = llvm::GlobalAlias::create( 2533 cast<llvm::PointerType>(Aliasee->getType()), 2534 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2535 2536 if (Entry) { 2537 if (GA->getAliasee() == Entry) { 2538 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2539 return; 2540 } 2541 2542 assert(Entry->isDeclaration()); 2543 2544 // If there is a declaration in the module, then we had an extern followed 2545 // by the alias, as in: 2546 // extern int test6(); 2547 // ... 2548 // int test6() __attribute__((alias("test7"))); 2549 // 2550 // Remove it and replace uses of it with the alias. 2551 GA->takeName(Entry); 2552 2553 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2554 Entry->getType())); 2555 Entry->eraseFromParent(); 2556 } else { 2557 GA->setName(MangledName); 2558 } 2559 2560 // Set attributes which are particular to an alias; this is a 2561 // specialization of the attributes which may be set on a global 2562 // variable/function. 2563 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2564 D->isWeakImported()) { 2565 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2566 } 2567 2568 if (const auto *VD = dyn_cast<VarDecl>(D)) 2569 if (VD->getTLSKind()) 2570 setTLSMode(GA, *VD); 2571 2572 setAliasAttributes(D, GA); 2573 } 2574 2575 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2576 ArrayRef<llvm::Type*> Tys) { 2577 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2578 Tys); 2579 } 2580 2581 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2582 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2583 const StringLiteral *Literal, bool TargetIsLSB, 2584 bool &IsUTF16, unsigned &StringLength) { 2585 StringRef String = Literal->getString(); 2586 unsigned NumBytes = String.size(); 2587 2588 // Check for simple case. 2589 if (!Literal->containsNonAsciiOrNull()) { 2590 StringLength = NumBytes; 2591 return *Map.insert(std::make_pair(String, nullptr)).first; 2592 } 2593 2594 // Otherwise, convert the UTF8 literals into a string of shorts. 2595 IsUTF16 = true; 2596 2597 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2598 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2599 UTF16 *ToPtr = &ToBuf[0]; 2600 2601 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2602 &ToPtr, ToPtr + NumBytes, 2603 strictConversion); 2604 2605 // ConvertUTF8toUTF16 returns the length in ToPtr. 2606 StringLength = ToPtr - &ToBuf[0]; 2607 2608 // Add an explicit null. 2609 *ToPtr = 0; 2610 return *Map.insert(std::make_pair( 2611 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2612 (StringLength + 1) * 2), 2613 nullptr)).first; 2614 } 2615 2616 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2617 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2618 const StringLiteral *Literal, unsigned &StringLength) { 2619 StringRef String = Literal->getString(); 2620 StringLength = String.size(); 2621 return *Map.insert(std::make_pair(String, nullptr)).first; 2622 } 2623 2624 llvm::Constant * 2625 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2626 unsigned StringLength = 0; 2627 bool isUTF16 = false; 2628 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2629 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2630 getDataLayout().isLittleEndian(), isUTF16, 2631 StringLength); 2632 2633 if (auto *C = Entry.second) 2634 return C; 2635 2636 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2637 llvm::Constant *Zeros[] = { Zero, Zero }; 2638 llvm::Value *V; 2639 2640 // If we don't already have it, get __CFConstantStringClassReference. 2641 if (!CFConstantStringClassRef) { 2642 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2643 Ty = llvm::ArrayType::get(Ty, 0); 2644 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2645 "__CFConstantStringClassReference"); 2646 // Decay array -> ptr 2647 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2648 CFConstantStringClassRef = V; 2649 } 2650 else 2651 V = CFConstantStringClassRef; 2652 2653 QualType CFTy = getContext().getCFConstantStringType(); 2654 2655 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2656 2657 llvm::Constant *Fields[4]; 2658 2659 // Class pointer. 2660 Fields[0] = cast<llvm::ConstantExpr>(V); 2661 2662 // Flags. 2663 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2664 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2665 llvm::ConstantInt::get(Ty, 0x07C8); 2666 2667 // String pointer. 2668 llvm::Constant *C = nullptr; 2669 if (isUTF16) { 2670 ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>( 2671 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2672 Entry.first().size() / 2); 2673 C = llvm::ConstantDataArray::get(VMContext, Arr); 2674 } else { 2675 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2676 } 2677 2678 // Note: -fwritable-strings doesn't make the backing store strings of 2679 // CFStrings writable. (See <rdar://problem/10657500>) 2680 auto *GV = 2681 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2682 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2683 GV->setUnnamedAddr(true); 2684 // Don't enforce the target's minimum global alignment, since the only use 2685 // of the string is via this class initializer. 