xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 502f65ae54d0fd7272e64988c162af8d1958f35c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenPGO.h"
23 #include "CodeGenTBAA.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/CharInfo.h"
35 #include "clang/Basic/Diagnostic.h"
36 #include "clang/Basic/Module.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Version.h"
40 #include "clang/Frontend/CodeGenOptions.h"
41 #include "clang/Sema/SemaDiagnostic.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/CallingConv.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/ProfileData/InstrProfReader.h"
51 #include "llvm/Support/ConvertUTF.h"
52 #include "llvm/Support/ErrorHandling.h"
53 
54 using namespace clang;
55 using namespace CodeGen;
56 
57 static const char AnnotationSection[] = "llvm.metadata";
58 
59 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
60   switch (CGM.getTarget().getCXXABI().getKind()) {
61   case TargetCXXABI::GenericAArch64:
62   case TargetCXXABI::GenericARM:
63   case TargetCXXABI::iOS:
64   case TargetCXXABI::iOS64:
65   case TargetCXXABI::GenericItanium:
66     return CreateItaniumCXXABI(CGM);
67   case TargetCXXABI::Microsoft:
68     return CreateMicrosoftCXXABI(CGM);
69   }
70 
71   llvm_unreachable("invalid C++ ABI kind");
72 }
73 
74 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
75                              llvm::Module &M, const llvm::DataLayout &TD,
76                              DiagnosticsEngine &diags)
77     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
78       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
79       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
80       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
81       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
82       NoObjCARCExceptionsMetadata(0), RRData(0), PGOReader(nullptr),
83       CFConstantStringClassRef(0),
84       ConstantStringClassRef(0), NSConstantStringType(0),
85       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
86       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
87       LifetimeStartFn(0), LifetimeEndFn(0),
88       SanitizerBlacklist(
89           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
90       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
91                                           : LangOpts.Sanitize) {
92 
93   // Initialize the type cache.
94   llvm::LLVMContext &LLVMContext = M.getContext();
95   VoidTy = llvm::Type::getVoidTy(LLVMContext);
96   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100   FloatTy = llvm::Type::getFloatTy(LLVMContext);
101   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103   PointerAlignInBytes =
104   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
106   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
107   Int8PtrTy = Int8Ty->getPointerTo(0);
108   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
109 
110   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
111 
112   if (LangOpts.ObjC1)
113     createObjCRuntime();
114   if (LangOpts.OpenCL)
115     createOpenCLRuntime();
116   if (LangOpts.CUDA)
117     createCUDARuntime();
118 
119   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
120   if (SanOpts.Thread ||
121       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
122     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
123                            getCXXABI().getMangleContext());
124 
125   // If debug info or coverage generation is enabled, create the CGDebugInfo
126   // object.
127   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
128       CodeGenOpts.EmitGcovArcs ||
129       CodeGenOpts.EmitGcovNotes)
130     DebugInfo = new CGDebugInfo(*this);
131 
132   Block.GlobalUniqueCount = 0;
133 
134   if (C.getLangOpts().ObjCAutoRefCount)
135     ARCData = new ARCEntrypoints();
136   RRData = new RREntrypoints();
137 
138   if (!CodeGenOpts.InstrProfileInput.empty()) {
139     if (llvm::error_code EC = llvm::IndexedInstrProfReader::create(
140             CodeGenOpts.InstrProfileInput, PGOReader)) {
141       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
142                                               "Could not read profile: %0");
143       getDiags().Report(DiagID) << EC.message();
144     }
145   }
146 }
147 
148 CodeGenModule::~CodeGenModule() {
149   delete ObjCRuntime;
150   delete OpenCLRuntime;
151   delete CUDARuntime;
152   delete TheTargetCodeGenInfo;
153   delete TBAA;
154   delete DebugInfo;
155   delete ARCData;
156   delete RRData;
157 }
158 
159 void CodeGenModule::createObjCRuntime() {
160   // This is just isGNUFamily(), but we want to force implementors of
161   // new ABIs to decide how best to do this.
162   switch (LangOpts.ObjCRuntime.getKind()) {
163   case ObjCRuntime::GNUstep:
164   case ObjCRuntime::GCC:
165   case ObjCRuntime::ObjFW:
166     ObjCRuntime = CreateGNUObjCRuntime(*this);
167     return;
168 
169   case ObjCRuntime::FragileMacOSX:
170   case ObjCRuntime::MacOSX:
171   case ObjCRuntime::iOS:
172     ObjCRuntime = CreateMacObjCRuntime(*this);
173     return;
174   }
175   llvm_unreachable("bad runtime kind");
176 }
177 
178 void CodeGenModule::createOpenCLRuntime() {
179   OpenCLRuntime = new CGOpenCLRuntime(*this);
180 }
181 
182 void CodeGenModule::createCUDARuntime() {
183   CUDARuntime = CreateNVCUDARuntime(*this);
184 }
185 
186 void CodeGenModule::applyReplacements() {
187   for (ReplacementsTy::iterator I = Replacements.begin(),
188                                 E = Replacements.end();
189        I != E; ++I) {
190     StringRef MangledName = I->first();
191     llvm::Constant *Replacement = I->second;
192     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
193     if (!Entry)
194       continue;
195     llvm::Function *OldF = cast<llvm::Function>(Entry);
196     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
197     if (!NewF) {
198       if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
199         NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal());
200       } else {
201         llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
202         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
203                CE->getOpcode() == llvm::Instruction::GetElementPtr);
204         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
205       }
206     }
207 
208     // Replace old with new, but keep the old order.
209     OldF->replaceAllUsesWith(Replacement);
210     if (NewF) {
211       NewF->removeFromParent();
212       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
213     }
214     OldF->eraseFromParent();
215   }
216 }
217 
218 void CodeGenModule::checkAliases() {
219   // Check if the constructed aliases are well formed. It is really unfortunate
220   // that we have to do this in CodeGen, but we only construct mangled names
221   // and aliases during codegen.
222   bool Error = false;
223   DiagnosticsEngine &Diags = getDiags();
224   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
225          E = Aliases.end(); I != E; ++I) {
226     const GlobalDecl &GD = *I;
227     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
228     const AliasAttr *AA = D->getAttr<AliasAttr>();
229     StringRef MangledName = getMangledName(GD);
230     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
232     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
233     if (!GV) {
234       Error = true;
235       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
236     } else if (GV->isDeclaration()) {
237       Error = true;
238       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
239     }
240 
241     llvm::Constant *Aliasee = Alias->getAliasee();
242     llvm::GlobalValue *AliaseeGV;
243     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) {
244       assert((CE->getOpcode() == llvm::Instruction::BitCast ||
245               CE->getOpcode() == llvm::Instruction::AddrSpaceCast) &&
246              "Unsupported aliasee");
247       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
248     } else {
249       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
250     }
251 
252     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
253       StringRef AliasSection = SA->getName();
254       if (AliasSection != AliaseeGV->getSection())
255         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
256             << AliasSection;
257     }
258 
259     // We have to handle alias to weak aliases in here. LLVM itself disallows
260     // this since the object semantics would not match the IL one. For
261     // compatibility with gcc we implement it by just pointing the alias
262     // to its aliasee's aliasee. We also warn, since the user is probably
263     // expecting the link to be weak.
264     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
265       if (GA->mayBeOverridden()) {
266         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
267           << GA->getAliasedGlobal()->getName() << GA->getName();
268         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
269             GA->getAliasee(), Alias->getType());
270         Alias->setAliasee(Aliasee);
271       }
272     }
273   }
274   if (!Error)
275     return;
276 
277   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
278          E = Aliases.end(); I != E; ++I) {
279     const GlobalDecl &GD = *I;
280     StringRef MangledName = getMangledName(GD);
281     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
282     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
283     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
284     Alias->eraseFromParent();
285   }
286 }
287 
288 void CodeGenModule::clear() {
289   DeferredDeclsToEmit.clear();
290 }
291 
292 void CodeGenModule::Release() {
293   EmitDeferred();
294   applyReplacements();
295   checkAliases();
296   EmitCXXGlobalInitFunc();
297   EmitCXXGlobalDtorFunc();
298   EmitCXXThreadLocalInitFunc();
299   if (ObjCRuntime)
300     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
301       AddGlobalCtor(ObjCInitFunction);
302   if (getCodeGenOpts().ProfileInstrGenerate)
303     if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this))
304       AddGlobalCtor(PGOInit, 0);
305   if (PGOReader && PGOStats.isOutOfDate())
306     getDiags().Report(diag::warn_profile_data_out_of_date)
307         << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched;
308   EmitCtorList(GlobalCtors, "llvm.global_ctors");
309   EmitCtorList(GlobalDtors, "llvm.global_dtors");
310   EmitGlobalAnnotations();
311   EmitStaticExternCAliases();
312   emitLLVMUsed();
313 
314   if (CodeGenOpts.Autolink &&
315       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
316     EmitModuleLinkOptions();
317   }
318   if (CodeGenOpts.DwarfVersion)
319     // We actually want the latest version when there are conflicts.
320     // We can change from Warning to Latest if such mode is supported.
321     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
322                               CodeGenOpts.DwarfVersion);
323   if (DebugInfo)
324     // We support a single version in the linked module: error out when
325     // modules do not have the same version. We are going to implement dropping
326     // debug info when the version number is not up-to-date. Once that is
327     // done, the bitcode linker is not going to see modules with different
328     // version numbers.
329     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
330                               llvm::DEBUG_METADATA_VERSION);
331 
332   SimplifyPersonality();
333 
334   if (getCodeGenOpts().EmitDeclMetadata)
335     EmitDeclMetadata();
336 
337   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
338     EmitCoverageFile();
339 
340   if (DebugInfo)
341     DebugInfo->finalize();
342 
343   EmitVersionIdentMetadata();
344 }
345 
346 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
347   // Make sure that this type is translated.
348   Types.UpdateCompletedType(TD);
349 }
350 
351 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
352   if (!TBAA)
353     return 0;
354   return TBAA->getTBAAInfo(QTy);
355 }
356 
357 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
358   if (!TBAA)
359     return 0;
360   return TBAA->getTBAAInfoForVTablePtr();
361 }
362 
363 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
364   if (!TBAA)
365     return 0;
366   return TBAA->getTBAAStructInfo(QTy);
367 }
368 
369 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
370   if (!TBAA)
371     return 0;
372   return TBAA->getTBAAStructTypeInfo(QTy);
373 }
374 
375 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
376                                                   llvm::MDNode *AccessN,
377                                                   uint64_t O) {
378   if (!TBAA)
379     return 0;
380   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
381 }
382 
383 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
384 /// and struct-path aware TBAA, the tag has the same format:
385 /// base type, access type and offset.
386 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
387 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
388                                         llvm::MDNode *TBAAInfo,
389                                         bool ConvertTypeToTag) {
390   if (ConvertTypeToTag && TBAA)
391     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
392                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
393   else
394     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
395 }
396 
397 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
398   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
399   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
400 }
401 
402 /// ErrorUnsupported - Print out an error that codegen doesn't support the
403 /// specified stmt yet.
404 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
405   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
406                                                "cannot compile this %0 yet");
407   std::string Msg = Type;
408   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
409     << Msg << S->getSourceRange();
410 }
411 
412 /// ErrorUnsupported - Print out an error that codegen doesn't support the
413 /// specified decl yet.
414 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
415   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
416                                                "cannot compile this %0 yet");
417   std::string Msg = Type;
418   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
419 }
420 
421 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
422   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
423 }
424 
425 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
426                                         const NamedDecl *D) const {
427   // Internal definitions always have default visibility.
428   if (GV->hasLocalLinkage()) {
429     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
430     return;
431   }
432 
433   // Set visibility for definitions.
434   LinkageInfo LV = D->getLinkageAndVisibility();
435   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
436     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
437 }
438 
439 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
440   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
441       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
442       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
443       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
444       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
445 }
446 
447 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
448     CodeGenOptions::TLSModel M) {
449   switch (M) {
450   case CodeGenOptions::GeneralDynamicTLSModel:
451     return llvm::GlobalVariable::GeneralDynamicTLSModel;
452   case CodeGenOptions::LocalDynamicTLSModel:
453     return llvm::GlobalVariable::LocalDynamicTLSModel;
454   case CodeGenOptions::InitialExecTLSModel:
455     return llvm::GlobalVariable::InitialExecTLSModel;
456   case CodeGenOptions::LocalExecTLSModel:
457     return llvm::GlobalVariable::LocalExecTLSModel;
458   }
459   llvm_unreachable("Invalid TLS model!");
460 }
461 
462 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
463                                const VarDecl &D) const {
464   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
465 
466   llvm::GlobalVariable::ThreadLocalMode TLM;
467   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
468 
469   // Override the TLS model if it is explicitly specified.
