1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "Mangle.h" 22 #include "TargetInfo.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/TargetData.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/ErrorHandling.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 47 switch (CGM.getContext().Target.getCXXABI()) { 48 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 49 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 50 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 51 } 52 53 llvm_unreachable("invalid C++ ABI kind"); 54 return *CreateItaniumCXXABI(CGM); 55 } 56 57 58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 59 llvm::Module &M, const llvm::TargetData &TD, 60 Diagnostic &diags) 61 : BlockModule(C, M, TD, Types, *this), Context(C), 62 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0){ 74 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 87 ABI.getMangleContext()); 88 89 // If debug info generation is enabled, create the CGDebugInfo object. 90 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 91 } 92 93 CodeGenModule::~CodeGenModule() { 94 delete Runtime; 95 delete &ABI; 96 delete TBAA; 97 delete DebugInfo; 98 } 99 100 void CodeGenModule::createObjCRuntime() { 101 if (!Features.NeXTRuntime) 102 Runtime = CreateGNUObjCRuntime(*this); 103 else if (Features.ObjCNonFragileABI) 104 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 105 else 106 Runtime = CreateMacObjCRuntime(*this); 107 } 108 109 void CodeGenModule::Release() { 110 EmitDeferred(); 111 EmitCXXGlobalInitFunc(); 112 EmitCXXGlobalDtorFunc(); 113 if (Runtime) 114 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 115 AddGlobalCtor(ObjCInitFunction); 116 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 117 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 118 EmitAnnotations(); 119 EmitLLVMUsed(); 120 121 SimplifyPersonality(); 122 123 if (getCodeGenOpts().EmitDeclMetadata) 124 EmitDeclMetadata(); 125 } 126 127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 128 if (!TBAA) 129 return 0; 130 return TBAA->getTBAAInfo(QTy); 131 } 132 133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 134 llvm::MDNode *TBAAInfo) { 135 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 136 } 137 138 bool CodeGenModule::isTargetDarwin() const { 139 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 140 } 141 142 /// ErrorUnsupported - Print out an error that codegen doesn't support the 143 /// specified stmt yet. 144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 145 bool OmitOnError) { 146 if (OmitOnError && getDiags().hasErrorOccurred()) 147 return; 148 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 149 "cannot compile this %0 yet"); 150 std::string Msg = Type; 151 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 152 << Msg << S->getSourceRange(); 153 } 154 155 /// ErrorUnsupported - Print out an error that codegen doesn't support the 156 /// specified decl yet. 157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 158 bool OmitOnError) { 159 if (OmitOnError && getDiags().hasErrorOccurred()) 160 return; 161 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 162 "cannot compile this %0 yet"); 163 std::string Msg = Type; 164 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 165 } 166 167 LangOptions::VisibilityMode 168 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 169 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 170 if (VD->getStorageClass() == SC_PrivateExtern) 171 return LangOptions::Hidden; 172 173 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 174 switch (attr->getVisibility()) { 175 default: assert(0 && "Unknown visibility!"); 176 case VisibilityAttr::Default: 177 return LangOptions::Default; 178 case VisibilityAttr::Hidden: 179 return LangOptions::Hidden; 180 case VisibilityAttr::Protected: 181 return LangOptions::Protected; 182 } 183 } 184 185 if (getLangOptions().CPlusPlus) { 186 // Entities subject to an explicit instantiation declaration get default 187 // visibility. 188 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 189 if (Function->getTemplateSpecializationKind() 190 == TSK_ExplicitInstantiationDeclaration) 191 return LangOptions::Default; 192 } else if (const ClassTemplateSpecializationDecl *ClassSpec 193 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 194 if (ClassSpec->getSpecializationKind() 195 == TSK_ExplicitInstantiationDeclaration) 196 return LangOptions::Default; 197 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 198 if (Record->getTemplateSpecializationKind() 199 == TSK_ExplicitInstantiationDeclaration) 200 return LangOptions::Default; 201 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 202 if (Var->isStaticDataMember() && 203 (Var->getTemplateSpecializationKind() 204 == TSK_ExplicitInstantiationDeclaration)) 205 return LangOptions::Default; 206 } 207 208 // If -fvisibility-inlines-hidden was provided, then inline C++ member 209 // functions get "hidden" visibility by default. 210 if (getLangOptions().InlineVisibilityHidden) 211 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 212 if (Method->isInlined()) 213 return LangOptions::Hidden; 214 } 215 216 // If this decl is contained in a class, it should have the same visibility 217 // as the parent class. 218 if (const DeclContext *DC = D->getDeclContext()) 219 if (DC->isRecord()) 220 return getDeclVisibilityMode(cast<Decl>(DC)); 221 222 return getLangOptions().getVisibilityMode(); 223 } 224 225 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 226 const Decl *D) const { 227 // Internal definitions always have default visibility. 228 if (GV->hasLocalLinkage()) { 229 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 230 return; 231 } 232 233 switch (getDeclVisibilityMode(D)) { 234 default: assert(0 && "Unknown visibility!"); 235 case LangOptions::Default: 236 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 237 case LangOptions::Hidden: 238 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 239 case LangOptions::Protected: 240 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 241 } 242 } 243 244 /// Set the symbol visibility of type information (vtable and RTTI) 245 /// associated with the given type. 246 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 247 const CXXRecordDecl *RD, 248 bool IsForRTTI) const { 249 setGlobalVisibility(GV, RD); 250 251 if (!CodeGenOpts.HiddenWeakVTables) 252 return; 253 254 // We want to drop the visibility to hidden for weak type symbols. 255 // This isn't possible if there might be unresolved references 256 // elsewhere that rely on this symbol being visible. 257 258 // This should be kept roughly in sync with setThunkVisibility 259 // in CGVTables.cpp. 260 261 // Preconditions. 262 if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage || 263 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 264 return; 265 266 // Don't override an explicit visibility attribute. 267 if (RD->hasAttr<VisibilityAttr>()) 268 return; 269 270 switch (RD->getTemplateSpecializationKind()) { 271 // We have to disable the optimization if this is an EI definition 272 // because there might be EI declarations in other shared objects. 273 case TSK_ExplicitInstantiationDefinition: 274 case TSK_ExplicitInstantiationDeclaration: 275 return; 276 277 // Every use of a non-template class's type information has to emit it. 278 case TSK_Undeclared: 279 break; 280 281 // In theory, implicit instantiations can ignore the possibility of 282 // an explicit instantiation declaration because there necessarily 283 // must be an EI definition somewhere with default visibility. In 284 // practice, it's possible to have an explicit instantiation for 285 // an arbitrary template class, and linkers aren't necessarily able 286 // to deal with mixed-visibility symbols. 287 case TSK_ExplicitSpecialization: 288 case TSK_ImplicitInstantiation: 289 if (!CodeGenOpts.HiddenWeakTemplateVTables) 290 return; 291 break; 292 } 293 294 // If there's a key function, there may be translation units 295 // that don't have the key function's definition. But ignore 296 // this if we're emitting RTTI under -fno-rtti. 297 if (!IsForRTTI || Features.RTTI) 298 if (Context.getKeyFunction(RD)) 299 return; 300 301 // Otherwise, drop the visibility to hidden. 302 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 303 } 304 305 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 306 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 307 308 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 309 if (!Str.empty()) 310 return Str; 311 312 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 313 IdentifierInfo *II = ND->getIdentifier(); 314 assert(II && "Attempt to mangle unnamed decl."); 315 316 Str = II->getName(); 317 return Str; 318 } 319 320 llvm::SmallString<256> Buffer; 321 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 322 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 323 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 324 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 325 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 326 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer); 327 else 328 getCXXABI().getMangleContext().mangleName(ND, Buffer); 329 330 // Allocate space for the mangled name. 331 size_t Length = Buffer.size(); 332 char *Name = MangledNamesAllocator.Allocate<char>(Length); 333 std::copy(Buffer.begin(), Buffer.end(), Name); 334 335 Str = llvm::StringRef(Name, Length); 336 337 return Str; 338 } 339 340 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 341 const BlockDecl *BD) { 342 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 343 } 344 345 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 346 return getModule().getNamedValue(Name); 347 } 348 349 /// AddGlobalCtor - Add a function to the list that will be called before 350 /// main() runs. 351 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 352 // FIXME: Type coercion of void()* types. 