xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 4f4bf7c3482598c02bea7fbe9bbcca56ac720313)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127 
128   if (LangOpts.ObjC1)
129     createObjCRuntime();
130   if (LangOpts.OpenCL)
131     createOpenCLRuntime();
132   if (LangOpts.OpenMP)
133     createOpenMPRuntime();
134   if (LangOpts.CUDA)
135     createCUDARuntime();
136 
137   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141                                getCXXABI().getMangleContext()));
142 
143   // If debug info or coverage generation is enabled, create the CGDebugInfo
144   // object.
145   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147     DebugInfo.reset(new CGDebugInfo(*this));
148 
149   Block.GlobalUniqueCount = 0;
150 
151   if (C.getLangOpts().ObjC1)
152     ObjCData.reset(new ObjCEntrypoints());
153 
154   if (CodeGenOpts.hasProfileClangUse()) {
155     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156         CodeGenOpts.ProfileInstrumentUsePath);
157     if (auto E = ReaderOrErr.takeError()) {
158       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159                                               "Could not read profile %0: %1");
160       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162                                   << EI.message();
163       });
164     } else
165       PGOReader = std::move(ReaderOrErr.get());
166   }
167 
168   // If coverage mapping generation is enabled, create the
169   // CoverageMappingModuleGen object.
170   if (CodeGenOpts.CoverageMapping)
171     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172 }
173 
174 CodeGenModule::~CodeGenModule() {}
175 
176 void CodeGenModule::createObjCRuntime() {
177   // This is just isGNUFamily(), but we want to force implementors of
178   // new ABIs to decide how best to do this.
179   switch (LangOpts.ObjCRuntime.getKind()) {
180   case ObjCRuntime::GNUstep:
181   case ObjCRuntime::GCC:
182   case ObjCRuntime::ObjFW:
183     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184     return;
185 
186   case ObjCRuntime::FragileMacOSX:
187   case ObjCRuntime::MacOSX:
188   case ObjCRuntime::iOS:
189   case ObjCRuntime::WatchOS:
190     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191     return;
192   }
193   llvm_unreachable("bad runtime kind");
194 }
195 
196 void CodeGenModule::createOpenCLRuntime() {
197   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198 }
199 
200 void CodeGenModule::createOpenMPRuntime() {
201   // Select a specialized code generation class based on the target, if any.
202   // If it does not exist use the default implementation.
203   switch (getTriple().getArch()) {
204   case llvm::Triple::nvptx:
205   case llvm::Triple::nvptx64:
206     assert(getLangOpts().OpenMPIsDevice &&
207            "OpenMP NVPTX is only prepared to deal with device code.");
208     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209     break;
210   default:
211     if (LangOpts.OpenMPSimd)
212       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213     else
214       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215     break;
216   }
217 }
218 
219 void CodeGenModule::createCUDARuntime() {
220   CUDARuntime.reset(CreateNVCUDARuntime(*this));
221 }
222 
223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224   Replacements[Name] = C;
225 }
226 
227 void CodeGenModule::applyReplacements() {
228   for (auto &I : Replacements) {
229     StringRef MangledName = I.first();
230     llvm::Constant *Replacement = I.second;
231     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232     if (!Entry)
233       continue;
234     auto *OldF = cast<llvm::Function>(Entry);
235     auto *NewF = dyn_cast<llvm::Function>(Replacement);
236     if (!NewF) {
237       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239       } else {
240         auto *CE = cast<llvm::ConstantExpr>(Replacement);
241         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
242                CE->getOpcode() == llvm::Instruction::GetElementPtr);
243         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244       }
245     }
246 
247     // Replace old with new, but keep the old order.
248     OldF->replaceAllUsesWith(Replacement);
249     if (NewF) {
250       NewF->removeFromParent();
251       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252                                                        NewF);
253     }
254     OldF->eraseFromParent();
255   }
256 }
257 
258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259   GlobalValReplacements.push_back(std::make_pair(GV, C));
260 }
261 
262 void CodeGenModule::applyGlobalValReplacements() {
263   for (auto &I : GlobalValReplacements) {
264     llvm::GlobalValue *GV = I.first;
265     llvm::Constant *C = I.second;
266 
267     GV->replaceAllUsesWith(C);
268     GV->eraseFromParent();
269   }
270 }
271 
272 // This is only used in aliases that we created and we know they have a
273 // linear structure.
274 static const llvm::GlobalObject *getAliasedGlobal(
275     const llvm::GlobalIndirectSymbol &GIS) {
276   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277   const llvm::Constant *C = &GIS;
278   for (;;) {
279     C = C->stripPointerCasts();
280     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281       return GO;
282     // stripPointerCasts will not walk over weak aliases.
283     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284     if (!GIS2)
285       return nullptr;
286     if (!Visited.insert(GIS2).second)
287       return nullptr;
288     C = GIS2->getIndirectSymbol();
289   }
290 }
291 
292 void CodeGenModule::checkAliases() {
293   // Check if the constructed aliases are well formed. It is really unfortunate
294   // that we have to do this in CodeGen, but we only construct mangled names
295   // and aliases during codegen.
296   bool Error = false;
297   DiagnosticsEngine &Diags = getDiags();
298   for (const GlobalDecl &GD : Aliases) {
299     const auto *D = cast<ValueDecl>(GD.getDecl());
300     SourceLocation Location;
301     bool IsIFunc = D->hasAttr<IFuncAttr>();
302     if (const Attr *A = D->getDefiningAttr())
303       Location = A->getLocation();
304     else
305       llvm_unreachable("Not an alias or ifunc?");
306     StringRef MangledName = getMangledName(GD);
307     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
309     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310     if (!GV) {
311       Error = true;
312       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313     } else if (GV->isDeclaration()) {
314       Error = true;
315       Diags.Report(Location, diag::err_alias_to_undefined)
316           << IsIFunc << IsIFunc;
317     } else if (IsIFunc) {
318       // Check resolver function type.
319       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320           GV->getType()->getPointerElementType());
321       assert(FTy);
322       if (!FTy->getReturnType()->isPointerTy())
323         Diags.Report(Location, diag::err_ifunc_resolver_return);
324       if (FTy->getNumParams())
325         Diags.Report(Location, diag::err_ifunc_resolver_params);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime)
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419   if (PGOReader) {
420     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421     if (PGOStats.hasDiagnostics())
422       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423   }
424   EmitCtorList(GlobalCtors, "llvm.global_ctors");
425   EmitCtorList(GlobalDtors, "llvm.global_dtors");
426   EmitGlobalAnnotations();
427   EmitStaticExternCAliases();
428   EmitDeferredUnusedCoverageMappings();
429   if (CoverageMapping)
430     CoverageMapping->emit();
431   if (CodeGenOpts.SanitizeCfiCrossDso) {
432     CodeGenFunction(*this).EmitCfiCheckFail();
433     CodeGenFunction(*this).EmitCfiCheckStub();
434   }
435   emitAtAvailableLinkGuard();
436   emitLLVMUsed();
437   if (SanStats)
438     SanStats->finish();
439 
440   if (CodeGenOpts.Autolink &&
441       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442     EmitModuleLinkOptions();
443   }
444 
445   // Record mregparm value now so it is visible through rest of codegen.
446   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448                               CodeGenOpts.NumRegisterParameters);
449 
450   if (CodeGenOpts.DwarfVersion) {
451     // We actually want the latest version when there are conflicts.
452     // We can change from Warning to Latest if such mode is supported.
453     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454                               CodeGenOpts.DwarfVersion);
455   }
456   if (CodeGenOpts.EmitCodeView) {
457     // Indicate that we want CodeView in the metadata.
458     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459   }
460   if (CodeGenOpts.ControlFlowGuard) {
461     // We want function ID tables for Control Flow Guard.
462     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
463   }
464   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
465     // We don't support LTO with 2 with different StrictVTablePointers
466     // FIXME: we could support it by stripping all the information introduced
467     // by StrictVTablePointers.
468 
469     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
470 
471     llvm::Metadata *Ops[2] = {
472               llvm::MDString::get(VMContext, "StrictVTablePointers"),
473               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
474                   llvm::Type::getInt32Ty(VMContext), 1))};
475 
476     getModule().addModuleFlag(llvm::Module::Require,
477                               "StrictVTablePointersRequirement",
478                               llvm::MDNode::get(VMContext, Ops));
479   }
480   if (DebugInfo)
481     // We support a single version in the linked module. The LLVM
482     // parser will drop debug info with a different version number
483     // (and warn about it, too).
484     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
485                               llvm::DEBUG_METADATA_VERSION);
486 
487   // We need to record the widths of enums and wchar_t, so that we can generate
488   // the correct build attributes in the ARM backend. wchar_size is also used by
489   // TargetLibraryInfo.
490   uint64_t WCharWidth =
491       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
492   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
493 
494   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
495   if (   Arch == llvm::Triple::arm
496       || Arch == llvm::Triple::armeb
497       || Arch == llvm::Triple::thumb
498       || Arch == llvm::Triple::thumbeb) {
499     // The minimum width of an enum in bytes
500     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
501     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
502   }
503 
504   if (CodeGenOpts.SanitizeCfiCrossDso) {
505     // Indicate that we want cross-DSO control flow integrity checks.
506     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
507   }
508 
509   if (CodeGenOpts.CFProtectionReturn &&
510       Target.checkCFProtectionReturnSupported(getDiags())) {
511     // Indicate that we want to instrument return control flow protection.
512     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
513                               1);
514   }
515 
516   if (CodeGenOpts.CFProtectionBranch &&
517       Target.checkCFProtectionBranchSupported(getDiags())) {
518     // Indicate that we want to instrument branch control flow protection.
519     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
520                               1);
521   }
522 
523   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
524     // Indicate whether __nvvm_reflect should be configured to flush denormal
525     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
526     // property.)
527     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
528                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
529   }
530 
531   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
532   if (LangOpts.OpenCL) {
533     EmitOpenCLMetadata();
534     // Emit SPIR version.
535     if (getTriple().getArch() == llvm::Triple::spir ||
536         getTriple().getArch() == llvm::Triple::spir64) {
537       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
538       // opencl.spir.version named metadata.
539       llvm::Metadata *SPIRVerElts[] = {
540           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541               Int32Ty, LangOpts.OpenCLVersion / 100)),
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
544       llvm::NamedMDNode *SPIRVerMD =
545           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
546       llvm::LLVMContext &Ctx = TheModule.getContext();
547       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
548     }
549   }
550 
551   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
552     assert(PLevel < 3 && "Invalid PIC Level");
553     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
554     if (Context.getLangOpts().PIE)
555       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
556   }
557 
558   if (CodeGenOpts.NoPLT)
559     getModule().setRtLibUseGOT();
560 
561   SimplifyPersonality();
562 
563   if (getCodeGenOpts().EmitDeclMetadata)
564     EmitDeclMetadata();
565 
566   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
567     EmitCoverageFile();
568 
569   if (DebugInfo)
570     DebugInfo->finalize();
571 
572   EmitVersionIdentMetadata();
573 
574   EmitTargetMetadata();
575 }
576 
577 void CodeGenModule::EmitOpenCLMetadata() {
578   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
579   // opencl.ocl.version named metadata node.
580   llvm::Metadata *OCLVerElts[] = {
581       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
582           Int32Ty, LangOpts.OpenCLVersion / 100)),
583       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
584           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
585   llvm::NamedMDNode *OCLVerMD =
586       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
587   llvm::LLVMContext &Ctx = TheModule.getContext();
588   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
589 }
590 
591 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
592   // Make sure that this type is translated.
593   Types.UpdateCompletedType(TD);
594 }
595 
596 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
597   // Make sure that this type is translated.
598   Types.RefreshTypeCacheForClass(RD);
599 }
600 
601 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
602   if (!TBAA)
603     return nullptr;
604   return TBAA->getTypeInfo(QTy);
605 }
606 
607 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
608   if (!TBAA)
609     return TBAAAccessInfo();
610   return TBAA->getAccessInfo(AccessType);
611 }
612 
613 TBAAAccessInfo
614 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
615   if (!TBAA)
616     return TBAAAccessInfo();
617   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
618 }
619 
620 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
621   if (!TBAA)
622     return nullptr;
623   return TBAA->getTBAAStructInfo(QTy);
624 }
625 
626 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
627   if (!TBAA)
628     return nullptr;
629   return TBAA->getBaseTypeInfo(QTy);
630 }
631 
632 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
633   if (!TBAA)
634     return nullptr;
635   return TBAA->getAccessTagInfo(Info);
636 }
637 
638 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
639                                                    TBAAAccessInfo TargetInfo) {
640   if (!TBAA)
641     return TBAAAccessInfo();
642   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
643 }
644 
645 TBAAAccessInfo
646 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
647                                                    TBAAAccessInfo InfoB) {
648   if (!TBAA)
649     return TBAAAccessInfo();
650   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
651 }
652 
653 TBAAAccessInfo
654 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
655                                               TBAAAccessInfo SrcInfo) {
656   if (!TBAA)
657     return TBAAAccessInfo();
658   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
659 }
660 
661 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
662                                                 TBAAAccessInfo TBAAInfo) {
663   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
664     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
665 }
666 
667 void CodeGenModule::DecorateInstructionWithInvariantGroup(
668     llvm::Instruction *I, const CXXRecordDecl *RD) {
669   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
670                  llvm::MDNode::get(getLLVMContext(), {}));
671 }
672 
673 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
674   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
675   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
676 }
677 
678 /// ErrorUnsupported - Print out an error that codegen doesn't support the
679 /// specified stmt yet.
680 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
681   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
682                                                "cannot compile this %0 yet");
683   std::string Msg = Type;
684   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
685     << Msg << S->getSourceRange();
686 }
687 
688 /// ErrorUnsupported - Print out an error that codegen doesn't support the
689 /// specified decl yet.
690 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
691   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
692                                                "cannot compile this %0 yet");
693   std::string Msg = Type;
694   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
695 }
696 
697 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
698   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
699 }
700 
701 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
702                                         const NamedDecl *D) const {
703   if (GV->hasDLLImportStorageClass())
704     return;
705   // Internal definitions always have default visibility.
706   if (GV->hasLocalLinkage()) {
707     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
708     return;
709   }
710   if (!D)
711     return;
712   // Set visibility for definitions.
713   LinkageInfo LV = D->getLinkageAndVisibility();
714   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
715     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
716 }
717 
718 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
719                                  llvm::GlobalValue *GV) {
720   if (GV->hasLocalLinkage())
721     return true;
722 
723   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
724     return true;
725 
726   // DLLImport explicitly marks the GV as external.
727   if (GV->hasDLLImportStorageClass())
728     return false;
729 
730   const llvm::Triple &TT = CGM.getTriple();
731   // Every other GV is local on COFF.
732   // Make an exception for windows OS in the triple: Some firmware builds use
733   // *-win32-macho triples. This (accidentally?) produced windows relocations
734   // without GOT tables in older clang versions; Keep this behaviour.
735   // FIXME: even thread local variables?
736   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
737     return true;
738 
739   // Only handle COFF and ELF for now.
740   if (!TT.isOSBinFormatELF())
741     return false;
742 
743   // If this is not an executable, don't assume anything is local.
744   const auto &CGOpts = CGM.getCodeGenOpts();
745   llvm::Reloc::Model RM = CGOpts.RelocationModel;
746   const auto &LOpts = CGM.getLangOpts();
747   if (RM != llvm::Reloc::Static && !LOpts.PIE)
748     return false;
749 
750   // A definition cannot be preempted from an executable.
751   if (!GV->isDeclarationForLinker())
752     return true;
753 
754   // Most PIC code sequences that assume that a symbol is local cannot produce a
755   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
756   // depended, it seems worth it to handle it here.
757   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
758     return false;
759 
760   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
761   llvm::Triple::ArchType Arch = TT.getArch();
762   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
763       Arch == llvm::Triple::ppc64le)
764     return false;
765 
766   // If we can use copy relocations we can assume it is local.
767   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
768     if (!Var->isThreadLocal() &&
769         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
770       return true;
771 
772   // If we can use a plt entry as the symbol address we can assume it
773   // is local.
774   // FIXME: This should work for PIE, but the gold linker doesn't support it.
775   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
776     return true;
777 
778   // Otherwise don't assue it is local.
779   return false;
780 }
781 
782 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
783   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
784 }
785 
786 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
787                                           GlobalDecl GD) const {
788   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
789   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
790     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
791       // Don't dllexport/import destructor thunks.
792       GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
793       return;
794     }
795   }
796   setDLLImportDLLExport(GV, D);
797 }
798 
799 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
800                                           const NamedDecl *D) const {
801   if (D && D->isExternallyVisible()) {
802     if (D->hasAttr<DLLImportAttr>())
803       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
804     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
805       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
806   }
807 }
808 
809 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
810                                     GlobalDecl GD) const {
811   setDLLImportDLLExport(GV, GD);
812   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
813 }
814 
815 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
816                                     const NamedDecl *D) const {
817   setDLLImportDLLExport(GV, D);
818   setGlobalVisibilityAndLocal(GV, D);
819 }
820 
821 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
822                                                 const NamedDecl *D) const {
823   setGlobalVisibility(GV, D);
824   setDSOLocal(GV);
825 }
826 
827 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
828   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
829       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
830       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
831       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
832       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
833 }
834 
835 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
836     CodeGenOptions::TLSModel M) {
837   switch (M) {
838   case CodeGenOptions::GeneralDynamicTLSModel:
839     return llvm::GlobalVariable::GeneralDynamicTLSModel;
840   case CodeGenOptions::LocalDynamicTLSModel:
841     return llvm::GlobalVariable::LocalDynamicTLSModel;
842   case CodeGenOptions::InitialExecTLSModel:
843     return llvm::GlobalVariable::InitialExecTLSModel;
844   case CodeGenOptions::LocalExecTLSModel:
845     return llvm::GlobalVariable::LocalExecTLSModel;
846   }
847   llvm_unreachable("Invalid TLS model!");
848 }
849 
850 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
851   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
852 
853   llvm::GlobalValue::ThreadLocalMode TLM;
854   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
855 
856   // Override the TLS model if it is explicitly specified.
857   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
858     TLM = GetLLVMTLSModel(Attr->getModel());
859   }
860 
861   GV->setThreadLocalMode(TLM);
862 }
863 
864 static void AppendTargetMangling(const CodeGenModule &CGM,
865                                  const TargetAttr *Attr, raw_ostream &Out) {
866   if (Attr->isDefaultVersion())
867     return;
868 
869   Out << '.';
870   const auto &Target = CGM.getTarget();
871   TargetAttr::ParsedTargetAttr Info =
872       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
873                     // Multiversioning doesn't allow "no-${feature}", so we can
874                     // only have "+" prefixes here.