470   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
471     TLM = GetLLVMTLSModel(Attr->getModel());
472   }
473 
474   GV->setThreadLocalMode(TLM);
475 }
476 
477 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
478   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
479 
480   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
481   if (!Str.empty())
482     return Str;
483 
484   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
485     IdentifierInfo *II = ND->getIdentifier();
486     assert(II && "Attempt to mangle unnamed decl.");
487 
488     Str = II->getName();
489     return Str;
490   }
491 
492   SmallString<256> Buffer;
493   llvm::raw_svector_ostream Out(Buffer);
494   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
495     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
496   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
497     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
498   else
499     getCXXABI().getMangleContext().mangleName(ND, Out);
500 
501   // Allocate space for the mangled name.
502   Out.flush();
503   size_t Length = Buffer.size();
504   char *Name = MangledNamesAllocator.Allocate<char>(Length);
505   std::copy(Buffer.begin(), Buffer.end(), Name);
506 
507   Str = StringRef(Name, Length);
508 
509   return Str;
510 }
511 
512 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
513                                         const BlockDecl *BD) {
514   MangleContext &MangleCtx = getCXXABI().getMangleContext();
515   const Decl *D = GD.getDecl();
516   llvm::raw_svector_ostream Out(Buffer.getBuffer());
517   if (D == 0)
518     MangleCtx.mangleGlobalBlock(BD,
519       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
520   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
521     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
522   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
523     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
524   else
525     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
526 }
527 
528 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
529   return getModule().getNamedValue(Name);
530 }
531 
532 /// AddGlobalCtor - Add a function to the list that will be called before
533 /// main() runs.
534 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
535   // FIXME: Type coercion of void()* types.
536   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
537 }
538 
539 /// AddGlobalDtor - Add a function to the list that will be called
540 /// when the module is unloaded.
541 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
542   // FIXME: Type coercion of void()* types.
543   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
544 }
545 
546 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
547   // Ctor function type is void()*.
548   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
549   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
550 
551   // Get the type of a ctor entry, { i32, void ()* }.
552   llvm::StructType *CtorStructTy =
553     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
554 
555   // Construct the constructor and destructor arrays.
556   SmallVector<llvm::Constant*, 8> Ctors;
557   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
558     llvm::Constant *S[] = {
559       llvm::ConstantInt::get(Int32Ty, I->second, false),
560       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
561     };
562     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
563   }
564 
565   if (!Ctors.empty()) {
566     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
567     new llvm::GlobalVariable(TheModule, AT, false,
568                              llvm::GlobalValue::AppendingLinkage,
569                              llvm::ConstantArray::get(AT, Ctors),
570                              GlobalName);
571   }
572 }
573 
574 llvm::GlobalValue::LinkageTypes
575 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
576   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
577 
578   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
579 
580   bool UseThunkForDtorVariant =
581       isa<CXXDestructorDecl>(D) &&
582       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
583                                          GD.getDtorType());
584 
585   return getLLVMLinkageforDeclarator(D, Linkage, /*isConstantVariable=*/false,
586                                      UseThunkForDtorVariant);
587 }
588 
589 
590 /// SetFunctionDefinitionAttributes - Set attributes for a global.
591 ///
592 /// FIXME: This is currently only done for aliases and functions, but not for
593 /// variables (these details are set in EmitGlobalVarDefinition for variables).
594 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
595                                                     llvm::GlobalValue *GV) {
596   setNonAliasAttributes(D, GV);
597 }
598 
599 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
600                                               const CGFunctionInfo &Info,
601                                               llvm::Function *F) {
602   unsigned CallingConv;
603   AttributeListType AttributeList;
604   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
605   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
606   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
607 }
608 
609 /// Determines whether the language options require us to model
610 /// unwind exceptions.  We treat -fexceptions as mandating this
611 /// except under the fragile ObjC ABI with only ObjC exceptions
612 /// enabled.  This means, for example, that C with -fexceptions
613 /// enables this.
614 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
615   // If exceptions are completely disabled, obviously this is false.
616   if (!LangOpts.Exceptions) return false;
617 
618   // If C++ exceptions are enabled, this is true.
619   if (LangOpts.CXXExceptions) return true;
620 
621   // If ObjC exceptions are enabled, this depends on the ABI.
622   if (LangOpts.ObjCExceptions) {
623     return LangOpts.ObjCRuntime.hasUnwindExceptions();
624   }
625 
626   return true;
627 }
628 
629 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
630                                                            llvm::Function *F) {
631   llvm::AttrBuilder B;
632 
633   if (CodeGenOpts.UnwindTables)
634     B.addAttribute(llvm::Attribute::UWTable);
635 
636   if (!hasUnwindExceptions(LangOpts))
637     B.addAttribute(llvm::Attribute::NoUnwind);
638 
639   if (D->hasAttr<NakedAttr>()) {
640     // Naked implies noinline: we should not be inlining such functions.
641     B.addAttribute(llvm::Attribute::Naked);
642     B.addAttribute(llvm::Attribute::NoInline);
643   } else if (D->hasAttr<OptimizeNoneAttr>()) {
644     // OptimizeNone implies noinline; we should not be inlining such functions.
645     B.addAttribute(llvm::Attribute::OptimizeNone);
646     B.addAttribute(llvm::Attribute::NoInline);
647   } else if (D->hasAttr<NoDuplicateAttr>()) {
648     B.addAttribute(llvm::Attribute::NoDuplicate);
649   } else if (D->hasAttr<NoInlineAttr>()) {
650     B.addAttribute(llvm::Attribute::NoInline);
651   } else if (D->hasAttr<AlwaysInlineAttr>() &&
652              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
653                                               llvm::Attribute::NoInline)) {
654     // (noinline wins over always_inline, and we can't specify both in IR)
655     B.addAttribute(llvm::Attribute::AlwaysInline);
656   }
657 
658   if (D->hasAttr<ColdAttr>()) {
659     B.addAttribute(llvm::Attribute::OptimizeForSize);
660     B.addAttribute(llvm::Attribute::Cold);
661   }
662 
663   if (D->hasAttr<MinSizeAttr>())
664     B.addAttribute(llvm::Attribute::MinSize);
665 
666   if (D->hasAttr<OptimizeNoneAttr>()) {
667     // OptimizeNone wins over OptimizeForSize and MinSize.
668     B.removeAttribute(llvm::Attribute::OptimizeForSize);
669     B.removeAttribute(llvm::Attribute::MinSize);
670   }
671 
672   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
673     B.addAttribute(llvm::Attribute::StackProtect);
674   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
675     B.addAttribute(llvm::Attribute::StackProtectStrong);
676   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
677     B.addAttribute(llvm::Attribute::StackProtectReq);
678 
679   // Add sanitizer attributes if function is not blacklisted.
680   if (!SanitizerBlacklist->isIn(*F)) {
681     // When AddressSanitizer is enabled, set SanitizeAddress attribute
682     // unless __attribute__((no_sanitize_address)) is used.
683     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
684       B.addAttribute(llvm::Attribute::SanitizeAddress);
685     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
686     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
687       B.addAttribute(llvm::Attribute::SanitizeThread);
688     }
689     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
690     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
691       B.addAttribute(llvm::Attribute::SanitizeMemory);
692   }
693 
694   F->addAttributes(llvm::AttributeSet::FunctionIndex,
695                    llvm::AttributeSet::get(
696                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
697 
698   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
699     F->setUnnamedAddr(true);
700   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
701     if (MD->isVirtual())
702       F->setUnnamedAddr(true);
703 
704   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
705   if (alignment)
706     F->setAlignment(alignment);
707 
708   // C++ ABI requires 2-byte alignment for member functions.
709   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
710     F->setAlignment(2);
711 }
712 
713 void CodeGenModule::SetCommonAttributes(const Decl *D,
714                                         llvm::GlobalValue *GV) {
715   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
716     setGlobalVisibility(GV, ND);
717   else
718     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
719 
720   if (D->hasAttr<UsedAttr>())
721     addUsedGlobal(GV);
722 }
723 
724 void CodeGenModule::setNonAliasAttributes(const Decl *D,
725                                           llvm::GlobalValue *GV) {
726   assert(!isa<llvm::GlobalAlias>(GV));
727   SetCommonAttributes(D, GV);
728 
729   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
730     GV->setSection(SA->getName());
731 
732   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
733 }
734 
735 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
736                                                   llvm::Function *F,
737                                                   const CGFunctionInfo &FI) {
738   SetLLVMFunctionAttributes(D, FI, F);
739   SetLLVMFunctionAttributesForDefinition(D, F);
740 
741   F->setLinkage(llvm::Function::InternalLinkage);
742 
743   setNonAliasAttributes(D, F);
744 }
745 
746 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
747                                          const NamedDecl *ND) {
748   // Set linkage and visibility in case we never see a definition.
749   LinkageInfo LV = ND->getLinkageAndVisibility();
750   if (LV.getLinkage() != ExternalLinkage) {
751     // Don't set internal linkage on declarations.
752   } else {
753     if (ND->hasAttr<DLLImportAttr>()) {
754       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
755       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
756     } else if (ND->hasAttr<DLLExportAttr>()) {
757       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
758       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
759     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
760       // "extern_weak" is overloaded in LLVM; we probably should have
761       // separate linkage types for this.
762       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
763     }
764 
765     // Set visibility on a declaration only if it's explicit.
766     if (LV.isVisibilityExplicit())
767       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
768   }
769 }
770 
771 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
772                                           llvm::Function *F,
773                                           bool IsIncompleteFunction) {
774   if (unsigned IID = F->getIntrinsicID()) {
775     // If this is an intrinsic function, set the function's attributes
776     // to the intrinsic's attributes.
777     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
778                                                     (llvm::Intrinsic::ID)IID));
779     return;
780   }
781 
782   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
783 
784   if (!IsIncompleteFunction)
785     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
786 
787   // Add the Returned attribute for "this", except for iOS 5 and earlier
788   // where substantial code, including the libstdc++ dylib, was compiled with
789   // GCC and does not actually return "this".
790   if (getCXXABI().HasThisReturn(GD) &&
791       !(getTarget().getTriple().isiOS() &&
792         getTarget().getTriple().isOSVersionLT(6))) {
793     assert(!F->arg_empty() &&
794            F->arg_begin()->getType()
795              ->canLosslesslyBitCastTo(F->getReturnType()) &&
796            "unexpected this return");
797     F->addAttribute(1, llvm::Attribute::Returned);
798   }
799 
800   // Only a few attributes are set on declarations; these may later be
801   // overridden by a definition.
802 
803   setLinkageAndVisibilityForGV(F, FD);
804 
805   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
806     F->setSection(SA->getName());
807 
808   // A replaceable global allocation function does not act like a builtin by
809   // default, only if it is invoked by a new-expression or delete-expression.
810   if (FD->isReplaceableGlobalAllocationFunction())
811     F->addAttribute(llvm::AttributeSet::FunctionIndex,
812                     llvm::Attribute::NoBuiltin);
813 }
814 
815 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
816   assert(!GV->isDeclaration() &&
817          "Only globals with definition can force usage.");
818   LLVMUsed.push_back(GV);
819 }
820 
821 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
822   assert(!GV->isDeclaration() &&
823          "Only globals with definition can force usage.");
824   LLVMCompilerUsed.push_back(GV);
825 }
826 
827 static void emitUsed(CodeGenModule &CGM, StringRef Name,
828                      std::vector<llvm::WeakVH> &List) {
829   // Don't create llvm.used if there is no need.
830   if (List.empty())
831     return;
832 
833   // Convert List to what ConstantArray needs.
834   SmallVector<llvm::Constant*, 8> UsedArray;
835   UsedArray.resize(List.size());
836   for (unsigned i = 0, e = List.size(); i != e; ++i) {
837     UsedArray[i] =
838      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]),
839                                     CGM.Int8PtrTy);
840   }
841 
842   if (UsedArray.empty())
843     return;
844   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
845 
846   llvm::GlobalVariable *GV =
847     new llvm::GlobalVariable(CGM.getModule(), ATy, false,
848                              llvm::GlobalValue::AppendingLinkage,
849                              llvm::ConstantArray::get(ATy, UsedArray),
850                              Name);
851 
852   GV->setSection("llvm.metadata");
853 }
854 
855 void CodeGenModule::emitLLVMUsed() {
856   emitUsed(*this, "llvm.used", LLVMUsed);
857   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
858 }
859 
860 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
861   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
862   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
863 }
864 
865 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
866   llvm::SmallString<32> Opt;
867   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
868   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
869   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
870 }
871 
872 void CodeGenModule::AddDependentLib(StringRef Lib) {
873   llvm::SmallString<24> Opt;
874   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
875   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
876   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
877 }
878 
879 /// \brief Add link options implied by the given module, including modules
880 /// it depends on, using a postorder walk.
881 static void addLinkOptionsPostorder(CodeGenModule &CGM,
882                                     Module *Mod,
883                                     SmallVectorImpl<llvm::Value *> &Metadata,
884                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
885   // Import this module's parent.
886   if (Mod->Parent && Visited.insert(Mod->Parent)) {
887     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
888   }
889 
890   // Import this module's dependencies.
891   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
892     if (Visited.insert(Mod->Imports[I-1]))
893       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
894   }
895 
896   // Add linker options to link against the libraries/frameworks
897   // described by this module.