2686 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2687 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2688 // that changes the section it ends in, which surprises ld64. 2689 if (isUTF16) { 2690 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2691 GV->setAlignment(Align.getQuantity()); 2692 GV->setSection("__TEXT,__ustring"); 2693 } else { 2694 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2695 GV->setAlignment(Align.getQuantity()); 2696 GV->setSection("__TEXT,__cstring,cstring_literals"); 2697 } 2698 2699 // String. 2700 Fields[2] = 2701 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2702 2703 if (isUTF16) 2704 // Cast the UTF16 string to the correct type. 2705 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2706 2707 // String length. 2708 Ty = getTypes().ConvertType(getContext().LongTy); 2709 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2710 2711 // The struct. 2712 C = llvm::ConstantStruct::get(STy, Fields); 2713 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2714 llvm::GlobalVariable::PrivateLinkage, C, 2715 "_unnamed_cfstring_"); 2716 GV->setSection("__DATA,__cfstring"); 2717 Entry.second = GV; 2718 2719 return GV; 2720 } 2721 2722 llvm::GlobalVariable * 2723 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2724 unsigned StringLength = 0; 2725 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2726 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2727 2728 if (auto *C = Entry.second) 2729 return C; 2730 2731 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2732 llvm::Constant *Zeros[] = { Zero, Zero }; 2733 llvm::Value *V; 2734 // If we don't already have it, get _NSConstantStringClassReference. 2735 if (!ConstantStringClassRef) { 2736 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2737 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2738 llvm::Constant *GV; 2739 if (LangOpts.ObjCRuntime.isNonFragile()) { 2740 std::string str = 2741 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2742 : "OBJC_CLASS_$_" + StringClass; 2743 GV = getObjCRuntime().GetClassGlobal(str); 2744 // Make sure the result is of the correct type. 2745 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2746 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2747 ConstantStringClassRef = V; 2748 } else { 2749 std::string str = 2750 StringClass.empty() ? "_NSConstantStringClassReference" 2751 : "_" + StringClass + "ClassReference"; 2752 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2753 GV = CreateRuntimeVariable(PTy, str); 2754 // Decay array -> ptr 2755 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2756 ConstantStringClassRef = V; 2757 } 2758 } else 2759 V = ConstantStringClassRef; 2760 2761 if (!NSConstantStringType) { 2762 // Construct the type for a constant NSString. 2763 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2764 D->startDefinition(); 2765 2766 QualType FieldTypes[3]; 2767 2768 // const int *isa; 2769 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2770 // const char *str; 2771 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2772 // unsigned int length; 2773 FieldTypes[2] = Context.UnsignedIntTy; 2774 2775 // Create fields 2776 for (unsigned i = 0; i < 3; ++i) { 2777 FieldDecl *Field = FieldDecl::Create(Context, D, 2778 SourceLocation(), 2779 SourceLocation(), nullptr, 2780 FieldTypes[i], /*TInfo=*/nullptr, 2781 /*BitWidth=*/nullptr, 2782 /*Mutable=*/false, 2783 ICIS_NoInit); 2784 Field->setAccess(AS_public); 2785 D->addDecl(Field); 2786 } 2787 2788 D->completeDefinition(); 2789 QualType NSTy = Context.getTagDeclType(D); 2790 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2791 } 2792 2793 llvm::Constant *Fields[3]; 2794 2795 // Class pointer. 2796 Fields[0] = cast<llvm::ConstantExpr>(V); 2797 2798 // String pointer. 2799 llvm::Constant *C = 2800 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2801 2802 llvm::GlobalValue::LinkageTypes Linkage; 2803 bool isConstant; 2804 Linkage = llvm::GlobalValue::PrivateLinkage; 2805 isConstant = !LangOpts.WritableStrings; 2806 2807 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2808 Linkage, C, ".str"); 2809 GV->setUnnamedAddr(true); 2810 // Don't enforce the target's minimum global alignment, since the only use 2811 // of the string is via this class initializer. 2812 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2813 GV->setAlignment(Align.getQuantity()); 2814 Fields[1] = 2815 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2816 2817 // String length. 2818 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2819 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2820 2821 // The struct. 2822 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2823 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2824 llvm::GlobalVariable::PrivateLinkage, C, 2825 "_unnamed_nsstring_"); 2826 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2827 const char *NSStringNonFragileABISection = 2828 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2829 // FIXME. Fix section. 