1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/CodeGen/BackendUtil.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/RecordLayout.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/Diagnostic.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Basic/ConvertUTF.h" 34 #include "llvm/CallingConv.h" 35 #include "llvm/Module.h" 36 #include "llvm/Intrinsics.h" 37 #include "llvm/LLVMContext.h" 38 #include "llvm/ADT/Triple.h" 39 #include "llvm/Target/TargetData.h" 40 #include "llvm/Support/CallSite.h" 41 #include "llvm/Support/ErrorHandling.h" 42 using namespace clang; 43 using namespace CodeGen; 44 45 46 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 47 llvm::Module &M, const llvm::TargetData &TD, 48 Diagnostic &diags) 49 : BlockModule(C, M, TD, Types, *this), Context(C), 50 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 51 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 52 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 53 VTables(*this), Runtime(0), ABI(0), 54 CFConstantStringClassRef(0), NSConstantStringClassRef(0), 55 VMContext(M.getContext()), 56 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 57 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 58 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 59 BlockObjectAssign(0), BlockObjectDispose(0){ 60 61 if (!Features.ObjC1) 62 Runtime = 0; 63 else if (!Features.NeXTRuntime) 64 Runtime = CreateGNUObjCRuntime(*this); 65 else if (Features.ObjCNonFragileABI) 66 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 67 else 68 Runtime = CreateMacObjCRuntime(*this); 69 70 if (!Features.CPlusPlus) 71 ABI = 0; 72 else createCXXABI(); 73 74 // If debug info generation is enabled, create the CGDebugInfo object. 75 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 76 } 77 78 CodeGenModule::~CodeGenModule() { 79 delete Runtime; 80 delete ABI; 81 delete DebugInfo; 82 } 83 84 void CodeGenModule::createObjCRuntime() { 85 if (!Features.NeXTRuntime) 86 Runtime = CreateGNUObjCRuntime(*this); 87 else if (Features.ObjCNonFragileABI) 88 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 89 else 90 Runtime = CreateMacObjCRuntime(*this); 91 } 92 93 void CodeGenModule::createCXXABI() { 94 if (Context.Target.getCXXABI() == "microsoft") 95 ABI = CreateMicrosoftCXXABI(*this); 96 else 97 ABI = CreateItaniumCXXABI(*this); 98 } 99 100 void CodeGenModule::Release() { 101 EmitDeferred(); 102 EmitCXXGlobalInitFunc(); 103 EmitCXXGlobalDtorFunc(); 104 if (Runtime) 105 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 106 AddGlobalCtor(ObjCInitFunction); 107 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 108 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 109 EmitAnnotations(); 110 EmitLLVMUsed(); 111 112 if (getCodeGenOpts().EmitDeclMetadata) 113 EmitDeclMetadata(); 114 } 115 116 bool CodeGenModule::isTargetDarwin() const { 117 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 118 } 119 120 /// ErrorUnsupported - Print out an error that codegen doesn't support the 121 /// specified stmt yet. 122 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 123 bool OmitOnError) { 124 if (OmitOnError && getDiags().hasErrorOccurred()) 125 return; 126 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 127 "cannot compile this %0 yet"); 128 std::string Msg = Type; 129 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 130 << Msg << S->getSourceRange(); 131 } 132 133 /// ErrorUnsupported - Print out an error that codegen doesn't support the 134 /// specified decl yet. 135 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 136 bool OmitOnError) { 137 if (OmitOnError && getDiags().hasErrorOccurred()) 138 return; 139 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 140 "cannot compile this %0 yet"); 141 std::string Msg = Type; 142 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 143 } 144 145 LangOptions::VisibilityMode 146 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 147 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 148 if (VD->getStorageClass() == VarDecl::PrivateExtern) 149 return LangOptions::Hidden; 150 151 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 152 switch (attr->getVisibility()) { 153 default: assert(0 && "Unknown visibility!"); 154 case VisibilityAttr::DefaultVisibility: 155 return LangOptions::Default; 156 case VisibilityAttr::HiddenVisibility: 157 return LangOptions::Hidden; 158 case VisibilityAttr::ProtectedVisibility: 159 return LangOptions::Protected; 160 } 161 } 162 163 if (getLangOptions().CPlusPlus) { 164 // Entities subject to an explicit instantiation declaration get default 165 // visibility. 166 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 167 if (Function->getTemplateSpecializationKind() 168 == TSK_ExplicitInstantiationDeclaration) 169 return LangOptions::Default; 170 } else if (const ClassTemplateSpecializationDecl *ClassSpec 171 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 172 if (ClassSpec->getSpecializationKind() 173 == TSK_ExplicitInstantiationDeclaration) 174 return LangOptions::Default; 175 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 176 if (Record->getTemplateSpecializationKind() 177 == TSK_ExplicitInstantiationDeclaration) 178 return LangOptions::Default; 179 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 180 if (Var->isStaticDataMember() && 181 (Var->getTemplateSpecializationKind() 182 == TSK_ExplicitInstantiationDeclaration)) 183 return LangOptions::Default; 184 } 185 186 // If -fvisibility-inlines-hidden was provided, then inline C++ member 187 // functions get "hidden" visibility by default. 188 if (getLangOptions().InlineVisibilityHidden) 189 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 190 if (Method->isInlined()) 191 return LangOptions::Hidden; 192 } 193 194 // This decl should have the same visibility as its parent. 195 if (const DeclContext *DC = D->getDeclContext()) 196 return getDeclVisibilityMode(cast<Decl>(DC)); 197 198 return getLangOptions().getVisibilityMode(); 199 } 200 201 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 202 const Decl *D) const { 203 // Internal definitions always have default visibility. 204 if (GV->hasLocalLinkage()) { 205 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 206 return; 207 } 208 209 switch (getDeclVisibilityMode(D)) { 210 default: assert(0 && "Unknown visibility!"); 211 case LangOptions::Default: 212 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 213 case LangOptions::Hidden: 214 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 215 case LangOptions::Protected: 216 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 217 } 218 } 219 220 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 221 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 222 223 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 224 if (!Str.empty()) 225 return Str; 226 227 if (!getMangleContext().shouldMangleDeclName(ND)) { 228 IdentifierInfo *II = ND->getIdentifier(); 229 assert(II && "Attempt to mangle unnamed decl."); 230 231 Str = II->getName(); 232 return Str; 233 } 234 235 llvm::SmallString<256> Buffer; 236 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 237 getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 238 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 239 getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 240 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 241 getMangleContext().mangleBlock(GD, BD, Buffer); 242 else 243 getMangleContext().mangleName(ND, Buffer); 244 245 // Allocate space for the mangled name. 246 size_t Length = Buffer.size(); 247 char *Name = MangledNamesAllocator.Allocate<char>(Length); 248 std::copy(Buffer.begin(), Buffer.end(), Name); 249 250 Str = llvm::StringRef(Name, Length); 251 252 return Str; 253 } 254 255 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 256 const BlockDecl *BD) { 257 getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 258 } 259 260 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 261 return getModule().getNamedValue(Name); 262 } 263 264 /// AddGlobalCtor - Add a function to the list that will be called before 265 /// main() runs. 266 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 267 // FIXME: Type coercion of void()* types. 268 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 269 } 270 271 /// AddGlobalDtor - Add a function to the list that will be called 272 /// when the module is unloaded. 273 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 274 // FIXME: Type coercion of void()* types. 275 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 276 } 277 278 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 279 // Ctor function type is void()*. 280 llvm::FunctionType* CtorFTy = 281 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 282 std::vector<const llvm::Type*>(), 283 false); 284 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 285 286 // Get the type of a ctor entry, { i32, void ()* }. 287 llvm::StructType* CtorStructTy = 288 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 289 llvm::PointerType::getUnqual(CtorFTy), NULL); 290 291 // Construct the constructor and destructor arrays. 292 std::vector<llvm::Constant*> Ctors; 293 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 294 std::vector<llvm::Constant*> S; 295 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 296 I->second, false)); 297 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 298 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 299 } 300 301 if (!Ctors.empty()) { 302 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 303 new llvm::GlobalVariable(TheModule, AT, false, 304 llvm::GlobalValue::AppendingLinkage, 305 llvm::ConstantArray::get(AT, Ctors), 306 GlobalName); 307 } 308 } 309 310 void CodeGenModule::EmitAnnotations() { 311 if (Annotations.empty()) 312 return; 313 314 // Create a new global variable for the ConstantStruct in the Module. 