898   llvm::LLVMContext &Context = CGM.getLLVMContext();
899   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
900     // Link against a framework.  Frameworks are currently Darwin only, so we
901     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
902     if (Mod->LinkLibraries[I-1].IsFramework) {
903       llvm::Value *Args[2] = {
904         llvm::MDString::get(Context, "-framework"),
905         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
906       };
907 
908       Metadata.push_back(llvm::MDNode::get(Context, Args));
909       continue;
910     }
911 
912     // Link against a library.
913     llvm::SmallString<24> Opt;
914     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
915       Mod->LinkLibraries[I-1].Library, Opt);
916     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
917     Metadata.push_back(llvm::MDNode::get(Context, OptString));
918   }
919 }
920 
921 void CodeGenModule::EmitModuleLinkOptions() {
922   // Collect the set of all of the modules we want to visit to emit link
923   // options, which is essentially the imported modules and all of their
924   // non-explicit child modules.
925   llvm::SetVector<clang::Module *> LinkModules;
926   llvm::SmallPtrSet<clang::Module *, 16> Visited;
927   SmallVector<clang::Module *, 16> Stack;
928 
929   // Seed the stack with imported modules.
930   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
931                                                MEnd = ImportedModules.end();
932        M != MEnd; ++M) {
933     if (Visited.insert(*M))
934       Stack.push_back(*M);
935   }
936 
937   // Find all of the modules to import, making a little effort to prune
938   // non-leaf modules.
939   while (!Stack.empty()) {
940     clang::Module *Mod = Stack.pop_back_val();
941 
942     bool AnyChildren = false;
943 
944     // Visit the submodules of this module.
945     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
946                                         SubEnd = Mod->submodule_end();
947          Sub != SubEnd; ++Sub) {
948       // Skip explicit children; they need to be explicitly imported to be
949       // linked against.
950       if ((*Sub)->IsExplicit)
951         continue;
952 
953       if (Visited.insert(*Sub)) {
954         Stack.push_back(*Sub);
955         AnyChildren = true;
956       }
957     }
958 
959     // We didn't find any children, so add this module to the list of
960     // modules to link against.
961     if (!AnyChildren) {
962       LinkModules.insert(Mod);
963     }
964   }
965 
966   // Add link options for all of the imported modules in reverse topological
967   // order.  We don't do anything to try to order import link flags with respect
968   // to linker options inserted by things like #pragma comment().
969   SmallVector<llvm::Value *, 16> MetadataArgs;
970   Visited.clear();
971   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
972                                                MEnd = LinkModules.end();
973        M != MEnd; ++M) {
974     if (Visited.insert(*M))
975       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
976   }
977   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
978   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
979 
980   // Add the linker options metadata flag.
981   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
982                             llvm::MDNode::get(getLLVMContext(),
983                                               LinkerOptionsMetadata));
984 }
985 
986 void CodeGenModule::EmitDeferred() {
987   // Emit code for any potentially referenced deferred decls.  Since a
988   // previously unused static decl may become used during the generation of code
989   // for a static function, iterate until no changes are made.
990 
991   while (true) {
992     if (!DeferredVTables.empty()) {
993       EmitDeferredVTables();
994 
995       // Emitting a v-table doesn't directly cause more v-tables to
996       // become deferred, although it can cause functions to be
997       // emitted that then need those v-tables.
998       assert(DeferredVTables.empty());
999     }
1000 
1001     // Stop if we're out of both deferred v-tables and deferred declarations.
1002     if (DeferredDeclsToEmit.empty()) break;
1003 
1004     DeferredGlobal &G = DeferredDeclsToEmit.back();
1005     GlobalDecl D = G.GD;
1006     llvm::GlobalValue *GV = G.GV;
1007     DeferredDeclsToEmit.pop_back();
1008 
1009     assert(GV == GetGlobalValue(getMangledName(D)));
1010     // Check to see if we've already emitted this.  This is necessary
1011     // for a couple of reasons: first, decls can end up in the
1012     // deferred-decls queue multiple times, and second, decls can end
1013     // up with definitions in unusual ways (e.g. by an extern inline
1014     // function acquiring a strong function redefinition).  Just
1015     // ignore these cases.
1016     if(!GV->isDeclaration())
1017       continue;
1018 
1019     // Otherwise, emit the definition and move on to the next one.
1020     EmitGlobalDefinition(D, GV);
1021   }
1022 }
1023 
1024 void CodeGenModule::EmitGlobalAnnotations() {
1025   if (Annotations.empty())
1026     return;
1027 
1028   // Create a new global variable for the ConstantStruct in the Module.
1029   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1030     Annotations[0]->getType(), Annotations.size()), Annotations);
1031   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
1032     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
1033     "llvm.global.annotations");
1034   gv->setSection(AnnotationSection);
1035 }
1036 
1037 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1038   llvm::Constant *&AStr = AnnotationStrings[Str];
1039   if (AStr)
1040     return AStr;
1041 
1042   // Not found yet, create a new global.
1043   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1044   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
1045     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
1046   gv->setSection(AnnotationSection);
1047   gv->setUnnamedAddr(true);
1048   AStr = gv;
1049   return gv;
1050 }
1051 
1052 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1053   SourceManager &SM = getContext().getSourceManager();
1054   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1055   if (PLoc.isValid())
1056     return EmitAnnotationString(PLoc.getFilename());
1057   return EmitAnnotationString(SM.getBufferName(Loc));
1058 }
1059 
1060 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1061   SourceManager &SM = getContext().getSourceManager();
1062   PresumedLoc PLoc = SM.getPresumedLoc(L);
1063   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1064     SM.getExpansionLineNumber(L);
1065   return llvm::ConstantInt::get(Int32Ty, LineNo);
1066 }
1067 
1068 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1069                                                 const AnnotateAttr *AA,
1070                                                 SourceLocation L) {
1071   // Get the globals for file name, annotation, and the line number.
1072   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1073                  *UnitGV = EmitAnnotationUnit(L),
1074                  *LineNoCst = EmitAnnotationLineNo(L);
1075 
1076   // Create the ConstantStruct for the global annotation.
1077   llvm::Constant *Fields[4] = {
1078     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1079     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1080     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1081     LineNoCst
1082   };
1083   return llvm::ConstantStruct::getAnon(Fields);
1084 }
1085 
1086 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1087                                          llvm::GlobalValue *GV) {
1088   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1089   // Get the struct elements for these annotations.
1090   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1091     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1092 }
1093 
1094 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1095   // Never defer when EmitAllDecls is specified.
1096   if (LangOpts.EmitAllDecls)
1097     return false;
1098 
1099   return !getContext().DeclMustBeEmitted(Global);
1100 }
1101 
1102 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1103     const CXXUuidofExpr* E) {
1104   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1105   // well-formed.
1106   StringRef Uuid = E->getUuidAsStringRef(Context);
1107   std::string Name = "_GUID_" + Uuid.lower();
1108   std::replace(Name.begin(), Name.end(), '-', '_');
1109 
1110   // Look for an existing global.
1111   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1112     return GV;
1113 
1114   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1115   assert(Init && "failed to initialize as constant");
1116 
1117   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1118       getModule(), Init->getType(),
1119       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1120   return GV;
1121 }
1122 
1123 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1124   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1125   assert(AA && "No alias?");
1126 
1127   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1128 
1129   // See if there is already something with the target's name in the module.
1130   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1131   if (Entry) {
1132     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1133     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1134   }
1135 
1136   llvm::Constant *Aliasee;
1137   if (isa<llvm::FunctionType>(DeclTy))
1138     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1139                                       GlobalDecl(cast<FunctionDecl>(VD)),
1140                                       /*ForVTable=*/false);
1141   else
1142     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1143                                     llvm::PointerType::getUnqual(DeclTy), 0);
1144 
1145   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1146   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1147   WeakRefReferences.insert(F);
1148 
1149   return Aliasee;
1150 }
1151 
1152 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1153   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1154 
1155   // Weak references don't produce any output by themselves.
1156   if (Global->hasAttr<WeakRefAttr>())
1157     return;
1158 
1159   // If this is an alias definition (which otherwise looks like a declaration)
1160   // emit it now.
1161   if (Global->hasAttr<AliasAttr>())
1162     return EmitAliasDefinition(GD);
1163 
1164   // If this is CUDA, be selective about which declarations we emit.
1165   if (LangOpts.CUDA) {
1166     if (CodeGenOpts.CUDAIsDevice) {
1167       if (!Global->hasAttr<CUDADeviceAttr>() &&
1168           !Global->hasAttr<CUDAGlobalAttr>() &&
1169           !Global->hasAttr<CUDAConstantAttr>() &&
1170           !Global->hasAttr<CUDASharedAttr>())
1171         return;
1172     } else {
1173       if (!Global->hasAttr<CUDAHostAttr>() && (
1174             Global->hasAttr<CUDADeviceAttr>() ||
1175             Global->hasAttr<CUDAConstantAttr>() ||
1176             Global->hasAttr<CUDASharedAttr>()))
1177         return;
1178     }
1179   }
1180 
1181   // Ignore declarations, they will be emitted on their first use.
1182   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1183     // Forward declarations are emitted lazily on first use.
1184     if (!FD->doesThisDeclarationHaveABody()) {
1185       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1186         return;
1187 
1188       StringRef MangledName = getMangledName(GD);
1189 
1190       // Compute the function info and LLVM type.
1191       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1192       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1193 
1194       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1195                               /*DontDefer=*/false);
1196       return;
1197     }
1198   } else {
1199     const VarDecl *VD = cast<VarDecl>(Global);
1200     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1201 
1202     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1203       return;
1204   }
1205 
1206   // Defer code generation when possible if this is a static definition, inline
1207   // function etc.  These we only want to emit if they are used.
1208   if (!MayDeferGeneration(Global)) {
1209     // Emit the definition if it can't be deferred.
1210     EmitGlobalDefinition(GD);
1211     return;
1212   }
1213 
1214   // If we're deferring emission of a C++ variable with an
1215   // initializer, remember the order in which it appeared in the file.
1216   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1217       cast<VarDecl>(Global)->hasInit()) {
1218     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1219     CXXGlobalInits.push_back(0);
1220   }
1221 
1222   // If the value has already been used, add it directly to the
1223   // DeferredDeclsToEmit list.
1224   StringRef MangledName = getMangledName(GD);
1225   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1226     addDeferredDeclToEmit(GV, GD);
1227   else {
1228     // Otherwise, remember that we saw a deferred decl with this name.  The
1229     // first use of the mangled name will cause it to move into
1230     // DeferredDeclsToEmit.
1231     DeferredDecls[MangledName] = GD;
1232   }
1233 }
1234 
1235 namespace {
1236   struct FunctionIsDirectlyRecursive :
1237     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1238     const StringRef Name;
1239     const Builtin::Context &BI;
1240     bool Result;
1241     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1242       Name(N), BI(C), Result(false) {
1243     }
1244     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1245 
1246     bool TraverseCallExpr(CallExpr *E) {
1247       const FunctionDecl *FD = E->getDirectCallee();
1248       if (!FD)
1249         return true;
1250       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1251       if (Attr && Name == Attr->getLabel()) {
1252         Result = true;
1253         return false;
1254       }
1255       unsigned BuiltinID = FD->getBuiltinID();
1256       if (!BuiltinID)
1257         return true;
1258       StringRef BuiltinName = BI.GetName(BuiltinID);
1259       if (BuiltinName.startswith("__builtin_") &&
1260           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1261         Result = true;
1262         return false;
1263       }
1264       return true;
1265     }
1266   };
1267 }
1268 
1269 // isTriviallyRecursive - Check if this function calls another
1270 // decl that, because of the asm attribute or the other decl being a builtin,
1271 // ends up pointing to itself.
1272 bool
1273 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1274   StringRef Name;
1275   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1276     // asm labels are a special kind of mangling we have to support.
1277     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1278     if (!Attr)
1279       return false;
1280     Name = Attr->getLabel();
1281   } else {
1282     Name = FD->getName();
1283   }
1284 
1285   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1286   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1287   return Walker.Result;
1288 }
1289 
1290 bool
1291 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1292   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1293     return true;
1294   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1295   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1296     return false;
1297   // PR9614. Avoid cases where the source code is lying to us. An available
1298   // externally function should have an equivalent function somewhere else,
1299   // but a function that calls itself is clearly not equivalent to the real
1300   // implementation.
1301   // This happens in glibc's btowc and in some configure checks.
1302   return !isTriviallyRecursive(F);
1303 }
1304 
1305 /// If the type for the method's class was generated by
1306 /// CGDebugInfo::createContextChain(), the cache contains only a
1307 /// limited DIType without any declarations. Since EmitFunctionStart()
1308 /// needs to find the canonical declaration for each method, we need
1309 /// to construct the complete type prior to emitting the method.
