1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/ADT/Triple.h" 54 #include "llvm/Analysis/TargetLibraryInfo.h" 55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/X86TargetParser.h" 71 #include "llvm/Support/xxhash.h" 72 #include <optional> 73 74 using namespace clang; 75 using namespace CodeGen; 76 77 static llvm::cl::opt<bool> LimitedCoverage( 78 "limited-coverage-experimental", llvm::cl::Hidden, 79 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 80 81 static const char AnnotationSection[] = "llvm.metadata"; 82 83 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 84 switch (CGM.getContext().getCXXABIKind()) { 85 case TargetCXXABI::AppleARM64: 86 case TargetCXXABI::Fuchsia: 87 case TargetCXXABI::GenericAArch64: 88 case TargetCXXABI::GenericARM: 89 case TargetCXXABI::iOS: 90 case TargetCXXABI::WatchOS: 91 case TargetCXXABI::GenericMIPS: 92 case TargetCXXABI::GenericItanium: 93 case TargetCXXABI::WebAssembly: 94 case TargetCXXABI::XL: 95 return CreateItaniumCXXABI(CGM); 96 case TargetCXXABI::Microsoft: 97 return CreateMicrosoftCXXABI(CGM); 98 } 99 100 llvm_unreachable("invalid C++ ABI kind"); 101 } 102 103 CodeGenModule::CodeGenModule(ASTContext &C, 104 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 105 const HeaderSearchOptions &HSO, 106 const PreprocessorOptions &PPO, 107 const CodeGenOptions &CGO, llvm::Module &M, 108 DiagnosticsEngine &diags, 109 CoverageSourceInfo *CoverageInfo) 110 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 111 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 112 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 113 VMContext(M.getContext()), Types(*this), VTables(*this), 114 SanitizerMD(new SanitizerMetadata(*this)) { 115 116 // Initialize the type cache. 117 llvm::LLVMContext &LLVMContext = M.getContext(); 118 VoidTy = llvm::Type::getVoidTy(LLVMContext); 119 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 120 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 121 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 122 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 123 HalfTy = llvm::Type::getHalfTy(LLVMContext); 124 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 125 FloatTy = llvm::Type::getFloatTy(LLVMContext); 126 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 127 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 128 PointerAlignInBytes = 129 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 130 .getQuantity(); 131 SizeSizeInBytes = 132 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 133 IntAlignInBytes = 134 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 135 CharTy = 136 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 137 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 138 IntPtrTy = llvm::IntegerType::get(LLVMContext, 139 C.getTargetInfo().getMaxPointerWidth()); 140 Int8PtrTy = Int8Ty->getPointerTo(0); 141 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 142 const llvm::DataLayout &DL = M.getDataLayout(); 143 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 144 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 145 ConstGlobalsPtrTy = Int8Ty->getPointerTo( 146 C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 147 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 148 149 // Build C++20 Module initializers. 150 // TODO: Add Microsoft here once we know the mangling required for the 151 // initializers. 152 CXX20ModuleInits = 153 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 154 ItaniumMangleContext::MK_Itanium; 155 156 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 157 158 if (LangOpts.ObjC) 159 createObjCRuntime(); 160 if (LangOpts.OpenCL) 161 createOpenCLRuntime(); 162 if (LangOpts.OpenMP) 163 createOpenMPRuntime(); 164 if (LangOpts.CUDA) 165 createCUDARuntime(); 166 if (LangOpts.HLSL) 167 createHLSLRuntime(); 168 169 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 170 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 171 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 172 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 173 getCXXABI().getMangleContext())); 174 175 // If debug info or coverage generation is enabled, create the CGDebugInfo 176 // object. 177 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 178 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 179 DebugInfo.reset(new CGDebugInfo(*this)); 180 181 Block.GlobalUniqueCount = 0; 182 183 if (C.getLangOpts().ObjC) 184 ObjCData.reset(new ObjCEntrypoints()); 185 186 if (CodeGenOpts.hasProfileClangUse()) { 187 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 188 CodeGenOpts.ProfileInstrumentUsePath, *FS, 189 CodeGenOpts.ProfileRemappingFile); 190 // We're checking for profile read errors in CompilerInvocation, so if 191 // there was an error it should've already been caught. If it hasn't been 192 // somehow, trip an assertion. 193 assert(ReaderOrErr); 194 PGOReader = std::move(ReaderOrErr.get()); 195 } 196 197 // If coverage mapping generation is enabled, create the 198 // CoverageMappingModuleGen object. 199 if (CodeGenOpts.CoverageMapping) 200 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 201 202 // Generate the module name hash here if needed. 203 if (CodeGenOpts.UniqueInternalLinkageNames && 204 !getModule().getSourceFileName().empty()) { 205 std::string Path = getModule().getSourceFileName(); 206 // Check if a path substitution is needed from the MacroPrefixMap. 207 for (const auto &Entry : LangOpts.MacroPrefixMap) 208 if (Path.rfind(Entry.first, 0) != std::string::npos) { 209 Path = Entry.second + Path.substr(Entry.first.size()); 210 break; 211 } 212 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 213 } 214 } 215 216 CodeGenModule::~CodeGenModule() {} 217 218 void CodeGenModule::createObjCRuntime() { 219 // This is just isGNUFamily(), but we want to force implementors of 220 // new ABIs to decide how best to do this. 221 switch (LangOpts.ObjCRuntime.getKind()) { 222 case ObjCRuntime::GNUstep: 223 case ObjCRuntime::GCC: 224 case ObjCRuntime::ObjFW: 225 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 226 return; 227 228 case ObjCRuntime::FragileMacOSX: 229 case ObjCRuntime::MacOSX: 230 case ObjCRuntime::iOS: 231 case ObjCRuntime::WatchOS: 232 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 233 return; 234 } 235 llvm_unreachable("bad runtime kind"); 236 } 237 238 void CodeGenModule::createOpenCLRuntime() { 239 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 240 } 241 242 void CodeGenModule::createOpenMPRuntime() { 243 // Select a specialized code generation class based on the target, if any. 244 // If it does not exist use the default implementation. 245 switch (getTriple().getArch()) { 246 case llvm::Triple::nvptx: 247 case llvm::Triple::nvptx64: 248 case llvm::Triple::amdgcn: 249 assert(getLangOpts().OpenMPIsDevice && 250 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 251 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 252 break; 253 default: 254 if (LangOpts.OpenMPSimd) 255 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 256 else 257 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 258 break; 259 } 260 } 261 262 void CodeGenModule::createCUDARuntime() { 263 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 264 } 265 266 void CodeGenModule::createHLSLRuntime() { 267 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 268 } 269 270 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 271 Replacements[Name] = C; 272 } 273 274 void CodeGenModule::applyReplacements() { 275 for (auto &I : Replacements) { 276 StringRef MangledName = I.first(); 277 llvm::Constant *Replacement = I.second; 278 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 279 if (!Entry) 280 continue; 281 auto *OldF = cast<llvm::Function>(Entry); 282 auto *NewF = dyn_cast<llvm::Function>(Replacement); 283 if (!NewF) { 284 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 285 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 286 } else { 287 auto *CE = cast<llvm::ConstantExpr>(Replacement); 288 assert(CE->getOpcode() == llvm::Instruction::BitCast || 289 CE->getOpcode() == llvm::Instruction::GetElementPtr); 290 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 291 } 292 } 293 294 // Replace old with new, but keep the old order. 295 OldF->replaceAllUsesWith(Replacement); 296 if (NewF) { 297 NewF->removeFromParent(); 298 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 299 NewF); 300 } 301 OldF->eraseFromParent(); 302 } 303 } 304 305 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 306 GlobalValReplacements.push_back(std::make_pair(GV, C)); 307 } 308 309 void CodeGenModule::applyGlobalValReplacements() { 310 for (auto &I : GlobalValReplacements) { 311 llvm::GlobalValue *GV = I.first; 312 llvm::Constant *C = I.second; 313 314 GV->replaceAllUsesWith(C); 315 GV->eraseFromParent(); 316 } 317 } 318 319 // This is only used in aliases that we created and we know they have a 320 // linear structure. 321 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 322 const llvm::Constant *C; 323 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 324 C = GA->getAliasee(); 325 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 326 C = GI->getResolver(); 327 else 328 return GV; 329 330 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 331 if (!AliaseeGV) 332 return nullptr; 333 334 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 335 if (FinalGV == GV) 336 return nullptr; 337 338 return FinalGV; 339 } 340 341 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 342 SourceLocation Location, bool IsIFunc, 343 const llvm::GlobalValue *Alias, 344 const llvm::GlobalValue *&GV) { 345 GV = getAliasedGlobal(Alias); 346 if (!GV) { 347 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 348 return false; 349 } 350 351 if (GV->isDeclaration()) { 352 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 353 return false; 354 } 355 356 if (IsIFunc) { 357 // Check resolver function type. 358 const auto *F = dyn_cast<llvm::Function>(GV); 359 if (!F) { 360 Diags.Report(Location, diag::err_alias_to_undefined) 361 << IsIFunc << IsIFunc; 362 return false; 363 } 364 365 llvm::FunctionType *FTy = F->getFunctionType(); 366 if (!FTy->getReturnType()->isPointerTy()) { 367 Diags.Report(Location, diag::err_ifunc_resolver_return); 368 return false; 369 } 370 } 371 372 return true; 373 } 374 375 void CodeGenModule::checkAliases() { 376 // Check if the constructed aliases are well formed. It is really unfortunate 377 // that we have to do this in CodeGen, but we only construct mangled names 378 // and aliases during codegen. 379 bool Error = false; 380 DiagnosticsEngine &Diags = getDiags(); 381 for (const GlobalDecl &GD : Aliases) { 382 const auto *D = cast<ValueDecl>(GD.getDecl()); 383 SourceLocation Location; 384 bool IsIFunc = D->hasAttr<IFuncAttr>(); 385 if (const Attr *A = D->getDefiningAttr()) 386 Location = A->getLocation(); 387 else 388 llvm_unreachable("Not an alias or ifunc?"); 389 390 StringRef MangledName = getMangledName(GD); 391 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 392 const llvm::GlobalValue *GV = nullptr; 393 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 394 Error = true; 395 continue; 396 } 397 398 llvm::Constant *Aliasee = 399 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 400 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 401 402 llvm::GlobalValue *AliaseeGV; 403 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 404 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 405 else 406 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 407 408 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 409 StringRef AliasSection = SA->getName(); 410 if (AliasSection != AliaseeGV->getSection()) 411 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 412 << AliasSection << IsIFunc << IsIFunc; 413 } 414 415 // We have to handle alias to weak aliases in here. LLVM itself disallows 416 // this since the object semantics would not match the IL one. For 417 // compatibility with gcc we implement it by just pointing the alias 418 // to its aliasee's aliasee. We also warn, since the user is probably 419 // expecting the link to be weak. 420 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 421 if (GA->isInterposable()) { 422 Diags.Report(Location, diag::warn_alias_to_weak_alias) 423 << GV->getName() << GA->getName() << IsIFunc; 424 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 425 GA->getAliasee(), Alias->getType()); 426 427 if (IsIFunc) 428 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 429 else 430 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 431 } 432 } 433 } 434 if (!Error) 435 return; 436 437 for (const GlobalDecl &GD : Aliases) { 438 StringRef MangledName = getMangledName(GD); 439 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 440 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 441 Alias->eraseFromParent(); 442 } 443 } 444 445 void CodeGenModule::clear() { 446 DeferredDeclsToEmit.clear(); 447 EmittedDeferredDecls.clear(); 448 if (OpenMPRuntime) 449 OpenMPRuntime->clear(); 450 } 451 452 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 453 StringRef MainFile) { 454 if (!hasDiagnostics()) 455 return; 456 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 457 if (MainFile.empty()) 458 MainFile = "<stdin>"; 459 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 460 } else { 461 if (Mismatched > 0) 462 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 463 464 if (Missing > 0) 465 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 466 } 467 } 468 469 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 470 llvm::Module &M) { 471 if (!LO.VisibilityFromDLLStorageClass) 472 return; 473 474 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 475 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 476 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 477 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 478 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 479 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 480 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 481 CodeGenModule::GetLLVMVisibility( 482 LO.getExternDeclNoDLLStorageClassVisibility()); 483 484 for (llvm::GlobalValue &GV : M.global_values()) { 485 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 486 continue; 487 488 // Reset DSO locality before setting the visibility. This removes 489 // any effects that visibility options and annotations may have 490 // had on the DSO locality. Setting the visibility will implicitly set 491 // appropriate globals to DSO Local; however, this will be pessimistic 492 // w.r.t. to the normal compiler IRGen. 493 GV.setDSOLocal(false); 494 495 if (GV.isDeclarationForLinker()) { 496 GV.setVisibility(GV.getDLLStorageClass() == 497 llvm::GlobalValue::DLLImportStorageClass 498 ? ExternDeclDLLImportVisibility 499 : ExternDeclNoDLLStorageClassVisibility); 500 } else { 501 GV.setVisibility(GV.getDLLStorageClass() == 502 llvm::GlobalValue::DLLExportStorageClass 503 ? DLLExportVisibility 504 : NoDLLStorageClassVisibility); 505 } 506 507 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 508 } 509 } 510 511 void CodeGenModule::Release() { 512 Module *Primary = getContext().getModuleForCodeGen(); 513 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 514 EmitModuleInitializers(Primary); 515 EmitDeferred(); 516 DeferredDecls.insert(EmittedDeferredDecls.begin(), 517 EmittedDeferredDecls.end()); 518 EmittedDeferredDecls.clear(); 519 EmitVTablesOpportunistically(); 520 applyGlobalValReplacements(); 521 applyReplacements(); 522 emitMultiVersionFunctions(); 523 524 if (Context.getLangOpts().IncrementalExtensions && 525 GlobalTopLevelStmtBlockInFlight.first) { 526 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 527 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 528 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 529 } 530 531 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 532 EmitCXXModuleInitFunc(Primary); 533 else 534 EmitCXXGlobalInitFunc(); 535 EmitCXXGlobalCleanUpFunc(); 536 registerGlobalDtorsWithAtExit(); 537 EmitCXXThreadLocalInitFunc(); 538 if (ObjCRuntime) 539 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 540 AddGlobalCtor(ObjCInitFunction); 541 if (Context.getLangOpts().CUDA && CUDARuntime) { 542 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 543 AddGlobalCtor(CudaCtorFunction); 544 } 545 if (OpenMPRuntime) { 546 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 547 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 548 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 549 } 550 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 551 OpenMPRuntime->clear(); 552 } 553 if (PGOReader) { 554 getModule().setProfileSummary( 555 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 556 llvm::ProfileSummary::PSK_Instr); 557 if (PGOStats.hasDiagnostics()) 558 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 559 } 560 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 561 return L.LexOrder < R.LexOrder; 562 }); 563 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 564 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 565 EmitGlobalAnnotations(); 566 EmitStaticExternCAliases(); 567 checkAliases(); 568 EmitDeferredUnusedCoverageMappings(); 569 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 570 if (CoverageMapping) 571 CoverageMapping->emit(); 572 if (CodeGenOpts.SanitizeCfiCrossDso) { 573 CodeGenFunction(*this).EmitCfiCheckFail(); 574 CodeGenFunction(*this).EmitCfiCheckStub(); 575 } 576 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 577 finalizeKCFITypes(); 578 emitAtAvailableLinkGuard(); 579 if (Context.getTargetInfo().getTriple().isWasm()) 580 EmitMainVoidAlias(); 581 582 if (getTriple().isAMDGPU()) { 583 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 584 // preserve ASAN functions in bitcode libraries. 585 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 586 auto *FT = llvm::FunctionType::get(VoidTy, {}); 587 auto *F = llvm::Function::Create( 588 FT, llvm::GlobalValue::ExternalLinkage, 589 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 590 auto *Var = new llvm::GlobalVariable( 591 getModule(), FT->getPointerTo(), 592 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 593 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 594 llvm::GlobalVariable::NotThreadLocal); 595 addCompilerUsedGlobal(Var); 596 } 597 // Emit amdgpu_code_object_version module flag, which is code object version 598 // times 100. 599 if (getTarget().getTargetOpts().CodeObjectVersion != 600 TargetOptions::COV_None) { 601 getModule().addModuleFlag(llvm::Module::Error, 602 "amdgpu_code_object_version", 603 getTarget().getTargetOpts().CodeObjectVersion); 604 } 605 } 606 607 // Emit a global array containing all external kernels or device variables 608 // used by host functions and mark it as used for CUDA/HIP. This is necessary 609 // to get kernels or device variables in archives linked in even if these 610 // kernels or device variables are only used in host functions. 611 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 612 SmallVector<llvm::Constant *, 8> UsedArray; 613 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 614 GlobalDecl GD; 615 if (auto *FD = dyn_cast<FunctionDecl>(D)) 616 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 617 else 618 GD = GlobalDecl(D); 619 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 620 GetAddrOfGlobal(GD), Int8PtrTy)); 621 } 622 623 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 624 625 auto *GV = new llvm::GlobalVariable( 626 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 627 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 628 addCompilerUsedGlobal(GV); 629 } 630 631 emitLLVMUsed(); 632 if (SanStats) 633 SanStats->finish(); 634 635 if (CodeGenOpts.Autolink && 636 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 637 EmitModuleLinkOptions(); 638 } 639 640 // On ELF we pass the dependent library specifiers directly to the linker 641 // without manipulating them. This is in contrast to other platforms where 642 // they are mapped to a specific linker option by the compiler. This 643 // difference is a result of the greater variety of ELF linkers and the fact 644 // that ELF linkers tend to handle libraries in a more complicated fashion 645 // than on other platforms. This forces us to defer handling the dependent 646 // libs to the linker. 647 // 648 // CUDA/HIP device and host libraries are different. Currently there is no 649 // way to differentiate dependent libraries for host or device. Existing 650 // usage of #pragma comment(lib, *) is intended for host libraries on 651 // Windows. Therefore emit llvm.dependent-libraries only for host. 652 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 653 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 654 for (auto *MD : ELFDependentLibraries) 655 NMD->addOperand(MD); 656 } 657 658 // Record mregparm value now so it is visible through rest of codegen. 659 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 660 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 661 CodeGenOpts.NumRegisterParameters); 662 663 if (CodeGenOpts.DwarfVersion) { 664 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 665 CodeGenOpts.DwarfVersion); 666 } 667 668 if (CodeGenOpts.Dwarf64) 669 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 670 671 if (Context.getLangOpts().SemanticInterposition) 672 // Require various optimization to respect semantic interposition. 673 getModule().setSemanticInterposition(true); 674 675 if (CodeGenOpts.EmitCodeView) { 676 // Indicate that we want CodeView in the metadata. 677 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 678 } 679 if (CodeGenOpts.CodeViewGHash) { 680 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 681 } 682 if (CodeGenOpts.ControlFlowGuard) { 683 // Function ID tables and checks for Control Flow Guard (cfguard=2). 684 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 685 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 686 // Function ID tables for Control Flow Guard (cfguard=1). 687 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 688 } 689 if (CodeGenOpts.EHContGuard) { 690 // Function ID tables for EH Continuation Guard. 691 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 692 } 693 if (Context.getLangOpts().Kernel) { 694 // Note if we are compiling with /kernel. 695 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 696 } 697 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 698 // We don't support LTO with 2 with different StrictVTablePointers 699 // FIXME: we could support it by stripping all the information introduced 700 // by StrictVTablePointers. 701 702 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 703 704 llvm::Metadata *Ops[2] = { 705 llvm::MDString::get(VMContext, "StrictVTablePointers"), 706 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 707 llvm::Type::getInt32Ty(VMContext), 1))}; 708 709 getModule().addModuleFlag(llvm::Module::Require, 710 "StrictVTablePointersRequirement", 711 llvm::MDNode::get(VMContext, Ops)); 712 } 713 if (getModuleDebugInfo()) 714 // We support a single version in the linked module. The LLVM 715 // parser will drop debug info with a different version number 716 // (and warn about it, too). 717 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 718 llvm::DEBUG_METADATA_VERSION); 719 720 // We need to record the widths of enums and wchar_t, so that we can generate 721 // the correct build attributes in the ARM backend. wchar_size is also used by 722 // TargetLibraryInfo. 723 uint64_t WCharWidth = 724 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 725 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 726 727 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 728 if ( Arch == llvm::Triple::arm 729 || Arch == llvm::Triple::armeb 730 || Arch == llvm::Triple::thumb 731 || Arch == llvm::Triple::thumbeb) { 732 // The minimum width of an enum in bytes 733 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 734 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 735 } 736 737 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 738 StringRef ABIStr = Target.getABI(); 739 llvm::LLVMContext &Ctx = TheModule.getContext(); 740 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 741 llvm::MDString::get(Ctx, ABIStr)); 742 } 743 744 if (CodeGenOpts.SanitizeCfiCrossDso) { 745 // Indicate that we want cross-DSO control flow integrity checks. 746 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 747 } 748 749 if (CodeGenOpts.WholeProgramVTables) { 750 // Indicate whether VFE was enabled for this module, so that the 751 // vcall_visibility metadata added under whole program vtables is handled 752 // appropriately in the optimizer. 753 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 754 CodeGenOpts.VirtualFunctionElimination); 755 } 756 757 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 758 getModule().addModuleFlag(llvm::Module::Override, 759 "CFI Canonical Jump Tables", 760 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 761 } 762 763 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 764 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 765 // KCFI assumes patchable-function-prefix is the same for all indirectly 766 // called functions. Store the expected offset for code generation. 767 if (CodeGenOpts.PatchableFunctionEntryOffset) 768 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 769 CodeGenOpts.PatchableFunctionEntryOffset); 770 } 771 772 if (CodeGenOpts.CFProtectionReturn && 773 Target.checkCFProtectionReturnSupported(getDiags())) { 774 // Indicate that we want to instrument return control flow protection. 775 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 776 1); 777 } 778 779 if (CodeGenOpts.CFProtectionBranch && 780 Target.checkCFProtectionBranchSupported(getDiags())) { 781 // Indicate that we want to instrument branch control flow protection. 782 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 783 1); 784 } 785 786 if (CodeGenOpts.FunctionReturnThunks) 787 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 788 789 if (CodeGenOpts.IndirectBranchCSPrefix) 790 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 791 792 // Add module metadata for return address signing (ignoring 793 // non-leaf/all) and stack tagging. These are actually turned on by function 794 // attributes, but we use module metadata to emit build attributes. This is 795 // needed for LTO, where the function attributes are inside bitcode 796 // serialised into a global variable by the time build attributes are 797 // emitted, so we can't access them. LTO objects could be compiled with 798 // different flags therefore module flags are set to "Min" behavior to achieve 799 // the same end result of the normal build where e.g BTI is off if any object 800 // doesn't support it. 801 if (Context.getTargetInfo().hasFeature("ptrauth") && 802 LangOpts.getSignReturnAddressScope() != 803 LangOptions::SignReturnAddressScopeKind::None) 804 getModule().addModuleFlag(llvm::Module::Override, 805 "sign-return-address-buildattr", 1); 806 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 807 getModule().addModuleFlag(llvm::Module::Override, 808 "tag-stack-memory-buildattr", 1); 809 810 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 811 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 812 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 813 Arch == llvm::Triple::aarch64_be) { 814 if (LangOpts.BranchTargetEnforcement) 815 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 816 1); 817 if (LangOpts.hasSignReturnAddress()) 818 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 819 if (LangOpts.isSignReturnAddressScopeAll()) 820 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 821 1); 822 if (!LangOpts.isSignReturnAddressWithAKey()) 823 getModule().addModuleFlag(llvm::Module::Min, 824 "sign-return-address-with-bkey", 1); 825 } 826 827 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 828 llvm::LLVMContext &Ctx = TheModule.getContext(); 829 getModule().addModuleFlag( 830 llvm::Module::Error, "MemProfProfileFilename", 831 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 832 } 833 834 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 835 // Indicate whether __nvvm_reflect should be configured to flush denormal 836 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 837 // property.) 838 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 839 CodeGenOpts.FP32DenormalMode.Output != 840 llvm::DenormalMode::IEEE); 841 } 842 843 if (LangOpts.EHAsynch) 844 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 845 846 // Indicate whether this Module was compiled with -fopenmp 847 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 848 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 849 if (getLangOpts().OpenMPIsDevice) 850 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 851 LangOpts.OpenMP); 852 853 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 854 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 855 EmitOpenCLMetadata(); 856 // Emit SPIR version. 857 if (getTriple().isSPIR()) { 858 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 859 // opencl.spir.version named metadata. 860 // C++ for OpenCL has a distinct mapping for version compatibility with 861 // OpenCL. 862 auto Version = LangOpts.getOpenCLCompatibleVersion(); 863 llvm::Metadata *SPIRVerElts[] = { 864 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 865 Int32Ty, Version / 100)), 866 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 867 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 868 llvm::NamedMDNode *SPIRVerMD = 869 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 870 llvm::LLVMContext &Ctx = TheModule.getContext(); 871 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 872 } 873 } 874 875 // HLSL related end of code gen work items. 876 if (LangOpts.HLSL) 877 getHLSLRuntime().finishCodeGen(); 878 879 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 880 assert(PLevel < 3 && "Invalid PIC Level"); 881 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 882 if (Context.getLangOpts().PIE) 883 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 884 } 885 886 if (getCodeGenOpts().CodeModel.size() > 0) { 887 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 888 .Case("tiny", llvm::CodeModel::Tiny) 889 .Case("small", llvm::CodeModel::Small) 890 .Case("kernel", llvm::CodeModel::Kernel) 891 .Case("medium", llvm::CodeModel::Medium) 892 .Case("large", llvm::CodeModel::Large) 893 .Default(~0u); 894 if (CM != ~0u) { 895 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 896 getModule().setCodeModel(codeModel); 897 } 898 } 899 900 if (CodeGenOpts.NoPLT) 901 getModule().setRtLibUseGOT(); 902 if (CodeGenOpts.UnwindTables) 903 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 904 905 switch (CodeGenOpts.getFramePointer()) { 906 case CodeGenOptions::FramePointerKind::None: 907 // 0 ("none") is the default. 908 break; 909 case CodeGenOptions::FramePointerKind::NonLeaf: 910 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 911 break; 912 case CodeGenOptions::FramePointerKind::All: 913 getModule().setFramePointer(llvm::FramePointerKind::All); 914 break; 915 } 916 917 SimplifyPersonality(); 918 919 if (getCodeGenOpts().EmitDeclMetadata) 920 EmitDeclMetadata(); 921 922 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 923 EmitCoverageFile(); 924 925 if (CGDebugInfo *DI = getModuleDebugInfo()) 926 DI->finalize(); 927 928 if (getCodeGenOpts().EmitVersionIdentMetadata) 929 EmitVersionIdentMetadata(); 930 931 if (!getCodeGenOpts().RecordCommandLine.empty()) 932 EmitCommandLineMetadata(); 933 934 if (!getCodeGenOpts().StackProtectorGuard.empty()) 935 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 936 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 937 getModule().setStackProtectorGuardReg( 938 getCodeGenOpts().StackProtectorGuardReg); 939 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 940 getModule().setStackProtectorGuardSymbol( 941 getCodeGenOpts().StackProtectorGuardSymbol); 942 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 943 getModule().setStackProtectorGuardOffset( 944 getCodeGenOpts().StackProtectorGuardOffset); 945 if (getCodeGenOpts().StackAlignment) 946 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 947 if (getCodeGenOpts().SkipRaxSetup) 948 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 949 950 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 951 952 EmitBackendOptionsMetadata(getCodeGenOpts()); 953 954 // If there is device offloading code embed it in the host now. 955 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 956 957 // Set visibility from DLL storage class 958 // We do this at the end of LLVM IR generation; after any operation 959 // that might affect the DLL storage class or the visibility, and 960 // before anything that might act on these. 