1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/CodeGen/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/Basic/Builtins.h" 28 #include "clang/Basic/Diagnostic.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Basic/ConvertUTF.h" 32 #include "llvm/CallingConv.h" 33 #include "llvm/Module.h" 34 #include "llvm/Intrinsics.h" 35 #include "llvm/LLVMContext.h" 36 #include "llvm/ADT/Triple.h" 37 #include "llvm/Target/TargetData.h" 38 #include "llvm/Support/CallSite.h" 39 #include "llvm/Support/ErrorHandling.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 44 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 45 llvm::Module &M, const llvm::TargetData &TD, 46 Diagnostic &diags) 47 : BlockModule(C, M, TD, Types, *this), Context(C), 48 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 49 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 50 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 51 MangleCtx(C, diags), VTables(*this), Runtime(0), 52 CFConstantStringClassRef(0), 53 NSConstantStringClassRef(0), 54 VMContext(M.getContext()) { 55 56 if (!Features.ObjC1) 57 Runtime = 0; 58 else if (!Features.NeXTRuntime) 59 Runtime = CreateGNUObjCRuntime(*this); 60 else if (Features.ObjCNonFragileABI) 61 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 62 else 63 Runtime = CreateMacObjCRuntime(*this); 64 65 // If debug info generation is enabled, create the CGDebugInfo object. 66 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 67 } 68 69 CodeGenModule::~CodeGenModule() { 70 delete Runtime; 71 delete DebugInfo; 72 } 73 74 void CodeGenModule::createObjCRuntime() { 75 if (!Features.NeXTRuntime) 76 Runtime = CreateGNUObjCRuntime(*this); 77 else if (Features.ObjCNonFragileABI) 78 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 79 else 80 Runtime = CreateMacObjCRuntime(*this); 81 } 82 83 void CodeGenModule::Release() { 84 EmitDeferred(); 85 EmitCXXGlobalInitFunc(); 86 EmitCXXGlobalDtorFunc(); 87 if (Runtime) 88 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 89 AddGlobalCtor(ObjCInitFunction); 90 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 91 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 92 EmitAnnotations(); 93 EmitLLVMUsed(); 94 } 95 96 bool CodeGenModule::isTargetDarwin() const { 97 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 98 } 99 100 /// ErrorUnsupported - Print out an error that codegen doesn't support the 101 /// specified stmt yet. 102 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 103 bool OmitOnError) { 104 if (OmitOnError && getDiags().hasErrorOccurred()) 105 return; 106 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 107 "cannot compile this %0 yet"); 108 std::string Msg = Type; 109 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 110 << Msg << S->getSourceRange(); 111 } 112 113 /// ErrorUnsupported - Print out an error that codegen doesn't support the 114 /// specified decl yet. 115 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 116 bool OmitOnError) { 117 if (OmitOnError && getDiags().hasErrorOccurred()) 118 return; 119 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 120 "cannot compile this %0 yet"); 121 std::string Msg = Type; 122 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 123 } 124 125 LangOptions::VisibilityMode 126 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 127 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 128 if (VD->getStorageClass() == VarDecl::PrivateExtern) 129 return LangOptions::Hidden; 130 131 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 132 switch (attr->getVisibility()) { 133 default: assert(0 && "Unknown visibility!"); 134 case VisibilityAttr::DefaultVisibility: 135 return LangOptions::Default; 136 case VisibilityAttr::HiddenVisibility: 137 return LangOptions::Hidden; 138 case VisibilityAttr::ProtectedVisibility: 139 return LangOptions::Protected; 140 } 141 } 142 143 // This decl should have the same visibility as its parent. 144 if (const DeclContext *DC = D->getDeclContext()) 145 return getDeclVisibilityMode(cast<Decl>(DC)); 146 147 return getLangOptions().getVisibilityMode(); 148 } 149 150 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 151 const Decl *D) const { 152 // Internal definitions always have default visibility. 153 if (GV->hasLocalLinkage()) { 154 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 155 return; 156 } 157 158 switch (getDeclVisibilityMode(D)) { 159 default: assert(0 && "Unknown visibility!"); 160 case LangOptions::Default: 161 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 162 case LangOptions::Hidden: 163 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 164 case LangOptions::Protected: 165 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 166 } 167 } 168 169 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) { 170 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 171 172 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 173 return getMangledCXXCtorName(Buffer, D, GD.getCtorType()); 174 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 175 return getMangledCXXDtorName(Buffer, D, GD.getDtorType()); 176 177 return getMangledName(Buffer, ND); 178 } 179 180 /// \brief Retrieves the mangled name for the given declaration. 181 /// 182 /// If the given declaration requires a mangled name, returns an 183 /// const char* containing the mangled name. Otherwise, returns 184 /// the unmangled name. 185 /// 186 void CodeGenModule::getMangledName(MangleBuffer &Buffer, 187 const NamedDecl *ND) { 188 if (!getMangleContext().shouldMangleDeclName(ND)) { 189 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 190 Buffer.setString(ND->getNameAsCString()); 191 return; 192 } 193 194 getMangleContext().mangleName(ND, Buffer.getBuffer()); 195 } 196 197 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 198 return getModule().getNamedValue(Name); 199 } 200 201 /// AddGlobalCtor - Add a function to the list that will be called before 202 /// main() runs. 203 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 204 // FIXME: Type coercion of void()* types. 205 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 206 } 207 208 /// AddGlobalDtor - Add a function to the list that will be called 209 /// when the module is unloaded. 210 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 211 // FIXME: Type coercion of void()* types. 212 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 213 } 214 215 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 216 // Ctor function type is void()*. 217 llvm::FunctionType* CtorFTy = 218 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 219 std::vector<const llvm::Type*>(), 220 false); 221 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 222 223 // Get the type of a ctor entry, { i32, void ()* }. 224 llvm::StructType* CtorStructTy = 225 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 226 llvm::PointerType::getUnqual(CtorFTy), NULL); 227 228 // Construct the constructor and destructor arrays. 229 std::vector<llvm::Constant*> Ctors; 230 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 231 std::vector<llvm::Constant*> S; 232 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 233 I->second, false)); 234 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 235 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 236 } 237 238 if (!Ctors.empty()) { 239 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 240 new llvm::GlobalVariable(TheModule, AT, false, 241 llvm::GlobalValue::AppendingLinkage, 242 llvm::ConstantArray::get(AT, Ctors), 243 GlobalName); 244 } 245 } 246 247 void CodeGenModule::EmitAnnotations() { 248 if (Annotations.empty()) 249 return; 250 251 // Create a new global variable for the ConstantStruct in the Module. 252 llvm::Constant *Array = 253 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 254 Annotations.size()), 255 Annotations); 256 llvm::GlobalValue *gv = 257 new llvm::GlobalVariable(TheModule, Array->getType(), false, 258 llvm::GlobalValue::AppendingLinkage, Array, 259 "llvm.global.annotations"); 260 gv->setSection("llvm.metadata"); 261 } 262 263 static CodeGenModule::GVALinkage 264 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 265 const LangOptions &Features) { 266 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 267 268 Linkage L = FD->getLinkage(); 269 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 270 FD->getType()->getLinkage() == UniqueExternalLinkage) 271 L = UniqueExternalLinkage; 272 273 switch (L) { 274 case NoLinkage: 275 case InternalLinkage: 276 case UniqueExternalLinkage: 277 return CodeGenModule::GVA_Internal; 278 279 case ExternalLinkage: 280 switch (FD->getTemplateSpecializationKind()) { 281 case TSK_Undeclared: 282 case TSK_ExplicitSpecialization: 283 External = CodeGenModule::GVA_StrongExternal; 284 break; 285 286 case TSK_ExplicitInstantiationDefinition: 287 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 288 289 case TSK_ExplicitInstantiationDeclaration: 290 case TSK_ImplicitInstantiation: 291 External = CodeGenModule::GVA_TemplateInstantiation; 292 break; 293 } 294 } 295 296 if (!FD->isInlined()) 297 return External; 298 299 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 300 // GNU or C99 inline semantics. Determine whether this symbol should be 301 // externally visible. 