1310 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1311   if (!D->isInstance())
1312     return;
1313 
1314   if (CGDebugInfo *DI = getModuleDebugInfo())
1315     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1316       const PointerType *ThisPtr =
1317         cast<PointerType>(D->getThisType(getContext()));
1318       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1319     }
1320 }
1321 
1322 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1323   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1324 
1325   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1326                                  Context.getSourceManager(),
1327                                  "Generating code for declaration");
1328 
1329   if (isa<FunctionDecl>(D)) {
1330     // At -O0, don't generate IR for functions with available_externally
1331     // linkage.
1332     if (!shouldEmitFunction(GD))
1333       return;
1334 
1335     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1336       CompleteDIClassType(Method);
1337       // Make sure to emit the definition(s) before we emit the thunks.
1338       // This is necessary for the generation of certain thunks.
1339       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1340         EmitCXXConstructor(CD, GD.getCtorType());
1341       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1342         EmitCXXDestructor(DD, GD.getDtorType());
1343       else
1344         EmitGlobalFunctionDefinition(GD, GV);
1345 
1346       if (Method->isVirtual())
1347         getVTables().EmitThunks(GD);
1348 
1349       return;
1350     }
1351 
1352     return EmitGlobalFunctionDefinition(GD, GV);
1353   }
1354 
1355   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1356     return EmitGlobalVarDefinition(VD);
1357 
1358   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1359 }
1360 
1361 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1362 /// module, create and return an llvm Function with the specified type. If there
1363 /// is something in the module with the specified name, return it potentially
1364 /// bitcasted to the right type.
1365 ///
1366 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1367 /// to set the attributes on the function when it is first created.
1368 llvm::Constant *
1369 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1370                                        llvm::Type *Ty,
1371                                        GlobalDecl GD, bool ForVTable,
1372                                        bool DontDefer,
1373                                        llvm::AttributeSet ExtraAttrs) {
1374   const Decl *D = GD.getDecl();
1375 
1376   // Lookup the entry, lazily creating it if necessary.
1377   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1378   if (Entry) {
1379     if (WeakRefReferences.erase(Entry)) {
1380       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1381       if (FD && !FD->hasAttr<WeakAttr>())
1382         Entry->setLinkage(llvm::Function::ExternalLinkage);
1383     }
1384 
1385     if (Entry->getType()->getElementType() == Ty)
1386       return Entry;
1387 
1388     // Make sure the result is of the correct type.
1389     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1390   }
1391 
1392   // This function doesn't have a complete type (for example, the return
1393   // type is an incomplete struct). Use a fake type instead, and make
1394   // sure not to try to set attributes.
1395   bool IsIncompleteFunction = false;
1396 
1397   llvm::FunctionType *FTy;
1398   if (isa<llvm::FunctionType>(Ty)) {
1399     FTy = cast<llvm::FunctionType>(Ty);
1400   } else {
1401     FTy = llvm::FunctionType::get(VoidTy, false);
1402     IsIncompleteFunction = true;
1403   }
1404 
1405   llvm::Function *F = llvm::Function::Create(FTy,
1406                                              llvm::Function::ExternalLinkage,
1407                                              MangledName, &getModule());
1408   assert(F->getName() == MangledName && "name was uniqued!");
1409   if (D)
1410     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1411   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1412     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1413     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1414                      llvm::AttributeSet::get(VMContext,
1415                                              llvm::AttributeSet::FunctionIndex,
1416                                              B));
1417   }
1418 
1419   if (!DontDefer) {
1420     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1421     // each other bottoming out with the base dtor.  Therefore we emit non-base
1422     // dtors on usage, even if there is no dtor definition in the TU.
1423     if (D && isa<CXXDestructorDecl>(D) &&
1424         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1425                                            GD.getDtorType()))
1426       addDeferredDeclToEmit(F, GD);
1427 
1428     // This is the first use or definition of a mangled name.  If there is a
1429     // deferred decl with this name, remember that we need to emit it at the end
1430     // of the file.
1431     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1432     if (DDI != DeferredDecls.end()) {
1433       // Move the potentially referenced deferred decl to the
1434       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1435       // don't need it anymore).
1436       addDeferredDeclToEmit(F, DDI->second);
1437       DeferredDecls.erase(DDI);
1438 
1439       // Otherwise, if this is a sized deallocation function, emit a weak
1440       // definition
1441       // for it at the end of the translation unit.
1442     } else if (D && cast<FunctionDecl>(D)
1443                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1444       addDeferredDeclToEmit(F, GD);
1445 
1446       // Otherwise, there are cases we have to worry about where we're
1447       // using a declaration for which we must emit a definition but where
1448       // we might not find a top-level definition:
1449       //   - member functions defined inline in their classes
1450       //   - friend functions defined inline in some class
1451       //   - special member functions with implicit definitions
1452       // If we ever change our AST traversal to walk into class methods,
1453       // this will be unnecessary.
1454       //
1455       // We also don't emit a definition for a function if it's going to be an
1456       // entry
1457       // in a vtable, unless it's already marked as used.
1458     } else if (getLangOpts().CPlusPlus && D) {
1459       // Look for a declaration that's lexically in a record.
1460       const FunctionDecl *FD = cast<FunctionDecl>(D);
1461       FD = FD->getMostRecentDecl();
1462       do {
1463         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1464           if (FD->isImplicit() && !ForVTable) {
1465             assert(FD->isUsed() &&
1466                    "Sema didn't mark implicit function as used!");
1467             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1468             break;
1469           } else if (FD->doesThisDeclarationHaveABody()) {
1470             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1471             break;
1472           }
1473         }
1474         FD = FD->getPreviousDecl();
1475       } while (FD);
1476     }
1477   }
1478 
1479   getTargetCodeGenInfo().emitTargetMD(D, F, *this);
1480 
1481   // Make sure the result is of the requested type.
1482   if (!IsIncompleteFunction) {
1483     assert(F->getType()->getElementType() == Ty);
1484     return F;
1485   }
1486 
1487   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1488   return llvm::ConstantExpr::getBitCast(F, PTy);
1489 }
1490 
1491 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1492 /// non-null, then this function will use the specified type if it has to
1493 /// create it (this occurs when we see a definition of the function).
1494 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1495                                                  llvm::Type *Ty,
1496                                                  bool ForVTable,
1497                                                  bool DontDefer) {
1498   // If there was no specific requested type, just convert it now.
1499   if (!Ty)
1500     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1501 
1502   StringRef MangledName = getMangledName(GD);
1503   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1504 }
1505 
1506 /// CreateRuntimeFunction - Create a new runtime function with the specified
1507 /// type and name.
1508 llvm::Constant *
1509 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1510                                      StringRef Name,
1511                                      llvm::AttributeSet ExtraAttrs) {
1512   llvm::Constant *C =
1513       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1514                               /*DontDefer=*/false, ExtraAttrs);
1515   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1516     if (F->empty())
1517       F->setCallingConv(getRuntimeCC());
1518   return C;
1519 }
1520 
1521 /// isTypeConstant - Determine whether an object of this type can be emitted
1522 /// as a constant.
1523 ///
1524 /// If ExcludeCtor is true, the duration when the object's constructor runs
1525 /// will not be considered. The caller will need to verify that the object is
1526 /// not written to during its construction.
1527 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1528   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1529     return false;
1530 
1531   if (Context.getLangOpts().CPlusPlus) {
1532     if (const CXXRecordDecl *Record
1533           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1534       return ExcludeCtor && !Record->hasMutableFields() &&
1535              Record->hasTrivialDestructor();
1536   }
1537 
1538   return true;
1539 }
1540 
1541 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) {
1542   if (!VD->isStaticDataMember())
1543     return false;
1544   const VarDecl *InitDecl;
1545   const Expr *InitExpr = VD->getAnyInitializer(InitDecl);
1546   if (!InitExpr)
1547     return false;
1548   if (InitDecl->isThisDeclarationADefinition())
1549     return false;
1550   return true;
1551 }
1552 
1553 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1554 /// create and return an llvm GlobalVariable with the specified type.  If there
1555 /// is something in the module with the specified name, return it potentially
1556 /// bitcasted to the right type.
1557 ///
1558 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1559 /// to set the attributes on the global when it is first created.
1560 llvm::Constant *
1561 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1562                                      llvm::PointerType *Ty,
1563                                      const VarDecl *D,
1564                                      bool UnnamedAddr) {
1565   // Lookup the entry, lazily creating it if necessary.
1566   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1567   if (Entry) {
1568     if (WeakRefReferences.erase(Entry)) {
1569       if (D && !D->hasAttr<WeakAttr>())
1570         Entry->setLinkage(llvm::Function::ExternalLinkage);
1571     }
1572 
1573     if (UnnamedAddr)
1574       Entry->setUnnamedAddr(true);
1575 
1576     if (Entry->getType() == Ty)
1577       return Entry;
1578 
1579     // Make sure the result is of the correct type.
1580     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1581       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1582 
1583     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1584   }
1585 
1586   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1587   llvm::GlobalVariable *GV =
1588     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1589                              llvm::GlobalValue::ExternalLinkage,
1590                              0, MangledName, 0,
1591                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1592 
1593   // This is the first use or definition of a mangled name.  If there is a
1594   // deferred decl with this name, remember that we need to emit it at the end
1595   // of the file.
1596   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1597   if (DDI != DeferredDecls.end()) {
1598     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1599     // list, and remove it from DeferredDecls (since we don't need it anymore).
1600     addDeferredDeclToEmit(GV, DDI->second);
1601     DeferredDecls.erase(DDI);
1602   }
1603 
1604   // Handle things which are present even on external declarations.
1605   if (D) {
1606     // FIXME: This code is overly simple and should be merged with other global
1607     // handling.
1608     GV->setConstant(isTypeConstant(D->getType(), false));
1609 
1610     setLinkageAndVisibilityForGV(GV, D);
1611 
1612     if (D->getTLSKind()) {
1613       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1614         CXXThreadLocals.push_back(std::make_pair(D, GV));
1615       setTLSMode(GV, *D);
1616     }
1617 
1618     // If required by the ABI, treat declarations of static data members with
1619     // inline initializers as definitions.
1620     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1621         isVarDeclInlineInitializedStaticDataMember(D))
1622       EmitGlobalVarDefinition(D);
1623 
1624     // Handle XCore specific ABI requirements.
1625     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1626         D->getLanguageLinkage() == CLanguageLinkage &&
1627         D->getType().isConstant(Context) &&
1628         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1629       GV->setSection(".cp.rodata");
1630   }
1631 
1632   if (AddrSpace != Ty->getAddressSpace())
1633     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1634 
1635   getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
1636 
1637   return GV;
1638 }
1639 
1640 
1641 llvm::GlobalVariable *
1642 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1643                                       llvm::Type *Ty,
1644                                       llvm::GlobalValue::LinkageTypes Linkage) {
1645   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1646   llvm::GlobalVariable *OldGV = 0;
1647 
1648 
1649   if (GV) {
1650     // Check if the variable has the right type.
1651     if (GV->getType()->getElementType() == Ty)
1652       return GV;
1653 
1654     // Because C++ name mangling, the only way we can end up with an already
1655     // existing global with the same name is if it has been declared extern "C".
1656     assert(GV->isDeclaration() && "Declaration has wrong type!");
1657     OldGV = GV;
1658   }
1659 
1660   // Create a new variable.
1661   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1662                                 Linkage, 0, Name);
1663 
1664   if (OldGV) {
1665     // Replace occurrences of the old variable if needed.
1666     GV->takeName(OldGV);
1667 
1668     if (!OldGV->use_empty()) {
1669       llvm::Constant *NewPtrForOldDecl =
1670       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1671       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1672     }
1673 
1674     OldGV->eraseFromParent();
1675   }
1676 
1677   return GV;
1678 }
1679 
1680 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1681 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1682 /// then it will be created with the specified type instead of whatever the
1683 /// normal requested type would be.
1684 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1685                                                   llvm::Type *Ty) {
1686   assert(D->hasGlobalStorage() && "Not a global variable");
1687   QualType ASTTy = D->getType();
1688   if (Ty == 0)
1689     Ty = getTypes().ConvertTypeForMem(ASTTy);
1690 
1691   llvm::PointerType *PTy =
1692     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1693 
1694   StringRef MangledName = getMangledName(D);
1695   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1696 }
1697 
1698 /// CreateRuntimeVariable - Create a new runtime global variable with the
1699 /// specified type and name.
1700 llvm::Constant *
1701 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1702                                      StringRef Name) {
1703   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1704                                true);
1705 }
1706 
1707 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1708   assert(!D->getInit() && "Cannot emit definite definitions here!");
1709 
1710   if (MayDeferGeneration(D)) {
1711     // If we have not seen a reference to this variable yet, place it
1712     // into the deferred declarations table to be emitted if needed
1713     // later.
1714     StringRef MangledName = getMangledName(D);
1715     if (!GetGlobalValue(MangledName)) {
1716       DeferredDecls[MangledName] = D;
1717       return;
1718     }
1719   }
1720 
1721   // The tentative definition is the only definition.