353 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 354 } 355 356 /// AddGlobalDtor - Add a function to the list that will be called 357 /// when the module is unloaded. 358 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 359 // FIXME: Type coercion of void()* types. 360 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 361 } 362 363 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 364 // Ctor function type is void()*. 365 llvm::FunctionType* CtorFTy = 366 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 367 std::vector<const llvm::Type*>(), 368 false); 369 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 370 371 // Get the type of a ctor entry, { i32, void ()* }. 372 llvm::StructType* CtorStructTy = 373 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 374 llvm::PointerType::getUnqual(CtorFTy), NULL); 375 376 // Construct the constructor and destructor arrays. 377 std::vector<llvm::Constant*> Ctors; 378 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 379 std::vector<llvm::Constant*> S; 380 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 381 I->second, false)); 382 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 383 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 384 } 385 386 if (!Ctors.empty()) { 387 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 388 new llvm::GlobalVariable(TheModule, AT, false, 389 llvm::GlobalValue::AppendingLinkage, 390 llvm::ConstantArray::get(AT, Ctors), 391 GlobalName); 392 } 393 } 394 395 void CodeGenModule::EmitAnnotations() { 396 if (Annotations.empty()) 397 return; 398 399 // Create a new global variable for the ConstantStruct in the Module. 400 llvm::Constant *Array = 401 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 402 Annotations.size()), 403 Annotations); 404 llvm::GlobalValue *gv = 405 new llvm::GlobalVariable(TheModule, Array->getType(), false, 406 llvm::GlobalValue::AppendingLinkage, Array, 407 "llvm.global.annotations"); 408 gv->setSection("llvm.metadata"); 409 } 410 411 llvm::GlobalValue::LinkageTypes 412 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 413 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 414 415 if (Linkage == GVA_Internal) 416 return llvm::Function::InternalLinkage; 417 418 if (D->hasAttr<DLLExportAttr>()) 419 return llvm::Function::DLLExportLinkage; 420 421 if (D->hasAttr<WeakAttr>()) 422 return llvm::Function::WeakAnyLinkage; 423 424 // In C99 mode, 'inline' functions are guaranteed to have a strong 425 // definition somewhere else, so we can use available_externally linkage. 426 if (Linkage == GVA_C99Inline) 427 return llvm::Function::AvailableExternallyLinkage; 428 429 // In C++, the compiler has to emit a definition in every translation unit 430 // that references the function. We should use linkonce_odr because 431 // a) if all references in this translation unit are optimized away, we 432 // don't need to codegen it. b) if the function persists, it needs to be 433 // merged with other definitions. c) C++ has the ODR, so we know the 434 // definition is dependable. 435 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 436 return llvm::Function::LinkOnceODRLinkage; 437 438 // An explicit instantiation of a template has weak linkage, since 439 // explicit instantiations can occur in multiple translation units 440 // and must all be equivalent. However, we are not allowed to 441 // throw away these explicit instantiations. 442 if (Linkage == GVA_ExplicitTemplateInstantiation) 443 return llvm::Function::WeakODRLinkage; 444 445 // Otherwise, we have strong external linkage. 446 assert(Linkage == GVA_StrongExternal); 447 return llvm::Function::ExternalLinkage; 448 } 449 450 451 /// SetFunctionDefinitionAttributes - Set attributes for a global. 452 /// 453 /// FIXME: This is currently only done for aliases and functions, but not for 454 /// variables (these details are set in EmitGlobalVarDefinition for variables). 455 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 456 llvm::GlobalValue *GV) { 457 SetCommonAttributes(D, GV); 458 } 459 460 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 461 const CGFunctionInfo &Info, 462 llvm::Function *F) { 463 unsigned CallingConv; 464 AttributeListType AttributeList; 465 ConstructAttributeList(Info, D, AttributeList, CallingConv); 466 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 467 AttributeList.size())); 468 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 469 } 470 471 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 472 llvm::Function *F) { 473 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 474 F->addFnAttr(llvm::Attribute::NoUnwind); 475 476 if (D->hasAttr<AlwaysInlineAttr>()) 477 F->addFnAttr(llvm::Attribute::AlwaysInline); 478 479 if (D->hasAttr<NakedAttr>()) 480 F->addFnAttr(llvm::Attribute::Naked); 481 482 if (D->hasAttr<NoInlineAttr>()) 483 F->addFnAttr(llvm::Attribute::NoInline); 484 485 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 486 F->addFnAttr(llvm::Attribute::StackProtect); 487 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 488 F->addFnAttr(llvm::Attribute::StackProtectReq); 489 490 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 491 if (alignment) 492 F->setAlignment(alignment); 493 494 // C++ ABI requires 2-byte alignment for member functions. 495 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 496 F->setAlignment(2); 497 } 498 499 void CodeGenModule::SetCommonAttributes(const Decl *D, 500 llvm::GlobalValue *GV) { 501 setGlobalVisibility(GV, D); 502 503 if (D->hasAttr<UsedAttr>()) 504 AddUsedGlobal(GV); 505 506 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 507 GV->setSection(SA->getName()); 508 509 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 510 } 511 512 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 513 llvm::Function *F, 514 const CGFunctionInfo &FI) { 515 SetLLVMFunctionAttributes(D, FI, F); 516 SetLLVMFunctionAttributesForDefinition(D, F); 517 518 F->setLinkage(llvm::Function::InternalLinkage); 519 520 SetCommonAttributes(D, F); 521 } 522 523 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 524 llvm::Function *F, 525 bool IsIncompleteFunction) { 526 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 527 528 if (!IsIncompleteFunction) 529 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 530 531 // Only a few attributes are set on declarations; these may later be 532 // overridden by a definition. 533 534 if (FD->hasAttr<DLLImportAttr>()) { 535 F->setLinkage(llvm::Function::DLLImportLinkage); 536 } else if (FD->hasAttr<WeakAttr>() || 537 FD->hasAttr<WeakImportAttr>()) { 538 // "extern_weak" is overloaded in LLVM; we probably should have 539 // separate linkage types for this. 540 F->setLinkage(llvm::Function::ExternalWeakLinkage); 541 } else { 542 F->setLinkage(llvm::Function::ExternalLinkage); 543 } 544 545 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 546 F->setSection(SA->getName()); 547 } 548 549 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 550 assert(!GV->isDeclaration() && 551 "Only globals with definition can force usage."); 552 LLVMUsed.push_back(GV); 553 } 554 555 void CodeGenModule::EmitLLVMUsed() { 556 // Don't create llvm.used if there is no need. 557 if (LLVMUsed.empty()) 558 return; 559 560 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 561 562 // Convert LLVMUsed to what ConstantArray needs. 563 std::vector<llvm::Constant*> UsedArray; 564 UsedArray.resize(LLVMUsed.size()); 565 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 566 UsedArray[i] = 567 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 568 i8PTy); 569 } 570 571 if (UsedArray.empty()) 572 return; 573 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 574 575 llvm::GlobalVariable *GV = 576 new llvm::GlobalVariable(getModule(), ATy, false, 577 llvm::GlobalValue::AppendingLinkage, 578 llvm::ConstantArray::get(ATy, UsedArray), 579 "llvm.used"); 580 581 GV->setSection("llvm.metadata"); 582 } 583 584 void CodeGenModule::EmitDeferred() { 585 // Emit code for any potentially referenced deferred decls. Since a 586 // previously unused static decl may become used during the generation of code 587 // for a static function, iterate until no changes are made. 588 589 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 590 if (!DeferredVTables.empty()) { 591 const CXXRecordDecl *RD = DeferredVTables.back(); 592 DeferredVTables.pop_back(); 593 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 594 continue; 595 } 596 597 GlobalDecl D = DeferredDeclsToEmit.back(); 598 DeferredDeclsToEmit.pop_back(); 599 600 // Check to see if we've already emitted this. This is necessary 601 // for a couple of reasons: first, decls can end up in the 602 // deferred-decls queue multiple times, and second, decls can end 603 // up with definitions in unusual ways (e.g. by an extern inline 604 // function acquiring a strong function redefinition). Just 605 // ignore these cases. 