1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeGPU.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/FileManager.h" 42 #include "clang/Basic/Module.h" 43 #include "clang/Basic/SourceManager.h" 44 #include "clang/Basic/TargetInfo.h" 45 #include "clang/Basic/Version.h" 46 #include "clang/CodeGen/BackendUtil.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 #include "llvm/Support/X86TargetParser.h" 67 68 using namespace clang; 69 using namespace CodeGen; 70 71 static llvm::cl::opt<bool> LimitedCoverage( 72 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 73 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 74 llvm::cl::init(false)); 75 76 static const char AnnotationSection[] = "llvm.metadata"; 77 78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 79 switch (CGM.getContext().getCXXABIKind()) { 80 case TargetCXXABI::AppleARM64: 81 case TargetCXXABI::Fuchsia: 82 case TargetCXXABI::GenericAArch64: 83 case TargetCXXABI::GenericARM: 84 case TargetCXXABI::iOS: 85 case TargetCXXABI::WatchOS: 86 case TargetCXXABI::GenericMIPS: 87 case TargetCXXABI::GenericItanium: 88 case TargetCXXABI::WebAssembly: 89 case TargetCXXABI::XL: 90 return CreateItaniumCXXABI(CGM); 91 case TargetCXXABI::Microsoft: 92 return CreateMicrosoftCXXABI(CGM); 93 } 94 95 llvm_unreachable("invalid C++ ABI kind"); 96 } 97 98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 99 const PreprocessorOptions &PPO, 100 const CodeGenOptions &CGO, llvm::Module &M, 101 DiagnosticsEngine &diags, 102 CoverageSourceInfo *CoverageInfo) 103 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 104 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 105 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 106 VMContext(M.getContext()), Types(*this), VTables(*this), 107 SanitizerMD(new SanitizerMetadata(*this)) { 108 109 // Initialize the type cache. 110 llvm::LLVMContext &LLVMContext = M.getContext(); 111 VoidTy = llvm::Type::getVoidTy(LLVMContext); 112 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 113 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 114 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 115 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 116 HalfTy = llvm::Type::getHalfTy(LLVMContext); 117 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 118 FloatTy = llvm::Type::getFloatTy(LLVMContext); 119 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 120 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 121 PointerAlignInBytes = 122 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 123 SizeSizeInBytes = 124 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 125 IntAlignInBytes = 126 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 127 CharTy = 128 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 129 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 130 IntPtrTy = llvm::IntegerType::get(LLVMContext, 131 C.getTargetInfo().getMaxPointerWidth()); 132 Int8PtrTy = Int8Ty->getPointerTo(0); 133 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 134 const llvm::DataLayout &DL = M.getDataLayout(); 135 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 136 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 137 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 138 139 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 140 141 if (LangOpts.ObjC) 142 createObjCRuntime(); 143 if (LangOpts.OpenCL) 144 createOpenCLRuntime(); 145 if (LangOpts.OpenMP) 146 createOpenMPRuntime(); 147 if (LangOpts.CUDA) 148 createCUDARuntime(); 149 150 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 151 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 152 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 153 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 154 getCXXABI().getMangleContext())); 155 156 // If debug info or coverage generation is enabled, create the CGDebugInfo 157 // object. 158 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 159 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 160 DebugInfo.reset(new CGDebugInfo(*this)); 161 162 Block.GlobalUniqueCount = 0; 163 164 if (C.getLangOpts().ObjC) 165 ObjCData.reset(new ObjCEntrypoints()); 166 167 if (CodeGenOpts.hasProfileClangUse()) { 168 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 169 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 170 if (auto E = ReaderOrErr.takeError()) { 171 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 172 "Could not read profile %0: %1"); 173 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 174 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 175 << EI.message(); 176 }); 177 } else 178 PGOReader = std::move(ReaderOrErr.get()); 179 } 180 181 // If coverage mapping generation is enabled, create the 182 // CoverageMappingModuleGen object. 183 if (CodeGenOpts.CoverageMapping) 184 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 185 186 // Generate the module name hash here if needed. 187 if (CodeGenOpts.UniqueInternalLinkageNames && 188 !getModule().getSourceFileName().empty()) { 189 std::string Path = getModule().getSourceFileName(); 190 // Check if a path substitution is needed from the MacroPrefixMap. 191 for (const auto &Entry : LangOpts.MacroPrefixMap) 192 if (Path.rfind(Entry.first, 0) != std::string::npos) { 193 Path = Entry.second + Path.substr(Entry.first.size()); 194 break; 195 } 196 llvm::MD5 Md5; 197 Md5.update(Path); 198 llvm::MD5::MD5Result R; 199 Md5.final(R); 200 SmallString<32> Str; 201 llvm::MD5::stringifyResult(R, Str); 202 // Convert MD5hash to Decimal. Demangler suffixes can either contain 203 // numbers or characters but not both. 204 llvm::APInt IntHash(128, Str.str(), 16); 205 // Prepend "__uniq" before the hash for tools like profilers to understand 206 // that this symbol is of internal linkage type. The "__uniq" is the 207 // pre-determined prefix that is used to tell tools that this symbol was 208 // created with -funique-internal-linakge-symbols and the tools can strip or 209 // keep the prefix as needed. 210 ModuleNameHash = (Twine(".__uniq.") + 211 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 212 } 213 } 214 215 CodeGenModule::~CodeGenModule() {} 216 217 void CodeGenModule::createObjCRuntime() { 218 // This is just isGNUFamily(), but we want to force implementors of 219 // new ABIs to decide how best to do this. 220 switch (LangOpts.ObjCRuntime.getKind()) { 221 case ObjCRuntime::GNUstep: 222 case ObjCRuntime::GCC: 223 case ObjCRuntime::ObjFW: 224 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 225 return; 226 227 case ObjCRuntime::FragileMacOSX: 228 case ObjCRuntime::MacOSX: 229 case ObjCRuntime::iOS: 230 case ObjCRuntime::WatchOS: 231 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 232 return; 233 } 234 llvm_unreachable("bad runtime kind"); 235 } 236 237 void CodeGenModule::createOpenCLRuntime() { 238 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 239 } 240 241 void CodeGenModule::createOpenMPRuntime() { 242 // Select a specialized code generation class based on the target, if any. 243 // If it does not exist use the default implementation. 244 switch (getTriple().getArch()) { 245 case llvm::Triple::nvptx: 246 case llvm::Triple::nvptx64: 247 case llvm::Triple::amdgcn: 248 assert(getLangOpts().OpenMPIsDevice && 249 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 250 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 251 break; 252 default: 253 if (LangOpts.OpenMPSimd) 254 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 255 else 256 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 257 break; 258 } 259 } 260 261 void CodeGenModule::createCUDARuntime() { 262 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 263 } 264 265 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 266 Replacements[Name] = C; 267 } 268 269 void CodeGenModule::applyReplacements() { 270 for (auto &I : Replacements) { 271 StringRef MangledName = I.first(); 272 llvm::Constant *Replacement = I.second; 273 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 274 if (!Entry) 275 continue; 276 auto *OldF = cast<llvm::Function>(Entry); 277 auto *NewF = dyn_cast<llvm::Function>(Replacement); 278 if (!NewF) { 279 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 280 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 281 } else { 282 auto *CE = cast<llvm::ConstantExpr>(Replacement); 283 assert(CE->getOpcode() == llvm::Instruction::BitCast || 284 CE->getOpcode() == llvm::Instruction::GetElementPtr); 285 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 286 } 287 } 288 289 // Replace old with new, but keep the old order. 290 OldF->replaceAllUsesWith(Replacement); 291 if (NewF) { 292 NewF->removeFromParent(); 293 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 294 NewF); 295 } 296 OldF->eraseFromParent(); 297 } 298 } 299 300 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 301 GlobalValReplacements.push_back(std::make_pair(GV, C)); 302 } 303 304 void CodeGenModule::applyGlobalValReplacements() { 305 for (auto &I : GlobalValReplacements) { 306 llvm::GlobalValue *GV = I.first; 307 llvm::Constant *C = I.second; 308 309 GV->replaceAllUsesWith(C); 310 GV->eraseFromParent(); 311 } 312 } 313 314 // This is only used in aliases that we created and we know they have a 315 // linear structure. 