2830 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2831 ? NSStringNonFragileABISection 2832 : NSStringSection); 2833 Entry.second = GV; 2834 2835 return GV; 2836 } 2837 2838 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2839 if (ObjCFastEnumerationStateType.isNull()) { 2840 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2841 D->startDefinition(); 2842 2843 QualType FieldTypes[] = { 2844 Context.UnsignedLongTy, 2845 Context.getPointerType(Context.getObjCIdType()), 2846 Context.getPointerType(Context.UnsignedLongTy), 2847 Context.getConstantArrayType(Context.UnsignedLongTy, 2848 llvm::APInt(32, 5), ArrayType::Normal, 0) 2849 }; 2850 2851 for (size_t i = 0; i < 4; ++i) { 2852 FieldDecl *Field = FieldDecl::Create(Context, 2853 D, 2854 SourceLocation(), 2855 SourceLocation(), nullptr, 2856 FieldTypes[i], /*TInfo=*/nullptr, 2857 /*BitWidth=*/nullptr, 2858 /*Mutable=*/false, 2859 ICIS_NoInit); 2860 Field->setAccess(AS_public); 2861 D->addDecl(Field); 2862 } 2863 2864 D->completeDefinition(); 2865 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2866 } 2867 2868 return ObjCFastEnumerationStateType; 2869 } 2870 2871 llvm::Constant * 2872 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2873 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2874 2875 // Don't emit it as the address of the string, emit the string data itself 2876 // as an inline array. 2877 if (E->getCharByteWidth() == 1) { 2878 SmallString<64> Str(E->getString()); 2879 2880 // Resize the string to the right size, which is indicated by its type. 2881 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2882 Str.resize(CAT->getSize().getZExtValue()); 2883 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2884 } 2885 2886 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2887 llvm::Type *ElemTy = AType->getElementType(); 2888 unsigned NumElements = AType->getNumElements(); 2889 2890 // Wide strings have either 2-byte or 4-byte elements. 2891 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2892 SmallVector<uint16_t, 32> Elements; 2893 Elements.reserve(NumElements); 2894 2895 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2896 Elements.push_back(E->getCodeUnit(i)); 2897 Elements.resize(NumElements); 2898 return llvm::ConstantDataArray::get(VMContext, Elements); 2899 } 2900 2901 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2902 SmallVector<uint32_t, 32> Elements; 2903 Elements.reserve(NumElements); 2904 2905 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2906 Elements.push_back(E->getCodeUnit(i)); 2907 Elements.resize(NumElements); 2908 return llvm::ConstantDataArray::get(VMContext, Elements); 2909 } 2910 2911 static llvm::GlobalVariable * 2912 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2913 CodeGenModule &CGM, StringRef GlobalName, 2914 unsigned Alignment) { 2915 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2916 unsigned AddrSpace = 0; 2917 if (CGM.getLangOpts().OpenCL) 2918 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2919 2920 llvm::Module &M = CGM.getModule(); 2921 // Create a global variable for this string 2922 auto *GV = new llvm::GlobalVariable( 2923 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 2924 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2925 GV->setAlignment(Alignment); 2926 GV->setUnnamedAddr(true); 2927 if (GV->isWeakForLinker()) { 2928 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 2929 GV->setComdat(M.getOrInsertComdat(GV->getName())); 2930 } 2931 2932 return GV; 2933 } 2934 2935 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2936 /// constant array for the given string literal. 2937 llvm::GlobalVariable * 2938 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 2939 StringRef Name) { 2940 auto Alignment = 2941 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2942 2943 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2944 llvm::GlobalVariable **Entry = nullptr; 2945 if (!LangOpts.WritableStrings) { 2946 Entry = &ConstantStringMap[C]; 2947 if (auto GV = *Entry) { 2948 if (Alignment > GV->getAlignment()) 2949 GV->setAlignment(Alignment); 2950 return GV; 2951 } 2952 } 2953 2954 SmallString<256> MangledNameBuffer; 2955 StringRef GlobalVariableName; 2956 llvm::GlobalValue::LinkageTypes LT; 2957 2958 // Mangle the string literal if the ABI allows for it. However, we cannot 2959 // do this if we are compiling with ASan or -fwritable-strings because they 2960 // rely on strings having normal linkage. 2961 if (!LangOpts.WritableStrings && 2962 !LangOpts.Sanitize.has(SanitizerKind::Address) && 2963 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2964 llvm::raw_svector_ostream Out(MangledNameBuffer); 2965 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2966 Out.flush(); 2967 2968 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2969 GlobalVariableName = MangledNameBuffer; 2970 } else { 2971 LT = llvm::GlobalValue::PrivateLinkage; 2972 GlobalVariableName = Name; 2973 } 2974 2975 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2976 if (Entry) 2977 *Entry = GV; 2978 2979 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 2980 QualType()); 2981 return GV; 2982 } 2983 2984 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2985 /// array for the given ObjCEncodeExpr node. 2986 llvm::GlobalVariable * 2987 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2988 std::string Str; 2989 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2990 2991 return GetAddrOfConstantCString(Str); 2992 } 2993 2994 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2995 /// the literal and a terminating '\0' character. 