875                     assert(LHS.startswith("+") && RHS.startswith("+") &&
876                            "Features should always have a prefix.");
877                     return Target.multiVersionSortPriority(LHS.substr(1)) >
878                            Target.multiVersionSortPriority(RHS.substr(1));
879                   });
880 
881   bool IsFirst = true;
882 
883   if (!Info.Architecture.empty()) {
884     IsFirst = false;
885     Out << "arch_" << Info.Architecture;
886   }
887 
888   for (StringRef Feat : Info.Features) {
889     if (!IsFirst)
890       Out << '_';
891     IsFirst = false;
892     Out << Feat.substr(1);
893   }
894 }
895 
896 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
897                                       const NamedDecl *ND,
898                                       bool OmitTargetMangling = false) {
899   SmallString<256> Buffer;
900   llvm::raw_svector_ostream Out(Buffer);
901   MangleContext &MC = CGM.getCXXABI().getMangleContext();
902   if (MC.shouldMangleDeclName(ND)) {
903     llvm::raw_svector_ostream Out(Buffer);
904     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
905       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
906     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
907       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
908     else
909       MC.mangleName(ND, Out);
910   } else {
911     IdentifierInfo *II = ND->getIdentifier();
912     assert(II && "Attempt to mangle unnamed decl.");
913     const auto *FD = dyn_cast<FunctionDecl>(ND);
914 
915     if (FD &&
916         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
917       llvm::raw_svector_ostream Out(Buffer);
918       Out << "__regcall3__" << II->getName();
919     } else {
920       Out << II->getName();
921     }
922   }
923 
924   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
925     if (FD->isMultiVersion() && !OmitTargetMangling)
926       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
927   return Out.str();
928 }
929 
930 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
931                                             const FunctionDecl *FD) {
932   if (!FD->isMultiVersion())
933     return;
934 
935   // Get the name of what this would be without the 'target' attribute.  This
936   // allows us to lookup the version that was emitted when this wasn't a
937   // multiversion function.
938   std::string NonTargetName =
939       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
940   GlobalDecl OtherGD;
941   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
942     assert(OtherGD.getCanonicalDecl()
943                .getDecl()
944                ->getAsFunction()
945                ->isMultiVersion() &&
946            "Other GD should now be a multiversioned function");
947     // OtherFD is the version of this function that was mangled BEFORE
948     // becoming a MultiVersion function.  It potentially needs to be updated.
949     const FunctionDecl *OtherFD =
950         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
951     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
952     // This is so that if the initial version was already the 'default'
953     // version, we don't try to update it.
954     if (OtherName != NonTargetName) {
955       // Remove instead of erase, since others may have stored the StringRef
956       // to this.
957       const auto ExistingRecord = Manglings.find(NonTargetName);
958       if (ExistingRecord != std::end(Manglings))
959         Manglings.remove(&(*ExistingRecord));
960       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
961       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
962       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
963         Entry->setName(OtherName);
964     }
965   }
966 }
967 
968 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
969   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
970 
971   // Some ABIs don't have constructor variants.  Make sure that base and
972   // complete constructors get mangled the same.
973   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
974     if (!getTarget().getCXXABI().hasConstructorVariants()) {
975       CXXCtorType OrigCtorType = GD.getCtorType();
976       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
977       if (OrigCtorType == Ctor_Base)
978         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
979     }
980   }
981 
982   auto FoundName = MangledDeclNames.find(CanonicalGD);
983   if (FoundName != MangledDeclNames.end())
984     return FoundName->second;
985 
986 
987   // Keep the first result in the case of a mangling collision.
988   const auto *ND = cast<NamedDecl>(GD.getDecl());
989   auto Result =
990       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
991   return MangledDeclNames[CanonicalGD] = Result.first->first();
992 }
993 
994 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
995                                              const BlockDecl *BD) {
996   MangleContext &MangleCtx = getCXXABI().getMangleContext();
997   const Decl *D = GD.getDecl();
998 
999   SmallString<256> Buffer;
1000   llvm::raw_svector_ostream Out(Buffer);
1001   if (!D)
1002     MangleCtx.mangleGlobalBlock(BD,
1003       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1004   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1005     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1006   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1007     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1008   else
1009     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1010 
1011   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1012   return Result.first->first();
1013 }
1014 
1015 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1016   return getModule().getNamedValue(Name);
1017 }
1018 
1019 /// AddGlobalCtor - Add a function to the list that will be called before
1020 /// main() runs.
1021 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1022                                   llvm::Constant *AssociatedData) {
1023   // FIXME: Type coercion of void()* types.
1024   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1025 }
1026 
1027 /// AddGlobalDtor - Add a function to the list that will be called
1028 /// when the module is unloaded.
1029 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1030   // FIXME: Type coercion of void()* types.
1031   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1032 }
1033 
1034 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1035   if (Fns.empty()) return;
1036 
1037   // Ctor function type is void()*.
1038   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1039   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1040 
1041   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1042   llvm::StructType *CtorStructTy = llvm::StructType::get(
1043       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1044 
1045   // Construct the constructor and destructor arrays.
1046   ConstantInitBuilder builder(*this);
1047   auto ctors = builder.beginArray(CtorStructTy);
1048   for (const auto &I : Fns) {
1049     auto ctor = ctors.beginStruct(CtorStructTy);
1050     ctor.addInt(Int32Ty, I.Priority);
1051     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1052     if (I.AssociatedData)
1053       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1054     else
1055       ctor.addNullPointer(VoidPtrTy);
1056     ctor.finishAndAddTo(ctors);
1057   }
1058 
1059   auto list =
1060     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1061                                 /*constant*/ false,
1062                                 llvm::GlobalValue::AppendingLinkage);
1063 
1064   // The LTO linker doesn't seem to like it when we set an alignment
1065   // on appending variables.  Take it off as a workaround.
1066   list->setAlignment(0);
1067 
1068   Fns.clear();
1069 }
1070 
1071 llvm::GlobalValue::LinkageTypes
1072 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1073   const auto *D = cast<FunctionDecl>(GD.getDecl());
1074 
1075   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1076 
1077   if (isa<CXXDestructorDecl>(D) &&
1078       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1079                                          GD.getDtorType())) {
1080     // Destructor variants in the Microsoft C++ ABI are always internal or
1081     // linkonce_odr thunks emitted on an as-needed basis.
1082     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
1083                                    : llvm::GlobalValue::LinkOnceODRLinkage;
1084   }
1085 
1086   if (isa<CXXConstructorDecl>(D) &&
1087       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1088       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1089     // Our approach to inheriting constructors is fundamentally different from
1090     // that used by the MS ABI, so keep our inheriting constructor thunks
1091     // internal rather than trying to pick an unambiguous mangling for them.
1092     return llvm::GlobalValue::InternalLinkage;
1093   }
1094 
1095   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1096 }
1097 
1098 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1099   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1100   if (!MDS) return nullptr;
1101 
1102   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1103 }
1104 
1105 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1106                                               const CGFunctionInfo &Info,
1107                                               llvm::Function *F) {
1108   unsigned CallingConv;
1109   llvm::AttributeList PAL;
1110   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1111   F->setAttributes(PAL);
1112   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1113 }
1114 
1115 /// Determines whether the language options require us to model
1116 /// unwind exceptions.  We treat -fexceptions as mandating this
1117 /// except under the fragile ObjC ABI with only ObjC exceptions
1118 /// enabled.  This means, for example, that C with -fexceptions
1119 /// enables this.
1120 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1121   // If exceptions are completely disabled, obviously this is false.
1122   if (!LangOpts.Exceptions) return false;
1123 
1124   // If C++ exceptions are enabled, this is true.
1125   if (LangOpts.CXXExceptions) return true;
1126 
1127   // If ObjC exceptions are enabled, this depends on the ABI.
1128   if (LangOpts.ObjCExceptions) {
1129     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1130   }
1131 
1132   return true;
1133 }
1134 
1135 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1136                                                            llvm::Function *F) {
1137   llvm::AttrBuilder B;
1138 
1139   if (CodeGenOpts.UnwindTables)
1140     B.addAttribute(llvm::Attribute::UWTable);
1141 
1142   if (!hasUnwindExceptions(LangOpts))
1143     B.addAttribute(llvm::Attribute::NoUnwind);
1144 
1145   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1146     B.addAttribute(llvm::Attribute::StackProtect);
1147   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1148     B.addAttribute(llvm::Attribute::StackProtectStrong);
1149   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1150     B.addAttribute(llvm::Attribute::StackProtectReq);
1151 
1152   if (!D) {
1153     // If we don't have a declaration to control inlining, the function isn't
1154     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1155     // disabled, mark the function as noinline.
1156     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1157         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1158       B.addAttribute(llvm::Attribute::NoInline);
1159 
1160     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1161     return;
1162   }
1163 
1164   // Track whether we need to add the optnone LLVM attribute,
1165   // starting with the default for this optimization level.
1166   bool ShouldAddOptNone =
1167       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1168   // We can't add optnone in the following cases, it won't pass the verifier.
1169   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1170   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1171   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1172 
1173   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1174     B.addAttribute(llvm::Attribute::OptimizeNone);
1175 
1176     // OptimizeNone implies noinline; we should not be inlining such functions.
1177     B.addAttribute(llvm::Attribute::NoInline);
1178     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1179            "OptimizeNone and AlwaysInline on same function!");
1180 
1181     // We still need to handle naked functions even though optnone subsumes
1182     // much of their semantics.
1183     if (D->hasAttr<NakedAttr>())
1184       B.addAttribute(llvm::Attribute::Naked);
1185 
1186     // OptimizeNone wins over OptimizeForSize and MinSize.
1187     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1188     F->removeFnAttr(llvm::Attribute::MinSize);
1189   } else if (D->hasAttr<NakedAttr>()) {
1190     // Naked implies noinline: we should not be inlining such functions.
1191     B.addAttribute(llvm::Attribute::Naked);
1192     B.addAttribute(llvm::Attribute::NoInline);
1193   } else if (D->hasAttr<NoDuplicateAttr>()) {
1194     B.addAttribute(llvm::Attribute::NoDuplicate);
1195   } else if (D->hasAttr<NoInlineAttr>()) {
1196     B.addAttribute(llvm::Attribute::NoInline);
1197   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1198              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1199     // (noinline wins over always_inline, and we can't specify both in IR)
1200     B.addAttribute(llvm::Attribute::AlwaysInline);
1201   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1202     // If we're not inlining, then force everything that isn't always_inline to
1203     // carry an explicit noinline attribute.
1204     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1205       B.addAttribute(llvm::Attribute::NoInline);
1206   } else {
1207     // Otherwise, propagate the inline hint attribute and potentially use its
1208     // absence to mark things as noinline.
1209     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1210       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1211             return Redecl->isInlineSpecified();
1212           })) {
1213         B.addAttribute(llvm::Attribute::InlineHint);
1214       } else if (CodeGenOpts.getInlining() ==
1215                      CodeGenOptions::OnlyHintInlining &&
1216                  !FD->isInlined() &&
1217                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1218         B.addAttribute(llvm::Attribute::NoInline);
1219       }
1220     }
1221   }
1222 
1223   // Add other optimization related attributes if we are optimizing this
1224   // function.
1225   if (!D->hasAttr<OptimizeNoneAttr>()) {
1226     if (D->hasAttr<ColdAttr>()) {
1227       if (!ShouldAddOptNone)
1228         B.addAttribute(llvm::Attribute::OptimizeForSize);
1229       B.addAttribute(llvm::Attribute::Cold);
1230     }
1231 
1232     if (D->hasAttr<MinSizeAttr>())
1233       B.addAttribute(llvm::Attribute::MinSize);
1234   }
1235 
1236   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1237 
1238   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1239   if (alignment)
1240     F->setAlignment(alignment);
1241 
1242   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1243   // reserve a bit for differentiating between virtual and non-virtual member
1244   // functions. If the current target's C++ ABI requires this and this is a
1245   // member function, set its alignment accordingly.
1246   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1247     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1248       F->setAlignment(2);
1249   }
1250 
1251   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1252   if (CodeGenOpts.SanitizeCfiCrossDso)
1253     if (auto *FD = dyn_cast<FunctionDecl>(D))
1254       CreateFunctionTypeMetadata(FD, F);
1255 }
1256 
1257 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1258   const Decl *D = GD.getDecl();
1259   if (dyn_cast_or_null<NamedDecl>(D))
1260     setGVProperties(GV, GD);
1261   else
1262     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1263 
1264   if (D && D->hasAttr<UsedAttr>())
1265     addUsedGlobal(GV);
1266 }
1267 
1268 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1269                                                 llvm::AttrBuilder &Attrs) {
1270   // Add target-cpu and target-features attributes to functions. If
1271   // we have a decl for the function and it has a target attribute then
1272   // parse that and add it to the feature set.
1273   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1274   std::vector<std::string> Features;
1275   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1276   FD = FD ? FD->getMostRecentDecl() : FD;
1277   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1278   bool AddedAttr = false;
1279   if (TD) {
1280     llvm::StringMap<bool> FeatureMap;
1281     getFunctionFeatureMap(FeatureMap, FD);
1282 
1283     // Produce the canonical string for this set of features.
1284     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1285       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1286 
1287     // Now add the target-cpu and target-features to the function.
1288     // While we populated the feature map above, we still need to
1289     // get and parse the target attribute so we can get the cpu for
1290     // the function.
1291     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1292     if (ParsedAttr.Architecture != "" &&
1293         getTarget().isValidCPUName(ParsedAttr.Architecture))
1294       TargetCPU = ParsedAttr.Architecture;
1295   } else {
1296     // Otherwise just add the existing target cpu and target features to the
1297     // function.
1298     Features = getTarget().getTargetOpts().Features;
1299   }
1300 
1301   if (TargetCPU != "") {
1302     Attrs.addAttribute("target-cpu", TargetCPU);
1303     AddedAttr = true;
1304   }
1305   if (!Features.empty()) {
1306     std::sort(Features.begin(), Features.end());
1307     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1308     AddedAttr = true;
1309   }
1310 
1311   return AddedAttr;
1312 }
1313 
1314 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1315                                           llvm::GlobalObject *GO) {
1316   const Decl *D = GD.getDecl();
1317   SetCommonAttributes(GD, GO);
1318 
1319   if (D) {
1320     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1321       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1322         GV->addAttribute("bss-section", SA->getName());
1323       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1324         GV->addAttribute("data-section", SA->getName());
1325       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1326         GV->addAttribute("rodata-section", SA->getName());
1327     }
1328 
1329     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1330       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1331         if (!D->getAttr<SectionAttr>())
1332           F->addFnAttr("implicit-section-name", SA->getName());
1333 
1334       llvm::AttrBuilder Attrs;
1335       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1336         // We know that GetCPUAndFeaturesAttributes will always have the
1337         // newest set, since it has the newest possible FunctionDecl, so the
1338         // new ones should replace the old.
1339         F->removeFnAttr("target-cpu");
1340         F->removeFnAttr("target-features");
1341         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1342       }
1343     }
1344 
1345     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1346       GO->setSection(SA->getName());
1347   }
1348 
1349   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1350 }
1351 
1352 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1353                                                   llvm::Function *F,
1354                                                   const CGFunctionInfo &FI) {
1355   const Decl *D = GD.getDecl();
1356   SetLLVMFunctionAttributes(D, FI, F);
1357   SetLLVMFunctionAttributesForDefinition(D, F);
1358 
1359   F->setLinkage(llvm::Function::InternalLinkage);
1360 
1361   setNonAliasAttributes(GD, F);
1362 }
1363 
1364 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1365   // Set linkage and visibility in case we never see a definition.
1366   LinkageInfo LV = ND->getLinkageAndVisibility();
1367   // Don't set internal linkage on declarations.
1368   // "extern_weak" is overloaded in LLVM; we probably should have
1369   // separate linkage types for this.
1370   if (isExternallyVisible(LV.getLinkage()) &&
1371       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1372     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1373 }
1374 
1375 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1376                                                llvm::Function *F) {
1377   // Only if we are checking indirect calls.
1378   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1379     return;
1380 
1381   // Non-static class methods are handled via vtable pointer checks elsewhere.
1382   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1383     return;
1384 
1385   // Additionally, if building with cross-DSO support...
1386   if (CodeGenOpts.SanitizeCfiCrossDso) {
1387     // Skip available_externally functions. They won't be codegen'ed in the
1388     // current module anyway.
1389     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1390       return;
1391   }
1392 
1393   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1394   F->addTypeMetadata(0, MD);
1395   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1396 
1397   // Emit a hash-based bit set entry for cross-DSO calls.
1398   if (CodeGenOpts.SanitizeCfiCrossDso)
1399     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1400       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1401 }
1402 
1403 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1404                                           bool IsIncompleteFunction,
1405                                           bool IsThunk) {
1406 
1407   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1408     // If this is an intrinsic function, set the function's attributes
1409     // to the intrinsic's attributes.
1410     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1411     return;
1412   }
1413 
1414   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1415 
1416   if (!IsIncompleteFunction) {
1417     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1418     // Setup target-specific attributes.
1419     if (F->isDeclaration())
1420       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1421   }
1422 
1423   // Add the Returned attribute for "this", except for iOS 5 and earlier
1424   // where substantial code, including the libstdc++ dylib, was compiled with
1425   // GCC and does not actually return "this".
1426   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1427       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1428     assert(!F->arg_empty() &&
1429            F->arg_begin()->getType()
1430              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1431            "unexpected this return");
1432     F->addAttribute(1, llvm::Attribute::Returned);
1433   }
1434 
1435   // Only a few attributes are set on declarations; these may later be
1436   // overridden by a definition.
1437 
1438   setLinkageForGV(F, FD);
1439   setGVProperties(F, FD);
1440 
1441   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1442     F->addFnAttr("implicit-section-name");
1443   }
1444 
1445   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1446     F->setSection(SA->getName());
1447 
1448   if (FD->isReplaceableGlobalAllocationFunction()) {
1449     // A replaceable global allocation function does not act like a builtin by
1450     // default, only if it is invoked by a new-expression or delete-expression.
1451     F->addAttribute(llvm::AttributeList::FunctionIndex,
1452                     llvm::Attribute::NoBuiltin);
1453 
1454     // A sane operator new returns a non-aliasing pointer.
1455     // FIXME: Also add NonNull attribute to the return value
1456     // for the non-nothrow forms?
1457     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1458     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1459         (Kind == OO_New || Kind == OO_Array_New))
1460       F->addAttribute(llvm::AttributeList::ReturnIndex,
1461                       llvm::Attribute::NoAlias);
1462   }
1463 
1464   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1465     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1466   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1467     if (MD->isVirtual())
1468       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1469 
1470   // Don't emit entries for function declarations in the cross-DSO mode. This
1471   // is handled with better precision by the receiving DSO.