606 // 607 // TODO: That said, looking this up multiple times is very wasteful. 608 llvm::StringRef Name = getMangledName(D); 609 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 610 assert(CGRef && "Deferred decl wasn't referenced?"); 611 612 if (!CGRef->isDeclaration()) 613 continue; 614 615 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 616 // purposes an alias counts as a definition. 617 if (isa<llvm::GlobalAlias>(CGRef)) 618 continue; 619 620 // Otherwise, emit the definition and move on to the next one. 621 EmitGlobalDefinition(D); 622 } 623 } 624 625 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 626 /// annotation information for a given GlobalValue. The annotation struct is 627 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 628 /// GlobalValue being annotated. The second field is the constant string 629 /// created from the AnnotateAttr's annotation. The third field is a constant 630 /// string containing the name of the translation unit. The fourth field is 631 /// the line number in the file of the annotated value declaration. 632 /// 633 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 634 /// appears to. 635 /// 636 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 637 const AnnotateAttr *AA, 638 unsigned LineNo) { 639 llvm::Module *M = &getModule(); 640 641 // get [N x i8] constants for the annotation string, and the filename string 642 // which are the 2nd and 3rd elements of the global annotation structure. 643 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 644 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 645 AA->getAnnotation(), true); 646 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 647 M->getModuleIdentifier(), 648 true); 649 650 // Get the two global values corresponding to the ConstantArrays we just 651 // created to hold the bytes of the strings. 652 llvm::GlobalValue *annoGV = 653 new llvm::GlobalVariable(*M, anno->getType(), false, 654 llvm::GlobalValue::PrivateLinkage, anno, 655 GV->getName()); 656 // translation unit name string, emitted into the llvm.metadata section. 657 llvm::GlobalValue *unitGV = 658 new llvm::GlobalVariable(*M, unit->getType(), false, 659 llvm::GlobalValue::PrivateLinkage, unit, 660 ".str"); 661 662 // Create the ConstantStruct for the global annotation. 663 llvm::Constant *Fields[4] = { 664 llvm::ConstantExpr::getBitCast(GV, SBP), 665 llvm::ConstantExpr::getBitCast(annoGV, SBP), 666 llvm::ConstantExpr::getBitCast(unitGV, SBP), 667 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 668 }; 669 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 670 } 671 672 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 673 // Never defer when EmitAllDecls is specified. 674 if (Features.EmitAllDecls) 675 return false; 676 677 return !getContext().DeclMustBeEmitted(Global); 678 } 679 680 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 681 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 682 assert(AA && "No alias?"); 683 684 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 685 686 // See if there is already something with the target's name in the module. 687 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 688 689 llvm::Constant *Aliasee; 690 if (isa<llvm::FunctionType>(DeclTy)) 691 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 692 else 693 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 694 llvm::PointerType::getUnqual(DeclTy), 0); 695 if (!Entry) { 696 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 697 F->setLinkage(llvm::Function::ExternalWeakLinkage); 698 WeakRefReferences.insert(F); 699 } 700 701 return Aliasee; 702 } 703 704 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 705 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 706 707 // Weak references don't produce any output by themselves. 708 if (Global->hasAttr<WeakRefAttr>()) 709 return; 710 711 // If this is an alias definition (which otherwise looks like a declaration) 712 // emit it now. 713 if (Global->hasAttr<AliasAttr>()) 714 return EmitAliasDefinition(GD); 715 716 // Ignore declarations, they will be emitted on their first use. 717 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 718 if (FD->getIdentifier()) { 719 llvm::StringRef Name = FD->getName(); 720 if (Name == "_Block_object_assign") { 721 BlockObjectAssignDecl = FD; 722 } else if (Name == "_Block_object_dispose") { 723 BlockObjectDisposeDecl = FD; 724 } 725 } 726 727 // Forward declarations are emitted lazily on first use. 728 if (!FD->isThisDeclarationADefinition()) 729 return; 730 } else { 731 const VarDecl *VD = cast<VarDecl>(Global); 732 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 733 734 if (VD->getIdentifier()) { 735 llvm::StringRef Name = VD->getName(); 736 if (Name == "_NSConcreteGlobalBlock") { 737 NSConcreteGlobalBlockDecl = VD; 738 } else if (Name == "_NSConcreteStackBlock") { 739 NSConcreteStackBlockDecl = VD; 740 } 741 } 742 743 744 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 745 return; 746 } 747 748 // Defer code generation when possible if this is a static definition, inline 749 // function etc. These we only want to emit if they are used. 750 if (!MayDeferGeneration(Global)) { 751 // Emit the definition if it can't be deferred. 752 EmitGlobalDefinition(GD); 753 return; 754 } 755 756 // If we're deferring emission of a C++ variable with an 757 // initializer, remember the order in which it appeared in the file. 758 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 759 cast<VarDecl>(Global)->hasInit()) { 760 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 761 CXXGlobalInits.push_back(0); 762 } 763 764 // If the value has already been used, add it directly to the 765 // DeferredDeclsToEmit list. 766 llvm::StringRef MangledName = getMangledName(GD); 767 if (GetGlobalValue(MangledName)) 768 DeferredDeclsToEmit.push_back(GD); 769 else { 770 // Otherwise, remember that we saw a deferred decl with this name. The 771 // first use of the mangled name will cause it to move into 772 // DeferredDeclsToEmit. 773 DeferredDecls[MangledName] = GD; 774 } 775 } 776 777 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 778 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 779 780 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 781 Context.getSourceManager(), 782 "Generating code for declaration"); 783 784 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 785 // At -O0, don't generate IR for functions with available_externally 786 // linkage. 787 if (CodeGenOpts.OptimizationLevel == 0 && 788 !Function->hasAttr<AlwaysInlineAttr>() && 789 getFunctionLinkage(Function) 790 == llvm::Function::AvailableExternallyLinkage) 791 return; 792 793 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 794 if (Method->isVirtual()) 795 getVTables().EmitThunks(GD); 796 797 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 798 return EmitCXXConstructor(CD, GD.getCtorType()); 799 800 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 801 return EmitCXXDestructor(DD, GD.getDtorType()); 802 } 803 804 return EmitGlobalFunctionDefinition(GD); 805 } 806 807 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 808 return EmitGlobalVarDefinition(VD); 809 810 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 811 } 812 813 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 814 /// module, create and return an llvm Function with the specified type. If there 815 /// is something in the module with the specified name, return it potentially 816 /// bitcasted to the right type. 817 /// 818 /// If D is non-null, it specifies a decl that correspond to this. This is used 819 /// to set the attributes on the function when it is first created. 820 llvm::Constant * 821 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 822 const llvm::Type *Ty, 823 GlobalDecl D) { 824 // Lookup the entry, lazily creating it if necessary. 825 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 826 if (Entry) { 827 if (WeakRefReferences.count(Entry)) { 828 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 829 if (FD && !FD->hasAttr<WeakAttr>()) 830 Entry->setLinkage(llvm::Function::ExternalLinkage); 831 832 WeakRefReferences.erase(Entry); 833 } 834 835 if (Entry->getType()->getElementType() == Ty) 836 return Entry; 837 838 // Make sure the result is of the correct type. 839 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 840 return llvm::ConstantExpr::getBitCast(Entry, PTy); 841 } 842 843 // This function doesn't have a complete type (for example, the return 844 // type is an incomplete struct). Use a fake type instead, and make 845 // sure not to try to set attributes. 846 bool IsIncompleteFunction = false; 847 848 const llvm::FunctionType *FTy; 849 if (isa<llvm::FunctionType>(Ty)) { 850 FTy = cast<llvm::FunctionType>(Ty); 851 } else { 852 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 853 std::vector<const llvm::Type*>(), false); 854 IsIncompleteFunction = true; 855 } 856 857 llvm::Function *F = llvm::Function::Create(FTy, 858 llvm::Function::ExternalLinkage, 859 MangledName, &getModule()); 860 assert(F->getName() == MangledName && "name was uniqued!"); 861 if (D.getDecl()) 862 SetFunctionAttributes(D, F, IsIncompleteFunction); 863 864 // This is the first use or definition of a mangled name. If there is a 865 // deferred decl with this name, remember that we need to emit it at the end 866 // of the file. 867 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 868 if (DDI != DeferredDecls.end()) { 869 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 870 // list, and remove it from DeferredDecls (since we don't need it anymore). 