316 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 317 const llvm::Constant *C; 318 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 319 C = GA->getAliasee(); 320 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 321 C = GI->getResolver(); 322 else 323 return GV; 324 325 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 326 if (!AliaseeGV) 327 return nullptr; 328 329 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 330 if (FinalGV == GV) 331 return nullptr; 332 333 return FinalGV; 334 } 335 336 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 337 SourceLocation Location, bool IsIFunc, 338 const llvm::GlobalValue *Alias, 339 const llvm::GlobalValue *&GV) { 340 GV = getAliasedGlobal(Alias); 341 if (!GV) { 342 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 343 return false; 344 } 345 346 if (GV->isDeclaration()) { 347 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 348 return false; 349 } 350 351 if (IsIFunc) { 352 // Check resolver function type. 353 const auto *F = dyn_cast<llvm::Function>(GV); 354 if (!F) { 355 Diags.Report(Location, diag::err_alias_to_undefined) 356 << IsIFunc << IsIFunc; 357 return false; 358 } 359 360 llvm::FunctionType *FTy = F->getFunctionType(); 361 if (!FTy->getReturnType()->isPointerTy()) { 362 Diags.Report(Location, diag::err_ifunc_resolver_return); 363 return false; 364 } 365 } 366 367 return true; 368 } 369 370 void CodeGenModule::checkAliases() { 371 // Check if the constructed aliases are well formed. It is really unfortunate 372 // that we have to do this in CodeGen, but we only construct mangled names 373 // and aliases during codegen. 374 bool Error = false; 375 DiagnosticsEngine &Diags = getDiags(); 376 for (const GlobalDecl &GD : Aliases) { 377 const auto *D = cast<ValueDecl>(GD.getDecl()); 378 SourceLocation Location; 379 bool IsIFunc = D->hasAttr<IFuncAttr>(); 380 if (const Attr *A = D->getDefiningAttr()) 381 Location = A->getLocation(); 382 else 383 llvm_unreachable("Not an alias or ifunc?"); 384 385 StringRef MangledName = getMangledName(GD); 386 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 387 const llvm::GlobalValue *GV = nullptr; 388 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 389 Error = true; 390 continue; 391 } 392 393 llvm::Constant *Aliasee = 394 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 395 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 396 397 llvm::GlobalValue *AliaseeGV; 398 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 399 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 400 else 401 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 402 403 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 404 StringRef AliasSection = SA->getName(); 405 if (AliasSection != AliaseeGV->getSection()) 406 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 407 << AliasSection << IsIFunc << IsIFunc; 408 } 409 410 // We have to handle alias to weak aliases in here. LLVM itself disallows 411 // this since the object semantics would not match the IL one. For 412 // compatibility with gcc we implement it by just pointing the alias 413 // to its aliasee's aliasee. We also warn, since the user is probably 414 // expecting the link to be weak. 415 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 416 if (GA->isInterposable()) { 417 Diags.Report(Location, diag::warn_alias_to_weak_alias) 418 << GV->getName() << GA->getName() << IsIFunc; 419 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 420 GA->getAliasee(), Alias->getType()); 421 422 if (IsIFunc) 423 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 424 else 425 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 426 } 427 } 428 } 429 if (!Error) 430 return; 431 432 for (const GlobalDecl &GD : Aliases) { 433 StringRef MangledName = getMangledName(GD); 434 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 435 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 436 Alias->eraseFromParent(); 437 } 438 } 439 440 void CodeGenModule::clear() { 441 DeferredDeclsToEmit.clear(); 442 if (OpenMPRuntime) 443 OpenMPRuntime->clear(); 444 } 445 446 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 447 StringRef MainFile) { 448 if (!hasDiagnostics()) 449 return; 450 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 451 if (MainFile.empty()) 452 MainFile = "<stdin>"; 453 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 454 } else { 455 if (Mismatched > 0) 456 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 457 458 if (Missing > 0) 459 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 460 } 461 } 462 463 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 464 llvm::Module &M) { 465 if (!LO.VisibilityFromDLLStorageClass) 466 return; 467 468 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 469 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 470 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 471 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 472 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 473 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 474 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 475 CodeGenModule::GetLLVMVisibility( 476 LO.getExternDeclNoDLLStorageClassVisibility()); 477 478 for (llvm::GlobalValue &GV : M.global_values()) { 479 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 480 continue; 481 482 // Reset DSO locality before setting the visibility. This removes 483 // any effects that visibility options and annotations may have 484 // had on the DSO locality. Setting the visibility will implicitly set 485 // appropriate globals to DSO Local; however, this will be pessimistic 486 // w.r.t. to the normal compiler IRGen. 487 GV.setDSOLocal(false); 488 489 if (GV.isDeclarationForLinker()) { 490 GV.setVisibility(GV.getDLLStorageClass() == 491 llvm::GlobalValue::DLLImportStorageClass 492 ? ExternDeclDLLImportVisibility 493 : ExternDeclNoDLLStorageClassVisibility); 494 } else { 495 GV.setVisibility(GV.getDLLStorageClass() == 496 llvm::GlobalValue::DLLExportStorageClass 497 ? DLLExportVisibility 498 : NoDLLStorageClassVisibility); 499 } 500 501 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 502 } 503 } 504 505 void CodeGenModule::Release() { 506 EmitDeferred(); 507 EmitVTablesOpportunistically(); 508 applyGlobalValReplacements(); 509 applyReplacements(); 510 emitMultiVersionFunctions(); 511 EmitCXXGlobalInitFunc(); 512 EmitCXXGlobalCleanUpFunc(); 513 registerGlobalDtorsWithAtExit(); 514 EmitCXXThreadLocalInitFunc(); 515 if (ObjCRuntime) 516 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 517 AddGlobalCtor(ObjCInitFunction); 518 if (Context.getLangOpts().CUDA && CUDARuntime) { 519 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 520 AddGlobalCtor(CudaCtorFunction); 521 } 522 if (OpenMPRuntime) { 523 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 524 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 525 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 526 } 527 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 528 OpenMPRuntime->clear(); 529 } 530 if (PGOReader) { 531 getModule().setProfileSummary( 532 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 533 llvm::ProfileSummary::PSK_Instr); 534 if (PGOStats.hasDiagnostics()) 535 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 536 } 537 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 538 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 539 EmitGlobalAnnotations(); 540 EmitStaticExternCAliases(); 541 checkAliases(); 542 EmitDeferredUnusedCoverageMappings(); 543 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 544 if (CoverageMapping) 545 CoverageMapping->emit(); 546 if (CodeGenOpts.SanitizeCfiCrossDso) { 547 CodeGenFunction(*this).EmitCfiCheckFail(); 548 CodeGenFunction(*this).EmitCfiCheckStub(); 549 } 550 emitAtAvailableLinkGuard(); 551 if (Context.getTargetInfo().getTriple().isWasm() && 552 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 553 EmitMainVoidAlias(); 554 } 555 556 if (getTriple().isAMDGPU()) { 557 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 558 // preserve ASAN functions in bitcode libraries. 559 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 560 auto *FT = llvm::FunctionType::get(VoidTy, {}); 561 auto *F = llvm::Function::Create( 562 FT, llvm::GlobalValue::ExternalLinkage, 563 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 564 auto *Var = new llvm::GlobalVariable( 565 getModule(), FT->getPointerTo(), 566 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 567 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 568 llvm::GlobalVariable::NotThreadLocal); 569 addCompilerUsedGlobal(Var); 570 } 571 // Emit amdgpu_code_object_version module flag, which is code object version 572 // times 100. 573 // ToDo: Enable module flag for all code object version when ROCm device 574 // library is ready. 575 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 576 getModule().addModuleFlag(llvm::Module::Error, 577 "amdgpu_code_object_version", 578 getTarget().getTargetOpts().CodeObjectVersion); 579 } 580 } 581 582 emitLLVMUsed(); 583 if (SanStats) 584 SanStats->finish(); 585 586 if (CodeGenOpts.Autolink && 587 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 588 EmitModuleLinkOptions(); 589 } 590 591 // On ELF we pass the dependent library specifiers directly to the linker 592 // without manipulating them. This is in contrast to other platforms where 593 // they are mapped to a specific linker option by the compiler. This 594 // difference is a result of the greater variety of ELF linkers and the fact 595 // that ELF linkers tend to handle libraries in a more complicated fashion 596 // than on other platforms. This forces us to defer handling the dependent 597 // libs to the linker. 598 // 599 // CUDA/HIP device and host libraries are different. Currently there is no 600 // way to differentiate dependent libraries for host or device. Existing 601 // usage of #pragma comment(lib, *) is intended for host libraries on 602 // Windows. Therefore emit llvm.dependent-libraries only for host. 603 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 604 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 605 for (auto *MD : ELFDependentLibraries) 606 NMD->addOperand(MD); 607 } 608 609 // Record mregparm value now so it is visible through rest of codegen. 