2996 /// The result has pointer to array type. 2997 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2998 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2999 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3000 if (Alignment == 0) { 3001 Alignment = getContext() 3002 .getAlignOfGlobalVarInChars(getContext().CharTy) 3003 .getQuantity(); 3004 } 3005 3006 llvm::Constant *C = 3007 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3008 3009 // Don't share any string literals if strings aren't constant. 3010 llvm::GlobalVariable **Entry = nullptr; 3011 if (!LangOpts.WritableStrings) { 3012 Entry = &ConstantStringMap[C]; 3013 if (auto GV = *Entry) { 3014 if (Alignment > GV->getAlignment()) 3015 GV->setAlignment(Alignment); 3016 return GV; 3017 } 3018 } 3019 3020 // Get the default prefix if a name wasn't specified. 3021 if (!GlobalName) 3022 GlobalName = ".str"; 3023 // Create a global variable for this. 3024 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3025 GlobalName, Alignment); 3026 if (Entry) 3027 *Entry = GV; 3028 return GV; 3029 } 3030 3031 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 3032 const MaterializeTemporaryExpr *E, const Expr *Init) { 3033 assert((E->getStorageDuration() == SD_Static || 3034 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3035 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3036 3037 // If we're not materializing a subobject of the temporary, keep the 3038 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3039 QualType MaterializedType = Init->getType(); 3040 if (Init == E->GetTemporaryExpr()) 3041 MaterializedType = E->getType(); 3042 3043 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 3044 if (Slot) 3045 return Slot; 3046 3047 // FIXME: If an externally-visible declaration extends multiple temporaries, 3048 // we need to give each temporary the same name in every translation unit (and 3049 // we also need to make the temporaries externally-visible). 3050 SmallString<256> Name; 3051 llvm::raw_svector_ostream Out(Name); 3052 getCXXABI().getMangleContext().mangleReferenceTemporary( 3053 VD, E->getManglingNumber(), Out); 3054 Out.flush(); 3055 3056 APValue *Value = nullptr; 3057 if (E->getStorageDuration() == SD_Static) { 3058 // We might have a cached constant initializer for this temporary. Note 3059 // that this might have a different value from the value computed by 3060 // evaluating the initializer if the surrounding constant expression 3061 // modifies the temporary. 3062 Value = getContext().getMaterializedTemporaryValue(E, false); 3063 if (Value && Value->isUninit()) 3064 Value = nullptr; 3065 } 3066 3067 // Try evaluating it now, it might have a constant initializer. 3068 Expr::EvalResult EvalResult; 3069 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3070 !EvalResult.hasSideEffects()) 3071 Value = &EvalResult.Val; 3072 3073 llvm::Constant *InitialValue = nullptr; 3074 bool Constant = false; 3075 llvm::Type *Type; 3076 if (Value) { 3077 // The temporary has a constant initializer, use it. 3078 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3079 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3080 Type = InitialValue->getType(); 3081 } else { 3082 // No initializer, the initialization will be provided when we 3083 // initialize the declaration which performed lifetime extension. 3084 Type = getTypes().ConvertTypeForMem(MaterializedType); 3085 } 3086 3087 // Create a global variable for this lifetime-extended temporary. 3088 llvm::GlobalValue::LinkageTypes Linkage = 3089 getLLVMLinkageVarDefinition(VD, Constant); 3090 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3091 const VarDecl *InitVD; 3092 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3093 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3094 // Temporaries defined inside a class get linkonce_odr linkage because the 3095 // class can be defined in multipe translation units. 3096 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3097 } else { 3098 // There is no need for this temporary to have external linkage if the 3099 // VarDecl has external linkage. 3100 Linkage = llvm::GlobalVariable::InternalLinkage; 3101 } 3102 } 3103 unsigned AddrSpace = GetGlobalVarAddressSpace( 3104 VD, getContext().getTargetAddressSpace(MaterializedType)); 3105 auto *GV = new llvm::GlobalVariable( 3106 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3107 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3108 AddrSpace); 3109 setGlobalVisibility(GV, VD); 3110 GV->setAlignment( 3111 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 3112 if (supportsCOMDAT() && GV->isWeakForLinker()) 3113 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3114 if (VD->getTLSKind()) 3115 setTLSMode(GV, *VD); 3116 Slot = GV; 3117 return GV; 3118 } 3119 3120 /// EmitObjCPropertyImplementations - Emit information for synthesized 3121 /// properties for an implementation. 