315 llvm::Constant *Array = 316 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 317 Annotations.size()), 318 Annotations); 319 llvm::GlobalValue *gv = 320 new llvm::GlobalVariable(TheModule, Array->getType(), false, 321 llvm::GlobalValue::AppendingLinkage, Array, 322 "llvm.global.annotations"); 323 gv->setSection("llvm.metadata"); 324 } 325 326 static CodeGenModule::GVALinkage 327 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) { 328 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 329 330 Linkage L = FD->getLinkage(); 331 if (L == ExternalLinkage && Features.CPlusPlus && 332 FD->getType()->getLinkage() == UniqueExternalLinkage) 333 L = UniqueExternalLinkage; 334 335 switch (L) { 336 case NoLinkage: 337 case InternalLinkage: 338 case UniqueExternalLinkage: 339 return CodeGenModule::GVA_Internal; 340 341 case ExternalLinkage: 342 switch (FD->getTemplateSpecializationKind()) { 343 case TSK_Undeclared: 344 case TSK_ExplicitSpecialization: 345 External = CodeGenModule::GVA_StrongExternal; 346 break; 347 348 case TSK_ExplicitInstantiationDefinition: 349 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 350 351 case TSK_ExplicitInstantiationDeclaration: 352 case TSK_ImplicitInstantiation: 353 External = CodeGenModule::GVA_TemplateInstantiation; 354 break; 355 } 356 } 357 358 if (!FD->isInlined()) 359 return External; 360 361 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 362 // GNU or C99 inline semantics. Determine whether this symbol should be 363 // externally visible. 364 if (FD->isInlineDefinitionExternallyVisible()) 365 return External; 366 367 // C99 inline semantics, where the symbol is not externally visible. 368 return CodeGenModule::GVA_C99Inline; 369 } 370 371 // C++0x [temp.explicit]p9: 372 // [ Note: The intent is that an inline function that is the subject of 373 // an explicit instantiation declaration will still be implicitly 374 // instantiated when used so that the body can be considered for 375 // inlining, but that no out-of-line copy of the inline function would be 376 // generated in the translation unit. -- end note ] 377 if (FD->getTemplateSpecializationKind() 378 == TSK_ExplicitInstantiationDeclaration) 379 return CodeGenModule::GVA_C99Inline; 380 381 return CodeGenModule::GVA_CXXInline; 382 } 383 384 llvm::GlobalValue::LinkageTypes 385 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 386 GVALinkage Linkage = GetLinkageForFunction(D, Features); 387 388 if (Linkage == GVA_Internal) 389 return llvm::Function::InternalLinkage; 390 391 if (D->hasAttr<DLLExportAttr>()) 392 return llvm::Function::DLLExportLinkage; 393 394 if (D->hasAttr<WeakAttr>()) 395 return llvm::Function::WeakAnyLinkage; 396 397 // In C99 mode, 'inline' functions are guaranteed to have a strong 398 // definition somewhere else, so we can use available_externally linkage. 399 if (Linkage == GVA_C99Inline) 400 return llvm::Function::AvailableExternallyLinkage; 401 402 // In C++, the compiler has to emit a definition in every translation unit 403 // that references the function. We should use linkonce_odr because 404 // a) if all references in this translation unit are optimized away, we 405 // don't need to codegen it. b) if the function persists, it needs to be 406 // merged with other definitions. c) C++ has the ODR, so we know the 407 // definition is dependable. 408 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 409 return llvm::Function::LinkOnceODRLinkage; 410 411 // An explicit instantiation of a template has weak linkage, since 412 // explicit instantiations can occur in multiple translation units 413 // and must all be equivalent. However, we are not allowed to 414 // throw away these explicit instantiations. 415 if (Linkage == GVA_ExplicitTemplateInstantiation) 416 return llvm::Function::WeakODRLinkage; 417 418 // Otherwise, we have strong external linkage. 419 assert(Linkage == GVA_StrongExternal); 420 return llvm::Function::ExternalLinkage; 421 } 422 423 424 /// SetFunctionDefinitionAttributes - Set attributes for a global. 425 /// 426 /// FIXME: This is currently only done for aliases and functions, but not for 427 /// variables (these details are set in EmitGlobalVarDefinition for variables). 428 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 429 llvm::GlobalValue *GV) { 430 SetCommonAttributes(D, GV); 431 } 432 433 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 434 const CGFunctionInfo &Info, 435 llvm::Function *F) { 436 unsigned CallingConv; 437 AttributeListType AttributeList; 438 ConstructAttributeList(Info, D, AttributeList, CallingConv); 439 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 440 AttributeList.size())); 441 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 442 } 443 444 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 445 llvm::Function *F) { 446 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 447 F->addFnAttr(llvm::Attribute::NoUnwind); 448 449 if (D->hasAttr<AlwaysInlineAttr>()) 450 F->addFnAttr(llvm::Attribute::AlwaysInline); 451 452 if (D->hasAttr<NoInlineAttr>()) 453 F->addFnAttr(llvm::Attribute::NoInline); 454 455 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 456 F->addFnAttr(llvm::Attribute::StackProtect); 457 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 458 F->addFnAttr(llvm::Attribute::StackProtectReq); 459 460 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 461 unsigned width = Context.Target.getCharWidth(); 462 F->setAlignment(AA->getAlignment() / width); 463 while ((AA = AA->getNext<AlignedAttr>())) 464 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 465 } 466 // C++ ABI requires 2-byte alignment for member functions. 467 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 468 F->setAlignment(2); 469 } 470 471 void CodeGenModule::SetCommonAttributes(const Decl *D, 472 llvm::GlobalValue *GV) { 473 setGlobalVisibility(GV, D); 474 475 if (D->hasAttr<UsedAttr>()) 476 AddUsedGlobal(GV); 477 478 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 479 GV->setSection(SA->getName()); 480 481 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 482 } 483 484 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 485 llvm::Function *F, 486 const CGFunctionInfo &FI) { 487 SetLLVMFunctionAttributes(D, FI, F); 488 SetLLVMFunctionAttributesForDefinition(D, F); 489 490 F->setLinkage(llvm::Function::InternalLinkage); 491 492 SetCommonAttributes(D, F); 493 } 494 495 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 496 llvm::Function *F, 497 bool IsIncompleteFunction) { 498 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 499 500 if (!IsIncompleteFunction) 501 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 502 503 // Only a few attributes are set on declarations; these may later be 504 // overridden by a definition. 505 506 if (FD->hasAttr<DLLImportAttr>()) { 507 F->setLinkage(llvm::Function::DLLImportLinkage); 508 } else if (FD->hasAttr<WeakAttr>() || 509 FD->hasAttr<WeakImportAttr>()) { 510 // "extern_weak" is overloaded in LLVM; we probably should have 511 // separate linkage types for this. 512 F->setLinkage(llvm::Function::ExternalWeakLinkage); 513 } else { 514 F->setLinkage(llvm::Function::ExternalLinkage); 515 } 516 517 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 518 F->setSection(SA->getName()); 519 } 520 521 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 522 assert(!GV->isDeclaration() && 523 "Only globals with definition can force usage."); 524 LLVMUsed.push_back(GV); 525 } 526 527 void CodeGenModule::EmitLLVMUsed() { 528 // Don't create llvm.used if there is no need. 529 if (LLVMUsed.empty()) 530 return; 531 532 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 533 534 // Convert LLVMUsed to what ConstantArray needs. 535 std::vector<llvm::Constant*> UsedArray; 536 UsedArray.resize(LLVMUsed.size()); 537 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 538 UsedArray[i] = 539 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 540 i8PTy); 541 } 542 543 if (UsedArray.empty()) 544 return; 545 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 546 547 llvm::GlobalVariable *GV = 548 new llvm::GlobalVariable(getModule(), ATy, false, 549 llvm::GlobalValue::AppendingLinkage, 550 llvm::ConstantArray::get(ATy, UsedArray), 551 "llvm.used"); 552 553 GV->setSection("llvm.metadata"); 554 } 555 556 void CodeGenModule::EmitDeferred() { 557 // Emit code for any potentially referenced deferred decls. Since a 558 // previously unused static decl may become used during the generation of code 559 // for a static function, iterate until no changes are made. 560 561 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 562 if (!DeferredVTables.empty()) { 563 const CXXRecordDecl *RD = DeferredVTables.back(); 564 DeferredVTables.pop_back(); 565 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 566 continue; 567 } 568 569 GlobalDecl D = DeferredDeclsToEmit.back(); 570 DeferredDeclsToEmit.pop_back(); 571 572 // Check to see if we've already emitted this. This is necessary 573 // for a couple of reasons: first, decls can end up in the 574 // deferred-decls queue multiple times, and second, decls can end 575 // up with definitions in unusual ways (e.g. by an extern inline 576 // function acquiring a strong function redefinition). Just 577 // ignore these cases. 578 // 579 // TODO: That said, looking this up multiple times is very wasteful. 580 llvm::StringRef Name = getMangledName(D); 581 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 582 assert(CGRef && "Deferred decl wasn't referenced?"); 583 584 if (!CGRef->isDeclaration()) 585 continue; 586 587 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 588 // purposes an alias counts as a definition. 