1472   if (!CodeGenOpts.SanitizeCfiCrossDso)
1473     CreateFunctionTypeMetadata(FD, F);
1474 
1475   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1476     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1477 }
1478 
1479 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1480   assert(!GV->isDeclaration() &&
1481          "Only globals with definition can force usage.");
1482   LLVMUsed.emplace_back(GV);
1483 }
1484 
1485 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1486   assert(!GV->isDeclaration() &&
1487          "Only globals with definition can force usage.");
1488   LLVMCompilerUsed.emplace_back(GV);
1489 }
1490 
1491 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1492                      std::vector<llvm::WeakTrackingVH> &List) {
1493   // Don't create llvm.used if there is no need.
1494   if (List.empty())
1495     return;
1496 
1497   // Convert List to what ConstantArray needs.
1498   SmallVector<llvm::Constant*, 8> UsedArray;
1499   UsedArray.resize(List.size());
1500   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1501     UsedArray[i] =
1502         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1503             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1504   }
1505 
1506   if (UsedArray.empty())
1507     return;
1508   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1509 
1510   auto *GV = new llvm::GlobalVariable(
1511       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1512       llvm::ConstantArray::get(ATy, UsedArray), Name);
1513 
1514   GV->setSection("llvm.metadata");
1515 }
1516 
1517 void CodeGenModule::emitLLVMUsed() {
1518   emitUsed(*this, "llvm.used", LLVMUsed);
1519   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1520 }
1521 
1522 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1523   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1524   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1525 }
1526 
1527 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1528   llvm::SmallString<32> Opt;
1529   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1530   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1531   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1532 }
1533 
1534 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1535   auto &C = getLLVMContext();
1536   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1537       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1538 }
1539 
1540 void CodeGenModule::AddDependentLib(StringRef Lib) {
1541   llvm::SmallString<24> Opt;
1542   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1543   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1544   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1545 }
1546 
1547 /// \brief Add link options implied by the given module, including modules
1548 /// it depends on, using a postorder walk.
1549 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1550                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1551                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1552   // Import this module's parent.
1553   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1554     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1555   }
1556 
1557   // Import this module's dependencies.
1558   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1559     if (Visited.insert(Mod->Imports[I - 1]).second)
1560       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1561   }
1562 
1563   // Add linker options to link against the libraries/frameworks
1564   // described by this module.
1565   llvm::LLVMContext &Context = CGM.getLLVMContext();
1566   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1567     // Link against a framework.  Frameworks are currently Darwin only, so we
1568     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1569     if (Mod->LinkLibraries[I-1].IsFramework) {
1570       llvm::Metadata *Args[2] = {
1571           llvm::MDString::get(Context, "-framework"),
1572           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1573 
1574       Metadata.push_back(llvm::MDNode::get(Context, Args));
1575       continue;
1576     }
1577 
1578     // Link against a library.
1579     llvm::SmallString<24> Opt;
1580     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1581       Mod->LinkLibraries[I-1].Library, Opt);
1582     auto *OptString = llvm::MDString::get(Context, Opt);
1583     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1584   }
1585 }
1586 
1587 void CodeGenModule::EmitModuleLinkOptions() {
1588   // Collect the set of all of the modules we want to visit to emit link
1589   // options, which is essentially the imported modules and all of their
1590   // non-explicit child modules.
1591   llvm::SetVector<clang::Module *> LinkModules;
1592   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1593   SmallVector<clang::Module *, 16> Stack;
1594 
1595   // Seed the stack with imported modules.
1596   for (Module *M : ImportedModules) {
1597     // Do not add any link flags when an implementation TU of a module imports
1598     // a header of that same module.
1599     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1600         !getLangOpts().isCompilingModule())
1601       continue;
1602     if (Visited.insert(M).second)
1603       Stack.push_back(M);
1604   }
1605 
1606   // Find all of the modules to import, making a little effort to prune
1607   // non-leaf modules.
1608   while (!Stack.empty()) {
1609     clang::Module *Mod = Stack.pop_back_val();
1610 
1611     bool AnyChildren = false;
1612 
1613     // Visit the submodules of this module.
1614     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1615                                         SubEnd = Mod->submodule_end();
1616          Sub != SubEnd; ++Sub) {
1617       // Skip explicit children; they need to be explicitly imported to be
1618       // linked against.
1619       if ((*Sub)->IsExplicit)
1620         continue;
1621 
1622       if (Visited.insert(*Sub).second) {
1623         Stack.push_back(*Sub);
1624         AnyChildren = true;
1625       }
1626     }
1627 
1628     // We didn't find any children, so add this module to the list of
1629     // modules to link against.
1630     if (!AnyChildren) {
1631       LinkModules.insert(Mod);
1632     }
1633   }
1634 
1635   // Add link options for all of the imported modules in reverse topological
1636   // order.  We don't do anything to try to order import link flags with respect
1637   // to linker options inserted by things like #pragma comment().
1638   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1639   Visited.clear();
1640   for (Module *M : LinkModules)
1641     if (Visited.insert(M).second)
1642       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1643   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1644   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1645 
1646   // Add the linker options metadata flag.
1647   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1648   for (auto *MD : LinkerOptionsMetadata)
1649     NMD->addOperand(MD);
1650 }
1651 
1652 void CodeGenModule::EmitDeferred() {
1653   // Emit code for any potentially referenced deferred decls.  Since a
1654   // previously unused static decl may become used during the generation of code
1655   // for a static function, iterate until no changes are made.
1656 
1657   if (!DeferredVTables.empty()) {
1658     EmitDeferredVTables();
1659 
1660     // Emitting a vtable doesn't directly cause more vtables to
1661     // become deferred, although it can cause functions to be
1662     // emitted that then need those vtables.
1663     assert(DeferredVTables.empty());
1664   }
1665 
1666   // Stop if we're out of both deferred vtables and deferred declarations.
1667   if (DeferredDeclsToEmit.empty())
1668     return;
1669 
1670   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1671   // work, it will not interfere with this.
1672   std::vector<GlobalDecl> CurDeclsToEmit;
1673   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1674 
1675   for (GlobalDecl &D : CurDeclsToEmit) {
1676     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1677     // to get GlobalValue with exactly the type we need, not something that
1678     // might had been created for another decl with the same mangled name but
1679     // different type.
1680     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1681         GetAddrOfGlobal(D, ForDefinition));
1682 
1683     // In case of different address spaces, we may still get a cast, even with
1684     // IsForDefinition equal to true. Query mangled names table to get
1685     // GlobalValue.
1686     if (!GV)
1687       GV = GetGlobalValue(getMangledName(D));
1688 
1689     // Make sure GetGlobalValue returned non-null.
1690     assert(GV);
1691 
1692     // Check to see if we've already emitted this.  This is necessary
1693     // for a couple of reasons: first, decls can end up in the
1694     // deferred-decls queue multiple times, and second, decls can end
1695     // up with definitions in unusual ways (e.g. by an extern inline
1696     // function acquiring a strong function redefinition).  Just
1697     // ignore these cases.
1698     if (!GV->isDeclaration())
1699       continue;
1700 
1701     // Otherwise, emit the definition and move on to the next one.
1702     EmitGlobalDefinition(D, GV);
1703 
1704     // If we found out that we need to emit more decls, do that recursively.
1705     // This has the advantage that the decls are emitted in a DFS and related
1706     // ones are close together, which is convenient for testing.
1707     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1708       EmitDeferred();
1709       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1710     }
1711   }
1712 }
1713 
1714 void CodeGenModule::EmitVTablesOpportunistically() {
1715   // Try to emit external vtables as available_externally if they have emitted
1716   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1717   // is not allowed to create new references to things that need to be emitted
1718   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1719 
1720   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1721          && "Only emit opportunistic vtables with optimizations");
1722 
1723   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1724     assert(getVTables().isVTableExternal(RD) &&
1725            "This queue should only contain external vtables");
1726     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1727       VTables.GenerateClassData(RD);
1728   }
1729   OpportunisticVTables.clear();
1730 }
1731 
1732 void CodeGenModule::EmitGlobalAnnotations() {
1733   if (Annotations.empty())
1734     return;
1735 
1736   // Create a new global variable for the ConstantStruct in the Module.
1737   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1738     Annotations[0]->getType(), Annotations.size()), Annotations);
1739   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1740                                       llvm::GlobalValue::AppendingLinkage,
1741                                       Array, "llvm.global.annotations");
1742   gv->setSection(AnnotationSection);
1743 }
1744 
1745 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1746   llvm::Constant *&AStr = AnnotationStrings[Str];
1747   if (AStr)
1748     return AStr;
1749 
1750   // Not found yet, create a new global.
1751   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1752   auto *gv =
1753       new llvm::GlobalVariable(getModule(), s->getType(), true,
1754                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1755   gv->setSection(AnnotationSection);
1756   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1757   AStr = gv;
1758   return gv;
1759 }
1760 
1761 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1762   SourceManager &SM = getContext().getSourceManager();
1763   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1764   if (PLoc.isValid())
1765     return EmitAnnotationString(PLoc.getFilename());
1766   return EmitAnnotationString(SM.getBufferName(Loc));
1767 }
1768 
1769 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1770   SourceManager &SM = getContext().getSourceManager();
1771   PresumedLoc PLoc = SM.getPresumedLoc(L);
1772   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1773     SM.getExpansionLineNumber(L);
1774   return llvm::ConstantInt::get(Int32Ty, LineNo);
1775 }
1776 
1777 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1778                                                 const AnnotateAttr *AA,
1779                                                 SourceLocation L) {
1780   // Get the globals for file name, annotation, and the line number.
1781   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1782                  *UnitGV = EmitAnnotationUnit(L),
1783                  *LineNoCst = EmitAnnotationLineNo(L);
1784 
1785   // Create the ConstantStruct for the global annotation.
1786   llvm::Constant *Fields[4] = {
1787     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1788     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1789     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1790     LineNoCst
1791   };
1792   return llvm::ConstantStruct::getAnon(Fields);
1793 }
1794 
1795 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1796                                          llvm::GlobalValue *GV) {
1797   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1798   // Get the struct elements for these annotations.
1799   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1800     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1801 }
1802 
1803 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1804                                            llvm::Function *Fn,
1805                                            SourceLocation Loc) const {
1806   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1807   // Blacklist by function name.
1808   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1809     return true;
1810   // Blacklist by location.
1811   if (Loc.isValid())
1812     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1813   // If location is unknown, this may be a compiler-generated function. Assume
1814   // it's located in the main file.
1815   auto &SM = Context.getSourceManager();
1816   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1817     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1818   }
1819   return false;
1820 }
1821 
1822 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1823                                            SourceLocation Loc, QualType Ty,
1824                                            StringRef Category) const {
1825   // For now globals can be blacklisted only in ASan and KASan.
1826   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1827       (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1828   if (!EnabledAsanMask)
1829     return false;
1830   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1831   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1832     return true;
1833   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1834     return true;
1835   // Check global type.
1836   if (!Ty.isNull()) {
1837     // Drill down the array types: if global variable of a fixed type is
1838     // blacklisted, we also don't instrument arrays of them.
1839     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1840       Ty = AT->getElementType();
1841     Ty = Ty.getCanonicalType().getUnqualifiedType();
1842     // We allow to blacklist only record types (classes, structs etc.)
1843     if (Ty->isRecordType()) {
1844       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1845       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1846         return true;
1847     }
1848   }
1849   return false;
1850 }
1851 
1852 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1853                                    StringRef Category) const {
1854   if (!LangOpts.XRayInstrument)
1855     return false;
1856   const auto &XRayFilter = getContext().getXRayFilter();
1857   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1858   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1859   if (Loc.isValid())
1860     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1861   if (Attr == ImbueAttr::NONE)
1862     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1863   switch (Attr) {
1864   case ImbueAttr::NONE:
1865     return false;
1866   case ImbueAttr::ALWAYS:
1867     Fn->addFnAttr("function-instrument", "xray-always");
1868     break;
1869   case ImbueAttr::ALWAYS_ARG1:
1870     Fn->addFnAttr("function-instrument", "xray-always");
1871     Fn->addFnAttr("xray-log-args", "1");
1872     break;
1873   case ImbueAttr::NEVER:
1874     Fn->addFnAttr("function-instrument", "xray-never");
1875     break;
1876   }
1877   return true;
1878 }
1879 
1880 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1881   // Never defer when EmitAllDecls is specified.
1882   if (LangOpts.EmitAllDecls)
1883     return true;
1884 
1885   return getContext().DeclMustBeEmitted(Global);
1886 }
1887 
1888 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1889   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1890     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1891       // Implicit template instantiations may change linkage if they are later
1892       // explicitly instantiated, so they should not be emitted eagerly.
1893       return false;
1894   if (const auto *VD = dyn_cast<VarDecl>(Global))
1895     if (Context.getInlineVariableDefinitionKind(VD) ==
1896         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1897       // A definition of an inline constexpr static data member may change
1898       // linkage later if it's redeclared outside the class.
1899       return false;
1900   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1901   // codegen for global variables, because they may be marked as threadprivate.
1902   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1903       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1904     return false;
1905 
1906   return true;
1907 }
1908 
1909 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1910     const CXXUuidofExpr* E) {
1911   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1912   // well-formed.
1913   StringRef Uuid = E->getUuidStr();
1914   std::string Name = "_GUID_" + Uuid.lower();
1915   std::replace(Name.begin(), Name.end(), '-', '_');
1916 
1917   // The UUID descriptor should be pointer aligned.
1918   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1919 
1920   // Look for an existing global.
1921   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1922     return ConstantAddress(GV, Alignment);
1923 
1924   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1925   assert(Init && "failed to initialize as constant");
1926 
1927   auto *GV = new llvm::GlobalVariable(
1928       getModule(), Init->getType(),
1929       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1930   if (supportsCOMDAT())
1931     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1932   return ConstantAddress(GV, Alignment);
1933 }
1934 
1935 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1936   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1937   assert(AA && "No alias?");
1938 
1939   CharUnits Alignment = getContext().getDeclAlign(VD);
1940   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1941 
1942   // See if there is already something with the target's name in the module.
1943   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1944   if (Entry) {
1945     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1946     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1947     return ConstantAddress(Ptr, Alignment);
1948   }
1949 
1950   llvm::Constant *Aliasee;
1951   if (isa<llvm::FunctionType>(DeclTy))
1952     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1953                                       GlobalDecl(cast<FunctionDecl>(VD)),
1954                                       /*ForVTable=*/false);
1955   else
1956     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1957                                     llvm::PointerType::getUnqual(DeclTy),
1958                                     nullptr);
1959 
1960   auto *F = cast<llvm::GlobalValue>(Aliasee);
1961   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1962   WeakRefReferences.insert(F);
1963 
1964   return ConstantAddress(Aliasee, Alignment);
1965 }
1966 
1967 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1968   const auto *Global = cast<ValueDecl>(GD.getDecl());
1969 
1970   // Weak references don't produce any output by themselves.
1971   if (Global->hasAttr<WeakRefAttr>())
1972     return;
1973 
1974   // If this is an alias definition (which otherwise looks like a declaration)
1975   // emit it now.
1976   if (Global->hasAttr<AliasAttr>())
1977     return EmitAliasDefinition(GD);
1978 
1979   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1980   if (Global->hasAttr<IFuncAttr>())
1981     return emitIFuncDefinition(GD);
1982 
1983   // If this is CUDA, be selective about which declarations we emit.
1984   if (LangOpts.CUDA) {
1985     if (LangOpts.CUDAIsDevice) {
1986       if (!Global->hasAttr<CUDADeviceAttr>() &&
1987           !Global->hasAttr<CUDAGlobalAttr>() &&
1988           !Global->hasAttr<CUDAConstantAttr>() &&
1989           !Global->hasAttr<CUDASharedAttr>())
1990         return;
1991     } else {
1992       // We need to emit host-side 'shadows' for all global
1993       // device-side variables because the CUDA runtime needs their
1994       // size and host-side address in order to provide access to
1995       // their device-side incarnations.
1996 
1997       // So device-only functions are the only things we skip.
1998       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1999           Global->hasAttr<CUDADeviceAttr>())
2000         return;
2001 
2002       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2003              "Expected Variable or Function");
2004     }
2005   }
2006 
2007   if (LangOpts.OpenMP) {
2008     // If this is OpenMP device, check if it is legal to emit this global
2009     // normally.
2010     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2011       return;
2012     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2013       if (MustBeEmitted(Global))
2014         EmitOMPDeclareReduction(DRD);
2015       return;
2016     }
2017   }
2018 
2019   // Ignore declarations, they will be emitted on their first use.
2020   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2021     // Forward declarations are emitted lazily on first use.
2022     if (!FD->doesThisDeclarationHaveABody()) {
2023       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2024         return;
2025 
2026       StringRef MangledName = getMangledName(GD);
2027 
2028       // Compute the function info and LLVM type.
2029       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2030       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2031 
2032       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2033                               /*DontDefer=*/false);
2034       return;
2035     }
2036   } else {
2037     const auto *VD = cast<VarDecl>(Global);
2038     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2039     // We need to emit device-side global CUDA variables even if a
2040     // variable does not have a definition -- we still need to define
2041     // host-side shadow for it.
2042     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2043                            !VD->hasDefinition() &&
2044                            (VD->hasAttr<CUDAConstantAttr>() ||
2045                             VD->hasAttr<CUDADeviceAttr>());
2046     if (!MustEmitForCuda &&
2047         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2048         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2049       // If this declaration may have caused an inline variable definition to
2050       // change linkage, make sure that it's emitted.
2051       if (Context.getInlineVariableDefinitionKind(VD) ==
2052           ASTContext::InlineVariableDefinitionKind::Strong)
2053         GetAddrOfGlobalVar(VD);
2054       return;
2055     }
2056   }
2057 
2058   // Defer code generation to first use when possible, e.g. if this is an inline
2059   // function. If the global must always be emitted, do it eagerly if possible
2060   // to benefit from cache locality.
2061   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2062     // Emit the definition if it can't be deferred.
2063     EmitGlobalDefinition(GD);
2064     return;
2065   }
2066 
2067   // If we're deferring emission of a C++ variable with an
2068   // initializer, remember the order in which it appeared in the file.
2069   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2070       cast<VarDecl>(Global)->hasInit()) {
2071     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2072     CXXGlobalInits.push_back(nullptr);
2073   }
2074 
2075   StringRef MangledName = getMangledName(GD);
2076   if (GetGlobalValue(MangledName) != nullptr) {
2077     // The value has already been used and should therefore be emitted.