302 if (FD->isInlineDefinitionExternallyVisible()) 303 return External; 304 305 // C99 inline semantics, where the symbol is not externally visible. 306 return CodeGenModule::GVA_C99Inline; 307 } 308 309 // C++0x [temp.explicit]p9: 310 // [ Note: The intent is that an inline function that is the subject of 311 // an explicit instantiation declaration will still be implicitly 312 // instantiated when used so that the body can be considered for 313 // inlining, but that no out-of-line copy of the inline function would be 314 // generated in the translation unit. -- end note ] 315 if (FD->getTemplateSpecializationKind() 316 == TSK_ExplicitInstantiationDeclaration) 317 return CodeGenModule::GVA_C99Inline; 318 319 return CodeGenModule::GVA_CXXInline; 320 } 321 322 llvm::GlobalValue::LinkageTypes 323 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 324 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 325 326 if (Linkage == GVA_Internal) { 327 return llvm::Function::InternalLinkage; 328 } else if (D->hasAttr<DLLExportAttr>()) { 329 return llvm::Function::DLLExportLinkage; 330 } else if (D->hasAttr<WeakAttr>()) { 331 return llvm::Function::WeakAnyLinkage; 332 } else if (Linkage == GVA_C99Inline) { 333 // In C99 mode, 'inline' functions are guaranteed to have a strong 334 // definition somewhere else, so we can use available_externally linkage. 335 return llvm::Function::AvailableExternallyLinkage; 336 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 337 // In C++, the compiler has to emit a definition in every translation unit 338 // that references the function. We should use linkonce_odr because 339 // a) if all references in this translation unit are optimized away, we 340 // don't need to codegen it. b) if the function persists, it needs to be 341 // merged with other definitions. c) C++ has the ODR, so we know the 342 // definition is dependable. 343 return llvm::Function::LinkOnceODRLinkage; 344 } else if (Linkage == GVA_ExplicitTemplateInstantiation) { 345 // An explicit instantiation of a template has weak linkage, since 346 // explicit instantiations can occur in multiple translation units 347 // and must all be equivalent. However, we are not allowed to 348 // throw away these explicit instantiations. 349 return llvm::Function::WeakODRLinkage; 350 } else { 351 assert(Linkage == GVA_StrongExternal); 352 // Otherwise, we have strong external linkage. 353 return llvm::Function::ExternalLinkage; 354 } 355 } 356 357 358 /// SetFunctionDefinitionAttributes - Set attributes for a global. 359 /// 360 /// FIXME: This is currently only done for aliases and functions, but not for 361 /// variables (these details are set in EmitGlobalVarDefinition for variables). 362 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 363 llvm::GlobalValue *GV) { 364 GV->setLinkage(getFunctionLinkage(D)); 365 SetCommonAttributes(D, GV); 366 } 367 368 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 369 const CGFunctionInfo &Info, 370 llvm::Function *F) { 371 unsigned CallingConv; 372 AttributeListType AttributeList; 373 ConstructAttributeList(Info, D, AttributeList, CallingConv); 374 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 375 AttributeList.size())); 376 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 377 } 378 379 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 380 llvm::Function *F) { 381 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 382 F->addFnAttr(llvm::Attribute::NoUnwind); 383 384 if (D->hasAttr<AlwaysInlineAttr>()) 385 F->addFnAttr(llvm::Attribute::AlwaysInline); 386 387 if (D->hasAttr<NoInlineAttr>()) 388 F->addFnAttr(llvm::Attribute::NoInline); 389 390 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 391 F->addFnAttr(llvm::Attribute::StackProtect); 392 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 393 F->addFnAttr(llvm::Attribute::StackProtectReq); 394 395 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 396 unsigned width = Context.Target.getCharWidth(); 397 F->setAlignment(AA->getAlignment() / width); 398 while ((AA = AA->getNext<AlignedAttr>())) 399 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 400 } 401 // C++ ABI requires 2-byte alignment for member functions. 402 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 403 F->setAlignment(2); 404 } 405 406 void CodeGenModule::SetCommonAttributes(const Decl *D, 407 llvm::GlobalValue *GV) { 408 setGlobalVisibility(GV, D); 409 410 if (D->hasAttr<UsedAttr>()) 411 AddUsedGlobal(GV); 412 413 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 414 GV->setSection(SA->getName()); 415 416 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 417 } 418 419 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 420 llvm::Function *F, 421 const CGFunctionInfo &FI) { 422 SetLLVMFunctionAttributes(D, FI, F); 423 SetLLVMFunctionAttributesForDefinition(D, F); 424 425 F->setLinkage(llvm::Function::InternalLinkage); 426 427 SetCommonAttributes(D, F); 428 } 429 430 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 431 llvm::Function *F, 432 bool IsIncompleteFunction) { 433 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 434 435 if (!IsIncompleteFunction) 436 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 437 438 // Only a few attributes are set on declarations; these may later be 439 // overridden by a definition. 440 441 if (FD->hasAttr<DLLImportAttr>()) { 442 F->setLinkage(llvm::Function::DLLImportLinkage); 443 } else if (FD->hasAttr<WeakAttr>() || 444 FD->hasAttr<WeakImportAttr>()) { 445 // "extern_weak" is overloaded in LLVM; we probably should have 446 // separate linkage types for this. 447 F->setLinkage(llvm::Function::ExternalWeakLinkage); 448 } else { 449 F->setLinkage(llvm::Function::ExternalLinkage); 450 } 451 452 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 453 F->setSection(SA->getName()); 454 } 455 456 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 457 assert(!GV->isDeclaration() && 458 "Only globals with definition can force usage."); 459 LLVMUsed.push_back(GV); 460 } 461 462 void CodeGenModule::EmitLLVMUsed() { 463 // Don't create llvm.used if there is no need. 464 if (LLVMUsed.empty()) 465 return; 466 467 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 468 469 // Convert LLVMUsed to what ConstantArray needs. 470 std::vector<llvm::Constant*> UsedArray; 471 UsedArray.resize(LLVMUsed.size()); 472 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 473 UsedArray[i] = 474 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 475 i8PTy); 476 } 477 478 if (UsedArray.empty()) 479 return; 480 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 481 482 llvm::GlobalVariable *GV = 483 new llvm::GlobalVariable(getModule(), ATy, false, 484 llvm::GlobalValue::AppendingLinkage, 485 llvm::ConstantArray::get(ATy, UsedArray), 486 "llvm.used"); 487 488 GV->setSection("llvm.metadata"); 489 } 490 491 void CodeGenModule::EmitDeferred() { 492 // Emit code for any potentially referenced deferred decls. Since a 493 // previously unused static decl may become used during the generation of code 494 // for a static function, iterate until no changes are made. 495 496 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 497 if (!DeferredVTables.empty()) { 498 const CXXRecordDecl *RD = DeferredVTables.back(); 499 DeferredVTables.pop_back(); 500 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 501 continue; 502 } 503 504 GlobalDecl D = DeferredDeclsToEmit.back(); 505 DeferredDeclsToEmit.pop_back(); 506 507 // Look it up to see if it was defined with a stronger definition (e.g. an 508 // extern inline function with a strong function redefinition). If so, 509 // just ignore the deferred decl. 510 MangleBuffer Name; 511 getMangledName(Name, D); 512 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 513 assert(CGRef && "Deferred decl wasn't referenced?"); 514 515 if (!CGRef->isDeclaration()) 516 continue; 517 518 // Otherwise, emit the definition and move on to the next one. 519 EmitGlobalDefinition(D); 520 } 521 } 522 523 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 524 /// annotation information for a given GlobalValue. The annotation struct is 525 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 526 /// GlobalValue being annotated. The second field is the constant string 527 /// created from the AnnotateAttr's annotation. The third field is a constant 528 /// string containing the name of the translation unit. The fourth field is 529 /// the line number in the file of the annotated value declaration. 