961 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 962 } 963 964 void CodeGenModule::EmitOpenCLMetadata() { 965 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 966 // opencl.ocl.version named metadata node. 967 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 968 auto Version = LangOpts.getOpenCLCompatibleVersion(); 969 llvm::Metadata *OCLVerElts[] = { 970 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 971 Int32Ty, Version / 100)), 972 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 973 Int32Ty, (Version % 100) / 10))}; 974 llvm::NamedMDNode *OCLVerMD = 975 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 976 llvm::LLVMContext &Ctx = TheModule.getContext(); 977 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 978 } 979 980 void CodeGenModule::EmitBackendOptionsMetadata( 981 const CodeGenOptions CodeGenOpts) { 982 if (getTriple().isRISCV()) { 983 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 984 CodeGenOpts.SmallDataLimit); 985 } 986 } 987 988 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 989 // Make sure that this type is translated. 990 Types.UpdateCompletedType(TD); 991 } 992 993 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 994 // Make sure that this type is translated. 995 Types.RefreshTypeCacheForClass(RD); 996 } 997 998 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 999 if (!TBAA) 1000 return nullptr; 1001 return TBAA->getTypeInfo(QTy); 1002 } 1003 1004 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1005 if (!TBAA) 1006 return TBAAAccessInfo(); 1007 if (getLangOpts().CUDAIsDevice) { 1008 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1009 // access info. 1010 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1011 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1012 nullptr) 1013 return TBAAAccessInfo(); 1014 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1015 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1016 nullptr) 1017 return TBAAAccessInfo(); 1018 } 1019 } 1020 return TBAA->getAccessInfo(AccessType); 1021 } 1022 1023 TBAAAccessInfo 1024 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1025 if (!TBAA) 1026 return TBAAAccessInfo(); 1027 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1028 } 1029 1030 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1031 if (!TBAA) 1032 return nullptr; 1033 return TBAA->getTBAAStructInfo(QTy); 1034 } 1035 1036 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1037 if (!TBAA) 1038 return nullptr; 1039 return TBAA->getBaseTypeInfo(QTy); 1040 } 1041 1042 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1043 if (!TBAA) 1044 return nullptr; 1045 return TBAA->getAccessTagInfo(Info); 1046 } 1047 1048 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1049 TBAAAccessInfo TargetInfo) { 1050 if (!TBAA) 1051 return TBAAAccessInfo(); 1052 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1053 } 1054 1055 TBAAAccessInfo 1056 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1057 TBAAAccessInfo InfoB) { 1058 if (!TBAA) 1059 return TBAAAccessInfo(); 1060 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1061 } 1062 1063 TBAAAccessInfo 1064 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1065 TBAAAccessInfo SrcInfo) { 1066 if (!TBAA) 1067 return TBAAAccessInfo(); 1068 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1069 } 1070 1071 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1072 TBAAAccessInfo TBAAInfo) { 1073 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1074 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1075 } 1076 1077 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1078 llvm::Instruction *I, const CXXRecordDecl *RD) { 1079 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1080 llvm::MDNode::get(getLLVMContext(), {})); 1081 } 1082 1083 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1084 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1085 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1086 } 1087 1088 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1089 /// specified stmt yet. 1090 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1091 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1092 "cannot compile this %0 yet"); 1093 std::string Msg = Type; 1094 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1095 << Msg << S->getSourceRange(); 1096 } 1097 1098 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1099 /// specified decl yet. 1100 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1101 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1102 "cannot compile this %0 yet"); 1103 std::string Msg = Type; 1104 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1105 } 1106 1107 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1108 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1109 } 1110 1111 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1112 const NamedDecl *D) const { 1113 // Internal definitions always have default visibility. 1114 if (GV->hasLocalLinkage()) { 1115 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1116 return; 1117 } 1118 if (!D) 1119 return; 1120 // Set visibility for definitions, and for declarations if requested globally 1121 // or set explicitly. 1122 LinkageInfo LV = D->getLinkageAndVisibility(); 1123 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1124 // Reject incompatible dlllstorage and visibility annotations. 1125 if (!LV.isVisibilityExplicit()) 1126 return; 1127 if (GV->hasDLLExportStorageClass()) { 1128 if (LV.getVisibility() == HiddenVisibility) 1129 getDiags().Report(D->getLocation(), 1130 diag::err_hidden_visibility_dllexport); 1131 } else if (LV.getVisibility() != DefaultVisibility) { 1132 getDiags().Report(D->getLocation(), 1133 diag::err_non_default_visibility_dllimport); 1134 } 1135 return; 1136 } 1137 1138 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1139 !GV->isDeclarationForLinker()) 1140 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1141 } 1142 1143 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1144 llvm::GlobalValue *GV) { 1145 if (GV->hasLocalLinkage()) 1146 return true; 1147 1148 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1149 return true; 1150 1151 // DLLImport explicitly marks the GV as external. 1152 if (GV->hasDLLImportStorageClass()) 1153 return false; 1154 1155 const llvm::Triple &TT = CGM.getTriple(); 1156 if (TT.isWindowsGNUEnvironment()) { 1157 // In MinGW, variables without DLLImport can still be automatically 1158 // imported from a DLL by the linker; don't mark variables that 1159 // potentially could come from another DLL as DSO local. 1160 1161 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1162 // (and this actually happens in the public interface of libstdc++), so 1163 // such variables can't be marked as DSO local. (Native TLS variables 1164 // can't be dllimported at all, though.) 1165 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1166 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1167 return false; 1168 } 1169 1170 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1171 // remain unresolved in the link, they can be resolved to zero, which is 1172 // outside the current DSO. 1173 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1174 return false; 1175 1176 // Every other GV is local on COFF. 1177 // Make an exception for windows OS in the triple: Some firmware builds use 1178 // *-win32-macho triples. This (accidentally?) produced windows relocations 1179 // without GOT tables in older clang versions; Keep this behaviour. 1180 // FIXME: even thread local variables? 1181 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1182 return true; 1183 1184 // Only handle COFF and ELF for now. 1185 if (!TT.isOSBinFormatELF()) 1186 return false; 1187 1188 // If this is not an executable, don't assume anything is local. 1189 const auto &CGOpts = CGM.getCodeGenOpts(); 1190 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1191 const auto &LOpts = CGM.getLangOpts(); 1192 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1193 // On ELF, if -fno-semantic-interposition is specified and the target 1194 // supports local aliases, there will be neither CC1 1195 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1196 // dso_local on the function if using a local alias is preferable (can avoid 1197 // PLT indirection). 1198 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1199 return false; 1200 return !(CGM.getLangOpts().SemanticInterposition || 1201 CGM.getLangOpts().HalfNoSemanticInterposition); 1202 } 1203 1204 // A definition cannot be preempted from an executable. 1205 if (!GV->isDeclarationForLinker()) 1206 return true; 1207 1208 // Most PIC code sequences that assume that a symbol is local cannot produce a 1209 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1210 // depended, it seems worth it to handle it here. 1211 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1212 return false; 1213 1214 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1215 if (TT.isPPC64()) 1216 return false; 1217 1218 if (CGOpts.DirectAccessExternalData) { 1219 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1220 // for non-thread-local variables. If the symbol is not defined in the 1221 // executable, a copy relocation will be needed at link time. dso_local is 1222 // excluded for thread-local variables because they generally don't support 1223 // copy relocations. 1224 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1225 if (!Var->isThreadLocal()) 1226 return true; 1227 1228 // -fno-pic sets dso_local on a function declaration to allow direct 1229 // accesses when taking its address (similar to a data symbol). If the 1230 // function is not defined in the executable, a canonical PLT entry will be 1231 // needed at link time. -fno-direct-access-external-data can avoid the 1232 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1233 // it could just cause trouble without providing perceptible benefits. 1234 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1235 return true; 1236 } 1237 1238 // If we can use copy relocations we can assume it is local. 1239 1240 // Otherwise don't assume it is local. 1241 return false; 1242 } 1243 1244 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1245 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1246 } 1247 1248 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1249 GlobalDecl GD) const { 1250 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1251 // C++ destructors have a few C++ ABI specific special cases. 1252 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1253 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1254 return; 1255 } 1256 setDLLImportDLLExport(GV, D); 1257 } 1258 1259 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1260 const NamedDecl *D) const { 1261 if (D && D->isExternallyVisible()) { 1262 if (D->hasAttr<DLLImportAttr>()) 1263 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1264 else if ((D->hasAttr<DLLExportAttr>() || 1265 shouldMapVisibilityToDLLExport(D)) && 1266 !GV->isDeclarationForLinker()) 1267 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1268 } 1269 } 1270 1271 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1272 GlobalDecl GD) const { 1273 setDLLImportDLLExport(GV, GD); 1274 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1275 } 1276 1277 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1278 const NamedDecl *D) const { 1279 setDLLImportDLLExport(GV, D); 1280 setGVPropertiesAux(GV, D); 1281 } 1282 1283 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1284 const NamedDecl *D) const { 1285 setGlobalVisibility(GV, D); 1286 setDSOLocal(GV); 1287 GV->setPartition(CodeGenOpts.SymbolPartition); 1288 } 1289 1290 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1291 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1292 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1293 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1294 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1295 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1296 } 1297 1298 llvm::GlobalVariable::ThreadLocalMode 1299 CodeGenModule::GetDefaultLLVMTLSModel() const { 1300 switch (CodeGenOpts.getDefaultTLSModel()) { 1301 case CodeGenOptions::GeneralDynamicTLSModel: 1302 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1303 case CodeGenOptions::LocalDynamicTLSModel: 1304 return llvm::GlobalVariable::LocalDynamicTLSModel; 1305 case CodeGenOptions::InitialExecTLSModel: 1306 return llvm::GlobalVariable::InitialExecTLSModel; 1307 case CodeGenOptions::LocalExecTLSModel: 1308 return llvm::GlobalVariable::LocalExecTLSModel; 1309 } 1310 llvm_unreachable("Invalid TLS model!"); 1311 } 1312 1313 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1314 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1315 1316 llvm::GlobalValue::ThreadLocalMode TLM; 1317 TLM = GetDefaultLLVMTLSModel(); 1318 1319 // Override the TLS model if it is explicitly specified. 1320 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1321 TLM = GetLLVMTLSModel(Attr->getModel()); 1322 } 1323 1324 GV->setThreadLocalMode(TLM); 1325 } 1326 1327 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1328 StringRef Name) { 1329 const TargetInfo &Target = CGM.getTarget(); 1330 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1331 } 1332 1333 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1334 const CPUSpecificAttr *Attr, 1335 unsigned CPUIndex, 1336 raw_ostream &Out) { 1337 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1338 // supported. 1339 if (Attr) 1340 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1341 else if (CGM.getTarget().supportsIFunc()) 1342 Out << ".resolver"; 1343 } 1344 1345 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1346 const TargetVersionAttr *Attr, 1347 raw_ostream &Out) { 1348 if (Attr->isDefaultVersion()) 1349 return; 1350 Out << "._"; 1351 llvm::SmallVector<StringRef, 8> Feats; 1352 Attr->getFeatures(Feats); 1353 for (const auto &Feat : Feats) { 1354 Out << 'M'; 1355 Out << Feat; 1356 } 1357 } 1358 1359 static void AppendTargetMangling(const CodeGenModule &CGM, 1360 const TargetAttr *Attr, raw_ostream &Out) { 1361 if (Attr->isDefaultVersion()) 1362 return; 1363 1364 Out << '.'; 1365 const TargetInfo &Target = CGM.getTarget(); 1366 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1367 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1368 // Multiversioning doesn't allow "no-${feature}", so we can 1369 // only have "+" prefixes here. 1370 assert(LHS.startswith("+") && RHS.startswith("+") && 1371 "Features should always have a prefix."); 1372 return Target.multiVersionSortPriority(LHS.substr(1)) > 1373 Target.multiVersionSortPriority(RHS.substr(1)); 1374 }); 1375 1376 bool IsFirst = true; 1377 1378 if (!Info.CPU.empty()) { 1379 IsFirst = false; 1380 Out << "arch_" << Info.CPU; 1381 } 1382 1383 for (StringRef Feat : Info.Features) { 1384 if (!IsFirst) 1385 Out << '_'; 1386 IsFirst = false; 1387 Out << Feat.substr(1); 1388 } 1389 } 1390 1391 // Returns true if GD is a function decl with internal linkage and 1392 // needs a unique suffix after the mangled name. 1393 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1394 CodeGenModule &CGM) { 1395 const Decl *D = GD.getDecl(); 1396 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1397 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1398 } 1399 1400 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1401 const TargetClonesAttr *Attr, 1402 unsigned VersionIndex, 1403 raw_ostream &Out) { 1404 if (CGM.getTarget().getTriple().isAArch64()) { 1405 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1406 if (FeatureStr == "default") 1407 return; 1408 Out << "._"; 1409 SmallVector<StringRef, 8> Features; 1410 FeatureStr.split(Features, "+"); 1411 for (auto &Feat : Features) { 1412 Out << 'M'; 1413 Out << Feat; 1414 } 1415 } else { 1416 Out << '.'; 1417 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1418 if (FeatureStr.startswith("arch=")) 1419 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1420 else 1421 Out << FeatureStr; 1422 1423 Out << '.' << Attr->getMangledIndex(VersionIndex); 1424 } 1425 } 1426 1427 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1428 const NamedDecl *ND, 1429 bool OmitMultiVersionMangling = false) { 1430 SmallString<256> Buffer; 1431 llvm::raw_svector_ostream Out(Buffer); 1432 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1433 if (!CGM.getModuleNameHash().empty()) 1434 MC.needsUniqueInternalLinkageNames(); 1435 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1436 if (ShouldMangle) 1437 MC.mangleName(GD.getWithDecl(ND), Out); 1438 else { 1439 IdentifierInfo *II = ND->getIdentifier(); 1440 assert(II && "Attempt to mangle unnamed decl."); 1441 const auto *FD = dyn_cast<FunctionDecl>(ND); 1442 1443 if (FD && 1444 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1445 Out << "__regcall3__" << II->getName(); 1446 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1447 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1448 Out << "__device_stub__" << II->getName(); 1449 } else { 1450 Out << II->getName(); 1451 } 1452 } 1453 1454 // Check if the module name hash should be appended for internal linkage 1455 // symbols. This should come before multi-version target suffixes are 1456 // appended. This is to keep the name and module hash suffix of the 1457 // internal linkage function together. The unique suffix should only be 1458 // added when name mangling is done to make sure that the final name can 1459 // be properly demangled. For example, for C functions without prototypes, 1460 // name mangling is not done and the unique suffix should not be appeneded 1461 // then. 1462 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1463 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1464 "Hash computed when not explicitly requested"); 1465 Out << CGM.getModuleNameHash(); 1466 } 1467 1468 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1469 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1470 switch (FD->getMultiVersionKind()) { 1471 case MultiVersionKind::CPUDispatch: 1472 case MultiVersionKind::CPUSpecific: 1473 AppendCPUSpecificCPUDispatchMangling(CGM, 1474 FD->getAttr<CPUSpecificAttr>(), 1475 GD.getMultiVersionIndex(), Out); 1476 break; 1477 case MultiVersionKind::Target: 1478 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1479 break; 1480 case MultiVersionKind::TargetVersion: 1481 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1482 break; 1483 case MultiVersionKind::TargetClones: 1484 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1485 GD.getMultiVersionIndex(), Out); 1486 break; 1487 case MultiVersionKind::None: 1488 llvm_unreachable("None multiversion type isn't valid here"); 1489 } 1490 } 1491 1492 // Make unique name for device side static file-scope variable for HIP. 1493 if (CGM.getContext().shouldExternalize(ND) && 1494 CGM.getLangOpts().GPURelocatableDeviceCode && 1495 CGM.getLangOpts().CUDAIsDevice) 1496 CGM.printPostfixForExternalizedDecl(Out, ND); 1497 1498 return std::string(Out.str()); 1499 } 1500 1501 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1502 const FunctionDecl *FD, 1503 StringRef &CurName) { 1504 if (!FD->isMultiVersion()) 1505 return; 1506 1507 // Get the name of what this would be without the 'target' attribute. This 1508 // allows us to lookup the version that was emitted when this wasn't a 1509 // multiversion function. 1510 std::string NonTargetName = 1511 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1512 GlobalDecl OtherGD; 1513 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1514 assert(OtherGD.getCanonicalDecl() 1515 .getDecl() 1516 ->getAsFunction() 1517 ->isMultiVersion() && 1518 "Other GD should now be a multiversioned function"); 1519 // OtherFD is the version of this function that was mangled BEFORE 1520 // becoming a MultiVersion function. It potentially needs to be updated. 1521 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1522 .getDecl() 1523 ->getAsFunction() 1524 ->getMostRecentDecl(); 1525 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1526 // This is so that if the initial version was already the 'default' 1527 // version, we don't try to update it. 1528 if (OtherName != NonTargetName) { 1529 // Remove instead of erase, since others may have stored the StringRef 1530 // to this. 1531 const auto ExistingRecord = Manglings.find(NonTargetName); 1532 if (ExistingRecord != std::end(Manglings)) 1533 Manglings.remove(&(*ExistingRecord)); 1534 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1535 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1536 Result.first->first(); 1537 // If this is the current decl is being created, make sure we update the name. 1538 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1539 CurName = OtherNameRef; 1540 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1541 Entry->setName(OtherName); 1542 } 1543 } 1544 } 1545 1546 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1547 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1548 1549 // Some ABIs don't have constructor variants. Make sure that base and 1550 // complete constructors get mangled the same. 1551 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1552 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1553 CXXCtorType OrigCtorType = GD.getCtorType(); 1554 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1555 if (OrigCtorType == Ctor_Base) 1556 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1557 } 1558 } 1559 1560 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1561 // static device variable depends on whether the variable is referenced by 1562 // a host or device host function. Therefore the mangled name cannot be 1563 // cached. 1564 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1565 auto FoundName = MangledDeclNames.find(CanonicalGD); 1566 if (FoundName != MangledDeclNames.end()) 1567 return FoundName->second; 1568 } 1569 1570 // Keep the first result in the case of a mangling collision. 1571 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1572 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1573 1574 // Ensure either we have different ABIs between host and device compilations, 1575 // says host compilation following MSVC ABI but device compilation follows 1576 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1577 // mangling should be the same after name stubbing. The later checking is 1578 // very important as the device kernel name being mangled in host-compilation 1579 // is used to resolve the device binaries to be executed. Inconsistent naming 1580 // result in undefined behavior. Even though we cannot check that naming 1581 // directly between host- and device-compilations, the host- and 1582 // device-mangling in host compilation could help catching certain ones. 1583 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1584 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1585 (getContext().getAuxTargetInfo() && 1586 (getContext().getAuxTargetInfo()->getCXXABI() != 1587 getContext().getTargetInfo().getCXXABI())) || 1588 getCUDARuntime().getDeviceSideName(ND) == 1589 getMangledNameImpl( 1590 *this, 1591 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1592 ND)); 1593 1594 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1595 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1596 } 1597 1598 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1599 const BlockDecl *BD) { 1600 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1601 const Decl *D = GD.getDecl(); 1602 1603 SmallString<256> Buffer; 1604 llvm::raw_svector_ostream Out(Buffer); 1605 if (!D) 1606 MangleCtx.mangleGlobalBlock(BD, 1607 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1608 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1609 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1610 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1611 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1612 else 1613 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1614 1615 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1616 return Result.first->first(); 1617 } 1618 1619 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1620 auto it = MangledDeclNames.begin(); 1621 while (it != MangledDeclNames.end()) { 1622 if (it->second == Name) 1623 return it->first; 1624 it++; 1625 } 1626 return GlobalDecl(); 1627 } 1628 1629 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1630 return getModule().getNamedValue(Name); 1631 } 1632 1633 /// AddGlobalCtor - Add a function to the list that will be called before 1634 /// main() runs. 1635 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1636 unsigned LexOrder, 1637 llvm::Constant *AssociatedData) { 1638 // FIXME: Type coercion of void()* types. 1639 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1640 } 1641 1642 /// AddGlobalDtor - Add a function to the list that will be called 1643 /// when the module is unloaded. 1644 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1645 bool IsDtorAttrFunc) { 1646 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1647 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1648 DtorsUsingAtExit[Priority].push_back(Dtor); 1649 return; 1650 } 1651 1652 // FIXME: Type coercion of void()* types. 1653 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1654 } 1655 1656 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1657 if (Fns.empty()) return; 1658 1659 // Ctor function type is void()*. 1660 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1661 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1662 TheModule.getDataLayout().getProgramAddressSpace()); 1663 1664 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1665 llvm::StructType *CtorStructTy = llvm::StructType::get( 1666 Int32Ty, CtorPFTy, VoidPtrTy); 1667 1668 // Construct the constructor and destructor arrays. 1669 ConstantInitBuilder builder(*this); 1670 auto ctors = builder.beginArray(CtorStructTy); 1671 for (const auto &I : Fns) { 1672 auto ctor = ctors.beginStruct(CtorStructTy); 1673 ctor.addInt(Int32Ty, I.Priority); 1674 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1675 if (I.AssociatedData) 1676 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1677 else 1678 ctor.addNullPointer(VoidPtrTy); 1679 ctor.finishAndAddTo(ctors); 1680 } 1681 1682 auto list = 1683 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1684 /*constant*/ false, 1685 llvm::GlobalValue::AppendingLinkage); 1686 1687 // The LTO linker doesn't seem to like it when we set an alignment 1688 // on appending variables. Take it off as a workaround. 1689 list->setAlignment(std::nullopt); 1690 1691 Fns.clear(); 1692 } 1693 1694 llvm::GlobalValue::LinkageTypes 1695 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1696 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1697 1698 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1699 1700 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1701 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1702 1703 if (isa<CXXConstructorDecl>(D) && 1704 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1705 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1706 // Our approach to inheriting constructors is fundamentally different from 1707 // that used by the MS ABI, so keep our inheriting constructor thunks 1708 // internal rather than trying to pick an unambiguous mangling for them. 1709 return llvm::GlobalValue::InternalLinkage; 1710 } 1711 1712 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1713 } 1714 1715 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1716 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1717 if (!MDS) return nullptr; 1718 1719 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1720 } 1721 1722 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1723 if (auto *FnType = T->getAs<FunctionProtoType>()) 1724 T = getContext().getFunctionType( 1725 FnType->getReturnType(), FnType->getParamTypes(), 1726 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 1727 1728 std::string OutName; 1729 llvm::raw_string_ostream Out(OutName); 1730 getCXXABI().getMangleContext().mangleTypeName(T, Out); 1731 1732 return llvm::ConstantInt::get(Int32Ty, 1733 static_cast<uint32_t>(llvm::xxHash64(OutName))); 1734 } 1735 1736 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1737 const CGFunctionInfo &Info, 1738 llvm::Function *F, bool IsThunk) { 1739 unsigned CallingConv; 1740 llvm::AttributeList PAL; 1741 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1742 /*AttrOnCallSite=*/false, IsThunk); 1743 F->setAttributes(PAL); 1744 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1745 } 1746 1747 static void removeImageAccessQualifier(std::string& TyName) { 1748 std::string ReadOnlyQual("__read_only"); 1749 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1750 if (ReadOnlyPos != std::string::npos) 1751 // "+ 1" for the space after access qualifier. 1752 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1753 else { 1754 std::string WriteOnlyQual("__write_only"); 1755 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1756 if (WriteOnlyPos != std::string::npos) 1757 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1758 else { 1759 std::string ReadWriteQual("__read_write"); 1760 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1761 if (ReadWritePos != std::string::npos) 1762 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1763 } 1764 } 1765 } 1766 1767 // Returns the address space id that should be produced to the 1768 // kernel_arg_addr_space metadata. This is always fixed to the ids 1769 // as specified in the SPIR 2.0 specification in order to differentiate 1770 // for example in clGetKernelArgInfo() implementation between the address 1771 // spaces with targets without unique mapping to the OpenCL address spaces 1772 // (basically all single AS CPUs). 1773 static unsigned ArgInfoAddressSpace(LangAS AS) { 1774 switch (AS) { 1775 case LangAS::opencl_global: 1776 return 1; 1777 case LangAS::opencl_constant: 1778 return 2; 1779 case LangAS::opencl_local: 1780 return 3; 1781 case LangAS::opencl_generic: 1782 return 4; // Not in SPIR 2.0 specs. 1783 case LangAS::opencl_global_device: 1784 return 5; 1785 case LangAS::opencl_global_host: 1786 return 6; 1787 default: 1788 return 0; // Assume private. 1789 } 1790 } 1791 1792 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1793 const FunctionDecl *FD, 1794 CodeGenFunction *CGF) { 1795 assert(((FD && CGF) || (!FD && !CGF)) && 1796 "Incorrect use - FD and CGF should either be both null or not!"); 1797 // Create MDNodes that represent the kernel arg metadata. 1798 // Each MDNode is a list in the form of "key", N number of values which is 1799 // the same number of values as their are kernel arguments. 1800 1801 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1802 1803 // MDNode for the kernel argument address space qualifiers. 1804 SmallVector<llvm::Metadata *, 8> addressQuals; 1805 1806 // MDNode for the kernel argument access qualifiers (images only). 1807 SmallVector<llvm::Metadata *, 8> accessQuals; 1808 1809 // MDNode for the kernel argument type names. 1810 SmallVector<llvm::Metadata *, 8> argTypeNames; 1811 1812 // MDNode for the kernel argument base type names. 1813 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1814 1815 // MDNode for the kernel argument type qualifiers. 1816 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1817 1818 // MDNode for the kernel argument names. 1819 SmallVector<llvm::Metadata *, 8> argNames; 1820 1821 if (FD && CGF) 1822 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1823 const ParmVarDecl *parm = FD->getParamDecl(i); 1824 // Get argument name. 1825 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1826 1827 if (!getLangOpts().OpenCL) 1828 continue; 1829 QualType ty = parm->getType(); 1830 std::string typeQuals; 1831 1832 // Get image and pipe access qualifier: 1833 if (ty->isImageType() || ty->isPipeType()) { 1834 const Decl *PDecl = parm; 1835 if (const auto *TD = ty->getAs<TypedefType>()) 1836 PDecl = TD->getDecl(); 1837 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1838 if (A && A->isWriteOnly()) 1839 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1840 else if (A && A->isReadWrite()) 1841 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1842 else 1843 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1844 } else 1845 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1846 1847 auto getTypeSpelling = [&](QualType Ty) { 1848 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1849 1850 if (Ty.isCanonical()) { 1851 StringRef typeNameRef = typeName; 1852 // Turn "unsigned type" to "utype" 1853 if (typeNameRef.consume_front("unsigned ")) 1854 return std::string("u") + typeNameRef.str(); 1855 if (typeNameRef.consume_front("signed ")) 1856 return typeNameRef.str(); 1857 } 1858 1859 return typeName; 1860 }; 1861 1862 if (ty->isPointerType()) { 1863 QualType pointeeTy = ty->getPointeeType(); 1864 1865 // Get address qualifier. 