589 if (isa<llvm::GlobalAlias>(CGRef)) 590 continue; 591 592 // Otherwise, emit the definition and move on to the next one. 593 EmitGlobalDefinition(D); 594 } 595 } 596 597 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 598 /// annotation information for a given GlobalValue. The annotation struct is 599 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 600 /// GlobalValue being annotated. The second field is the constant string 601 /// created from the AnnotateAttr's annotation. The third field is a constant 602 /// string containing the name of the translation unit. The fourth field is 603 /// the line number in the file of the annotated value declaration. 604 /// 605 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 606 /// appears to. 607 /// 608 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 609 const AnnotateAttr *AA, 610 unsigned LineNo) { 611 llvm::Module *M = &getModule(); 612 613 // get [N x i8] constants for the annotation string, and the filename string 614 // which are the 2nd and 3rd elements of the global annotation structure. 615 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 616 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 617 AA->getAnnotation(), true); 618 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 619 M->getModuleIdentifier(), 620 true); 621 622 // Get the two global values corresponding to the ConstantArrays we just 623 // created to hold the bytes of the strings. 624 llvm::GlobalValue *annoGV = 625 new llvm::GlobalVariable(*M, anno->getType(), false, 626 llvm::GlobalValue::PrivateLinkage, anno, 627 GV->getName()); 628 // translation unit name string, emitted into the llvm.metadata section. 629 llvm::GlobalValue *unitGV = 630 new llvm::GlobalVariable(*M, unit->getType(), false, 631 llvm::GlobalValue::PrivateLinkage, unit, 632 ".str"); 633 634 // Create the ConstantStruct for the global annotation. 635 llvm::Constant *Fields[4] = { 636 llvm::ConstantExpr::getBitCast(GV, SBP), 637 llvm::ConstantExpr::getBitCast(annoGV, SBP), 638 llvm::ConstantExpr::getBitCast(unitGV, SBP), 639 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 640 }; 641 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 642 } 643 644 static CodeGenModule::GVALinkage 645 GetLinkageForVariable(const VarDecl *VD, const LangOptions &Features) { 646 // If this is a static data member, compute the kind of template 647 // specialization. Otherwise, this variable is not part of a 648 // template. 649 TemplateSpecializationKind TSK = TSK_Undeclared; 650 if (VD->isStaticDataMember()) 651 TSK = VD->getTemplateSpecializationKind(); 652 653 Linkage L = VD->getLinkage(); 654 if (L == ExternalLinkage && Features.CPlusPlus && 655 VD->getType()->getLinkage() == UniqueExternalLinkage) 656 L = UniqueExternalLinkage; 657 658 switch (L) { 659 case NoLinkage: 660 case InternalLinkage: 661 case UniqueExternalLinkage: 662 return CodeGenModule::GVA_Internal; 663 664 case ExternalLinkage: 665 switch (TSK) { 666 case TSK_Undeclared: 667 case TSK_ExplicitSpecialization: 668 return CodeGenModule::GVA_StrongExternal; 669 670 case TSK_ExplicitInstantiationDeclaration: 671 llvm_unreachable("Variable should not be instantiated"); 672 // Fall through to treat this like any other instantiation. 673 674 case TSK_ExplicitInstantiationDefinition: 675 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 676 677 case TSK_ImplicitInstantiation: 678 return CodeGenModule::GVA_TemplateInstantiation; 679 } 680 } 681 682 return CodeGenModule::GVA_StrongExternal; 683 } 684 685 bool clang::DeclIsRequiredFunctionOrFileScopedVar(const Decl *D) { 686 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 687 if (!VD->isFileVarDecl()) 688 return false; 689 } else if (!isa<FunctionDecl>(D)) 690 return false; 691 692 // Aliases and used decls are required. 693 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) 694 return true; 695 696 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 697 // Forward declarations aren't required. 698 if (!FD->isThisDeclarationADefinition()) 699 return false; 700 701 // Constructors and destructors are required. 702 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 703 return true; 704 705 ASTContext &Ctx = FD->getASTContext(); 706 707 // The key function for a class is required. 708 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 709 const CXXRecordDecl *RD = MD->getParent(); 710 if (MD->isOutOfLine() && RD->isDynamicClass()) { 711 const CXXMethodDecl *KeyFunc = Ctx.getKeyFunction(RD); 712 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) 713 return true; 714 } 715 } 716 717 CodeGenModule::GVALinkage Linkage 718 = GetLinkageForFunction(FD, Ctx.getLangOptions()); 719 720 // static, static inline, always_inline, and extern inline functions can 721 // always be deferred. Normal inline functions can be deferred in C99/C++. 722 // Implicit template instantiations can also be deferred in C++. 723 if (Linkage == CodeGenModule::GVA_Internal || 724 Linkage == CodeGenModule::GVA_C99Inline || 725 Linkage == CodeGenModule::GVA_CXXInline || 726 Linkage == CodeGenModule::GVA_TemplateInstantiation) 727 return false; 728 return true; 729 } 730 731 const VarDecl *VD = cast<VarDecl>(D); 732 assert(VD->isFileVarDecl() && "Expected file scoped var"); 733 734 // Structs that have non-trivial constructors or destructors are required. 735 736 // FIXME: Handle references. 737 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 738 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 739 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 740 return true; 741 } 742 } 743 744 ASTContext &Ctx = VD->getASTContext(); 745 746 CodeGenModule::GVALinkage L = GetLinkageForVariable(VD, Ctx.getLangOptions()); 747 if (L == CodeGenModule::GVA_Internal || 748 L == CodeGenModule::GVA_TemplateInstantiation) { 749 if (!(VD->getInit() && VD->getInit()->HasSideEffects(Ctx))) 750 return false; 751 } 752 753 return true; 754 } 755 756 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 757 // Never defer when EmitAllDecls is specified. 758 if (Features.EmitAllDecls) 759 return false; 760 761 return !DeclIsRequiredFunctionOrFileScopedVar(Global); 762 } 763 764 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 765 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 766 assert(AA && "No alias?"); 767 768 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 769 770 // See if there is already something with the target's name in the module. 771 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 772 773 llvm::Constant *Aliasee; 774 if (isa<llvm::FunctionType>(DeclTy)) 775 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 776 else 777 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 778 llvm::PointerType::getUnqual(DeclTy), 0); 779 if (!Entry) { 780 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 781 F->setLinkage(llvm::Function::ExternalWeakLinkage); 782 WeakRefReferences.insert(F); 783 } 784 785 return Aliasee; 786 } 787 788 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 789 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 790 791 // Weak references don't produce any output by themselves. 792 if (Global->hasAttr<WeakRefAttr>()) 793 return; 794 795 // If this is an alias definition (which otherwise looks like a declaration) 796 // emit it now. 797 if (Global->hasAttr<AliasAttr>()) 798 return EmitAliasDefinition(GD); 799 800 // Ignore declarations, they will be emitted on their first use. 801 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 802 if (FD->getIdentifier()) { 803 llvm::StringRef Name = FD->getName(); 804 if (Name == "_Block_object_assign") { 805 BlockObjectAssignDecl = FD; 806 } else if (Name == "_Block_object_dispose") { 807 BlockObjectDisposeDecl = FD; 808 } 809 } 810 811 // Forward declarations are emitted lazily on first use. 812 if (!FD->isThisDeclarationADefinition()) 813 return; 814 } else { 815 const VarDecl *VD = cast<VarDecl>(Global); 816 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 817 818 if (VD->getIdentifier()) { 819 llvm::StringRef Name = VD->getName(); 820 if (Name == "_NSConcreteGlobalBlock") { 821 NSConcreteGlobalBlockDecl = VD; 822 } else if (Name == "_NSConcreteStackBlock") { 823 NSConcreteStackBlockDecl = VD; 824 } 825 } 826 827 828 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 829 return; 830 } 831 832 // Defer code generation when possible if this is a static definition, inline 833 // function etc. These we only want to emit if they are used. 834 if (!MayDeferGeneration(Global)) { 835 // Emit the definition if it can't be deferred. 836 EmitGlobalDefinition(GD); 837 return; 838 } 839 840 // If we're deferring emission of a C++ variable with an 841 // initializer, remember the order in which it appeared in the file. 842 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 843 cast<VarDecl>(Global)->hasInit()) { 844 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 845 CXXGlobalInits.push_back(0); 846 } 847 848 // If the value has already been used, add it directly to the 849 // DeferredDeclsToEmit list. 850 llvm::StringRef MangledName = getMangledName(GD); 851 if (GetGlobalValue(MangledName)) 852 DeferredDeclsToEmit.push_back(GD); 853 else { 854 // Otherwise, remember that we saw a deferred decl with this name. The 855 // first use of the mangled name will cause it to move into 856 // DeferredDeclsToEmit. 857 DeferredDecls[MangledName] = GD; 858 } 859 } 860 861 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 862 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 863 864 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 865 Context.getSourceManager(), 866 "Generating code for declaration"); 867 868 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 869 // At -O0, don't generate IR for functions with available_externally 870 // linkage. 