2078     addDeferredDeclToEmit(GD);
2079   } else if (MustBeEmitted(Global)) {
2080     // The value must be emitted, but cannot be emitted eagerly.
2081     assert(!MayBeEmittedEagerly(Global));
2082     addDeferredDeclToEmit(GD);
2083   } else {
2084     // Otherwise, remember that we saw a deferred decl with this name.  The
2085     // first use of the mangled name will cause it to move into
2086     // DeferredDeclsToEmit.
2087     DeferredDecls[MangledName] = GD;
2088   }
2089 }
2090 
2091 // Check if T is a class type with a destructor that's not dllimport.
2092 static bool HasNonDllImportDtor(QualType T) {
2093   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2094     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2095       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2096         return true;
2097 
2098   return false;
2099 }
2100 
2101 namespace {
2102   struct FunctionIsDirectlyRecursive :
2103     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2104     const StringRef Name;
2105     const Builtin::Context &BI;
2106     bool Result;
2107     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2108       Name(N), BI(C), Result(false) {
2109     }
2110     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2111 
2112     bool TraverseCallExpr(CallExpr *E) {
2113       const FunctionDecl *FD = E->getDirectCallee();
2114       if (!FD)
2115         return true;
2116       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2117       if (Attr && Name == Attr->getLabel()) {
2118         Result = true;
2119         return false;
2120       }
2121       unsigned BuiltinID = FD->getBuiltinID();
2122       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2123         return true;
2124       StringRef BuiltinName = BI.getName(BuiltinID);
2125       if (BuiltinName.startswith("__builtin_") &&
2126           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2127         Result = true;
2128         return false;
2129       }
2130       return true;
2131     }
2132   };
2133 
2134   // Make sure we're not referencing non-imported vars or functions.
2135   struct DLLImportFunctionVisitor
2136       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2137     bool SafeToInline = true;
2138 
2139     bool shouldVisitImplicitCode() const { return true; }
2140 
2141     bool VisitVarDecl(VarDecl *VD) {
2142       if (VD->getTLSKind()) {
2143         // A thread-local variable cannot be imported.
2144         SafeToInline = false;
2145         return SafeToInline;
2146       }
2147 
2148       // A variable definition might imply a destructor call.
2149       if (VD->isThisDeclarationADefinition())
2150         SafeToInline = !HasNonDllImportDtor(VD->getType());
2151 
2152       return SafeToInline;
2153     }
2154 
2155     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2156       if (const auto *D = E->getTemporary()->getDestructor())
2157         SafeToInline = D->hasAttr<DLLImportAttr>();
2158       return SafeToInline;
2159     }
2160 
2161     bool VisitDeclRefExpr(DeclRefExpr *E) {
2162       ValueDecl *VD = E->getDecl();
2163       if (isa<FunctionDecl>(VD))
2164         SafeToInline = VD->hasAttr<DLLImportAttr>();
2165       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2166         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2167       return SafeToInline;
2168     }
2169 
2170     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2171       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2172       return SafeToInline;
2173     }
2174 
2175     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2176       CXXMethodDecl *M = E->getMethodDecl();
2177       if (!M) {
2178         // Call through a pointer to member function. This is safe to inline.
2179         SafeToInline = true;
2180       } else {
2181         SafeToInline = M->hasAttr<DLLImportAttr>();
2182       }
2183       return SafeToInline;
2184     }
2185 
2186     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2187       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2188       return SafeToInline;
2189     }
2190 
2191     bool VisitCXXNewExpr(CXXNewExpr *E) {
2192       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2193       return SafeToInline;
2194     }
2195   };
2196 }
2197 
2198 // isTriviallyRecursive - Check if this function calls another
2199 // decl that, because of the asm attribute or the other decl being a builtin,
2200 // ends up pointing to itself.
2201 bool
2202 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2203   StringRef Name;
2204   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2205     // asm labels are a special kind of mangling we have to support.
2206     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2207     if (!Attr)
2208       return false;
2209     Name = Attr->getLabel();
2210   } else {
2211     Name = FD->getName();
2212   }
2213 
2214   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2215   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2216   return Walker.Result;
2217 }
2218 
2219 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2220   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2221     return true;
2222   const auto *F = cast<FunctionDecl>(GD.getDecl());
2223   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2224     return false;
2225 
2226   if (F->hasAttr<DLLImportAttr>()) {
2227     // Check whether it would be safe to inline this dllimport function.
2228     DLLImportFunctionVisitor Visitor;
2229     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2230     if (!Visitor.SafeToInline)
2231       return false;
2232 
2233     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2234       // Implicit destructor invocations aren't captured in the AST, so the
2235       // check above can't see them. Check for them manually here.
2236       for (const Decl *Member : Dtor->getParent()->decls())
2237         if (isa<FieldDecl>(Member))
2238           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2239             return false;
2240       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2241         if (HasNonDllImportDtor(B.getType()))
2242           return false;
2243     }
2244   }
2245 
2246   // PR9614. Avoid cases where the source code is lying to us. An available
2247   // externally function should have an equivalent function somewhere else,
2248   // but a function that calls itself is clearly not equivalent to the real
2249   // implementation.
2250   // This happens in glibc's btowc and in some configure checks.
2251   return !isTriviallyRecursive(F);
2252 }
2253 
2254 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2255   return CodeGenOpts.OptimizationLevel > 0;
2256 }
2257 
2258 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2259   const auto *D = cast<ValueDecl>(GD.getDecl());
2260 
2261   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2262                                  Context.getSourceManager(),
2263                                  "Generating code for declaration");
2264 
2265   if (isa<FunctionDecl>(D)) {
2266     // At -O0, don't generate IR for functions with available_externally
2267     // linkage.
2268     if (!shouldEmitFunction(GD))
2269       return;
2270 
2271     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2272       // Make sure to emit the definition(s) before we emit the thunks.
2273       // This is necessary for the generation of certain thunks.
2274       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2275         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2276       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2277         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2278       else
2279         EmitGlobalFunctionDefinition(GD, GV);
2280 
2281       if (Method->isVirtual())
2282         getVTables().EmitThunks(GD);
2283 
2284       return;
2285     }
2286 
2287     return EmitGlobalFunctionDefinition(GD, GV);
2288   }
2289 
2290   if (const auto *VD = dyn_cast<VarDecl>(D))
2291     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2292 
2293   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2294 }
2295 
2296 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2297                                                       llvm::Function *NewFn);
2298 
2299 void CodeGenModule::emitMultiVersionFunctions() {
2300   for (GlobalDecl GD : MultiVersionFuncs) {
2301     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2302     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2303     getContext().forEachMultiversionedFunctionVersion(
2304         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2305           GlobalDecl CurGD{
2306               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2307           StringRef MangledName = getMangledName(CurGD);
2308           llvm::Constant *Func = GetGlobalValue(MangledName);
2309           if (!Func) {
2310             if (CurFD->isDefined()) {
2311               EmitGlobalFunctionDefinition(CurGD, nullptr);
2312               Func = GetGlobalValue(MangledName);
2313             } else {
2314               const CGFunctionInfo &FI =
2315                   getTypes().arrangeGlobalDeclaration(GD);
2316               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2317               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2318                                        /*DontDefer=*/false, ForDefinition);
2319             }
2320             assert(Func && "This should have just been created");
2321           }
2322           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2323                                CurFD->getAttr<TargetAttr>()->parse());
2324         });
2325 
2326     llvm::Function *ResolverFunc = cast<llvm::Function>(
2327         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2328     if (supportsCOMDAT())
2329       ResolverFunc->setComdat(
2330           getModule().getOrInsertComdat(ResolverFunc->getName()));
2331     std::stable_sort(
2332         Options.begin(), Options.end(),
2333         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2334     CodeGenFunction CGF(*this);
2335     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2336   }
2337 }
2338 
2339 /// If an ifunc for the specified mangled name is not in the module, create and
2340 /// return an llvm IFunc Function with the specified type.
2341 llvm::Constant *
2342 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2343                                             StringRef MangledName,
2344                                             const FunctionDecl *FD) {
2345   std::string IFuncName = (MangledName + ".ifunc").str();
2346   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2347     return IFuncGV;
2348 
2349   // Since this is the first time we've created this IFunc, make sure
2350   // that we put this multiversioned function into the list to be
2351   // replaced later.
2352   MultiVersionFuncs.push_back(GD);
2353 
2354   std::string ResolverName = (MangledName + ".resolver").str();
2355   llvm::Type *ResolverType = llvm::FunctionType::get(
2356       llvm::PointerType::get(DeclTy,
2357                              Context.getTargetAddressSpace(FD->getType())),
2358       false);
2359   llvm::Constant *Resolver =
2360       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2361                               /*ForVTable=*/false);
2362   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2363       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2364   GIF->setName(IFuncName);
2365   SetCommonAttributes(FD, GIF);
2366 
2367   return GIF;
2368 }
2369 
2370 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2371 /// module, create and return an llvm Function with the specified type. If there
2372 /// is something in the module with the specified name, return it potentially
2373 /// bitcasted to the right type.
2374 ///
2375 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2376 /// to set the attributes on the function when it is first created.
2377 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2378     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2379     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2380     ForDefinition_t IsForDefinition) {
2381   const Decl *D = GD.getDecl();
2382 
2383   // Any attempts to use a MultiVersion function should result in retrieving
2384   // the iFunc instead. Name Mangling will handle the rest of the changes.
2385   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2386     // For the device mark the function as one that should be emitted.
2387     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2388         !OpenMPRuntime->markAsGlobalTarget(FD) && FD->isDefined() &&
2389         !DontDefer && !IsForDefinition)
2390       addDeferredDeclToEmit(GD);
2391 
2392     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2393       UpdateMultiVersionNames(GD, FD);
2394       if (!IsForDefinition)
2395         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2396     }
2397   }
2398 
2399   // Lookup the entry, lazily creating it if necessary.
2400   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2401   if (Entry) {
2402     if (WeakRefReferences.erase(Entry)) {
2403       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2404       if (FD && !FD->hasAttr<WeakAttr>())
2405         Entry->setLinkage(llvm::Function::ExternalLinkage);
2406     }
2407 
2408     // Handle dropped DLL attributes.
2409     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2410       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2411 
2412     // If there are two attempts to define the same mangled name, issue an
2413     // error.
2414     if (IsForDefinition && !Entry->isDeclaration()) {
2415       GlobalDecl OtherGD;
2416       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2417       // to make sure that we issue an error only once.
2418       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2419           (GD.getCanonicalDecl().getDecl() !=
2420            OtherGD.getCanonicalDecl().getDecl()) &&
2421           DiagnosedConflictingDefinitions.insert(GD).second) {
2422         getDiags().Report(D->getLocation(),
2423                           diag::err_duplicate_mangled_name);
2424         getDiags().Report(OtherGD.getDecl()->getLocation(),
2425                           diag::note_previous_definition);
2426       }
2427     }
2428 
2429     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2430         (Entry->getType()->getElementType() == Ty)) {
2431       return Entry;
2432     }
2433 
2434     // Make sure the result is of the correct type.
2435     // (If function is requested for a definition, we always need to create a new
2436     // function, not just return a bitcast.)
2437     if (!IsForDefinition)
2438       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2439   }
2440 
2441   // This function doesn't have a complete type (for example, the return
2442   // type is an incomplete struct). Use a fake type instead, and make
2443   // sure not to try to set attributes.
2444   bool IsIncompleteFunction = false;
2445 
2446   llvm::FunctionType *FTy;
2447   if (isa<llvm::FunctionType>(Ty)) {
2448     FTy = cast<llvm::FunctionType>(Ty);
2449   } else {
2450     FTy = llvm::FunctionType::get(VoidTy, false);
2451     IsIncompleteFunction = true;
2452   }
2453 
2454   llvm::Function *F =
2455       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2456                              Entry ? StringRef() : MangledName, &getModule());
2457 
2458   // If we already created a function with the same mangled name (but different
2459   // type) before, take its name and add it to the list of functions to be
2460   // replaced with F at the end of CodeGen.
2461   //
2462   // This happens if there is a prototype for a function (e.g. "int f()") and
2463   // then a definition of a different type (e.g. "int f(int x)").
2464   if (Entry) {
2465     F->takeName(Entry);
2466 
2467     // This might be an implementation of a function without a prototype, in
2468     // which case, try to do special replacement of calls which match the new
2469     // prototype.  The really key thing here is that we also potentially drop
2470     // arguments from the call site so as to make a direct call, which makes the
2471     // inliner happier and suppresses a number of optimizer warnings (!) about
2472     // dropping arguments.
2473     if (!Entry->use_empty()) {
2474       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2475       Entry->removeDeadConstantUsers();
2476     }
2477 
2478     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2479         F, Entry->getType()->getElementType()->getPointerTo());
2480     addGlobalValReplacement(Entry, BC);
2481   }
2482 
2483   assert(F->getName() == MangledName && "name was uniqued!");
2484   if (D)
2485     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2486   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2487     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2488     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2489   }
2490 
2491   if (!DontDefer) {
2492     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2493     // each other bottoming out with the base dtor.  Therefore we emit non-base
2494     // dtors on usage, even if there is no dtor definition in the TU.
2495     if (D && isa<CXXDestructorDecl>(D) &&
2496         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2497                                            GD.getDtorType()))
2498       addDeferredDeclToEmit(GD);
2499 
2500     // This is the first use or definition of a mangled name.  If there is a
2501     // deferred decl with this name, remember that we need to emit it at the end
2502     // of the file.
2503     auto DDI = DeferredDecls.find(MangledName);
2504     if (DDI != DeferredDecls.end()) {
2505       // Move the potentially referenced deferred decl to the
2506       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2507       // don't need it anymore).
2508       addDeferredDeclToEmit(DDI->second);
2509       DeferredDecls.erase(DDI);
2510 
2511       // Otherwise, there are cases we have to worry about where we're
2512       // using a declaration for which we must emit a definition but where
2513       // we might not find a top-level definition:
2514       //   - member functions defined inline in their classes
2515       //   - friend functions defined inline in some class
2516       //   - special member functions with implicit definitions
2517       // If we ever change our AST traversal to walk into class methods,
2518       // this will be unnecessary.
2519       //
2520       // We also don't emit a definition for a function if it's going to be an
2521       // entry in a vtable, unless it's already marked as used.
2522     } else if (getLangOpts().CPlusPlus && D) {
2523       // Look for a declaration that's lexically in a record.
2524       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2525            FD = FD->getPreviousDecl()) {
2526         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2527           if (FD->doesThisDeclarationHaveABody()) {
2528             addDeferredDeclToEmit(GD.getWithDecl(FD));
2529             break;
2530           }
2531         }
2532       }
2533     }
2534   }
2535 
2536   // Make sure the result is of the requested type.
2537   if (!IsIncompleteFunction) {
2538     assert(F->getType()->getElementType() == Ty);
2539     return F;
2540   }
2541 
2542   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2543   return llvm::ConstantExpr::getBitCast(F, PTy);
2544 }
2545 
2546 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2547 /// non-null, then this function will use the specified type if it has to
2548 /// create it (this occurs when we see a definition of the function).
2549 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2550                                                  llvm::Type *Ty,
2551                                                  bool ForVTable,
2552                                                  bool DontDefer,
2553                                               ForDefinition_t IsForDefinition) {
2554   // If there was no specific requested type, just convert it now.
2555   if (!Ty) {
2556     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2557     auto CanonTy = Context.getCanonicalType(FD->getType());
2558     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2559   }
2560 
2561   StringRef MangledName = getMangledName(GD);
2562   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2563                                  /*IsThunk=*/false, llvm::AttributeList(),
2564                                  IsForDefinition);
2565 }
2566 
2567 static const FunctionDecl *
2568 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2569   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2570   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2571 
2572   IdentifierInfo &CII = C.Idents.get(Name);
2573   for (const auto &Result : DC->lookup(&CII))
2574     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2575       return FD;
2576 
2577   if (!C.getLangOpts().CPlusPlus)
2578     return nullptr;
2579 
2580   // Demangle the premangled name from getTerminateFn()
2581   IdentifierInfo &CXXII =
2582       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2583           ? C.Idents.get("terminate")
2584           : C.Idents.get(Name);
2585 
2586   for (const auto &N : {"__cxxabiv1", "std"}) {
2587     IdentifierInfo &NS = C.Idents.get(N);
2588     for (const auto &Result : DC->lookup(&NS)) {
2589       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2590       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2591         for (const auto &Result : LSD->lookup(&NS))
2592           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2593             break;
2594 
2595       if (ND)
2596         for (const auto &Result : ND->lookup(&CXXII))
2597           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2598             return FD;
2599     }
2600   }
2601 
2602   return nullptr;
2603 }
2604 
2605 /// CreateRuntimeFunction - Create a new runtime function with the specified
2606 /// type and name.
2607 llvm::Constant *
2608 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2609                                      llvm::AttributeList ExtraAttrs,
2610                                      bool Local) {
2611   llvm::Constant *C =
2612       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2613                               /*DontDefer=*/false, /*IsThunk=*/false,
2614                               ExtraAttrs);
2615 
2616   if (auto *F = dyn_cast<llvm::Function>(C)) {
2617     if (F->empty()) {
2618       F->setCallingConv(getRuntimeCC());
2619 
2620       if (!Local && getTriple().isOSBinFormatCOFF() &&
2621           !getCodeGenOpts().LTOVisibilityPublicStd &&
2622           !getTriple().isWindowsGNUEnvironment()) {
2623         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2624         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2625           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2626           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2627         }
2628       }
2629     }
2630   }
2631 
2632   return C;
2633 }
2634 
2635 /// CreateBuiltinFunction - Create a new builtin function with the specified
2636 /// type and name.
2637 llvm::Constant *
2638 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2639                                      llvm::AttributeList ExtraAttrs) {
2640   llvm::Constant *C =
2641       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2642                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2643   if (auto *F = dyn_cast<llvm::Function>(C))
2644     if (F->empty())
2645       F->setCallingConv(getBuiltinCC());
2646   return C;
2647 }
2648 
2649 /// isTypeConstant - Determine whether an object of this type can be emitted
2650 /// as a constant.
2651 ///
2652 /// If ExcludeCtor is true, the duration when the object's constructor runs
2653 /// will not be considered. The caller will need to verify that the object is
2654 /// not written to during its construction.
2655 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2656   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2657     return false;
2658 
2659   if (Context.getLangOpts().CPlusPlus) {
2660     if (const CXXRecordDecl *Record
2661           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2662       return ExcludeCtor && !Record->hasMutableFields() &&
2663              Record->hasTrivialDestructor();
2664   }
2665 
2666   return true;
2667 }
2668 
2669 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2670 /// create and return an llvm GlobalVariable with the specified type.  If there
2671 /// is something in the module with the specified name, return it potentially
2672 /// bitcasted to the right type.