610 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 611 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 612 CodeGenOpts.NumRegisterParameters); 613 614 if (CodeGenOpts.DwarfVersion) { 615 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 616 CodeGenOpts.DwarfVersion); 617 } 618 619 if (CodeGenOpts.Dwarf64) 620 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 621 622 if (Context.getLangOpts().SemanticInterposition) 623 // Require various optimization to respect semantic interposition. 624 getModule().setSemanticInterposition(true); 625 626 if (CodeGenOpts.EmitCodeView) { 627 // Indicate that we want CodeView in the metadata. 628 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 629 } 630 if (CodeGenOpts.CodeViewGHash) { 631 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 632 } 633 if (CodeGenOpts.ControlFlowGuard) { 634 // Function ID tables and checks for Control Flow Guard (cfguard=2). 635 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 636 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 637 // Function ID tables for Control Flow Guard (cfguard=1). 638 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 639 } 640 if (CodeGenOpts.EHContGuard) { 641 // Function ID tables for EH Continuation Guard. 642 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 643 } 644 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 645 // We don't support LTO with 2 with different StrictVTablePointers 646 // FIXME: we could support it by stripping all the information introduced 647 // by StrictVTablePointers. 648 649 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 650 651 llvm::Metadata *Ops[2] = { 652 llvm::MDString::get(VMContext, "StrictVTablePointers"), 653 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 654 llvm::Type::getInt32Ty(VMContext), 1))}; 655 656 getModule().addModuleFlag(llvm::Module::Require, 657 "StrictVTablePointersRequirement", 658 llvm::MDNode::get(VMContext, Ops)); 659 } 660 if (getModuleDebugInfo()) 661 // We support a single version in the linked module. The LLVM 662 // parser will drop debug info with a different version number 663 // (and warn about it, too). 664 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 665 llvm::DEBUG_METADATA_VERSION); 666 667 // We need to record the widths of enums and wchar_t, so that we can generate 668 // the correct build attributes in the ARM backend. wchar_size is also used by 669 // TargetLibraryInfo. 670 uint64_t WCharWidth = 671 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 672 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 673 674 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 675 if ( Arch == llvm::Triple::arm 676 || Arch == llvm::Triple::armeb 677 || Arch == llvm::Triple::thumb 678 || Arch == llvm::Triple::thumbeb) { 679 // The minimum width of an enum in bytes 680 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 681 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 682 } 683 684 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 685 StringRef ABIStr = Target.getABI(); 686 llvm::LLVMContext &Ctx = TheModule.getContext(); 687 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 688 llvm::MDString::get(Ctx, ABIStr)); 689 } 690 691 if (CodeGenOpts.SanitizeCfiCrossDso) { 692 // Indicate that we want cross-DSO control flow integrity checks. 693 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 694 } 695 696 if (CodeGenOpts.WholeProgramVTables) { 697 // Indicate whether VFE was enabled for this module, so that the 698 // vcall_visibility metadata added under whole program vtables is handled 699 // appropriately in the optimizer. 700 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 701 CodeGenOpts.VirtualFunctionElimination); 702 } 703 704 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 705 getModule().addModuleFlag(llvm::Module::Override, 706 "CFI Canonical Jump Tables", 707 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 708 } 709 710 if (CodeGenOpts.CFProtectionReturn && 711 Target.checkCFProtectionReturnSupported(getDiags())) { 712 // Indicate that we want to instrument return control flow protection. 713 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 714 1); 715 } 716 717 if (CodeGenOpts.CFProtectionBranch && 718 Target.checkCFProtectionBranchSupported(getDiags())) { 719 // Indicate that we want to instrument branch control flow protection. 720 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 721 1); 722 } 723 724 if (CodeGenOpts.IBTSeal) 725 getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1); 726 727 // Add module metadata for return address signing (ignoring 728 // non-leaf/all) and stack tagging. These are actually turned on by function 729 // attributes, but we use module metadata to emit build attributes. This is 730 // needed for LTO, where the function attributes are inside bitcode 731 // serialised into a global variable by the time build attributes are 732 // emitted, so we can't access them. 733 if (Context.getTargetInfo().hasFeature("ptrauth") && 734 LangOpts.getSignReturnAddressScope() != 735 LangOptions::SignReturnAddressScopeKind::None) 736 getModule().addModuleFlag(llvm::Module::Override, 737 "sign-return-address-buildattr", 1); 738 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 739 getModule().addModuleFlag(llvm::Module::Override, 740 "tag-stack-memory-buildattr", 1); 741 742 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 743 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 744 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 745 Arch == llvm::Triple::aarch64_be) { 746 getModule().addModuleFlag(llvm::Module::Error, "branch-target-enforcement", 747 LangOpts.BranchTargetEnforcement); 748 749 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 750 LangOpts.hasSignReturnAddress()); 751 752 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 753 LangOpts.isSignReturnAddressScopeAll()); 754 755 getModule().addModuleFlag(llvm::Module::Error, 756 "sign-return-address-with-bkey", 757 !LangOpts.isSignReturnAddressWithAKey()); 758 } 759 760 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 761 llvm::LLVMContext &Ctx = TheModule.getContext(); 762 getModule().addModuleFlag( 763 llvm::Module::Error, "MemProfProfileFilename", 764 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 765 } 766 767 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 768 // Indicate whether __nvvm_reflect should be configured to flush denormal 769 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 770 // property.) 771 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 772 CodeGenOpts.FP32DenormalMode.Output != 773 llvm::DenormalMode::IEEE); 774 } 775 776 if (LangOpts.EHAsynch) 777 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 778 779 // Indicate whether this Module was compiled with -fopenmp 780 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 781 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 782 if (getLangOpts().OpenMPIsDevice) 783 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 784 LangOpts.OpenMP); 785 786 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 787 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 788 EmitOpenCLMetadata(); 789 // Emit SPIR version. 790 if (getTriple().isSPIR()) { 791 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 792 // opencl.spir.version named metadata. 793 // C++ for OpenCL has a distinct mapping for version compatibility with 794 // OpenCL. 795 auto Version = LangOpts.getOpenCLCompatibleVersion(); 796 llvm::Metadata *SPIRVerElts[] = { 797 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 798 Int32Ty, Version / 100)), 799 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 800 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 801 llvm::NamedMDNode *SPIRVerMD = 802 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 803 llvm::LLVMContext &Ctx = TheModule.getContext(); 804 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 805 } 806 } 807 808 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 809 assert(PLevel < 3 && "Invalid PIC Level"); 810 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 811 if (Context.getLangOpts().PIE) 812 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 813 } 814 815 if (getCodeGenOpts().CodeModel.size() > 0) { 816 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 817 .Case("tiny", llvm::CodeModel::Tiny) 818 .Case("small", llvm::CodeModel::Small) 819 .Case("kernel", llvm::CodeModel::Kernel) 820 .Case("medium", llvm::CodeModel::Medium) 821 .Case("large", llvm::CodeModel::Large) 822 .Default(~0u); 823 if (CM != ~0u) { 824 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 825 getModule().setCodeModel(codeModel); 826 } 827 } 828 829 if (CodeGenOpts.NoPLT) 830 getModule().setRtLibUseGOT(); 831 if (CodeGenOpts.UnwindTables) 832 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 833 834 switch (CodeGenOpts.getFramePointer()) { 835 case CodeGenOptions::FramePointerKind::None: 836 // 0 ("none") is the default. 837 break; 838 case CodeGenOptions::FramePointerKind::NonLeaf: 839 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 840 break; 841 case CodeGenOptions::FramePointerKind::All: 842 getModule().setFramePointer(llvm::FramePointerKind::All); 843 break; 844 } 845 846 SimplifyPersonality(); 847 848 if (getCodeGenOpts().EmitDeclMetadata) 849 EmitDeclMetadata(); 850 851 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 852 EmitCoverageFile(); 853 854 if (CGDebugInfo *DI = getModuleDebugInfo()) 855 DI->finalize(); 856 857 if (getCodeGenOpts().EmitVersionIdentMetadata) 858 EmitVersionIdentMetadata(); 859 860 if (!getCodeGenOpts().RecordCommandLine.empty()) 861 EmitCommandLineMetadata(); 862 863 if (!getCodeGenOpts().StackProtectorGuard.empty()) 864 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 865 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 866 getModule().setStackProtectorGuardReg( 867 getCodeGenOpts().StackProtectorGuardReg); 868 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 869 getModule().setStackProtectorGuardOffset( 870 getCodeGenOpts().StackProtectorGuardOffset); 871 if (getCodeGenOpts().StackAlignment) 872 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 873 if (getCodeGenOpts().SkipRaxSetup) 874 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 875 876 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 877 878 EmitBackendOptionsMetadata(getCodeGenOpts()); 879 880 // If there is device offloading code embed it in the host now. 881 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 882 883 // Set visibility from DLL storage class 884 // We do this at the end of LLVM IR generation; after any operation 885 // that might affect the DLL storage class or the visibility, and 886 // before anything that might act on these. 