1866 addressQuals.push_back( 1867 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1868 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1869 1870 // Get argument type name. 1871 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1872 std::string baseTypeName = 1873 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1874 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1875 argBaseTypeNames.push_back( 1876 llvm::MDString::get(VMContext, baseTypeName)); 1877 1878 // Get argument type qualifiers: 1879 if (ty.isRestrictQualified()) 1880 typeQuals = "restrict"; 1881 if (pointeeTy.isConstQualified() || 1882 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1883 typeQuals += typeQuals.empty() ? "const" : " const"; 1884 if (pointeeTy.isVolatileQualified()) 1885 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1886 } else { 1887 uint32_t AddrSpc = 0; 1888 bool isPipe = ty->isPipeType(); 1889 if (ty->isImageType() || isPipe) 1890 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1891 1892 addressQuals.push_back( 1893 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1894 1895 // Get argument type name. 1896 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1897 std::string typeName = getTypeSpelling(ty); 1898 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1899 1900 // Remove access qualifiers on images 1901 // (as they are inseparable from type in clang implementation, 1902 // but OpenCL spec provides a special query to get access qualifier 1903 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1904 if (ty->isImageType()) { 1905 removeImageAccessQualifier(typeName); 1906 removeImageAccessQualifier(baseTypeName); 1907 } 1908 1909 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1910 argBaseTypeNames.push_back( 1911 llvm::MDString::get(VMContext, baseTypeName)); 1912 1913 if (isPipe) 1914 typeQuals = "pipe"; 1915 } 1916 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1917 } 1918 1919 if (getLangOpts().OpenCL) { 1920 Fn->setMetadata("kernel_arg_addr_space", 1921 llvm::MDNode::get(VMContext, addressQuals)); 1922 Fn->setMetadata("kernel_arg_access_qual", 1923 llvm::MDNode::get(VMContext, accessQuals)); 1924 Fn->setMetadata("kernel_arg_type", 1925 llvm::MDNode::get(VMContext, argTypeNames)); 1926 Fn->setMetadata("kernel_arg_base_type", 1927 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1928 Fn->setMetadata("kernel_arg_type_qual", 1929 llvm::MDNode::get(VMContext, argTypeQuals)); 1930 } 1931 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1932 getCodeGenOpts().HIPSaveKernelArgName) 1933 Fn->setMetadata("kernel_arg_name", 1934 llvm::MDNode::get(VMContext, argNames)); 1935 } 1936 1937 /// Determines whether the language options require us to model 1938 /// unwind exceptions. We treat -fexceptions as mandating this 1939 /// except under the fragile ObjC ABI with only ObjC exceptions 1940 /// enabled. This means, for example, that C with -fexceptions 1941 /// enables this. 1942 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1943 // If exceptions are completely disabled, obviously this is false. 1944 if (!LangOpts.Exceptions) return false; 1945 1946 // If C++ exceptions are enabled, this is true. 1947 if (LangOpts.CXXExceptions) return true; 1948 1949 // If ObjC exceptions are enabled, this depends on the ABI. 1950 if (LangOpts.ObjCExceptions) { 1951 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1952 } 1953 1954 return true; 1955 } 1956 1957 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1958 const CXXMethodDecl *MD) { 1959 // Check that the type metadata can ever actually be used by a call. 1960 if (!CGM.getCodeGenOpts().LTOUnit || 1961 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1962 return false; 1963 1964 // Only functions whose address can be taken with a member function pointer 1965 // need this sort of type metadata. 1966 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1967 !isa<CXXDestructorDecl>(MD); 1968 } 1969 1970 std::vector<const CXXRecordDecl *> 1971 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1972 llvm::SetVector<const CXXRecordDecl *> MostBases; 1973 1974 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1975 CollectMostBases = [&](const CXXRecordDecl *RD) { 1976 if (RD->getNumBases() == 0) 1977 MostBases.insert(RD); 1978 for (const CXXBaseSpecifier &B : RD->bases()) 1979 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1980 }; 1981 CollectMostBases(RD); 1982 return MostBases.takeVector(); 1983 } 1984 1985 llvm::GlobalVariable * 1986 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1987 auto It = RTTIProxyMap.find(Addr); 1988 if (It != RTTIProxyMap.end()) 1989 return It->second; 1990 1991 auto *FTRTTIProxy = new llvm::GlobalVariable( 1992 TheModule, Addr->getType(), 1993 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 1994 "__llvm_rtti_proxy"); 1995 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1996 1997 RTTIProxyMap[Addr] = FTRTTIProxy; 1998 return FTRTTIProxy; 1999 } 2000 2001 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2002 llvm::Function *F) { 2003 llvm::AttrBuilder B(F->getContext()); 2004 2005 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2006 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2007 2008 if (CodeGenOpts.StackClashProtector) 2009 B.addAttribute("probe-stack", "inline-asm"); 2010 2011 if (!hasUnwindExceptions(LangOpts)) 2012 B.addAttribute(llvm::Attribute::NoUnwind); 2013 2014 if (D && D->hasAttr<NoStackProtectorAttr>()) 2015 ; // Do nothing. 2016 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2017 LangOpts.getStackProtector() == LangOptions::SSPOn) 2018 B.addAttribute(llvm::Attribute::StackProtectStrong); 2019 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 2020 B.addAttribute(llvm::Attribute::StackProtect); 2021 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 2022 B.addAttribute(llvm::Attribute::StackProtectStrong); 2023 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 2024 B.addAttribute(llvm::Attribute::StackProtectReq); 2025 2026 if (!D) { 2027 // If we don't have a declaration to control inlining, the function isn't 2028 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2029 // disabled, mark the function as noinline. 2030 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2031 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2032 B.addAttribute(llvm::Attribute::NoInline); 2033 2034 F->addFnAttrs(B); 2035 return; 2036 } 2037 2038 // Track whether we need to add the optnone LLVM attribute, 2039 // starting with the default for this optimization level. 2040 bool ShouldAddOptNone = 2041 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2042 // We can't add optnone in the following cases, it won't pass the verifier. 2043 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2044 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2045 2046 // Add optnone, but do so only if the function isn't always_inline. 2047 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2048 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2049 B.addAttribute(llvm::Attribute::OptimizeNone); 2050 2051 // OptimizeNone implies noinline; we should not be inlining such functions. 2052 B.addAttribute(llvm::Attribute::NoInline); 2053 2054 // We still need to handle naked functions even though optnone subsumes 2055 // much of their semantics. 2056 if (D->hasAttr<NakedAttr>()) 2057 B.addAttribute(llvm::Attribute::Naked); 2058 2059 // OptimizeNone wins over OptimizeForSize and MinSize. 2060 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2061 F->removeFnAttr(llvm::Attribute::MinSize); 2062 } else if (D->hasAttr<NakedAttr>()) { 2063 // Naked implies noinline: we should not be inlining such functions. 2064 B.addAttribute(llvm::Attribute::Naked); 2065 B.addAttribute(llvm::Attribute::NoInline); 2066 } else if (D->hasAttr<NoDuplicateAttr>()) { 2067 B.addAttribute(llvm::Attribute::NoDuplicate); 2068 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2069 // Add noinline if the function isn't always_inline. 2070 B.addAttribute(llvm::Attribute::NoInline); 2071 } else if (D->hasAttr<AlwaysInlineAttr>() && 2072 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2073 // (noinline wins over always_inline, and we can't specify both in IR) 2074 B.addAttribute(llvm::Attribute::AlwaysInline); 2075 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2076 // If we're not inlining, then force everything that isn't always_inline to 2077 // carry an explicit noinline attribute. 2078 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2079 B.addAttribute(llvm::Attribute::NoInline); 2080 } else { 2081 // Otherwise, propagate the inline hint attribute and potentially use its 2082 // absence to mark things as noinline. 2083 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2084 // Search function and template pattern redeclarations for inline. 2085 auto CheckForInline = [](const FunctionDecl *FD) { 2086 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2087 return Redecl->isInlineSpecified(); 2088 }; 2089 if (any_of(FD->redecls(), CheckRedeclForInline)) 2090 return true; 2091 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2092 if (!Pattern) 2093 return false; 2094 return any_of(Pattern->redecls(), CheckRedeclForInline); 2095 }; 2096 if (CheckForInline(FD)) { 2097 B.addAttribute(llvm::Attribute::InlineHint); 2098 } else if (CodeGenOpts.getInlining() == 2099 CodeGenOptions::OnlyHintInlining && 2100 !FD->isInlined() && 2101 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2102 B.addAttribute(llvm::Attribute::NoInline); 2103 } 2104 } 2105 } 2106 2107 // Add other optimization related attributes if we are optimizing this 2108 // function. 2109 if (!D->hasAttr<OptimizeNoneAttr>()) { 2110 if (D->hasAttr<ColdAttr>()) { 2111 if (!ShouldAddOptNone) 2112 B.addAttribute(llvm::Attribute::OptimizeForSize); 2113 B.addAttribute(llvm::Attribute::Cold); 2114 } 2115 if (D->hasAttr<HotAttr>()) 2116 B.addAttribute(llvm::Attribute::Hot); 2117 if (D->hasAttr<MinSizeAttr>()) 2118 B.addAttribute(llvm::Attribute::MinSize); 2119 } 2120 2121 F->addFnAttrs(B); 2122 2123 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2124 if (alignment) 2125 F->setAlignment(llvm::Align(alignment)); 2126 2127 if (!D->hasAttr<AlignedAttr>()) 2128 if (LangOpts.FunctionAlignment) 2129 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2130 2131 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2132 // reserve a bit for differentiating between virtual and non-virtual member 2133 // functions. If the current target's C++ ABI requires this and this is a 2134 // member function, set its alignment accordingly. 2135 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2136 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2137 F->setAlignment(llvm::Align(2)); 2138 } 2139 2140 // In the cross-dso CFI mode with canonical jump tables, we want !type 2141 // attributes on definitions only. 2142 if (CodeGenOpts.SanitizeCfiCrossDso && 2143 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2144 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2145 // Skip available_externally functions. They won't be codegen'ed in the 2146 // current module anyway. 2147 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2148 CreateFunctionTypeMetadataForIcall(FD, F); 2149 } 2150 } 2151 2152 // Emit type metadata on member functions for member function pointer checks. 2153 // These are only ever necessary on definitions; we're guaranteed that the 2154 // definition will be present in the LTO unit as a result of LTO visibility. 2155 auto *MD = dyn_cast<CXXMethodDecl>(D); 2156 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2157 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2158 llvm::Metadata *Id = 2159 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2160 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2161 F->addTypeMetadata(0, Id); 2162 } 2163 } 2164 } 2165 2166 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2167 llvm::Function *F) { 2168 if (D->hasAttr<StrictFPAttr>()) { 2169 llvm::AttrBuilder FuncAttrs(F->getContext()); 2170 FuncAttrs.addAttribute("strictfp"); 2171 F->addFnAttrs(FuncAttrs); 2172 } 2173 } 2174 2175 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2176 const Decl *D = GD.getDecl(); 2177 if (isa_and_nonnull<NamedDecl>(D)) 2178 setGVProperties(GV, GD); 2179 else 2180 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2181 2182 if (D && D->hasAttr<UsedAttr>()) 2183 addUsedOrCompilerUsedGlobal(GV); 2184 2185 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2186 const auto *VD = cast<VarDecl>(D); 2187 if (VD->getType().isConstQualified() && 2188 VD->getStorageDuration() == SD_Static) 2189 addUsedOrCompilerUsedGlobal(GV); 2190 } 2191 } 2192 2193 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2194 llvm::AttrBuilder &Attrs) { 2195 // Add target-cpu and target-features attributes to functions. If 2196 // we have a decl for the function and it has a target attribute then 2197 // parse that and add it to the feature set. 2198 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2199 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2200 std::vector<std::string> Features; 2201 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2202 FD = FD ? FD->getMostRecentDecl() : FD; 2203 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2204 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2205 assert((!TD || !TV) && "both target_version and target specified"); 2206 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2207 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2208 bool AddedAttr = false; 2209 if (TD || TV || SD || TC) { 2210 llvm::StringMap<bool> FeatureMap; 2211 getContext().getFunctionFeatureMap(FeatureMap, GD); 2212 2213 // Produce the canonical string for this set of features. 2214 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2215 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2216 2217 // Now add the target-cpu and target-features to the function. 2218 // While we populated the feature map above, we still need to 2219 // get and parse the target attribute so we can get the cpu for 2220 // the function. 2221 if (TD) { 2222 ParsedTargetAttr ParsedAttr = 2223 Target.parseTargetAttr(TD->getFeaturesStr()); 2224 if (!ParsedAttr.CPU.empty() && 2225 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2226 TargetCPU = ParsedAttr.CPU; 2227 TuneCPU = ""; // Clear the tune CPU. 2228 } 2229 if (!ParsedAttr.Tune.empty() && 2230 getTarget().isValidCPUName(ParsedAttr.Tune)) 2231 TuneCPU = ParsedAttr.Tune; 2232 } 2233 2234 if (SD) { 2235 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2236 // favor this processor. 2237 TuneCPU = getTarget().getCPUSpecificTuneName( 2238 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2239 } 2240 } else { 2241 // Otherwise just add the existing target cpu and target features to the 2242 // function. 2243 Features = getTarget().getTargetOpts().Features; 2244 } 2245 2246 if (!TargetCPU.empty()) { 2247 Attrs.addAttribute("target-cpu", TargetCPU); 2248 AddedAttr = true; 2249 } 2250 if (!TuneCPU.empty()) { 2251 Attrs.addAttribute("tune-cpu", TuneCPU); 2252 AddedAttr = true; 2253 } 2254 if (!Features.empty()) { 2255 llvm::sort(Features); 2256 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2257 AddedAttr = true; 2258 } 2259 2260 return AddedAttr; 2261 } 2262 2263 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2264 llvm::GlobalObject *GO) { 2265 const Decl *D = GD.getDecl(); 2266 SetCommonAttributes(GD, GO); 2267 2268 if (D) { 2269 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2270 if (D->hasAttr<RetainAttr>()) 2271 addUsedGlobal(GV); 2272 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2273 GV->addAttribute("bss-section", SA->getName()); 2274 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2275 GV->addAttribute("data-section", SA->getName()); 2276 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2277 GV->addAttribute("rodata-section", SA->getName()); 2278 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2279 GV->addAttribute("relro-section", SA->getName()); 2280 } 2281 2282 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2283 if (D->hasAttr<RetainAttr>()) 2284 addUsedGlobal(F); 2285 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2286 if (!D->getAttr<SectionAttr>()) 2287 F->addFnAttr("implicit-section-name", SA->getName()); 2288 2289 llvm::AttrBuilder Attrs(F->getContext()); 2290 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2291 // We know that GetCPUAndFeaturesAttributes will always have the 2292 // newest set, since it has the newest possible FunctionDecl, so the 2293 // new ones should replace the old. 2294 llvm::AttributeMask RemoveAttrs; 2295 RemoveAttrs.addAttribute("target-cpu"); 2296 RemoveAttrs.addAttribute("target-features"); 2297 RemoveAttrs.addAttribute("tune-cpu"); 2298 F->removeFnAttrs(RemoveAttrs); 2299 F->addFnAttrs(Attrs); 2300 } 2301 } 2302 2303 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2304 GO->setSection(CSA->getName()); 2305 else if (const auto *SA = D->getAttr<SectionAttr>()) 2306 GO->setSection(SA->getName()); 2307 } 2308 2309 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2310 } 2311 2312 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2313 llvm::Function *F, 2314 const CGFunctionInfo &FI) { 2315 const Decl *D = GD.getDecl(); 2316 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2317 SetLLVMFunctionAttributesForDefinition(D, F); 2318 2319 F->setLinkage(llvm::Function::InternalLinkage); 2320 2321 setNonAliasAttributes(GD, F); 2322 } 2323 2324 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2325 // Set linkage and visibility in case we never see a definition. 2326 LinkageInfo LV = ND->getLinkageAndVisibility(); 2327 // Don't set internal linkage on declarations. 2328 // "extern_weak" is overloaded in LLVM; we probably should have 2329 // separate linkage types for this. 2330 if (isExternallyVisible(LV.getLinkage()) && 2331 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2332 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2333 } 2334 2335 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2336 llvm::Function *F) { 2337 // Only if we are checking indirect calls. 2338 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2339 return; 2340 2341 // Non-static class methods are handled via vtable or member function pointer 2342 // checks elsewhere. 2343 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2344 return; 2345 2346 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2347 F->addTypeMetadata(0, MD); 2348 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2349 2350 // Emit a hash-based bit set entry for cross-DSO calls. 2351 if (CodeGenOpts.SanitizeCfiCrossDso) 2352 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2353 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2354 } 2355 2356 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2357 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2358 return; 2359 2360 llvm::LLVMContext &Ctx = F->getContext(); 2361 llvm::MDBuilder MDB(Ctx); 2362 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2363 llvm::MDNode::get( 2364 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2365 } 2366 2367 static bool allowKCFIIdentifier(StringRef Name) { 2368 // KCFI type identifier constants are only necessary for external assembly 2369 // functions, which means it's safe to skip unusual names. Subset of 2370 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2371 return llvm::all_of(Name, [](const char &C) { 2372 return llvm::isAlnum(C) || C == '_' || C == '.'; 2373 }); 2374 } 2375 2376 void CodeGenModule::finalizeKCFITypes() { 2377 llvm::Module &M = getModule(); 2378 for (auto &F : M.functions()) { 2379 // Remove KCFI type metadata from non-address-taken local functions. 2380 bool AddressTaken = F.hasAddressTaken(); 2381 if (!AddressTaken && F.hasLocalLinkage()) 2382 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2383 2384 // Generate a constant with the expected KCFI type identifier for all 2385 // address-taken function declarations to support annotating indirectly 2386 // called assembly functions. 2387 if (!AddressTaken || !F.isDeclaration()) 2388 continue; 2389 2390 const llvm::ConstantInt *Type; 2391 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2392 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2393 else 2394 continue; 2395 2396 StringRef Name = F.getName(); 2397 if (!allowKCFIIdentifier(Name)) 2398 continue; 2399 2400 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2401 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2402 .str(); 2403 M.appendModuleInlineAsm(Asm); 2404 } 2405 } 2406 2407 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2408 bool IsIncompleteFunction, 2409 bool IsThunk) { 2410 2411 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2412 // If this is an intrinsic function, set the function's attributes 2413 // to the intrinsic's attributes. 2414 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2415 return; 2416 } 2417 2418 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2419 2420 if (!IsIncompleteFunction) 2421 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2422 IsThunk); 2423 2424 // Add the Returned attribute for "this", except for iOS 5 and earlier 2425 // where substantial code, including the libstdc++ dylib, was compiled with 2426 // GCC and does not actually return "this". 2427 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2428 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2429 assert(!F->arg_empty() && 2430 F->arg_begin()->getType() 2431 ->canLosslesslyBitCastTo(F->getReturnType()) && 2432 "unexpected this return"); 2433 F->addParamAttr(0, llvm::Attribute::Returned); 2434 } 2435 2436 // Only a few attributes are set on declarations; these may later be 2437 // overridden by a definition. 2438 2439 setLinkageForGV(F, FD); 2440 setGVProperties(F, FD); 2441 2442 // Setup target-specific attributes. 2443 if (!IsIncompleteFunction && F->isDeclaration()) 2444 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2445 2446 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2447 F->setSection(CSA->getName()); 2448 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2449 F->setSection(SA->getName()); 2450 2451 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2452 if (EA->isError()) 2453 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2454 else if (EA->isWarning()) 2455 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2456 } 2457 2458 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2459 if (FD->isInlineBuiltinDeclaration()) { 2460 const FunctionDecl *FDBody; 2461 bool HasBody = FD->hasBody(FDBody); 2462 (void)HasBody; 2463 assert(HasBody && "Inline builtin declarations should always have an " 2464 "available body!"); 2465 if (shouldEmitFunction(FDBody)) 2466 F->addFnAttr(llvm::Attribute::NoBuiltin); 2467 } 2468 2469 if (FD->isReplaceableGlobalAllocationFunction()) { 2470 // A replaceable global allocation function does not act like a builtin by 2471 // default, only if it is invoked by a new-expression or delete-expression. 2472 F->addFnAttr(llvm::Attribute::NoBuiltin); 2473 } 2474 2475 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2476 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2477 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2478 if (MD->isVirtual()) 2479 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2480 2481 // Don't emit entries for function declarations in the cross-DSO mode. This 2482 // is handled with better precision by the receiving DSO. But if jump tables 2483 // are non-canonical then we need type metadata in order to produce the local 2484 // jump table. 2485 if (!CodeGenOpts.SanitizeCfiCrossDso || 2486 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2487 CreateFunctionTypeMetadataForIcall(FD, F); 2488 2489 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2490 setKCFIType(FD, F); 2491 2492 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2493 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2494 2495 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2496 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2497 2498 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2499 // Annotate the callback behavior as metadata: 2500 // - The callback callee (as argument number). 2501 // - The callback payloads (as argument numbers). 2502 llvm::LLVMContext &Ctx = F->getContext(); 2503 llvm::MDBuilder MDB(Ctx); 2504 2505 // The payload indices are all but the first one in the encoding. The first 2506 // identifies the callback callee. 2507 int CalleeIdx = *CB->encoding_begin(); 2508 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2509 F->addMetadata(llvm::LLVMContext::MD_callback, 2510 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2511 CalleeIdx, PayloadIndices, 2512 /* VarArgsArePassed */ false)})); 2513 } 2514 } 2515 2516 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2517 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2518 "Only globals with definition can force usage."); 2519 LLVMUsed.emplace_back(GV); 2520 } 2521 2522 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2523 assert(!GV->isDeclaration() && 2524 "Only globals with definition can force usage."); 2525 LLVMCompilerUsed.emplace_back(GV); 2526 } 2527 2528 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2529 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2530 "Only globals with definition can force usage."); 2531 if (getTriple().isOSBinFormatELF()) 2532 LLVMCompilerUsed.emplace_back(GV); 2533 else 2534 LLVMUsed.emplace_back(GV); 2535 } 2536 2537 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2538 std::vector<llvm::WeakTrackingVH> &List) { 2539 // Don't create llvm.used if there is no need. 2540 if (List.empty()) 2541 return; 2542 2543 // Convert List to what ConstantArray needs. 2544 SmallVector<llvm::Constant*, 8> UsedArray; 2545 UsedArray.resize(List.size()); 2546 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2547 UsedArray[i] = 2548 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2549 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2550 } 2551 2552 if (UsedArray.empty()) 2553 return; 2554 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2555 2556 auto *GV = new llvm::GlobalVariable( 2557 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2558 llvm::ConstantArray::get(ATy, UsedArray), Name); 2559 2560 GV->setSection("llvm.metadata"); 2561 } 2562 2563 void CodeGenModule::emitLLVMUsed() { 2564 emitUsed(*this, "llvm.used", LLVMUsed); 2565 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2566 } 2567 2568 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2569 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2570 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2571 } 2572 2573 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2574 llvm::SmallString<32> Opt; 2575 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2576 if (Opt.empty()) 2577 return; 2578 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2579 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2580 } 2581 2582 void CodeGenModule::AddDependentLib(StringRef Lib) { 2583 auto &C = getLLVMContext(); 2584 if (getTarget().getTriple().isOSBinFormatELF()) { 2585 ELFDependentLibraries.push_back( 2586 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2587 return; 2588 } 2589 2590 llvm::SmallString<24> Opt; 2591 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2592 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2593 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2594 } 2595 2596 /// Add link options implied by the given module, including modules 2597 /// it depends on, using a postorder walk. 2598 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2599 SmallVectorImpl<llvm::MDNode *> &Metadata, 2600 llvm::SmallPtrSet<Module *, 16> &Visited) { 2601 // Import this module's parent. 2602 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2603 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2604 } 2605 2606 // Import this module's dependencies. 2607 for (Module *Import : llvm::reverse(Mod->Imports)) { 2608 if (Visited.insert(Import).second) 2609 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2610 } 2611 2612 // Add linker options to link against the libraries/frameworks 2613 // described by this module. 2614 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2615 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2616 2617 // For modules that use export_as for linking, use that module 2618 // name instead. 2619 if (Mod->UseExportAsModuleLinkName) 2620 return; 2621 2622 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2623 // Link against a framework. Frameworks are currently Darwin only, so we 2624 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2625 if (LL.IsFramework) { 2626 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2627 llvm::MDString::get(Context, LL.Library)}; 2628 2629 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2630 continue; 2631 } 2632 2633 // Link against a library. 2634 if (IsELF) { 2635 llvm::Metadata *Args[2] = { 2636 llvm::MDString::get(Context, "lib"), 2637 llvm::MDString::get(Context, LL.Library), 2638 }; 2639 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2640 } else { 2641 llvm::SmallString<24> Opt; 2642 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2643 auto *OptString = llvm::MDString::get(Context, Opt); 2644 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2645 } 2646 } 2647 } 2648 2649 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2650 // Emit the initializers in the order that sub-modules appear in the 2651 // source, first Global Module Fragments, if present. 2652 if (auto GMF = Primary->getGlobalModuleFragment()) { 2653 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2654 if (isa<ImportDecl>(D)) 2655 continue; 2656 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2657 EmitTopLevelDecl(D); 2658 } 2659 } 2660 // Second any associated with the module, itself. 2661 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2662 // Skip import decls, the inits for those are called explicitly. 2663 if (isa<ImportDecl>(D)) 2664 continue; 2665 EmitTopLevelDecl(D); 2666 } 2667 // Third any associated with the Privat eMOdule Fragment, if present. 2668 if (auto PMF = Primary->getPrivateModuleFragment()) { 2669 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2670 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2671 EmitTopLevelDecl(D); 2672 } 2673 } 2674 } 2675 2676 void CodeGenModule::EmitModuleLinkOptions() { 2677 // Collect the set of all of the modules we want to visit to emit link 2678 // options, which is essentially the imported modules and all of their 2679 // non-explicit child modules. 2680 llvm::SetVector<clang::Module *> LinkModules; 2681 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2682 SmallVector<clang::Module *, 16> Stack; 2683 2684 // Seed the stack with imported modules. 2685 for (Module *M : ImportedModules) { 2686 // Do not add any link flags when an implementation TU of a module imports 2687 // a header of that same module. 2688 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2689 !getLangOpts().isCompilingModule()) 2690 continue; 2691 if (Visited.insert(M).second) 2692 Stack.push_back(M); 2693 } 2694 2695 // Find all of the modules to import, making a little effort to prune 2696 // non-leaf modules. 2697 while (!Stack.empty()) { 2698 clang::Module *Mod = Stack.pop_back_val(); 2699 2700 bool AnyChildren = false; 2701 2702 // Visit the submodules of this module. 2703 for (const auto &SM : Mod->submodules()) { 2704 // Skip explicit children; they need to be explicitly imported to be 2705 // linked against. 2706 if (SM->IsExplicit) 2707 continue; 2708 2709 if (Visited.insert(SM).second) { 2710 Stack.push_back(SM); 2711 AnyChildren = true; 2712 } 2713 } 2714 2715 // We didn't find any children, so add this module to the list of 2716 // modules to link against. 2717 if (!AnyChildren) { 2718 LinkModules.insert(Mod); 2719 } 2720 } 2721 2722 // Add link options for all of the imported modules in reverse topological 2723 // order. We don't do anything to try to order import link flags with respect 2724 // to linker options inserted by things like #pragma comment(). 2725 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2726 Visited.clear(); 2727 for (Module *M : LinkModules) 2728 if (Visited.insert(M).second) 2729 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2730 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2731 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2732 2733 // Add the linker options metadata flag. 2734 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2735 for (auto *MD : LinkerOptionsMetadata) 2736 NMD->addOperand(MD); 2737 } 2738 2739 void CodeGenModule::EmitDeferred() { 2740 // Emit deferred declare target declarations. 