530 /// 531 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 532 /// appears to. 533 /// 534 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 535 const AnnotateAttr *AA, 536 unsigned LineNo) { 537 llvm::Module *M = &getModule(); 538 539 // get [N x i8] constants for the annotation string, and the filename string 540 // which are the 2nd and 3rd elements of the global annotation structure. 541 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 542 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 543 AA->getAnnotation(), true); 544 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 545 M->getModuleIdentifier(), 546 true); 547 548 // Get the two global values corresponding to the ConstantArrays we just 549 // created to hold the bytes of the strings. 550 llvm::GlobalValue *annoGV = 551 new llvm::GlobalVariable(*M, anno->getType(), false, 552 llvm::GlobalValue::PrivateLinkage, anno, 553 GV->getName()); 554 // translation unit name string, emitted into the llvm.metadata section. 555 llvm::GlobalValue *unitGV = 556 new llvm::GlobalVariable(*M, unit->getType(), false, 557 llvm::GlobalValue::PrivateLinkage, unit, 558 ".str"); 559 560 // Create the ConstantStruct for the global annotation. 561 llvm::Constant *Fields[4] = { 562 llvm::ConstantExpr::getBitCast(GV, SBP), 563 llvm::ConstantExpr::getBitCast(annoGV, SBP), 564 llvm::ConstantExpr::getBitCast(unitGV, SBP), 565 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 566 }; 567 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 568 } 569 570 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 571 // Never defer when EmitAllDecls is specified or the decl has 572 // attribute used. 573 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 574 return false; 575 576 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 577 // Constructors and destructors should never be deferred. 578 if (FD->hasAttr<ConstructorAttr>() || 579 FD->hasAttr<DestructorAttr>()) 580 return false; 581 582 // The key function for a class must never be deferred. 583 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 584 const CXXRecordDecl *RD = MD->getParent(); 585 if (MD->isOutOfLine() && RD->isDynamicClass()) { 586 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 587 if (KeyFunction && 588 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 589 return false; 590 } 591 } 592 593 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 594 595 // static, static inline, always_inline, and extern inline functions can 596 // always be deferred. Normal inline functions can be deferred in C99/C++. 597 // Implicit template instantiations can also be deferred in C++. 598 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 599 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 600 return true; 601 return false; 602 } 603 604 const VarDecl *VD = cast<VarDecl>(Global); 605 assert(VD->isFileVarDecl() && "Invalid decl"); 606 607 // We never want to defer structs that have non-trivial constructors or 608 // destructors. 609 610 // FIXME: Handle references. 611 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 612 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 613 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 614 return false; 615 } 616 } 617 618 // Static data may be deferred, but out-of-line static data members 619 // cannot be. 620 Linkage L = VD->getLinkage(); 621 if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus && 622 VD->getType()->getLinkage() == UniqueExternalLinkage) 623 L = UniqueExternalLinkage; 624 625 switch (L) { 626 case NoLinkage: 627 case InternalLinkage: 628 case UniqueExternalLinkage: 629 // Initializer has side effects? 630 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 631 return false; 632 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 633 634 case ExternalLinkage: 635 break; 636 } 637 638 return false; 639 } 640 641 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 642 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 643 assert(AA && "No alias?"); 644 645 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 646 647 // See if there is already something with the target's name in the module. 648 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 649 650 llvm::Constant *Aliasee; 651 if (isa<llvm::FunctionType>(DeclTy)) 652 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 653 else 654 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 655 llvm::PointerType::getUnqual(DeclTy), 0); 656 if (!Entry) { 657 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 658 F->setLinkage(llvm::Function::ExternalWeakLinkage); 659 WeakRefReferences.insert(F); 660 } 661 662 return Aliasee; 663 } 664 665 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 666 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 667 668 // Weak references don't produce any output by themselves. 669 if (Global->hasAttr<WeakRefAttr>()) 670 return; 671 672 // If this is an alias definition (which otherwise looks like a declaration) 673 // emit it now. 674 if (Global->hasAttr<AliasAttr>()) 675 return EmitAliasDefinition(GD); 676 677 // Ignore declarations, they will be emitted on their first use. 678 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 679 // Forward declarations are emitted lazily on first use. 680 if (!FD->isThisDeclarationADefinition()) 681 return; 682 } else { 683 const VarDecl *VD = cast<VarDecl>(Global); 684 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 685 686 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 687 return; 688 } 689 690 // Defer code generation when possible if this is a static definition, inline 691 // function etc. These we only want to emit if they are used. 692 if (!MayDeferGeneration(Global)) { 693 // Emit the definition if it can't be deferred. 694 EmitGlobalDefinition(GD); 695 return; 696 } 697 698 // If the value has already been used, add it directly to the 699 // DeferredDeclsToEmit list. 700 MangleBuffer MangledName; 701 getMangledName(MangledName, GD); 702 if (GetGlobalValue(MangledName)) 703 DeferredDeclsToEmit.push_back(GD); 704 else { 705 // Otherwise, remember that we saw a deferred decl with this name. The 706 // first use of the mangled name will cause it to move into 707 // DeferredDeclsToEmit. 708 DeferredDecls[MangledName] = GD; 709 } 710 } 711 712 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 713 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 714 715 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 716 Context.getSourceManager(), 717 "Generating code for declaration"); 718 719 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 720 if (Method->isVirtual()) 721 getVTables().EmitThunks(GD); 722 723 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 724 return EmitCXXConstructor(CD, GD.getCtorType()); 725 726 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 727 return EmitCXXDestructor(DD, GD.getDtorType()); 728 729 if (isa<FunctionDecl>(D)) 730 return EmitGlobalFunctionDefinition(GD); 731 732 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 733 return EmitGlobalVarDefinition(VD); 734 735 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 736 } 737 738 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 739 /// module, create and return an llvm Function with the specified type. If there 740 /// is something in the module with the specified name, return it potentially 741 /// bitcasted to the right type. 742 /// 743 /// If D is non-null, it specifies a decl that correspond to this. This is used 744 /// to set the attributes on the function when it is first created. 745 llvm::Constant * 746 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 747 const llvm::Type *Ty, 748 GlobalDecl D) { 749 // Lookup the entry, lazily creating it if necessary. 750 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 751 if (Entry) { 752 if (WeakRefReferences.count(Entry)) { 753 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 754 if (FD && !FD->hasAttr<WeakAttr>()) 755 Entry->setLinkage(llvm::Function::ExternalLinkage); 756 757 WeakRefReferences.erase(Entry); 758 } 759 760 if (Entry->getType()->getElementType() == Ty) 761 return Entry; 762 763 // Make sure the result is of the correct type. 764 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 765 return llvm::ConstantExpr::getBitCast(Entry, PTy); 766 } 767 768 // This function doesn't have a complete type (for example, the return 769 // type is an incomplete struct). Use a fake type instead, and make 770 // sure not to try to set attributes. 