2673 ///
2674 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2675 /// to set the attributes on the global when it is first created.
2676 ///
2677 /// If IsForDefinition is true, it is guranteed that an actual global with
2678 /// type Ty will be returned, not conversion of a variable with the same
2679 /// mangled name but some other type.
2680 llvm::Constant *
2681 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2682                                      llvm::PointerType *Ty,
2683                                      const VarDecl *D,
2684                                      ForDefinition_t IsForDefinition) {
2685   // Lookup the entry, lazily creating it if necessary.
2686   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2687   if (Entry) {
2688     if (WeakRefReferences.erase(Entry)) {
2689       if (D && !D->hasAttr<WeakAttr>())
2690         Entry->setLinkage(llvm::Function::ExternalLinkage);
2691     }
2692 
2693     // Handle dropped DLL attributes.
2694     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2695       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2696 
2697     if (Entry->getType() == Ty)
2698       return Entry;
2699 
2700     // If there are two attempts to define the same mangled name, issue an
2701     // error.
2702     if (IsForDefinition && !Entry->isDeclaration()) {
2703       GlobalDecl OtherGD;
2704       const VarDecl *OtherD;
2705 
2706       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2707       // to make sure that we issue an error only once.
2708       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2709           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2710           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2711           OtherD->hasInit() &&
2712           DiagnosedConflictingDefinitions.insert(D).second) {
2713         getDiags().Report(D->getLocation(),
2714                           diag::err_duplicate_mangled_name);
2715         getDiags().Report(OtherGD.getDecl()->getLocation(),
2716                           diag::note_previous_definition);
2717       }
2718     }
2719 
2720     // Make sure the result is of the correct type.
2721     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2722       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2723 
2724     // (If global is requested for a definition, we always need to create a new
2725     // global, not just return a bitcast.)
2726     if (!IsForDefinition)
2727       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2728   }
2729 
2730   auto AddrSpace = GetGlobalVarAddressSpace(D);
2731   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2732 
2733   auto *GV = new llvm::GlobalVariable(
2734       getModule(), Ty->getElementType(), false,
2735       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2736       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2737 
2738   // If we already created a global with the same mangled name (but different
2739   // type) before, take its name and remove it from its parent.
2740   if (Entry) {
2741     GV->takeName(Entry);
2742 
2743     if (!Entry->use_empty()) {
2744       llvm::Constant *NewPtrForOldDecl =
2745           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2746       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2747     }
2748 
2749     Entry->eraseFromParent();
2750   }
2751 
2752   // This is the first use or definition of a mangled name.  If there is a
2753   // deferred decl with this name, remember that we need to emit it at the end
2754   // of the file.
2755   auto DDI = DeferredDecls.find(MangledName);
2756   if (DDI != DeferredDecls.end()) {
2757     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2758     // list, and remove it from DeferredDecls (since we don't need it anymore).
2759     addDeferredDeclToEmit(DDI->second);
2760     DeferredDecls.erase(DDI);
2761   }
2762 
2763   // Handle things which are present even on external declarations.
2764   if (D) {
2765     // FIXME: This code is overly simple and should be merged with other global
2766     // handling.
2767     GV->setConstant(isTypeConstant(D->getType(), false));
2768 
2769     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2770 
2771     setLinkageForGV(GV, D);
2772 
2773     if (D->getTLSKind()) {
2774       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2775         CXXThreadLocals.push_back(D);
2776       setTLSMode(GV, *D);
2777     }
2778 
2779     setGVProperties(GV, D);
2780 
2781     // If required by the ABI, treat declarations of static data members with
2782     // inline initializers as definitions.
2783     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2784       EmitGlobalVarDefinition(D);
2785     }
2786 
2787     // Emit section information for extern variables.
2788     if (D->hasExternalStorage()) {
2789       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2790         GV->setSection(SA->getName());
2791     }
2792 
2793     // Handle XCore specific ABI requirements.
2794     if (getTriple().getArch() == llvm::Triple::xcore &&
2795         D->getLanguageLinkage() == CLanguageLinkage &&
2796         D->getType().isConstant(Context) &&
2797         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2798       GV->setSection(".cp.rodata");
2799 
2800     // Check if we a have a const declaration with an initializer, we may be
2801     // able to emit it as available_externally to expose it's value to the
2802     // optimizer.
2803     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2804         D->getType().isConstQualified() && !GV->hasInitializer() &&
2805         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2806       const auto *Record =
2807           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2808       bool HasMutableFields = Record && Record->hasMutableFields();
2809       if (!HasMutableFields) {
2810         const VarDecl *InitDecl;
2811         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2812         if (InitExpr) {
2813           ConstantEmitter emitter(*this);
2814           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2815           if (Init) {
2816             auto *InitType = Init->getType();
2817             if (GV->getType()->getElementType() != InitType) {
2818               // The type of the initializer does not match the definition.
2819               // This happens when an initializer has a different type from
2820               // the type of the global (because of padding at the end of a
2821               // structure for instance).
2822               GV->setName(StringRef());
2823               // Make a new global with the correct type, this is now guaranteed
2824               // to work.
2825               auto *NewGV = cast<llvm::GlobalVariable>(
2826                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2827 
2828               // Erase the old global, since it is no longer used.
2829               GV->eraseFromParent();
2830               GV = NewGV;
2831             } else {
2832               GV->setInitializer(Init);
2833               GV->setConstant(true);
2834               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2835             }
2836             emitter.finalize(GV);
2837           }
2838         }
2839       }
2840     }
2841   }
2842 
2843   LangAS ExpectedAS =
2844       D ? D->getType().getAddressSpace()
2845         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2846   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2847          Ty->getPointerAddressSpace());
2848   if (AddrSpace != ExpectedAS)
2849     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2850                                                        ExpectedAS, Ty);
2851 
2852   return GV;
2853 }
2854 
2855 llvm::Constant *
2856 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2857                                ForDefinition_t IsForDefinition) {
2858   const Decl *D = GD.getDecl();
2859   if (isa<CXXConstructorDecl>(D))
2860     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2861                                 getFromCtorType(GD.getCtorType()),
2862                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2863                                 /*DontDefer=*/false, IsForDefinition);
2864   else if (isa<CXXDestructorDecl>(D))
2865     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2866                                 getFromDtorType(GD.getDtorType()),
2867                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2868                                 /*DontDefer=*/false, IsForDefinition);
2869   else if (isa<CXXMethodDecl>(D)) {
2870     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2871         cast<CXXMethodDecl>(D));
2872     auto Ty = getTypes().GetFunctionType(*FInfo);
2873     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2874                              IsForDefinition);
2875   } else if (isa<FunctionDecl>(D)) {
2876     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2877     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2878     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2879                              IsForDefinition);
2880   } else
2881     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2882                               IsForDefinition);
2883 }
2884 
2885 llvm::GlobalVariable *
2886 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2887                                       llvm::Type *Ty,
2888                                       llvm::GlobalValue::LinkageTypes Linkage) {
2889   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2890   llvm::GlobalVariable *OldGV = nullptr;
2891 
2892   if (GV) {
2893     // Check if the variable has the right type.
2894     if (GV->getType()->getElementType() == Ty)
2895       return GV;
2896 
2897     // Because C++ name mangling, the only way we can end up with an already
2898     // existing global with the same name is if it has been declared extern "C".
2899     assert(GV->isDeclaration() && "Declaration has wrong type!");
2900     OldGV = GV;
2901   }
2902 
2903   // Create a new variable.
2904   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2905                                 Linkage, nullptr, Name);
2906 
2907   if (OldGV) {
2908     // Replace occurrences of the old variable if needed.
2909     GV->takeName(OldGV);
2910 
2911     if (!OldGV->use_empty()) {
2912       llvm::Constant *NewPtrForOldDecl =
2913       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2914       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2915     }
2916 
2917     OldGV->eraseFromParent();
2918   }
2919 
2920   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2921       !GV->hasAvailableExternallyLinkage())
2922     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2923 
2924   return GV;
2925 }
2926 
2927 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2928 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2929 /// then it will be created with the specified type instead of whatever the
2930 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2931 /// that an actual global with type Ty will be returned, not conversion of a
2932 /// variable with the same mangled name but some other type.
2933 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2934                                                   llvm::Type *Ty,
2935                                            ForDefinition_t IsForDefinition) {
2936   assert(D->hasGlobalStorage() && "Not a global variable");
2937   QualType ASTTy = D->getType();
2938   if (!Ty)
2939     Ty = getTypes().ConvertTypeForMem(ASTTy);
2940 
2941   llvm::PointerType *PTy =
2942     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2943 
2944   StringRef MangledName = getMangledName(D);
2945   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2946 }
2947 
2948 /// CreateRuntimeVariable - Create a new runtime global variable with the
2949 /// specified type and name.
2950 llvm::Constant *
2951 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2952                                      StringRef Name) {
2953   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2954 }
2955 
2956 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2957   assert(!D->getInit() && "Cannot emit definite definitions here!");
2958 
2959   StringRef MangledName = getMangledName(D);
2960   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2961 
2962   // We already have a definition, not declaration, with the same mangled name.
2963   // Emitting of declaration is not required (and actually overwrites emitted
2964   // definition).
2965   if (GV && !GV->isDeclaration())
2966     return;
2967 
2968   // If we have not seen a reference to this variable yet, place it into the
2969   // deferred declarations table to be emitted if needed later.
2970   if (!MustBeEmitted(D) && !GV) {
2971       DeferredDecls[MangledName] = D;
2972       return;
2973   }
2974 
2975   // The tentative definition is the only definition.
2976   EmitGlobalVarDefinition(D);
2977 }
2978 
2979 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2980   return Context.toCharUnitsFromBits(
2981       getDataLayout().getTypeStoreSizeInBits(Ty));
2982 }
2983 
2984 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2985   LangAS AddrSpace = LangAS::Default;
2986   if (LangOpts.OpenCL) {
2987     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2988     assert(AddrSpace == LangAS::opencl_global ||
2989            AddrSpace == LangAS::opencl_constant ||
2990            AddrSpace == LangAS::opencl_local ||
2991            AddrSpace >= LangAS::FirstTargetAddressSpace);
2992     return AddrSpace;
2993   }
2994 
2995   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2996     if (D && D->hasAttr<CUDAConstantAttr>())
2997       return LangAS::cuda_constant;
2998     else if (D && D->hasAttr<CUDASharedAttr>())
2999       return LangAS::cuda_shared;
3000     else
3001       return LangAS::cuda_device;
3002   }
3003 
3004   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3005 }
3006 
3007 template<typename SomeDecl>
3008 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3009                                                llvm::GlobalValue *GV) {
3010   if (!getLangOpts().CPlusPlus)
3011     return;
3012 
3013   // Must have 'used' attribute, or else inline assembly can't rely on
3014   // the name existing.
3015   if (!D->template hasAttr<UsedAttr>())
3016     return;
3017 
3018   // Must have internal linkage and an ordinary name.
3019   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3020     return;
3021 
3022   // Must be in an extern "C" context. Entities declared directly within
3023   // a record are not extern "C" even if the record is in such a context.
3024   const SomeDecl *First = D->getFirstDecl();
3025   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3026     return;
3027 
3028   // OK, this is an internal linkage entity inside an extern "C" linkage
3029   // specification. Make a note of that so we can give it the "expected"
3030   // mangled name if nothing else is using that name.
3031   std::pair<StaticExternCMap::iterator, bool> R =
3032       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3033 
3034   // If we have multiple internal linkage entities with the same name
3035   // in extern "C" regions, none of them gets that name.
3036   if (!R.second)
3037     R.first->second = nullptr;
3038 }
3039 
3040 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3041   if (!CGM.supportsCOMDAT())
3042     return false;
3043 
3044   if (D.hasAttr<SelectAnyAttr>())
3045     return true;
3046 
3047   GVALinkage Linkage;
3048   if (auto *VD = dyn_cast<VarDecl>(&D))
3049     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3050   else
3051     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3052 
3053   switch (Linkage) {
3054   case GVA_Internal:
3055   case GVA_AvailableExternally:
3056   case GVA_StrongExternal:
3057     return false;
3058   case GVA_DiscardableODR:
3059   case GVA_StrongODR:
3060     return true;
3061   }
3062   llvm_unreachable("No such linkage");
3063 }
3064 
3065 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3066                                           llvm::GlobalObject &GO) {
3067   if (!shouldBeInCOMDAT(*this, D))
3068     return;
3069   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3070 }
3071 
3072 /// Pass IsTentative as true if you want to create a tentative definition.
3073 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3074                                             bool IsTentative) {
3075   // OpenCL global variables of sampler type are translated to function calls,
3076   // therefore no need to be translated.
3077   QualType ASTTy = D->getType();
3078   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3079     return;
3080 
3081   // If this is OpenMP device, check if it is legal to emit this global
3082   // normally.
3083   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3084       OpenMPRuntime->emitTargetGlobalVariable(D))
3085     return;
3086 
3087   llvm::Constant *Init = nullptr;
3088   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3089   bool NeedsGlobalCtor = false;
3090   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3091 
3092   const VarDecl *InitDecl;
3093   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3094 
3095   Optional<ConstantEmitter> emitter;
3096 
3097   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3098   // as part of their declaration."  Sema has already checked for
3099   // error cases, so we just need to set Init to UndefValue.
3100   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3101       D->hasAttr<CUDASharedAttr>())
3102     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3103   else if (!InitExpr) {
3104     // This is a tentative definition; tentative definitions are
3105     // implicitly initialized with { 0 }.
3106     //
3107     // Note that tentative definitions are only emitted at the end of
3108     // a translation unit, so they should never have incomplete
3109     // type. In addition, EmitTentativeDefinition makes sure that we
3110     // never attempt to emit a tentative definition if a real one
3111     // exists. A use may still exists, however, so we still may need
3112     // to do a RAUW.
3113     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3114     Init = EmitNullConstant(D->getType());
3115   } else {
3116     initializedGlobalDecl = GlobalDecl(D);
3117     emitter.emplace(*this);
3118     Init = emitter->tryEmitForInitializer(*InitDecl);
3119 
3120     if (!Init) {
3121       QualType T = InitExpr->getType();
3122       if (D->getType()->isReferenceType())
3123         T = D->getType();
3124 
3125       if (getLangOpts().CPlusPlus) {
3126         Init = EmitNullConstant(T);
3127         NeedsGlobalCtor = true;
3128       } else {
3129         ErrorUnsupported(D, "static initializer");
3130         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3131       }
3132     } else {
3133       // We don't need an initializer, so remove the entry for the delayed
3134       // initializer position (just in case this entry was delayed) if we
3135       // also don't need to register a destructor.
3136       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3137         DelayedCXXInitPosition.erase(D);
3138     }
3139   }
3140 
3141   llvm::Type* InitType = Init->getType();
3142   llvm::Constant *Entry =
3143       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3144 
3145   // Strip off a bitcast if we got one back.
3146   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3147     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3148            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3149            // All zero index gep.
3150            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3151     Entry = CE->getOperand(0);
3152   }
3153 
3154   // Entry is now either a Function or GlobalVariable.
3155   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3156 
3157   // We have a definition after a declaration with the wrong type.
3158   // We must make a new GlobalVariable* and update everything that used OldGV
3159   // (a declaration or tentative definition) with the new GlobalVariable*
3160   // (which will be a definition).
3161   //
3162   // This happens if there is a prototype for a global (e.g.
3163   // "extern int x[];") and then a definition of a different type (e.g.
3164   // "int x[10];"). This also happens when an initializer has a different type
3165   // from the type of the global (this happens with unions).
3166   if (!GV || GV->getType()->getElementType() != InitType ||
3167       GV->getType()->getAddressSpace() !=
3168           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3169 
3170     // Move the old entry aside so that we'll create a new one.
3171     Entry->setName(StringRef());
3172 
3173     // Make a new global with the correct type, this is now guaranteed to work.
3174     GV = cast<llvm::GlobalVariable>(
3175         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3176 
3177     // Replace all uses of the old global with the new global
3178     llvm::Constant *NewPtrForOldDecl =
3179         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3180     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3181 
3182     // Erase the old global, since it is no longer used.
3183     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3184   }
3185 
3186   MaybeHandleStaticInExternC(D, GV);
3187 
3188   if (D->hasAttr<AnnotateAttr>())
3189     AddGlobalAnnotations(D, GV);
3190 
3191   // Set the llvm linkage type as appropriate.
3192   llvm::GlobalValue::LinkageTypes Linkage =
3193       getLLVMLinkageVarDefinition(D, GV->isConstant());
3194 
3195   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3196   // the device. [...]"
3197   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3198   // __device__, declares a variable that: [...]
3199   // Is accessible from all the threads within the grid and from the host
3200   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3201   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3202   if (GV && LangOpts.CUDA) {
3203     if (LangOpts.CUDAIsDevice) {
3204       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3205         GV->setExternallyInitialized(true);
3206     } else {
3207       // Host-side shadows of external declarations of device-side
3208       // global variables become internal definitions. These have to
3209       // be internal in order to prevent name conflicts with global
3210       // host variables with the same name in a different TUs.
3211       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3212         Linkage = llvm::GlobalValue::InternalLinkage;
3213 
3214         // Shadow variables and their properties must be registered
3215         // with CUDA runtime.
3216         unsigned Flags = 0;
3217         if (!D->hasDefinition())
3218           Flags |= CGCUDARuntime::ExternDeviceVar;
3219         if (D->hasAttr<CUDAConstantAttr>())
3220           Flags |= CGCUDARuntime::ConstantDeviceVar;
3221         getCUDARuntime().registerDeviceVar(*GV, Flags);
3222       } else if (D->hasAttr<CUDASharedAttr>())
3223         // __shared__ variables are odd. Shadows do get created, but
3224         // they are not registered with the CUDA runtime, so they
3225         // can't really be used to access their device-side
3226         // counterparts. It's not clear yet whether it's nvcc's bug or
3227         // a feature, but we've got to do the same for compatibility.
3228         Linkage = llvm::GlobalValue::InternalLinkage;
3229     }
3230   }
3231 
3232   GV->setInitializer(Init);
3233   if (emitter) emitter->finalize(GV);
3234 
3235   // If it is safe to mark the global 'constant', do so now.
3236   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3237                   isTypeConstant(D->getType(), true));
3238 
3239   // If it is in a read-only section, mark it 'constant'.