2741 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2742 getOpenMPRuntime().emitDeferredTargetDecls(); 2743 2744 // Emit code for any potentially referenced deferred decls. Since a 2745 // previously unused static decl may become used during the generation of code 2746 // for a static function, iterate until no changes are made. 2747 2748 if (!DeferredVTables.empty()) { 2749 EmitDeferredVTables(); 2750 2751 // Emitting a vtable doesn't directly cause more vtables to 2752 // become deferred, although it can cause functions to be 2753 // emitted that then need those vtables. 2754 assert(DeferredVTables.empty()); 2755 } 2756 2757 // Emit CUDA/HIP static device variables referenced by host code only. 2758 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2759 // needed for further handling. 2760 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2761 llvm::append_range(DeferredDeclsToEmit, 2762 getContext().CUDADeviceVarODRUsedByHost); 2763 2764 // Stop if we're out of both deferred vtables and deferred declarations. 2765 if (DeferredDeclsToEmit.empty()) 2766 return; 2767 2768 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2769 // work, it will not interfere with this. 2770 std::vector<GlobalDecl> CurDeclsToEmit; 2771 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2772 2773 for (GlobalDecl &D : CurDeclsToEmit) { 2774 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2775 // to get GlobalValue with exactly the type we need, not something that 2776 // might had been created for another decl with the same mangled name but 2777 // different type. 2778 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2779 GetAddrOfGlobal(D, ForDefinition)); 2780 2781 // In case of different address spaces, we may still get a cast, even with 2782 // IsForDefinition equal to true. Query mangled names table to get 2783 // GlobalValue. 2784 if (!GV) 2785 GV = GetGlobalValue(getMangledName(D)); 2786 2787 // Make sure GetGlobalValue returned non-null. 2788 assert(GV); 2789 2790 // Check to see if we've already emitted this. This is necessary 2791 // for a couple of reasons: first, decls can end up in the 2792 // deferred-decls queue multiple times, and second, decls can end 2793 // up with definitions in unusual ways (e.g. by an extern inline 2794 // function acquiring a strong function redefinition). Just 2795 // ignore these cases. 2796 if (!GV->isDeclaration()) 2797 continue; 2798 2799 // If this is OpenMP, check if it is legal to emit this global normally. 2800 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2801 continue; 2802 2803 // Otherwise, emit the definition and move on to the next one. 2804 EmitGlobalDefinition(D, GV); 2805 2806 // If we found out that we need to emit more decls, do that recursively. 2807 // This has the advantage that the decls are emitted in a DFS and related 2808 // ones are close together, which is convenient for testing. 2809 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2810 EmitDeferred(); 2811 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2812 } 2813 } 2814 } 2815 2816 void CodeGenModule::EmitVTablesOpportunistically() { 2817 // Try to emit external vtables as available_externally if they have emitted 2818 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2819 // is not allowed to create new references to things that need to be emitted 2820 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2821 2822 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2823 && "Only emit opportunistic vtables with optimizations"); 2824 2825 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2826 assert(getVTables().isVTableExternal(RD) && 2827 "This queue should only contain external vtables"); 2828 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2829 VTables.GenerateClassData(RD); 2830 } 2831 OpportunisticVTables.clear(); 2832 } 2833 2834 void CodeGenModule::EmitGlobalAnnotations() { 2835 if (Annotations.empty()) 2836 return; 2837 2838 // Create a new global variable for the ConstantStruct in the Module. 2839 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2840 Annotations[0]->getType(), Annotations.size()), Annotations); 2841 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2842 llvm::GlobalValue::AppendingLinkage, 2843 Array, "llvm.global.annotations"); 2844 gv->setSection(AnnotationSection); 2845 } 2846 2847 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2848 llvm::Constant *&AStr = AnnotationStrings[Str]; 2849 if (AStr) 2850 return AStr; 2851 2852 // Not found yet, create a new global. 2853 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2854 auto *gv = new llvm::GlobalVariable( 2855 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 2856 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 2857 ConstGlobalsPtrTy->getAddressSpace()); 2858 gv->setSection(AnnotationSection); 2859 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2860 AStr = gv; 2861 return gv; 2862 } 2863 2864 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2865 SourceManager &SM = getContext().getSourceManager(); 2866 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2867 if (PLoc.isValid()) 2868 return EmitAnnotationString(PLoc.getFilename()); 2869 return EmitAnnotationString(SM.getBufferName(Loc)); 2870 } 2871 2872 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2873 SourceManager &SM = getContext().getSourceManager(); 2874 PresumedLoc PLoc = SM.getPresumedLoc(L); 2875 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2876 SM.getExpansionLineNumber(L); 2877 return llvm::ConstantInt::get(Int32Ty, LineNo); 2878 } 2879 2880 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2881 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2882 if (Exprs.empty()) 2883 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 2884 2885 llvm::FoldingSetNodeID ID; 2886 for (Expr *E : Exprs) { 2887 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2888 } 2889 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2890 if (Lookup) 2891 return Lookup; 2892 2893 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2894 LLVMArgs.reserve(Exprs.size()); 2895 ConstantEmitter ConstEmiter(*this); 2896 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2897 const auto *CE = cast<clang::ConstantExpr>(E); 2898 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2899 CE->getType()); 2900 }); 2901 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2902 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2903 llvm::GlobalValue::PrivateLinkage, Struct, 2904 ".args"); 2905 GV->setSection(AnnotationSection); 2906 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2907 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2908 2909 Lookup = Bitcasted; 2910 return Bitcasted; 2911 } 2912 2913 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2914 const AnnotateAttr *AA, 2915 SourceLocation L) { 2916 // Get the globals for file name, annotation, and the line number. 2917 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2918 *UnitGV = EmitAnnotationUnit(L), 2919 *LineNoCst = EmitAnnotationLineNo(L), 2920 *Args = EmitAnnotationArgs(AA); 2921 2922 llvm::Constant *GVInGlobalsAS = GV; 2923 if (GV->getAddressSpace() != 2924 getDataLayout().getDefaultGlobalsAddressSpace()) { 2925 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2926 GV, GV->getValueType()->getPointerTo( 2927 getDataLayout().getDefaultGlobalsAddressSpace())); 2928 } 2929 2930 // Create the ConstantStruct for the global annotation. 2931 llvm::Constant *Fields[] = { 2932 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2933 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 2934 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 2935 LineNoCst, 2936 Args, 2937 }; 2938 return llvm::ConstantStruct::getAnon(Fields); 2939 } 2940 2941 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2942 llvm::GlobalValue *GV) { 2943 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2944 // Get the struct elements for these annotations. 2945 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2946 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2947 } 2948 2949 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2950 SourceLocation Loc) const { 2951 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2952 // NoSanitize by function name. 2953 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2954 return true; 2955 // NoSanitize by location. Check "mainfile" prefix. 2956 auto &SM = Context.getSourceManager(); 2957 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 2958 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 2959 return true; 2960 2961 // Check "src" prefix. 2962 if (Loc.isValid()) 2963 return NoSanitizeL.containsLocation(Kind, Loc); 2964 // If location is unknown, this may be a compiler-generated function. Assume 2965 // it's located in the main file. 2966 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 2967 } 2968 2969 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2970 llvm::GlobalVariable *GV, 2971 SourceLocation Loc, QualType Ty, 2972 StringRef Category) const { 2973 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2974 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2975 return true; 2976 auto &SM = Context.getSourceManager(); 2977 if (NoSanitizeL.containsMainFile( 2978 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 2979 return true; 2980 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2981 return true; 2982 2983 // Check global type. 2984 if (!Ty.isNull()) { 2985 // Drill down the array types: if global variable of a fixed type is 2986 // not sanitized, we also don't instrument arrays of them. 2987 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2988 Ty = AT->getElementType(); 2989 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2990 // Only record types (classes, structs etc.) are ignored. 2991 if (Ty->isRecordType()) { 2992 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2993 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2994 return true; 2995 } 2996 } 2997 return false; 2998 } 2999 3000 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3001 StringRef Category) const { 3002 const auto &XRayFilter = getContext().getXRayFilter(); 3003 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3004 auto Attr = ImbueAttr::NONE; 3005 if (Loc.isValid()) 3006 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3007 if (Attr == ImbueAttr::NONE) 3008 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3009 switch (Attr) { 3010 case ImbueAttr::NONE: 3011 return false; 3012 case ImbueAttr::ALWAYS: 3013 Fn->addFnAttr("function-instrument", "xray-always"); 3014 break; 3015 case ImbueAttr::ALWAYS_ARG1: 3016 Fn->addFnAttr("function-instrument", "xray-always"); 3017 Fn->addFnAttr("xray-log-args", "1"); 3018 break; 3019 case ImbueAttr::NEVER: 3020 Fn->addFnAttr("function-instrument", "xray-never"); 3021 break; 3022 } 3023 return true; 3024 } 3025 3026 ProfileList::ExclusionType 3027 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3028 SourceLocation Loc) const { 3029 const auto &ProfileList = getContext().getProfileList(); 3030 // If the profile list is empty, then instrument everything. 3031 if (ProfileList.isEmpty()) 3032 return ProfileList::Allow; 3033 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3034 // First, check the function name. 3035 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3036 return *V; 3037 // Next, check the source location. 3038 if (Loc.isValid()) 3039 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3040 return *V; 3041 // If location is unknown, this may be a compiler-generated function. Assume 3042 // it's located in the main file. 3043 auto &SM = Context.getSourceManager(); 3044 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) 3045 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3046 return *V; 3047 return ProfileList.getDefault(Kind); 3048 } 3049 3050 ProfileList::ExclusionType 3051 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3052 SourceLocation Loc) const { 3053 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3054 if (V != ProfileList::Allow) 3055 return V; 3056 3057 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3058 if (NumGroups > 1) { 3059 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3060 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3061 return ProfileList::Skip; 3062 } 3063 return ProfileList::Allow; 3064 } 3065 3066 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3067 // Never defer when EmitAllDecls is specified. 3068 if (LangOpts.EmitAllDecls) 3069 return true; 3070 3071 if (CodeGenOpts.KeepStaticConsts) { 3072 const auto *VD = dyn_cast<VarDecl>(Global); 3073 if (VD && VD->getType().isConstQualified() && 3074 VD->getStorageDuration() == SD_Static) 3075 return true; 3076 } 3077 3078 return getContext().DeclMustBeEmitted(Global); 3079 } 3080 3081 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3082 // In OpenMP 5.0 variables and function may be marked as 3083 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3084 // that they must be emitted on the host/device. To be sure we need to have 3085 // seen a declare target with an explicit mentioning of the function, we know 3086 // we have if the level of the declare target attribute is -1. Note that we 3087 // check somewhere else if we should emit this at all. 3088 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3089 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3090 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3091 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3092 return false; 3093 } 3094 3095 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3096 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3097 // Implicit template instantiations may change linkage if they are later 3098 // explicitly instantiated, so they should not be emitted eagerly. 3099 return false; 3100 } 3101 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3102 if (Context.getInlineVariableDefinitionKind(VD) == 3103 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3104 // A definition of an inline constexpr static data member may change 3105 // linkage later if it's redeclared outside the class. 3106 return false; 3107 if (CXX20ModuleInits && VD->getOwningModule() && 3108 !VD->getOwningModule()->isModuleMapModule()) { 3109 // For CXX20, module-owned initializers need to be deferred, since it is 3110 // not known at this point if they will be run for the current module or 3111 // as part of the initializer for an imported one. 3112 return false; 3113 } 3114 } 3115 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3116 // codegen for global variables, because they may be marked as threadprivate. 3117 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3118 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3119 !isTypeConstant(Global->getType(), false) && 3120 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3121 return false; 3122 3123 return true; 3124 } 3125 3126 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3127 StringRef Name = getMangledName(GD); 3128 3129 // The UUID descriptor should be pointer aligned. 3130 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3131 3132 // Look for an existing global. 3133 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3134 return ConstantAddress(GV, GV->getValueType(), Alignment); 3135 3136 ConstantEmitter Emitter(*this); 3137 llvm::Constant *Init; 3138 3139 APValue &V = GD->getAsAPValue(); 3140 if (!V.isAbsent()) { 3141 // If possible, emit the APValue version of the initializer. In particular, 3142 // this gets the type of the constant right. 3143 Init = Emitter.emitForInitializer( 3144 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3145 } else { 3146 // As a fallback, directly construct the constant. 3147 // FIXME: This may get padding wrong under esoteric struct layout rules. 3148 // MSVC appears to create a complete type 'struct __s_GUID' that it 3149 // presumably uses to represent these constants. 3150 MSGuidDecl::Parts Parts = GD->getParts(); 3151 llvm::Constant *Fields[4] = { 3152 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3153 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3154 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3155 llvm::ConstantDataArray::getRaw( 3156 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3157 Int8Ty)}; 3158 Init = llvm::ConstantStruct::getAnon(Fields); 3159 } 3160 3161 auto *GV = new llvm::GlobalVariable( 3162 getModule(), Init->getType(), 3163 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3164 if (supportsCOMDAT()) 3165 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3166 setDSOLocal(GV); 3167 3168 if (!V.isAbsent()) { 3169 Emitter.finalize(GV); 3170 return ConstantAddress(GV, GV->getValueType(), Alignment); 3171 } 3172 3173 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3174 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3175 GV, Ty->getPointerTo(GV->getAddressSpace())); 3176 return ConstantAddress(Addr, Ty, Alignment); 3177 } 3178 3179 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3180 const UnnamedGlobalConstantDecl *GCD) { 3181 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3182 3183 llvm::GlobalVariable **Entry = nullptr; 3184 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3185 if (*Entry) 3186 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3187 3188 ConstantEmitter Emitter(*this); 3189 llvm::Constant *Init; 3190 3191 const APValue &V = GCD->getValue(); 3192 3193 assert(!V.isAbsent()); 3194 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3195 GCD->getType()); 3196 3197 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3198 /*isConstant=*/true, 3199 llvm::GlobalValue::PrivateLinkage, Init, 3200 ".constant"); 3201 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3202 GV->setAlignment(Alignment.getAsAlign()); 3203 3204 Emitter.finalize(GV); 3205 3206 *Entry = GV; 3207 return ConstantAddress(GV, GV->getValueType(), Alignment); 3208 } 3209 3210 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3211 const TemplateParamObjectDecl *TPO) { 3212 StringRef Name = getMangledName(TPO); 3213 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3214 3215 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3216 return ConstantAddress(GV, GV->getValueType(), Alignment); 3217 3218 ConstantEmitter Emitter(*this); 3219 llvm::Constant *Init = Emitter.emitForInitializer( 3220 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3221 3222 if (!Init) { 3223 ErrorUnsupported(TPO, "template parameter object"); 3224 return ConstantAddress::invalid(); 3225 } 3226 3227 auto *GV = new llvm::GlobalVariable( 3228 getModule(), Init->getType(), 3229 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3230 if (supportsCOMDAT()) 3231 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3232 Emitter.finalize(GV); 3233 3234 return ConstantAddress(GV, GV->getValueType(), Alignment); 3235 } 3236 3237 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3238 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3239 assert(AA && "No alias?"); 3240 3241 CharUnits Alignment = getContext().getDeclAlign(VD); 3242 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3243 3244 // See if there is already something with the target's name in the module. 3245 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3246 if (Entry) { 3247 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3248 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3249 return ConstantAddress(Ptr, DeclTy, Alignment); 3250 } 3251 3252 llvm::Constant *Aliasee; 3253 if (isa<llvm::FunctionType>(DeclTy)) 3254 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3255 GlobalDecl(cast<FunctionDecl>(VD)), 3256 /*ForVTable=*/false); 3257 else 3258 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3259 nullptr); 3260 3261 auto *F = cast<llvm::GlobalValue>(Aliasee); 3262 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3263 WeakRefReferences.insert(F); 3264 3265 return ConstantAddress(Aliasee, DeclTy, Alignment); 3266 } 3267 3268 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3269 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3270 3271 // Weak references don't produce any output by themselves. 3272 if (Global->hasAttr<WeakRefAttr>()) 3273 return; 3274 3275 // If this is an alias definition (which otherwise looks like a declaration) 3276 // emit it now. 3277 if (Global->hasAttr<AliasAttr>()) 3278 return EmitAliasDefinition(GD); 3279 3280 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3281 if (Global->hasAttr<IFuncAttr>()) 3282 return emitIFuncDefinition(GD); 3283 3284 // If this is a cpu_dispatch multiversion function, emit the resolver. 3285 if (Global->hasAttr<CPUDispatchAttr>()) 3286 return emitCPUDispatchDefinition(GD); 3287 3288 // If this is CUDA, be selective about which declarations we emit. 3289 if (LangOpts.CUDA) { 3290 if (LangOpts.CUDAIsDevice) { 3291 if (!Global->hasAttr<CUDADeviceAttr>() && 3292 !Global->hasAttr<CUDAGlobalAttr>() && 3293 !Global->hasAttr<CUDAConstantAttr>() && 3294 !Global->hasAttr<CUDASharedAttr>() && 3295 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3296 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3297 return; 3298 } else { 3299 // We need to emit host-side 'shadows' for all global 3300 // device-side variables because the CUDA runtime needs their 3301 // size and host-side address in order to provide access to 3302 // their device-side incarnations. 3303 3304 // So device-only functions are the only things we skip. 3305 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3306 Global->hasAttr<CUDADeviceAttr>()) 3307 return; 3308 3309 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3310 "Expected Variable or Function"); 3311 } 3312 } 3313 3314 if (LangOpts.OpenMP) { 3315 // If this is OpenMP, check if it is legal to emit this global normally. 3316 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3317 return; 3318 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3319 if (MustBeEmitted(Global)) 3320 EmitOMPDeclareReduction(DRD); 3321 return; 3322 } 3323 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3324 if (MustBeEmitted(Global)) 3325 EmitOMPDeclareMapper(DMD); 3326 return; 3327 } 3328 } 3329 3330 // Ignore declarations, they will be emitted on their first use. 3331 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3332 // Forward declarations are emitted lazily on first use. 3333 if (!FD->doesThisDeclarationHaveABody()) { 3334 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3335 return; 3336 3337 StringRef MangledName = getMangledName(GD); 3338 3339 // Compute the function info and LLVM type. 3340 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3341 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3342 3343 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3344 /*DontDefer=*/false); 3345 return; 3346 } 3347 } else { 3348 const auto *VD = cast<VarDecl>(Global); 3349 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3350 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3351 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3352 if (LangOpts.OpenMP) { 3353 // Emit declaration of the must-be-emitted declare target variable. 3354 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3355 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3356 bool UnifiedMemoryEnabled = 3357 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3358 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3359 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3360 !UnifiedMemoryEnabled) { 3361 (void)GetAddrOfGlobalVar(VD); 3362 } else { 3363 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3364 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3365 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3366 UnifiedMemoryEnabled)) && 3367 "Link clause or to clause with unified memory expected."); 3368 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3369 } 3370 3371 return; 3372 } 3373 } 3374 // If this declaration may have caused an inline variable definition to 3375 // change linkage, make sure that it's emitted. 3376 if (Context.getInlineVariableDefinitionKind(VD) == 3377 ASTContext::InlineVariableDefinitionKind::Strong) 3378 GetAddrOfGlobalVar(VD); 3379 return; 3380 } 3381 } 3382 3383 // Defer code generation to first use when possible, e.g. if this is an inline 3384 // function. If the global must always be emitted, do it eagerly if possible 3385 // to benefit from cache locality. 3386 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3387 // Emit the definition if it can't be deferred. 3388 EmitGlobalDefinition(GD); 3389 return; 3390 } 3391 3392 // If we're deferring emission of a C++ variable with an 3393 // initializer, remember the order in which it appeared in the file. 3394 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3395 cast<VarDecl>(Global)->hasInit()) { 3396 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3397 CXXGlobalInits.push_back(nullptr); 3398 } 3399 3400 StringRef MangledName = getMangledName(GD); 3401 if (GetGlobalValue(MangledName) != nullptr) { 3402 // The value has already been used and should therefore be emitted. 3403 addDeferredDeclToEmit(GD); 3404 } else if (MustBeEmitted(Global)) { 3405 // The value must be emitted, but cannot be emitted eagerly. 3406 assert(!MayBeEmittedEagerly(Global)); 3407 addDeferredDeclToEmit(GD); 3408 EmittedDeferredDecls[MangledName] = GD; 3409 } else { 3410 // Otherwise, remember that we saw a deferred decl with this name. The 3411 // first use of the mangled name will cause it to move into 3412 // DeferredDeclsToEmit. 3413 DeferredDecls[MangledName] = GD; 3414 } 3415 } 3416 3417 // Check if T is a class type with a destructor that's not dllimport. 3418 static bool HasNonDllImportDtor(QualType T) { 3419 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3420 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3421 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3422 return true; 3423 3424 return false; 3425 } 3426 3427 namespace { 3428 struct FunctionIsDirectlyRecursive 3429 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3430 const StringRef Name; 3431 const Builtin::Context &BI; 3432 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3433 : Name(N), BI(C) {} 3434 3435 bool VisitCallExpr(const CallExpr *E) { 3436 const FunctionDecl *FD = E->getDirectCallee(); 3437 if (!FD) 3438 return false; 3439 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3440 if (Attr && Name == Attr->getLabel()) 3441 return true; 3442 unsigned BuiltinID = FD->getBuiltinID(); 3443 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3444 return false; 3445 StringRef BuiltinName = BI.getName(BuiltinID); 3446 if (BuiltinName.startswith("__builtin_") && 3447 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3448 return true; 3449 } 3450 return false; 3451 } 3452 3453 bool VisitStmt(const Stmt *S) { 3454 for (const Stmt *Child : S->children()) 3455 if (Child && this->Visit(Child)) 3456 return true; 3457 return false; 3458 } 3459 }; 3460 3461 // Make sure we're not referencing non-imported vars or functions. 3462 struct DLLImportFunctionVisitor 3463 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3464 bool SafeToInline = true; 3465 3466 bool shouldVisitImplicitCode() const { return true; } 3467 3468 bool VisitVarDecl(VarDecl *VD) { 3469 if (VD->getTLSKind()) { 3470 // A thread-local variable cannot be imported. 3471 SafeToInline = false; 3472 return SafeToInline; 3473 } 3474 3475 // A variable definition might imply a destructor call. 3476 if (VD->isThisDeclarationADefinition()) 3477 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3478 3479 return SafeToInline; 3480 } 3481 3482 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3483 if (const auto *D = E->getTemporary()->getDestructor()) 3484 SafeToInline = D->hasAttr<DLLImportAttr>(); 3485 return SafeToInline; 3486 } 3487 3488 bool VisitDeclRefExpr(DeclRefExpr *E) { 3489 ValueDecl *VD = E->getDecl(); 3490 if (isa<FunctionDecl>(VD)) 3491 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3492 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3493 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3494 return SafeToInline; 3495 } 3496 3497 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3498 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3499 return SafeToInline; 3500 } 3501 3502 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3503 CXXMethodDecl *M = E->getMethodDecl(); 3504 if (!M) { 3505 // Call through a pointer to member function. This is safe to inline. 3506 SafeToInline = true; 3507 } else { 3508 SafeToInline = M->hasAttr<DLLImportAttr>(); 3509 } 3510 return SafeToInline; 3511 } 3512 3513 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3514 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3515 return SafeToInline; 3516 } 3517 3518 bool VisitCXXNewExpr(CXXNewExpr *E) { 3519 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3520 return SafeToInline; 3521 } 3522 }; 3523 } 3524 3525 // isTriviallyRecursive - Check if this function calls another 3526 // decl that, because of the asm attribute or the other decl being a builtin, 3527 // ends up pointing to itself. 3528 bool 3529 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3530 StringRef Name; 3531 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3532 // asm labels are a special kind of mangling we have to support. 3533 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3534 if (!Attr) 3535 return false; 3536 Name = Attr->getLabel(); 3537 } else { 3538 Name = FD->getName(); 3539 } 3540 3541 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3542 const Stmt *Body = FD->getBody(); 3543 return Body ? Walker.Visit(Body) : false; 3544 } 3545 3546 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3547 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3548 return true; 3549 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3550 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3551 return false; 3552 3553 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3554 // Check whether it would be safe to inline this dllimport function. 3555 DLLImportFunctionVisitor Visitor; 3556 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3557 if (!Visitor.SafeToInline) 3558 return false; 3559 3560 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3561 // Implicit destructor invocations aren't captured in the AST, so the 3562 // check above can't see them. Check for them manually here. 3563 for (const Decl *Member : Dtor->getParent()->decls()) 3564 if (isa<FieldDecl>(Member)) 3565 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3566 return false; 3567 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3568 if (HasNonDllImportDtor(B.getType())) 3569 return false; 3570 } 3571 } 3572 3573 // Inline builtins declaration must be emitted. They often are fortified 3574 // functions. 3575 if (F->isInlineBuiltinDeclaration()) 3576 return true; 3577 3578 // PR9614. Avoid cases where the source code is lying to us. An available 3579 // externally function should have an equivalent function somewhere else, 3580 // but a function that calls itself through asm label/`__builtin_` trickery is 3581 // clearly not equivalent to the real implementation. 3582 // This happens in glibc's btowc and in some configure checks. 3583 return !isTriviallyRecursive(F); 3584 } 3585 3586 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3587 return CodeGenOpts.OptimizationLevel > 0; 3588 } 3589 3590 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3591 llvm::GlobalValue *GV) { 3592 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3593 3594 if (FD->isCPUSpecificMultiVersion()) { 3595 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3596 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3597 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3598 } else if (FD->isTargetClonesMultiVersion()) { 3599 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3600 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3601 if (Clone->isFirstOfVersion(I)) 3602 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3603 // Ensure that the resolver function is also emitted. 3604 GetOrCreateMultiVersionResolver(GD); 3605 } else 3606 EmitGlobalFunctionDefinition(GD, GV); 3607 } 3608 3609 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3610 const auto *D = cast<ValueDecl>(GD.getDecl()); 3611 3612 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3613 Context.getSourceManager(), 3614 "Generating code for declaration"); 3615 3616 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3617 // At -O0, don't generate IR for functions with available_externally 3618 // linkage. 3619 if (!shouldEmitFunction(GD)) 3620 return; 3621 3622 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3623 std::string Name; 3624 llvm::raw_string_ostream OS(Name); 3625 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3626 /*Qualified=*/true); 3627 return Name; 3628 }); 3629 3630 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3631 // Make sure to emit the definition(s) before we emit the thunks. 3632 // This is necessary for the generation of certain thunks. 