771 bool IsIncompleteFunction = false; 772 773 const llvm::FunctionType *FTy; 774 if (isa<llvm::FunctionType>(Ty)) { 775 FTy = cast<llvm::FunctionType>(Ty); 776 } else { 777 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 778 std::vector<const llvm::Type*>(), false); 779 IsIncompleteFunction = true; 780 } 781 llvm::Function *F = llvm::Function::Create(FTy, 782 llvm::Function::ExternalLinkage, 783 MangledName, &getModule()); 784 assert(F->getName() == MangledName && "name was uniqued!"); 785 if (D.getDecl()) 786 SetFunctionAttributes(D, F, IsIncompleteFunction); 787 788 // This is the first use or definition of a mangled name. If there is a 789 // deferred decl with this name, remember that we need to emit it at the end 790 // of the file. 791 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 792 if (DDI != DeferredDecls.end()) { 793 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 794 // list, and remove it from DeferredDecls (since we don't need it anymore). 795 DeferredDeclsToEmit.push_back(DDI->second); 796 DeferredDecls.erase(DDI); 797 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 798 // If this the first reference to a C++ inline function in a class, queue up 799 // the deferred function body for emission. These are not seen as 800 // top-level declarations. 801 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 802 DeferredDeclsToEmit.push_back(D); 803 // A called constructor which has no definition or declaration need be 804 // synthesized. 805 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 806 if (CD->isImplicit()) { 807 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 808 DeferredDeclsToEmit.push_back(D); 809 } 810 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 811 if (DD->isImplicit()) { 812 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 813 DeferredDeclsToEmit.push_back(D); 814 } 815 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 816 if (MD->isCopyAssignment() && MD->isImplicit()) { 817 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 818 DeferredDeclsToEmit.push_back(D); 819 } 820 } 821 } 822 823 // Make sure the result is of the requested type. 824 if (!IsIncompleteFunction) { 825 assert(F->getType()->getElementType() == Ty); 826 return F; 827 } 828 829 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 830 return llvm::ConstantExpr::getBitCast(F, PTy); 831 } 832 833 /// GetAddrOfFunction - Return the address of the given function. If Ty is 834 /// non-null, then this function will use the specified type if it has to 835 /// create it (this occurs when we see a definition of the function). 836 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 837 const llvm::Type *Ty) { 838 // If there was no specific requested type, just convert it now. 839 if (!Ty) 840 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 841 MangleBuffer MangledName; 842 getMangledName(MangledName, GD); 843 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 844 } 845 846 /// CreateRuntimeFunction - Create a new runtime function with the specified 847 /// type and name. 848 llvm::Constant * 849 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 850 llvm::StringRef Name) { 851 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 852 } 853 854 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 855 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 856 return false; 857 if (Context.getLangOptions().CPlusPlus && 858 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 859 // FIXME: We should do something fancier here! 860 return false; 861 } 862 return true; 863 } 864 865 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 866 /// create and return an llvm GlobalVariable with the specified type. If there 867 /// is something in the module with the specified name, return it potentially 868 /// bitcasted to the right type. 869 /// 870 /// If D is non-null, it specifies a decl that correspond to this. This is used 871 /// to set the attributes on the global when it is first created. 872 llvm::Constant * 873 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 874 const llvm::PointerType *Ty, 875 const VarDecl *D) { 876 // Lookup the entry, lazily creating it if necessary. 877 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 878 if (Entry) { 879 if (WeakRefReferences.count(Entry)) { 880 if (D && !D->hasAttr<WeakAttr>()) 881 Entry->setLinkage(llvm::Function::ExternalLinkage); 882 883 WeakRefReferences.erase(Entry); 884 } 885 886 if (Entry->getType() == Ty) 887 return Entry; 888 889 // Make sure the result is of the correct type. 890 return llvm::ConstantExpr::getBitCast(Entry, Ty); 891 } 892 893 // This is the first use or definition of a mangled name. If there is a 894 // deferred decl with this name, remember that we need to emit it at the end 895 // of the file. 896 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 897 if (DDI != DeferredDecls.end()) { 898 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 899 // list, and remove it from DeferredDecls (since we don't need it anymore). 900 DeferredDeclsToEmit.push_back(DDI->second); 901 DeferredDecls.erase(DDI); 902 } 903 904 llvm::GlobalVariable *GV = 905 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 906 llvm::GlobalValue::ExternalLinkage, 907 0, MangledName, 0, 908 false, Ty->getAddressSpace()); 909 910 // Handle things which are present even on external declarations. 911 if (D) { 912 // FIXME: This code is overly simple and should be merged with other global 913 // handling. 914 GV->setConstant(DeclIsConstantGlobal(Context, D)); 915 916 // FIXME: Merge with other attribute handling code. 917 if (D->getStorageClass() == VarDecl::PrivateExtern) 918 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 919 920 if (D->hasAttr<WeakAttr>() || 921 D->hasAttr<WeakImportAttr>()) 922 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 923 924 GV->setThreadLocal(D->isThreadSpecified()); 925 } 926 927 return GV; 928 } 929 930 931 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 932 /// given global variable. If Ty is non-null and if the global doesn't exist, 933 /// then it will be greated with the specified type instead of whatever the 934 /// normal requested type would be. 935 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 936 const llvm::Type *Ty) { 937 assert(D->hasGlobalStorage() && "Not a global variable"); 938 QualType ASTTy = D->getType(); 939 if (Ty == 0) 940 Ty = getTypes().ConvertTypeForMem(ASTTy); 941 942 const llvm::PointerType *PTy = 943 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 944 945 MangleBuffer MangledName; 946 getMangledName(MangledName, D); 947 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 948 } 949 950 /// CreateRuntimeVariable - Create a new runtime global variable with the 951 /// specified type and name. 952 llvm::Constant * 953 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 954 llvm::StringRef Name) { 955 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 956 } 957 958 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 959 assert(!D->getInit() && "Cannot emit definite definitions here!"); 960 961 if (MayDeferGeneration(D)) { 962 // If we have not seen a reference to this variable yet, place it 963 // into the deferred declarations table to be emitted if needed 964 // later. 965 MangleBuffer MangledName; 966 getMangledName(MangledName, D); 967 if (!GetGlobalValue(MangledName)) { 968 DeferredDecls[MangledName] = D; 969 return; 970 } 971 } 972 973 // The tentative definition is the only definition. 974 EmitGlobalVarDefinition(D); 975 } 976 977 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 978 if (DefinitionRequired) 979 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 980 } 981 982 llvm::GlobalVariable::LinkageTypes 983 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 984 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 985 return llvm::GlobalVariable::InternalLinkage; 986 987 if (const CXXMethodDecl *KeyFunction 988 = RD->getASTContext().getKeyFunction(RD)) { 989 // If this class has a key function, use that to determine the linkage of 990 // the vtable. 991 const FunctionDecl *Def = 0; 992 if (KeyFunction->getBody(Def)) 993 KeyFunction = cast<CXXMethodDecl>(Def); 994 995 switch (KeyFunction->getTemplateSpecializationKind()) { 996 case TSK_Undeclared: 997 case TSK_ExplicitSpecialization: 998 if (KeyFunction->isInlined()) 999 return llvm::GlobalVariable::WeakODRLinkage; 1000 1001 return llvm::GlobalVariable::ExternalLinkage; 1002 1003 case TSK_ImplicitInstantiation: 1004 case TSK_ExplicitInstantiationDefinition: 1005 return llvm::GlobalVariable::WeakODRLinkage; 1006 1007 case TSK_ExplicitInstantiationDeclaration: 1008 // FIXME: Use available_externally linkage. However, this currently 1009 // breaks LLVM's build due to undefined symbols. 