871 DeferredDeclsToEmit.push_back(DDI->second); 872 DeferredDecls.erase(DDI); 873 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 874 // If this the first reference to a C++ inline function in a class, queue up 875 // the deferred function body for emission. These are not seen as 876 // top-level declarations. 877 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 878 DeferredDeclsToEmit.push_back(D); 879 // A called constructor which has no definition or declaration need be 880 // synthesized. 881 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 882 if (CD->isImplicit()) { 883 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 884 DeferredDeclsToEmit.push_back(D); 885 } 886 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 887 if (DD->isImplicit()) { 888 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 889 DeferredDeclsToEmit.push_back(D); 890 } 891 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 892 if (MD->isImplicit() && MD->isCopyAssignmentOperator()) { 893 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 894 DeferredDeclsToEmit.push_back(D); 895 } 896 } 897 } 898 899 // Make sure the result is of the requested type. 900 if (!IsIncompleteFunction) { 901 assert(F->getType()->getElementType() == Ty); 902 return F; 903 } 904 905 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 906 return llvm::ConstantExpr::getBitCast(F, PTy); 907 } 908 909 /// GetAddrOfFunction - Return the address of the given function. If Ty is 910 /// non-null, then this function will use the specified type if it has to 911 /// create it (this occurs when we see a definition of the function). 912 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 913 const llvm::Type *Ty) { 914 // If there was no specific requested type, just convert it now. 915 if (!Ty) 916 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 917 918 llvm::StringRef MangledName = getMangledName(GD); 919 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 920 } 921 922 /// CreateRuntimeFunction - Create a new runtime function with the specified 923 /// type and name. 924 llvm::Constant * 925 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 926 llvm::StringRef Name) { 927 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 928 } 929 930 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 931 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 932 return false; 933 if (Context.getLangOptions().CPlusPlus && 934 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 935 // FIXME: We should do something fancier here! 936 return false; 937 } 938 return true; 939 } 940 941 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 942 /// create and return an llvm GlobalVariable with the specified type. If there 943 /// is something in the module with the specified name, return it potentially 944 /// bitcasted to the right type. 945 /// 946 /// If D is non-null, it specifies a decl that correspond to this. This is used 947 /// to set the attributes on the global when it is first created. 948 llvm::Constant * 949 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 950 const llvm::PointerType *Ty, 951 const VarDecl *D) { 952 // Lookup the entry, lazily creating it if necessary. 953 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 954 if (Entry) { 955 if (WeakRefReferences.count(Entry)) { 956 if (D && !D->hasAttr<WeakAttr>()) 957 Entry->setLinkage(llvm::Function::ExternalLinkage); 958 959 WeakRefReferences.erase(Entry); 960 } 961 962 if (Entry->getType() == Ty) 963 return Entry; 964 965 // Make sure the result is of the correct type. 966 return llvm::ConstantExpr::getBitCast(Entry, Ty); 967 } 968 969 // This is the first use or definition of a mangled name. If there is a 970 // deferred decl with this name, remember that we need to emit it at the end 971 // of the file. 972 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 973 if (DDI != DeferredDecls.end()) { 974 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 975 // list, and remove it from DeferredDecls (since we don't need it anymore). 976 DeferredDeclsToEmit.push_back(DDI->second); 977 DeferredDecls.erase(DDI); 978 } 979 980 llvm::GlobalVariable *GV = 981 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 982 llvm::GlobalValue::ExternalLinkage, 983 0, MangledName, 0, 984 false, Ty->getAddressSpace()); 985 986 // Handle things which are present even on external declarations. 987 if (D) { 988 // FIXME: This code is overly simple and should be merged with other global 989 // handling. 990 GV->setConstant(DeclIsConstantGlobal(Context, D)); 991 992 // FIXME: Merge with other attribute handling code. 993 if (D->getStorageClass() == SC_PrivateExtern) 994 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 995 996 if (D->hasAttr<DLLImportAttr>()) 997 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 998 else if (D->hasAttr<WeakAttr>() || 999 D->hasAttr<WeakImportAttr>()) 1000 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1001 1002 GV->setThreadLocal(D->isThreadSpecified()); 1003 } 1004 1005 return GV; 1006 } 1007 1008 1009 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1010 /// given global variable. If Ty is non-null and if the global doesn't exist, 1011 /// then it will be greated with the specified type instead of whatever the 1012 /// normal requested type would be. 1013 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1014 const llvm::Type *Ty) { 1015 assert(D->hasGlobalStorage() && "Not a global variable"); 1016 QualType ASTTy = D->getType(); 1017 if (Ty == 0) 1018 Ty = getTypes().ConvertTypeForMem(ASTTy); 1019 1020 const llvm::PointerType *PTy = 1021 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1022 1023 llvm::StringRef MangledName = getMangledName(D); 1024 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1025 } 1026 1027 /// CreateRuntimeVariable - Create a new runtime global variable with the 1028 /// specified type and name. 1029 llvm::Constant * 1030 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1031 llvm::StringRef Name) { 1032 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1033 } 1034 1035 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1036 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1037 1038 if (MayDeferGeneration(D)) { 1039 // If we have not seen a reference to this variable yet, place it 1040 // into the deferred declarations table to be emitted if needed 1041 // later. 1042 llvm::StringRef MangledName = getMangledName(D); 1043 if (!GetGlobalValue(MangledName)) { 1044 DeferredDecls[MangledName] = D; 1045 return; 1046 } 1047 } 1048 1049 // The tentative definition is the only definition. 1050 EmitGlobalVarDefinition(D); 1051 } 1052 1053 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1054 if (DefinitionRequired) 1055 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1056 } 1057 1058 llvm::GlobalVariable::LinkageTypes 1059 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1060 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1061 return llvm::GlobalVariable::InternalLinkage; 1062 1063 if (const CXXMethodDecl *KeyFunction 1064 = RD->getASTContext().getKeyFunction(RD)) { 1065 // If this class has a key function, use that to determine the linkage of 1066 // the vtable. 1067 const FunctionDecl *Def = 0; 1068 if (KeyFunction->hasBody(Def)) 1069 KeyFunction = cast<CXXMethodDecl>(Def); 1070 1071 switch (KeyFunction->getTemplateSpecializationKind()) { 1072 case TSK_Undeclared: 1073 case TSK_ExplicitSpecialization: 1074 if (KeyFunction->isInlined()) 1075 return llvm::GlobalVariable::WeakODRLinkage; 1076 1077 return llvm::GlobalVariable::ExternalLinkage; 1078 1079 case TSK_ImplicitInstantiation: 1080 case TSK_ExplicitInstantiationDefinition: 1081 return llvm::GlobalVariable::WeakODRLinkage; 1082 1083 case TSK_ExplicitInstantiationDeclaration: 1084 // FIXME: Use available_externally linkage. However, this currently 1085 // breaks LLVM's build due to undefined symbols. 1086 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1087 return llvm::GlobalVariable::WeakODRLinkage; 1088 } 1089 } 1090 1091 switch (RD->getTemplateSpecializationKind()) { 1092 case TSK_Undeclared: 1093 case TSK_ExplicitSpecialization: 1094 case TSK_ImplicitInstantiation: 1095 case TSK_ExplicitInstantiationDefinition: 1096 return llvm::GlobalVariable::WeakODRLinkage; 1097 1098 case TSK_ExplicitInstantiationDeclaration: 1099 // FIXME: Use available_externally linkage. However, this currently 1100 // breaks LLVM's build due to undefined symbols. 1101 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1102 return llvm::GlobalVariable::WeakODRLinkage; 1103 } 1104 1105 // Silence GCC warning. 1106 return llvm::GlobalVariable::WeakODRLinkage; 1107 } 1108 1109 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1110 return CharUnits::fromQuantity( 1111 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1112 } 1113 1114 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1115 llvm::Constant *Init = 0; 1116 QualType ASTTy = D->getType(); 1117 bool NonConstInit = false; 1118 1119 const Expr *InitExpr = D->getAnyInitializer(); 1120 1121 if (!InitExpr) { 1122 // This is a tentative definition; tentative definitions are 1123 // implicitly initialized with { 0 }. 