3122 void CodeGenModule::EmitObjCPropertyImplementations(const 3123 ObjCImplementationDecl *D) { 3124 for (const auto *PID : D->property_impls()) { 3125 // Dynamic is just for type-checking. 3126 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3127 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3128 3129 // Determine which methods need to be implemented, some may have 3130 // been overridden. Note that ::isPropertyAccessor is not the method 3131 // we want, that just indicates if the decl came from a 3132 // property. What we want to know is if the method is defined in 3133 // this implementation. 3134 if (!D->getInstanceMethod(PD->getGetterName())) 3135 CodeGenFunction(*this).GenerateObjCGetter( 3136 const_cast<ObjCImplementationDecl *>(D), PID); 3137 if (!PD->isReadOnly() && 3138 !D->getInstanceMethod(PD->getSetterName())) 3139 CodeGenFunction(*this).GenerateObjCSetter( 3140 const_cast<ObjCImplementationDecl *>(D), PID); 3141 } 3142 } 3143 } 3144 3145 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3146 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3147 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3148 ivar; ivar = ivar->getNextIvar()) 3149 if (ivar->getType().isDestructedType()) 3150 return true; 3151 3152 return false; 3153 } 3154 3155 static bool AllTrivialInitializers(CodeGenModule &CGM, 3156 ObjCImplementationDecl *D) { 3157 CodeGenFunction CGF(CGM); 3158 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3159 E = D->init_end(); B != E; ++B) { 3160 CXXCtorInitializer *CtorInitExp = *B; 3161 Expr *Init = CtorInitExp->getInit(); 3162 if (!CGF.isTrivialInitializer(Init)) 3163 return false; 3164 } 3165 return true; 3166 } 3167 3168 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3169 /// for an implementation. 3170 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3171 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3172 if (needsDestructMethod(D)) { 3173 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3174 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3175 ObjCMethodDecl *DTORMethod = 3176 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3177 cxxSelector, getContext().VoidTy, nullptr, D, 3178 /*isInstance=*/true, /*isVariadic=*/false, 3179 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3180 /*isDefined=*/false, ObjCMethodDecl::Required); 3181 D->addInstanceMethod(DTORMethod); 3182 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3183 D->setHasDestructors(true); 3184 } 3185 3186 // If the implementation doesn't have any ivar initializers, we don't need 3187 // a .cxx_construct. 3188 if (D->getNumIvarInitializers() == 0 || 3189 AllTrivialInitializers(*this, D)) 3190 return; 3191 3192 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3193 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3194 // The constructor returns 'self'. 3195 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3196 D->getLocation(), 3197 D->getLocation(), 3198 cxxSelector, 3199 getContext().getObjCIdType(), 3200 nullptr, D, /*isInstance=*/true, 3201 /*isVariadic=*/false, 3202 /*isPropertyAccessor=*/true, 3203 /*isImplicitlyDeclared=*/true, 3204 /*isDefined=*/false, 3205 ObjCMethodDecl::Required); 3206 D->addInstanceMethod(CTORMethod); 3207 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3208 D->setHasNonZeroConstructors(true); 3209 } 3210 3211 /// EmitNamespace - Emit all declarations in a namespace. 3212 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3213 for (auto *I : ND->decls()) { 3214 if (const auto *VD = dyn_cast<VarDecl>(I)) 3215 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3216 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3217 continue; 3218 EmitTopLevelDecl(I); 3219 } 3220 } 3221 3222 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3223 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3224 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3225 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3226 ErrorUnsupported(LSD, "linkage spec"); 3227 return; 3228 } 3229 3230 for (auto *I : LSD->decls()) { 3231 // Meta-data for ObjC class includes references to implemented methods. 3232 // Generate class's method definitions first. 3233 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3234 for (auto *M : OID->methods()) 3235 EmitTopLevelDecl(M); 3236 } 3237 EmitTopLevelDecl(I); 3238 } 3239 } 3240 3241 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3242 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3243 // Ignore dependent declarations. 