3633 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3634 ABI->emitCXXStructor(GD); 3635 else if (FD->isMultiVersion()) 3636 EmitMultiVersionFunctionDefinition(GD, GV); 3637 else 3638 EmitGlobalFunctionDefinition(GD, GV); 3639 3640 if (Method->isVirtual()) 3641 getVTables().EmitThunks(GD); 3642 3643 return; 3644 } 3645 3646 if (FD->isMultiVersion()) 3647 return EmitMultiVersionFunctionDefinition(GD, GV); 3648 return EmitGlobalFunctionDefinition(GD, GV); 3649 } 3650 3651 if (const auto *VD = dyn_cast<VarDecl>(D)) 3652 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3653 3654 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3655 } 3656 3657 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3658 llvm::Function *NewFn); 3659 3660 static unsigned 3661 TargetMVPriority(const TargetInfo &TI, 3662 const CodeGenFunction::MultiVersionResolverOption &RO) { 3663 unsigned Priority = 0; 3664 unsigned NumFeatures = 0; 3665 for (StringRef Feat : RO.Conditions.Features) { 3666 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3667 NumFeatures++; 3668 } 3669 3670 if (!RO.Conditions.Architecture.empty()) 3671 Priority = std::max( 3672 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3673 3674 Priority += TI.multiVersionFeatureCost() * NumFeatures; 3675 3676 return Priority; 3677 } 3678 3679 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3680 // TU can forward declare the function without causing problems. Particularly 3681 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3682 // work with internal linkage functions, so that the same function name can be 3683 // used with internal linkage in multiple TUs. 3684 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3685 GlobalDecl GD) { 3686 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3687 if (FD->getFormalLinkage() == InternalLinkage) 3688 return llvm::GlobalValue::InternalLinkage; 3689 return llvm::GlobalValue::WeakODRLinkage; 3690 } 3691 3692 void CodeGenModule::emitMultiVersionFunctions() { 3693 std::vector<GlobalDecl> MVFuncsToEmit; 3694 MultiVersionFuncs.swap(MVFuncsToEmit); 3695 for (GlobalDecl GD : MVFuncsToEmit) { 3696 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3697 assert(FD && "Expected a FunctionDecl"); 3698 3699 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3700 if (FD->isTargetMultiVersion()) { 3701 getContext().forEachMultiversionedFunctionVersion( 3702 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3703 GlobalDecl CurGD{ 3704 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3705 StringRef MangledName = getMangledName(CurGD); 3706 llvm::Constant *Func = GetGlobalValue(MangledName); 3707 if (!Func) { 3708 if (CurFD->isDefined()) { 3709 EmitGlobalFunctionDefinition(CurGD, nullptr); 3710 Func = GetGlobalValue(MangledName); 3711 } else { 3712 const CGFunctionInfo &FI = 3713 getTypes().arrangeGlobalDeclaration(GD); 3714 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3715 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3716 /*DontDefer=*/false, ForDefinition); 3717 } 3718 assert(Func && "This should have just been created"); 3719 } 3720 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 3721 const auto *TA = CurFD->getAttr<TargetAttr>(); 3722 llvm::SmallVector<StringRef, 8> Feats; 3723 TA->getAddedFeatures(Feats); 3724 Options.emplace_back(cast<llvm::Function>(Func), 3725 TA->getArchitecture(), Feats); 3726 } else { 3727 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 3728 llvm::SmallVector<StringRef, 8> Feats; 3729 TVA->getFeatures(Feats); 3730 Options.emplace_back(cast<llvm::Function>(Func), 3731 /*Architecture*/ "", Feats); 3732 } 3733 }); 3734 } else if (FD->isTargetClonesMultiVersion()) { 3735 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3736 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3737 ++VersionIndex) { 3738 if (!TC->isFirstOfVersion(VersionIndex)) 3739 continue; 3740 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3741 VersionIndex}; 3742 StringRef Version = TC->getFeatureStr(VersionIndex); 3743 StringRef MangledName = getMangledName(CurGD); 3744 llvm::Constant *Func = GetGlobalValue(MangledName); 3745 if (!Func) { 3746 if (FD->isDefined()) { 3747 EmitGlobalFunctionDefinition(CurGD, nullptr); 3748 Func = GetGlobalValue(MangledName); 3749 } else { 3750 const CGFunctionInfo &FI = 3751 getTypes().arrangeGlobalDeclaration(CurGD); 3752 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3753 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3754 /*DontDefer=*/false, ForDefinition); 3755 } 3756 assert(Func && "This should have just been created"); 3757 } 3758 3759 StringRef Architecture; 3760 llvm::SmallVector<StringRef, 1> Feature; 3761 3762 if (getTarget().getTriple().isAArch64()) { 3763 if (Version != "default") { 3764 llvm::SmallVector<StringRef, 8> VerFeats; 3765 Version.split(VerFeats, "+"); 3766 for (auto &CurFeat : VerFeats) 3767 Feature.push_back(CurFeat.trim()); 3768 } 3769 } else { 3770 if (Version.startswith("arch=")) 3771 Architecture = Version.drop_front(sizeof("arch=") - 1); 3772 else if (Version != "default") 3773 Feature.push_back(Version); 3774 } 3775 3776 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3777 } 3778 } else { 3779 assert(0 && "Expected a target or target_clones multiversion function"); 3780 continue; 3781 } 3782 3783 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3784 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3785 ResolverConstant = IFunc->getResolver(); 3786 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3787 3788 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3789 3790 if (supportsCOMDAT()) 3791 ResolverFunc->setComdat( 3792 getModule().getOrInsertComdat(ResolverFunc->getName())); 3793 3794 const TargetInfo &TI = getTarget(); 3795 llvm::stable_sort( 3796 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3797 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3798 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3799 }); 3800 CodeGenFunction CGF(*this); 3801 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3802 } 3803 3804 // Ensure that any additions to the deferred decls list caused by emitting a 3805 // variant are emitted. This can happen when the variant itself is inline and 3806 // calls a function without linkage. 3807 if (!MVFuncsToEmit.empty()) 3808 EmitDeferred(); 3809 3810 // Ensure that any additions to the multiversion funcs list from either the 3811 // deferred decls or the multiversion functions themselves are emitted. 3812 if (!MultiVersionFuncs.empty()) 3813 emitMultiVersionFunctions(); 3814 } 3815 3816 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3817 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3818 assert(FD && "Not a FunctionDecl?"); 3819 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3820 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3821 assert(DD && "Not a cpu_dispatch Function?"); 3822 3823 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3824 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3825 3826 StringRef ResolverName = getMangledName(GD); 3827 UpdateMultiVersionNames(GD, FD, ResolverName); 3828 3829 llvm::Type *ResolverType; 3830 GlobalDecl ResolverGD; 3831 if (getTarget().supportsIFunc()) { 3832 ResolverType = llvm::FunctionType::get( 3833 llvm::PointerType::get(DeclTy, 3834 getTypes().getTargetAddressSpace(FD->getType())), 3835 false); 3836 } 3837 else { 3838 ResolverType = DeclTy; 3839 ResolverGD = GD; 3840 } 3841 3842 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3843 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3844 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3845 if (supportsCOMDAT()) 3846 ResolverFunc->setComdat( 3847 getModule().getOrInsertComdat(ResolverFunc->getName())); 3848 3849 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3850 const TargetInfo &Target = getTarget(); 3851 unsigned Index = 0; 3852 for (const IdentifierInfo *II : DD->cpus()) { 3853 // Get the name of the target function so we can look it up/create it. 3854 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3855 getCPUSpecificMangling(*this, II->getName()); 3856 3857 llvm::Constant *Func = GetGlobalValue(MangledName); 3858 3859 if (!Func) { 3860 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3861 if (ExistingDecl.getDecl() && 3862 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3863 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3864 Func = GetGlobalValue(MangledName); 3865 } else { 3866 if (!ExistingDecl.getDecl()) 3867 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3868 3869 Func = GetOrCreateLLVMFunction( 3870 MangledName, DeclTy, ExistingDecl, 3871 /*ForVTable=*/false, /*DontDefer=*/true, 3872 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3873 } 3874 } 3875 3876 llvm::SmallVector<StringRef, 32> Features; 3877 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3878 llvm::transform(Features, Features.begin(), 3879 [](StringRef Str) { return Str.substr(1); }); 3880 llvm::erase_if(Features, [&Target](StringRef Feat) { 3881 return !Target.validateCpuSupports(Feat); 3882 }); 3883 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3884 ++Index; 3885 } 3886 3887 llvm::stable_sort( 3888 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3889 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3890 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3891 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3892 }); 3893 3894 // If the list contains multiple 'default' versions, such as when it contains 3895 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3896 // always run on at least a 'pentium'). We do this by deleting the 'least 3897 // advanced' (read, lowest mangling letter). 3898 while (Options.size() > 1 && 3899 llvm::X86::getCpuSupportsMask( 3900 (Options.end() - 2)->Conditions.Features) == 0) { 3901 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3902 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3903 if (LHSName.compare(RHSName) < 0) 3904 Options.erase(Options.end() - 2); 3905 else 3906 Options.erase(Options.end() - 1); 3907 } 3908 3909 CodeGenFunction CGF(*this); 3910 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3911 3912 if (getTarget().supportsIFunc()) { 3913 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3914 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3915 3916 // Fix up function declarations that were created for cpu_specific before 3917 // cpu_dispatch was known 3918 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3919 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3920 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3921 &getModule()); 3922 GI->takeName(IFunc); 3923 IFunc->replaceAllUsesWith(GI); 3924 IFunc->eraseFromParent(); 3925 IFunc = GI; 3926 } 3927 3928 std::string AliasName = getMangledNameImpl( 3929 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3930 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3931 if (!AliasFunc) { 3932 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3933 &getModule()); 3934 SetCommonAttributes(GD, GA); 3935 } 3936 } 3937 } 3938 3939 /// If a dispatcher for the specified mangled name is not in the module, create 3940 /// and return an llvm Function with the specified type. 3941 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3942 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3943 assert(FD && "Not a FunctionDecl?"); 3944 3945 std::string MangledName = 3946 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3947 3948 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3949 // a separate resolver). 3950 std::string ResolverName = MangledName; 3951 if (getTarget().supportsIFunc()) 3952 ResolverName += ".ifunc"; 3953 else if (FD->isTargetMultiVersion()) 3954 ResolverName += ".resolver"; 3955 3956 // If the resolver has already been created, just return it. 3957 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3958 return ResolverGV; 3959 3960 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3961 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3962 3963 // The resolver needs to be created. For target and target_clones, defer 3964 // creation until the end of the TU. 3965 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3966 MultiVersionFuncs.push_back(GD); 3967 3968 // For cpu_specific, don't create an ifunc yet because we don't know if the 3969 // cpu_dispatch will be emitted in this translation unit. 3970 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3971 llvm::Type *ResolverType = llvm::FunctionType::get( 3972 llvm::PointerType::get(DeclTy, 3973 getTypes().getTargetAddressSpace(FD->getType())), 3974 false); 3975 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3976 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3977 /*ForVTable=*/false); 3978 llvm::GlobalIFunc *GIF = 3979 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3980 "", Resolver, &getModule()); 3981 GIF->setName(ResolverName); 3982 SetCommonAttributes(FD, GIF); 3983 3984 return GIF; 3985 } 3986 3987 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3988 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3989 assert(isa<llvm::GlobalValue>(Resolver) && 3990 "Resolver should be created for the first time"); 3991 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3992 return Resolver; 3993 } 3994 3995 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3996 /// module, create and return an llvm Function with the specified type. If there 3997 /// is something in the module with the specified name, return it potentially 3998 /// bitcasted to the right type. 3999 /// 4000 /// If D is non-null, it specifies a decl that correspond to this. This is used 4001 /// to set the attributes on the function when it is first created. 4002 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4003 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4004 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4005 ForDefinition_t IsForDefinition) { 4006 const Decl *D = GD.getDecl(); 4007 4008 // Any attempts to use a MultiVersion function should result in retrieving 4009 // the iFunc instead. Name Mangling will handle the rest of the changes. 4010 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4011 // For the device mark the function as one that should be emitted. 4012 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 4013 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4014 !DontDefer && !IsForDefinition) { 4015 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4016 GlobalDecl GDDef; 4017 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4018 GDDef = GlobalDecl(CD, GD.getCtorType()); 4019 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4020 GDDef = GlobalDecl(DD, GD.getDtorType()); 4021 else 4022 GDDef = GlobalDecl(FDDef); 4023 EmitGlobal(GDDef); 4024 } 4025 } 4026 4027 if (FD->isMultiVersion()) { 4028 UpdateMultiVersionNames(GD, FD, MangledName); 4029 if (!IsForDefinition) 4030 return GetOrCreateMultiVersionResolver(GD); 4031 } 4032 } 4033 4034 // Lookup the entry, lazily creating it if necessary. 4035 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4036 if (Entry) { 4037 if (WeakRefReferences.erase(Entry)) { 4038 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4039 if (FD && !FD->hasAttr<WeakAttr>()) 4040 Entry->setLinkage(llvm::Function::ExternalLinkage); 4041 } 4042 4043 // Handle dropped DLL attributes. 4044 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4045 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4046 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4047 setDSOLocal(Entry); 4048 } 4049 4050 // If there are two attempts to define the same mangled name, issue an 4051 // error. 4052 if (IsForDefinition && !Entry->isDeclaration()) { 4053 GlobalDecl OtherGD; 4054 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4055 // to make sure that we issue an error only once. 4056 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4057 (GD.getCanonicalDecl().getDecl() != 4058 OtherGD.getCanonicalDecl().getDecl()) && 4059 DiagnosedConflictingDefinitions.insert(GD).second) { 4060 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4061 << MangledName; 4062 getDiags().Report(OtherGD.getDecl()->getLocation(), 4063 diag::note_previous_definition); 4064 } 4065 } 4066 4067 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4068 (Entry->getValueType() == Ty)) { 4069 return Entry; 4070 } 4071 4072 // Make sure the result is of the correct type. 4073 // (If function is requested for a definition, we always need to create a new 4074 // function, not just return a bitcast.) 4075 if (!IsForDefinition) 4076 return llvm::ConstantExpr::getBitCast( 4077 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4078 } 4079 4080 // This function doesn't have a complete type (for example, the return 4081 // type is an incomplete struct). Use a fake type instead, and make 4082 // sure not to try to set attributes. 4083 bool IsIncompleteFunction = false; 4084 4085 llvm::FunctionType *FTy; 4086 if (isa<llvm::FunctionType>(Ty)) { 4087 FTy = cast<llvm::FunctionType>(Ty); 4088 } else { 4089 FTy = llvm::FunctionType::get(VoidTy, false); 4090 IsIncompleteFunction = true; 4091 } 4092 4093 llvm::Function *F = 4094 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4095 Entry ? StringRef() : MangledName, &getModule()); 4096 4097 // If we already created a function with the same mangled name (but different 4098 // type) before, take its name and add it to the list of functions to be 4099 // replaced with F at the end of CodeGen. 4100 // 4101 // This happens if there is a prototype for a function (e.g. "int f()") and 4102 // then a definition of a different type (e.g. "int f(int x)"). 4103 if (Entry) { 4104 F->takeName(Entry); 4105 4106 // This might be an implementation of a function without a prototype, in 4107 // which case, try to do special replacement of calls which match the new 4108 // prototype. The really key thing here is that we also potentially drop 4109 // arguments from the call site so as to make a direct call, which makes the 4110 // inliner happier and suppresses a number of optimizer warnings (!) about 4111 // dropping arguments. 4112 if (!Entry->use_empty()) { 4113 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4114 Entry->removeDeadConstantUsers(); 4115 } 4116 4117 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4118 F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); 4119 addGlobalValReplacement(Entry, BC); 4120 } 4121 4122 assert(F->getName() == MangledName && "name was uniqued!"); 4123 if (D) 4124 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4125 if (ExtraAttrs.hasFnAttrs()) { 4126 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4127 F->addFnAttrs(B); 4128 } 4129 4130 if (!DontDefer) { 4131 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4132 // each other bottoming out with the base dtor. Therefore we emit non-base 4133 // dtors on usage, even if there is no dtor definition in the TU. 4134 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4135 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4136 GD.getDtorType())) 4137 addDeferredDeclToEmit(GD); 4138 4139 // This is the first use or definition of a mangled name. If there is a 4140 // deferred decl with this name, remember that we need to emit it at the end 4141 // of the file. 4142 auto DDI = DeferredDecls.find(MangledName); 4143 if (DDI != DeferredDecls.end()) { 4144 // Move the potentially referenced deferred decl to the 4145 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4146 // don't need it anymore). 4147 addDeferredDeclToEmit(DDI->second); 4148 EmittedDeferredDecls[DDI->first] = DDI->second; 4149 DeferredDecls.erase(DDI); 4150 4151 // Otherwise, there are cases we have to worry about where we're 4152 // using a declaration for which we must emit a definition but where 4153 // we might not find a top-level definition: 4154 // - member functions defined inline in their classes 4155 // - friend functions defined inline in some class 4156 // - special member functions with implicit definitions 4157 // If we ever change our AST traversal to walk into class methods, 4158 // this will be unnecessary. 4159 // 4160 // We also don't emit a definition for a function if it's going to be an 4161 // entry in a vtable, unless it's already marked as used. 4162 } else if (getLangOpts().CPlusPlus && D) { 4163 // Look for a declaration that's lexically in a record. 4164 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4165 FD = FD->getPreviousDecl()) { 4166 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4167 if (FD->doesThisDeclarationHaveABody()) { 4168 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4169 break; 4170 } 4171 } 4172 } 4173 } 4174 } 4175 4176 // Make sure the result is of the requested type. 4177 if (!IsIncompleteFunction) { 4178 assert(F->getFunctionType() == Ty); 4179 return F; 4180 } 4181 4182 return llvm::ConstantExpr::getBitCast(F, 4183 Ty->getPointerTo(F->getAddressSpace())); 4184 } 4185 4186 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4187 /// non-null, then this function will use the specified type if it has to 4188 /// create it (this occurs when we see a definition of the function). 4189 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 4190 llvm::Type *Ty, 4191 bool ForVTable, 4192 bool DontDefer, 4193 ForDefinition_t IsForDefinition) { 4194 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 4195 "consteval function should never be emitted"); 4196 // If there was no specific requested type, just convert it now. 4197 if (!Ty) { 4198 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4199 Ty = getTypes().ConvertType(FD->getType()); 4200 } 4201 4202 // Devirtualized destructor calls may come through here instead of via 4203 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4204 // of the complete destructor when necessary. 4205 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4206 if (getTarget().getCXXABI().isMicrosoft() && 4207 GD.getDtorType() == Dtor_Complete && 4208 DD->getParent()->getNumVBases() == 0) 4209 GD = GlobalDecl(DD, Dtor_Base); 4210 } 4211 4212 StringRef MangledName = getMangledName(GD); 4213 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4214 /*IsThunk=*/false, llvm::AttributeList(), 4215 IsForDefinition); 4216 // Returns kernel handle for HIP kernel stub function. 4217 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4218 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4219 auto *Handle = getCUDARuntime().getKernelHandle( 4220 cast<llvm::Function>(F->stripPointerCasts()), GD); 4221 if (IsForDefinition) 4222 return F; 4223 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4224 } 4225 return F; 4226 } 4227 4228 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4229 llvm::GlobalValue *F = 4230 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4231 4232 return llvm::ConstantExpr::getBitCast( 4233 llvm::NoCFIValue::get(F), 4234 llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace())); 4235 } 4236 4237 static const FunctionDecl * 4238 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4239 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4240 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4241 4242 IdentifierInfo &CII = C.Idents.get(Name); 4243 for (const auto *Result : DC->lookup(&CII)) 4244 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4245 return FD; 4246 4247 if (!C.getLangOpts().CPlusPlus) 4248 return nullptr; 4249 4250 // Demangle the premangled name from getTerminateFn() 4251 IdentifierInfo &CXXII = 4252 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4253 ? C.Idents.get("terminate") 4254 : C.Idents.get(Name); 4255 4256 for (const auto &N : {"__cxxabiv1", "std"}) { 4257 IdentifierInfo &NS = C.Idents.get(N); 4258 for (const auto *Result : DC->lookup(&NS)) { 4259 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4260 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4261 for (const auto *Result : LSD->lookup(&NS)) 4262 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4263 break; 4264 4265 if (ND) 4266 for (const auto *Result : ND->lookup(&CXXII)) 4267 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4268 return FD; 4269 } 4270 } 4271 4272 return nullptr; 4273 } 4274 4275 /// CreateRuntimeFunction - Create a new runtime function with the specified 4276 /// type and name. 4277 llvm::FunctionCallee 4278 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4279 llvm::AttributeList ExtraAttrs, bool Local, 4280 bool AssumeConvergent) { 4281 if (AssumeConvergent) { 4282 ExtraAttrs = 4283 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4284 } 4285 4286 llvm::Constant *C = 4287 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4288 /*DontDefer=*/false, /*IsThunk=*/false, 4289 ExtraAttrs); 4290 4291 if (auto *F = dyn_cast<llvm::Function>(C)) { 4292 if (F->empty()) { 4293 F->setCallingConv(getRuntimeCC()); 4294 4295 // In Windows Itanium environments, try to mark runtime functions 4296 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4297 // will link their standard library statically or dynamically. Marking 4298 // functions imported when they are not imported can cause linker errors 4299 // and warnings. 4300 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4301 !getCodeGenOpts().LTOVisibilityPublicStd) { 4302 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4303 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4304 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4305 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4306 } 4307 } 4308 setDSOLocal(F); 4309 } 4310 } 4311 4312 return {FTy, C}; 4313 } 4314 4315 /// isTypeConstant - Determine whether an object of this type can be emitted 4316 /// as a constant. 4317 /// 4318 /// If ExcludeCtor is true, the duration when the object's constructor runs 4319 /// will not be considered. The caller will need to verify that the object is 4320 /// not written to during its construction. 4321 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4322 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4323 return false; 4324 4325 if (Context.getLangOpts().CPlusPlus) { 4326 if (const CXXRecordDecl *Record 4327 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4328 return ExcludeCtor && !Record->hasMutableFields() && 4329 Record->hasTrivialDestructor(); 4330 } 4331 4332 return true; 4333 } 4334 4335 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4336 /// create and return an llvm GlobalVariable with the specified type and address 4337 /// space. If there is something in the module with the specified name, return 4338 /// it potentially bitcasted to the right type. 4339 /// 4340 /// If D is non-null, it specifies a decl that correspond to this. This is used 4341 /// to set the attributes on the global when it is first created. 4342 /// 4343 /// If IsForDefinition is true, it is guaranteed that an actual global with 4344 /// type Ty will be returned, not conversion of a variable with the same 4345 /// mangled name but some other type. 4346 llvm::Constant * 4347 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4348 LangAS AddrSpace, const VarDecl *D, 4349 ForDefinition_t IsForDefinition) { 4350 // Lookup the entry, lazily creating it if necessary. 4351 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4352 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4353 if (Entry) { 4354 if (WeakRefReferences.erase(Entry)) { 4355 if (D && !D->hasAttr<WeakAttr>()) 4356 Entry->setLinkage(llvm::Function::ExternalLinkage); 4357 } 4358 4359 // Handle dropped DLL attributes. 4360 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4361 !shouldMapVisibilityToDLLExport(D)) 4362 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4363 4364 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4365 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4366 4367 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4368 return Entry; 4369 4370 // If there are two attempts to define the same mangled name, issue an 4371 // error. 4372 if (IsForDefinition && !Entry->isDeclaration()) { 4373 GlobalDecl OtherGD; 4374 const VarDecl *OtherD; 4375 4376 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4377 // to make sure that we issue an error only once. 4378 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4379 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4380 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4381 OtherD->hasInit() && 4382 DiagnosedConflictingDefinitions.insert(D).second) { 4383 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4384 << MangledName; 4385 getDiags().Report(OtherGD.getDecl()->getLocation(), 4386 diag::note_previous_definition); 4387 } 4388 } 4389 4390 // Make sure the result is of the correct type. 4391 if (Entry->getType()->getAddressSpace() != TargetAS) { 4392 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4393 Ty->getPointerTo(TargetAS)); 4394 } 4395 4396 // (If global is requested for a definition, we always need to create a new 4397 // global, not just return a bitcast.) 4398 if (!IsForDefinition) 4399 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4400 } 4401 4402 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4403 4404 auto *GV = new llvm::GlobalVariable( 4405 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4406 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4407 getContext().getTargetAddressSpace(DAddrSpace)); 4408 4409 // If we already created a global with the same mangled name (but different 4410 // type) before, take its name and remove it from its parent. 4411 if (Entry) { 4412 GV->takeName(Entry); 4413 4414 if (!Entry->use_empty()) { 4415 llvm::Constant *NewPtrForOldDecl = 4416 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4417 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4418 } 4419 4420 Entry->eraseFromParent(); 4421 } 4422 4423 // This is the first use or definition of a mangled name. If there is a 4424 // deferred decl with this name, remember that we need to emit it at the end 4425 // of the file. 4426 auto DDI = DeferredDecls.find(MangledName); 4427 if (DDI != DeferredDecls.end()) { 4428 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4429 // list, and remove it from DeferredDecls (since we don't need it anymore). 4430 addDeferredDeclToEmit(DDI->second); 4431 EmittedDeferredDecls[DDI->first] = DDI->second; 4432 DeferredDecls.erase(DDI); 4433 } 4434 4435 // Handle things which are present even on external declarations. 4436 if (D) { 4437 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4438 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4439 4440 // FIXME: This code is overly simple and should be merged with other global 4441 // handling. 4442 GV->setConstant(isTypeConstant(D->getType(), false)); 4443 4444 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4445 4446 setLinkageForGV(GV, D); 4447 4448 if (D->getTLSKind()) { 4449 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4450 CXXThreadLocals.push_back(D); 4451 setTLSMode(GV, *D); 4452 } 4453 4454 setGVProperties(GV, D); 4455 4456 // If required by the ABI, treat declarations of static data members with 4457 // inline initializers as definitions. 4458 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4459 EmitGlobalVarDefinition(D); 4460 } 4461 4462 // Emit section information for extern variables. 4463 if (D->hasExternalStorage()) { 4464 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4465 GV->setSection(SA->getName()); 4466 } 4467 4468 // Handle XCore specific ABI requirements. 4469 if (getTriple().getArch() == llvm::Triple::xcore && 4470 D->getLanguageLinkage() == CLanguageLinkage && 4471 D->getType().isConstant(Context) && 4472 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4473 GV->setSection(".cp.rodata"); 4474 4475 // Check if we a have a const declaration with an initializer, we may be 4476 // able to emit it as available_externally to expose it's value to the 4477 // optimizer. 4478 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4479 D->getType().isConstQualified() && !GV->hasInitializer() && 4480 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4481 const auto *Record = 4482 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4483 bool HasMutableFields = Record && Record->hasMutableFields(); 4484 if (!HasMutableFields) { 4485 const VarDecl *InitDecl; 4486 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4487 if (InitExpr) { 4488 ConstantEmitter emitter(*this); 4489 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4490 if (Init) { 4491 auto *InitType = Init->getType(); 4492 if (GV->getValueType() != InitType) { 4493 // The type of the initializer does not match the definition. 4494 // This happens when an initializer has a different type from 4495 // the type of the global (because of padding at the end of a 4496 // structure for instance). 