3240   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3241     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3242     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3243       GV->setConstant(true);
3244   }
3245 
3246   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3247 
3248 
3249   // On Darwin, if the normal linkage of a C++ thread_local variable is
3250   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3251   // copies within a linkage unit; otherwise, the backing variable has
3252   // internal linkage and all accesses should just be calls to the
3253   // Itanium-specified entry point, which has the normal linkage of the
3254   // variable. This is to preserve the ability to change the implementation
3255   // behind the scenes.
3256   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3257       Context.getTargetInfo().getTriple().isOSDarwin() &&
3258       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3259       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3260     Linkage = llvm::GlobalValue::InternalLinkage;
3261 
3262   GV->setLinkage(Linkage);
3263   if (D->hasAttr<DLLImportAttr>())
3264     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3265   else if (D->hasAttr<DLLExportAttr>())
3266     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3267   else
3268     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3269 
3270   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3271     // common vars aren't constant even if declared const.
3272     GV->setConstant(false);
3273     // Tentative definition of global variables may be initialized with
3274     // non-zero null pointers. In this case they should have weak linkage
3275     // since common linkage must have zero initializer and must not have
3276     // explicit section therefore cannot have non-zero initial value.
3277     if (!GV->getInitializer()->isNullValue())
3278       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3279   }
3280 
3281   setNonAliasAttributes(D, GV);
3282 
3283   if (D->getTLSKind() && !GV->isThreadLocal()) {
3284     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3285       CXXThreadLocals.push_back(D);
3286     setTLSMode(GV, *D);
3287   }
3288 
3289   maybeSetTrivialComdat(*D, *GV);
3290 
3291   // Emit the initializer function if necessary.
3292   if (NeedsGlobalCtor || NeedsGlobalDtor)
3293     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3294 
3295   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3296 
3297   // Emit global variable debug information.
3298   if (CGDebugInfo *DI = getModuleDebugInfo())
3299     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3300       DI->EmitGlobalVariable(GV, D);
3301 }
3302 
3303 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3304                                       CodeGenModule &CGM, const VarDecl *D,
3305                                       bool NoCommon) {
3306   // Don't give variables common linkage if -fno-common was specified unless it
3307   // was overridden by a NoCommon attribute.
3308   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3309     return true;
3310 
3311   // C11 6.9.2/2:
3312   //   A declaration of an identifier for an object that has file scope without
3313   //   an initializer, and without a storage-class specifier or with the
3314   //   storage-class specifier static, constitutes a tentative definition.
3315   if (D->getInit() || D->hasExternalStorage())
3316     return true;
3317 
3318   // A variable cannot be both common and exist in a section.
3319   if (D->hasAttr<SectionAttr>())
3320     return true;
3321 
3322   // A variable cannot be both common and exist in a section.
3323   // We dont try to determine which is the right section in the front-end.
3324   // If no specialized section name is applicable, it will resort to default.
3325   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3326       D->hasAttr<PragmaClangDataSectionAttr>() ||
3327       D->hasAttr<PragmaClangRodataSectionAttr>())
3328     return true;
3329 
3330   // Thread local vars aren't considered common linkage.
3331   if (D->getTLSKind())
3332     return true;
3333 
3334   // Tentative definitions marked with WeakImportAttr are true definitions.
3335   if (D->hasAttr<WeakImportAttr>())
3336     return true;
3337 
3338   // A variable cannot be both common and exist in a comdat.
3339   if (shouldBeInCOMDAT(CGM, *D))
3340     return true;
3341 
3342   // Declarations with a required alignment do not have common linkage in MSVC
3343   // mode.
3344   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3345     if (D->hasAttr<AlignedAttr>())
3346       return true;
3347     QualType VarType = D->getType();
3348     if (Context.isAlignmentRequired(VarType))
3349       return true;
3350 
3351     if (const auto *RT = VarType->getAs<RecordType>()) {
3352       const RecordDecl *RD = RT->getDecl();
3353       for (const FieldDecl *FD : RD->fields()) {
3354         if (FD->isBitField())
3355           continue;
3356         if (FD->hasAttr<AlignedAttr>())
3357           return true;
3358         if (Context.isAlignmentRequired(FD->getType()))
3359           return true;
3360       }
3361     }
3362   }
3363 
3364   return false;
3365 }
3366 
3367 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3368     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3369   if (Linkage == GVA_Internal)
3370     return llvm::Function::InternalLinkage;
3371 
3372   if (D->hasAttr<WeakAttr>()) {
3373     if (IsConstantVariable)
3374       return llvm::GlobalVariable::WeakODRLinkage;
3375     else
3376       return llvm::GlobalVariable::WeakAnyLinkage;
3377   }
3378 
3379   // We are guaranteed to have a strong definition somewhere else,
3380   // so we can use available_externally linkage.
3381   if (Linkage == GVA_AvailableExternally)
3382     return llvm::GlobalValue::AvailableExternallyLinkage;
3383 
3384   // Note that Apple's kernel linker doesn't support symbol
3385   // coalescing, so we need to avoid linkonce and weak linkages there.
3386   // Normally, this means we just map to internal, but for explicit
3387   // instantiations we'll map to external.
3388 
3389   // In C++, the compiler has to emit a definition in every translation unit
3390   // that references the function.  We should use linkonce_odr because
3391   // a) if all references in this translation unit are optimized away, we
3392   // don't need to codegen it.  b) if the function persists, it needs to be
3393   // merged with other definitions. c) C++ has the ODR, so we know the
3394   // definition is dependable.
3395   if (Linkage == GVA_DiscardableODR)
3396     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3397                                             : llvm::Function::InternalLinkage;
3398 
3399   // An explicit instantiation of a template has weak linkage, since
3400   // explicit instantiations can occur in multiple translation units
3401   // and must all be equivalent. However, we are not allowed to
3402   // throw away these explicit instantiations.
3403   //
3404   // We don't currently support CUDA device code spread out across multiple TUs,
3405   // so say that CUDA templates are either external (for kernels) or internal.
3406   // This lets llvm perform aggressive inter-procedural optimizations.
3407   if (Linkage == GVA_StrongODR) {
3408     if (Context.getLangOpts().AppleKext)
3409       return llvm::Function::ExternalLinkage;
3410     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3411       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3412                                           : llvm::Function::InternalLinkage;
3413     return llvm::Function::WeakODRLinkage;
3414   }
3415 
3416   // C++ doesn't have tentative definitions and thus cannot have common
3417   // linkage.
3418   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3419       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3420                                  CodeGenOpts.NoCommon))
3421     return llvm::GlobalVariable::CommonLinkage;
3422 
3423   // selectany symbols are externally visible, so use weak instead of
3424   // linkonce.  MSVC optimizes away references to const selectany globals, so
3425   // all definitions should be the same and ODR linkage should be used.
3426   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3427   if (D->hasAttr<SelectAnyAttr>())
3428     return llvm::GlobalVariable::WeakODRLinkage;
3429 
3430   // Otherwise, we have strong external linkage.
3431   assert(Linkage == GVA_StrongExternal);
3432   return llvm::GlobalVariable::ExternalLinkage;
3433 }
3434 
3435 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3436     const VarDecl *VD, bool IsConstant) {
3437   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3438   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3439 }
3440 
3441 /// Replace the uses of a function that was declared with a non-proto type.
3442 /// We want to silently drop extra arguments from call sites
3443 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3444                                           llvm::Function *newFn) {
3445   // Fast path.
3446   if (old->use_empty()) return;
3447 
3448   llvm::Type *newRetTy = newFn->getReturnType();
3449   SmallVector<llvm::Value*, 4> newArgs;
3450   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3451 
3452   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3453          ui != ue; ) {
3454     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3455     llvm::User *user = use->getUser();
3456 
3457     // Recognize and replace uses of bitcasts.  Most calls to
3458     // unprototyped functions will use bitcasts.
3459     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3460       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3461         replaceUsesOfNonProtoConstant(bitcast, newFn);
3462       continue;
3463     }
3464 
3465     // Recognize calls to the function.
3466     llvm::CallSite callSite(user);
3467     if (!callSite) continue;
3468     if (!callSite.isCallee(&*use)) continue;
3469 
3470     // If the return types don't match exactly, then we can't
3471     // transform this call unless it's dead.
3472     if (callSite->getType() != newRetTy && !callSite->use_empty())
3473       continue;
3474 
3475     // Get the call site's attribute list.
3476     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3477     llvm::AttributeList oldAttrs = callSite.getAttributes();
3478 
3479     // If the function was passed too few arguments, don't transform.
3480     unsigned newNumArgs = newFn->arg_size();
3481     if (callSite.arg_size() < newNumArgs) continue;
3482 
3483     // If extra arguments were passed, we silently drop them.
3484     // If any of the types mismatch, we don't transform.
3485     unsigned argNo = 0;
3486     bool dontTransform = false;
3487     for (llvm::Argument &A : newFn->args()) {
3488       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3489         dontTransform = true;
3490         break;
3491       }
3492 
3493       // Add any parameter attributes.
3494       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3495       argNo++;
3496     }
3497     if (dontTransform)
3498       continue;
3499 
3500     // Okay, we can transform this.  Create the new call instruction and copy
3501     // over the required information.
3502     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3503 
3504     // Copy over any operand bundles.
3505     callSite.getOperandBundlesAsDefs(newBundles);
3506 
3507     llvm::CallSite newCall;
3508     if (callSite.isCall()) {
3509       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3510                                        callSite.getInstruction());
3511     } else {
3512       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3513       newCall = llvm::InvokeInst::Create(newFn,
3514                                          oldInvoke->getNormalDest(),
3515                                          oldInvoke->getUnwindDest(),
3516                                          newArgs, newBundles, "",
3517                                          callSite.getInstruction());
3518     }
3519     newArgs.clear(); // for the next iteration
3520 
3521     if (!newCall->getType()->isVoidTy())
3522       newCall->takeName(callSite.getInstruction());
3523     newCall.setAttributes(llvm::AttributeList::get(
3524         newFn->getContext(), oldAttrs.getFnAttributes(),
3525         oldAttrs.getRetAttributes(), newArgAttrs));
3526     newCall.setCallingConv(callSite.getCallingConv());
3527 
3528     // Finally, remove the old call, replacing any uses with the new one.
3529     if (!callSite->use_empty())
3530       callSite->replaceAllUsesWith(newCall.getInstruction());
3531 
3532     // Copy debug location attached to CI.
3533     if (callSite->getDebugLoc())
3534       newCall->setDebugLoc(callSite->getDebugLoc());
3535 
3536     callSite->eraseFromParent();
3537   }
3538 }
3539 
3540 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3541 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3542 /// existing call uses of the old function in the module, this adjusts them to
3543 /// call the new function directly.
3544 ///
3545 /// This is not just a cleanup: the always_inline pass requires direct calls to
3546 /// functions to be able to inline them.  If there is a bitcast in the way, it
3547 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3548 /// run at -O0.
3549 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3550                                                       llvm::Function *NewFn) {
3551   // If we're redefining a global as a function, don't transform it.
3552   if (!isa<llvm::Function>(Old)) return;
3553 
3554   replaceUsesOfNonProtoConstant(Old, NewFn);
3555 }
3556 
3557 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3558   auto DK = VD->isThisDeclarationADefinition();
3559   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3560     return;
3561 
3562   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3563   // If we have a definition, this might be a deferred decl. If the
3564   // instantiation is explicit, make sure we emit it at the end.
3565   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3566     GetAddrOfGlobalVar(VD);
3567 
3568   EmitTopLevelDecl(VD);
3569 }
3570 
3571 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3572                                                  llvm::GlobalValue *GV) {
3573   const auto *D = cast<FunctionDecl>(GD.getDecl());
3574 
3575   // Compute the function info and LLVM type.
3576   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3577   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3578 
3579   // Get or create the prototype for the function.
3580   if (!GV || (GV->getType()->getElementType() != Ty))
3581     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3582                                                    /*DontDefer=*/true,
3583                                                    ForDefinition));
3584 
3585   // Already emitted.
3586   if (!GV->isDeclaration())
3587     return;
3588 
3589   // We need to set linkage and visibility on the function before
3590   // generating code for it because various parts of IR generation
3591   // want to propagate this information down (e.g. to local static
3592   // declarations).
3593   auto *Fn = cast<llvm::Function>(GV);
3594   setFunctionLinkage(GD, Fn);
3595 
3596   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3597   setGVProperties(Fn, GD);
3598 
3599   MaybeHandleStaticInExternC(D, Fn);
3600 
3601   maybeSetTrivialComdat(*D, *Fn);
3602 
3603   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3604 
3605   setNonAliasAttributes(GD, Fn);
3606   SetLLVMFunctionAttributesForDefinition(D, Fn);
3607 
3608   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3609     AddGlobalCtor(Fn, CA->getPriority());
3610   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3611     AddGlobalDtor(Fn, DA->getPriority());
3612   if (D->hasAttr<AnnotateAttr>())
3613     AddGlobalAnnotations(D, Fn);
3614 }
3615 
3616 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3617   const auto *D = cast<ValueDecl>(GD.getDecl());
3618   const AliasAttr *AA = D->getAttr<AliasAttr>();
3619   assert(AA && "Not an alias?");
3620 
3621   StringRef MangledName = getMangledName(GD);
3622 
3623   if (AA->getAliasee() == MangledName) {
3624     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3625     return;
3626   }
3627 
3628   // If there is a definition in the module, then it wins over the alias.
3629   // This is dubious, but allow it to be safe.  Just ignore the alias.
3630   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3631   if (Entry && !Entry->isDeclaration())
3632     return;
3633 
3634   Aliases.push_back(GD);
3635 
3636   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3637 
3638   // Create a reference to the named value.  This ensures that it is emitted
3639   // if a deferred decl.
3640   llvm::Constant *Aliasee;
3641   if (isa<llvm::FunctionType>(DeclTy))
3642     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3643                                       /*ForVTable=*/false);
3644   else
3645     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3646                                     llvm::PointerType::getUnqual(DeclTy),
3647                                     /*D=*/nullptr);
3648 
3649   // Create the new alias itself, but don't set a name yet.
3650   auto *GA = llvm::GlobalAlias::create(
3651       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3652 
3653   if (Entry) {
3654     if (GA->getAliasee() == Entry) {
3655       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3656       return;
3657     }
3658 
3659     assert(Entry->isDeclaration());
3660 
3661     // If there is a declaration in the module, then we had an extern followed
3662     // by the alias, as in:
3663     //   extern int test6();
3664     //   ...
3665     //   int test6() __attribute__((alias("test7")));
3666     //
3667     // Remove it and replace uses of it with the alias.
3668     GA->takeName(Entry);
3669 
3670     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3671                                                           Entry->getType()));
3672     Entry->eraseFromParent();
3673   } else {
3674     GA->setName(MangledName);
3675   }
3676 
3677   // Set attributes which are particular to an alias; this is a
3678   // specialization of the attributes which may be set on a global
3679   // variable/function.
3680   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3681       D->isWeakImported()) {
3682     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3683   }
3684 
3685   if (const auto *VD = dyn_cast<VarDecl>(D))
3686     if (VD->getTLSKind())
3687       setTLSMode(GA, *VD);
3688 
3689   SetCommonAttributes(GD, GA);
3690 }
3691 
3692 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3693   const auto *D = cast<ValueDecl>(GD.getDecl());
3694   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3695   assert(IFA && "Not an ifunc?");
3696 
3697   StringRef MangledName = getMangledName(GD);
3698 
3699   if (IFA->getResolver() == MangledName) {
3700     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3701     return;
3702   }
3703 
3704   // Report an error if some definition overrides ifunc.
3705   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3706   if (Entry && !Entry->isDeclaration()) {
3707     GlobalDecl OtherGD;
3708     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3709         DiagnosedConflictingDefinitions.insert(GD).second) {
3710       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3711       Diags.Report(OtherGD.getDecl()->getLocation(),
3712                    diag::note_previous_definition);
3713     }
3714     return;
3715   }
3716 
3717   Aliases.push_back(GD);
3718 
3719   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3720   llvm::Constant *Resolver =
3721       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3722                               /*ForVTable=*/false);
3723   llvm::GlobalIFunc *GIF =
3724       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3725                                 "", Resolver, &getModule());
3726   if (Entry) {
3727     if (GIF->getResolver() == Entry) {
3728       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3729       return;
3730     }
3731     assert(Entry->isDeclaration());
3732 
3733     // If there is a declaration in the module, then we had an extern followed
3734     // by the ifunc, as in:
3735     //   extern int test();
3736     //   ...
3737     //   int test() __attribute__((ifunc("resolver")));
3738     //
3739     // Remove it and replace uses of it with the ifunc.
3740     GIF->takeName(Entry);
3741 
3742     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3743                                                           Entry->getType()));
3744     Entry->eraseFromParent();
3745   } else
3746     GIF->setName(MangledName);
3747 
3748   SetCommonAttributes(GD, GIF);
3749 }
3750 
3751 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3752                                             ArrayRef<llvm::Type*> Tys) {
3753   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3754                                          Tys);
3755 }
3756 
3757 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3758 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3759                          const StringLiteral *Literal, bool TargetIsLSB,
3760                          bool &IsUTF16, unsigned &StringLength) {
3761   StringRef String = Literal->getString();
3762   unsigned NumBytes = String.size();
3763 
3764   // Check for simple case.
3765   if (!Literal->containsNonAsciiOrNull()) {
3766     StringLength = NumBytes;
3767     return *Map.insert(std::make_pair(String, nullptr)).first;
3768   }
3769 
3770   // Otherwise, convert the UTF8 literals into a string of shorts.
3771   IsUTF16 = true;
3772 
3773   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3774   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3775   llvm::UTF16 *ToPtr = &ToBuf[0];
3776 
3777   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3778                                  ToPtr + NumBytes, llvm::strictConversion);
3779 
3780   // ConvertUTF8toUTF16 returns the length in ToPtr.
3781   StringLength = ToPtr - &ToBuf[0];
3782 
3783   // Add an explicit null.
3784   *ToPtr = 0;
3785   return *Map.insert(std::make_pair(
3786                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3787                                    (StringLength + 1) * 2),
3788                          nullptr)).first;
3789 }
3790 
3791 ConstantAddress
3792 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3793   unsigned StringLength = 0;
3794   bool isUTF16 = false;
3795   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3796       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3797                                getDataLayout().isLittleEndian(), isUTF16,
3798                                StringLength);
3799 
3800   if (auto *C = Entry.second)
3801     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3802 
3803   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3804   llvm::Constant *Zeros[] = { Zero, Zero };
3805 
3806   // If we don't already have it, get __CFConstantStringClassReference.