1010 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1011 return llvm::GlobalVariable::WeakODRLinkage; 1012 } 1013 } 1014 1015 switch (RD->getTemplateSpecializationKind()) { 1016 case TSK_Undeclared: 1017 case TSK_ExplicitSpecialization: 1018 case TSK_ImplicitInstantiation: 1019 case TSK_ExplicitInstantiationDefinition: 1020 return llvm::GlobalVariable::WeakODRLinkage; 1021 1022 case TSK_ExplicitInstantiationDeclaration: 1023 // FIXME: Use available_externally linkage. However, this currently 1024 // breaks LLVM's build due to undefined symbols. 1025 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1026 return llvm::GlobalVariable::WeakODRLinkage; 1027 } 1028 1029 // Silence GCC warning. 1030 return llvm::GlobalVariable::WeakODRLinkage; 1031 } 1032 1033 static CodeGenModule::GVALinkage 1034 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 1035 // If this is a static data member, compute the kind of template 1036 // specialization. Otherwise, this variable is not part of a 1037 // template. 1038 TemplateSpecializationKind TSK = TSK_Undeclared; 1039 if (VD->isStaticDataMember()) 1040 TSK = VD->getTemplateSpecializationKind(); 1041 1042 Linkage L = VD->getLinkage(); 1043 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 1044 VD->getType()->getLinkage() == UniqueExternalLinkage) 1045 L = UniqueExternalLinkage; 1046 1047 switch (L) { 1048 case NoLinkage: 1049 case InternalLinkage: 1050 case UniqueExternalLinkage: 1051 return CodeGenModule::GVA_Internal; 1052 1053 case ExternalLinkage: 1054 switch (TSK) { 1055 case TSK_Undeclared: 1056 case TSK_ExplicitSpecialization: 1057 return CodeGenModule::GVA_StrongExternal; 1058 1059 case TSK_ExplicitInstantiationDeclaration: 1060 llvm_unreachable("Variable should not be instantiated"); 1061 // Fall through to treat this like any other instantiation. 1062 1063 case TSK_ExplicitInstantiationDefinition: 1064 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 1065 1066 case TSK_ImplicitInstantiation: 1067 return CodeGenModule::GVA_TemplateInstantiation; 1068 } 1069 } 1070 1071 return CodeGenModule::GVA_StrongExternal; 1072 } 1073 1074 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1075 return CharUnits::fromQuantity( 1076 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1077 } 1078 1079 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1080 llvm::Constant *Init = 0; 1081 QualType ASTTy = D->getType(); 1082 bool NonConstInit = false; 1083 1084 const Expr *InitExpr = D->getAnyInitializer(); 1085 1086 if (!InitExpr) { 1087 // This is a tentative definition; tentative definitions are 1088 // implicitly initialized with { 0 }. 1089 // 1090 // Note that tentative definitions are only emitted at the end of 1091 // a translation unit, so they should never have incomplete 1092 // type. In addition, EmitTentativeDefinition makes sure that we 1093 // never attempt to emit a tentative definition if a real one 1094 // exists. A use may still exists, however, so we still may need 1095 // to do a RAUW. 1096 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1097 Init = EmitNullConstant(D->getType()); 1098 } else { 1099 Init = EmitConstantExpr(InitExpr, D->getType()); 1100 if (!Init) { 1101 QualType T = InitExpr->getType(); 1102 if (D->getType()->isReferenceType()) 1103 T = D->getType(); 1104 1105 if (getLangOptions().CPlusPlus) { 1106 EmitCXXGlobalVarDeclInitFunc(D); 1107 Init = EmitNullConstant(T); 1108 NonConstInit = true; 1109 } else { 1110 ErrorUnsupported(D, "static initializer"); 1111 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1112 } 1113 } 1114 } 1115 1116 const llvm::Type* InitType = Init->getType(); 1117 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1118 1119 // Strip off a bitcast if we got one back. 1120 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1121 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1122 // all zero index gep. 1123 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1124 Entry = CE->getOperand(0); 1125 } 1126 1127 // Entry is now either a Function or GlobalVariable. 1128 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1129 1130 // We have a definition after a declaration with the wrong type. 1131 // We must make a new GlobalVariable* and update everything that used OldGV 1132 // (a declaration or tentative definition) with the new GlobalVariable* 1133 // (which will be a definition). 1134 // 1135 // This happens if there is a prototype for a global (e.g. 1136 // "extern int x[];") and then a definition of a different type (e.g. 1137 // "int x[10];"). This also happens when an initializer has a different type 1138 // from the type of the global (this happens with unions). 1139 if (GV == 0 || 1140 GV->getType()->getElementType() != InitType || 1141 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1142 1143 // Move the old entry aside so that we'll create a new one. 1144 Entry->setName(llvm::StringRef()); 1145 1146 // Make a new global with the correct type, this is now guaranteed to work. 1147 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1148 1149 // Replace all uses of the old global with the new global 1150 llvm::Constant *NewPtrForOldDecl = 1151 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1152 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1153 1154 // Erase the old global, since it is no longer used. 1155 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1156 } 1157 1158 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1159 SourceManager &SM = Context.getSourceManager(); 1160 AddAnnotation(EmitAnnotateAttr(GV, AA, 1161 SM.getInstantiationLineNumber(D->getLocation()))); 1162 } 1163 1164 GV->setInitializer(Init); 1165 1166 // If it is safe to mark the global 'constant', do so now. 1167 GV->setConstant(false); 1168 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1169 GV->setConstant(true); 1170 1171 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1172 1173 // Set the llvm linkage type as appropriate. 1174 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1175 if (Linkage == GVA_Internal) 1176 GV->setLinkage(llvm::Function::InternalLinkage); 1177 else if (D->hasAttr<DLLImportAttr>()) 1178 GV->setLinkage(llvm::Function::DLLImportLinkage); 1179 else if (D->hasAttr<DLLExportAttr>()) 1180 GV->setLinkage(llvm::Function::DLLExportLinkage); 1181 else if (D->hasAttr<WeakAttr>()) { 1182 if (GV->isConstant()) 1183 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1184 else 1185 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1186 } else if (Linkage == GVA_TemplateInstantiation || 1187 Linkage == GVA_ExplicitTemplateInstantiation) 1188 // FIXME: It seems like we can provide more specific linkage here 1189 // (LinkOnceODR, WeakODR). 1190 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1191 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1192 !D->hasExternalStorage() && !D->getInit() && 1193 !D->getAttr<SectionAttr>()) { 1194 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1195 // common vars aren't constant even if declared const. 1196 GV->setConstant(false); 1197 } else 1198 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1199 1200 SetCommonAttributes(D, GV); 1201 1202 // Emit global variable debug information. 1203 if (CGDebugInfo *DI = getDebugInfo()) { 1204 DI->setLocation(D->getLocation()); 1205 DI->EmitGlobalVariable(GV, D); 1206 } 1207 } 1208 1209 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1210 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1211 /// existing call uses of the old function in the module, this adjusts them to 1212 /// call the new function directly. 1213 /// 1214 /// This is not just a cleanup: the always_inline pass requires direct calls to 1215 /// functions to be able to inline them. If there is a bitcast in the way, it 1216 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1217 /// run at -O0. 