4497 GV->setName(StringRef()); 4498 // Make a new global with the correct type, this is now guaranteed 4499 // to work. 4500 auto *NewGV = cast<llvm::GlobalVariable>( 4501 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4502 ->stripPointerCasts()); 4503 4504 // Erase the old global, since it is no longer used. 4505 GV->eraseFromParent(); 4506 GV = NewGV; 4507 } else { 4508 GV->setInitializer(Init); 4509 GV->setConstant(true); 4510 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4511 } 4512 emitter.finalize(GV); 4513 } 4514 } 4515 } 4516 } 4517 } 4518 4519 if (GV->isDeclaration()) { 4520 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4521 // External HIP managed variables needed to be recorded for transformation 4522 // in both device and host compilations. 4523 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4524 D->hasExternalStorage()) 4525 getCUDARuntime().handleVarRegistration(D, *GV); 4526 } 4527 4528 if (D) 4529 SanitizerMD->reportGlobal(GV, *D); 4530 4531 LangAS ExpectedAS = 4532 D ? D->getType().getAddressSpace() 4533 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4534 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4535 if (DAddrSpace != ExpectedAS) { 4536 return getTargetCodeGenInfo().performAddrSpaceCast( 4537 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4538 } 4539 4540 return GV; 4541 } 4542 4543 llvm::Constant * 4544 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4545 const Decl *D = GD.getDecl(); 4546 4547 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4548 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4549 /*DontDefer=*/false, IsForDefinition); 4550 4551 if (isa<CXXMethodDecl>(D)) { 4552 auto FInfo = 4553 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4554 auto Ty = getTypes().GetFunctionType(*FInfo); 4555 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4556 IsForDefinition); 4557 } 4558 4559 if (isa<FunctionDecl>(D)) { 4560 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4561 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4562 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4563 IsForDefinition); 4564 } 4565 4566 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4567 } 4568 4569 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4570 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4571 llvm::Align Alignment) { 4572 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4573 llvm::GlobalVariable *OldGV = nullptr; 4574 4575 if (GV) { 4576 // Check if the variable has the right type. 4577 if (GV->getValueType() == Ty) 4578 return GV; 4579 4580 // Because C++ name mangling, the only way we can end up with an already 4581 // existing global with the same name is if it has been declared extern "C". 4582 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4583 OldGV = GV; 4584 } 4585 4586 // Create a new variable. 4587 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4588 Linkage, nullptr, Name); 4589 4590 if (OldGV) { 4591 // Replace occurrences of the old variable if needed. 4592 GV->takeName(OldGV); 4593 4594 if (!OldGV->use_empty()) { 4595 llvm::Constant *NewPtrForOldDecl = 4596 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4597 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4598 } 4599 4600 OldGV->eraseFromParent(); 4601 } 4602 4603 if (supportsCOMDAT() && GV->isWeakForLinker() && 4604 !GV->hasAvailableExternallyLinkage()) 4605 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4606 4607 GV->setAlignment(Alignment); 4608 4609 return GV; 4610 } 4611 4612 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4613 /// given global variable. If Ty is non-null and if the global doesn't exist, 4614 /// then it will be created with the specified type instead of whatever the 4615 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4616 /// that an actual global with type Ty will be returned, not conversion of a 4617 /// variable with the same mangled name but some other type. 4618 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4619 llvm::Type *Ty, 4620 ForDefinition_t IsForDefinition) { 4621 assert(D->hasGlobalStorage() && "Not a global variable"); 4622 QualType ASTTy = D->getType(); 4623 if (!Ty) 4624 Ty = getTypes().ConvertTypeForMem(ASTTy); 4625 4626 StringRef MangledName = getMangledName(D); 4627 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4628 IsForDefinition); 4629 } 4630 4631 /// CreateRuntimeVariable - Create a new runtime global variable with the 4632 /// specified type and name. 4633 llvm::Constant * 4634 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4635 StringRef Name) { 4636 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4637 : LangAS::Default; 4638 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4639 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4640 return Ret; 4641 } 4642 4643 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4644 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4645 4646 StringRef MangledName = getMangledName(D); 4647 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4648 4649 // We already have a definition, not declaration, with the same mangled name. 4650 // Emitting of declaration is not required (and actually overwrites emitted 4651 // definition). 4652 if (GV && !GV->isDeclaration()) 4653 return; 4654 4655 // If we have not seen a reference to this variable yet, place it into the 4656 // deferred declarations table to be emitted if needed later. 4657 if (!MustBeEmitted(D) && !GV) { 4658 DeferredDecls[MangledName] = D; 4659 return; 4660 } 4661 4662 // The tentative definition is the only definition. 4663 EmitGlobalVarDefinition(D); 4664 } 4665 4666 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4667 EmitExternalVarDeclaration(D); 4668 } 4669 4670 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4671 return Context.toCharUnitsFromBits( 4672 getDataLayout().getTypeStoreSizeInBits(Ty)); 4673 } 4674 4675 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4676 if (LangOpts.OpenCL) { 4677 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4678 assert(AS == LangAS::opencl_global || 4679 AS == LangAS::opencl_global_device || 4680 AS == LangAS::opencl_global_host || 4681 AS == LangAS::opencl_constant || 4682 AS == LangAS::opencl_local || 4683 AS >= LangAS::FirstTargetAddressSpace); 4684 return AS; 4685 } 4686 4687 if (LangOpts.SYCLIsDevice && 4688 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4689 return LangAS::sycl_global; 4690 4691 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4692 if (D) { 4693 if (D->hasAttr<CUDAConstantAttr>()) 4694 return LangAS::cuda_constant; 4695 if (D->hasAttr<CUDASharedAttr>()) 4696 return LangAS::cuda_shared; 4697 if (D->hasAttr<CUDADeviceAttr>()) 4698 return LangAS::cuda_device; 4699 if (D->getType().isConstQualified()) 4700 return LangAS::cuda_constant; 4701 } 4702 return LangAS::cuda_device; 4703 } 4704 4705 if (LangOpts.OpenMP) { 4706 LangAS AS; 4707 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4708 return AS; 4709 } 4710 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4711 } 4712 4713 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4714 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4715 if (LangOpts.OpenCL) 4716 return LangAS::opencl_constant; 4717 if (LangOpts.SYCLIsDevice) 4718 return LangAS::sycl_global; 4719 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4720 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4721 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4722 // with OpVariable instructions with Generic storage class which is not 4723 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4724 // UniformConstant storage class is not viable as pointers to it may not be 4725 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4726 return LangAS::cuda_device; 4727 if (auto AS = getTarget().getConstantAddressSpace()) 4728 return *AS; 4729 return LangAS::Default; 4730 } 4731 4732 // In address space agnostic languages, string literals are in default address 4733 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4734 // emitted in constant address space in LLVM IR. To be consistent with other 4735 // parts of AST, string literal global variables in constant address space 4736 // need to be casted to default address space before being put into address 4737 // map and referenced by other part of CodeGen. 4738 // In OpenCL, string literals are in constant address space in AST, therefore 4739 // they should not be casted to default address space. 4740 static llvm::Constant * 4741 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4742 llvm::GlobalVariable *GV) { 4743 llvm::Constant *Cast = GV; 4744 if (!CGM.getLangOpts().OpenCL) { 4745 auto AS = CGM.GetGlobalConstantAddressSpace(); 4746 if (AS != LangAS::Default) 4747 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4748 CGM, GV, AS, LangAS::Default, 4749 GV->getValueType()->getPointerTo( 4750 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4751 } 4752 return Cast; 4753 } 4754 4755 template<typename SomeDecl> 4756 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4757 llvm::GlobalValue *GV) { 4758 if (!getLangOpts().CPlusPlus) 4759 return; 4760 4761 // Must have 'used' attribute, or else inline assembly can't rely on 4762 // the name existing. 4763 if (!D->template hasAttr<UsedAttr>()) 4764 return; 4765 4766 // Must have internal linkage and an ordinary name. 4767 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4768 return; 4769 4770 // Must be in an extern "C" context. Entities declared directly within 4771 // a record are not extern "C" even if the record is in such a context. 4772 const SomeDecl *First = D->getFirstDecl(); 4773 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4774 return; 4775 4776 // OK, this is an internal linkage entity inside an extern "C" linkage 4777 // specification. Make a note of that so we can give it the "expected" 4778 // mangled name if nothing else is using that name. 4779 std::pair<StaticExternCMap::iterator, bool> R = 4780 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4781 4782 // If we have multiple internal linkage entities with the same name 4783 // in extern "C" regions, none of them gets that name. 4784 if (!R.second) 4785 R.first->second = nullptr; 4786 } 4787 4788 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4789 if (!CGM.supportsCOMDAT()) 4790 return false; 4791 4792 if (D.hasAttr<SelectAnyAttr>()) 4793 return true; 4794 4795 GVALinkage Linkage; 4796 if (auto *VD = dyn_cast<VarDecl>(&D)) 4797 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4798 else 4799 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4800 4801 switch (Linkage) { 4802 case GVA_Internal: 4803 case GVA_AvailableExternally: 4804 case GVA_StrongExternal: 4805 return false; 4806 case GVA_DiscardableODR: 4807 case GVA_StrongODR: 4808 return true; 4809 } 4810 llvm_unreachable("No such linkage"); 4811 } 4812 4813 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4814 llvm::GlobalObject &GO) { 4815 if (!shouldBeInCOMDAT(*this, D)) 4816 return; 4817 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4818 } 4819 4820 /// Pass IsTentative as true if you want to create a tentative definition. 4821 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4822 bool IsTentative) { 4823 // OpenCL global variables of sampler type are translated to function calls, 4824 // therefore no need to be translated. 4825 QualType ASTTy = D->getType(); 4826 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4827 return; 4828 4829 // If this is OpenMP device, check if it is legal to emit this global 4830 // normally. 4831 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4832 OpenMPRuntime->emitTargetGlobalVariable(D)) 4833 return; 4834 4835 llvm::TrackingVH<llvm::Constant> Init; 4836 bool NeedsGlobalCtor = false; 4837 // Whether the definition of the variable is available externally. 4838 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 4839 // since this is the job for its original source. 4840 bool IsDefinitionAvailableExternally = 4841 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 4842 bool NeedsGlobalDtor = 4843 !IsDefinitionAvailableExternally && 4844 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4845 4846 const VarDecl *InitDecl; 4847 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4848 4849 std::optional<ConstantEmitter> emitter; 4850 4851 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4852 // as part of their declaration." Sema has already checked for 4853 // error cases, so we just need to set Init to UndefValue. 4854 bool IsCUDASharedVar = 4855 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4856 // Shadows of initialized device-side global variables are also left 4857 // undefined. 4858 // Managed Variables should be initialized on both host side and device side. 4859 bool IsCUDAShadowVar = 4860 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4861 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4862 D->hasAttr<CUDASharedAttr>()); 4863 bool IsCUDADeviceShadowVar = 4864 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4865 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4866 D->getType()->isCUDADeviceBuiltinTextureType()); 4867 if (getLangOpts().CUDA && 4868 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4869 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4870 else if (D->hasAttr<LoaderUninitializedAttr>()) 4871 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4872 else if (!InitExpr) { 4873 // This is a tentative definition; tentative definitions are 4874 // implicitly initialized with { 0 }. 4875 // 4876 // Note that tentative definitions are only emitted at the end of 4877 // a translation unit, so they should never have incomplete 4878 // type. In addition, EmitTentativeDefinition makes sure that we 4879 // never attempt to emit a tentative definition if a real one 4880 // exists. A use may still exists, however, so we still may need 4881 // to do a RAUW. 4882 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4883 Init = EmitNullConstant(D->getType()); 4884 } else { 4885 initializedGlobalDecl = GlobalDecl(D); 4886 emitter.emplace(*this); 4887 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4888 if (!Initializer) { 4889 QualType T = InitExpr->getType(); 4890 if (D->getType()->isReferenceType()) 4891 T = D->getType(); 4892 4893 if (getLangOpts().CPlusPlus) { 4894 if (InitDecl->hasFlexibleArrayInit(getContext())) 4895 ErrorUnsupported(D, "flexible array initializer"); 4896 Init = EmitNullConstant(T); 4897 4898 if (!IsDefinitionAvailableExternally) 4899 NeedsGlobalCtor = true; 4900 } else { 4901 ErrorUnsupported(D, "static initializer"); 4902 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4903 } 4904 } else { 4905 Init = Initializer; 4906 // We don't need an initializer, so remove the entry for the delayed 4907 // initializer position (just in case this entry was delayed) if we 4908 // also don't need to register a destructor. 4909 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4910 DelayedCXXInitPosition.erase(D); 4911 4912 #ifndef NDEBUG 4913 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4914 InitDecl->getFlexibleArrayInitChars(getContext()); 4915 CharUnits CstSize = CharUnits::fromQuantity( 4916 getDataLayout().getTypeAllocSize(Init->getType())); 4917 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4918 #endif 4919 } 4920 } 4921 4922 llvm::Type* InitType = Init->getType(); 4923 llvm::Constant *Entry = 4924 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4925 4926 // Strip off pointer casts if we got them. 4927 Entry = Entry->stripPointerCasts(); 4928 4929 // Entry is now either a Function or GlobalVariable. 4930 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4931 4932 // We have a definition after a declaration with the wrong type. 4933 // We must make a new GlobalVariable* and update everything that used OldGV 4934 // (a declaration or tentative definition) with the new GlobalVariable* 4935 // (which will be a definition). 4936 // 4937 // This happens if there is a prototype for a global (e.g. 4938 // "extern int x[];") and then a definition of a different type (e.g. 4939 // "int x[10];"). This also happens when an initializer has a different type 4940 // from the type of the global (this happens with unions). 4941 if (!GV || GV->getValueType() != InitType || 4942 GV->getType()->getAddressSpace() != 4943 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4944 4945 // Move the old entry aside so that we'll create a new one. 4946 Entry->setName(StringRef()); 4947 4948 // Make a new global with the correct type, this is now guaranteed to work. 4949 GV = cast<llvm::GlobalVariable>( 4950 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4951 ->stripPointerCasts()); 4952 4953 // Replace all uses of the old global with the new global 4954 llvm::Constant *NewPtrForOldDecl = 4955 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4956 Entry->getType()); 4957 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4958 4959 // Erase the old global, since it is no longer used. 4960 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4961 } 4962 4963 MaybeHandleStaticInExternC(D, GV); 4964 4965 if (D->hasAttr<AnnotateAttr>()) 4966 AddGlobalAnnotations(D, GV); 4967 4968 // Set the llvm linkage type as appropriate. 4969 llvm::GlobalValue::LinkageTypes Linkage = 4970 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4971 4972 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4973 // the device. [...]" 4974 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4975 // __device__, declares a variable that: [...] 4976 // Is accessible from all the threads within the grid and from the host 4977 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4978 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4979 if (GV && LangOpts.CUDA) { 4980 if (LangOpts.CUDAIsDevice) { 4981 if (Linkage != llvm::GlobalValue::InternalLinkage && 4982 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4983 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4984 D->getType()->isCUDADeviceBuiltinTextureType())) 4985 GV->setExternallyInitialized(true); 4986 } else { 4987 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4988 } 4989 getCUDARuntime().handleVarRegistration(D, *GV); 4990 } 4991 4992 GV->setInitializer(Init); 4993 if (emitter) 4994 emitter->finalize(GV); 4995 4996 // If it is safe to mark the global 'constant', do so now. 4997 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4998 isTypeConstant(D->getType(), true)); 4999 5000 // If it is in a read-only section, mark it 'constant'. 5001 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5002 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5003 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5004 GV->setConstant(true); 5005 } 5006 5007 CharUnits AlignVal = getContext().getDeclAlign(D); 5008 // Check for alignment specifed in an 'omp allocate' directive. 5009 if (std::optional<CharUnits> AlignValFromAllocate = 5010 getOMPAllocateAlignment(D)) 5011 AlignVal = *AlignValFromAllocate; 5012 GV->setAlignment(AlignVal.getAsAlign()); 5013 5014 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5015 // function is only defined alongside the variable, not also alongside 5016 // callers. Normally, all accesses to a thread_local go through the 5017 // thread-wrapper in order to ensure initialization has occurred, underlying 5018 // variable will never be used other than the thread-wrapper, so it can be 5019 // converted to internal linkage. 5020 // 5021 // However, if the variable has the 'constinit' attribute, it _can_ be 5022 // referenced directly, without calling the thread-wrapper, so the linkage 5023 // must not be changed. 5024 // 5025 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5026 // weak or linkonce, the de-duplication semantics are important to preserve, 5027 // so we don't change the linkage. 5028 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5029 Linkage == llvm::GlobalValue::ExternalLinkage && 5030 Context.getTargetInfo().getTriple().isOSDarwin() && 5031 !D->hasAttr<ConstInitAttr>()) 5032 Linkage = llvm::GlobalValue::InternalLinkage; 5033 5034 GV->setLinkage(Linkage); 5035 if (D->hasAttr<DLLImportAttr>()) 5036 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5037 else if (D->hasAttr<DLLExportAttr>()) 5038 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5039 else 5040 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5041 5042 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5043 // common vars aren't constant even if declared const. 5044 GV->setConstant(false); 5045 // Tentative definition of global variables may be initialized with 5046 // non-zero null pointers. In this case they should have weak linkage 5047 // since common linkage must have zero initializer and must not have 5048 // explicit section therefore cannot have non-zero initial value. 5049 if (!GV->getInitializer()->isNullValue()) 5050 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5051 } 5052 5053 setNonAliasAttributes(D, GV); 5054 5055 if (D->getTLSKind() && !GV->isThreadLocal()) { 5056 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5057 CXXThreadLocals.push_back(D); 5058 setTLSMode(GV, *D); 5059 } 5060 5061 maybeSetTrivialComdat(*D, *GV); 5062 5063 // Emit the initializer function if necessary. 5064 if (NeedsGlobalCtor || NeedsGlobalDtor) 5065 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5066 5067 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5068 5069 // Emit global variable debug information. 5070 if (CGDebugInfo *DI = getModuleDebugInfo()) 5071 if (getCodeGenOpts().hasReducedDebugInfo()) 5072 DI->EmitGlobalVariable(GV, D); 5073 } 5074 5075 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5076 if (CGDebugInfo *DI = getModuleDebugInfo()) 5077 if (getCodeGenOpts().hasReducedDebugInfo()) { 5078 QualType ASTTy = D->getType(); 5079 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5080 llvm::Constant *GV = 5081 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5082 DI->EmitExternalVariable( 5083 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5084 } 5085 } 5086 5087 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5088 CodeGenModule &CGM, const VarDecl *D, 5089 bool NoCommon) { 5090 // Don't give variables common linkage if -fno-common was specified unless it 5091 // was overridden by a NoCommon attribute. 5092 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5093 return true; 5094 5095 // C11 6.9.2/2: 5096 // A declaration of an identifier for an object that has file scope without 5097 // an initializer, and without a storage-class specifier or with the 5098 // storage-class specifier static, constitutes a tentative definition. 5099 if (D->getInit() || D->hasExternalStorage()) 5100 return true; 5101 5102 // A variable cannot be both common and exist in a section. 5103 if (D->hasAttr<SectionAttr>()) 5104 return true; 5105 5106 // A variable cannot be both common and exist in a section. 5107 // We don't try to determine which is the right section in the front-end. 5108 // If no specialized section name is applicable, it will resort to default. 5109 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5110 D->hasAttr<PragmaClangDataSectionAttr>() || 5111 D->hasAttr<PragmaClangRelroSectionAttr>() || 5112 D->hasAttr<PragmaClangRodataSectionAttr>()) 5113 return true; 5114 5115 // Thread local vars aren't considered common linkage. 5116 if (D->getTLSKind()) 5117 return true; 5118 5119 // Tentative definitions marked with WeakImportAttr are true definitions. 5120 if (D->hasAttr<WeakImportAttr>()) 5121 return true; 5122 5123 // A variable cannot be both common and exist in a comdat. 5124 if (shouldBeInCOMDAT(CGM, *D)) 5125 return true; 5126 5127 // Declarations with a required alignment do not have common linkage in MSVC 5128 // mode. 5129 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5130 if (D->hasAttr<AlignedAttr>()) 5131 return true; 5132 QualType VarType = D->getType(); 5133 if (Context.isAlignmentRequired(VarType)) 5134 return true; 5135 5136 if (const auto *RT = VarType->getAs<RecordType>()) { 5137 const RecordDecl *RD = RT->getDecl(); 5138 for (const FieldDecl *FD : RD->fields()) { 5139 if (FD->isBitField()) 5140 continue; 5141 if (FD->hasAttr<AlignedAttr>()) 5142 return true; 5143 if (Context.isAlignmentRequired(FD->getType())) 5144 return true; 5145 } 5146 } 5147 } 5148 5149 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5150 // common symbols, so symbols with greater alignment requirements cannot be 5151 // common. 5152 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5153 // alignments for common symbols via the aligncomm directive, so this 5154 // restriction only applies to MSVC environments. 5155 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5156 Context.getTypeAlignIfKnown(D->getType()) > 5157 Context.toBits(CharUnits::fromQuantity(32))) 5158 return true; 5159 5160 return false; 5161 } 5162 5163 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 5164 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 5165 if (Linkage == GVA_Internal) 5166 return llvm::Function::InternalLinkage; 5167 5168 if (D->hasAttr<WeakAttr>()) 5169 return llvm::GlobalVariable::WeakAnyLinkage; 5170 5171 if (const auto *FD = D->getAsFunction()) 5172 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5173 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5174 5175 // We are guaranteed to have a strong definition somewhere else, 5176 // so we can use available_externally linkage. 5177 if (Linkage == GVA_AvailableExternally) 5178 return llvm::GlobalValue::AvailableExternallyLinkage; 5179 5180 // Note that Apple's kernel linker doesn't support symbol 5181 // coalescing, so we need to avoid linkonce and weak linkages there. 5182 // Normally, this means we just map to internal, but for explicit 5183 // instantiations we'll map to external. 5184 5185 // In C++, the compiler has to emit a definition in every translation unit 5186 // that references the function. We should use linkonce_odr because 5187 // a) if all references in this translation unit are optimized away, we 5188 // don't need to codegen it. b) if the function persists, it needs to be 5189 // merged with other definitions. c) C++ has the ODR, so we know the 5190 // definition is dependable. 5191 if (Linkage == GVA_DiscardableODR) 5192 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5193 : llvm::Function::InternalLinkage; 5194 5195 // An explicit instantiation of a template has weak linkage, since 5196 // explicit instantiations can occur in multiple translation units 5197 // and must all be equivalent. However, we are not allowed to 5198 // throw away these explicit instantiations. 5199 // 5200 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5201 // so say that CUDA templates are either external (for kernels) or internal. 5202 // This lets llvm perform aggressive inter-procedural optimizations. For 5203 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5204 // therefore we need to follow the normal linkage paradigm. 5205 if (Linkage == GVA_StrongODR) { 5206 if (getLangOpts().AppleKext) 5207 return llvm::Function::ExternalLinkage; 5208 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5209 !getLangOpts().GPURelocatableDeviceCode) 5210 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5211 : llvm::Function::InternalLinkage; 5212 return llvm::Function::WeakODRLinkage; 5213 } 5214 5215 // C++ doesn't have tentative definitions and thus cannot have common 5216 // linkage. 5217 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5218 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5219 CodeGenOpts.NoCommon)) 5220 return llvm::GlobalVariable::CommonLinkage; 5221 5222 // selectany symbols are externally visible, so use weak instead of 5223 // linkonce. MSVC optimizes away references to const selectany globals, so 5224 // all definitions should be the same and ODR linkage should be used. 5225 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5226 if (D->hasAttr<SelectAnyAttr>()) 5227 return llvm::GlobalVariable::WeakODRLinkage; 5228 5229 // Otherwise, we have strong external linkage. 5230 assert(Linkage == GVA_StrongExternal); 5231 return llvm::GlobalVariable::ExternalLinkage; 5232 } 5233 5234 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5235 const VarDecl *VD, bool IsConstant) { 5236 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5237 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5238 } 5239 5240 /// Replace the uses of a function that was declared with a non-proto type. 5241 /// We want to silently drop extra arguments from call sites 5242 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5243 llvm::Function *newFn) { 5244 // Fast path. 5245 if (old->use_empty()) return; 5246 5247 llvm::Type *newRetTy = newFn->getReturnType(); 5248 SmallVector<llvm::Value*, 4> newArgs; 5249 5250 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5251 ui != ue; ) { 5252 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5253 llvm::User *user = use->getUser(); 5254 5255 // Recognize and replace uses of bitcasts. Most calls to 5256 // unprototyped functions will use bitcasts. 5257 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5258 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5259 replaceUsesOfNonProtoConstant(bitcast, newFn); 5260 continue; 5261 } 5262 5263 // Recognize calls to the function. 5264 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5265 if (!callSite) continue; 5266 if (!callSite->isCallee(&*use)) 5267 continue; 5268 5269 // If the return types don't match exactly, then we can't 5270 // transform this call unless it's dead. 5271 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5272 continue; 5273 5274 // Get the call site's attribute list. 5275 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5276 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5277 5278 // If the function was passed too few arguments, don't transform. 5279 unsigned newNumArgs = newFn->arg_size(); 5280 if (callSite->arg_size() < newNumArgs) 5281 continue; 5282 5283 // If extra arguments were passed, we silently drop them. 5284 // If any of the types mismatch, we don't transform. 5285 unsigned argNo = 0; 5286 bool dontTransform = false; 5287 for (llvm::Argument &A : newFn->args()) { 5288 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5289 dontTransform = true; 5290 break; 5291 } 5292 5293 // Add any parameter attributes. 5294 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5295 argNo++; 5296 } 5297 if (dontTransform) 5298 continue; 5299 5300 // Okay, we can transform this. Create the new call instruction and copy 5301 // over the required information. 5302 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5303 5304 // Copy over any operand bundles. 5305 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5306 callSite->getOperandBundlesAsDefs(newBundles); 5307 5308 llvm::CallBase *newCall; 5309 if (isa<llvm::CallInst>(callSite)) { 5310 newCall = 5311 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5312 } else { 5313 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5314 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5315 oldInvoke->getUnwindDest(), newArgs, 5316 newBundles, "", callSite); 5317 } 5318 newArgs.clear(); // for the next iteration 5319 5320 if (!newCall->getType()->isVoidTy()) 5321 newCall->takeName(callSite); 5322 newCall->setAttributes( 5323 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5324 oldAttrs.getRetAttrs(), newArgAttrs)); 5325 newCall->setCallingConv(callSite->getCallingConv()); 5326 5327 // Finally, remove the old call, replacing any uses with the new one. 5328 if (!callSite->use_empty()) 5329 callSite->replaceAllUsesWith(newCall); 5330 5331 // Copy debug location attached to CI. 5332 if (callSite->getDebugLoc()) 5333 newCall->setDebugLoc(callSite->getDebugLoc()); 5334 5335 callSite->eraseFromParent(); 5336 } 5337 } 5338 5339 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5340 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5341 /// existing call uses of the old function in the module, this adjusts them to 5342 /// call the new function directly. 5343 /// 5344 /// This is not just a cleanup: the always_inline pass requires direct calls to 5345 /// functions to be able to inline them. If there is a bitcast in the way, it 5346 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5347 /// run at -O0. 5348 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5349 llvm::Function *NewFn) { 5350 // If we're redefining a global as a function, don't transform it. 5351 if (!isa<llvm::Function>(Old)) return; 5352 5353 replaceUsesOfNonProtoConstant(Old, NewFn); 5354 } 5355 5356 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5357 auto DK = VD->isThisDeclarationADefinition(); 5358 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5359 return; 5360 5361 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5362 // If we have a definition, this might be a deferred decl. If the 5363 // instantiation is explicit, make sure we emit it at the end. 5364 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5365 GetAddrOfGlobalVar(VD); 5366 5367 EmitTopLevelDecl(VD); 5368 } 5369 5370 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5371 llvm::GlobalValue *GV) { 5372 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5373 5374 // Compute the function info and LLVM type. 5375 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5376 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5377 5378 // Get or create the prototype for the function. 