3244 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3245 return; 3246 3247 switch (D->getKind()) { 3248 case Decl::CXXConversion: 3249 case Decl::CXXMethod: 3250 case Decl::Function: 3251 // Skip function templates 3252 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3253 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3254 return; 3255 3256 EmitGlobal(cast<FunctionDecl>(D)); 3257 // Always provide some coverage mapping 3258 // even for the functions that aren't emitted. 3259 AddDeferredUnusedCoverageMapping(D); 3260 break; 3261 3262 case Decl::Var: 3263 // Skip variable templates 3264 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3265 return; 3266 case Decl::VarTemplateSpecialization: 3267 EmitGlobal(cast<VarDecl>(D)); 3268 break; 3269 3270 // Indirect fields from global anonymous structs and unions can be 3271 // ignored; only the actual variable requires IR gen support. 3272 case Decl::IndirectField: 3273 break; 3274 3275 // C++ Decls 3276 case Decl::Namespace: 3277 EmitNamespace(cast<NamespaceDecl>(D)); 3278 break; 3279 // No code generation needed. 3280 case Decl::UsingShadow: 3281 case Decl::ClassTemplate: 3282 case Decl::VarTemplate: 3283 case Decl::VarTemplatePartialSpecialization: 3284 case Decl::FunctionTemplate: 3285 case Decl::TypeAliasTemplate: 3286 case Decl::Block: 3287 case Decl::Empty: 3288 break; 3289 case Decl::Using: // using X; [C++] 3290 if (CGDebugInfo *DI = getModuleDebugInfo()) 3291 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3292 return; 3293 case Decl::NamespaceAlias: 3294 if (CGDebugInfo *DI = getModuleDebugInfo()) 3295 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3296 return; 3297 case Decl::UsingDirective: // using namespace X; [C++] 3298 if (CGDebugInfo *DI = getModuleDebugInfo()) 3299 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3300 return; 3301 case Decl::CXXConstructor: 3302 // Skip function templates 3303 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3304 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3305 return; 3306 3307 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3308 break; 3309 case Decl::CXXDestructor: 3310 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3311 return; 3312 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3313 break; 3314 3315 case Decl::StaticAssert: 3316 // Nothing to do. 3317 break; 3318 3319 // Objective-C Decls 3320 3321 // Forward declarations, no (immediate) code generation. 3322 case Decl::ObjCInterface: 3323 case Decl::ObjCCategory: 3324 break; 3325 3326 case Decl::ObjCProtocol: { 3327 auto *Proto = cast<ObjCProtocolDecl>(D); 3328 if (Proto->isThisDeclarationADefinition()) 3329 ObjCRuntime->GenerateProtocol(Proto); 3330 break; 3331 } 3332 3333 case Decl::ObjCCategoryImpl: 3334 // Categories have properties but don't support synthesize so we 3335 // can ignore them here. 3336 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3337 break; 3338 3339 case Decl::ObjCImplementation: { 3340 auto *OMD = cast<ObjCImplementationDecl>(D); 3341 EmitObjCPropertyImplementations(OMD); 3342 EmitObjCIvarInitializations(OMD); 3343 ObjCRuntime->GenerateClass(OMD); 3344 // Emit global variable debug information. 3345 if (CGDebugInfo *DI = getModuleDebugInfo()) 3346 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3347 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3348 OMD->getClassInterface()), OMD->getLocation()); 3349 break; 3350 } 3351 case Decl::ObjCMethod: { 3352 auto *OMD = cast<ObjCMethodDecl>(D); 3353 // If this is not a prototype, emit the body. 3354 if (OMD->getBody()) 3355 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3356 break; 3357 } 3358 case Decl::ObjCCompatibleAlias: 3359 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3360 break; 3361 3362 case Decl::LinkageSpec: 3363 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3364 break; 3365 3366 case Decl::FileScopeAsm: { 3367 // File-scope asm is ignored during device-side CUDA compilation. 3368 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3369 break; 3370 auto *AD = cast<FileScopeAsmDecl>(D); 3371 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3372 break; 3373 } 3374 3375 case Decl::Import: { 3376 auto *Import = cast<ImportDecl>(D); 3377 3378 // Ignore import declarations that come from imported modules. 3379 if (clang::Module *Owner = Import->getOwningModule()) { 3380 if (getLangOpts().CurrentModule.empty() || 3381 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3382 break; 3383 } 3384 3385 ImportedModules.insert(Import->getImportedModule()); 3386 break; 3387 } 3388 3389 case Decl::OMPThreadPrivate: 3390 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3391 break; 3392 3393 case Decl::ClassTemplateSpecialization: { 3394 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3395 if (DebugInfo && 3396 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3397 Spec->hasDefinition()) 3398 DebugInfo->completeTemplateDefinition(*Spec); 3399 break; 3400 } 3401 3402 default: 3403 // Make sure we handled everything we should, every other kind is a 3404 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3405 // function. Need to recode Decl::Kind to do that easily. 