887 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 888 } 889 890 void CodeGenModule::EmitOpenCLMetadata() { 891 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 892 // opencl.ocl.version named metadata node. 893 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 894 auto Version = LangOpts.getOpenCLCompatibleVersion(); 895 llvm::Metadata *OCLVerElts[] = { 896 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 897 Int32Ty, Version / 100)), 898 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 899 Int32Ty, (Version % 100) / 10))}; 900 llvm::NamedMDNode *OCLVerMD = 901 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 902 llvm::LLVMContext &Ctx = TheModule.getContext(); 903 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 904 } 905 906 void CodeGenModule::EmitBackendOptionsMetadata( 907 const CodeGenOptions CodeGenOpts) { 908 switch (getTriple().getArch()) { 909 default: 910 break; 911 case llvm::Triple::riscv32: 912 case llvm::Triple::riscv64: 913 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 914 CodeGenOpts.SmallDataLimit); 915 break; 916 } 917 } 918 919 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 920 // Make sure that this type is translated. 921 Types.UpdateCompletedType(TD); 922 } 923 924 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 925 // Make sure that this type is translated. 926 Types.RefreshTypeCacheForClass(RD); 927 } 928 929 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 930 if (!TBAA) 931 return nullptr; 932 return TBAA->getTypeInfo(QTy); 933 } 934 935 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 936 if (!TBAA) 937 return TBAAAccessInfo(); 938 if (getLangOpts().CUDAIsDevice) { 939 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 940 // access info. 941 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 942 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 943 nullptr) 944 return TBAAAccessInfo(); 945 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 946 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 947 nullptr) 948 return TBAAAccessInfo(); 949 } 950 } 951 return TBAA->getAccessInfo(AccessType); 952 } 953 954 TBAAAccessInfo 955 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 956 if (!TBAA) 957 return TBAAAccessInfo(); 958 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 959 } 960 961 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 962 if (!TBAA) 963 return nullptr; 964 return TBAA->getTBAAStructInfo(QTy); 965 } 966 967 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 968 if (!TBAA) 969 return nullptr; 970 return TBAA->getBaseTypeInfo(QTy); 971 } 972 973 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 974 if (!TBAA) 975 return nullptr; 976 return TBAA->getAccessTagInfo(Info); 977 } 978 979 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 980 TBAAAccessInfo TargetInfo) { 981 if (!TBAA) 982 return TBAAAccessInfo(); 983 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 984 } 985 986 TBAAAccessInfo 987 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 988 TBAAAccessInfo InfoB) { 989 if (!TBAA) 990 return TBAAAccessInfo(); 991 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 992 } 993 994 TBAAAccessInfo 995 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 996 TBAAAccessInfo SrcInfo) { 997 if (!TBAA) 998 return TBAAAccessInfo(); 999 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1000 } 1001 1002 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1003 TBAAAccessInfo TBAAInfo) { 1004 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1005 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1006 } 1007 1008 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1009 llvm::Instruction *I, const CXXRecordDecl *RD) { 1010 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1011 llvm::MDNode::get(getLLVMContext(), {})); 1012 } 1013 1014 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1015 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1016 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1017 } 1018 1019 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1020 /// specified stmt yet. 1021 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1022 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1023 "cannot compile this %0 yet"); 1024 std::string Msg = Type; 1025 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1026 << Msg << S->getSourceRange(); 1027 } 1028 1029 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1030 /// specified decl yet. 1031 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1032 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1033 "cannot compile this %0 yet"); 1034 std::string Msg = Type; 1035 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1036 } 1037 1038 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1039 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1040 } 1041 1042 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1043 const NamedDecl *D) const { 1044 if (GV->hasDLLImportStorageClass()) 1045 return; 1046 // Internal definitions always have default visibility. 1047 if (GV->hasLocalLinkage()) { 1048 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1049 return; 1050 } 1051 if (!D) 1052 return; 1053 // Set visibility for definitions, and for declarations if requested globally 1054 // or set explicitly. 1055 LinkageInfo LV = D->getLinkageAndVisibility(); 1056 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1057 !GV->isDeclarationForLinker()) 1058 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1059 } 1060 1061 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1062 llvm::GlobalValue *GV) { 1063 if (GV->hasLocalLinkage()) 1064 return true; 1065 1066 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1067 return true; 1068 1069 // DLLImport explicitly marks the GV as external. 1070 if (GV->hasDLLImportStorageClass()) 1071 return false; 1072 1073 const llvm::Triple &TT = CGM.getTriple(); 1074 if (TT.isWindowsGNUEnvironment()) { 1075 // In MinGW, variables without DLLImport can still be automatically 1076 // imported from a DLL by the linker; don't mark variables that 1077 // potentially could come from another DLL as DSO local. 1078 1079 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1080 // (and this actually happens in the public interface of libstdc++), so 1081 // such variables can't be marked as DSO local. (Native TLS variables 1082 // can't be dllimported at all, though.) 1083 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1084 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1085 return false; 1086 } 1087 1088 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1089 // remain unresolved in the link, they can be resolved to zero, which is 1090 // outside the current DSO. 1091 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1092 return false; 1093 1094 // Every other GV is local on COFF. 1095 // Make an exception for windows OS in the triple: Some firmware builds use 1096 // *-win32-macho triples. This (accidentally?) produced windows relocations 1097 // without GOT tables in older clang versions; Keep this behaviour. 1098 // FIXME: even thread local variables? 1099 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1100 return true; 1101 1102 // Only handle COFF and ELF for now. 1103 if (!TT.isOSBinFormatELF()) 1104 return false; 1105 1106 // If this is not an executable, don't assume anything is local. 1107 const auto &CGOpts = CGM.getCodeGenOpts(); 1108 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1109 const auto &LOpts = CGM.getLangOpts(); 1110 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1111 // On ELF, if -fno-semantic-interposition is specified and the target 1112 // supports local aliases, there will be neither CC1 1113 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1114 // dso_local on the function if using a local alias is preferable (can avoid 1115 // PLT indirection). 1116 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1117 return false; 1118 return !(CGM.getLangOpts().SemanticInterposition || 1119 CGM.getLangOpts().HalfNoSemanticInterposition); 1120 } 1121 1122 // A definition cannot be preempted from an executable. 1123 if (!GV->isDeclarationForLinker()) 1124 return true; 1125 1126 // Most PIC code sequences that assume that a symbol is local cannot produce a 1127 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1128 // depended, it seems worth it to handle it here. 1129 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1130 return false; 1131 1132 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1133 if (TT.isPPC64()) 1134 return false; 1135 1136 if (CGOpts.DirectAccessExternalData) { 1137 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1138 // for non-thread-local variables. If the symbol is not defined in the 1139 // executable, a copy relocation will be needed at link time. dso_local is 1140 // excluded for thread-local variables because they generally don't support 1141 // copy relocations. 1142 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1143 if (!Var->isThreadLocal()) 1144 return true; 1145 1146 // -fno-pic sets dso_local on a function declaration to allow direct 1147 // accesses when taking its address (similar to a data symbol). If the 1148 // function is not defined in the executable, a canonical PLT entry will be 1149 // needed at link time. -fno-direct-access-external-data can avoid the 1150 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1151 // it could just cause trouble without providing perceptible benefits. 