1124 // 1125 // Note that tentative definitions are only emitted at the end of 1126 // a translation unit, so they should never have incomplete 1127 // type. In addition, EmitTentativeDefinition makes sure that we 1128 // never attempt to emit a tentative definition if a real one 1129 // exists. A use may still exists, however, so we still may need 1130 // to do a RAUW. 1131 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1132 Init = EmitNullConstant(D->getType()); 1133 } else { 1134 Init = EmitConstantExpr(InitExpr, D->getType()); 1135 if (!Init) { 1136 QualType T = InitExpr->getType(); 1137 if (D->getType()->isReferenceType()) 1138 T = D->getType(); 1139 1140 if (getLangOptions().CPlusPlus) { 1141 EmitCXXGlobalVarDeclInitFunc(D); 1142 Init = EmitNullConstant(T); 1143 NonConstInit = true; 1144 } else { 1145 ErrorUnsupported(D, "static initializer"); 1146 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1147 } 1148 } else { 1149 // We don't need an initializer, so remove the entry for the delayed 1150 // initializer position (just in case this entry was delayed). 1151 if (getLangOptions().CPlusPlus) 1152 DelayedCXXInitPosition.erase(D); 1153 } 1154 } 1155 1156 const llvm::Type* InitType = Init->getType(); 1157 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1158 1159 // Strip off a bitcast if we got one back. 1160 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1161 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1162 // all zero index gep. 1163 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1164 Entry = CE->getOperand(0); 1165 } 1166 1167 // Entry is now either a Function or GlobalVariable. 1168 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1169 1170 // We have a definition after a declaration with the wrong type. 1171 // We must make a new GlobalVariable* and update everything that used OldGV 1172 // (a declaration or tentative definition) with the new GlobalVariable* 1173 // (which will be a definition). 1174 // 1175 // This happens if there is a prototype for a global (e.g. 1176 // "extern int x[];") and then a definition of a different type (e.g. 1177 // "int x[10];"). This also happens when an initializer has a different type 1178 // from the type of the global (this happens with unions). 1179 if (GV == 0 || 1180 GV->getType()->getElementType() != InitType || 1181 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1182 1183 // Move the old entry aside so that we'll create a new one. 1184 Entry->setName(llvm::StringRef()); 1185 1186 // Make a new global with the correct type, this is now guaranteed to work. 1187 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1188 1189 // Replace all uses of the old global with the new global 1190 llvm::Constant *NewPtrForOldDecl = 1191 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1192 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1193 1194 // Erase the old global, since it is no longer used. 1195 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1196 } 1197 1198 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1199 SourceManager &SM = Context.getSourceManager(); 1200 AddAnnotation(EmitAnnotateAttr(GV, AA, 1201 SM.getInstantiationLineNumber(D->getLocation()))); 1202 } 1203 1204 GV->setInitializer(Init); 1205 1206 // If it is safe to mark the global 'constant', do so now. 1207 GV->setConstant(false); 1208 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1209 GV->setConstant(true); 1210 1211 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1212 1213 // Set the llvm linkage type as appropriate. 1214 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1215 if (Linkage == GVA_Internal) 1216 GV->setLinkage(llvm::Function::InternalLinkage); 1217 else if (D->hasAttr<DLLImportAttr>()) 1218 GV->setLinkage(llvm::Function::DLLImportLinkage); 1219 else if (D->hasAttr<DLLExportAttr>()) 1220 GV->setLinkage(llvm::Function::DLLExportLinkage); 1221 else if (D->hasAttr<WeakAttr>()) { 1222 if (GV->isConstant()) 1223 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1224 else 1225 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1226 } else if (Linkage == GVA_TemplateInstantiation || 1227 Linkage == GVA_ExplicitTemplateInstantiation) 1228 // FIXME: It seems like we can provide more specific linkage here 1229 // (LinkOnceODR, WeakODR). 1230 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1231 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1232 !D->hasExternalStorage() && !D->getInit() && 1233 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1234 // Thread local vars aren't considered common linkage. 1235 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1236 // common vars aren't constant even if declared const. 1237 GV->setConstant(false); 1238 } else 1239 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1240 1241 SetCommonAttributes(D, GV); 1242 1243 // Emit global variable debug information. 1244 if (CGDebugInfo *DI = getDebugInfo()) { 1245 DI->setLocation(D->getLocation()); 1246 DI->EmitGlobalVariable(GV, D); 1247 } 1248 } 1249 1250 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1251 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1252 /// existing call uses of the old function in the module, this adjusts them to 1253 /// call the new function directly. 1254 /// 1255 /// This is not just a cleanup: the always_inline pass requires direct calls to 1256 /// functions to be able to inline them. If there is a bitcast in the way, it 1257 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1258 /// run at -O0. 1259 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1260 llvm::Function *NewFn) { 1261 // If we're redefining a global as a function, don't transform it. 1262 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1263 if (OldFn == 0) return; 1264 1265 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1266 llvm::SmallVector<llvm::Value*, 4> ArgList; 1267 1268 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1269 UI != E; ) { 1270 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1271 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1272 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1273 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1274 llvm::CallSite CS(CI); 1275 if (!CI || !CS.isCallee(I)) continue; 1276 1277 // If the return types don't match exactly, and if the call isn't dead, then 1278 // we can't transform this call. 1279 if (CI->getType() != NewRetTy && !CI->use_empty()) 1280 continue; 1281 1282 // If the function was passed too few arguments, don't transform. If extra 1283 // arguments were passed, we silently drop them. If any of the types 1284 // mismatch, we don't transform. 1285 unsigned ArgNo = 0; 1286 bool DontTransform = false; 1287 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1288 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1289 if (CS.arg_size() == ArgNo || 1290 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1291 DontTransform = true; 1292 break; 1293 } 1294 } 1295 if (DontTransform) 1296 continue; 1297 1298 // Okay, we can transform this. Create the new call instruction and copy 1299 // over the required information. 1300 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1301 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1302 ArgList.end(), "", CI); 1303 ArgList.clear(); 1304 if (!NewCall->getType()->isVoidTy()) 1305 NewCall->takeName(CI); 1306 NewCall->setAttributes(CI->getAttributes()); 1307 NewCall->setCallingConv(CI->getCallingConv()); 1308 1309 // Finally, remove the old call, replacing any uses with the new one. 1310 if (!CI->use_empty()) 1311 CI->replaceAllUsesWith(NewCall); 1312 1313 // Copy debug location attached to CI. 1314 if (!CI->getDebugLoc().isUnknown()) 1315 NewCall->setDebugLoc(CI->getDebugLoc()); 1316 CI->eraseFromParent(); 1317 } 1318 } 1319 1320 1321 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1322 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1323 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1324 getCXXABI().getMangleContext().mangleInitDiscriminator(); 1325 // Get or create the prototype for the function. 1326 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1327 1328 // Strip off a bitcast if we got one back. 1329 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1330 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1331 Entry = CE->getOperand(0); 1332 } 1333 1334 1335 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1336 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1337 1338 // If the types mismatch then we have to rewrite the definition. 1339 assert(OldFn->isDeclaration() && 1340 "Shouldn't replace non-declaration"); 1341 1342 // F is the Function* for the one with the wrong type, we must make a new 1343 // Function* and update everything that used F (a declaration) with the new 1344 // Function* (which will be a definition). 1345 // 1346 // This happens if there is a prototype for a function 1347 // (e.g. "int f()") and then a definition of a different type 1348 // (e.g. "int f(int x)"). Move the old function aside so that it 1349 // doesn't interfere with GetAddrOfFunction. 