871 if (CodeGenOpts.OptimizationLevel == 0 && 872 !Function->hasAttr<AlwaysInlineAttr>() && 873 getFunctionLinkage(Function) 874 == llvm::Function::AvailableExternallyLinkage) 875 return; 876 877 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 878 if (Method->isVirtual()) 879 getVTables().EmitThunks(GD); 880 881 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 882 return EmitCXXConstructor(CD, GD.getCtorType()); 883 884 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 885 return EmitCXXDestructor(DD, GD.getDtorType()); 886 } 887 888 return EmitGlobalFunctionDefinition(GD); 889 } 890 891 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 892 return EmitGlobalVarDefinition(VD); 893 894 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 895 } 896 897 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 898 /// module, create and return an llvm Function with the specified type. If there 899 /// is something in the module with the specified name, return it potentially 900 /// bitcasted to the right type. 901 /// 902 /// If D is non-null, it specifies a decl that correspond to this. This is used 903 /// to set the attributes on the function when it is first created. 904 llvm::Constant * 905 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 906 const llvm::Type *Ty, 907 GlobalDecl D) { 908 // Lookup the entry, lazily creating it if necessary. 909 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 910 if (Entry) { 911 if (WeakRefReferences.count(Entry)) { 912 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 913 if (FD && !FD->hasAttr<WeakAttr>()) 914 Entry->setLinkage(llvm::Function::ExternalLinkage); 915 916 WeakRefReferences.erase(Entry); 917 } 918 919 if (Entry->getType()->getElementType() == Ty) 920 return Entry; 921 922 // Make sure the result is of the correct type. 923 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 924 return llvm::ConstantExpr::getBitCast(Entry, PTy); 925 } 926 927 // This function doesn't have a complete type (for example, the return 928 // type is an incomplete struct). Use a fake type instead, and make 929 // sure not to try to set attributes. 930 bool IsIncompleteFunction = false; 931 932 const llvm::FunctionType *FTy; 933 if (isa<llvm::FunctionType>(Ty)) { 934 FTy = cast<llvm::FunctionType>(Ty); 935 } else { 936 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 937 std::vector<const llvm::Type*>(), false); 938 IsIncompleteFunction = true; 939 } 940 941 llvm::Function *F = llvm::Function::Create(FTy, 942 llvm::Function::ExternalLinkage, 943 MangledName, &getModule()); 944 assert(F->getName() == MangledName && "name was uniqued!"); 945 if (D.getDecl()) 946 SetFunctionAttributes(D, F, IsIncompleteFunction); 947 948 // This is the first use or definition of a mangled name. If there is a 949 // deferred decl with this name, remember that we need to emit it at the end 950 // of the file. 951 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 952 if (DDI != DeferredDecls.end()) { 953 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 954 // list, and remove it from DeferredDecls (since we don't need it anymore). 955 DeferredDeclsToEmit.push_back(DDI->second); 956 DeferredDecls.erase(DDI); 957 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 958 // If this the first reference to a C++ inline function in a class, queue up 959 // the deferred function body for emission. These are not seen as 960 // top-level declarations. 961 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 962 DeferredDeclsToEmit.push_back(D); 963 // A called constructor which has no definition or declaration need be 964 // synthesized. 965 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 966 if (CD->isImplicit()) { 967 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 968 DeferredDeclsToEmit.push_back(D); 969 } 970 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 971 if (DD->isImplicit()) { 972 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 973 DeferredDeclsToEmit.push_back(D); 974 } 975 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 976 if (MD->isCopyAssignment() && MD->isImplicit()) { 977 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 978 DeferredDeclsToEmit.push_back(D); 979 } 980 } 981 } 982 983 // Make sure the result is of the requested type. 984 if (!IsIncompleteFunction) { 985 assert(F->getType()->getElementType() == Ty); 986 return F; 987 } 988 989 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 990 return llvm::ConstantExpr::getBitCast(F, PTy); 991 } 992 993 /// GetAddrOfFunction - Return the address of the given function. If Ty is 994 /// non-null, then this function will use the specified type if it has to 995 /// create it (this occurs when we see a definition of the function). 996 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 997 const llvm::Type *Ty) { 998 // If there was no specific requested type, just convert it now. 999 if (!Ty) 1000 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1001 1002 llvm::StringRef MangledName = getMangledName(GD); 1003 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 1004 } 1005 1006 /// CreateRuntimeFunction - Create a new runtime function with the specified 1007 /// type and name. 1008 llvm::Constant * 1009 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 1010 llvm::StringRef Name) { 1011 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 1012 } 1013 1014 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 1015 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 1016 return false; 1017 if (Context.getLangOptions().CPlusPlus && 1018 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 1019 // FIXME: We should do something fancier here! 1020 return false; 1021 } 1022 return true; 1023 } 1024 1025 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1026 /// create and return an llvm GlobalVariable with the specified type. If there 1027 /// is something in the module with the specified name, return it potentially 1028 /// bitcasted to the right type. 1029 /// 1030 /// If D is non-null, it specifies a decl that correspond to this. This is used 1031 /// to set the attributes on the global when it is first created. 1032 llvm::Constant * 1033 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 1034 const llvm::PointerType *Ty, 1035 const VarDecl *D) { 1036 // Lookup the entry, lazily creating it if necessary. 1037 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1038 if (Entry) { 1039 if (WeakRefReferences.count(Entry)) { 1040 if (D && !D->hasAttr<WeakAttr>()) 1041 Entry->setLinkage(llvm::Function::ExternalLinkage); 1042 1043 WeakRefReferences.erase(Entry); 1044 } 1045 1046 if (Entry->getType() == Ty) 1047 return Entry; 1048 1049 // Make sure the result is of the correct type. 1050 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1051 } 1052 1053 // This is the first use or definition of a mangled name. If there is a 1054 // deferred decl with this name, remember that we need to emit it at the end 1055 // of the file. 1056 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1057 if (DDI != DeferredDecls.end()) { 1058 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1059 // list, and remove it from DeferredDecls (since we don't need it anymore). 1060 DeferredDeclsToEmit.push_back(DDI->second); 1061 DeferredDecls.erase(DDI); 1062 } 1063 1064 llvm::GlobalVariable *GV = 1065 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1066 llvm::GlobalValue::ExternalLinkage, 1067 0, MangledName, 0, 1068 false, Ty->getAddressSpace()); 1069 1070 // Handle things which are present even on external declarations. 1071 if (D) { 1072 // FIXME: This code is overly simple and should be merged with other global 1073 // handling. 1074 GV->setConstant(DeclIsConstantGlobal(Context, D)); 1075 1076 // FIXME: Merge with other attribute handling code. 1077 if (D->getStorageClass() == VarDecl::PrivateExtern) 1078 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1079 1080 if (D->hasAttr<WeakAttr>() || 1081 D->hasAttr<WeakImportAttr>()) 1082 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1083 1084 GV->setThreadLocal(D->isThreadSpecified()); 1085 } 1086 1087 return GV; 1088 } 1089 1090 1091 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1092 /// given global variable. If Ty is non-null and if the global doesn't exist, 1093 /// then it will be greated with the specified type instead of whatever the 1094 /// normal requested type would be. 1095 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1096 const llvm::Type *Ty) { 1097 assert(D->hasGlobalStorage() && "Not a global variable"); 1098 QualType ASTTy = D->getType(); 1099 if (Ty == 0) 1100 Ty = getTypes().ConvertTypeForMem(ASTTy); 1101 1102 const llvm::PointerType *PTy = 1103 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1104 1105 llvm::StringRef MangledName = getMangledName(D); 1106 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1107 } 1108 1109 /// CreateRuntimeVariable - Create a new runtime global variable with the 1110 /// specified type and name. 1111 llvm::Constant * 1112 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1113 llvm::StringRef Name) { 1114 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1115 } 1116 1117 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1118 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1119 1120 if (MayDeferGeneration(D)) { 1121 // If we have not seen a reference to this variable yet, place it 1122 // into the deferred declarations table to be emitted if needed 1123 // later. 1124 llvm::StringRef MangledName = getMangledName(D); 1125 if (!GetGlobalValue(MangledName)) { 1126 DeferredDecls[MangledName] = D; 1127 return; 1128 } 1129 } 1130 1131 // The tentative definition is the only definition. 1132 EmitGlobalVarDefinition(D); 1133 } 1134 1135 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1136 if (DefinitionRequired) 1137 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1138 } 1139 1140 llvm::GlobalVariable::LinkageTypes 1141 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1142 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1143 return llvm::GlobalVariable::InternalLinkage; 1144 1145 if (const CXXMethodDecl *KeyFunction 1146 = RD->getASTContext().getKeyFunction(RD)) { 1147 // If this class has a key function, use that to determine the linkage of 1148 // the vtable. 