3406 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3407 break; 3408 } 3409 } 3410 3411 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3412 // Do we need to generate coverage mapping? 3413 if (!CodeGenOpts.CoverageMapping) 3414 return; 3415 switch (D->getKind()) { 3416 case Decl::CXXConversion: 3417 case Decl::CXXMethod: 3418 case Decl::Function: 3419 case Decl::ObjCMethod: 3420 case Decl::CXXConstructor: 3421 case Decl::CXXDestructor: { 3422 if (!cast<FunctionDecl>(D)->hasBody()) 3423 return; 3424 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3425 if (I == DeferredEmptyCoverageMappingDecls.end()) 3426 DeferredEmptyCoverageMappingDecls[D] = true; 3427 break; 3428 } 3429 default: 3430 break; 3431 }; 3432 } 3433 3434 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3435 // Do we need to generate coverage mapping? 3436 if (!CodeGenOpts.CoverageMapping) 3437 return; 3438 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3439 if (Fn->isTemplateInstantiation()) 3440 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3441 } 3442 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3443 if (I == DeferredEmptyCoverageMappingDecls.end()) 3444 DeferredEmptyCoverageMappingDecls[D] = false; 3445 else 3446 I->second = false; 3447 } 3448 3449 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3450 std::vector<const Decl *> DeferredDecls; 3451 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3452 if (!I.second) 3453 continue; 3454 DeferredDecls.push_back(I.first); 3455 } 3456 // Sort the declarations by their location to make sure that the tests get a 3457 // predictable order for the coverage mapping for the unused declarations. 3458 if (CodeGenOpts.DumpCoverageMapping) 3459 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3460 [] (const Decl *LHS, const Decl *RHS) { 3461 return LHS->getLocStart() < RHS->getLocStart(); 3462 }); 3463 for (const auto *D : DeferredDecls) { 3464 switch (D->getKind()) { 3465 case Decl::CXXConversion: 3466 case Decl::CXXMethod: 3467 case Decl::Function: 3468 case Decl::ObjCMethod: { 3469 CodeGenPGO PGO(*this); 3470 GlobalDecl GD(cast<FunctionDecl>(D)); 3471 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3472 getFunctionLinkage(GD)); 3473 break; 3474 } 3475 case Decl::CXXConstructor: { 3476 CodeGenPGO PGO(*this); 3477 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3478 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3479 getFunctionLinkage(GD)); 3480 break; 3481 } 3482 case Decl::CXXDestructor: { 3483 CodeGenPGO PGO(*this); 3484 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3485 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3486 getFunctionLinkage(GD)); 3487 break; 3488 } 3489 default: 3490 break; 3491 }; 3492 } 3493 } 3494 3495 /// Turns the given pointer into a constant. 3496 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3497 const void *Ptr) { 3498 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3499 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3500 return llvm::ConstantInt::get(i64, PtrInt); 3501 } 3502 3503 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3504 llvm::NamedMDNode *&GlobalMetadata, 3505 GlobalDecl D, 3506 llvm::GlobalValue *Addr) { 3507 if (!GlobalMetadata) 3508 GlobalMetadata = 3509 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3510 3511 // TODO: should we report variant information for ctors/dtors? 3512 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3513 llvm::ConstantAsMetadata::get(GetPointerConstant( 3514 CGM.getLLVMContext(), D.getDecl()))}; 3515 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3516 } 3517 3518 /// For each function which is declared within an extern "C" region and marked 3519 /// as 'used', but has internal linkage, create an alias from the unmangled 3520 /// name to the mangled name if possible. People expect to be able to refer 3521 /// to such functions with an unmangled name from inline assembly within the 3522 /// same translation unit. 3523 void CodeGenModule::EmitStaticExternCAliases() { 3524 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3525 E = StaticExternCValues.end(); 3526 I != E; ++I) { 3527 IdentifierInfo *Name = I->first; 3528 llvm::GlobalValue *Val = I->second; 3529 if (Val && !getModule().getNamedValue(Name->getName())) 3530 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3531 } 3532 } 3533 3534 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3535 GlobalDecl &Result) const { 3536 auto Res = Manglings.find(MangledName); 3537 if (Res == Manglings.end()) 3538 return false; 3539 Result = Res->getValue(); 3540 return true; 3541 } 3542 3543 /// Emits metadata nodes associating all the global values in the 3544 /// current module with the Decls they came from. This is useful for 3545 /// projects using IR gen as a subroutine. 3546 /// 3547 /// Since there's currently no way to associate an MDNode directly 3548 /// with an llvm::GlobalValue, we create a global named metadata 3549 /// with the name 'clang.global.decl.ptrs'. 