1152 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1153 return true; 1154 } 1155 1156 // If we can use copy relocations we can assume it is local. 1157 1158 // Otherwise don't assume it is local. 1159 return false; 1160 } 1161 1162 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1163 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1164 } 1165 1166 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1167 GlobalDecl GD) const { 1168 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1169 // C++ destructors have a few C++ ABI specific special cases. 1170 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1171 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1172 return; 1173 } 1174 setDLLImportDLLExport(GV, D); 1175 } 1176 1177 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1178 const NamedDecl *D) const { 1179 if (D && D->isExternallyVisible()) { 1180 if (D->hasAttr<DLLImportAttr>()) 1181 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1182 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1183 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1184 } 1185 } 1186 1187 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1188 GlobalDecl GD) const { 1189 setDLLImportDLLExport(GV, GD); 1190 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1191 } 1192 1193 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1194 const NamedDecl *D) const { 1195 setDLLImportDLLExport(GV, D); 1196 setGVPropertiesAux(GV, D); 1197 } 1198 1199 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1200 const NamedDecl *D) const { 1201 setGlobalVisibility(GV, D); 1202 setDSOLocal(GV); 1203 GV->setPartition(CodeGenOpts.SymbolPartition); 1204 } 1205 1206 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1207 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1208 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1209 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1210 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1211 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1212 } 1213 1214 llvm::GlobalVariable::ThreadLocalMode 1215 CodeGenModule::GetDefaultLLVMTLSModel() const { 1216 switch (CodeGenOpts.getDefaultTLSModel()) { 1217 case CodeGenOptions::GeneralDynamicTLSModel: 1218 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1219 case CodeGenOptions::LocalDynamicTLSModel: 1220 return llvm::GlobalVariable::LocalDynamicTLSModel; 1221 case CodeGenOptions::InitialExecTLSModel: 1222 return llvm::GlobalVariable::InitialExecTLSModel; 1223 case CodeGenOptions::LocalExecTLSModel: 1224 return llvm::GlobalVariable::LocalExecTLSModel; 1225 } 1226 llvm_unreachable("Invalid TLS model!"); 1227 } 1228 1229 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1230 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1231 1232 llvm::GlobalValue::ThreadLocalMode TLM; 1233 TLM = GetDefaultLLVMTLSModel(); 1234 1235 // Override the TLS model if it is explicitly specified. 1236 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1237 TLM = GetLLVMTLSModel(Attr->getModel()); 1238 } 1239 1240 GV->setThreadLocalMode(TLM); 1241 } 1242 1243 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1244 StringRef Name) { 1245 const TargetInfo &Target = CGM.getTarget(); 1246 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1247 } 1248 1249 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1250 const CPUSpecificAttr *Attr, 1251 unsigned CPUIndex, 1252 raw_ostream &Out) { 1253 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1254 // supported. 1255 if (Attr) 1256 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1257 else if (CGM.getTarget().supportsIFunc()) 1258 Out << ".resolver"; 1259 } 1260 1261 static void AppendTargetMangling(const CodeGenModule &CGM, 1262 const TargetAttr *Attr, raw_ostream &Out) { 1263 if (Attr->isDefaultVersion()) 1264 return; 1265 1266 Out << '.'; 1267 const TargetInfo &Target = CGM.getTarget(); 1268 ParsedTargetAttr Info = 1269 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1270 // Multiversioning doesn't allow "no-${feature}", so we can 1271 // only have "+" prefixes here. 1272 assert(LHS.startswith("+") && RHS.startswith("+") && 1273 "Features should always have a prefix."); 1274 return Target.multiVersionSortPriority(LHS.substr(1)) > 1275 Target.multiVersionSortPriority(RHS.substr(1)); 1276 }); 1277 1278 bool IsFirst = true; 1279 1280 if (!Info.Architecture.empty()) { 1281 IsFirst = false; 1282 Out << "arch_" << Info.Architecture; 1283 } 1284 1285 for (StringRef Feat : Info.Features) { 1286 if (!IsFirst) 1287 Out << '_'; 1288 IsFirst = false; 1289 Out << Feat.substr(1); 1290 } 1291 } 1292 1293 // Returns true if GD is a function decl with internal linkage and 1294 // needs a unique suffix after the mangled name. 1295 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1296 CodeGenModule &CGM) { 1297 const Decl *D = GD.getDecl(); 1298 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1299 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1300 } 1301 1302 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1303 const TargetClonesAttr *Attr, 1304 unsigned VersionIndex, 1305 raw_ostream &Out) { 1306 Out << '.'; 1307 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1308 if (FeatureStr.startswith("arch=")) 1309 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1310 else 1311 Out << FeatureStr; 1312 1313 Out << '.' << Attr->getMangledIndex(VersionIndex); 1314 } 1315 1316 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1317 const NamedDecl *ND, 1318 bool OmitMultiVersionMangling = false) { 1319 SmallString<256> Buffer; 1320 llvm::raw_svector_ostream Out(Buffer); 1321 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1322 if (!CGM.getModuleNameHash().empty()) 1323 MC.needsUniqueInternalLinkageNames(); 1324 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1325 if (ShouldMangle) 1326 MC.mangleName(GD.getWithDecl(ND), Out); 1327 else { 1328 IdentifierInfo *II = ND->getIdentifier(); 1329 assert(II && "Attempt to mangle unnamed decl."); 1330 const auto *FD = dyn_cast<FunctionDecl>(ND); 1331 1332 if (FD && 1333 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1334 Out << "__regcall3__" << II->getName(); 1335 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1336 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1337 Out << "__device_stub__" << II->getName(); 1338 } else { 1339 Out << II->getName(); 1340 } 1341 } 1342 1343 // Check if the module name hash should be appended for internal linkage 1344 // symbols. This should come before multi-version target suffixes are 1345 // appended. This is to keep the name and module hash suffix of the 1346 // internal linkage function together. The unique suffix should only be 1347 // added when name mangling is done to make sure that the final name can 1348 // be properly demangled. For example, for C functions without prototypes, 1349 // name mangling is not done and the unique suffix should not be appeneded 1350 // then. 1351 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1352 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1353 "Hash computed when not explicitly requested"); 1354 Out << CGM.getModuleNameHash(); 1355 } 1356 1357 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1358 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1359 switch (FD->getMultiVersionKind()) { 1360 case MultiVersionKind::CPUDispatch: 1361 case MultiVersionKind::CPUSpecific: 1362 AppendCPUSpecificCPUDispatchMangling(CGM, 1363 FD->getAttr<CPUSpecificAttr>(), 1364 GD.getMultiVersionIndex(), Out); 1365 break; 1366 case MultiVersionKind::Target: 1367 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1368 break; 1369 case MultiVersionKind::TargetClones: 1370 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1371 GD.getMultiVersionIndex(), Out); 1372 break; 1373 case MultiVersionKind::None: 1374 llvm_unreachable("None multiversion type isn't valid here"); 1375 } 1376 } 1377 1378 // Make unique name for device side static file-scope variable for HIP. 1379 if (CGM.getContext().shouldExternalize(ND) && 1380 CGM.getLangOpts().GPURelocatableDeviceCode && 1381 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1382 CGM.printPostfixForExternalizedDecl(Out, ND); 1383 return std::string(Out.str()); 1384 } 1385 1386 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1387 const FunctionDecl *FD, 1388 StringRef &CurName) { 1389 if (!FD->isMultiVersion()) 1390 return; 1391 1392 // Get the name of what this would be without the 'target' attribute. This 1393 // allows us to lookup the version that was emitted when this wasn't a 1394 // multiversion function. 1395 std::string NonTargetName = 1396 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1397 GlobalDecl OtherGD; 1398 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1399 assert(OtherGD.getCanonicalDecl() 1400 .getDecl() 1401 ->getAsFunction() 1402 ->isMultiVersion() && 1403 "Other GD should now be a multiversioned function"); 1404 // OtherFD is the version of this function that was mangled BEFORE 1405 // becoming a MultiVersion function. It potentially needs to be updated. 