5379 if (!GV || (GV->getValueType() != Ty)) 5380 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5381 /*DontDefer=*/true, 5382 ForDefinition)); 5383 5384 // Already emitted. 5385 if (!GV->isDeclaration()) 5386 return; 5387 5388 // We need to set linkage and visibility on the function before 5389 // generating code for it because various parts of IR generation 5390 // want to propagate this information down (e.g. to local static 5391 // declarations). 5392 auto *Fn = cast<llvm::Function>(GV); 5393 setFunctionLinkage(GD, Fn); 5394 5395 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5396 setGVProperties(Fn, GD); 5397 5398 MaybeHandleStaticInExternC(D, Fn); 5399 5400 maybeSetTrivialComdat(*D, *Fn); 5401 5402 // Set CodeGen attributes that represent floating point environment. 5403 setLLVMFunctionFEnvAttributes(D, Fn); 5404 5405 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5406 5407 setNonAliasAttributes(GD, Fn); 5408 SetLLVMFunctionAttributesForDefinition(D, Fn); 5409 5410 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5411 AddGlobalCtor(Fn, CA->getPriority()); 5412 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5413 AddGlobalDtor(Fn, DA->getPriority(), true); 5414 if (D->hasAttr<AnnotateAttr>()) 5415 AddGlobalAnnotations(D, Fn); 5416 } 5417 5418 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5419 const auto *D = cast<ValueDecl>(GD.getDecl()); 5420 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5421 assert(AA && "Not an alias?"); 5422 5423 StringRef MangledName = getMangledName(GD); 5424 5425 if (AA->getAliasee() == MangledName) { 5426 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5427 return; 5428 } 5429 5430 // If there is a definition in the module, then it wins over the alias. 5431 // This is dubious, but allow it to be safe. Just ignore the alias. 5432 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5433 if (Entry && !Entry->isDeclaration()) 5434 return; 5435 5436 Aliases.push_back(GD); 5437 5438 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5439 5440 // Create a reference to the named value. This ensures that it is emitted 5441 // if a deferred decl. 5442 llvm::Constant *Aliasee; 5443 llvm::GlobalValue::LinkageTypes LT; 5444 if (isa<llvm::FunctionType>(DeclTy)) { 5445 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5446 /*ForVTable=*/false); 5447 LT = getFunctionLinkage(GD); 5448 } else { 5449 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5450 /*D=*/nullptr); 5451 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5452 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5453 else 5454 LT = getFunctionLinkage(GD); 5455 } 5456 5457 // Create the new alias itself, but don't set a name yet. 5458 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5459 auto *GA = 5460 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5461 5462 if (Entry) { 5463 if (GA->getAliasee() == Entry) { 5464 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5465 return; 5466 } 5467 5468 assert(Entry->isDeclaration()); 5469 5470 // If there is a declaration in the module, then we had an extern followed 5471 // by the alias, as in: 5472 // extern int test6(); 5473 // ... 5474 // int test6() __attribute__((alias("test7"))); 5475 // 5476 // Remove it and replace uses of it with the alias. 5477 GA->takeName(Entry); 5478 5479 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5480 Entry->getType())); 5481 Entry->eraseFromParent(); 5482 } else { 5483 GA->setName(MangledName); 5484 } 5485 5486 // Set attributes which are particular to an alias; this is a 5487 // specialization of the attributes which may be set on a global 5488 // variable/function. 5489 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5490 D->isWeakImported()) { 5491 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5492 } 5493 5494 if (const auto *VD = dyn_cast<VarDecl>(D)) 5495 if (VD->getTLSKind()) 5496 setTLSMode(GA, *VD); 5497 5498 SetCommonAttributes(GD, GA); 5499 5500 // Emit global alias debug information. 5501 if (isa<VarDecl>(D)) 5502 if (CGDebugInfo *DI = getModuleDebugInfo()) 5503 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5504 } 5505 5506 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5507 const auto *D = cast<ValueDecl>(GD.getDecl()); 5508 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5509 assert(IFA && "Not an ifunc?"); 5510 5511 StringRef MangledName = getMangledName(GD); 5512 5513 if (IFA->getResolver() == MangledName) { 5514 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5515 return; 5516 } 5517 5518 // Report an error if some definition overrides ifunc. 5519 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5520 if (Entry && !Entry->isDeclaration()) { 5521 GlobalDecl OtherGD; 5522 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5523 DiagnosedConflictingDefinitions.insert(GD).second) { 5524 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5525 << MangledName; 5526 Diags.Report(OtherGD.getDecl()->getLocation(), 5527 diag::note_previous_definition); 5528 } 5529 return; 5530 } 5531 5532 Aliases.push_back(GD); 5533 5534 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5535 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5536 llvm::Constant *Resolver = 5537 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5538 /*ForVTable=*/false); 5539 llvm::GlobalIFunc *GIF = 5540 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5541 "", Resolver, &getModule()); 5542 if (Entry) { 5543 if (GIF->getResolver() == Entry) { 5544 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5545 return; 5546 } 5547 assert(Entry->isDeclaration()); 5548 5549 // If there is a declaration in the module, then we had an extern followed 5550 // by the ifunc, as in: 5551 // extern int test(); 5552 // ... 5553 // int test() __attribute__((ifunc("resolver"))); 5554 // 5555 // Remove it and replace uses of it with the ifunc. 5556 GIF->takeName(Entry); 5557 5558 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5559 Entry->getType())); 5560 Entry->eraseFromParent(); 5561 } else 5562 GIF->setName(MangledName); 5563 5564 SetCommonAttributes(GD, GIF); 5565 } 5566 5567 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5568 ArrayRef<llvm::Type*> Tys) { 5569 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5570 Tys); 5571 } 5572 5573 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5574 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5575 const StringLiteral *Literal, bool TargetIsLSB, 5576 bool &IsUTF16, unsigned &StringLength) { 5577 StringRef String = Literal->getString(); 5578 unsigned NumBytes = String.size(); 5579 5580 // Check for simple case. 5581 if (!Literal->containsNonAsciiOrNull()) { 5582 StringLength = NumBytes; 5583 return *Map.insert(std::make_pair(String, nullptr)).first; 5584 } 5585 5586 // Otherwise, convert the UTF8 literals into a string of shorts. 5587 IsUTF16 = true; 5588 5589 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5590 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5591 llvm::UTF16 *ToPtr = &ToBuf[0]; 5592 5593 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5594 ToPtr + NumBytes, llvm::strictConversion); 5595 5596 // ConvertUTF8toUTF16 returns the length in ToPtr. 5597 StringLength = ToPtr - &ToBuf[0]; 5598 5599 // Add an explicit null. 5600 *ToPtr = 0; 5601 return *Map.insert(std::make_pair( 5602 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5603 (StringLength + 1) * 2), 5604 nullptr)).first; 5605 } 5606 5607 ConstantAddress 5608 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5609 unsigned StringLength = 0; 5610 bool isUTF16 = false; 5611 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5612 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5613 getDataLayout().isLittleEndian(), isUTF16, 5614 StringLength); 5615 5616 if (auto *C = Entry.second) 5617 return ConstantAddress( 5618 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5619 5620 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5621 llvm::Constant *Zeros[] = { Zero, Zero }; 5622 5623 const ASTContext &Context = getContext(); 5624 const llvm::Triple &Triple = getTriple(); 5625 5626 const auto CFRuntime = getLangOpts().CFRuntime; 5627 const bool IsSwiftABI = 5628 static_cast<unsigned>(CFRuntime) >= 5629 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5630 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5631 5632 // If we don't already have it, get __CFConstantStringClassReference. 5633 if (!CFConstantStringClassRef) { 5634 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5635 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5636 Ty = llvm::ArrayType::get(Ty, 0); 5637 5638 switch (CFRuntime) { 5639 default: break; 5640 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5641 case LangOptions::CoreFoundationABI::Swift5_0: 5642 CFConstantStringClassName = 5643 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5644 : "$s10Foundation19_NSCFConstantStringCN"; 5645 Ty = IntPtrTy; 5646 break; 5647 case LangOptions::CoreFoundationABI::Swift4_2: 5648 CFConstantStringClassName = 5649 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5650 : "$S10Foundation19_NSCFConstantStringCN"; 5651 Ty = IntPtrTy; 5652 break; 5653 case LangOptions::CoreFoundationABI::Swift4_1: 5654 CFConstantStringClassName = 5655 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5656 : "__T010Foundation19_NSCFConstantStringCN"; 5657 Ty = IntPtrTy; 5658 break; 5659 } 5660 5661 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5662 5663 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5664 llvm::GlobalValue *GV = nullptr; 5665 5666 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5667 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5668 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5669 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5670 5671 const VarDecl *VD = nullptr; 5672 for (const auto *Result : DC->lookup(&II)) 5673 if ((VD = dyn_cast<VarDecl>(Result))) 5674 break; 5675 5676 if (Triple.isOSBinFormatELF()) { 5677 if (!VD) 5678 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5679 } else { 5680 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5681 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5682 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5683 else 5684 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5685 } 5686 5687 setDSOLocal(GV); 5688 } 5689 } 5690 5691 // Decay array -> ptr 5692 CFConstantStringClassRef = 5693 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5694 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5695 } 5696 5697 QualType CFTy = Context.getCFConstantStringType(); 5698 5699 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5700 5701 ConstantInitBuilder Builder(*this); 5702 auto Fields = Builder.beginStruct(STy); 5703 5704 // Class pointer. 5705 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5706 5707 // Flags. 5708 if (IsSwiftABI) { 5709 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5710 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5711 } else { 5712 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5713 } 5714 5715 // String pointer. 5716 llvm::Constant *C = nullptr; 5717 if (isUTF16) { 5718 auto Arr = llvm::ArrayRef( 5719 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5720 Entry.first().size() / 2); 5721 C = llvm::ConstantDataArray::get(VMContext, Arr); 5722 } else { 5723 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5724 } 5725 5726 // Note: -fwritable-strings doesn't make the backing store strings of 5727 // CFStrings writable. (See <rdar://problem/10657500>) 5728 auto *GV = 5729 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5730 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5731 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5732 // Don't enforce the target's minimum global alignment, since the only use 5733 // of the string is via this class initializer. 5734 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5735 : Context.getTypeAlignInChars(Context.CharTy); 5736 GV->setAlignment(Align.getAsAlign()); 5737 5738 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5739 // Without it LLVM can merge the string with a non unnamed_addr one during 5740 // LTO. Doing that changes the section it ends in, which surprises ld64. 5741 if (Triple.isOSBinFormatMachO()) 5742 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5743 : "__TEXT,__cstring,cstring_literals"); 5744 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5745 // the static linker to adjust permissions to read-only later on. 5746 else if (Triple.isOSBinFormatELF()) 5747 GV->setSection(".rodata"); 5748 5749 // String. 5750 llvm::Constant *Str = 5751 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5752 5753 if (isUTF16) 5754 // Cast the UTF16 string to the correct type. 5755 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5756 Fields.add(Str); 5757 5758 // String length. 5759 llvm::IntegerType *LengthTy = 5760 llvm::IntegerType::get(getModule().getContext(), 5761 Context.getTargetInfo().getLongWidth()); 5762 if (IsSwiftABI) { 5763 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5764 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5765 LengthTy = Int32Ty; 5766 else 5767 LengthTy = IntPtrTy; 5768 } 5769 Fields.addInt(LengthTy, StringLength); 5770 5771 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5772 // properly aligned on 32-bit platforms. 5773 CharUnits Alignment = 5774 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5775 5776 // The struct. 5777 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5778 /*isConstant=*/false, 5779 llvm::GlobalVariable::PrivateLinkage); 5780 GV->addAttribute("objc_arc_inert"); 5781 switch (Triple.getObjectFormat()) { 5782 case llvm::Triple::UnknownObjectFormat: 5783 llvm_unreachable("unknown file format"); 5784 case llvm::Triple::DXContainer: 5785 case llvm::Triple::GOFF: 5786 case llvm::Triple::SPIRV: 5787 case llvm::Triple::XCOFF: 5788 llvm_unreachable("unimplemented"); 5789 case llvm::Triple::COFF: 5790 case llvm::Triple::ELF: 5791 case llvm::Triple::Wasm: 5792 GV->setSection("cfstring"); 5793 break; 5794 case llvm::Triple::MachO: 5795 GV->setSection("__DATA,__cfstring"); 5796 break; 5797 } 5798 Entry.second = GV; 5799 5800 return ConstantAddress(GV, GV->getValueType(), Alignment); 5801 } 5802 5803 bool CodeGenModule::getExpressionLocationsEnabled() const { 5804 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5805 } 5806 5807 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5808 if (ObjCFastEnumerationStateType.isNull()) { 5809 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5810 D->startDefinition(); 5811 5812 QualType FieldTypes[] = { 5813 Context.UnsignedLongTy, 5814 Context.getPointerType(Context.getObjCIdType()), 5815 Context.getPointerType(Context.UnsignedLongTy), 5816 Context.getConstantArrayType(Context.UnsignedLongTy, 5817 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5818 }; 5819 5820 for (size_t i = 0; i < 4; ++i) { 5821 FieldDecl *Field = FieldDecl::Create(Context, 5822 D, 5823 SourceLocation(), 5824 SourceLocation(), nullptr, 5825 FieldTypes[i], /*TInfo=*/nullptr, 5826 /*BitWidth=*/nullptr, 5827 /*Mutable=*/false, 5828 ICIS_NoInit); 5829 Field->setAccess(AS_public); 5830 D->addDecl(Field); 5831 } 5832 5833 D->completeDefinition(); 5834 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5835 } 5836 5837 return ObjCFastEnumerationStateType; 5838 } 5839 5840 llvm::Constant * 5841 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5842 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5843 5844 // Don't emit it as the address of the string, emit the string data itself 5845 // as an inline array. 5846 if (E->getCharByteWidth() == 1) { 5847 SmallString<64> Str(E->getString()); 5848 5849 // Resize the string to the right size, which is indicated by its type. 5850 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5851 Str.resize(CAT->getSize().getZExtValue()); 5852 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5853 } 5854 5855 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5856 llvm::Type *ElemTy = AType->getElementType(); 5857 unsigned NumElements = AType->getNumElements(); 5858 5859 // Wide strings have either 2-byte or 4-byte elements. 5860 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5861 SmallVector<uint16_t, 32> Elements; 5862 Elements.reserve(NumElements); 5863 5864 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5865 Elements.push_back(E->getCodeUnit(i)); 5866 Elements.resize(NumElements); 5867 return llvm::ConstantDataArray::get(VMContext, Elements); 5868 } 5869 5870 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5871 SmallVector<uint32_t, 32> Elements; 5872 Elements.reserve(NumElements); 5873 5874 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5875 Elements.push_back(E->getCodeUnit(i)); 5876 Elements.resize(NumElements); 5877 return llvm::ConstantDataArray::get(VMContext, Elements); 5878 } 5879 5880 static llvm::GlobalVariable * 5881 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5882 CodeGenModule &CGM, StringRef GlobalName, 5883 CharUnits Alignment) { 5884 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5885 CGM.GetGlobalConstantAddressSpace()); 5886 5887 llvm::Module &M = CGM.getModule(); 5888 // Create a global variable for this string 5889 auto *GV = new llvm::GlobalVariable( 5890 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5891 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5892 GV->setAlignment(Alignment.getAsAlign()); 5893 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5894 if (GV->isWeakForLinker()) { 5895 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5896 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5897 } 5898 CGM.setDSOLocal(GV); 5899 5900 return GV; 5901 } 5902 5903 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5904 /// constant array for the given string literal. 5905 ConstantAddress 5906 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5907 StringRef Name) { 5908 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5909 5910 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5911 llvm::GlobalVariable **Entry = nullptr; 5912 if (!LangOpts.WritableStrings) { 5913 Entry = &ConstantStringMap[C]; 5914 if (auto GV = *Entry) { 5915 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5916 GV->setAlignment(Alignment.getAsAlign()); 5917 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5918 GV->getValueType(), Alignment); 5919 } 5920 } 5921 5922 SmallString<256> MangledNameBuffer; 5923 StringRef GlobalVariableName; 5924 llvm::GlobalValue::LinkageTypes LT; 5925 5926 // Mangle the string literal if that's how the ABI merges duplicate strings. 5927 // Don't do it if they are writable, since we don't want writes in one TU to 5928 // affect strings in another. 5929 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5930 !LangOpts.WritableStrings) { 5931 llvm::raw_svector_ostream Out(MangledNameBuffer); 5932 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5933 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5934 GlobalVariableName = MangledNameBuffer; 5935 } else { 5936 LT = llvm::GlobalValue::PrivateLinkage; 5937 GlobalVariableName = Name; 5938 } 5939 5940 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5941 5942 CGDebugInfo *DI = getModuleDebugInfo(); 5943 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5944 DI->AddStringLiteralDebugInfo(GV, S); 5945 5946 if (Entry) 5947 *Entry = GV; 5948 5949 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5950 5951 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5952 GV->getValueType(), Alignment); 5953 } 5954 5955 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5956 /// array for the given ObjCEncodeExpr node. 5957 ConstantAddress 5958 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5959 std::string Str; 5960 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5961 5962 return GetAddrOfConstantCString(Str); 5963 } 5964 5965 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5966 /// the literal and a terminating '\0' character. 5967 /// The result has pointer to array type. 5968 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5969 const std::string &Str, const char *GlobalName) { 5970 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5971 CharUnits Alignment = 5972 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5973 5974 llvm::Constant *C = 5975 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5976 5977 // Don't share any string literals if strings aren't constant. 5978 llvm::GlobalVariable **Entry = nullptr; 5979 if (!LangOpts.WritableStrings) { 5980 Entry = &ConstantStringMap[C]; 5981 if (auto GV = *Entry) { 5982 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5983 GV->setAlignment(Alignment.getAsAlign()); 5984 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5985 GV->getValueType(), Alignment); 5986 } 5987 } 5988 5989 // Get the default prefix if a name wasn't specified. 5990 if (!GlobalName) 5991 GlobalName = ".str"; 5992 // Create a global variable for this. 5993 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5994 GlobalName, Alignment); 5995 if (Entry) 5996 *Entry = GV; 5997 5998 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5999 GV->getValueType(), Alignment); 6000 } 6001 6002 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6003 const MaterializeTemporaryExpr *E, const Expr *Init) { 6004 assert((E->getStorageDuration() == SD_Static || 6005 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6006 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6007 6008 // If we're not materializing a subobject of the temporary, keep the 6009 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6010 QualType MaterializedType = Init->getType(); 6011 if (Init == E->getSubExpr()) 6012 MaterializedType = E->getType(); 6013 6014 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6015 6016 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6017 if (!InsertResult.second) { 6018 // We've seen this before: either we already created it or we're in the 6019 // process of doing so. 6020 if (!InsertResult.first->second) { 6021 // We recursively re-entered this function, probably during emission of 6022 // the initializer. Create a placeholder. We'll clean this up in the 6023 // outer call, at the end of this function. 6024 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6025 InsertResult.first->second = new llvm::GlobalVariable( 6026 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6027 nullptr); 6028 } 6029 return ConstantAddress(InsertResult.first->second, 6030 llvm::cast<llvm::GlobalVariable>( 6031 InsertResult.first->second->stripPointerCasts()) 6032 ->getValueType(), 6033 Align); 6034 } 6035 6036 // FIXME: If an externally-visible declaration extends multiple temporaries, 6037 // we need to give each temporary the same name in every translation unit (and 6038 // we also need to make the temporaries externally-visible). 6039 SmallString<256> Name; 6040 llvm::raw_svector_ostream Out(Name); 6041 getCXXABI().getMangleContext().mangleReferenceTemporary( 6042 VD, E->getManglingNumber(), Out); 6043 6044 APValue *Value = nullptr; 6045 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 6046 // If the initializer of the extending declaration is a constant 6047 // initializer, we should have a cached constant initializer for this 6048 // temporary. Note that this might have a different value from the value 6049 // computed by evaluating the initializer if the surrounding constant 6050 // expression modifies the temporary. 6051 Value = E->getOrCreateValue(false); 6052 } 6053 6054 // Try evaluating it now, it might have a constant initializer. 6055 Expr::EvalResult EvalResult; 6056 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6057 !EvalResult.hasSideEffects()) 6058 Value = &EvalResult.Val; 6059 6060 LangAS AddrSpace = 6061 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 6062 6063 std::optional<ConstantEmitter> emitter; 6064 llvm::Constant *InitialValue = nullptr; 6065 bool Constant = false; 6066 llvm::Type *Type; 6067 if (Value) { 6068 // The temporary has a constant initializer, use it. 6069 emitter.emplace(*this); 6070 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6071 MaterializedType); 6072 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 6073 Type = InitialValue->getType(); 6074 } else { 6075 // No initializer, the initialization will be provided when we 6076 // initialize the declaration which performed lifetime extension. 6077 Type = getTypes().ConvertTypeForMem(MaterializedType); 6078 } 6079 6080 // Create a global variable for this lifetime-extended temporary. 6081 llvm::GlobalValue::LinkageTypes Linkage = 6082 getLLVMLinkageVarDefinition(VD, Constant); 6083 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6084 const VarDecl *InitVD; 6085 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6086 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6087 // Temporaries defined inside a class get linkonce_odr linkage because the 6088 // class can be defined in multiple translation units. 6089 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6090 } else { 6091 // There is no need for this temporary to have external linkage if the 6092 // VarDecl has external linkage. 6093 Linkage = llvm::GlobalVariable::InternalLinkage; 6094 } 6095 } 6096 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6097 auto *GV = new llvm::GlobalVariable( 6098 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6099 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6100 if (emitter) emitter->finalize(GV); 6101 // Don't assign dllimport or dllexport to local linkage globals. 6102 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6103 setGVProperties(GV, VD); 6104 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6105 // The reference temporary should never be dllexport. 6106 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6107 } 6108 GV->setAlignment(Align.getAsAlign()); 6109 if (supportsCOMDAT() && GV->isWeakForLinker()) 6110 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6111 if (VD->getTLSKind()) 6112 setTLSMode(GV, *VD); 6113 llvm::Constant *CV = GV; 6114 if (AddrSpace != LangAS::Default) 6115 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6116 *this, GV, AddrSpace, LangAS::Default, 6117 Type->getPointerTo( 6118 getContext().getTargetAddressSpace(LangAS::Default))); 6119 6120 // Update the map with the new temporary. If we created a placeholder above, 6121 // replace it with the new global now. 6122 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6123 if (Entry) { 6124 Entry->replaceAllUsesWith( 6125 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6126 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6127 } 6128 Entry = CV; 6129 6130 return ConstantAddress(CV, Type, Align); 6131 } 6132 6133 /// EmitObjCPropertyImplementations - Emit information for synthesized 6134 /// properties for an implementation. 6135 void CodeGenModule::EmitObjCPropertyImplementations(const 6136 ObjCImplementationDecl *D) { 6137 for (const auto *PID : D->property_impls()) { 6138 // Dynamic is just for type-checking. 6139 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6140 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6141 6142 // Determine which methods need to be implemented, some may have 6143 // been overridden. Note that ::isPropertyAccessor is not the method 6144 // we want, that just indicates if the decl came from a 6145 // property. What we want to know is if the method is defined in 6146 // this implementation. 6147 auto *Getter = PID->getGetterMethodDecl(); 6148 if (!Getter || Getter->isSynthesizedAccessorStub()) 6149 CodeGenFunction(*this).GenerateObjCGetter( 6150 const_cast<ObjCImplementationDecl *>(D), PID); 6151 auto *Setter = PID->getSetterMethodDecl(); 6152 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6153 CodeGenFunction(*this).GenerateObjCSetter( 6154 const_cast<ObjCImplementationDecl *>(D), PID); 6155 } 6156 } 6157 } 6158 6159 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6160 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6161 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6162 ivar; ivar = ivar->getNextIvar()) 6163 if (ivar->getType().isDestructedType()) 6164 return true; 6165 6166 return false; 6167 } 6168 6169 static bool AllTrivialInitializers(CodeGenModule &CGM, 6170 ObjCImplementationDecl *D) { 6171 CodeGenFunction CGF(CGM); 6172 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6173 E = D->init_end(); B != E; ++B) { 6174 CXXCtorInitializer *CtorInitExp = *B; 6175 Expr *Init = CtorInitExp->getInit(); 6176 if (!CGF.isTrivialInitializer(Init)) 6177 return false; 6178 } 6179 return true; 6180 } 6181 6182 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6183 /// for an implementation. 6184 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6185 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6186 if (needsDestructMethod(D)) { 6187 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6188 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6189 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6190 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6191 getContext().VoidTy, nullptr, D, 6192 /*isInstance=*/true, /*isVariadic=*/false, 6193 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6194 /*isImplicitlyDeclared=*/true, 6195 /*isDefined=*/false, ObjCMethodDecl::Required); 6196 D->addInstanceMethod(DTORMethod); 6197 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6198 D->setHasDestructors(true); 6199 } 6200 6201 // If the implementation doesn't have any ivar initializers, we don't need 6202 // a .cxx_construct. 6203 if (D->getNumIvarInitializers() == 0 || 6204 AllTrivialInitializers(*this, D)) 6205 return; 6206 6207 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6208 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6209 // The constructor returns 'self'. 6210 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6211 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6212 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6213 /*isVariadic=*/false, 6214 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6215 /*isImplicitlyDeclared=*/true, 6216 /*isDefined=*/false, ObjCMethodDecl::Required); 6217 D->addInstanceMethod(CTORMethod); 6218 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6219 D->setHasNonZeroConstructors(true); 6220 } 6221 6222 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6223 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6224 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6225 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6226 ErrorUnsupported(LSD, "linkage spec"); 6227 return; 6228 } 6229 6230 EmitDeclContext(LSD); 6231 } 6232 6233 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6234 std::unique_ptr<CodeGenFunction> &CurCGF = 6235 GlobalTopLevelStmtBlockInFlight.first; 6236 6237 // We emitted a top-level stmt but after it there is initialization. 6238 // Stop squashing the top-level stmts into a single function. 6239 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6240 CurCGF->FinishFunction(D->getEndLoc()); 6241 CurCGF = nullptr; 6242 } 6243 6244 if (!CurCGF) { 6245 // void __stmts__N(void) 6246 // FIXME: Ask the ABI name mangler to pick a name. 6247 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6248 FunctionArgList Args; 6249 QualType RetTy = getContext().VoidTy; 6250 const CGFunctionInfo &FnInfo = 6251 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6252 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6253 llvm::Function *Fn = llvm::Function::Create( 6254 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6255 6256 CurCGF.reset(new CodeGenFunction(*this)); 6257 GlobalTopLevelStmtBlockInFlight.second = D; 6258 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6259 D->getBeginLoc(), D->getBeginLoc()); 6260 CXXGlobalInits.push_back(Fn); 6261 } 6262 6263 CurCGF->EmitStmt(D->getStmt()); 6264 } 6265 6266 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6267 for (auto *I : DC->decls()) { 6268 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6269 // are themselves considered "top-level", so EmitTopLevelDecl on an 6270 // ObjCImplDecl does not recursively visit them. We need to do that in 6271 // case they're nested inside another construct (LinkageSpecDecl / 6272 // ExportDecl) that does stop them from being considered "top-level". 6273 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6274 for (auto *M : OID->methods()) 6275 EmitTopLevelDecl(M); 6276 } 6277 6278 EmitTopLevelDecl(I); 6279 } 6280 } 6281 6282 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6283 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6284 // Ignore dependent declarations. 