1218 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1219 llvm::Function *NewFn) { 1220 // If we're redefining a global as a function, don't transform it. 1221 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1222 if (OldFn == 0) return; 1223 1224 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1225 llvm::SmallVector<llvm::Value*, 4> ArgList; 1226 1227 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1228 UI != E; ) { 1229 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1230 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1231 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1232 llvm::CallSite CS(CI); 1233 if (!CI || !CS.isCallee(I)) continue; 1234 1235 // If the return types don't match exactly, and if the call isn't dead, then 1236 // we can't transform this call. 1237 if (CI->getType() != NewRetTy && !CI->use_empty()) 1238 continue; 1239 1240 // If the function was passed too few arguments, don't transform. If extra 1241 // arguments were passed, we silently drop them. If any of the types 1242 // mismatch, we don't transform. 1243 unsigned ArgNo = 0; 1244 bool DontTransform = false; 1245 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1246 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1247 if (CS.arg_size() == ArgNo || 1248 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1249 DontTransform = true; 1250 break; 1251 } 1252 } 1253 if (DontTransform) 1254 continue; 1255 1256 // Okay, we can transform this. Create the new call instruction and copy 1257 // over the required information. 1258 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1259 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1260 ArgList.end(), "", CI); 1261 ArgList.clear(); 1262 if (!NewCall->getType()->isVoidTy()) 1263 NewCall->takeName(CI); 1264 NewCall->setAttributes(CI->getAttributes()); 1265 NewCall->setCallingConv(CI->getCallingConv()); 1266 1267 // Finally, remove the old call, replacing any uses with the new one. 1268 if (!CI->use_empty()) 1269 CI->replaceAllUsesWith(NewCall); 1270 1271 // Copy debug location attached to CI. 1272 if (!CI->getDebugLoc().isUnknown()) 1273 NewCall->setDebugLoc(CI->getDebugLoc()); 1274 CI->eraseFromParent(); 1275 } 1276 } 1277 1278 1279 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1280 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1281 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1282 getMangleContext().mangleInitDiscriminator(); 1283 // Get or create the prototype for the function. 1284 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1285 1286 // Strip off a bitcast if we got one back. 1287 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1288 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1289 Entry = CE->getOperand(0); 1290 } 1291 1292 1293 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1294 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1295 1296 // If the types mismatch then we have to rewrite the definition. 1297 assert(OldFn->isDeclaration() && 1298 "Shouldn't replace non-declaration"); 1299 1300 // F is the Function* for the one with the wrong type, we must make a new 1301 // Function* and update everything that used F (a declaration) with the new 1302 // Function* (which will be a definition). 1303 // 1304 // This happens if there is a prototype for a function 1305 // (e.g. "int f()") and then a definition of a different type 1306 // (e.g. "int f(int x)"). Move the old function aside so that it 1307 // doesn't interfere with GetAddrOfFunction. 1308 OldFn->setName(llvm::StringRef()); 1309 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1310 1311 // If this is an implementation of a function without a prototype, try to 1312 // replace any existing uses of the function (which may be calls) with uses 1313 // of the new function 1314 if (D->getType()->isFunctionNoProtoType()) { 1315 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1316 OldFn->removeDeadConstantUsers(); 1317 } 1318 1319 // Replace uses of F with the Function we will endow with a body. 1320 if (!Entry->use_empty()) { 1321 llvm::Constant *NewPtrForOldDecl = 1322 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1323 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1324 } 1325 1326 // Ok, delete the old function now, which is dead. 1327 OldFn->eraseFromParent(); 1328 1329 Entry = NewFn; 1330 } 1331 1332 llvm::Function *Fn = cast<llvm::Function>(Entry); 1333 1334 CodeGenFunction(*this).GenerateCode(D, Fn); 1335 1336 SetFunctionDefinitionAttributes(D, Fn); 1337 SetLLVMFunctionAttributesForDefinition(D, Fn); 1338 1339 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1340 AddGlobalCtor(Fn, CA->getPriority()); 1341 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1342 AddGlobalDtor(Fn, DA->getPriority()); 1343 } 1344 1345 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1346 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1347 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1348 assert(AA && "Not an alias?"); 1349 1350 MangleBuffer MangledName; 1351 getMangledName(MangledName, GD); 1352 1353 // If there is a definition in the module, then it wins over the alias. 1354 // This is dubious, but allow it to be safe. Just ignore the alias. 1355 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1356 if (Entry && !Entry->isDeclaration()) 1357 return; 1358 1359 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1360 1361 // Create a reference to the named value. This ensures that it is emitted 1362 // if a deferred decl. 1363 llvm::Constant *Aliasee; 1364 if (isa<llvm::FunctionType>(DeclTy)) 1365 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1366 else 1367 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1368 llvm::PointerType::getUnqual(DeclTy), 0); 1369 1370 // Create the new alias itself, but don't set a name yet. 1371 llvm::GlobalValue *GA = 1372 new llvm::GlobalAlias(Aliasee->getType(), 1373 llvm::Function::ExternalLinkage, 1374 "", Aliasee, &getModule()); 1375 1376 if (Entry) { 1377 assert(Entry->isDeclaration()); 1378 1379 // If there is a declaration in the module, then we had an extern followed 1380 // by the alias, as in: 1381 // extern int test6(); 1382 // ... 1383 // int test6() __attribute__((alias("test7"))); 1384 // 1385 // Remove it and replace uses of it with the alias. 1386 GA->takeName(Entry); 1387 1388 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1389 Entry->getType())); 1390 Entry->eraseFromParent(); 1391 } else { 1392 GA->setName(MangledName.getString()); 1393 } 1394 1395 // Set attributes which are particular to an alias; this is a 1396 // specialization of the attributes which may be set on a global 1397 // variable/function. 1398 if (D->hasAttr<DLLExportAttr>()) { 1399 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1400 // The dllexport attribute is ignored for undefined symbols. 1401 if (FD->getBody()) 1402 GA->setLinkage(llvm::Function::DLLExportLinkage); 1403 } else { 1404 GA->setLinkage(llvm::Function::DLLExportLinkage); 1405 } 1406 } else if (D->hasAttr<WeakAttr>() || 1407 D->hasAttr<WeakRefAttr>() || 1408 D->hasAttr<WeakImportAttr>()) { 1409 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1410 } 1411 1412 SetCommonAttributes(D, GA); 1413 } 1414 1415 /// getBuiltinLibFunction - Given a builtin id for a function like 1416 /// "__builtin_fabsf", return a Function* for "fabsf". 1417 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1418 unsigned BuiltinID) { 1419 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1420 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1421 "isn't a lib fn"); 1422 1423 // Get the name, skip over the __builtin_ prefix (if necessary). 1424 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1425 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1426 Name += 10; 1427 1428 const llvm::FunctionType *Ty = 1429 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1430 1431 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1432 } 1433 1434 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1435 unsigned NumTys) { 1436 return llvm::Intrinsic::getDeclaration(&getModule(), 1437 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1438 } 1439 1440 1441 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1442 const llvm::Type *SrcType, 1443 const llvm::Type *SizeType) { 1444 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1445 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1446 } 1447 1448 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1449 const llvm::Type *SrcType, 1450 const llvm::Type *SizeType) { 1451 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1452 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1453 } 1454 1455 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1456 const llvm::Type *SizeType) { 1457 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1458 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1459 } 1460 1461 static llvm::StringMapEntry<llvm::Constant*> & 1462 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1463 const StringLiteral *Literal, 1464 bool TargetIsLSB, 1465 bool &IsUTF16, 1466 unsigned &StringLength) { 1467 unsigned NumBytes = Literal->getByteLength(); 1468 1469 // Check for simple case. 1470 if (!Literal->containsNonAsciiOrNull()) { 1471 StringLength = NumBytes; 1472 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1473 StringLength)); 1474 } 1475 1476 // Otherwise, convert the UTF8 literals into a byte string. 