1350 OldFn->setName(llvm::StringRef()); 1351 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1352 1353 // If this is an implementation of a function without a prototype, try to 1354 // replace any existing uses of the function (which may be calls) with uses 1355 // of the new function 1356 if (D->getType()->isFunctionNoProtoType()) { 1357 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1358 OldFn->removeDeadConstantUsers(); 1359 } 1360 1361 // Replace uses of F with the Function we will endow with a body. 1362 if (!Entry->use_empty()) { 1363 llvm::Constant *NewPtrForOldDecl = 1364 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1365 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1366 } 1367 1368 // Ok, delete the old function now, which is dead. 1369 OldFn->eraseFromParent(); 1370 1371 Entry = NewFn; 1372 } 1373 1374 llvm::Function *Fn = cast<llvm::Function>(Entry); 1375 setFunctionLinkage(D, Fn); 1376 1377 CodeGenFunction(*this).GenerateCode(D, Fn); 1378 1379 SetFunctionDefinitionAttributes(D, Fn); 1380 SetLLVMFunctionAttributesForDefinition(D, Fn); 1381 1382 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1383 AddGlobalCtor(Fn, CA->getPriority()); 1384 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1385 AddGlobalDtor(Fn, DA->getPriority()); 1386 } 1387 1388 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1389 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1390 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1391 assert(AA && "Not an alias?"); 1392 1393 llvm::StringRef MangledName = getMangledName(GD); 1394 1395 // If there is a definition in the module, then it wins over the alias. 1396 // This is dubious, but allow it to be safe. Just ignore the alias. 1397 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1398 if (Entry && !Entry->isDeclaration()) 1399 return; 1400 1401 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1402 1403 // Create a reference to the named value. This ensures that it is emitted 1404 // if a deferred decl. 1405 llvm::Constant *Aliasee; 1406 if (isa<llvm::FunctionType>(DeclTy)) 1407 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1408 else 1409 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1410 llvm::PointerType::getUnqual(DeclTy), 0); 1411 1412 // Create the new alias itself, but don't set a name yet. 1413 llvm::GlobalValue *GA = 1414 new llvm::GlobalAlias(Aliasee->getType(), 1415 llvm::Function::ExternalLinkage, 1416 "", Aliasee, &getModule()); 1417 1418 if (Entry) { 1419 assert(Entry->isDeclaration()); 1420 1421 // If there is a declaration in the module, then we had an extern followed 1422 // by the alias, as in: 1423 // extern int test6(); 1424 // ... 1425 // int test6() __attribute__((alias("test7"))); 1426 // 1427 // Remove it and replace uses of it with the alias. 1428 GA->takeName(Entry); 1429 1430 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1431 Entry->getType())); 1432 Entry->eraseFromParent(); 1433 } else { 1434 GA->setName(MangledName); 1435 } 1436 1437 // Set attributes which are particular to an alias; this is a 1438 // specialization of the attributes which may be set on a global 1439 // variable/function. 1440 if (D->hasAttr<DLLExportAttr>()) { 1441 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1442 // The dllexport attribute is ignored for undefined symbols. 1443 if (FD->hasBody()) 1444 GA->setLinkage(llvm::Function::DLLExportLinkage); 1445 } else { 1446 GA->setLinkage(llvm::Function::DLLExportLinkage); 1447 } 1448 } else if (D->hasAttr<WeakAttr>() || 1449 D->hasAttr<WeakRefAttr>() || 1450 D->hasAttr<WeakImportAttr>()) { 1451 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1452 } 1453 1454 SetCommonAttributes(D, GA); 1455 } 1456 1457 /// getBuiltinLibFunction - Given a builtin id for a function like 1458 /// "__builtin_fabsf", return a Function* for "fabsf". 1459 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1460 unsigned BuiltinID) { 1461 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1462 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1463 "isn't a lib fn"); 1464 1465 // Get the name, skip over the __builtin_ prefix (if necessary). 1466 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1467 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1468 Name += 10; 1469 1470 const llvm::FunctionType *Ty = 1471 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1472 1473 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1474 } 1475 1476 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1477 unsigned NumTys) { 1478 return llvm::Intrinsic::getDeclaration(&getModule(), 1479 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1480 } 1481 1482 1483 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1484 const llvm::Type *SrcType, 1485 const llvm::Type *SizeType) { 1486 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1487 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1488 } 1489 1490 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1491 const llvm::Type *SrcType, 1492 const llvm::Type *SizeType) { 1493 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1494 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1495 } 1496 1497 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1498 const llvm::Type *SizeType) { 1499 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1500 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1501 } 1502 1503 static llvm::StringMapEntry<llvm::Constant*> & 1504 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1505 const StringLiteral *Literal, 1506 bool TargetIsLSB, 1507 bool &IsUTF16, 1508 unsigned &StringLength) { 1509 llvm::StringRef String = Literal->getString(); 1510 unsigned NumBytes = String.size(); 1511 1512 // Check for simple case. 1513 if (!Literal->containsNonAsciiOrNull()) { 1514 StringLength = NumBytes; 1515 return Map.GetOrCreateValue(String); 1516 } 1517 1518 // Otherwise, convert the UTF8 literals into a byte string. 1519 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1520 const UTF8 *FromPtr = (UTF8 *)String.data(); 1521 UTF16 *ToPtr = &ToBuf[0]; 1522 1523 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1524 &ToPtr, ToPtr + NumBytes, 1525 strictConversion); 1526 1527 // ConvertUTF8toUTF16 returns the length in ToPtr. 1528 StringLength = ToPtr - &ToBuf[0]; 1529 1530 // Render the UTF-16 string into a byte array and convert to the target byte 1531 // order. 1532 // 1533 // FIXME: This isn't something we should need to do here. 1534 llvm::SmallString<128> AsBytes; 1535 AsBytes.reserve(StringLength * 2); 1536 for (unsigned i = 0; i != StringLength; ++i) { 1537 unsigned short Val = ToBuf[i]; 1538 if (TargetIsLSB) { 1539 AsBytes.push_back(Val & 0xFF); 1540 AsBytes.push_back(Val >> 8); 1541 } else { 1542 AsBytes.push_back(Val >> 8); 1543 AsBytes.push_back(Val & 0xFF); 1544 } 1545 } 1546 // Append one extra null character, the second is automatically added by our 1547 // caller. 1548 AsBytes.push_back(0); 1549 1550 IsUTF16 = true; 1551 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1552 } 1553 1554 llvm::Constant * 1555 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1556 unsigned StringLength = 0; 1557 bool isUTF16 = false; 1558 llvm::StringMapEntry<llvm::Constant*> &Entry = 1559 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1560 getTargetData().isLittleEndian(), 1561 isUTF16, StringLength); 1562 1563 if (llvm::Constant *C = Entry.getValue()) 1564 return C; 1565 1566 llvm::Constant *Zero = 1567 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1568 llvm::Constant *Zeros[] = { Zero, Zero }; 1569 1570 // If we don't already have it, get __CFConstantStringClassReference. 1571 if (!CFConstantStringClassRef) { 1572 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1573 Ty = llvm::ArrayType::get(Ty, 0); 1574 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1575 "__CFConstantStringClassReference"); 1576 // Decay array -> ptr 1577 CFConstantStringClassRef = 1578 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1579 } 1580 1581 QualType CFTy = getContext().getCFConstantStringType(); 1582 1583 const llvm::StructType *STy = 1584 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1585 1586 std::vector<llvm::Constant*> Fields(4); 1587 1588 // Class pointer. 1589 Fields[0] = CFConstantStringClassRef; 1590 1591 // Flags. 1592 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1593 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1594 llvm::ConstantInt::get(Ty, 0x07C8); 1595 1596 // String pointer. 1597 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1598 1599 llvm::GlobalValue::LinkageTypes Linkage; 1600 bool isConstant; 1601 if (isUTF16) { 1602 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1603 Linkage = llvm::GlobalValue::InternalLinkage; 1604 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1605 // does make plain ascii ones writable. 1606 isConstant = true; 1607 } else { 1608 Linkage = llvm::GlobalValue::PrivateLinkage; 1609 isConstant = !Features.WritableStrings; 1610 } 1611 1612 llvm::GlobalVariable *GV = 1613 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1614 ".str"); 1615 if (isUTF16) { 1616 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1617 GV->setAlignment(Align.getQuantity()); 1618 } 1619 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1620 1621 // String length. 1622 Ty = getTypes().ConvertType(getContext().LongTy); 1623 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1624 1625 // The struct. 