1722   EmitGlobalVarDefinition(D);
1723 }
1724 
1725 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1726     return Context.toCharUnitsFromBits(
1727       TheDataLayout.getTypeStoreSizeInBits(Ty));
1728 }
1729 
1730 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1731                                                  unsigned AddrSpace) {
1732   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1733     if (D->hasAttr<CUDAConstantAttr>())
1734       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1735     else if (D->hasAttr<CUDASharedAttr>())
1736       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1737     else
1738       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1739   }
1740 
1741   return AddrSpace;
1742 }
1743 
1744 template<typename SomeDecl>
1745 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1746                                                llvm::GlobalValue *GV) {
1747   if (!getLangOpts().CPlusPlus)
1748     return;
1749 
1750   // Must have 'used' attribute, or else inline assembly can't rely on
1751   // the name existing.
1752   if (!D->template hasAttr<UsedAttr>())
1753     return;
1754 
1755   // Must have internal linkage and an ordinary name.
1756   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1757     return;
1758 
1759   // Must be in an extern "C" context. Entities declared directly within
1760   // a record are not extern "C" even if the record is in such a context.
1761   const SomeDecl *First = D->getFirstDecl();
1762   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1763     return;
1764 
1765   // OK, this is an internal linkage entity inside an extern "C" linkage
1766   // specification. Make a note of that so we can give it the "expected"
1767   // mangled name if nothing else is using that name.
1768   std::pair<StaticExternCMap::iterator, bool> R =
1769       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1770 
1771   // If we have multiple internal linkage entities with the same name
1772   // in extern "C" regions, none of them gets that name.
1773   if (!R.second)
1774     R.first->second = 0;
1775 }
1776 
1777 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1778   llvm::Constant *Init = 0;
1779   QualType ASTTy = D->getType();
1780   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1781   bool NeedsGlobalCtor = false;
1782   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1783 
1784   const VarDecl *InitDecl;
1785   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1786 
1787   if (!InitExpr) {
1788     // This is a tentative definition; tentative definitions are
1789     // implicitly initialized with { 0 }.
1790     //
1791     // Note that tentative definitions are only emitted at the end of
1792     // a translation unit, so they should never have incomplete
1793     // type. In addition, EmitTentativeDefinition makes sure that we
1794     // never attempt to emit a tentative definition if a real one
1795     // exists. A use may still exists, however, so we still may need
1796     // to do a RAUW.
1797     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1798     Init = EmitNullConstant(D->getType());
1799   } else {
1800     initializedGlobalDecl = GlobalDecl(D);
1801     Init = EmitConstantInit(*InitDecl);
1802 
1803     if (!Init) {
1804       QualType T = InitExpr->getType();
1805       if (D->getType()->isReferenceType())
1806         T = D->getType();
1807 
1808       if (getLangOpts().CPlusPlus) {
1809         Init = EmitNullConstant(T);
1810         NeedsGlobalCtor = true;
1811       } else {
1812         ErrorUnsupported(D, "static initializer");
1813         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1814       }
1815     } else {
1816       // We don't need an initializer, so remove the entry for the delayed
1817       // initializer position (just in case this entry was delayed) if we
1818       // also don't need to register a destructor.
1819       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1820         DelayedCXXInitPosition.erase(D);
1821     }
1822   }
1823 
1824   llvm::Type* InitType = Init->getType();
1825   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1826 
1827   // Strip off a bitcast if we got one back.
1828   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1829     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1830            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1831            // All zero index gep.
1832            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1833     Entry = CE->getOperand(0);
1834   }
1835 
1836   // Entry is now either a Function or GlobalVariable.
1837   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1838 
1839   // We have a definition after a declaration with the wrong type.
1840   // We must make a new GlobalVariable* and update everything that used OldGV
1841   // (a declaration or tentative definition) with the new GlobalVariable*
1842   // (which will be a definition).
1843   //
1844   // This happens if there is a prototype for a global (e.g.
1845   // "extern int x[];") and then a definition of a different type (e.g.
1846   // "int x[10];"). This also happens when an initializer has a different type
1847   // from the type of the global (this happens with unions).
1848   if (GV == 0 ||
1849       GV->getType()->getElementType() != InitType ||
1850       GV->getType()->getAddressSpace() !=
1851        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1852 
1853     // Move the old entry aside so that we'll create a new one.
1854     Entry->setName(StringRef());
1855 
1856     // Make a new global with the correct type, this is now guaranteed to work.
1857     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1858 
1859     // Replace all uses of the old global with the new global
1860     llvm::Constant *NewPtrForOldDecl =
1861         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1862     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1863 
1864     // Erase the old global, since it is no longer used.
1865     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1866   }
1867 
1868   MaybeHandleStaticInExternC(D, GV);
1869 
1870   if (D->hasAttr<AnnotateAttr>())
1871     AddGlobalAnnotations(D, GV);
1872 
1873   GV->setInitializer(Init);
1874 
1875   // If it is safe to mark the global 'constant', do so now.
1876   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1877                   isTypeConstant(D->getType(), true));
1878 
1879   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1880 
1881   // Set the llvm linkage type as appropriate.
1882   llvm::GlobalValue::LinkageTypes Linkage =
1883       getLLVMLinkageVarDefinition(D, GV->isConstant());
1884   GV->setLinkage(Linkage);
1885   if (D->hasAttr<DLLImportAttr>())
1886     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1887   else if (D->hasAttr<DLLExportAttr>())
1888     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1889 
1890   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1891     // common vars aren't constant even if declared const.
1892     GV->setConstant(false);
1893 
1894   setNonAliasAttributes(D, GV);
1895 
1896   // Emit the initializer function if necessary.
1897   if (NeedsGlobalCtor || NeedsGlobalDtor)
1898     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1899 
1900   // If we are compiling with ASan, add metadata indicating dynamically
1901   // initialized globals.
1902   if (SanOpts.Address && NeedsGlobalCtor) {
1903     llvm::Module &M = getModule();
1904 
1905     llvm::NamedMDNode *DynamicInitializers =
1906         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1907     llvm::Value *GlobalToAdd[] = { GV };
1908     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1909     DynamicInitializers->addOperand(ThisGlobal);
1910   }
1911 
1912   // Emit global variable debug information.
1913   if (CGDebugInfo *DI = getModuleDebugInfo())
1914     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1915       DI->EmitGlobalVariable(GV, D);
1916 }
1917 
1918 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) {
1919   // Don't give variables common linkage if -fno-common was specified unless it
1920   // was overridden by a NoCommon attribute.
1921   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
1922     return true;
1923 
1924   // C11 6.9.2/2:
1925   //   A declaration of an identifier for an object that has file scope without
1926   //   an initializer, and without a storage-class specifier or with the
1927   //   storage-class specifier static, constitutes a tentative definition.
1928   if (D->getInit() || D->hasExternalStorage())
1929     return true;
1930 
1931   // A variable cannot be both common and exist in a section.
1932   if (D->hasAttr<SectionAttr>())
1933     return true;
1934 
1935   // Thread local vars aren't considered common linkage.
1936   if (D->getTLSKind())
1937     return true;
1938 
1939   // Tentative definitions marked with WeakImportAttr are true definitions.
1940   if (D->hasAttr<WeakImportAttr>())
1941     return true;
1942 
1943   return false;
1944 }
1945 
1946 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageforDeclarator(
1947     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable,
1948     bool UseThunkForDtorVariant) {
1949   if (Linkage == GVA_Internal)
1950     return llvm::Function::InternalLinkage;
1951 
1952   if (D->hasAttr<WeakAttr>()) {
1953     if (IsConstantVariable)
1954       return llvm::GlobalVariable::WeakODRLinkage;
1955     else
1956       return llvm::GlobalVariable::WeakAnyLinkage;
1957   }
1958 
1959   // We are guaranteed to have a strong definition somewhere else,
1960   // so we can use available_externally linkage.
1961   if (Linkage == GVA_AvailableExternally)
1962     return llvm::Function::AvailableExternallyLinkage;
1963 
1964   // LinkOnceODRLinkage is insufficient if the symbol is required to exist in
1965   // the symbol table.  Promote the linkage to WeakODRLinkage to preserve the
1966   // semantics of LinkOnceODRLinkage while providing visibility in the symbol
1967   // table.
1968   llvm::GlobalValue::LinkageTypes OnceLinkage =
1969       llvm::GlobalValue::LinkOnceODRLinkage;
1970   if (D->hasAttr<DLLExportAttr>() || D->hasAttr<DLLImportAttr>())
1971     OnceLinkage = llvm::GlobalVariable::WeakODRLinkage;
1972 
1973   // Note that Apple's kernel linker doesn't support symbol
1974   // coalescing, so we need to avoid linkonce and weak linkages there.
1975   // Normally, this means we just map to internal, but for explicit
1976   // instantiations we'll map to external.
1977 
1978   // In C++, the compiler has to emit a definition in every translation unit
1979   // that references the function.  We should use linkonce_odr because
1980   // a) if all references in this translation unit are optimized away, we
1981   // don't need to codegen it.  b) if the function persists, it needs to be
1982   // merged with other definitions. c) C++ has the ODR, so we know the
1983   // definition is dependable.
1984   if (Linkage == GVA_DiscardableODR)
1985     return !Context.getLangOpts().AppleKext ? OnceLinkage
1986                                             : llvm::Function::InternalLinkage;
1987 
1988   // An explicit instantiation of a template has weak linkage, since
1989   // explicit instantiations can occur in multiple translation units
1990   // and must all be equivalent. However, we are not allowed to
1991   // throw away these explicit instantiations.
1992   if (Linkage == GVA_StrongODR)
1993     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
1994                                             : llvm::Function::ExternalLinkage;
1995 
1996   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
1997   // emitted on an as-needed basis.
1998   if (UseThunkForDtorVariant)
1999     return OnceLinkage;
2000 
2001   // If required by the ABI, give definitions of static data members with inline
2002   // initializers at least linkonce_odr linkage.
2003   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
2004       isa<VarDecl>(D) &&
2005       isVarDeclInlineInitializedStaticDataMember(cast<VarDecl>(D)))
2006     return OnceLinkage;
2007 
2008   // C++ doesn't have tentative definitions and thus cannot have common
2009   // linkage.
2010   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2011       !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon))
2012     return llvm::GlobalVariable::CommonLinkage;
2013 
2014   // selectany symbols are externally visible, so use weak instead of
2015   // linkonce.  MSVC optimizes away references to const selectany globals, so
2016   // all definitions should be the same and ODR linkage should be used.
2017   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2018   if (D->hasAttr<SelectAnyAttr>())
2019     return llvm::GlobalVariable::WeakODRLinkage;
2020 
2021   // Otherwise, we have strong external linkage.
2022   assert(Linkage == GVA_StrongExternal);
2023   return llvm::GlobalVariable::ExternalLinkage;
2024 }
2025 
2026 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2027     const VarDecl *VD, bool IsConstant) {
2028   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2029   return getLLVMLinkageforDeclarator(VD, Linkage, IsConstant,
2030                                      /*UseThunkForDtorVariant=*/false);
2031 }
2032 
2033 /// Replace the uses of a function that was declared with a non-proto type.
2034 /// We want to silently drop extra arguments from call sites
2035 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2036                                           llvm::Function *newFn) {
2037   // Fast path.
2038   if (old->use_empty()) return;
2039 
2040   llvm::Type *newRetTy = newFn->getReturnType();
2041   SmallVector<llvm::Value*, 4> newArgs;
2042 
2043   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2044          ui != ue; ) {
2045     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2046     llvm::User *user = use->getUser();
2047 
2048     // Recognize and replace uses of bitcasts.  Most calls to
2049     // unprototyped functions will use bitcasts.
2050     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2051       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2052         replaceUsesOfNonProtoConstant(bitcast, newFn);
2053       continue;
2054     }
2055 
2056     // Recognize calls to the function.
2057     llvm::CallSite callSite(user);
2058     if (!callSite) continue;
2059     if (!callSite.isCallee(&*use)) continue;
2060 
2061     // If the return types don't match exactly, then we can't
2062     // transform this call unless it's dead.
2063     if (callSite->getType() != newRetTy && !callSite->use_empty())
2064       continue;
2065 
2066     // Get the call site's attribute list.
2067     SmallVector<llvm::AttributeSet, 8> newAttrs;
2068     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2069 
2070     // Collect any return attributes from the call.
2071     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2072       newAttrs.push_back(
2073         llvm::AttributeSet::get(newFn->getContext(),
2074                                 oldAttrs.getRetAttributes()));
2075 
2076     // If the function was passed too few arguments, don't transform.
2077     unsigned newNumArgs = newFn->arg_size();
2078     if (callSite.arg_size() < newNumArgs) continue;
2079 
2080     // If extra arguments were passed, we silently drop them.
2081     // If any of the types mismatch, we don't transform.
2082     unsigned argNo = 0;
2083     bool dontTransform = false;
2084     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2085            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2086       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2087         dontTransform = true;
2088         break;
2089       }
2090 
2091       // Add any parameter attributes.
2092       if (oldAttrs.hasAttributes(argNo + 1))
2093         newAttrs.