1406 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1407 .getDecl() 1408 ->getAsFunction() 1409 ->getMostRecentDecl(); 1410 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1411 // This is so that if the initial version was already the 'default' 1412 // version, we don't try to update it. 1413 if (OtherName != NonTargetName) { 1414 // Remove instead of erase, since others may have stored the StringRef 1415 // to this. 1416 const auto ExistingRecord = Manglings.find(NonTargetName); 1417 if (ExistingRecord != std::end(Manglings)) 1418 Manglings.remove(&(*ExistingRecord)); 1419 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1420 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1421 Result.first->first(); 1422 // If this is the current decl is being created, make sure we update the name. 1423 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1424 CurName = OtherNameRef; 1425 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1426 Entry->setName(OtherName); 1427 } 1428 } 1429 } 1430 1431 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1432 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1433 1434 // Some ABIs don't have constructor variants. Make sure that base and 1435 // complete constructors get mangled the same. 1436 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1437 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1438 CXXCtorType OrigCtorType = GD.getCtorType(); 1439 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1440 if (OrigCtorType == Ctor_Base) 1441 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1442 } 1443 } 1444 1445 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1446 // static device variable depends on whether the variable is referenced by 1447 // a host or device host function. Therefore the mangled name cannot be 1448 // cached. 1449 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1450 auto FoundName = MangledDeclNames.find(CanonicalGD); 1451 if (FoundName != MangledDeclNames.end()) 1452 return FoundName->second; 1453 } 1454 1455 // Keep the first result in the case of a mangling collision. 1456 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1457 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1458 1459 // Ensure either we have different ABIs between host and device compilations, 1460 // says host compilation following MSVC ABI but device compilation follows 1461 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1462 // mangling should be the same after name stubbing. The later checking is 1463 // very important as the device kernel name being mangled in host-compilation 1464 // is used to resolve the device binaries to be executed. Inconsistent naming 1465 // result in undefined behavior. Even though we cannot check that naming 1466 // directly between host- and device-compilations, the host- and 1467 // device-mangling in host compilation could help catching certain ones. 1468 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1469 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1470 (getContext().getAuxTargetInfo() && 1471 (getContext().getAuxTargetInfo()->getCXXABI() != 1472 getContext().getTargetInfo().getCXXABI())) || 1473 getCUDARuntime().getDeviceSideName(ND) == 1474 getMangledNameImpl( 1475 *this, 1476 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1477 ND)); 1478 1479 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1480 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1481 } 1482 1483 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1484 const BlockDecl *BD) { 1485 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1486 const Decl *D = GD.getDecl(); 1487 1488 SmallString<256> Buffer; 1489 llvm::raw_svector_ostream Out(Buffer); 1490 if (!D) 1491 MangleCtx.mangleGlobalBlock(BD, 1492 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1493 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1494 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1495 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1496 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1497 else 1498 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1499 1500 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1501 return Result.first->first(); 1502 } 1503 1504 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1505 auto it = MangledDeclNames.begin(); 1506 while (it != MangledDeclNames.end()) { 1507 if (it->second == Name) 1508 return it->first; 1509 it++; 1510 } 1511 return GlobalDecl(); 1512 } 1513 1514 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1515 return getModule().getNamedValue(Name); 1516 } 1517 1518 /// AddGlobalCtor - Add a function to the list that will be called before 1519 /// main() runs. 1520 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1521 llvm::Constant *AssociatedData) { 1522 // FIXME: Type coercion of void()* types. 1523 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1524 } 1525 1526 /// AddGlobalDtor - Add a function to the list that will be called 1527 /// when the module is unloaded. 1528 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1529 bool IsDtorAttrFunc) { 1530 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1531 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1532 DtorsUsingAtExit[Priority].push_back(Dtor); 1533 return; 1534 } 1535 1536 // FIXME: Type coercion of void()* types. 1537 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1538 } 1539 1540 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1541 if (Fns.empty()) return; 1542 1543 // Ctor function type is void()*. 1544 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1545 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1546 TheModule.getDataLayout().getProgramAddressSpace()); 1547 1548 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1549 llvm::StructType *CtorStructTy = llvm::StructType::get( 1550 Int32Ty, CtorPFTy, VoidPtrTy); 1551 1552 // Construct the constructor and destructor arrays. 1553 ConstantInitBuilder builder(*this); 1554 auto ctors = builder.beginArray(CtorStructTy); 1555 for (const auto &I : Fns) { 1556 auto ctor = ctors.beginStruct(CtorStructTy); 1557 ctor.addInt(Int32Ty, I.Priority); 1558 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1559 if (I.AssociatedData) 1560 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1561 else 1562 ctor.addNullPointer(VoidPtrTy); 1563 ctor.finishAndAddTo(ctors); 1564 } 1565 1566 auto list = 1567 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1568 /*constant*/ false, 1569 llvm::GlobalValue::AppendingLinkage); 1570 1571 // The LTO linker doesn't seem to like it when we set an alignment 1572 // on appending variables. Take it off as a workaround. 1573 list->setAlignment(llvm::None); 1574 1575 Fns.clear(); 1576 } 1577 1578 llvm::GlobalValue::LinkageTypes 1579 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1580 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1581 1582 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1583 1584 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1585 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1586 1587 if (isa<CXXConstructorDecl>(D) && 1588 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1589 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1590 // Our approach to inheriting constructors is fundamentally different from 1591 // that used by the MS ABI, so keep our inheriting constructor thunks 1592 // internal rather than trying to pick an unambiguous mangling for them. 1593 return llvm::GlobalValue::InternalLinkage; 1594 } 1595 1596 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1597 } 1598 1599 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1600 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1601 if (!MDS) return nullptr; 1602 1603 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1604 } 1605 1606 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1607 const CGFunctionInfo &Info, 1608 llvm::Function *F, bool IsThunk) { 1609 unsigned CallingConv; 1610 llvm::AttributeList PAL; 1611 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1612 /*AttrOnCallSite=*/false, IsThunk); 1613 F->setAttributes(PAL); 1614 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1615 } 1616 1617 static void removeImageAccessQualifier(std::string& TyName) { 1618 std::string ReadOnlyQual("__read_only"); 1619 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1620 if (ReadOnlyPos != std::string::npos) 1621 // "+ 1" for the space after access qualifier. 1622 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1623 else { 1624 std::string WriteOnlyQual("__write_only"); 1625 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1626 if (WriteOnlyPos != std::string::npos) 1627 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1628 else { 1629 std::string ReadWriteQual("__read_write"); 1630 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1631 if (ReadWritePos != std::string::npos) 1632 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1633 } 1634 } 1635 } 1636 1637 // Returns the address space id that should be produced to the 1638 // kernel_arg_addr_space metadata. This is always fixed to the ids 1639 // as specified in the SPIR 2.0 specification in order to differentiate 1640 // for example in clGetKernelArgInfo() implementation between the address 1641 // spaces with targets without unique mapping to the OpenCL address spaces 1642 // (basically all single AS CPUs). 1643 static unsigned ArgInfoAddressSpace(LangAS AS) { 1644 switch (AS) { 1645 case LangAS::opencl_global: 1646 return 1; 1647 case LangAS::opencl_constant: 1648 return 2; 1649 case LangAS::opencl_local: 1650 return 3; 1651 case LangAS::opencl_generic: 1652 return 4; // Not in SPIR 2.0 specs. 1653 case LangAS::opencl_global_device: 1654 return 5; 1655 case LangAS::opencl_global_host: 1656 return 6; 1657 default: 1658 return 0; // Assume private. 1659 } 1660 } 1661 1662 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1663 const FunctionDecl *FD, 1664 CodeGenFunction *CGF) { 1665 assert(((FD && CGF) || (!FD && !CGF)) && 1666 "Incorrect use - FD and CGF should either be both null or not!"); 1667 // Create MDNodes that represent the kernel arg metadata. 1668 // Each MDNode is a list in the form of "key", N number of values which is 1669 // the same number of values as their are kernel arguments. 1670 1671 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1672 1673 // MDNode for the kernel argument address space qualifiers. 