3807   if (!CFConstantStringClassRef) {
3808     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3809     Ty = llvm::ArrayType::get(Ty, 0);
3810     llvm::Constant *GV =
3811         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3812 
3813     if (getTriple().isOSBinFormatCOFF()) {
3814       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3815       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3816       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3817       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3818 
3819       const VarDecl *VD = nullptr;
3820       for (const auto &Result : DC->lookup(&II))
3821         if ((VD = dyn_cast<VarDecl>(Result)))
3822           break;
3823 
3824       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3825         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3826         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3827       } else {
3828         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3829         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3830       }
3831     }
3832 
3833     // Decay array -> ptr
3834     CFConstantStringClassRef =
3835         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3836   }
3837 
3838   QualType CFTy = getContext().getCFConstantStringType();
3839 
3840   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3841 
3842   ConstantInitBuilder Builder(*this);
3843   auto Fields = Builder.beginStruct(STy);
3844 
3845   // Class pointer.
3846   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3847 
3848   // Flags.
3849   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3850 
3851   // String pointer.
3852   llvm::Constant *C = nullptr;
3853   if (isUTF16) {
3854     auto Arr = llvm::makeArrayRef(
3855         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3856         Entry.first().size() / 2);
3857     C = llvm::ConstantDataArray::get(VMContext, Arr);
3858   } else {
3859     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3860   }
3861 
3862   // Note: -fwritable-strings doesn't make the backing store strings of
3863   // CFStrings writable. (See <rdar://problem/10657500>)
3864   auto *GV =
3865       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3866                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3867   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3868   // Don't enforce the target's minimum global alignment, since the only use
3869   // of the string is via this class initializer.
3870   CharUnits Align = isUTF16
3871                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3872                         : getContext().getTypeAlignInChars(getContext().CharTy);
3873   GV->setAlignment(Align.getQuantity());
3874 
3875   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3876   // Without it LLVM can merge the string with a non unnamed_addr one during
3877   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3878   if (getTriple().isOSBinFormatMachO())
3879     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3880                            : "__TEXT,__cstring,cstring_literals");
3881 
3882   // String.
3883   llvm::Constant *Str =
3884       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3885 
3886   if (isUTF16)
3887     // Cast the UTF16 string to the correct type.
3888     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3889   Fields.add(Str);
3890 
3891   // String length.
3892   auto Ty = getTypes().ConvertType(getContext().LongTy);
3893   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3894 
3895   CharUnits Alignment = getPointerAlign();
3896 
3897   // The struct.
3898   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3899                                     /*isConstant=*/false,
3900                                     llvm::GlobalVariable::PrivateLinkage);
3901   switch (getTriple().getObjectFormat()) {
3902   case llvm::Triple::UnknownObjectFormat:
3903     llvm_unreachable("unknown file format");
3904   case llvm::Triple::COFF:
3905   case llvm::Triple::ELF:
3906   case llvm::Triple::Wasm:
3907     GV->setSection("cfstring");
3908     break;
3909   case llvm::Triple::MachO:
3910     GV->setSection("__DATA,__cfstring");
3911     break;
3912   }
3913   Entry.second = GV;
3914 
3915   return ConstantAddress(GV, Alignment);
3916 }
3917 
3918 bool CodeGenModule::getExpressionLocationsEnabled() const {
3919   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3920 }
3921 
3922 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3923   if (ObjCFastEnumerationStateType.isNull()) {
3924     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3925     D->startDefinition();
3926 
3927     QualType FieldTypes[] = {
3928       Context.UnsignedLongTy,
3929       Context.getPointerType(Context.getObjCIdType()),
3930       Context.getPointerType(Context.UnsignedLongTy),
3931       Context.getConstantArrayType(Context.UnsignedLongTy,
3932                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3933     };
3934 
3935     for (size_t i = 0; i < 4; ++i) {
3936       FieldDecl *Field = FieldDecl::Create(Context,
3937                                            D,
3938                                            SourceLocation(),
3939                                            SourceLocation(), nullptr,
3940                                            FieldTypes[i], /*TInfo=*/nullptr,
3941                                            /*BitWidth=*/nullptr,
3942                                            /*Mutable=*/false,
3943                                            ICIS_NoInit);
3944       Field->setAccess(AS_public);
3945       D->addDecl(Field);
3946     }
3947 
3948     D->completeDefinition();
3949     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3950   }
3951 
3952   return ObjCFastEnumerationStateType;
3953 }
3954 
3955 llvm::Constant *
3956 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3957   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3958 
3959   // Don't emit it as the address of the string, emit the string data itself
3960   // as an inline array.
3961   if (E->getCharByteWidth() == 1) {
3962     SmallString<64> Str(E->getString());
3963 
3964     // Resize the string to the right size, which is indicated by its type.
3965     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3966     Str.resize(CAT->getSize().getZExtValue());
3967     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3968   }
3969 
3970   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3971   llvm::Type *ElemTy = AType->getElementType();
3972   unsigned NumElements = AType->getNumElements();
3973 
3974   // Wide strings have either 2-byte or 4-byte elements.
3975   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3976     SmallVector<uint16_t, 32> Elements;
3977     Elements.reserve(NumElements);
3978 
3979     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3980       Elements.push_back(E->getCodeUnit(i));
3981     Elements.resize(NumElements);
3982     return llvm::ConstantDataArray::get(VMContext, Elements);
3983   }
3984 
3985   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3986   SmallVector<uint32_t, 32> Elements;
3987   Elements.reserve(NumElements);
3988 
3989   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3990     Elements.push_back(E->getCodeUnit(i));
3991   Elements.resize(NumElements);
3992   return llvm::ConstantDataArray::get(VMContext, Elements);
3993 }
3994 
3995 static llvm::GlobalVariable *
3996 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3997                       CodeGenModule &CGM, StringRef GlobalName,
3998                       CharUnits Alignment) {
3999   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4000   unsigned AddrSpace = 0;
4001   if (CGM.getLangOpts().OpenCL)
4002     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
4003 
4004   llvm::Module &M = CGM.getModule();
4005   // Create a global variable for this string
4006   auto *GV = new llvm::GlobalVariable(
4007       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4008       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4009   GV->setAlignment(Alignment.getQuantity());
4010   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4011   if (GV->isWeakForLinker()) {
4012     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4013     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4014   }
4015 
4016   return GV;
4017 }
4018 
4019 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4020 /// constant array for the given string literal.
4021 ConstantAddress
4022 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4023                                                   StringRef Name) {
4024   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4025 
4026   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4027   llvm::GlobalVariable **Entry = nullptr;
4028   if (!LangOpts.WritableStrings) {
4029     Entry = &ConstantStringMap[C];
4030     if (auto GV = *Entry) {
4031       if (Alignment.getQuantity() > GV->getAlignment())
4032         GV->setAlignment(Alignment.getQuantity());
4033       return ConstantAddress(GV, Alignment);
4034     }
4035   }
4036 
4037   SmallString<256> MangledNameBuffer;
4038   StringRef GlobalVariableName;
4039   llvm::GlobalValue::LinkageTypes LT;
4040 
4041   // Mangle the string literal if the ABI allows for it.  However, we cannot
4042   // do this if  we are compiling with ASan or -fwritable-strings because they
4043   // rely on strings having normal linkage.
4044   if (!LangOpts.WritableStrings &&
4045       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4046       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4047     llvm::raw_svector_ostream Out(MangledNameBuffer);
4048     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4049 
4050     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4051     GlobalVariableName = MangledNameBuffer;
4052   } else {
4053     LT = llvm::GlobalValue::PrivateLinkage;
4054     GlobalVariableName = Name;
4055   }
4056 
4057   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4058   if (Entry)
4059     *Entry = GV;
4060 
4061   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4062                                   QualType());
4063   return ConstantAddress(GV, Alignment);
4064 }
4065 
4066 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4067 /// array for the given ObjCEncodeExpr node.
4068 ConstantAddress
4069 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4070   std::string Str;
4071   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4072 
4073   return GetAddrOfConstantCString(Str);
4074 }
4075 
4076 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4077 /// the literal and a terminating '\0' character.
4078 /// The result has pointer to array type.
4079 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4080     const std::string &Str, const char *GlobalName) {
4081   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4082   CharUnits Alignment =
4083     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4084 
4085   llvm::Constant *C =
4086       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4087 
4088   // Don't share any string literals if strings aren't constant.
4089   llvm::GlobalVariable **Entry = nullptr;
4090   if (!LangOpts.WritableStrings) {
4091     Entry = &ConstantStringMap[C];
4092     if (auto GV = *Entry) {
4093       if (Alignment.getQuantity() > GV->getAlignment())
4094         GV->setAlignment(Alignment.getQuantity());
4095       return ConstantAddress(GV, Alignment);
4096     }
4097   }
4098 
4099   // Get the default prefix if a name wasn't specified.
4100   if (!GlobalName)
4101     GlobalName = ".str";
4102   // Create a global variable for this.
4103   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4104                                   GlobalName, Alignment);
4105   if (Entry)
4106     *Entry = GV;
4107   return ConstantAddress(GV, Alignment);
4108 }
4109 
4110 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4111     const MaterializeTemporaryExpr *E, const Expr *Init) {
4112   assert((E->getStorageDuration() == SD_Static ||
4113           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4114   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4115 
4116   // If we're not materializing a subobject of the temporary, keep the
4117   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4118   QualType MaterializedType = Init->getType();
4119   if (Init == E->GetTemporaryExpr())
4120     MaterializedType = E->getType();
4121 
4122   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4123 
4124   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4125     return ConstantAddress(Slot, Align);
4126 
4127   // FIXME: If an externally-visible declaration extends multiple temporaries,
4128   // we need to give each temporary the same name in every translation unit (and
4129   // we also need to make the temporaries externally-visible).
4130   SmallString<256> Name;
4131   llvm::raw_svector_ostream Out(Name);
4132   getCXXABI().getMangleContext().mangleReferenceTemporary(
4133       VD, E->getManglingNumber(), Out);
4134 
4135   APValue *Value = nullptr;
4136   if (E->getStorageDuration() == SD_Static) {
4137     // We might have a cached constant initializer for this temporary. Note
4138     // that this might have a different value from the value computed by
4139     // evaluating the initializer if the surrounding constant expression
4140     // modifies the temporary.
4141     Value = getContext().getMaterializedTemporaryValue(E, false);
4142     if (Value && Value->isUninit())
4143       Value = nullptr;
4144   }
4145 
4146   // Try evaluating it now, it might have a constant initializer.
4147   Expr::EvalResult EvalResult;
4148   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4149       !EvalResult.hasSideEffects())
4150     Value = &EvalResult.Val;
4151 
4152   LangAS AddrSpace =
4153       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4154 
4155   Optional<ConstantEmitter> emitter;
4156   llvm::Constant *InitialValue = nullptr;
4157   bool Constant = false;
4158   llvm::Type *Type;
4159   if (Value) {
4160     // The temporary has a constant initializer, use it.
4161     emitter.emplace(*this);
4162     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4163                                                MaterializedType);
4164     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4165     Type = InitialValue->getType();
4166   } else {
4167     // No initializer, the initialization will be provided when we
4168     // initialize the declaration which performed lifetime extension.
4169     Type = getTypes().ConvertTypeForMem(MaterializedType);
4170   }
4171 
4172   // Create a global variable for this lifetime-extended temporary.
4173   llvm::GlobalValue::LinkageTypes Linkage =
4174       getLLVMLinkageVarDefinition(VD, Constant);
4175   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4176     const VarDecl *InitVD;
4177     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4178         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4179       // Temporaries defined inside a class get linkonce_odr linkage because the
4180       // class can be defined in multipe translation units.
4181       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4182     } else {
4183       // There is no need for this temporary to have external linkage if the
4184       // VarDecl has external linkage.
4185       Linkage = llvm::GlobalVariable::InternalLinkage;
4186     }
4187   }
4188   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4189   auto *GV = new llvm::GlobalVariable(
4190       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4191       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4192   if (emitter) emitter->finalize(GV);
4193   setGVProperties(GV, VD);
4194   GV->setAlignment(Align.getQuantity());
4195   if (supportsCOMDAT() && GV->isWeakForLinker())
4196     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4197   if (VD->getTLSKind())
4198     setTLSMode(GV, *VD);
4199   llvm::Constant *CV = GV;
4200   if (AddrSpace != LangAS::Default)
4201     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4202         *this, GV, AddrSpace, LangAS::Default,
4203         Type->getPointerTo(
4204             getContext().getTargetAddressSpace(LangAS::Default)));
4205   MaterializedGlobalTemporaryMap[E] = CV;
4206   return ConstantAddress(CV, Align);
4207 }
4208 
4209 /// EmitObjCPropertyImplementations - Emit information for synthesized
4210 /// properties for an implementation.
4211 void CodeGenModule::EmitObjCPropertyImplementations(const
4212                                                     ObjCImplementationDecl *D) {
4213   for (const auto *PID : D->property_impls()) {
4214     // Dynamic is just for type-checking.
4215     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4216       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4217 
4218       // Determine which methods need to be implemented, some may have
4219       // been overridden. Note that ::isPropertyAccessor is not the method
4220       // we want, that just indicates if the decl came from a
4221       // property. What we want to know is if the method is defined in
4222       // this implementation.
4223       if (!D->getInstanceMethod(PD->getGetterName()))
4224         CodeGenFunction(*this).GenerateObjCGetter(
4225                                  const_cast<ObjCImplementationDecl *>(D), PID);
4226       if (!PD->isReadOnly() &&
4227           !D->getInstanceMethod(PD->getSetterName()))
4228         CodeGenFunction(*this).GenerateObjCSetter(
4229                                  const_cast<ObjCImplementationDecl *>(D), PID);
4230     }
4231   }
4232 }
4233 
4234 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4235   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4236   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4237        ivar; ivar = ivar->getNextIvar())
4238     if (ivar->getType().isDestructedType())
4239       return true;
4240 
4241   return false;
4242 }
4243 
4244 static bool AllTrivialInitializers(CodeGenModule &CGM,
4245                                    ObjCImplementationDecl *D) {
4246   CodeGenFunction CGF(CGM);
4247   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4248        E = D->init_end(); B != E; ++B) {
4249     CXXCtorInitializer *CtorInitExp = *B;
4250     Expr *Init = CtorInitExp->getInit();
4251     if (!CGF.isTrivialInitializer(Init))
4252       return false;
4253   }
4254   return true;
4255 }
4256 
4257 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4258 /// for an implementation.
4259 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4260   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4261   if (needsDestructMethod(D)) {
4262     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4263     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4264     ObjCMethodDecl *DTORMethod =
4265       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4266                              cxxSelector, getContext().VoidTy, nullptr, D,
4267                              /*isInstance=*/true, /*isVariadic=*/false,
4268                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4269                              /*isDefined=*/false, ObjCMethodDecl::Required);
4270     D->addInstanceMethod(DTORMethod);
4271     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4272     D->setHasDestructors(true);
4273   }
4274 
4275   // If the implementation doesn't have any ivar initializers, we don't need
4276   // a .cxx_construct.
4277   if (D->getNumIvarInitializers() == 0 ||
4278       AllTrivialInitializers(*this, D))
4279     return;
4280 
4281   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4282   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4283   // The constructor returns 'self'.
4284   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4285                                                 D->getLocation(),
4286                                                 D->getLocation(),
4287                                                 cxxSelector,
4288                                                 getContext().getObjCIdType(),
4289                                                 nullptr, D, /*isInstance=*/true,
4290                                                 /*isVariadic=*/false,
4291                                                 /*isPropertyAccessor=*/true,
4292                                                 /*isImplicitlyDeclared=*/true,
4293                                                 /*isDefined=*/false,
4294                                                 ObjCMethodDecl::Required);
4295   D->addInstanceMethod(CTORMethod);
4296   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4297   D->setHasNonZeroConstructors(true);
4298 }
4299 
4300 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4301 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4302   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4303       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4304     ErrorUnsupported(LSD, "linkage spec");
4305     return;
4306   }
4307 
4308   EmitDeclContext(LSD);
4309 }
4310 
4311 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4312   for (auto *I : DC->decls()) {
4313     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4314     // are themselves considered "top-level", so EmitTopLevelDecl on an
4315     // ObjCImplDecl does not recursively visit them. We need to do that in
4316     // case they're nested inside another construct (LinkageSpecDecl /
4317     // ExportDecl) that does stop them from being considered "top-level".
4318     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4319       for (auto *M : OID->methods())
4320         EmitTopLevelDecl(M);
4321     }
4322 
4323     EmitTopLevelDecl(I);
4324   }
4325 }
4326 
4327 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4328 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4329   // Ignore dependent declarations.
4330   if (D->isTemplated())
4331     return;
4332 
4333   switch (D->getKind()) {
4334   case Decl::CXXConversion:
4335   case Decl::CXXMethod:
4336   case Decl::Function:
4337     EmitGlobal(cast<FunctionDecl>(D));
4338     // Always provide some coverage mapping
4339     // even for the functions that aren't emitted.
4340     AddDeferredUnusedCoverageMapping(D);
4341     break;
4342 
4343   case Decl::CXXDeductionGuide:
4344     // Function-like, but does not result in code emission.
4345     break;
4346 
4347   case Decl::Var:
4348   case Decl::Decomposition:
4349   case Decl::VarTemplateSpecialization:
4350     EmitGlobal(cast<VarDecl>(D));
4351     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4352       for (auto *B : DD->bindings())
4353         if (auto *HD = B->getHoldingVar())
4354           EmitGlobal(HD);
4355     break;
4356 
4357   // Indirect fields from global anonymous structs and unions can be
4358   // ignored; only the actual variable requires IR gen support.
4359   case Decl::IndirectField:
4360     break;
4361 
4362   // C++ Decls
4363   case Decl::Namespace:
4364     EmitDeclContext(cast<NamespaceDecl>(D));
4365     break;
4366   case Decl::ClassTemplateSpecialization: {
4367     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4368     if (DebugInfo &&
4369         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4370         Spec->hasDefinition())
4371       DebugInfo->completeTemplateDefinition(*Spec);
4372   } LLVM_FALLTHROUGH;
4373   case Decl::CXXRecord:
4374     if (DebugInfo) {
4375       if (auto *ES = D->getASTContext().getExternalSource())
4376         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4377           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4378     }
4379     // Emit any static data members, they may be definitions.
4380     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4381       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4382         EmitTopLevelDecl(I);
4383     break;
4384     // No code generation needed.