2094           push_back(llvm::
2095                     AttributeSet::get(newFn->getContext(),
2096                                       oldAttrs.getParamAttributes(argNo + 1)));
2097     }
2098     if (dontTransform)
2099       continue;
2100 
2101     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2102       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2103                                                  oldAttrs.getFnAttributes()));
2104 
2105     // Okay, we can transform this.  Create the new call instruction and copy
2106     // over the required information.
2107     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2108 
2109     llvm::CallSite newCall;
2110     if (callSite.isCall()) {
2111       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2112                                        callSite.getInstruction());
2113     } else {
2114       llvm::InvokeInst *oldInvoke =
2115         cast<llvm::InvokeInst>(callSite.getInstruction());
2116       newCall = llvm::InvokeInst::Create(newFn,
2117                                          oldInvoke->getNormalDest(),
2118                                          oldInvoke->getUnwindDest(),
2119                                          newArgs, "",
2120                                          callSite.getInstruction());
2121     }
2122     newArgs.clear(); // for the next iteration
2123 
2124     if (!newCall->getType()->isVoidTy())
2125       newCall->takeName(callSite.getInstruction());
2126     newCall.setAttributes(
2127                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2128     newCall.setCallingConv(callSite.getCallingConv());
2129 
2130     // Finally, remove the old call, replacing any uses with the new one.
2131     if (!callSite->use_empty())
2132       callSite->replaceAllUsesWith(newCall.getInstruction());
2133 
2134     // Copy debug location attached to CI.
2135     if (!callSite->getDebugLoc().isUnknown())
2136       newCall->setDebugLoc(callSite->getDebugLoc());
2137     callSite->eraseFromParent();
2138   }
2139 }
2140 
2141 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2142 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2143 /// existing call uses of the old function in the module, this adjusts them to
2144 /// call the new function directly.
2145 ///
2146 /// This is not just a cleanup: the always_inline pass requires direct calls to
2147 /// functions to be able to inline them.  If there is a bitcast in the way, it
2148 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2149 /// run at -O0.
2150 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2151                                                       llvm::Function *NewFn) {
2152   // If we're redefining a global as a function, don't transform it.
2153   if (!isa<llvm::Function>(Old)) return;
2154 
2155   replaceUsesOfNonProtoConstant(Old, NewFn);
2156 }
2157 
2158 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2159   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2160   // If we have a definition, this might be a deferred decl. If the
2161   // instantiation is explicit, make sure we emit it at the end.
2162   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2163     GetAddrOfGlobalVar(VD);
2164 
2165   EmitTopLevelDecl(VD);
2166 }
2167 
2168 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2169                                                  llvm::GlobalValue *GV) {
2170   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2171 
2172   // Compute the function info and LLVM type.
2173   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2174   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2175 
2176   // Get or create the prototype for the function.
2177   llvm::Constant *Entry =
2178       GV ? GV
2179          : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2180 
2181   // Strip off a bitcast if we got one back.
2182   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2183     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2184     Entry = CE->getOperand(0);
2185   }
2186 
2187   if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) {
2188     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2189     return;
2190   }
2191 
2192   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2193     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2194 
2195     // If the types mismatch then we have to rewrite the definition.
2196     assert(OldFn->isDeclaration() &&
2197            "Shouldn't replace non-declaration");
2198 
2199     // F is the Function* for the one with the wrong type, we must make a new
2200     // Function* and update everything that used F (a declaration) with the new
2201     // Function* (which will be a definition).
2202     //
2203     // This happens if there is a prototype for a function
2204     // (e.g. "int f()") and then a definition of a different type
2205     // (e.g. "int f(int x)").  Move the old function aside so that it
2206     // doesn't interfere with GetAddrOfFunction.
2207     OldFn->setName(StringRef());
2208     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2209 
2210     // This might be an implementation of a function without a
2211     // prototype, in which case, try to do special replacement of
2212     // calls which match the new prototype.  The really key thing here
2213     // is that we also potentially drop arguments from the call site
2214     // so as to make a direct call, which makes the inliner happier
2215     // and suppresses a number of optimizer warnings (!) about
2216     // dropping arguments.
2217     if (!OldFn->use_empty()) {
2218       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2219       OldFn->removeDeadConstantUsers();
2220     }
2221 
2222     // Replace uses of F with the Function we will endow with a body.
2223     if (!Entry->use_empty()) {
2224       llvm::Constant *NewPtrForOldDecl =
2225         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2226       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2227     }
2228 
2229     // Ok, delete the old function now, which is dead.
2230     OldFn->eraseFromParent();
2231 
2232     Entry = NewFn;
2233   }
2234 
2235   // We need to set linkage and visibility on the function before
2236   // generating code for it because various parts of IR generation
2237   // want to propagate this information down (e.g. to local static
2238   // declarations).
2239   llvm::Function *Fn = cast<llvm::Function>(Entry);
2240   setFunctionLinkage(GD, Fn);
2241 
2242   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2243   setGlobalVisibility(Fn, D);
2244 
2245   MaybeHandleStaticInExternC(D, Fn);
2246 
2247   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2248 
2249   SetFunctionDefinitionAttributes(D, Fn);
2250   SetLLVMFunctionAttributesForDefinition(D, Fn);
2251 
2252   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2253     AddGlobalCtor(Fn, CA->getPriority());
2254   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2255     AddGlobalDtor(Fn, DA->getPriority());
2256   if (D->hasAttr<AnnotateAttr>())
2257     AddGlobalAnnotations(D, Fn);
2258 }
2259 
2260 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2261   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2262   const AliasAttr *AA = D->getAttr<AliasAttr>();
2263   assert(AA && "Not an alias?");
2264 
2265   StringRef MangledName = getMangledName(GD);
2266 
2267   // If there is a definition in the module, then it wins over the alias.
2268   // This is dubious, but allow it to be safe.  Just ignore the alias.
2269   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2270   if (Entry && !Entry->isDeclaration())
2271     return;
2272 
2273   Aliases.push_back(GD);
2274 
2275   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2276 
2277   // Create a reference to the named value.  This ensures that it is emitted
2278   // if a deferred decl.
2279   llvm::Constant *Aliasee;
2280   if (isa<llvm::FunctionType>(DeclTy))
2281     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2282                                       /*ForVTable=*/false);
2283   else
2284     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2285                                     llvm::PointerType::getUnqual(DeclTy), 0);
2286 
2287   // Create the new alias itself, but don't set a name yet.
2288   llvm::GlobalValue *GA =
2289     new llvm::GlobalAlias(Aliasee->getType(),
2290                           llvm::Function::ExternalLinkage,
2291                           "", Aliasee, &getModule());
2292 
2293   if (Entry) {
2294     assert(Entry->isDeclaration());
2295 
2296     // If there is a declaration in the module, then we had an extern followed
2297     // by the alias, as in:
2298     //   extern int test6();
2299     //   ...
2300     //   int test6() __attribute__((alias("test7")));
2301     //
2302     // Remove it and replace uses of it with the alias.
2303     GA->takeName(Entry);
2304 
2305     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2306                                                           Entry->getType()));
2307     Entry->eraseFromParent();
2308   } else {
2309     GA->setName(MangledName);
2310   }
2311 
2312   // Set attributes which are particular to an alias; this is a
2313   // specialization of the attributes which may be set on a global
2314   // variable/function.
2315   if (D->hasAttr<DLLExportAttr>()) {
2316     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2317       // The dllexport attribute is ignored for undefined symbols.
2318       if (FD->hasBody())
2319         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2320     } else {
2321       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2322     }
2323   } else if (D->hasAttr<WeakAttr>() ||
2324              D->hasAttr<WeakRefAttr>() ||
2325              D->isWeakImported()) {
2326     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2327   }
2328 
2329   SetCommonAttributes(D, GA);
2330 }
2331 
2332 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2333                                             ArrayRef<llvm::Type*> Tys) {
2334   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2335                                          Tys);
2336 }
2337 
2338 static llvm::StringMapEntry<llvm::Constant*> &
2339 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2340                          const StringLiteral *Literal,
2341                          bool TargetIsLSB,
2342                          bool &IsUTF16,
2343                          unsigned &StringLength) {
2344   StringRef String = Literal->getString();
2345   unsigned NumBytes = String.size();
2346 
2347   // Check for simple case.
2348   if (!Literal->containsNonAsciiOrNull()) {
2349     StringLength = NumBytes;
2350     return Map.GetOrCreateValue(String);
2351   }
2352 
2353   // Otherwise, convert the UTF8 literals into a string of shorts.
2354   IsUTF16 = true;
2355 
2356   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2357   const UTF8 *FromPtr = (const UTF8 *)String.data();
2358   UTF16 *ToPtr = &ToBuf[0];
2359 
2360   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2361                            &ToPtr, ToPtr + NumBytes,
2362                            strictConversion);
2363 
2364   // ConvertUTF8toUTF16 returns the length in ToPtr.
2365   StringLength = ToPtr - &ToBuf[0];
2366 
2367   // Add an explicit null.
2368   *ToPtr = 0;
2369   return Map.
2370     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2371                                (StringLength + 1) * 2));
2372 }
2373 
2374 static llvm::StringMapEntry<llvm::Constant*> &
2375 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2376                        const StringLiteral *Literal,
2377                        unsigned &StringLength) {
2378   StringRef String = Literal->getString();
2379   StringLength = String.size();
2380   return Map.GetOrCreateValue(String);
2381 }
2382 
2383 llvm::Constant *
2384 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2385   unsigned StringLength = 0;
2386   bool isUTF16 = false;
2387   llvm::StringMapEntry<llvm::Constant*> &Entry =
2388     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2389                              getDataLayout().isLittleEndian(),
2390                              isUTF16, StringLength);
2391 
2392   if (llvm::Constant *C = Entry.getValue())
2393     return C;
2394 
2395   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2396   llvm::Constant *Zeros[] = { Zero, Zero };
2397   llvm::Value *V;
2398 
2399   // If we don't already have it, get __CFConstantStringClassReference.
2400   if (!CFConstantStringClassRef) {
2401     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2402     Ty = llvm::ArrayType::get(Ty, 0);
2403     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2404                                            "__CFConstantStringClassReference");
2405     // Decay array -> ptr
2406     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2407     CFConstantStringClassRef = V;
2408   }
2409   else
2410     V = CFConstantStringClassRef;
2411 
2412   QualType CFTy = getContext().getCFConstantStringType();
2413 
2414   llvm::StructType *STy =
2415     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2416 
2417   llvm::Constant *Fields[4];
2418 
2419   // Class pointer.
2420   Fields[0] = cast<llvm::ConstantExpr>(V);
2421 
2422   // Flags.
2423   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2424   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2425     llvm::ConstantInt::get(Ty, 0x07C8);
2426 
2427   // String pointer.
2428   llvm::Constant *C = 0;
2429   if (isUTF16) {
2430     ArrayRef<uint16_t> Arr =
2431       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2432                                      const_cast<char *>(Entry.getKey().data())),
2433                                    Entry.getKey().size() / 2);
2434     C = llvm::ConstantDataArray::get(VMContext, Arr);
2435   } else {
2436     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2437   }
2438 
2439   // Note: -fwritable-strings doesn't make the backing store strings of
2440   // CFStrings writable. (See <rdar://problem/10657500>)
2441   llvm::GlobalVariable *GV =
2442       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2443                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2444   GV->setUnnamedAddr(true);
2445   // Don't enforce the target's minimum global alignment, since the only use
2446   // of the string is via this class initializer.
2447   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2448   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2449   // that changes the section it ends in, which surprises ld64.
2450   if (isUTF16) {
2451     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2452     GV->setAlignment(Align.getQuantity());
2453     GV->setSection("__TEXT,__ustring");
2454   } else {
2455     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2456     GV->setAlignment(Align.getQuantity());
2457     GV->setSection("__TEXT,__cstring,cstring_literals");
2458   }
2459 
2460   // String.
2461   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2462 
2463   if (isUTF16)
2464     // Cast the UTF16 string to the correct type.
2465     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2466 
2467   // String length.
2468   Ty = getTypes().ConvertType(getContext().LongTy);
2469   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2470 
2471   // The struct.
2472   C = llvm::ConstantStruct::get(STy, Fields);
2473   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2474                                 llvm::GlobalVariable::PrivateLinkage, C,
2475                                 "_unnamed_cfstring_");
2476   GV->setSection("__DATA,__cfstring");
2477   Entry.setValue(GV);
2478 
2479   return GV;
2480 }
2481 
2482 llvm::Constant *
2483 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2484   unsigned StringLength = 0;
2485   llvm::StringMapEntry<llvm::Constant*> &Entry =
2486     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2487 
2488   if (llvm::Constant *C = Entry.getValue())
2489     return C;
2490 
2491   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2492   llvm::Constant *Zeros[] = { Zero, Zero };
2493   llvm::Value *V;
2494   // If we don't already have it, get _NSConstantStringClassReference.