1626 C = llvm::ConstantStruct::get(STy, Fields); 1627 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1628 llvm::GlobalVariable::PrivateLinkage, C, 1629 "_unnamed_cfstring_"); 1630 if (const char *Sect = getContext().Target.getCFStringSection()) 1631 GV->setSection(Sect); 1632 Entry.setValue(GV); 1633 1634 return GV; 1635 } 1636 1637 llvm::Constant * 1638 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1639 unsigned StringLength = 0; 1640 bool isUTF16 = false; 1641 llvm::StringMapEntry<llvm::Constant*> &Entry = 1642 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1643 getTargetData().isLittleEndian(), 1644 isUTF16, StringLength); 1645 1646 if (llvm::Constant *C = Entry.getValue()) 1647 return C; 1648 1649 llvm::Constant *Zero = 1650 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1651 llvm::Constant *Zeros[] = { Zero, Zero }; 1652 1653 // If we don't already have it, get _NSConstantStringClassReference. 1654 if (!ConstantStringClassRef) { 1655 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1656 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1657 Ty = llvm::ArrayType::get(Ty, 0); 1658 llvm::Constant *GV; 1659 if (StringClass.empty()) 1660 GV = CreateRuntimeVariable(Ty, 1661 Features.ObjCNonFragileABI ? 1662 "OBJC_CLASS_$_NSConstantString" : 1663 "_NSConstantStringClassReference"); 1664 else { 1665 std::string str; 1666 if (Features.ObjCNonFragileABI) 1667 str = "OBJC_CLASS_$_" + StringClass; 1668 else 1669 str = "_" + StringClass + "ClassReference"; 1670 GV = CreateRuntimeVariable(Ty, str); 1671 } 1672 // Decay array -> ptr 1673 ConstantStringClassRef = 1674 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1675 } 1676 1677 QualType NSTy = getContext().getNSConstantStringType(); 1678 1679 const llvm::StructType *STy = 1680 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1681 1682 std::vector<llvm::Constant*> Fields(3); 1683 1684 // Class pointer. 1685 Fields[0] = ConstantStringClassRef; 1686 1687 // String pointer. 1688 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1689 1690 llvm::GlobalValue::LinkageTypes Linkage; 1691 bool isConstant; 1692 if (isUTF16) { 1693 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1694 Linkage = llvm::GlobalValue::InternalLinkage; 1695 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1696 // does make plain ascii ones writable. 1697 isConstant = true; 1698 } else { 1699 Linkage = llvm::GlobalValue::PrivateLinkage; 1700 isConstant = !Features.WritableStrings; 1701 } 1702 1703 llvm::GlobalVariable *GV = 1704 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1705 ".str"); 1706 if (isUTF16) { 1707 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1708 GV->setAlignment(Align.getQuantity()); 1709 } 1710 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1711 1712 // String length. 1713 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1714 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1715 1716 // The struct. 1717 C = llvm::ConstantStruct::get(STy, Fields); 1718 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1719 llvm::GlobalVariable::PrivateLinkage, C, 1720 "_unnamed_nsstring_"); 1721 // FIXME. Fix section. 1722 if (const char *Sect = 1723 Features.ObjCNonFragileABI 1724 ? getContext().Target.getNSStringNonFragileABISection() 1725 : getContext().Target.getNSStringSection()) 1726 GV->setSection(Sect); 1727 Entry.setValue(GV); 1728 1729 return GV; 1730 } 1731 1732 /// GetStringForStringLiteral - Return the appropriate bytes for a 1733 /// string literal, properly padded to match the literal type. 1734 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1735 const ConstantArrayType *CAT = 1736 getContext().getAsConstantArrayType(E->getType()); 1737 assert(CAT && "String isn't pointer or array!"); 1738 1739 // Resize the string to the right size. 1740 uint64_t RealLen = CAT->getSize().getZExtValue(); 1741 1742 if (E->isWide()) 1743 RealLen *= getContext().Target.getWCharWidth()/8; 1744 1745 std::string Str = E->getString().str(); 1746 Str.resize(RealLen, '\0'); 1747 1748 return Str; 1749 } 1750 1751 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1752 /// constant array for the given string literal. 1753 llvm::Constant * 1754 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1755 // FIXME: This can be more efficient. 1756 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1757 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1758 if (S->isWide()) { 1759 llvm::Type *DestTy = 1760 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1761 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1762 } 1763 return C; 1764 } 1765 1766 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1767 /// array for the given ObjCEncodeExpr node. 1768 llvm::Constant * 1769 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1770 std::string Str; 1771 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1772 1773 return GetAddrOfConstantCString(Str); 1774 } 1775 1776 1777 /// GenerateWritableString -- Creates storage for a string literal. 1778 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1779 bool constant, 1780 CodeGenModule &CGM, 1781 const char *GlobalName) { 1782 // Create Constant for this string literal. Don't add a '\0'. 1783 llvm::Constant *C = 1784 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1785 1786 // Create a global variable for this string 1787 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1788 llvm::GlobalValue::PrivateLinkage, 1789 C, GlobalName); 1790 } 1791 1792 /// GetAddrOfConstantString - Returns a pointer to a character array 1793 /// containing the literal. This contents are exactly that of the 1794 /// given string, i.e. it will not be null terminated automatically; 1795 /// see GetAddrOfConstantCString. Note that whether the result is 1796 /// actually a pointer to an LLVM constant depends on 1797 /// Feature.WriteableStrings. 1798 /// 1799 /// The result has pointer to array type. 1800 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1801 const char *GlobalName) { 1802 bool IsConstant = !Features.WritableStrings; 1803 1804 // Get the default prefix if a name wasn't specified. 1805 if (!GlobalName) 1806 GlobalName = ".str"; 1807 1808 // Don't share any string literals if strings aren't constant. 1809 if (!IsConstant) 1810 return GenerateStringLiteral(str, false, *this, GlobalName); 1811 1812 llvm::StringMapEntry<llvm::Constant *> &Entry = 1813 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1814 1815 if (Entry.getValue()) 1816 return Entry.getValue(); 1817 1818 // Create a global variable for this. 1819 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1820 Entry.setValue(C); 1821 return C; 1822 } 1823 1824 /// GetAddrOfConstantCString - Returns a pointer to a character 1825 /// array containing the literal and a terminating '\-' 1826 /// character. The result has pointer to array type. 1827 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1828 const char *GlobalName){ 1829 return GetAddrOfConstantString(str + '\0', GlobalName); 1830 } 1831 1832 /// EmitObjCPropertyImplementations - Emit information for synthesized 1833 /// properties for an implementation. 1834 void CodeGenModule::EmitObjCPropertyImplementations(const 1835 ObjCImplementationDecl *D) { 1836 for (ObjCImplementationDecl::propimpl_iterator 1837 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1838 ObjCPropertyImplDecl *PID = *i; 1839 1840 // Dynamic is just for type-checking. 1841 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1842 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1843 1844 // Determine which methods need to be implemented, some may have 1845 // been overridden. Note that ::isSynthesized is not the method 1846 // we want, that just indicates if the decl came from a 1847 // property. What we want to know is if the method is defined in 1848 // this implementation. 1849 if (!D->getInstanceMethod(PD->getGetterName())) 1850 CodeGenFunction(*this).GenerateObjCGetter( 1851 const_cast<ObjCImplementationDecl *>(D), PID); 1852 if (!PD->isReadOnly() && 1853 !D->getInstanceMethod(PD->getSetterName())) 1854 CodeGenFunction(*this).GenerateObjCSetter( 1855 const_cast<ObjCImplementationDecl *>(D), PID); 1856 } 1857 } 1858 } 1859 1860 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1861 /// for an implementation. 1862 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1863 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1864 return; 1865 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1866 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1867 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1868 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1869 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1870 D->getLocation(), 1871 D->getLocation(), cxxSelector, 1872 getContext().VoidTy, 0, 1873 DC, true, false, true, false, 1874 ObjCMethodDecl::Required); 1875 D->addInstanceMethod(DTORMethod); 1876 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1877 1878 II = &getContext().Idents.get(".cxx_construct"); 1879 cxxSelector = getContext().Selectors.getSelector(0, &II); 1880 // The constructor returns 'self'. 1881 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1882 D->getLocation(), 1883 D->getLocation(), cxxSelector, 1884 getContext().getObjCIdType(), 0, 1885 DC, true, false, true, false, 1886 ObjCMethodDecl::Required); 1887 D->addInstanceMethod(CTORMethod); 1888 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1889 1890 1891 } 1892 1893 /// EmitNamespace - Emit all declarations in a namespace. 