1149 const FunctionDecl *Def = 0; 1150 if (KeyFunction->hasBody(Def)) 1151 KeyFunction = cast<CXXMethodDecl>(Def); 1152 1153 switch (KeyFunction->getTemplateSpecializationKind()) { 1154 case TSK_Undeclared: 1155 case TSK_ExplicitSpecialization: 1156 if (KeyFunction->isInlined()) 1157 return llvm::GlobalVariable::WeakODRLinkage; 1158 1159 return llvm::GlobalVariable::ExternalLinkage; 1160 1161 case TSK_ImplicitInstantiation: 1162 case TSK_ExplicitInstantiationDefinition: 1163 return llvm::GlobalVariable::WeakODRLinkage; 1164 1165 case TSK_ExplicitInstantiationDeclaration: 1166 // FIXME: Use available_externally linkage. However, this currently 1167 // breaks LLVM's build due to undefined symbols. 1168 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1169 return llvm::GlobalVariable::WeakODRLinkage; 1170 } 1171 } 1172 1173 switch (RD->getTemplateSpecializationKind()) { 1174 case TSK_Undeclared: 1175 case TSK_ExplicitSpecialization: 1176 case TSK_ImplicitInstantiation: 1177 case TSK_ExplicitInstantiationDefinition: 1178 return llvm::GlobalVariable::WeakODRLinkage; 1179 1180 case TSK_ExplicitInstantiationDeclaration: 1181 // FIXME: Use available_externally linkage. However, this currently 1182 // breaks LLVM's build due to undefined symbols. 1183 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1184 return llvm::GlobalVariable::WeakODRLinkage; 1185 } 1186 1187 // Silence GCC warning. 1188 return llvm::GlobalVariable::WeakODRLinkage; 1189 } 1190 1191 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1192 return CharUnits::fromQuantity( 1193 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1194 } 1195 1196 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1197 llvm::Constant *Init = 0; 1198 QualType ASTTy = D->getType(); 1199 bool NonConstInit = false; 1200 1201 const Expr *InitExpr = D->getAnyInitializer(); 1202 1203 if (!InitExpr) { 1204 // This is a tentative definition; tentative definitions are 1205 // implicitly initialized with { 0 }. 1206 // 1207 // Note that tentative definitions are only emitted at the end of 1208 // a translation unit, so they should never have incomplete 1209 // type. In addition, EmitTentativeDefinition makes sure that we 1210 // never attempt to emit a tentative definition if a real one 1211 // exists. A use may still exists, however, so we still may need 1212 // to do a RAUW. 1213 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1214 Init = EmitNullConstant(D->getType()); 1215 } else { 1216 Init = EmitConstantExpr(InitExpr, D->getType()); 1217 if (!Init) { 1218 QualType T = InitExpr->getType(); 1219 if (D->getType()->isReferenceType()) 1220 T = D->getType(); 1221 1222 if (getLangOptions().CPlusPlus) { 1223 EmitCXXGlobalVarDeclInitFunc(D); 1224 Init = EmitNullConstant(T); 1225 NonConstInit = true; 1226 } else { 1227 ErrorUnsupported(D, "static initializer"); 1228 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1229 } 1230 } else { 1231 // We don't need an initializer, so remove the entry for the delayed 1232 // initializer position (just in case this entry was delayed). 1233 if (getLangOptions().CPlusPlus) 1234 DelayedCXXInitPosition.erase(D); 1235 } 1236 } 1237 1238 const llvm::Type* InitType = Init->getType(); 1239 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1240 1241 // Strip off a bitcast if we got one back. 1242 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1243 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1244 // all zero index gep. 1245 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1246 Entry = CE->getOperand(0); 1247 } 1248 1249 // Entry is now either a Function or GlobalVariable. 1250 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1251 1252 // We have a definition after a declaration with the wrong type. 1253 // We must make a new GlobalVariable* and update everything that used OldGV 1254 // (a declaration or tentative definition) with the new GlobalVariable* 1255 // (which will be a definition). 1256 // 1257 // This happens if there is a prototype for a global (e.g. 1258 // "extern int x[];") and then a definition of a different type (e.g. 1259 // "int x[10];"). This also happens when an initializer has a different type 1260 // from the type of the global (this happens with unions). 1261 if (GV == 0 || 1262 GV->getType()->getElementType() != InitType || 1263 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1264 1265 // Move the old entry aside so that we'll create a new one. 1266 Entry->setName(llvm::StringRef()); 1267 1268 // Make a new global with the correct type, this is now guaranteed to work. 1269 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1270 1271 // Replace all uses of the old global with the new global 1272 llvm::Constant *NewPtrForOldDecl = 1273 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1274 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1275 1276 // Erase the old global, since it is no longer used. 1277 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1278 } 1279 1280 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1281 SourceManager &SM = Context.getSourceManager(); 1282 AddAnnotation(EmitAnnotateAttr(GV, AA, 1283 SM.getInstantiationLineNumber(D->getLocation()))); 1284 } 1285 1286 GV->setInitializer(Init); 1287 1288 // If it is safe to mark the global 'constant', do so now. 1289 GV->setConstant(false); 1290 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1291 GV->setConstant(true); 1292 1293 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1294 1295 // Set the llvm linkage type as appropriate. 1296 GVALinkage Linkage = GetLinkageForVariable(D, Features); 1297 if (Linkage == GVA_Internal) 1298 GV->setLinkage(llvm::Function::InternalLinkage); 1299 else if (D->hasAttr<DLLImportAttr>()) 1300 GV->setLinkage(llvm::Function::DLLImportLinkage); 1301 else if (D->hasAttr<DLLExportAttr>()) 1302 GV->setLinkage(llvm::Function::DLLExportLinkage); 1303 else if (D->hasAttr<WeakAttr>()) { 1304 if (GV->isConstant()) 1305 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1306 else 1307 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1308 } else if (Linkage == GVA_TemplateInstantiation || 1309 Linkage == GVA_ExplicitTemplateInstantiation) 1310 // FIXME: It seems like we can provide more specific linkage here 1311 // (LinkOnceODR, WeakODR). 1312 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1313 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1314 !D->hasExternalStorage() && !D->getInit() && 1315 !D->getAttr<SectionAttr>()) { 1316 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1317 // common vars aren't constant even if declared const. 1318 GV->setConstant(false); 1319 } else 1320 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1321 1322 SetCommonAttributes(D, GV); 1323 1324 // Emit global variable debug information. 1325 if (CGDebugInfo *DI = getDebugInfo()) { 1326 DI->setLocation(D->getLocation()); 1327 DI->EmitGlobalVariable(GV, D); 1328 } 1329 } 1330 1331 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1332 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1333 /// existing call uses of the old function in the module, this adjusts them to 1334 /// call the new function directly. 1335 /// 1336 /// This is not just a cleanup: the always_inline pass requires direct calls to 1337 /// functions to be able to inline them. If there is a bitcast in the way, it 1338 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1339 /// run at -O0. 1340 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1341 llvm::Function *NewFn) { 1342 // If we're redefining a global as a function, don't transform it. 1343 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1344 if (OldFn == 0) return; 1345 1346 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1347 llvm::SmallVector<llvm::Value*, 4> ArgList; 1348 1349 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1350 UI != E; ) { 1351 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1352 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1353 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1354 llvm::CallSite CS(CI); 1355 if (!CI || !CS.isCallee(I)) continue; 1356 1357 // If the return types don't match exactly, and if the call isn't dead, then 1358 // we can't transform this call. 1359 if (CI->getType() != NewRetTy && !CI->use_empty()) 1360 continue; 1361 1362 // If the function was passed too few arguments, don't transform. If extra 1363 // arguments were passed, we silently drop them. If any of the types 1364 // mismatch, we don't transform. 1365 unsigned ArgNo = 0; 1366 bool DontTransform = false; 1367 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1368 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1369 if (CS.arg_size() == ArgNo || 1370 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1371 DontTransform = true; 1372 break; 1373 } 1374 } 1375 if (DontTransform) 1376 continue; 1377 1378 // Okay, we can transform this. Create the new call instruction and copy 1379 // over the required information. 1380 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1381 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1382 ArgList.end(), "", CI); 1383 ArgList.clear(); 1384 if (!NewCall->getType()->isVoidTy()) 1385 NewCall->takeName(CI); 1386 NewCall->setAttributes(CI->getAttributes()); 1387 NewCall->setCallingConv(CI->getCallingConv()); 1388 1389 // Finally, remove the old call, replacing any uses with the new one. 1390 if (!CI->use_empty()) 1391 CI->replaceAllUsesWith(NewCall); 1392 1393 // Copy debug location attached to CI. 1394 if (!CI->getDebugLoc().isUnknown()) 1395 NewCall->setDebugLoc(CI->getDebugLoc()); 1396 CI->eraseFromParent(); 1397 } 1398 } 1399 1400 1401 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1402 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1403 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1404 getMangleContext().mangleInitDiscriminator(); 1405 // Get or create the prototype for the function. 