2495   if (!ConstantStringClassRef) {
2496     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2497     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2498     llvm::Constant *GV;
2499     if (LangOpts.ObjCRuntime.isNonFragile()) {
2500       std::string str =
2501         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2502                             : "OBJC_CLASS_$_" + StringClass;
2503       GV = getObjCRuntime().GetClassGlobal(str);
2504       // Make sure the result is of the correct type.
2505       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2506       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2507       ConstantStringClassRef = V;
2508     } else {
2509       std::string str =
2510         StringClass.empty() ? "_NSConstantStringClassReference"
2511                             : "_" + StringClass + "ClassReference";
2512       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2513       GV = CreateRuntimeVariable(PTy, str);
2514       // Decay array -> ptr
2515       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2516       ConstantStringClassRef = V;
2517     }
2518   }
2519   else
2520     V = ConstantStringClassRef;
2521 
2522   if (!NSConstantStringType) {
2523     // Construct the type for a constant NSString.
2524     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2525     D->startDefinition();
2526 
2527     QualType FieldTypes[3];
2528 
2529     // const int *isa;
2530     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2531     // const char *str;
2532     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2533     // unsigned int length;
2534     FieldTypes[2] = Context.UnsignedIntTy;
2535 
2536     // Create fields
2537     for (unsigned i = 0; i < 3; ++i) {
2538       FieldDecl *Field = FieldDecl::Create(Context, D,
2539                                            SourceLocation(),
2540                                            SourceLocation(), 0,
2541                                            FieldTypes[i], /*TInfo=*/0,
2542                                            /*BitWidth=*/0,
2543                                            /*Mutable=*/false,
2544                                            ICIS_NoInit);
2545       Field->setAccess(AS_public);
2546       D->addDecl(Field);
2547     }
2548 
2549     D->completeDefinition();
2550     QualType NSTy = Context.getTagDeclType(D);
2551     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2552   }
2553 
2554   llvm::Constant *Fields[3];
2555 
2556   // Class pointer.
2557   Fields[0] = cast<llvm::ConstantExpr>(V);
2558 
2559   // String pointer.
2560   llvm::Constant *C =
2561     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2562 
2563   llvm::GlobalValue::LinkageTypes Linkage;
2564   bool isConstant;
2565   Linkage = llvm::GlobalValue::PrivateLinkage;
2566   isConstant = !LangOpts.WritableStrings;
2567 
2568   llvm::GlobalVariable *GV =
2569   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2570                            ".str");
2571   GV->setUnnamedAddr(true);
2572   // Don't enforce the target's minimum global alignment, since the only use
2573   // of the string is via this class initializer.
2574   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2575   GV->setAlignment(Align.getQuantity());
2576   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2577 
2578   // String length.
2579   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2580   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2581 
2582   // The struct.
2583   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2584   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2585                                 llvm::GlobalVariable::PrivateLinkage, C,
2586                                 "_unnamed_nsstring_");
2587   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2588   const char *NSStringNonFragileABISection =
2589       "__DATA,__objc_stringobj,regular,no_dead_strip";
2590   // FIXME. Fix section.
2591   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2592                      ? NSStringNonFragileABISection
2593                      : NSStringSection);
2594   Entry.setValue(GV);
2595 
2596   return GV;
2597 }
2598 
2599 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2600   if (ObjCFastEnumerationStateType.isNull()) {
2601     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2602     D->startDefinition();
2603 
2604     QualType FieldTypes[] = {
2605       Context.UnsignedLongTy,
2606       Context.getPointerType(Context.getObjCIdType()),
2607       Context.getPointerType(Context.UnsignedLongTy),
2608       Context.getConstantArrayType(Context.UnsignedLongTy,
2609                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2610     };
2611 
2612     for (size_t i = 0; i < 4; ++i) {
2613       FieldDecl *Field = FieldDecl::Create(Context,
2614                                            D,
2615                                            SourceLocation(),
2616                                            SourceLocation(), 0,
2617                                            FieldTypes[i], /*TInfo=*/0,
2618                                            /*BitWidth=*/0,
2619                                            /*Mutable=*/false,
2620                                            ICIS_NoInit);
2621       Field->setAccess(AS_public);
2622       D->addDecl(Field);
2623     }
2624 
2625     D->completeDefinition();
2626     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2627   }
2628 
2629   return ObjCFastEnumerationStateType;
2630 }
2631 
2632 llvm::Constant *
2633 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2634   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2635 
2636   // Don't emit it as the address of the string, emit the string data itself
2637   // as an inline array.
2638   if (E->getCharByteWidth() == 1) {
2639     SmallString<64> Str(E->getString());
2640 
2641     // Resize the string to the right size, which is indicated by its type.
2642     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2643     Str.resize(CAT->getSize().getZExtValue());
2644     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2645   }
2646 
2647   llvm::ArrayType *AType =
2648     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2649   llvm::Type *ElemTy = AType->getElementType();
2650   unsigned NumElements = AType->getNumElements();
2651 
2652   // Wide strings have either 2-byte or 4-byte elements.
2653   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2654     SmallVector<uint16_t, 32> Elements;
2655     Elements.reserve(NumElements);
2656 
2657     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2658       Elements.push_back(E->getCodeUnit(i));
2659     Elements.resize(NumElements);
2660     return llvm::ConstantDataArray::get(VMContext, Elements);
2661   }
2662 
2663   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2664   SmallVector<uint32_t, 32> Elements;
2665   Elements.reserve(NumElements);
2666 
2667   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2668     Elements.push_back(E->getCodeUnit(i));
2669   Elements.resize(NumElements);
2670   return llvm::ConstantDataArray::get(VMContext, Elements);
2671 }
2672 
2673 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2674 /// constant array for the given string literal.
2675 llvm::Constant *
2676 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2677   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2678 
2679   llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr;
2680   llvm::GlobalVariable *GV = nullptr;
2681   if (!LangOpts.WritableStrings) {
2682     llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr;
2683     switch (S->getCharByteWidth()) {
2684     case 1:
2685       ConstantStringMap = &Constant1ByteStringMap;
2686       break;
2687     case 2:
2688       ConstantStringMap = &Constant2ByteStringMap;
2689       break;
2690     case 4:
2691       ConstantStringMap = &Constant4ByteStringMap;
2692       break;
2693     default:
2694       llvm_unreachable("unhandled byte width!");
2695     }
2696     Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes());
2697     GV = Entry->getValue();
2698   }
2699 
2700   if (!GV) {
2701     SmallString<256> MangledNameBuffer;
2702     StringRef GlobalVariableName;
2703     llvm::GlobalValue::LinkageTypes LT;
2704 
2705     // Mangle the string literal if the ABI allows for it.  However, we cannot
2706     // do this if  we are compiling with ASan or -fwritable-strings because they
2707     // rely on strings having normal linkage.
2708     if (!LangOpts.WritableStrings && !SanOpts.Address &&
2709         getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2710       llvm::raw_svector_ostream Out(MangledNameBuffer);
2711       getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2712       Out.flush();
2713 
2714       LT = llvm::GlobalValue::LinkOnceODRLinkage;
2715       GlobalVariableName = MangledNameBuffer;
2716     } else {
2717       LT = llvm::GlobalValue::PrivateLinkage;
2718       GlobalVariableName = ".str";
2719     }
2720 
2721     // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2722     unsigned AddrSpace = 0;
2723     if (getLangOpts().OpenCL)
2724       AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant);
2725 
2726     llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2727     GV = new llvm::GlobalVariable(
2728         getModule(), C->getType(), !LangOpts.WritableStrings, LT, C,
2729         GlobalVariableName, /*InsertBefore=*/nullptr,
2730         llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2731     GV->setUnnamedAddr(true);
2732     if (Entry)
2733       Entry->setValue(GV);
2734   }
2735 
2736   if (Align.getQuantity() > GV->getAlignment())
2737     GV->setAlignment(Align.getQuantity());
2738 
2739   return GV;
2740 }
2741 
2742 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2743 /// array for the given ObjCEncodeExpr node.
2744 llvm::Constant *
2745 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2746   std::string Str;
2747   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2748 
2749   return GetAddrOfConstantCString(Str);
2750 }
2751 
2752 
2753 /// GenerateWritableString -- Creates storage for a string literal.
2754 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2755                                              bool constant,
2756                                              CodeGenModule &CGM,
2757                                              const char *GlobalName,
2758                                              unsigned Alignment) {
2759   // Create Constant for this string literal. Don't add a '\0'.
2760   llvm::Constant *C =
2761       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2762 
2763   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2764   unsigned AddrSpace = 0;
2765   if (CGM.getLangOpts().OpenCL)
2766     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2767 
2768   // Create a global variable for this string
2769   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2770       CGM.getModule(), C->getType(), constant,
2771       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2772       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2773   GV->setAlignment(Alignment);
2774   GV->setUnnamedAddr(true);
2775   return GV;
2776 }
2777 
2778 /// GetAddrOfConstantString - Returns a pointer to a character array
2779 /// containing the literal. This contents are exactly that of the
2780 /// given string, i.e. it will not be null terminated automatically;
2781 /// see GetAddrOfConstantCString. Note that whether the result is
2782 /// actually a pointer to an LLVM constant depends on
2783 /// Feature.WriteableStrings.
2784 ///
2785 /// The result has pointer to array type.
2786 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2787                                                        const char *GlobalName,
2788                                                        unsigned Alignment) {
2789   // Get the default prefix if a name wasn't specified.
2790   if (!GlobalName)
2791     GlobalName = ".str";
2792 
2793   if (Alignment == 0)
2794     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2795       .getQuantity();
2796 
2797   // Don't share any string literals if strings aren't constant.
2798   if (LangOpts.WritableStrings)
2799     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2800 
2801   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2802     Constant1ByteStringMap.GetOrCreateValue(Str);
2803 
2804   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2805     if (Alignment > GV->getAlignment()) {
2806       GV->setAlignment(Alignment);
2807     }
2808     return GV;
2809   }
2810 
2811   // Create a global variable for this.
2812   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2813                                                    Alignment);
2814   Entry.setValue(GV);
2815   return GV;
2816 }
2817 
2818 /// GetAddrOfConstantCString - Returns a pointer to a character
2819 /// array containing the literal and a terminating '\0'
2820 /// character. The result has pointer to array type.
2821 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2822                                                         const char *GlobalName,
2823                                                         unsigned Alignment) {
2824   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2825   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2826 }
2827 
2828 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2829     const MaterializeTemporaryExpr *E, const Expr *Init) {
2830   assert((E->getStorageDuration() == SD_Static ||
2831           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2832   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2833 
2834   // If we're not materializing a subobject of the temporary, keep the
2835   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2836   QualType MaterializedType = Init->getType();
2837   if (Init == E->GetTemporaryExpr())
2838     MaterializedType = E->getType();
2839 
2840   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2841   if (Slot)
2842     return Slot;
2843 
2844   // FIXME: If an externally-visible declaration extends multiple temporaries,
2845   // we need to give each temporary the same name in every translation unit (and
2846   // we also need to make the temporaries externally-visible).
2847   SmallString<256> Name;
2848   llvm::raw_svector_ostream Out(Name);
2849   getCXXABI().getMangleContext().mangleReferenceTemporary(
2850       VD, E->getManglingNumber(), Out);
2851   Out.flush();
2852 
2853   APValue *Value = 0;
2854   if (E->getStorageDuration() == SD_Static) {
2855     // We might have a cached constant initializer for this temporary. Note
2856     // that this might have a different value from the value computed by
2857     // evaluating the initializer if the surrounding constant expression
2858     // modifies the temporary.
2859     Value = getContext().getMaterializedTemporaryValue(E, false);
2860     if (Value && Value->isUninit())
2861       Value = 0;
2862   }
2863 
2864   // Try evaluating it now, it might have a constant initializer.
2865   Expr::EvalResult EvalResult;
2866   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2867       !EvalResult.hasSideEffects())
2868     Value = &EvalResult.Val;
2869 
2870   llvm::Constant *InitialValue = 0;
2871   bool Constant = false;
2872   llvm::Type *Type;
2873   if (Value) {
2874     // The temporary has a constant initializer, use it.
2875     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2876     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2877     Type = InitialValue->getType();
2878   } else {
2879     // No initializer, the initialization will be provided when we
2880     // initialize the declaration which performed lifetime extension.
2881     Type = getTypes().ConvertTypeForMem(MaterializedType);
2882   }
2883 
2884   // Create a global variable for this lifetime-extended temporary.
2885   llvm::GlobalValue::LinkageTypes Linkage =
2886       getLLVMLinkageVarDefinition(VD, Constant);
2887   // There is no need for this temporary to have global linkage if the global
2888   // variable has external linkage.
2889   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
2890     Linkage = llvm::GlobalVariable::PrivateLinkage;
2891   unsigned AddrSpace = GetGlobalVarAddressSpace(
2892       VD, getContext().getTargetAddressSpace(MaterializedType));
2893   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2894       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
2895       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2896       AddrSpace);
2897   setGlobalVisibility(GV, VD);
2898   GV->setAlignment(
2899       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2900   if (VD->getTLSKind())
2901     setTLSMode(GV, *VD);
2902   Slot = GV;
2903   return GV;
2904 }
2905 
2906 /// EmitObjCPropertyImplementations - Emit information for synthesized
2907 /// properties for an implementation.