1894 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1895 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1896 I != E; ++I) 1897 EmitTopLevelDecl(*I); 1898 } 1899 1900 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1901 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1902 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1903 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1904 ErrorUnsupported(LSD, "linkage spec"); 1905 return; 1906 } 1907 1908 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1909 I != E; ++I) 1910 EmitTopLevelDecl(*I); 1911 } 1912 1913 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1914 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1915 // If an error has occurred, stop code generation, but continue 1916 // parsing and semantic analysis (to ensure all warnings and errors 1917 // are emitted). 1918 if (Diags.hasErrorOccurred()) 1919 return; 1920 1921 // Ignore dependent declarations. 1922 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1923 return; 1924 1925 switch (D->getKind()) { 1926 case Decl::CXXConversion: 1927 case Decl::CXXMethod: 1928 case Decl::Function: 1929 // Skip function templates 1930 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1931 return; 1932 1933 EmitGlobal(cast<FunctionDecl>(D)); 1934 break; 1935 1936 case Decl::Var: 1937 EmitGlobal(cast<VarDecl>(D)); 1938 break; 1939 1940 // C++ Decls 1941 case Decl::Namespace: 1942 EmitNamespace(cast<NamespaceDecl>(D)); 1943 break; 1944 // No code generation needed. 1945 case Decl::UsingShadow: 1946 case Decl::Using: 1947 case Decl::UsingDirective: 1948 case Decl::ClassTemplate: 1949 case Decl::FunctionTemplate: 1950 case Decl::NamespaceAlias: 1951 break; 1952 case Decl::CXXConstructor: 1953 // Skip function templates 1954 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1955 return; 1956 1957 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1958 break; 1959 case Decl::CXXDestructor: 1960 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1961 break; 1962 1963 case Decl::StaticAssert: 1964 // Nothing to do. 1965 break; 1966 1967 // Objective-C Decls 1968 1969 // Forward declarations, no (immediate) code generation. 1970 case Decl::ObjCClass: 1971 case Decl::ObjCForwardProtocol: 1972 case Decl::ObjCInterface: 1973 break; 1974 1975 case Decl::ObjCCategory: { 1976 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 1977 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 1978 Context.ResetObjCLayout(CD->getClassInterface()); 1979 break; 1980 } 1981 1982 1983 case Decl::ObjCProtocol: 1984 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1985 break; 1986 1987 case Decl::ObjCCategoryImpl: 1988 // Categories have properties but don't support synthesize so we 1989 // can ignore them here. 1990 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1991 break; 1992 1993 case Decl::ObjCImplementation: { 1994 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1995 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 1996 Context.ResetObjCLayout(OMD->getClassInterface()); 1997 EmitObjCPropertyImplementations(OMD); 1998 EmitObjCIvarInitializations(OMD); 1999 Runtime->GenerateClass(OMD); 2000 break; 2001 } 2002 case Decl::ObjCMethod: { 2003 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2004 // If this is not a prototype, emit the body. 2005 if (OMD->getBody()) 2006 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2007 break; 2008 } 2009 case Decl::ObjCCompatibleAlias: 2010 // compatibility-alias is a directive and has no code gen. 2011 break; 2012 2013 case Decl::LinkageSpec: 2014 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2015 break; 2016 2017 case Decl::FileScopeAsm: { 2018 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2019 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2020 2021 const std::string &S = getModule().getModuleInlineAsm(); 2022 if (S.empty()) 2023 getModule().setModuleInlineAsm(AsmString); 2024 else 2025 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2026 break; 2027 } 2028 2029 default: 2030 // Make sure we handled everything we should, every other kind is a 2031 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2032 // function. Need to recode Decl::Kind to do that easily. 2033 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2034 } 2035 } 2036 2037 /// Turns the given pointer into a constant. 2038 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2039 const void *Ptr) { 2040 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2041 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2042 return llvm::ConstantInt::get(i64, PtrInt); 2043 } 2044 2045 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2046 llvm::NamedMDNode *&GlobalMetadata, 2047 GlobalDecl D, 2048 llvm::GlobalValue *Addr) { 2049 if (!GlobalMetadata) 2050 GlobalMetadata = 2051 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2052 2053 // TODO: should we report variant information for ctors/dtors? 2054 llvm::Value *Ops[] = { 2055 Addr, 2056 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2057 }; 2058 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2059 } 2060 2061 /// Emits metadata nodes associating all the global values in the 2062 /// current module with the Decls they came from. This is useful for 2063 /// projects using IR gen as a subroutine. 2064 /// 2065 /// Since there's currently no way to associate an MDNode directly 2066 /// with an llvm::GlobalValue, we create a global named metadata 2067 /// with the name 'clang.global.decl.ptrs'. 2068 void CodeGenModule::EmitDeclMetadata() { 2069 llvm::NamedMDNode *GlobalMetadata = 0; 2070 2071 // StaticLocalDeclMap 2072 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2073 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2074 I != E; ++I) { 2075 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2076 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2077 } 2078 } 2079 2080 /// Emits metadata nodes for all the local variables in the current 2081 /// function. 2082 void CodeGenFunction::EmitDeclMetadata() { 2083 if (LocalDeclMap.empty()) return; 2084 2085 llvm::LLVMContext &Context = getLLVMContext(); 2086 2087 // Find the unique metadata ID for this name. 2088 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2089 2090 llvm::NamedMDNode *GlobalMetadata = 0; 2091 2092 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2093 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2094 const Decl *D = I->first; 2095 llvm::Value *Addr = I->second; 2096 2097 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2098 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2099 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2100 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2101 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2102 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2103 } 2104 } 2105 } 2106 2107 ///@name Custom Runtime Function Interfaces 2108 ///@{ 2109 // 2110 // FIXME: These can be eliminated once we can have clients just get the required 2111 // AST nodes from the builtin tables. 2112 2113 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2114 if (BlockObjectDispose) 2115 return BlockObjectDispose; 2116 2117 // If we saw an explicit decl, use that. 2118 if (BlockObjectDisposeDecl) { 2119 return BlockObjectDispose = GetAddrOfFunction( 2120 BlockObjectDisposeDecl, 2121 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2122 } 2123 2124 // Otherwise construct the function by hand. 2125 const llvm::FunctionType *FTy; 2126 std::vector<const llvm::Type*> ArgTys; 2127 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2128 ArgTys.push_back(PtrToInt8Ty); 2129 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2130 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2131 return BlockObjectDispose = 2132 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2133 } 2134 2135 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2136 if (BlockObjectAssign) 2137 return BlockObjectAssign; 2138 2139 // If we saw an explicit decl, use that. 2140 if (BlockObjectAssignDecl) { 2141 return BlockObjectAssign = GetAddrOfFunction( 2142 BlockObjectAssignDecl, 2143 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2144 } 2145 2146 // Otherwise construct the function by hand. 2147 const llvm::FunctionType *FTy; 2148 std::vector<const llvm::Type*> ArgTys; 2149 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2150 ArgTys.push_back(PtrToInt8Ty); 2151 ArgTys.push_back(PtrToInt8Ty); 2152 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2153 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2154 return BlockObjectAssign = 2155 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2156 } 2157 2158 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2159 if (NSConcreteGlobalBlock) 2160 return NSConcreteGlobalBlock; 2161 2162 // If we saw an explicit decl, use that. 2163 if (NSConcreteGlobalBlockDecl) { 2164 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2165 NSConcreteGlobalBlockDecl, 2166 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2167 } 2168 2169 // Otherwise construct the variable by hand. 2170 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2171 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2172 } 2173 2174 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2175 if (NSConcreteStackBlock) 2176 return NSConcreteStackBlock; 2177 2178 // If we saw an explicit decl, use that. 2179 if (NSConcreteStackBlockDecl) { 2180 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2181 NSConcreteStackBlockDecl, 2182 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2183 } 2184 2185 // Otherwise construct the variable by hand. 2186 return NSConcreteStackBlock = CreateRuntimeVariable( 2187 PtrToInt8Ty, "_NSConcreteStackBlock"); 2188 } 2189 2190 ///@} 2191