3550 void CodeGenModule::EmitDeclMetadata() { 3551 llvm::NamedMDNode *GlobalMetadata = nullptr; 3552 3553 // StaticLocalDeclMap 3554 for (auto &I : MangledDeclNames) { 3555 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3556 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3557 } 3558 } 3559 3560 /// Emits metadata nodes for all the local variables in the current 3561 /// function. 3562 void CodeGenFunction::EmitDeclMetadata() { 3563 if (LocalDeclMap.empty()) return; 3564 3565 llvm::LLVMContext &Context = getLLVMContext(); 3566 3567 // Find the unique metadata ID for this name. 3568 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3569 3570 llvm::NamedMDNode *GlobalMetadata = nullptr; 3571 3572 for (auto &I : LocalDeclMap) { 3573 const Decl *D = I.first; 3574 llvm::Value *Addr = I.second; 3575 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3576 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3577 Alloca->setMetadata( 3578 DeclPtrKind, llvm::MDNode::get( 3579 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3580 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3581 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3582 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3583 } 3584 } 3585 } 3586 3587 void CodeGenModule::EmitVersionIdentMetadata() { 3588 llvm::NamedMDNode *IdentMetadata = 3589 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3590 std::string Version = getClangFullVersion(); 3591 llvm::LLVMContext &Ctx = TheModule.getContext(); 3592 3593 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3594 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3595 } 3596 3597 void CodeGenModule::EmitTargetMetadata() { 3598 // Warning, new MangledDeclNames may be appended within this loop. 3599 // We rely on MapVector insertions adding new elements to the end 3600 // of the container. 3601 // FIXME: Move this loop into the one target that needs it, and only 3602 // loop over those declarations for which we couldn't emit the target 3603 // metadata when we emitted the declaration. 3604 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3605 auto Val = *(MangledDeclNames.begin() + I); 3606 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3607 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3608 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3609 } 3610 } 3611 3612 void CodeGenModule::EmitCoverageFile() { 3613 if (!getCodeGenOpts().CoverageFile.empty()) { 3614 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3615 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3616 llvm::LLVMContext &Ctx = TheModule.getContext(); 3617 llvm::MDString *CoverageFile = 3618 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3619 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3620 llvm::MDNode *CU = CUNode->getOperand(i); 3621 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3622 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3623 } 3624 } 3625 } 3626 } 3627 3628 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3629 // Sema has checked that all uuid strings are of the form 3630 // "12345678-1234-1234-1234-1234567890ab". 3631 assert(Uuid.size() == 36); 3632 for (unsigned i = 0; i < 36; ++i) { 3633 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3634 else assert(isHexDigit(Uuid[i])); 3635 } 3636 3637 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3638 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3639 3640 llvm::Constant *Field3[8]; 3641 for (unsigned Idx = 0; Idx < 8; ++Idx) 3642 Field3[Idx] = llvm::ConstantInt::get( 3643 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3644 3645 llvm::Constant *Fields[4] = { 3646 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3647 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3648 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3649 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3650 }; 3651 3652 return llvm::ConstantStruct::getAnon(Fields); 3653 } 3654 3655 llvm::Constant * 3656 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty, 3657 QualType CatchHandlerType) { 3658 return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType); 3659 } 3660 3661 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3662 bool ForEH) { 3663 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3664 // FIXME: should we even be calling this method if RTTI is disabled 3665 // and it's not for EH? 3666 if (!ForEH && !getLangOpts().RTTI) 3667 return llvm::Constant::getNullValue(Int8PtrTy); 3668 3669 if (ForEH && Ty->isObjCObjectPointerType() && 3670 LangOpts.ObjCRuntime.isGNUFamily()) 3671 return ObjCRuntime->GetEHType(Ty); 3672 3673 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3674 } 3675 3676 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3677 for (auto RefExpr : D->varlists()) { 3678 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3679 bool PerformInit = 3680 VD->getAnyInitializer() && 3681 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3682 /*ForRef=*/false); 3683 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3684 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(), PerformInit)) 3685 CXXGlobalInits.push_back(InitFunction); 3686 } 3687 } 3688