6285 if (D->isTemplated()) 6286 return; 6287 6288 // Consteval function shouldn't be emitted. 6289 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6290 if (FD->isConsteval()) 6291 return; 6292 6293 switch (D->getKind()) { 6294 case Decl::CXXConversion: 6295 case Decl::CXXMethod: 6296 case Decl::Function: 6297 EmitGlobal(cast<FunctionDecl>(D)); 6298 // Always provide some coverage mapping 6299 // even for the functions that aren't emitted. 6300 AddDeferredUnusedCoverageMapping(D); 6301 break; 6302 6303 case Decl::CXXDeductionGuide: 6304 // Function-like, but does not result in code emission. 6305 break; 6306 6307 case Decl::Var: 6308 case Decl::Decomposition: 6309 case Decl::VarTemplateSpecialization: 6310 EmitGlobal(cast<VarDecl>(D)); 6311 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6312 for (auto *B : DD->bindings()) 6313 if (auto *HD = B->getHoldingVar()) 6314 EmitGlobal(HD); 6315 break; 6316 6317 // Indirect fields from global anonymous structs and unions can be 6318 // ignored; only the actual variable requires IR gen support. 6319 case Decl::IndirectField: 6320 break; 6321 6322 // C++ Decls 6323 case Decl::Namespace: 6324 EmitDeclContext(cast<NamespaceDecl>(D)); 6325 break; 6326 case Decl::ClassTemplateSpecialization: { 6327 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6328 if (CGDebugInfo *DI = getModuleDebugInfo()) 6329 if (Spec->getSpecializationKind() == 6330 TSK_ExplicitInstantiationDefinition && 6331 Spec->hasDefinition()) 6332 DI->completeTemplateDefinition(*Spec); 6333 } [[fallthrough]]; 6334 case Decl::CXXRecord: { 6335 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6336 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6337 if (CRD->hasDefinition()) 6338 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6339 if (auto *ES = D->getASTContext().getExternalSource()) 6340 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6341 DI->completeUnusedClass(*CRD); 6342 } 6343 // Emit any static data members, they may be definitions. 6344 for (auto *I : CRD->decls()) 6345 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6346 EmitTopLevelDecl(I); 6347 break; 6348 } 6349 // No code generation needed. 6350 case Decl::UsingShadow: 6351 case Decl::ClassTemplate: 6352 case Decl::VarTemplate: 6353 case Decl::Concept: 6354 case Decl::VarTemplatePartialSpecialization: 6355 case Decl::FunctionTemplate: 6356 case Decl::TypeAliasTemplate: 6357 case Decl::Block: 6358 case Decl::Empty: 6359 case Decl::Binding: 6360 break; 6361 case Decl::Using: // using X; [C++] 6362 if (CGDebugInfo *DI = getModuleDebugInfo()) 6363 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6364 break; 6365 case Decl::UsingEnum: // using enum X; [C++] 6366 if (CGDebugInfo *DI = getModuleDebugInfo()) 6367 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6368 break; 6369 case Decl::NamespaceAlias: 6370 if (CGDebugInfo *DI = getModuleDebugInfo()) 6371 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6372 break; 6373 case Decl::UsingDirective: // using namespace X; [C++] 6374 if (CGDebugInfo *DI = getModuleDebugInfo()) 6375 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6376 break; 6377 case Decl::CXXConstructor: 6378 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6379 break; 6380 case Decl::CXXDestructor: 6381 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6382 break; 6383 6384 case Decl::StaticAssert: 6385 // Nothing to do. 6386 break; 6387 6388 // Objective-C Decls 6389 6390 // Forward declarations, no (immediate) code generation. 6391 case Decl::ObjCInterface: 6392 case Decl::ObjCCategory: 6393 break; 6394 6395 case Decl::ObjCProtocol: { 6396 auto *Proto = cast<ObjCProtocolDecl>(D); 6397 if (Proto->isThisDeclarationADefinition()) 6398 ObjCRuntime->GenerateProtocol(Proto); 6399 break; 6400 } 6401 6402 case Decl::ObjCCategoryImpl: 6403 // Categories have properties but don't support synthesize so we 6404 // can ignore them here. 6405 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6406 break; 6407 6408 case Decl::ObjCImplementation: { 6409 auto *OMD = cast<ObjCImplementationDecl>(D); 6410 EmitObjCPropertyImplementations(OMD); 6411 EmitObjCIvarInitializations(OMD); 6412 ObjCRuntime->GenerateClass(OMD); 6413 // Emit global variable debug information. 6414 if (CGDebugInfo *DI = getModuleDebugInfo()) 6415 if (getCodeGenOpts().hasReducedDebugInfo()) 6416 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6417 OMD->getClassInterface()), OMD->getLocation()); 6418 break; 6419 } 6420 case Decl::ObjCMethod: { 6421 auto *OMD = cast<ObjCMethodDecl>(D); 6422 // If this is not a prototype, emit the body. 6423 if (OMD->getBody()) 6424 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6425 break; 6426 } 6427 case Decl::ObjCCompatibleAlias: 6428 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6429 break; 6430 6431 case Decl::PragmaComment: { 6432 const auto *PCD = cast<PragmaCommentDecl>(D); 6433 switch (PCD->getCommentKind()) { 6434 case PCK_Unknown: 6435 llvm_unreachable("unexpected pragma comment kind"); 6436 case PCK_Linker: 6437 AppendLinkerOptions(PCD->getArg()); 6438 break; 6439 case PCK_Lib: 6440 AddDependentLib(PCD->getArg()); 6441 break; 6442 case PCK_Compiler: 6443 case PCK_ExeStr: 6444 case PCK_User: 6445 break; // We ignore all of these. 6446 } 6447 break; 6448 } 6449 6450 case Decl::PragmaDetectMismatch: { 6451 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6452 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6453 break; 6454 } 6455 6456 case Decl::LinkageSpec: 6457 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6458 break; 6459 6460 case Decl::FileScopeAsm: { 6461 // File-scope asm is ignored during device-side CUDA compilation. 6462 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6463 break; 6464 // File-scope asm is ignored during device-side OpenMP compilation. 6465 if (LangOpts.OpenMPIsDevice) 6466 break; 6467 // File-scope asm is ignored during device-side SYCL compilation. 6468 if (LangOpts.SYCLIsDevice) 6469 break; 6470 auto *AD = cast<FileScopeAsmDecl>(D); 6471 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6472 break; 6473 } 6474 6475 case Decl::TopLevelStmt: 6476 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6477 break; 6478 6479 case Decl::Import: { 6480 auto *Import = cast<ImportDecl>(D); 6481 6482 // If we've already imported this module, we're done. 6483 if (!ImportedModules.insert(Import->getImportedModule())) 6484 break; 6485 6486 // Emit debug information for direct imports. 6487 if (!Import->getImportedOwningModule()) { 6488 if (CGDebugInfo *DI = getModuleDebugInfo()) 6489 DI->EmitImportDecl(*Import); 6490 } 6491 6492 // For C++ standard modules we are done - we will call the module 6493 // initializer for imported modules, and that will likewise call those for 6494 // any imports it has. 6495 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6496 !Import->getImportedOwningModule()->isModuleMapModule()) 6497 break; 6498 6499 // For clang C++ module map modules the initializers for sub-modules are 6500 // emitted here. 6501 6502 // Find all of the submodules and emit the module initializers. 6503 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6504 SmallVector<clang::Module *, 16> Stack; 6505 Visited.insert(Import->getImportedModule()); 6506 Stack.push_back(Import->getImportedModule()); 6507 6508 while (!Stack.empty()) { 6509 clang::Module *Mod = Stack.pop_back_val(); 6510 if (!EmittedModuleInitializers.insert(Mod).second) 6511 continue; 6512 6513 for (auto *D : Context.getModuleInitializers(Mod)) 6514 EmitTopLevelDecl(D); 6515 6516 // Visit the submodules of this module. 6517 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6518 SubEnd = Mod->submodule_end(); 6519 Sub != SubEnd; ++Sub) { 6520 // Skip explicit children; they need to be explicitly imported to emit 6521 // the initializers. 6522 if ((*Sub)->IsExplicit) 6523 continue; 6524 6525 if (Visited.insert(*Sub).second) 6526 Stack.push_back(*Sub); 6527 } 6528 } 6529 break; 6530 } 6531 6532 case Decl::Export: 6533 EmitDeclContext(cast<ExportDecl>(D)); 6534 break; 6535 6536 case Decl::OMPThreadPrivate: 6537 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6538 break; 6539 6540 case Decl::OMPAllocate: 6541 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6542 break; 6543 6544 case Decl::OMPDeclareReduction: 6545 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6546 break; 6547 6548 case Decl::OMPDeclareMapper: 6549 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6550 break; 6551 6552 case Decl::OMPRequires: 6553 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6554 break; 6555 6556 case Decl::Typedef: 6557 case Decl::TypeAlias: // using foo = bar; [C++11] 6558 if (CGDebugInfo *DI = getModuleDebugInfo()) 6559 DI->EmitAndRetainType( 6560 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6561 break; 6562 6563 case Decl::Record: 6564 if (CGDebugInfo *DI = getModuleDebugInfo()) 6565 if (cast<RecordDecl>(D)->getDefinition()) 6566 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6567 break; 6568 6569 case Decl::Enum: 6570 if (CGDebugInfo *DI = getModuleDebugInfo()) 6571 if (cast<EnumDecl>(D)->getDefinition()) 6572 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6573 break; 6574 6575 case Decl::HLSLBuffer: 6576 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6577 break; 6578 6579 default: 6580 // Make sure we handled everything we should, every other kind is a 6581 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6582 // function. Need to recode Decl::Kind to do that easily. 6583 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6584 break; 6585 } 6586 } 6587 6588 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6589 // Do we need to generate coverage mapping? 6590 if (!CodeGenOpts.CoverageMapping) 6591 return; 6592 switch (D->getKind()) { 6593 case Decl::CXXConversion: 6594 case Decl::CXXMethod: 6595 case Decl::Function: 6596 case Decl::ObjCMethod: 6597 case Decl::CXXConstructor: 6598 case Decl::CXXDestructor: { 6599 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6600 break; 6601 SourceManager &SM = getContext().getSourceManager(); 6602 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6603 break; 6604 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6605 if (I == DeferredEmptyCoverageMappingDecls.end()) 6606 DeferredEmptyCoverageMappingDecls[D] = true; 6607 break; 6608 } 6609 default: 6610 break; 6611 }; 6612 } 6613 6614 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6615 // Do we need to generate coverage mapping? 6616 if (!CodeGenOpts.CoverageMapping) 6617 return; 6618 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6619 if (Fn->isTemplateInstantiation()) 6620 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6621 } 6622 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6623 if (I == DeferredEmptyCoverageMappingDecls.end()) 6624 DeferredEmptyCoverageMappingDecls[D] = false; 6625 else 6626 I->second = false; 6627 } 6628 6629 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6630 // We call takeVector() here to avoid use-after-free. 6631 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6632 // we deserialize function bodies to emit coverage info for them, and that 6633 // deserializes more declarations. How should we handle that case? 6634 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6635 if (!Entry.second) 6636 continue; 6637 const Decl *D = Entry.first; 6638 switch (D->getKind()) { 6639 case Decl::CXXConversion: 6640 case Decl::CXXMethod: 6641 case Decl::Function: 6642 case Decl::ObjCMethod: { 6643 CodeGenPGO PGO(*this); 6644 GlobalDecl GD(cast<FunctionDecl>(D)); 6645 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6646 getFunctionLinkage(GD)); 6647 break; 6648 } 6649 case Decl::CXXConstructor: { 6650 CodeGenPGO PGO(*this); 6651 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6652 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6653 getFunctionLinkage(GD)); 6654 break; 6655 } 6656 case Decl::CXXDestructor: { 6657 CodeGenPGO PGO(*this); 6658 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6659 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6660 getFunctionLinkage(GD)); 6661 break; 6662 } 6663 default: 6664 break; 6665 }; 6666 } 6667 } 6668 6669 void CodeGenModule::EmitMainVoidAlias() { 6670 // In order to transition away from "__original_main" gracefully, emit an 6671 // alias for "main" in the no-argument case so that libc can detect when 6672 // new-style no-argument main is in used. 6673 if (llvm::Function *F = getModule().getFunction("main")) { 6674 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6675 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6676 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6677 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6678 } 6679 } 6680 } 6681 6682 /// Turns the given pointer into a constant. 6683 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6684 const void *Ptr) { 6685 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6686 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6687 return llvm::ConstantInt::get(i64, PtrInt); 6688 } 6689 6690 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6691 llvm::NamedMDNode *&GlobalMetadata, 6692 GlobalDecl D, 6693 llvm::GlobalValue *Addr) { 6694 if (!GlobalMetadata) 6695 GlobalMetadata = 6696 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6697 6698 // TODO: should we report variant information for ctors/dtors? 6699 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6700 llvm::ConstantAsMetadata::get(GetPointerConstant( 6701 CGM.getLLVMContext(), D.getDecl()))}; 6702 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6703 } 6704 6705 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6706 llvm::GlobalValue *CppFunc) { 6707 // Store the list of ifuncs we need to replace uses in. 6708 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6709 // List of ConstantExprs that we should be able to delete when we're done 6710 // here. 6711 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6712 6713 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6714 if (Elem == CppFunc) 6715 return false; 6716 6717 // First make sure that all users of this are ifuncs (or ifuncs via a 6718 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6719 // later. 6720 for (llvm::User *User : Elem->users()) { 6721 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6722 // ifunc directly. In any other case, just give up, as we don't know what we 6723 // could break by changing those. 6724 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6725 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6726 return false; 6727 6728 for (llvm::User *CEUser : ConstExpr->users()) { 6729 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6730 IFuncs.push_back(IFunc); 6731 } else { 6732 return false; 6733 } 6734 } 6735 CEs.push_back(ConstExpr); 6736 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6737 IFuncs.push_back(IFunc); 6738 } else { 6739 // This user is one we don't know how to handle, so fail redirection. This 6740 // will result in an ifunc retaining a resolver name that will ultimately 6741 // fail to be resolved to a defined function. 6742 return false; 6743 } 6744 } 6745 6746 // Now we know this is a valid case where we can do this alias replacement, we 6747 // need to remove all of the references to Elem (and the bitcasts!) so we can 6748 // delete it. 6749 for (llvm::GlobalIFunc *IFunc : IFuncs) 6750 IFunc->setResolver(nullptr); 6751 for (llvm::ConstantExpr *ConstExpr : CEs) 6752 ConstExpr->destroyConstant(); 6753 6754 // We should now be out of uses for the 'old' version of this function, so we 6755 // can erase it as well. 6756 Elem->eraseFromParent(); 6757 6758 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6759 // The type of the resolver is always just a function-type that returns the 6760 // type of the IFunc, so create that here. If the type of the actual 6761 // resolver doesn't match, it just gets bitcast to the right thing. 6762 auto *ResolverTy = 6763 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6764 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6765 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6766 IFunc->setResolver(Resolver); 6767 } 6768 return true; 6769 } 6770 6771 /// For each function which is declared within an extern "C" region and marked 6772 /// as 'used', but has internal linkage, create an alias from the unmangled 6773 /// name to the mangled name if possible. People expect to be able to refer 6774 /// to such functions with an unmangled name from inline assembly within the 6775 /// same translation unit. 6776 void CodeGenModule::EmitStaticExternCAliases() { 6777 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6778 return; 6779 for (auto &I : StaticExternCValues) { 6780 IdentifierInfo *Name = I.first; 6781 llvm::GlobalValue *Val = I.second; 6782 6783 // If Val is null, that implies there were multiple declarations that each 6784 // had a claim to the unmangled name. In this case, generation of the alias 6785 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6786 if (!Val) 6787 break; 6788 6789 llvm::GlobalValue *ExistingElem = 6790 getModule().getNamedValue(Name->getName()); 6791 6792 // If there is either not something already by this name, or we were able to 6793 // replace all uses from IFuncs, create the alias. 6794 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6795 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6796 } 6797 } 6798 6799 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6800 GlobalDecl &Result) const { 6801 auto Res = Manglings.find(MangledName); 6802 if (Res == Manglings.end()) 6803 return false; 6804 Result = Res->getValue(); 6805 return true; 6806 } 6807 6808 /// Emits metadata nodes associating all the global values in the 6809 /// current module with the Decls they came from. This is useful for 6810 /// projects using IR gen as a subroutine. 6811 /// 6812 /// Since there's currently no way to associate an MDNode directly 6813 /// with an llvm::GlobalValue, we create a global named metadata 6814 /// with the name 'clang.global.decl.ptrs'. 6815 void CodeGenModule::EmitDeclMetadata() { 6816 llvm::NamedMDNode *GlobalMetadata = nullptr; 6817 6818 for (auto &I : MangledDeclNames) { 6819 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6820 // Some mangled names don't necessarily have an associated GlobalValue 6821 // in this module, e.g. if we mangled it for DebugInfo. 6822 if (Addr) 6823 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6824 } 6825 } 6826 6827 /// Emits metadata nodes for all the local variables in the current 6828 /// function. 6829 void CodeGenFunction::EmitDeclMetadata() { 6830 if (LocalDeclMap.empty()) return; 6831 6832 llvm::LLVMContext &Context = getLLVMContext(); 6833 6834 // Find the unique metadata ID for this name. 6835 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6836 6837 llvm::NamedMDNode *GlobalMetadata = nullptr; 6838 6839 for (auto &I : LocalDeclMap) { 6840 const Decl *D = I.first; 6841 llvm::Value *Addr = I.second.getPointer(); 6842 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6843 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6844 Alloca->setMetadata( 6845 DeclPtrKind, llvm::MDNode::get( 6846 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6847 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6848 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6849 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6850 } 6851 } 6852 } 6853 6854 void CodeGenModule::EmitVersionIdentMetadata() { 6855 llvm::NamedMDNode *IdentMetadata = 6856 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6857 std::string Version = getClangFullVersion(); 6858 llvm::LLVMContext &Ctx = TheModule.getContext(); 6859 6860 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6861 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6862 } 6863 6864 void CodeGenModule::EmitCommandLineMetadata() { 6865 llvm::NamedMDNode *CommandLineMetadata = 6866 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6867 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6868 llvm::LLVMContext &Ctx = TheModule.getContext(); 6869 6870 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6871 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6872 } 6873 6874 void CodeGenModule::EmitCoverageFile() { 6875 if (getCodeGenOpts().CoverageDataFile.empty() && 6876 getCodeGenOpts().CoverageNotesFile.empty()) 6877 return; 6878 6879 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6880 if (!CUNode) 6881 return; 6882 6883 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6884 llvm::LLVMContext &Ctx = TheModule.getContext(); 6885 auto *CoverageDataFile = 6886 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6887 auto *CoverageNotesFile = 6888 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6889 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6890 llvm::MDNode *CU = CUNode->getOperand(i); 6891 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6892 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6893 } 6894 } 6895 6896 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6897 bool ForEH) { 6898 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6899 // FIXME: should we even be calling this method if RTTI is disabled 6900 // and it's not for EH? 6901 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6902 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6903 getTriple().isNVPTX())) 6904 return llvm::Constant::getNullValue(Int8PtrTy); 6905 6906 if (ForEH && Ty->isObjCObjectPointerType() && 6907 LangOpts.ObjCRuntime.isGNUFamily()) 6908 return ObjCRuntime->GetEHType(Ty); 6909 6910 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6911 } 6912 6913 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6914 // Do not emit threadprivates in simd-only mode. 6915 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6916 return; 6917 for (auto RefExpr : D->varlists()) { 6918 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6919 bool PerformInit = 6920 VD->getAnyInitializer() && 6921 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6922 /*ForRef=*/false); 6923 6924 Address Addr(GetAddrOfGlobalVar(VD), 6925 getTypes().ConvertTypeForMem(VD->getType()), 6926 getContext().getDeclAlign(VD)); 6927 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6928 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6929 CXXGlobalInits.push_back(InitFunction); 6930 } 6931 } 6932 6933 llvm::Metadata * 6934 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6935 StringRef Suffix) { 6936 if (auto *FnType = T->getAs<FunctionProtoType>()) 6937 T = getContext().getFunctionType( 6938 FnType->getReturnType(), FnType->getParamTypes(), 6939 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6940 6941 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6942 if (InternalId) 6943 return InternalId; 6944 6945 if (isExternallyVisible(T->getLinkage())) { 6946 std::string OutName; 6947 llvm::raw_string_ostream Out(OutName); 6948 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6949 Out << Suffix; 6950 6951 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6952 } else { 6953 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6954 llvm::ArrayRef<llvm::Metadata *>()); 6955 } 6956 6957 return InternalId; 6958 } 6959 6960 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6961 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6962 } 6963 6964 llvm::Metadata * 6965 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6966 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6967 } 6968 6969 // Generalize pointer types to a void pointer with the qualifiers of the 6970 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6971 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6972 // 'void *'. 6973 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6974 if (!Ty->isPointerType()) 6975 return Ty; 6976 6977 return Ctx.getPointerType( 6978 QualType(Ctx.VoidTy).withCVRQualifiers( 6979 Ty->getPointeeType().getCVRQualifiers())); 6980 } 6981 6982 // Apply type generalization to a FunctionType's return and argument types 6983 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6984 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6985 SmallVector<QualType, 8> GeneralizedParams; 6986 for (auto &Param : FnType->param_types()) 6987 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6988 6989 return Ctx.getFunctionType( 6990 GeneralizeType(Ctx, FnType->getReturnType()), 6991 GeneralizedParams, FnType->getExtProtoInfo()); 6992 } 6993 6994 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6995 return Ctx.getFunctionNoProtoType( 6996 GeneralizeType(Ctx, FnType->getReturnType())); 6997 6998 llvm_unreachable("Encountered unknown FunctionType"); 6999 } 7000 7001 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7002 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7003 GeneralizedMetadataIdMap, ".generalized"); 7004 } 7005 7006 /// Returns whether this module needs the "all-vtables" type identifier. 7007 bool CodeGenModule::NeedAllVtablesTypeId() const { 7008 // Returns true if at least one of vtable-based CFI checkers is enabled and 7009 // is not in the trapping mode. 7010 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7011 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7012 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7013 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7014 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7015 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7016 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7017 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7018 } 7019 7020 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7021 CharUnits Offset, 7022 const CXXRecordDecl *RD) { 7023 llvm::Metadata *MD = 7024 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7025 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7026 7027 if (CodeGenOpts.SanitizeCfiCrossDso) 7028 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7029 VTable->addTypeMetadata(Offset.getQuantity(), 7030 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7031 7032 if (NeedAllVtablesTypeId()) { 7033 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7034 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7035 } 7036 } 7037 7038 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7039 if (!SanStats) 7040 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7041 7042 return *SanStats; 7043 } 7044 7045 llvm::Value * 7046 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7047 CodeGenFunction &CGF) { 7048 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7049 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7050 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7051 auto *Call = CGF.EmitRuntimeCall( 7052 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7053 return Call; 7054 } 7055 7056 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7057 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7058 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7059 /* forPointeeType= */ true); 7060 } 7061 7062 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7063 LValueBaseInfo *BaseInfo, 7064 TBAAAccessInfo *TBAAInfo, 7065 bool forPointeeType) { 7066 if (TBAAInfo) 7067 *TBAAInfo = getTBAAAccessInfo(T); 7068 7069 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7070 // that doesn't return the information we need to compute BaseInfo. 7071 7072 // Honor alignment typedef attributes even on incomplete types. 7073 // We also honor them straight for C++ class types, even as pointees; 7074 // there's an expressivity gap here. 7075 if (auto TT = T->getAs<TypedefType>()) { 7076 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7077 if (BaseInfo) 7078 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7079 return getContext().toCharUnitsFromBits(Align); 7080 } 7081 } 7082 7083 bool AlignForArray = T->isArrayType(); 7084 7085 // Analyze the base element type, so we don't get confused by incomplete 7086 // array types. 7087 T = getContext().getBaseElementType(T); 7088 7089 if (T->isIncompleteType()) { 7090 // We could try to replicate the logic from 7091 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7092 // type is incomplete, so it's impossible to test. We could try to reuse 7093 // getTypeAlignIfKnown, but that doesn't return the information we need 7094 // to set BaseInfo. So just ignore the possibility that the alignment is 7095 // greater than one. 7096 if (BaseInfo) 7097 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7098 return CharUnits::One(); 7099 } 7100 7101 if (BaseInfo) 7102 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7103 7104 CharUnits Alignment; 7105 const CXXRecordDecl *RD; 7106 if (T.getQualifiers().hasUnaligned()) { 7107 Alignment = CharUnits::One(); 7108 } else if (forPointeeType && !AlignForArray && 7109 (RD = T->getAsCXXRecordDecl())) { 7110 // For C++ class pointees, we don't know whether we're pointing at a 7111 // base or a complete object, so we generally need to use the 7112 // non-virtual alignment. 7113 Alignment = getClassPointerAlignment(RD); 7114 } else { 7115 Alignment = getContext().getTypeAlignInChars(T); 7116 } 7117 7118 // Cap to the global maximum type alignment unless the alignment 7119 // was somehow explicit on the type. 7120 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7121 if (Alignment.getQuantity() > MaxAlign && 7122 !getContext().isAlignmentRequired(T)) 7123 Alignment = CharUnits::fromQuantity(MaxAlign); 7124 } 7125 return Alignment; 7126 } 7127 7128 bool CodeGenModule::stopAutoInit() { 7129 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7130 if (StopAfter) { 7131 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7132 // used 7133 if (NumAutoVarInit >= StopAfter) { 7134 return true; 7135 } 7136 if (!NumAutoVarInit) { 7137 unsigned DiagID = getDiags().getCustomDiagID( 7138 DiagnosticsEngine::Warning, 7139 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7140 "number of times ftrivial-auto-var-init=%1 gets applied."); 7141 getDiags().Report(DiagID) 7142 << StopAfter 7143 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7144 LangOptions::TrivialAutoVarInitKind::Zero 7145 ? "zero" 7146 : "pattern"); 7147 } 7148 ++NumAutoVarInit; 7149 } 7150 return false; 7151 } 7152 7153 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7154 const Decl *D) const { 7155 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7156 // postfix beginning with '.' since the symbol name can be demangled. 7157 if (LangOpts.HIP) 7158 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7159 else 7160 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7161 7162 // If the CUID is not specified we try to generate a unique postfix. 7163 if (getLangOpts().CUID.empty()) { 7164 SourceManager &SM = getContext().getSourceManager(); 7165 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7166 assert(PLoc.isValid() && "Source location is expected to be valid."); 7167 7168 // Get the hash of the user defined macros. 7169 llvm::MD5 Hash; 7170 llvm::MD5::MD5Result Result; 7171 for (const auto &Arg : PreprocessorOpts.Macros) 7172 Hash.update(Arg.first); 7173 Hash.final(Result); 7174 7175 // Get the UniqueID for the file containing the decl. 7176 llvm::sys::fs::UniqueID ID; 7177 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7178 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7179 assert(PLoc.isValid() && "Source location is expected to be valid."); 7180 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7181 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7182 << PLoc.getFilename() << EC.message(); 7183 } 7184 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7185 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7186 } else { 7187 OS << getContext().getCUIDHash(); 7188 } 7189 } 7190 7191 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7192 assert(DeferredDeclsToEmit.empty() && 7193 "Should have emitted all decls deferred to emit."); 7194 assert(NewBuilder->DeferredDecls.empty() && 7195 "Newly created module should not have deferred decls"); 7196 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7197 7198 assert(NewBuilder->DeferredVTables.empty() && 7199 "Newly created module should not have deferred vtables"); 7200 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7201 7202 assert(NewBuilder->MangledDeclNames.empty() && 7203 "Newly created module should not have mangled decl names"); 7204 assert(NewBuilder->Manglings.empty() && 7205 "Newly created module should not have manglings"); 7206 NewBuilder->Manglings = std::move(Manglings); 7207 7208 assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied"); 7209 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7210 7211 NewBuilder->TBAA = std::move(TBAA); 7212 7213 assert(NewBuilder->EmittedDeferredDecls.empty() && 7214 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7215 7216 NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls); 7217 7218 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7219 } 7220