1406 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1407 1408 // Strip off a bitcast if we got one back. 1409 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1410 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1411 Entry = CE->getOperand(0); 1412 } 1413 1414 1415 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1416 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1417 1418 // If the types mismatch then we have to rewrite the definition. 1419 assert(OldFn->isDeclaration() && 1420 "Shouldn't replace non-declaration"); 1421 1422 // F is the Function* for the one with the wrong type, we must make a new 1423 // Function* and update everything that used F (a declaration) with the new 1424 // Function* (which will be a definition). 1425 // 1426 // This happens if there is a prototype for a function 1427 // (e.g. "int f()") and then a definition of a different type 1428 // (e.g. "int f(int x)"). Move the old function aside so that it 1429 // doesn't interfere with GetAddrOfFunction. 1430 OldFn->setName(llvm::StringRef()); 1431 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1432 1433 // If this is an implementation of a function without a prototype, try to 1434 // replace any existing uses of the function (which may be calls) with uses 1435 // of the new function 1436 if (D->getType()->isFunctionNoProtoType()) { 1437 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1438 OldFn->removeDeadConstantUsers(); 1439 } 1440 1441 // Replace uses of F with the Function we will endow with a body. 1442 if (!Entry->use_empty()) { 1443 llvm::Constant *NewPtrForOldDecl = 1444 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1445 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1446 } 1447 1448 // Ok, delete the old function now, which is dead. 1449 OldFn->eraseFromParent(); 1450 1451 Entry = NewFn; 1452 } 1453 1454 llvm::Function *Fn = cast<llvm::Function>(Entry); 1455 setFunctionLinkage(D, Fn); 1456 1457 CodeGenFunction(*this).GenerateCode(D, Fn); 1458 1459 SetFunctionDefinitionAttributes(D, Fn); 1460 SetLLVMFunctionAttributesForDefinition(D, Fn); 1461 1462 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1463 AddGlobalCtor(Fn, CA->getPriority()); 1464 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1465 AddGlobalDtor(Fn, DA->getPriority()); 1466 } 1467 1468 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1469 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1470 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1471 assert(AA && "Not an alias?"); 1472 1473 llvm::StringRef MangledName = getMangledName(GD); 1474 1475 // If there is a definition in the module, then it wins over the alias. 1476 // This is dubious, but allow it to be safe. Just ignore the alias. 1477 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1478 if (Entry && !Entry->isDeclaration()) 1479 return; 1480 1481 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1482 1483 // Create a reference to the named value. This ensures that it is emitted 1484 // if a deferred decl. 1485 llvm::Constant *Aliasee; 1486 if (isa<llvm::FunctionType>(DeclTy)) 1487 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1488 else 1489 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1490 llvm::PointerType::getUnqual(DeclTy), 0); 1491 1492 // Create the new alias itself, but don't set a name yet. 1493 llvm::GlobalValue *GA = 1494 new llvm::GlobalAlias(Aliasee->getType(), 1495 llvm::Function::ExternalLinkage, 1496 "", Aliasee, &getModule()); 1497 1498 if (Entry) { 1499 assert(Entry->isDeclaration()); 1500 1501 // If there is a declaration in the module, then we had an extern followed 1502 // by the alias, as in: 1503 // extern int test6(); 1504 // ... 1505 // int test6() __attribute__((alias("test7"))); 1506 // 1507 // Remove it and replace uses of it with the alias. 1508 GA->takeName(Entry); 1509 1510 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1511 Entry->getType())); 1512 Entry->eraseFromParent(); 1513 } else { 1514 GA->setName(MangledName); 1515 } 1516 1517 // Set attributes which are particular to an alias; this is a 1518 // specialization of the attributes which may be set on a global 1519 // variable/function. 1520 if (D->hasAttr<DLLExportAttr>()) { 1521 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1522 // The dllexport attribute is ignored for undefined symbols. 1523 if (FD->hasBody()) 1524 GA->setLinkage(llvm::Function::DLLExportLinkage); 1525 } else { 1526 GA->setLinkage(llvm::Function::DLLExportLinkage); 1527 } 1528 } else if (D->hasAttr<WeakAttr>() || 1529 D->hasAttr<WeakRefAttr>() || 1530 D->hasAttr<WeakImportAttr>()) { 1531 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1532 } 1533 1534 SetCommonAttributes(D, GA); 1535 } 1536 1537 /// getBuiltinLibFunction - Given a builtin id for a function like 1538 /// "__builtin_fabsf", return a Function* for "fabsf". 1539 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1540 unsigned BuiltinID) { 1541 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1542 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1543 "isn't a lib fn"); 1544 1545 // Get the name, skip over the __builtin_ prefix (if necessary). 1546 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1547 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1548 Name += 10; 1549 1550 const llvm::FunctionType *Ty = 1551 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1552 1553 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1554 } 1555 1556 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1557 unsigned NumTys) { 1558 return llvm::Intrinsic::getDeclaration(&getModule(), 1559 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1560 } 1561 1562 1563 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1564 const llvm::Type *SrcType, 1565 const llvm::Type *SizeType) { 1566 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1567 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1568 } 1569 1570 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1571 const llvm::Type *SrcType, 1572 const llvm::Type *SizeType) { 1573 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1574 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1575 } 1576 1577 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1578 const llvm::Type *SizeType) { 1579 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1580 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1581 } 1582 1583 static llvm::StringMapEntry<llvm::Constant*> & 1584 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1585 const StringLiteral *Literal, 1586 bool TargetIsLSB, 1587 bool &IsUTF16, 1588 unsigned &StringLength) { 1589 unsigned NumBytes = Literal->getByteLength(); 1590 1591 // Check for simple case. 1592 if (!Literal->containsNonAsciiOrNull()) { 1593 StringLength = NumBytes; 1594 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1595 StringLength)); 1596 } 1597 1598 // Otherwise, convert the UTF8 literals into a byte string. 1599 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1600 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1601 UTF16 *ToPtr = &ToBuf[0]; 1602 1603 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1604 &ToPtr, ToPtr + NumBytes, 1605 strictConversion); 1606 1607 // Check for conversion failure. 1608 if (Result != conversionOK) { 1609 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1610 // this duplicate code. 1611 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1612 StringLength = NumBytes; 1613 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1614 StringLength)); 1615 } 1616 1617 // ConvertUTF8toUTF16 returns the length in ToPtr. 1618 StringLength = ToPtr - &ToBuf[0]; 1619 1620 // Render the UTF-16 string into a byte array and convert to the target byte 1621 // order. 1622 // 1623 // FIXME: This isn't something we should need to do here. 1624 llvm::SmallString<128> AsBytes; 1625 AsBytes.reserve(StringLength * 2); 1626 for (unsigned i = 0; i != StringLength; ++i) { 1627 unsigned short Val = ToBuf[i]; 1628 if (TargetIsLSB) { 1629 AsBytes.push_back(Val & 0xFF); 1630 AsBytes.push_back(Val >> 8); 1631 } else { 1632 AsBytes.push_back(Val >> 8); 1633 AsBytes.push_back(Val & 0xFF); 1634 } 1635 } 1636 // Append one extra null character, the second is automatically added by our 1637 // caller. 1638 AsBytes.push_back(0); 1639 1640 IsUTF16 = true; 1641 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1642 } 1643 1644 llvm::Constant * 1645 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1646 unsigned StringLength = 0; 1647 bool isUTF16 = false; 1648 llvm::StringMapEntry<llvm::Constant*> &Entry = 1649 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1650 getTargetData().isLittleEndian(), 1651 isUTF16, StringLength); 1652 1653 if (llvm::Constant *C = Entry.getValue()) 1654 return C; 1655 1656 llvm::Constant *Zero = 1657 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1658 llvm::Constant *Zeros[] = { Zero, Zero }; 1659 1660 // If we don't already have it, get __CFConstantStringClassReference. 1661 if (!CFConstantStringClassRef) { 1662 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1663 Ty = llvm::ArrayType::get(Ty, 0); 1664 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1665 "__CFConstantStringClassReference"); 1666 // Decay array -> ptr 1667 CFConstantStringClassRef = 1668 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1669 } 1670 1671 QualType CFTy = getContext().getCFConstantStringType(); 1672 1673 const llvm::StructType *STy = 1674 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1675 1676 std::vector<llvm::Constant*> Fields(4); 1677 1678 // Class pointer. 1679 Fields[0] = CFConstantStringClassRef; 1680 1681 // Flags. 1682 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1683 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1684 llvm::ConstantInt::get(Ty, 0x07C8); 1685 1686 // String pointer. 