2908 void CodeGenModule::EmitObjCPropertyImplementations(const
2909                                                     ObjCImplementationDecl *D) {
2910   for (const auto *PID : D->property_impls()) {
2911     // Dynamic is just for type-checking.
2912     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2913       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2914 
2915       // Determine which methods need to be implemented, some may have
2916       // been overridden. Note that ::isPropertyAccessor is not the method
2917       // we want, that just indicates if the decl came from a
2918       // property. What we want to know is if the method is defined in
2919       // this implementation.
2920       if (!D->getInstanceMethod(PD->getGetterName()))
2921         CodeGenFunction(*this).GenerateObjCGetter(
2922                                  const_cast<ObjCImplementationDecl *>(D), PID);
2923       if (!PD->isReadOnly() &&
2924           !D->getInstanceMethod(PD->getSetterName()))
2925         CodeGenFunction(*this).GenerateObjCSetter(
2926                                  const_cast<ObjCImplementationDecl *>(D), PID);
2927     }
2928   }
2929 }
2930 
2931 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2932   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2933   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2934        ivar; ivar = ivar->getNextIvar())
2935     if (ivar->getType().isDestructedType())
2936       return true;
2937 
2938   return false;
2939 }
2940 
2941 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2942 /// for an implementation.
2943 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2944   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2945   if (needsDestructMethod(D)) {
2946     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2947     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2948     ObjCMethodDecl *DTORMethod =
2949       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2950                              cxxSelector, getContext().VoidTy, 0, D,
2951                              /*isInstance=*/true, /*isVariadic=*/false,
2952                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2953                              /*isDefined=*/false, ObjCMethodDecl::Required);
2954     D->addInstanceMethod(DTORMethod);
2955     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2956     D->setHasDestructors(true);
2957   }
2958 
2959   // If the implementation doesn't have any ivar initializers, we don't need
2960   // a .cxx_construct.
2961   if (D->getNumIvarInitializers() == 0)
2962     return;
2963 
2964   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2965   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2966   // The constructor returns 'self'.
2967   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2968                                                 D->getLocation(),
2969                                                 D->getLocation(),
2970                                                 cxxSelector,
2971                                                 getContext().getObjCIdType(), 0,
2972                                                 D, /*isInstance=*/true,
2973                                                 /*isVariadic=*/false,
2974                                                 /*isPropertyAccessor=*/true,
2975                                                 /*isImplicitlyDeclared=*/true,
2976                                                 /*isDefined=*/false,
2977                                                 ObjCMethodDecl::Required);
2978   D->addInstanceMethod(CTORMethod);
2979   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2980   D->setHasNonZeroConstructors(true);
2981 }
2982 
2983 /// EmitNamespace - Emit all declarations in a namespace.
2984 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2985   for (auto *I : ND->decls()) {
2986     if (const auto *VD = dyn_cast<VarDecl>(I))
2987       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2988           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2989         continue;
2990     EmitTopLevelDecl(I);
2991   }
2992 }
2993 
2994 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2995 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2996   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2997       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2998     ErrorUnsupported(LSD, "linkage spec");
2999     return;
3000   }
3001 
3002   for (auto *I : LSD->decls()) {
3003     // Meta-data for ObjC class includes references to implemented methods.
3004     // Generate class's method definitions first.
3005     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3006       for (auto *M : OID->methods())
3007         EmitTopLevelDecl(M);
3008     }
3009     EmitTopLevelDecl(I);
3010   }
3011 }
3012 
3013 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3014 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3015   // Ignore dependent declarations.
3016   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3017     return;
3018 
3019   switch (D->getKind()) {
3020   case Decl::CXXConversion:
3021   case Decl::CXXMethod:
3022   case Decl::Function:
3023     // Skip function templates
3024     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3025         cast<FunctionDecl>(D)->isLateTemplateParsed())
3026       return;
3027 
3028     EmitGlobal(cast<FunctionDecl>(D));
3029     break;
3030 
3031   case Decl::Var:
3032     // Skip variable templates
3033     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3034       return;
3035   case Decl::VarTemplateSpecialization:
3036     EmitGlobal(cast<VarDecl>(D));
3037     break;
3038 
3039   // Indirect fields from global anonymous structs and unions can be
3040   // ignored; only the actual variable requires IR gen support.
3041   case Decl::IndirectField:
3042     break;
3043 
3044   // C++ Decls
3045   case Decl::Namespace:
3046     EmitNamespace(cast<NamespaceDecl>(D));
3047     break;
3048     // No code generation needed.
3049   case Decl::UsingShadow:
3050   case Decl::ClassTemplate:
3051   case Decl::VarTemplate:
3052   case Decl::VarTemplatePartialSpecialization:
3053   case Decl::FunctionTemplate:
3054   case Decl::TypeAliasTemplate:
3055   case Decl::Block:
3056   case Decl::Empty:
3057     break;
3058   case Decl::Using:          // using X; [C++]
3059     if (CGDebugInfo *DI = getModuleDebugInfo())
3060         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3061     return;
3062   case Decl::NamespaceAlias:
3063     if (CGDebugInfo *DI = getModuleDebugInfo())
3064         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3065     return;
3066   case Decl::UsingDirective: // using namespace X; [C++]
3067     if (CGDebugInfo *DI = getModuleDebugInfo())
3068       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3069     return;
3070   case Decl::CXXConstructor:
3071     // Skip function templates
3072     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3073         cast<FunctionDecl>(D)->isLateTemplateParsed())
3074       return;
3075 
3076     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3077     break;
3078   case Decl::CXXDestructor:
3079     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3080       return;
3081     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3082     break;
3083 
3084   case Decl::StaticAssert:
3085     // Nothing to do.
3086     break;
3087 
3088   // Objective-C Decls
3089 
3090   // Forward declarations, no (immediate) code generation.
3091   case Decl::ObjCInterface:
3092   case Decl::ObjCCategory:
3093     break;
3094 
3095   case Decl::ObjCProtocol: {
3096     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
3097     if (Proto->isThisDeclarationADefinition())
3098       ObjCRuntime->GenerateProtocol(Proto);
3099     break;
3100   }
3101 
3102   case Decl::ObjCCategoryImpl:
3103     // Categories have properties but don't support synthesize so we
3104     // can ignore them here.
3105     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3106     break;
3107 
3108   case Decl::ObjCImplementation: {
3109     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
3110     EmitObjCPropertyImplementations(OMD);
3111     EmitObjCIvarInitializations(OMD);
3112     ObjCRuntime->GenerateClass(OMD);
3113     // Emit global variable debug information.
3114     if (CGDebugInfo *DI = getModuleDebugInfo())
3115       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3116         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3117             OMD->getClassInterface()), OMD->getLocation());
3118     break;
3119   }
3120   case Decl::ObjCMethod: {
3121     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
3122     // If this is not a prototype, emit the body.
3123     if (OMD->getBody())
3124       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3125     break;
3126   }
3127   case Decl::ObjCCompatibleAlias:
3128     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3129     break;
3130 
3131   case Decl::LinkageSpec:
3132     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3133     break;
3134 
3135   case Decl::FileScopeAsm: {
3136     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
3137     StringRef AsmString = AD->getAsmString()->getString();
3138 
3139     const std::string &S = getModule().getModuleInlineAsm();
3140     if (S.empty())
3141       getModule().setModuleInlineAsm(AsmString);
3142     else if (S.end()[-1] == '\n')
3143       getModule().setModuleInlineAsm(S + AsmString.str());
3144     else
3145       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3146     break;
3147   }
3148 
3149   case Decl::Import: {
3150     ImportDecl *Import = cast<ImportDecl>(D);
3151 
3152     // Ignore import declarations that come from imported modules.
3153     if (clang::Module *Owner = Import->getOwningModule()) {
3154       if (getLangOpts().CurrentModule.empty() ||
3155           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3156         break;
3157     }
3158 
3159     ImportedModules.insert(Import->getImportedModule());
3160     break;
3161   }
3162 
3163   case Decl::ClassTemplateSpecialization: {
3164     const ClassTemplateSpecializationDecl *Spec =
3165         cast<ClassTemplateSpecializationDecl>(D);
3166     if (DebugInfo &&
3167         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition)
3168       DebugInfo->completeTemplateDefinition(*Spec);
3169   }
3170 
3171   default:
3172     // Make sure we handled everything we should, every other kind is a
3173     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3174     // function. Need to recode Decl::Kind to do that easily.
3175     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3176   }
3177 }
3178 
3179 /// Turns the given pointer into a constant.
3180 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3181                                           const void *Ptr) {
3182   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3183   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3184   return llvm::ConstantInt::get(i64, PtrInt);
3185 }
3186 
3187 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3188                                    llvm::NamedMDNode *&GlobalMetadata,
3189                                    GlobalDecl D,
3190                                    llvm::GlobalValue *Addr) {
3191   if (!GlobalMetadata)
3192     GlobalMetadata =
3193       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3194 
3195   // TODO: should we report variant information for ctors/dtors?
3196   llvm::Value *Ops[] = {
3197     Addr,
3198     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3199   };
3200   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3201 }
3202 
3203 /// For each function which is declared within an extern "C" region and marked
3204 /// as 'used', but has internal linkage, create an alias from the unmangled
3205 /// name to the mangled name if possible. People expect to be able to refer
3206 /// to such functions with an unmangled name from inline assembly within the
3207 /// same translation unit.
3208 void CodeGenModule::EmitStaticExternCAliases() {
3209   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3210                                   E = StaticExternCValues.end();
3211        I != E; ++I) {
3212     IdentifierInfo *Name = I->first;
3213     llvm::GlobalValue *Val = I->second;
3214     if (Val && !getModule().getNamedValue(Name->getName()))
3215       addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3216                                           Name->getName(), Val, &getModule()));
3217   }
3218 }
3219 
3220 /// Emits metadata nodes associating all the global values in the
3221 /// current module with the Decls they came from.  This is useful for
3222 /// projects using IR gen as a subroutine.
3223 ///
3224 /// Since there's currently no way to associate an MDNode directly
3225 /// with an llvm::GlobalValue, we create a global named metadata
3226 /// with the name 'clang.global.decl.ptrs'.
3227 void CodeGenModule::EmitDeclMetadata() {
3228   llvm::NamedMDNode *GlobalMetadata = 0;
3229 
3230   // StaticLocalDeclMap
3231   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3232          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3233        I != E; ++I) {
3234     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3235     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3236   }
3237 }
3238 
3239 /// Emits metadata nodes for all the local variables in the current
3240 /// function.
3241 void CodeGenFunction::EmitDeclMetadata() {
3242   if (LocalDeclMap.empty()) return;
3243 
3244   llvm::LLVMContext &Context = getLLVMContext();
3245 
3246   // Find the unique metadata ID for this name.
3247   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3248 
3249   llvm::NamedMDNode *GlobalMetadata = 0;
3250 
3251   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3252          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3253     const Decl *D = I->first;
3254     llvm::Value *Addr = I->second;
3255 
3256     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3257       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3258       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3259     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3260       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3261       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3262     }
3263   }
3264 }
3265 
3266 void CodeGenModule::EmitVersionIdentMetadata() {
3267   llvm::NamedMDNode *IdentMetadata =
3268     TheModule.getOrInsertNamedMetadata("llvm.ident");
3269   std::string Version = getClangFullVersion();
3270   llvm::LLVMContext &Ctx = TheModule.getContext();
3271 
3272   llvm::Value *IdentNode[] = {
3273     llvm::MDString::get(Ctx, Version)
3274   };
3275   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3276 }
3277 
3278 void CodeGenModule::EmitCoverageFile() {
3279   if (!getCodeGenOpts().CoverageFile.empty()) {
3280     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3281       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3282       llvm::LLVMContext &Ctx = TheModule.getContext();
3283       llvm::MDString *CoverageFile =
3284           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3285       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3286         llvm::MDNode *CU = CUNode->getOperand(i);
3287         llvm::Value *node[] = { CoverageFile, CU };
3288         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3289         GCov->addOperand(N);
3290       }
3291     }
3292   }
3293 }
3294 
3295 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3296                                                      QualType GuidType) {
3297   // Sema has checked that all uuid strings are of the form
3298   // "12345678-1234-1234-1234-1234567890ab".
3299   assert(Uuid.size() == 36);
3300   for (unsigned i = 0; i < 36; ++i) {
3301     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3302     else                                         assert(isHexDigit(Uuid[i]));
3303   }
3304 
3305   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3306 
3307   llvm::Constant *Field3[8];
3308   for (unsigned Idx = 0; Idx < 8; ++Idx)
3309     Field3[Idx] = llvm::ConstantInt::get(
3310         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3311 
3312   llvm::Constant *Fields[4] = {
3313     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3314     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3315     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3316     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3317   };
3318 
3319   return llvm::ConstantStruct::getAnon(Fields);
3320 }
3321