4385   case Decl::UsingShadow:
4386   case Decl::ClassTemplate:
4387   case Decl::VarTemplate:
4388   case Decl::VarTemplatePartialSpecialization:
4389   case Decl::FunctionTemplate:
4390   case Decl::TypeAliasTemplate:
4391   case Decl::Block:
4392   case Decl::Empty:
4393     break;
4394   case Decl::Using:          // using X; [C++]
4395     if (CGDebugInfo *DI = getModuleDebugInfo())
4396         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4397     return;
4398   case Decl::NamespaceAlias:
4399     if (CGDebugInfo *DI = getModuleDebugInfo())
4400         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4401     return;
4402   case Decl::UsingDirective: // using namespace X; [C++]
4403     if (CGDebugInfo *DI = getModuleDebugInfo())
4404       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4405     return;
4406   case Decl::CXXConstructor:
4407     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4408     break;
4409   case Decl::CXXDestructor:
4410     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4411     break;
4412 
4413   case Decl::StaticAssert:
4414     // Nothing to do.
4415     break;
4416 
4417   // Objective-C Decls
4418 
4419   // Forward declarations, no (immediate) code generation.
4420   case Decl::ObjCInterface:
4421   case Decl::ObjCCategory:
4422     break;
4423 
4424   case Decl::ObjCProtocol: {
4425     auto *Proto = cast<ObjCProtocolDecl>(D);
4426     if (Proto->isThisDeclarationADefinition())
4427       ObjCRuntime->GenerateProtocol(Proto);
4428     break;
4429   }
4430 
4431   case Decl::ObjCCategoryImpl:
4432     // Categories have properties but don't support synthesize so we
4433     // can ignore them here.
4434     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4435     break;
4436 
4437   case Decl::ObjCImplementation: {
4438     auto *OMD = cast<ObjCImplementationDecl>(D);
4439     EmitObjCPropertyImplementations(OMD);
4440     EmitObjCIvarInitializations(OMD);
4441     ObjCRuntime->GenerateClass(OMD);
4442     // Emit global variable debug information.
4443     if (CGDebugInfo *DI = getModuleDebugInfo())
4444       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4445         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4446             OMD->getClassInterface()), OMD->getLocation());
4447     break;
4448   }
4449   case Decl::ObjCMethod: {
4450     auto *OMD = cast<ObjCMethodDecl>(D);
4451     // If this is not a prototype, emit the body.
4452     if (OMD->getBody())
4453       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4454     break;
4455   }
4456   case Decl::ObjCCompatibleAlias:
4457     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4458     break;
4459 
4460   case Decl::PragmaComment: {
4461     const auto *PCD = cast<PragmaCommentDecl>(D);
4462     switch (PCD->getCommentKind()) {
4463     case PCK_Unknown:
4464       llvm_unreachable("unexpected pragma comment kind");
4465     case PCK_Linker:
4466       AppendLinkerOptions(PCD->getArg());
4467       break;
4468     case PCK_Lib:
4469       if (getTarget().getTriple().isOSBinFormatELF() &&
4470           !getTarget().getTriple().isPS4())
4471         AddELFLibDirective(PCD->getArg());
4472       else
4473         AddDependentLib(PCD->getArg());
4474       break;
4475     case PCK_Compiler:
4476     case PCK_ExeStr:
4477     case PCK_User:
4478       break; // We ignore all of these.
4479     }
4480     break;
4481   }
4482 
4483   case Decl::PragmaDetectMismatch: {
4484     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4485     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4486     break;
4487   }
4488 
4489   case Decl::LinkageSpec:
4490     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4491     break;
4492 
4493   case Decl::FileScopeAsm: {
4494     // File-scope asm is ignored during device-side CUDA compilation.
4495     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4496       break;
4497     // File-scope asm is ignored during device-side OpenMP compilation.
4498     if (LangOpts.OpenMPIsDevice)
4499       break;
4500     auto *AD = cast<FileScopeAsmDecl>(D);
4501     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4502     break;
4503   }
4504 
4505   case Decl::Import: {
4506     auto *Import = cast<ImportDecl>(D);
4507 
4508     // If we've already imported this module, we're done.
4509     if (!ImportedModules.insert(Import->getImportedModule()))
4510       break;
4511 
4512     // Emit debug information for direct imports.
4513     if (!Import->getImportedOwningModule()) {
4514       if (CGDebugInfo *DI = getModuleDebugInfo())
4515         DI->EmitImportDecl(*Import);
4516     }
4517 
4518     // Find all of the submodules and emit the module initializers.
4519     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4520     SmallVector<clang::Module *, 16> Stack;
4521     Visited.insert(Import->getImportedModule());
4522     Stack.push_back(Import->getImportedModule());
4523 
4524     while (!Stack.empty()) {
4525       clang::Module *Mod = Stack.pop_back_val();
4526       if (!EmittedModuleInitializers.insert(Mod).second)
4527         continue;
4528 
4529       for (auto *D : Context.getModuleInitializers(Mod))
4530         EmitTopLevelDecl(D);
4531 
4532       // Visit the submodules of this module.
4533       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4534                                              SubEnd = Mod->submodule_end();
4535            Sub != SubEnd; ++Sub) {
4536         // Skip explicit children; they need to be explicitly imported to emit
4537         // the initializers.
4538         if ((*Sub)->IsExplicit)
4539           continue;
4540 
4541         if (Visited.insert(*Sub).second)
4542           Stack.push_back(*Sub);
4543       }
4544     }
4545     break;
4546   }
4547 
4548   case Decl::Export:
4549     EmitDeclContext(cast<ExportDecl>(D));
4550     break;
4551 
4552   case Decl::OMPThreadPrivate:
4553     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4554     break;
4555 
4556   case Decl::OMPDeclareReduction:
4557     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4558     break;
4559 
4560   default:
4561     // Make sure we handled everything we should, every other kind is a
4562     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4563     // function. Need to recode Decl::Kind to do that easily.
4564     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4565     break;
4566   }
4567 }
4568 
4569 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4570   // Do we need to generate coverage mapping?
4571   if (!CodeGenOpts.CoverageMapping)
4572     return;
4573   switch (D->getKind()) {
4574   case Decl::CXXConversion:
4575   case Decl::CXXMethod:
4576   case Decl::Function:
4577   case Decl::ObjCMethod:
4578   case Decl::CXXConstructor:
4579   case Decl::CXXDestructor: {
4580     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4581       return;
4582     SourceManager &SM = getContext().getSourceManager();
4583     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4584       return;
4585     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4586     if (I == DeferredEmptyCoverageMappingDecls.end())
4587       DeferredEmptyCoverageMappingDecls[D] = true;
4588     break;
4589   }
4590   default:
4591     break;
4592   };
4593 }
4594 
4595 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4596   // Do we need to generate coverage mapping?
4597   if (!CodeGenOpts.CoverageMapping)
4598     return;
4599   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4600     if (Fn->isTemplateInstantiation())
4601       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4602   }
4603   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4604   if (I == DeferredEmptyCoverageMappingDecls.end())
4605     DeferredEmptyCoverageMappingDecls[D] = false;
4606   else
4607     I->second = false;
4608 }
4609 
4610 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4611   // We call takeVector() here to avoid use-after-free.
4612   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4613   // we deserialize function bodies to emit coverage info for them, and that
4614   // deserializes more declarations. How should we handle that case?
4615   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4616     if (!Entry.second)
4617       continue;
4618     const Decl *D = Entry.first;
4619     switch (D->getKind()) {
4620     case Decl::CXXConversion:
4621     case Decl::CXXMethod:
4622     case Decl::Function:
4623     case Decl::ObjCMethod: {
4624       CodeGenPGO PGO(*this);
4625       GlobalDecl GD(cast<FunctionDecl>(D));
4626       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4627                                   getFunctionLinkage(GD));
4628       break;
4629     }
4630     case Decl::CXXConstructor: {
4631       CodeGenPGO PGO(*this);
4632       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4633       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4634                                   getFunctionLinkage(GD));
4635       break;
4636     }
4637     case Decl::CXXDestructor: {
4638       CodeGenPGO PGO(*this);
4639       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4640       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4641                                   getFunctionLinkage(GD));
4642       break;
4643     }
4644     default:
4645       break;
4646     };
4647   }
4648 }
4649 
4650 /// Turns the given pointer into a constant.
4651 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4652                                           const void *Ptr) {
4653   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4654   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4655   return llvm::ConstantInt::get(i64, PtrInt);
4656 }
4657 
4658 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4659                                    llvm::NamedMDNode *&GlobalMetadata,
4660                                    GlobalDecl D,
4661                                    llvm::GlobalValue *Addr) {
4662   if (!GlobalMetadata)
4663     GlobalMetadata =
4664       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4665 
4666   // TODO: should we report variant information for ctors/dtors?
4667   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4668                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4669                                CGM.getLLVMContext(), D.getDecl()))};
4670   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4671 }
4672 
4673 /// For each function which is declared within an extern "C" region and marked
4674 /// as 'used', but has internal linkage, create an alias from the unmangled
4675 /// name to the mangled name if possible. People expect to be able to refer
4676 /// to such functions with an unmangled name from inline assembly within the
4677 /// same translation unit.
4678 void CodeGenModule::EmitStaticExternCAliases() {
4679   // Don't do anything if we're generating CUDA device code -- the NVPTX
4680   // assembly target doesn't support aliases.
4681   if (Context.getTargetInfo().getTriple().isNVPTX())
4682     return;
4683   for (auto &I : StaticExternCValues) {
4684     IdentifierInfo *Name = I.first;
4685     llvm::GlobalValue *Val = I.second;
4686     if (Val && !getModule().getNamedValue(Name->getName()))
4687       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4688   }
4689 }
4690 
4691 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4692                                              GlobalDecl &Result) const {
4693   auto Res = Manglings.find(MangledName);
4694   if (Res == Manglings.end())
4695     return false;
4696   Result = Res->getValue();
4697   return true;
4698 }
4699 
4700 /// Emits metadata nodes associating all the global values in the
4701 /// current module with the Decls they came from.  This is useful for
4702 /// projects using IR gen as a subroutine.
4703 ///
4704 /// Since there's currently no way to associate an MDNode directly
4705 /// with an llvm::GlobalValue, we create a global named metadata
4706 /// with the name 'clang.global.decl.ptrs'.
4707 void CodeGenModule::EmitDeclMetadata() {
4708   llvm::NamedMDNode *GlobalMetadata = nullptr;
4709 
4710   for (auto &I : MangledDeclNames) {
4711     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4712     // Some mangled names don't necessarily have an associated GlobalValue
4713     // in this module, e.g. if we mangled it for DebugInfo.
4714     if (Addr)
4715       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4716   }
4717 }
4718 
4719 /// Emits metadata nodes for all the local variables in the current
4720 /// function.
4721 void CodeGenFunction::EmitDeclMetadata() {
4722   if (LocalDeclMap.empty()) return;
4723 
4724   llvm::LLVMContext &Context = getLLVMContext();
4725 
4726   // Find the unique metadata ID for this name.
4727   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4728 
4729   llvm::NamedMDNode *GlobalMetadata = nullptr;
4730 
4731   for (auto &I : LocalDeclMap) {
4732     const Decl *D = I.first;
4733     llvm::Value *Addr = I.second.getPointer();
4734     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4735       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4736       Alloca->setMetadata(
4737           DeclPtrKind, llvm::MDNode::get(
4738                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4739     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4740       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4741       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4742     }
4743   }
4744 }
4745 
4746 void CodeGenModule::EmitVersionIdentMetadata() {
4747   llvm::NamedMDNode *IdentMetadata =
4748     TheModule.getOrInsertNamedMetadata("llvm.ident");
4749   std::string Version = getClangFullVersion();
4750   llvm::LLVMContext &Ctx = TheModule.getContext();
4751 
4752   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4753   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4754 }
4755 
4756 void CodeGenModule::EmitTargetMetadata() {
4757   // Warning, new MangledDeclNames may be appended within this loop.
4758   // We rely on MapVector insertions adding new elements to the end
4759   // of the container.
4760   // FIXME: Move this loop into the one target that needs it, and only
4761   // loop over those declarations for which we couldn't emit the target
4762   // metadata when we emitted the declaration.
4763   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4764     auto Val = *(MangledDeclNames.begin() + I);
4765     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4766     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4767     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4768   }
4769 }
4770 
4771 void CodeGenModule::EmitCoverageFile() {
4772   if (getCodeGenOpts().CoverageDataFile.empty() &&
4773       getCodeGenOpts().CoverageNotesFile.empty())
4774     return;
4775 
4776   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4777   if (!CUNode)
4778     return;
4779 
4780   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4781   llvm::LLVMContext &Ctx = TheModule.getContext();
4782   auto *CoverageDataFile =
4783       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4784   auto *CoverageNotesFile =
4785       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4786   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4787     llvm::MDNode *CU = CUNode->getOperand(i);
4788     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4789     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4790   }
4791 }
4792 
4793 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4794   // Sema has checked that all uuid strings are of the form
4795   // "12345678-1234-1234-1234-1234567890ab".
4796   assert(Uuid.size() == 36);
4797   for (unsigned i = 0; i < 36; ++i) {
4798     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4799     else                                         assert(isHexDigit(Uuid[i]));
4800   }
4801 
4802   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4803   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4804 
4805   llvm::Constant *Field3[8];
4806   for (unsigned Idx = 0; Idx < 8; ++Idx)
4807     Field3[Idx] = llvm::ConstantInt::get(
4808         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4809 
4810   llvm::Constant *Fields[4] = {
4811     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4812     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4813     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4814     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4815   };
4816 
4817   return llvm::ConstantStruct::getAnon(Fields);
4818 }
4819 
4820 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4821                                                        bool ForEH) {
4822   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4823   // FIXME: should we even be calling this method if RTTI is disabled
4824   // and it's not for EH?
4825   if (!ForEH && !getLangOpts().RTTI)
4826     return llvm::Constant::getNullValue(Int8PtrTy);
4827 
4828   if (ForEH && Ty->isObjCObjectPointerType() &&
4829       LangOpts.ObjCRuntime.isGNUFamily())
4830     return ObjCRuntime->GetEHType(Ty);
4831 
4832   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4833 }
4834 
4835 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4836   // Do not emit threadprivates in simd-only mode.
4837   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4838     return;
4839   for (auto RefExpr : D->varlists()) {
4840     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4841     bool PerformInit =
4842         VD->getAnyInitializer() &&
4843         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4844                                                         /*ForRef=*/false);
4845 
4846     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4847     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4848             VD, Addr, RefExpr->getLocStart(), PerformInit))
4849       CXXGlobalInits.push_back(InitFunction);
4850   }
4851 }
4852 
4853 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4854   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4855   if (InternalId)
4856     return InternalId;
4857 
4858   if (isExternallyVisible(T->getLinkage())) {
4859     std::string OutName;
4860     llvm::raw_string_ostream Out(OutName);
4861     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4862 
4863     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4864   } else {
4865     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4866                                            llvm::ArrayRef<llvm::Metadata *>());
4867   }
4868 
4869   return InternalId;
4870 }
4871 
4872 // Generalize pointer types to a void pointer with the qualifiers of the
4873 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
4874 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
4875 // 'void *'.
4876 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4877   if (!Ty->isPointerType())
4878     return Ty;
4879 
4880   return Ctx.getPointerType(
4881       QualType(Ctx.VoidTy).withCVRQualifiers(
4882           Ty->getPointeeType().getCVRQualifiers()));
4883 }
4884 
4885 // Apply type generalization to a FunctionType's return and argument types
4886 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4887   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4888     SmallVector<QualType, 8> GeneralizedParams;
4889     for (auto &Param : FnType->param_types())
4890       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4891 
4892     return Ctx.getFunctionType(
4893         GeneralizeType(Ctx, FnType->getReturnType()),
4894         GeneralizedParams, FnType->getExtProtoInfo());
4895   }
4896 
4897   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4898     return Ctx.getFunctionNoProtoType(
4899         GeneralizeType(Ctx, FnType->getReturnType()));
4900 
4901   llvm_unreachable("Encountered unknown FunctionType");
4902 }
4903 
4904 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4905   T = GeneralizeFunctionType(getContext(), T);
4906 
4907   llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4908   if (InternalId)
4909     return InternalId;
4910 
4911   if (isExternallyVisible(T->getLinkage())) {
4912     std::string OutName;
4913     llvm::raw_string_ostream Out(OutName);
4914     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4915     Out << ".generalized";
4916 
4917     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4918   } else {
4919     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4920                                            llvm::ArrayRef<llvm::Metadata *>());
4921   }
4922 
4923   return InternalId;
4924 }
4925 
4926 /// Returns whether this module needs the "all-vtables" type identifier.
4927 bool CodeGenModule::NeedAllVtablesTypeId() const {
4928   // Returns true if at least one of vtable-based CFI checkers is enabled and
4929   // is not in the trapping mode.
4930   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4931            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4932           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4933            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4934           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4935            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4936           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4937            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4938 }
4939 
4940 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4941                                           CharUnits Offset,
4942                                           const CXXRecordDecl *RD) {
4943   llvm::Metadata *MD =
4944       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4945   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4946 
4947   if (CodeGenOpts.SanitizeCfiCrossDso)
4948     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4949       VTable->addTypeMetadata(Offset.getQuantity(),
4950                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4951 
4952   if (NeedAllVtablesTypeId()) {
4953     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4954     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4955   }
4956 }
4957 
4958 // Fills in the supplied string map with the set of target features for the
4959 // passed in function.
4960 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4961                                           const FunctionDecl *FD) {
4962   StringRef TargetCPU = Target.getTargetOpts().CPU;
4963   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4964     // If we have a TargetAttr build up the feature map based on that.
4965     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4966 
4967     ParsedAttr.Features.erase(
4968         llvm::remove_if(ParsedAttr.Features,
4969                         [&](const std::string &Feat) {
4970                           return !Target.isValidFeatureName(
4971                               StringRef{Feat}.substr(1));
4972                         }),
4973         ParsedAttr.Features.end());
4974 
4975     // Make a copy of the features as passed on the command line into the
4976     // beginning of the additional features from the function to override.
4977     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4978                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4979                             Target.getTargetOpts().FeaturesAsWritten.end());
4980 
4981     if (ParsedAttr.Architecture != "" &&
4982         Target.isValidCPUName(ParsedAttr.Architecture))
4983       TargetCPU = ParsedAttr.Architecture;
4984 
4985     // Now populate the feature map, first with the TargetCPU which is either
4986     // the default or a new one from the target attribute string. Then we'll use
4987     // the passed in features (FeaturesAsWritten) along with the new ones from
4988     // the attribute.
4989     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4990                           ParsedAttr.Features);
4991   } else {
4992     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4993                           Target.getTargetOpts().Features);
4994   }
4995 }
4996 
4997 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4998   if (!SanStats)
4999     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5000 
5001   return *SanStats;
5002 }
5003 llvm::Value *
5004 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5005                                                   CodeGenFunction &CGF) {
5006   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5007   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5008   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5009   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5010                                 "__translate_sampler_initializer"),
5011                                 {C});
5012 }
5013