1477 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1478 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1479 UTF16 *ToPtr = &ToBuf[0]; 1480 1481 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1482 &ToPtr, ToPtr + NumBytes, 1483 strictConversion); 1484 1485 // Check for conversion failure. 1486 if (Result != conversionOK) { 1487 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1488 // this duplicate code. 1489 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1490 StringLength = NumBytes; 1491 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1492 StringLength)); 1493 } 1494 1495 // ConvertUTF8toUTF16 returns the length in ToPtr. 1496 StringLength = ToPtr - &ToBuf[0]; 1497 1498 // Render the UTF-16 string into a byte array and convert to the target byte 1499 // order. 1500 // 1501 // FIXME: This isn't something we should need to do here. 1502 llvm::SmallString<128> AsBytes; 1503 AsBytes.reserve(StringLength * 2); 1504 for (unsigned i = 0; i != StringLength; ++i) { 1505 unsigned short Val = ToBuf[i]; 1506 if (TargetIsLSB) { 1507 AsBytes.push_back(Val & 0xFF); 1508 AsBytes.push_back(Val >> 8); 1509 } else { 1510 AsBytes.push_back(Val >> 8); 1511 AsBytes.push_back(Val & 0xFF); 1512 } 1513 } 1514 // Append one extra null character, the second is automatically added by our 1515 // caller. 1516 AsBytes.push_back(0); 1517 1518 IsUTF16 = true; 1519 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1520 } 1521 1522 llvm::Constant * 1523 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1524 unsigned StringLength = 0; 1525 bool isUTF16 = false; 1526 llvm::StringMapEntry<llvm::Constant*> &Entry = 1527 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1528 getTargetData().isLittleEndian(), 1529 isUTF16, StringLength); 1530 1531 if (llvm::Constant *C = Entry.getValue()) 1532 return C; 1533 1534 llvm::Constant *Zero = 1535 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1536 llvm::Constant *Zeros[] = { Zero, Zero }; 1537 1538 // If we don't already have it, get __CFConstantStringClassReference. 1539 if (!CFConstantStringClassRef) { 1540 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1541 Ty = llvm::ArrayType::get(Ty, 0); 1542 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1543 "__CFConstantStringClassReference"); 1544 // Decay array -> ptr 1545 CFConstantStringClassRef = 1546 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1547 } 1548 1549 QualType CFTy = getContext().getCFConstantStringType(); 1550 1551 const llvm::StructType *STy = 1552 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1553 1554 std::vector<llvm::Constant*> Fields(4); 1555 1556 // Class pointer. 1557 Fields[0] = CFConstantStringClassRef; 1558 1559 // Flags. 1560 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1561 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1562 llvm::ConstantInt::get(Ty, 0x07C8); 1563 1564 // String pointer. 1565 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1566 1567 llvm::GlobalValue::LinkageTypes Linkage; 1568 bool isConstant; 1569 if (isUTF16) { 1570 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1571 Linkage = llvm::GlobalValue::InternalLinkage; 1572 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1573 // does make plain ascii ones writable. 1574 isConstant = true; 1575 } else { 1576 Linkage = llvm::GlobalValue::PrivateLinkage; 1577 isConstant = !Features.WritableStrings; 1578 } 1579 1580 llvm::GlobalVariable *GV = 1581 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1582 ".str"); 1583 if (isUTF16) { 1584 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1585 GV->setAlignment(Align.getQuantity()); 1586 } 1587 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1588 1589 // String length. 1590 Ty = getTypes().ConvertType(getContext().LongTy); 1591 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1592 1593 // The struct. 1594 C = llvm::ConstantStruct::get(STy, Fields); 1595 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1596 llvm::GlobalVariable::PrivateLinkage, C, 1597 "_unnamed_cfstring_"); 1598 if (const char *Sect = getContext().Target.getCFStringSection()) 1599 GV->setSection(Sect); 1600 Entry.setValue(GV); 1601 1602 return GV; 1603 } 1604 1605 llvm::Constant * 1606 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1607 unsigned StringLength = 0; 1608 bool isUTF16 = false; 1609 llvm::StringMapEntry<llvm::Constant*> &Entry = 1610 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1611 getTargetData().isLittleEndian(), 1612 isUTF16, StringLength); 1613 1614 if (llvm::Constant *C = Entry.getValue()) 1615 return C; 1616 1617 llvm::Constant *Zero = 1618 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1619 llvm::Constant *Zeros[] = { Zero, Zero }; 1620 1621 // If we don't already have it, get _NSConstantStringClassReference. 1622 if (!NSConstantStringClassRef) { 1623 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1624 Ty = llvm::ArrayType::get(Ty, 0); 1625 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1626 Features.ObjCNonFragileABI ? 1627 "OBJC_CLASS_$_NSConstantString" : 1628 "_NSConstantStringClassReference"); 1629 // Decay array -> ptr 1630 NSConstantStringClassRef = 1631 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1632 } 1633 1634 QualType NSTy = getContext().getNSConstantStringType(); 1635 1636 const llvm::StructType *STy = 1637 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1638 1639 std::vector<llvm::Constant*> Fields(3); 1640 1641 // Class pointer. 1642 Fields[0] = NSConstantStringClassRef; 1643 1644 // String pointer. 1645 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1646 1647 llvm::GlobalValue::LinkageTypes Linkage; 1648 bool isConstant; 1649 if (isUTF16) { 1650 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1651 Linkage = llvm::GlobalValue::InternalLinkage; 1652 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1653 // does make plain ascii ones writable. 1654 isConstant = true; 1655 } else { 1656 Linkage = llvm::GlobalValue::PrivateLinkage; 1657 isConstant = !Features.WritableStrings; 1658 } 1659 1660 llvm::GlobalVariable *GV = 1661 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1662 ".str"); 1663 if (isUTF16) { 1664 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1665 GV->setAlignment(Align.getQuantity()); 1666 } 1667 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1668 1669 // String length. 1670 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1671 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1672 1673 // The struct. 1674 C = llvm::ConstantStruct::get(STy, Fields); 1675 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1676 llvm::GlobalVariable::PrivateLinkage, C, 1677 "_unnamed_nsstring_"); 1678 // FIXME. Fix section. 1679 if (const char *Sect = 1680 Features.ObjCNonFragileABI 1681 ? getContext().Target.getNSStringNonFragileABISection() 1682 : getContext().Target.getNSStringSection()) 1683 GV->setSection(Sect); 1684 Entry.setValue(GV); 1685 1686 return GV; 1687 } 1688 1689 /// GetStringForStringLiteral - Return the appropriate bytes for a 1690 /// string literal, properly padded to match the literal type. 1691 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1692 const char *StrData = E->getStrData(); 1693 unsigned Len = E->getByteLength(); 1694 1695 const ConstantArrayType *CAT = 1696 getContext().getAsConstantArrayType(E->getType()); 1697 assert(CAT && "String isn't pointer or array!"); 1698 1699 // Resize the string to the right size. 1700 std::string Str(StrData, StrData+Len); 1701 uint64_t RealLen = CAT->getSize().getZExtValue(); 1702 1703 if (E->isWide()) 1704 RealLen *= getContext().Target.getWCharWidth()/8; 1705 1706 Str.resize(RealLen, '\0'); 1707 1708 return Str; 1709 } 1710 1711 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1712 /// constant array for the given string literal. 1713 llvm::Constant * 1714 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1715 // FIXME: This can be more efficient. 1716 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1717 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1718 if (S->isWide()) { 1719 llvm::Type *DestTy = 1720 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1721 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1722 } 1723 return C; 1724 } 1725 1726 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1727 /// array for the given ObjCEncodeExpr node. 1728 llvm::Constant * 1729 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1730 std::string Str; 1731 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1732 1733 return GetAddrOfConstantCString(Str); 1734 } 1735 1736 1737 /// GenerateWritableString -- Creates storage for a string literal. 