1687 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1688 1689 llvm::GlobalValue::LinkageTypes Linkage; 1690 bool isConstant; 1691 if (isUTF16) { 1692 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1693 Linkage = llvm::GlobalValue::InternalLinkage; 1694 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1695 // does make plain ascii ones writable. 1696 isConstant = true; 1697 } else { 1698 Linkage = llvm::GlobalValue::PrivateLinkage; 1699 isConstant = !Features.WritableStrings; 1700 } 1701 1702 llvm::GlobalVariable *GV = 1703 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1704 ".str"); 1705 if (isUTF16) { 1706 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1707 GV->setAlignment(Align.getQuantity()); 1708 } 1709 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1710 1711 // String length. 1712 Ty = getTypes().ConvertType(getContext().LongTy); 1713 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1714 1715 // The struct. 1716 C = llvm::ConstantStruct::get(STy, Fields); 1717 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1718 llvm::GlobalVariable::PrivateLinkage, C, 1719 "_unnamed_cfstring_"); 1720 if (const char *Sect = getContext().Target.getCFStringSection()) 1721 GV->setSection(Sect); 1722 Entry.setValue(GV); 1723 1724 return GV; 1725 } 1726 1727 llvm::Constant * 1728 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1729 unsigned StringLength = 0; 1730 bool isUTF16 = false; 1731 llvm::StringMapEntry<llvm::Constant*> &Entry = 1732 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1733 getTargetData().isLittleEndian(), 1734 isUTF16, StringLength); 1735 1736 if (llvm::Constant *C = Entry.getValue()) 1737 return C; 1738 1739 llvm::Constant *Zero = 1740 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1741 llvm::Constant *Zeros[] = { Zero, Zero }; 1742 1743 // If we don't already have it, get _NSConstantStringClassReference. 1744 if (!NSConstantStringClassRef) { 1745 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1746 Ty = llvm::ArrayType::get(Ty, 0); 1747 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1748 Features.ObjCNonFragileABI ? 1749 "OBJC_CLASS_$_NSConstantString" : 1750 "_NSConstantStringClassReference"); 1751 // Decay array -> ptr 1752 NSConstantStringClassRef = 1753 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1754 } 1755 1756 QualType NSTy = getContext().getNSConstantStringType(); 1757 1758 const llvm::StructType *STy = 1759 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1760 1761 std::vector<llvm::Constant*> Fields(3); 1762 1763 // Class pointer. 1764 Fields[0] = NSConstantStringClassRef; 1765 1766 // String pointer. 1767 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1768 1769 llvm::GlobalValue::LinkageTypes Linkage; 1770 bool isConstant; 1771 if (isUTF16) { 1772 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1773 Linkage = llvm::GlobalValue::InternalLinkage; 1774 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1775 // does make plain ascii ones writable. 1776 isConstant = true; 1777 } else { 1778 Linkage = llvm::GlobalValue::PrivateLinkage; 1779 isConstant = !Features.WritableStrings; 1780 } 1781 1782 llvm::GlobalVariable *GV = 1783 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1784 ".str"); 1785 if (isUTF16) { 1786 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1787 GV->setAlignment(Align.getQuantity()); 1788 } 1789 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1790 1791 // String length. 1792 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1793 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1794 1795 // The struct. 1796 C = llvm::ConstantStruct::get(STy, Fields); 1797 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1798 llvm::GlobalVariable::PrivateLinkage, C, 1799 "_unnamed_nsstring_"); 1800 // FIXME. Fix section. 1801 if (const char *Sect = 1802 Features.ObjCNonFragileABI 1803 ? getContext().Target.getNSStringNonFragileABISection() 1804 : getContext().Target.getNSStringSection()) 1805 GV->setSection(Sect); 1806 Entry.setValue(GV); 1807 1808 return GV; 1809 } 1810 1811 /// GetStringForStringLiteral - Return the appropriate bytes for a 1812 /// string literal, properly padded to match the literal type. 1813 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1814 const char *StrData = E->getStrData(); 1815 unsigned Len = E->getByteLength(); 1816 1817 const ConstantArrayType *CAT = 1818 getContext().getAsConstantArrayType(E->getType()); 1819 assert(CAT && "String isn't pointer or array!"); 1820 1821 // Resize the string to the right size. 1822 std::string Str(StrData, StrData+Len); 1823 uint64_t RealLen = CAT->getSize().getZExtValue(); 1824 1825 if (E->isWide()) 1826 RealLen *= getContext().Target.getWCharWidth()/8; 1827 1828 Str.resize(RealLen, '\0'); 1829 1830 return Str; 1831 } 1832 1833 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1834 /// constant array for the given string literal. 1835 llvm::Constant * 1836 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1837 // FIXME: This can be more efficient. 1838 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1839 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1840 if (S->isWide()) { 1841 llvm::Type *DestTy = 1842 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1843 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1844 } 1845 return C; 1846 } 1847 1848 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1849 /// array for the given ObjCEncodeExpr node. 1850 llvm::Constant * 1851 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1852 std::string Str; 1853 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1854 1855 return GetAddrOfConstantCString(Str); 1856 } 1857 1858 1859 /// GenerateWritableString -- Creates storage for a string literal. 1860 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1861 bool constant, 1862 CodeGenModule &CGM, 1863 const char *GlobalName) { 1864 // Create Constant for this string literal. Don't add a '\0'. 1865 llvm::Constant *C = 1866 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1867 1868 // Create a global variable for this string 1869 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1870 llvm::GlobalValue::PrivateLinkage, 1871 C, GlobalName); 1872 } 1873 1874 /// GetAddrOfConstantString - Returns a pointer to a character array 1875 /// containing the literal. This contents are exactly that of the 1876 /// given string, i.e. it will not be null terminated automatically; 1877 /// see GetAddrOfConstantCString. Note that whether the result is 1878 /// actually a pointer to an LLVM constant depends on 1879 /// Feature.WriteableStrings. 1880 /// 1881 /// The result has pointer to array type. 1882 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1883 const char *GlobalName) { 1884 bool IsConstant = !Features.WritableStrings; 1885 1886 // Get the default prefix if a name wasn't specified. 1887 if (!GlobalName) 1888 GlobalName = ".str"; 1889 1890 // Don't share any string literals if strings aren't constant. 1891 if (!IsConstant) 1892 return GenerateStringLiteral(str, false, *this, GlobalName); 1893 1894 llvm::StringMapEntry<llvm::Constant *> &Entry = 1895 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1896 1897 if (Entry.getValue()) 1898 return Entry.getValue(); 1899 1900 // Create a global variable for this. 1901 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1902 Entry.setValue(C); 1903 return C; 1904 } 1905 1906 /// GetAddrOfConstantCString - Returns a pointer to a character 1907 /// array containing the literal and a terminating '\-' 1908 /// character. The result has pointer to array type. 1909 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1910 const char *GlobalName){ 1911 return GetAddrOfConstantString(str + '\0', GlobalName); 1912 } 1913 1914 /// EmitObjCPropertyImplementations - Emit information for synthesized 1915 /// properties for an implementation. 1916 void CodeGenModule::EmitObjCPropertyImplementations(const 1917 ObjCImplementationDecl *D) { 1918 for (ObjCImplementationDecl::propimpl_iterator 1919 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1920 ObjCPropertyImplDecl *PID = *i; 1921 1922 // Dynamic is just for type-checking. 1923 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1924 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1925 1926 // Determine which methods need to be implemented, some may have 1927 // been overridden. Note that ::isSynthesized is not the method 1928 // we want, that just indicates if the decl came from a 1929 // property. What we want to know is if the method is defined in 1930 // this implementation. 1931 if (!D->getInstanceMethod(PD->getGetterName())) 1932 CodeGenFunction(*this).GenerateObjCGetter( 1933 const_cast<ObjCImplementationDecl *>(D), PID); 1934 if (!PD->isReadOnly() && 1935 !D->getInstanceMethod(PD->getSetterName())) 1936 CodeGenFunction(*this).GenerateObjCSetter( 1937 const_cast<ObjCImplementationDecl *>(D), PID); 1938 } 1939 } 1940 } 1941 1942 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1943 /// for an implementation. 1944 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1945 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1946 return; 1947 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1948 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1949 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1950 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1951 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1952 D->getLocation(), 1953 D->getLocation(), cxxSelector, 1954 getContext().VoidTy, 0, 1955 DC, true, false, true, false, 1956 ObjCMethodDecl::Required); 1957 D->addInstanceMethod(DTORMethod); 1958 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1959 1960 II = &getContext().Idents.get(".cxx_construct"); 1961 cxxSelector = getContext().Selectors.getSelector(0, &II); 1962 // The constructor returns 'self'. 