1674 SmallVector<llvm::Metadata *, 8> addressQuals; 1675 1676 // MDNode for the kernel argument access qualifiers (images only). 1677 SmallVector<llvm::Metadata *, 8> accessQuals; 1678 1679 // MDNode for the kernel argument type names. 1680 SmallVector<llvm::Metadata *, 8> argTypeNames; 1681 1682 // MDNode for the kernel argument base type names. 1683 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1684 1685 // MDNode for the kernel argument type qualifiers. 1686 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1687 1688 // MDNode for the kernel argument names. 1689 SmallVector<llvm::Metadata *, 8> argNames; 1690 1691 if (FD && CGF) 1692 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1693 const ParmVarDecl *parm = FD->getParamDecl(i); 1694 QualType ty = parm->getType(); 1695 std::string typeQuals; 1696 1697 // Get image and pipe access qualifier: 1698 if (ty->isImageType() || ty->isPipeType()) { 1699 const Decl *PDecl = parm; 1700 if (auto *TD = dyn_cast<TypedefType>(ty)) 1701 PDecl = TD->getDecl(); 1702 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1703 if (A && A->isWriteOnly()) 1704 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1705 else if (A && A->isReadWrite()) 1706 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1707 else 1708 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1709 } else 1710 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1711 1712 // Get argument name. 1713 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1714 1715 auto getTypeSpelling = [&](QualType Ty) { 1716 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1717 1718 if (Ty.isCanonical()) { 1719 StringRef typeNameRef = typeName; 1720 // Turn "unsigned type" to "utype" 1721 if (typeNameRef.consume_front("unsigned ")) 1722 return std::string("u") + typeNameRef.str(); 1723 if (typeNameRef.consume_front("signed ")) 1724 return typeNameRef.str(); 1725 } 1726 1727 return typeName; 1728 }; 1729 1730 if (ty->isPointerType()) { 1731 QualType pointeeTy = ty->getPointeeType(); 1732 1733 // Get address qualifier. 1734 addressQuals.push_back( 1735 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1736 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1737 1738 // Get argument type name. 1739 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1740 std::string baseTypeName = 1741 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1742 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1743 argBaseTypeNames.push_back( 1744 llvm::MDString::get(VMContext, baseTypeName)); 1745 1746 // Get argument type qualifiers: 1747 if (ty.isRestrictQualified()) 1748 typeQuals = "restrict"; 1749 if (pointeeTy.isConstQualified() || 1750 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1751 typeQuals += typeQuals.empty() ? "const" : " const"; 1752 if (pointeeTy.isVolatileQualified()) 1753 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1754 } else { 1755 uint32_t AddrSpc = 0; 1756 bool isPipe = ty->isPipeType(); 1757 if (ty->isImageType() || isPipe) 1758 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1759 1760 addressQuals.push_back( 1761 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1762 1763 // Get argument type name. 1764 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1765 std::string typeName = getTypeSpelling(ty); 1766 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1767 1768 // Remove access qualifiers on images 1769 // (as they are inseparable from type in clang implementation, 1770 // but OpenCL spec provides a special query to get access qualifier 1771 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1772 if (ty->isImageType()) { 1773 removeImageAccessQualifier(typeName); 1774 removeImageAccessQualifier(baseTypeName); 1775 } 1776 1777 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1778 argBaseTypeNames.push_back( 1779 llvm::MDString::get(VMContext, baseTypeName)); 1780 1781 if (isPipe) 1782 typeQuals = "pipe"; 1783 } 1784 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1785 } 1786 1787 Fn->setMetadata("kernel_arg_addr_space", 1788 llvm::MDNode::get(VMContext, addressQuals)); 1789 Fn->setMetadata("kernel_arg_access_qual", 1790 llvm::MDNode::get(VMContext, accessQuals)); 1791 Fn->setMetadata("kernel_arg_type", 1792 llvm::MDNode::get(VMContext, argTypeNames)); 1793 Fn->setMetadata("kernel_arg_base_type", 1794 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1795 Fn->setMetadata("kernel_arg_type_qual", 1796 llvm::MDNode::get(VMContext, argTypeQuals)); 1797 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1798 Fn->setMetadata("kernel_arg_name", 1799 llvm::MDNode::get(VMContext, argNames)); 1800 } 1801 1802 /// Determines whether the language options require us to model 1803 /// unwind exceptions. We treat -fexceptions as mandating this 1804 /// except under the fragile ObjC ABI with only ObjC exceptions 1805 /// enabled. This means, for example, that C with -fexceptions 1806 /// enables this. 1807 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1808 // If exceptions are completely disabled, obviously this is false. 1809 if (!LangOpts.Exceptions) return false; 1810 1811 // If C++ exceptions are enabled, this is true. 1812 if (LangOpts.CXXExceptions) return true; 1813 1814 // If ObjC exceptions are enabled, this depends on the ABI. 1815 if (LangOpts.ObjCExceptions) { 1816 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1817 } 1818 1819 return true; 1820 } 1821 1822 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1823 const CXXMethodDecl *MD) { 1824 // Check that the type metadata can ever actually be used by a call. 1825 if (!CGM.getCodeGenOpts().LTOUnit || 1826 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1827 return false; 1828 1829 // Only functions whose address can be taken with a member function pointer 1830 // need this sort of type metadata. 1831 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1832 !isa<CXXDestructorDecl>(MD); 1833 } 1834 1835 std::vector<const CXXRecordDecl *> 1836 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1837 llvm::SetVector<const CXXRecordDecl *> MostBases; 1838 1839 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1840 CollectMostBases = [&](const CXXRecordDecl *RD) { 1841 if (RD->getNumBases() == 0) 1842 MostBases.insert(RD); 1843 for (const CXXBaseSpecifier &B : RD->bases()) 1844 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1845 }; 1846 CollectMostBases(RD); 1847 return MostBases.takeVector(); 1848 } 1849 1850 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1851 llvm::Function *F) { 1852 llvm::AttrBuilder B(F->getContext()); 1853 1854 if (CodeGenOpts.UnwindTables) 1855 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1856 1857 if (CodeGenOpts.StackClashProtector) 1858 B.addAttribute("probe-stack", "inline-asm"); 1859 1860 if (!hasUnwindExceptions(LangOpts)) 1861 B.addAttribute(llvm::Attribute::NoUnwind); 1862 1863 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1864 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1865 B.addAttribute(llvm::Attribute::StackProtect); 1866 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1867 B.addAttribute(llvm::Attribute::StackProtectStrong); 1868 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1869 B.addAttribute(llvm::Attribute::StackProtectReq); 1870 } 1871 1872 if (!D) { 1873 // If we don't have a declaration to control inlining, the function isn't 1874 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1875 // disabled, mark the function as noinline. 1876 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1877 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1878 B.addAttribute(llvm::Attribute::NoInline); 1879 1880 F->addFnAttrs(B); 1881 return; 1882 } 1883 1884 // Track whether we need to add the optnone LLVM attribute, 1885 // starting with the default for this optimization level. 1886 bool ShouldAddOptNone = 1887 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1888 // We can't add optnone in the following cases, it won't pass the verifier. 1889 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1890 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1891 1892 // Add optnone, but do so only if the function isn't always_inline. 1893 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1894 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1895 B.addAttribute(llvm::Attribute::OptimizeNone); 1896 1897 // OptimizeNone implies noinline; we should not be inlining such functions. 1898 B.addAttribute(llvm::Attribute::NoInline); 1899 1900 // We still need to handle naked functions even though optnone subsumes 1901 // much of their semantics. 1902 if (D->hasAttr<NakedAttr>()) 1903 B.addAttribute(llvm::Attribute::Naked); 1904 1905 // OptimizeNone wins over OptimizeForSize and MinSize. 1906 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1907 F->removeFnAttr(llvm::Attribute::MinSize); 1908 } else if (D->hasAttr<NakedAttr>()) { 1909 // Naked implies noinline: we should not be inlining such functions. 1910 B.addAttribute(llvm::Attribute::Naked); 1911 B.addAttribute(llvm::Attribute::NoInline); 1912 } else if (D->hasAttr<NoDuplicateAttr>()) { 1913 B.addAttribute(llvm::Attribute::NoDuplicate); 1914 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1915 // Add noinline if the function isn't always_inline. 1916 B.addAttribute(llvm::Attribute::NoInline); 1917 } else if (D->hasAttr<AlwaysInlineAttr>() && 1918 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1919 // (noinline wins over always_inline, and we can't specify both in IR) 1920 B.addAttribute(llvm::Attribute::AlwaysInline); 1921 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1922 // If we're not inlining, then force everything that isn't always_inline to 1923 // carry an explicit noinline attribute. 1924 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1925 B.addAttribute(llvm::Attribute::NoInline); 1926 } else { 1927 // Otherwise, propagate the inline hint attribute and potentially use its 1928 // absence to mark things as noinline. 