1738 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1739 bool constant, 1740 CodeGenModule &CGM, 1741 const char *GlobalName) { 1742 // Create Constant for this string literal. Don't add a '\0'. 1743 llvm::Constant *C = 1744 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1745 1746 // Create a global variable for this string 1747 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1748 llvm::GlobalValue::PrivateLinkage, 1749 C, GlobalName); 1750 } 1751 1752 /// GetAddrOfConstantString - Returns a pointer to a character array 1753 /// containing the literal. This contents are exactly that of the 1754 /// given string, i.e. it will not be null terminated automatically; 1755 /// see GetAddrOfConstantCString. Note that whether the result is 1756 /// actually a pointer to an LLVM constant depends on 1757 /// Feature.WriteableStrings. 1758 /// 1759 /// The result has pointer to array type. 1760 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1761 const char *GlobalName) { 1762 bool IsConstant = !Features.WritableStrings; 1763 1764 // Get the default prefix if a name wasn't specified. 1765 if (!GlobalName) 1766 GlobalName = ".str"; 1767 1768 // Don't share any string literals if strings aren't constant. 1769 if (!IsConstant) 1770 return GenerateStringLiteral(str, false, *this, GlobalName); 1771 1772 llvm::StringMapEntry<llvm::Constant *> &Entry = 1773 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1774 1775 if (Entry.getValue()) 1776 return Entry.getValue(); 1777 1778 // Create a global variable for this. 1779 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1780 Entry.setValue(C); 1781 return C; 1782 } 1783 1784 /// GetAddrOfConstantCString - Returns a pointer to a character 1785 /// array containing the literal and a terminating '\-' 1786 /// character. The result has pointer to array type. 1787 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1788 const char *GlobalName){ 1789 return GetAddrOfConstantString(str + '\0', GlobalName); 1790 } 1791 1792 /// EmitObjCPropertyImplementations - Emit information for synthesized 1793 /// properties for an implementation. 1794 void CodeGenModule::EmitObjCPropertyImplementations(const 1795 ObjCImplementationDecl *D) { 1796 for (ObjCImplementationDecl::propimpl_iterator 1797 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1798 ObjCPropertyImplDecl *PID = *i; 1799 1800 // Dynamic is just for type-checking. 1801 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1802 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1803 1804 // Determine which methods need to be implemented, some may have 1805 // been overridden. Note that ::isSynthesized is not the method 1806 // we want, that just indicates if the decl came from a 1807 // property. What we want to know is if the method is defined in 1808 // this implementation. 1809 if (!D->getInstanceMethod(PD->getGetterName())) 1810 CodeGenFunction(*this).GenerateObjCGetter( 1811 const_cast<ObjCImplementationDecl *>(D), PID); 1812 if (!PD->isReadOnly() && 1813 !D->getInstanceMethod(PD->getSetterName())) 1814 CodeGenFunction(*this).GenerateObjCSetter( 1815 const_cast<ObjCImplementationDecl *>(D), PID); 1816 } 1817 } 1818 } 1819 1820 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1821 /// for an implementation. 1822 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1823 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1824 return; 1825 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1826 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1827 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1828 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1829 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1830 D->getLocation(), 1831 D->getLocation(), cxxSelector, 1832 getContext().VoidTy, 0, 1833 DC, true, false, true, 1834 ObjCMethodDecl::Required); 1835 D->addInstanceMethod(DTORMethod); 1836 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1837 1838 II = &getContext().Idents.get(".cxx_construct"); 1839 cxxSelector = getContext().Selectors.getSelector(0, &II); 1840 // The constructor returns 'self'. 1841 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1842 D->getLocation(), 1843 D->getLocation(), cxxSelector, 1844 getContext().getObjCIdType(), 0, 1845 DC, true, false, true, 1846 ObjCMethodDecl::Required); 1847 D->addInstanceMethod(CTORMethod); 1848 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1849 1850 1851 } 1852 1853 /// EmitNamespace - Emit all declarations in a namespace. 1854 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1855 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1856 I != E; ++I) 1857 EmitTopLevelDecl(*I); 1858 } 1859 1860 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1861 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1862 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1863 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1864 ErrorUnsupported(LSD, "linkage spec"); 1865 return; 1866 } 1867 1868 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1869 I != E; ++I) 1870 EmitTopLevelDecl(*I); 1871 } 1872 1873 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1874 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1875 // If an error has occurred, stop code generation, but continue 1876 // parsing and semantic analysis (to ensure all warnings and errors 1877 // are emitted). 1878 if (Diags.hasErrorOccurred()) 1879 return; 1880 1881 // Ignore dependent declarations. 1882 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1883 return; 1884 1885 switch (D->getKind()) { 1886 case Decl::CXXConversion: 1887 case Decl::CXXMethod: 1888 case Decl::Function: 1889 // Skip function templates 1890 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1891 return; 1892 1893 EmitGlobal(cast<FunctionDecl>(D)); 1894 break; 1895 1896 case Decl::Var: 1897 EmitGlobal(cast<VarDecl>(D)); 1898 break; 1899 1900 // C++ Decls 1901 case Decl::Namespace: 1902 EmitNamespace(cast<NamespaceDecl>(D)); 1903 break; 1904 // No code generation needed. 1905 case Decl::UsingShadow: 1906 case Decl::Using: 1907 case Decl::UsingDirective: 1908 case Decl::ClassTemplate: 1909 case Decl::FunctionTemplate: 1910 case Decl::NamespaceAlias: 1911 break; 1912 case Decl::CXXConstructor: 1913 // Skip function templates 1914 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1915 return; 1916 1917 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1918 break; 1919 case Decl::CXXDestructor: 1920 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1921 break; 1922 1923 case Decl::StaticAssert: 1924 // Nothing to do. 1925 break; 1926 1927 // Objective-C Decls 1928 1929 // Forward declarations, no (immediate) code generation. 1930 case Decl::ObjCClass: 1931 case Decl::ObjCForwardProtocol: 1932 case Decl::ObjCCategory: 1933 case Decl::ObjCInterface: 1934 break; 1935 1936 case Decl::ObjCProtocol: 1937 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1938 break; 1939 1940 case Decl::ObjCCategoryImpl: 1941 // Categories have properties but don't support synthesize so we 1942 // can ignore them here. 1943 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1944 break; 1945 1946 case Decl::ObjCImplementation: { 1947 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1948 EmitObjCPropertyImplementations(OMD); 1949 EmitObjCIvarInitializations(OMD); 1950 Runtime->GenerateClass(OMD); 1951 break; 1952 } 1953 case Decl::ObjCMethod: { 1954 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1955 // If this is not a prototype, emit the body. 1956 if (OMD->getBody()) 1957 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1958 break; 1959 } 1960 case Decl::ObjCCompatibleAlias: 1961 // compatibility-alias is a directive and has no code gen. 1962 break; 1963 1964 case Decl::LinkageSpec: 1965 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1966 break; 1967 1968 case Decl::FileScopeAsm: { 1969 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1970 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1971 1972 const std::string &S = getModule().getModuleInlineAsm(); 1973 if (S.empty()) 1974 getModule().setModuleInlineAsm(AsmString); 1975 else 1976 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1977 break; 1978 } 1979 1980 default: 1981 // Make sure we handled everything we should, every other kind is a 1982 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1983 // function. Need to recode Decl::Kind to do that easily. 1984 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1985 } 1986 } 1987