1963 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1964 D->getLocation(), 1965 D->getLocation(), cxxSelector, 1966 getContext().getObjCIdType(), 0, 1967 DC, true, false, true, false, 1968 ObjCMethodDecl::Required); 1969 D->addInstanceMethod(CTORMethod); 1970 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1971 1972 1973 } 1974 1975 /// EmitNamespace - Emit all declarations in a namespace. 1976 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1977 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1978 I != E; ++I) 1979 EmitTopLevelDecl(*I); 1980 } 1981 1982 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1983 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1984 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1985 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1986 ErrorUnsupported(LSD, "linkage spec"); 1987 return; 1988 } 1989 1990 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1991 I != E; ++I) 1992 EmitTopLevelDecl(*I); 1993 } 1994 1995 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1996 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1997 // If an error has occurred, stop code generation, but continue 1998 // parsing and semantic analysis (to ensure all warnings and errors 1999 // are emitted). 2000 if (Diags.hasErrorOccurred()) 2001 return; 2002 2003 // Ignore dependent declarations. 2004 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2005 return; 2006 2007 switch (D->getKind()) { 2008 case Decl::CXXConversion: 2009 case Decl::CXXMethod: 2010 case Decl::Function: 2011 // Skip function templates 2012 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 2013 return; 2014 2015 EmitGlobal(cast<FunctionDecl>(D)); 2016 break; 2017 2018 case Decl::Var: 2019 EmitGlobal(cast<VarDecl>(D)); 2020 break; 2021 2022 // C++ Decls 2023 case Decl::Namespace: 2024 EmitNamespace(cast<NamespaceDecl>(D)); 2025 break; 2026 // No code generation needed. 2027 case Decl::UsingShadow: 2028 case Decl::Using: 2029 case Decl::UsingDirective: 2030 case Decl::ClassTemplate: 2031 case Decl::FunctionTemplate: 2032 case Decl::NamespaceAlias: 2033 break; 2034 case Decl::CXXConstructor: 2035 // Skip function templates 2036 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 2037 return; 2038 2039 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2040 break; 2041 case Decl::CXXDestructor: 2042 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2043 break; 2044 2045 case Decl::StaticAssert: 2046 // Nothing to do. 2047 break; 2048 2049 // Objective-C Decls 2050 2051 // Forward declarations, no (immediate) code generation. 2052 case Decl::ObjCClass: 2053 case Decl::ObjCForwardProtocol: 2054 case Decl::ObjCCategory: 2055 case Decl::ObjCInterface: 2056 break; 2057 2058 case Decl::ObjCProtocol: 2059 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2060 break; 2061 2062 case Decl::ObjCCategoryImpl: 2063 // Categories have properties but don't support synthesize so we 2064 // can ignore them here. 2065 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2066 break; 2067 2068 case Decl::ObjCImplementation: { 2069 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2070 EmitObjCPropertyImplementations(OMD); 2071 EmitObjCIvarInitializations(OMD); 2072 Runtime->GenerateClass(OMD); 2073 break; 2074 } 2075 case Decl::ObjCMethod: { 2076 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2077 // If this is not a prototype, emit the body. 2078 if (OMD->getBody()) 2079 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2080 break; 2081 } 2082 case Decl::ObjCCompatibleAlias: 2083 // compatibility-alias is a directive and has no code gen. 2084 break; 2085 2086 case Decl::LinkageSpec: 2087 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2088 break; 2089 2090 case Decl::FileScopeAsm: { 2091 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2092 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2093 2094 const std::string &S = getModule().getModuleInlineAsm(); 2095 if (S.empty()) 2096 getModule().setModuleInlineAsm(AsmString); 2097 else 2098 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2099 break; 2100 } 2101 2102 default: 2103 // Make sure we handled everything we should, every other kind is a 2104 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2105 // function. Need to recode Decl::Kind to do that easily. 2106 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2107 } 2108 } 2109 2110 /// Turns the given pointer into a constant. 2111 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2112 const void *Ptr) { 2113 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2114 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2115 return llvm::ConstantInt::get(i64, PtrInt); 2116 } 2117 2118 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2119 llvm::NamedMDNode *&GlobalMetadata, 2120 GlobalDecl D, 2121 llvm::GlobalValue *Addr) { 2122 if (!GlobalMetadata) 2123 GlobalMetadata = 2124 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2125 2126 // TODO: should we report variant information for ctors/dtors? 2127 llvm::Value *Ops[] = { 2128 Addr, 2129 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2130 }; 2131 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2132 } 2133 2134 /// Emits metadata nodes associating all the global values in the 2135 /// current module with the Decls they came from. This is useful for 2136 /// projects using IR gen as a subroutine. 2137 /// 2138 /// Since there's currently no way to associate an MDNode directly 2139 /// with an llvm::GlobalValue, we create a global named metadata 2140 /// with the name 'clang.global.decl.ptrs'. 2141 void CodeGenModule::EmitDeclMetadata() { 2142 llvm::NamedMDNode *GlobalMetadata = 0; 2143 2144 // StaticLocalDeclMap 2145 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2146 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2147 I != E; ++I) { 2148 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2149 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2150 } 2151 } 2152 2153 /// Emits metadata nodes for all the local variables in the current 2154 /// function. 2155 void CodeGenFunction::EmitDeclMetadata() { 2156 if (LocalDeclMap.empty()) return; 2157 2158 llvm::LLVMContext &Context = getLLVMContext(); 2159 2160 // Find the unique metadata ID for this name. 2161 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2162 2163 llvm::NamedMDNode *GlobalMetadata = 0; 2164 2165 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2166 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2167 const Decl *D = I->first; 2168 llvm::Value *Addr = I->second; 2169 2170 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2171 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2172 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2173 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2174 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2175 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2176 } 2177 } 2178 } 2179 2180 ///@name Custom Runtime Function Interfaces 2181 ///@{ 2182 // 2183 // FIXME: These can be eliminated once we can have clients just get the required 2184 // AST nodes from the builtin tables. 2185 2186 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2187 if (BlockObjectDispose) 2188 return BlockObjectDispose; 2189 2190 // If we saw an explicit decl, use that. 2191 if (BlockObjectDisposeDecl) { 2192 return BlockObjectDispose = GetAddrOfFunction( 2193 BlockObjectDisposeDecl, 2194 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2195 } 2196 2197 // Otherwise construct the function by hand. 2198 const llvm::FunctionType *FTy; 2199 std::vector<const llvm::Type*> ArgTys; 2200 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2201 ArgTys.push_back(PtrToInt8Ty); 2202 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2203 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2204 return BlockObjectDispose = 2205 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2206 } 2207 2208 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2209 if (BlockObjectAssign) 2210 return BlockObjectAssign; 2211 2212 // If we saw an explicit decl, use that. 2213 if (BlockObjectAssignDecl) { 2214 return BlockObjectAssign = GetAddrOfFunction( 2215 BlockObjectAssignDecl, 2216 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2217 } 2218 2219 // Otherwise construct the function by hand. 2220 const llvm::FunctionType *FTy; 2221 std::vector<const llvm::Type*> ArgTys; 2222 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2223 ArgTys.push_back(PtrToInt8Ty); 2224 ArgTys.push_back(PtrToInt8Ty); 2225 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2226 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2227 return BlockObjectAssign = 2228 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2229 } 2230 2231 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2232 if (NSConcreteGlobalBlock) 2233 return NSConcreteGlobalBlock; 2234 2235 // If we saw an explicit decl, use that. 2236 if (NSConcreteGlobalBlockDecl) { 2237 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2238 NSConcreteGlobalBlockDecl, 2239 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2240 } 2241 2242 // Otherwise construct the variable by hand. 2243 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2244 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2245 } 2246 2247 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2248 if (NSConcreteStackBlock) 2249 return NSConcreteStackBlock; 2250 2251 // If we saw an explicit decl, use that. 2252 if (NSConcreteStackBlockDecl) { 2253 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2254 NSConcreteStackBlockDecl, 2255 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2256 } 2257 2258 // Otherwise construct the variable by hand. 2259 return NSConcreteStackBlock = CreateRuntimeVariable( 2260 PtrToInt8Ty, "_NSConcreteStackBlock"); 2261 } 2262 2263 ///@} 2264