1929 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1930 // Search function and template pattern redeclarations for inline. 1931 auto CheckForInline = [](const FunctionDecl *FD) { 1932 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1933 return Redecl->isInlineSpecified(); 1934 }; 1935 if (any_of(FD->redecls(), CheckRedeclForInline)) 1936 return true; 1937 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1938 if (!Pattern) 1939 return false; 1940 return any_of(Pattern->redecls(), CheckRedeclForInline); 1941 }; 1942 if (CheckForInline(FD)) { 1943 B.addAttribute(llvm::Attribute::InlineHint); 1944 } else if (CodeGenOpts.getInlining() == 1945 CodeGenOptions::OnlyHintInlining && 1946 !FD->isInlined() && 1947 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1948 B.addAttribute(llvm::Attribute::NoInline); 1949 } 1950 } 1951 } 1952 1953 // Add other optimization related attributes if we are optimizing this 1954 // function. 1955 if (!D->hasAttr<OptimizeNoneAttr>()) { 1956 if (D->hasAttr<ColdAttr>()) { 1957 if (!ShouldAddOptNone) 1958 B.addAttribute(llvm::Attribute::OptimizeForSize); 1959 B.addAttribute(llvm::Attribute::Cold); 1960 } 1961 if (D->hasAttr<HotAttr>()) 1962 B.addAttribute(llvm::Attribute::Hot); 1963 if (D->hasAttr<MinSizeAttr>()) 1964 B.addAttribute(llvm::Attribute::MinSize); 1965 } 1966 1967 F->addFnAttrs(B); 1968 1969 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1970 if (alignment) 1971 F->setAlignment(llvm::Align(alignment)); 1972 1973 if (!D->hasAttr<AlignedAttr>()) 1974 if (LangOpts.FunctionAlignment) 1975 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1976 1977 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1978 // reserve a bit for differentiating between virtual and non-virtual member 1979 // functions. If the current target's C++ ABI requires this and this is a 1980 // member function, set its alignment accordingly. 1981 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1982 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1983 F->setAlignment(llvm::Align(2)); 1984 } 1985 1986 // In the cross-dso CFI mode with canonical jump tables, we want !type 1987 // attributes on definitions only. 1988 if (CodeGenOpts.SanitizeCfiCrossDso && 1989 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1990 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1991 // Skip available_externally functions. They won't be codegen'ed in the 1992 // current module anyway. 1993 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1994 CreateFunctionTypeMetadataForIcall(FD, F); 1995 } 1996 } 1997 1998 // Emit type metadata on member functions for member function pointer checks. 1999 // These are only ever necessary on definitions; we're guaranteed that the 2000 // definition will be present in the LTO unit as a result of LTO visibility. 2001 auto *MD = dyn_cast<CXXMethodDecl>(D); 2002 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2003 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2004 llvm::Metadata *Id = 2005 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2006 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2007 F->addTypeMetadata(0, Id); 2008 } 2009 } 2010 } 2011 2012 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2013 llvm::Function *F) { 2014 if (D->hasAttr<StrictFPAttr>()) { 2015 llvm::AttrBuilder FuncAttrs(F->getContext()); 2016 FuncAttrs.addAttribute("strictfp"); 2017 F->addFnAttrs(FuncAttrs); 2018 } 2019 } 2020 2021 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2022 const Decl *D = GD.getDecl(); 2023 if (isa_and_nonnull<NamedDecl>(D)) 2024 setGVProperties(GV, GD); 2025 else 2026 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2027 2028 if (D && D->hasAttr<UsedAttr>()) 2029 addUsedOrCompilerUsedGlobal(GV); 2030 2031 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2032 const auto *VD = cast<VarDecl>(D); 2033 if (VD->getType().isConstQualified() && 2034 VD->getStorageDuration() == SD_Static) 2035 addUsedOrCompilerUsedGlobal(GV); 2036 } 2037 } 2038 2039 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2040 llvm::AttrBuilder &Attrs) { 2041 // Add target-cpu and target-features attributes to functions. If 2042 // we have a decl for the function and it has a target attribute then 2043 // parse that and add it to the feature set. 2044 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2045 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2046 std::vector<std::string> Features; 2047 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2048 FD = FD ? FD->getMostRecentDecl() : FD; 2049 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2050 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2051 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2052 bool AddedAttr = false; 2053 if (TD || SD || TC) { 2054 llvm::StringMap<bool> FeatureMap; 2055 getContext().getFunctionFeatureMap(FeatureMap, GD); 2056 2057 // Produce the canonical string for this set of features. 2058 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2059 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2060 2061 // Now add the target-cpu and target-features to the function. 2062 // While we populated the feature map above, we still need to 2063 // get and parse the target attribute so we can get the cpu for 2064 // the function. 2065 if (TD) { 2066 ParsedTargetAttr ParsedAttr = TD->parse(); 2067 if (!ParsedAttr.Architecture.empty() && 2068 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2069 TargetCPU = ParsedAttr.Architecture; 2070 TuneCPU = ""; // Clear the tune CPU. 2071 } 2072 if (!ParsedAttr.Tune.empty() && 2073 getTarget().isValidCPUName(ParsedAttr.Tune)) 2074 TuneCPU = ParsedAttr.Tune; 2075 } 2076 2077 if (SD) { 2078 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2079 // favor this processor. 2080 TuneCPU = getTarget().getCPUSpecificTuneName( 2081 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2082 } 2083 } else { 2084 // Otherwise just add the existing target cpu and target features to the 2085 // function. 2086 Features = getTarget().getTargetOpts().Features; 2087 } 2088 2089 if (!TargetCPU.empty()) { 2090 Attrs.addAttribute("target-cpu", TargetCPU); 2091 AddedAttr = true; 2092 } 2093 if (!TuneCPU.empty()) { 2094 Attrs.addAttribute("tune-cpu", TuneCPU); 2095 AddedAttr = true; 2096 } 2097 if (!Features.empty()) { 2098 llvm::sort(Features); 2099 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2100 AddedAttr = true; 2101 } 2102 2103 return AddedAttr; 2104 } 2105 2106 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2107 llvm::GlobalObject *GO) { 2108 const Decl *D = GD.getDecl(); 2109 SetCommonAttributes(GD, GO); 2110 2111 if (D) { 2112 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2113 if (D->hasAttr<RetainAttr>()) 2114 addUsedGlobal(GV); 2115 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2116 GV->addAttribute("bss-section", SA->getName()); 2117 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2118 GV->addAttribute("data-section", SA->getName()); 2119 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2120 GV->addAttribute("rodata-section", SA->getName()); 2121 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2122 GV->addAttribute("relro-section", SA->getName()); 2123 } 2124 2125 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2126 if (D->hasAttr<RetainAttr>()) 2127 addUsedGlobal(F); 2128 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2129 if (!D->getAttr<SectionAttr>()) 2130 F->addFnAttr("implicit-section-name", SA->getName()); 2131 2132 llvm::AttrBuilder Attrs(F->getContext()); 2133 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2134 // We know that GetCPUAndFeaturesAttributes will always have the 2135 // newest set, since it has the newest possible FunctionDecl, so the 2136 // new ones should replace the old. 2137 llvm::AttributeMask RemoveAttrs; 2138 RemoveAttrs.addAttribute("target-cpu"); 2139 RemoveAttrs.addAttribute("target-features"); 2140 RemoveAttrs.addAttribute("tune-cpu"); 2141 F->removeFnAttrs(RemoveAttrs); 2142 F->addFnAttrs(Attrs); 2143 } 2144 } 2145 2146 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2147 GO->setSection(CSA->getName()); 2148 else if (const auto *SA = D->getAttr<SectionAttr>()) 2149 GO->setSection(SA->getName()); 2150 } 2151 2152 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2153 } 2154 2155 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2156 llvm::Function *F, 2157 const CGFunctionInfo &FI) { 2158 const Decl *D = GD.getDecl(); 2159 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2160 SetLLVMFunctionAttributesForDefinition(D, F); 2161 2162 F->setLinkage(llvm::Function::InternalLinkage); 2163 2164 setNonAliasAttributes(GD, F); 2165 } 2166 2167 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2168 // Set linkage and visibility in case we never see a definition. 2169 LinkageInfo LV = ND->getLinkageAndVisibility(); 2170 // Don't set internal linkage on declarations. 2171 // "extern_weak" is overloaded in LLVM; we probably should have 2172 // separate linkage types for this. 2173 if (isExternallyVisible(LV.getLinkage()) && 2174 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2175 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2176 } 2177 2178 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2179 llvm::Function *F) { 2180 // Only if we are checking indirect calls. 2181 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2182 return; 2183 2184 // Non-static class methods are handled via vtable or member function pointer 2185 // checks elsewhere. 2186 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2187 return; 2188 2189 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2190 F->addTypeMetadata(0, MD); 2191 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2192 2193 // Emit a hash-based bit set entry for cross-DSO calls. 2194 if (CodeGenOpts.SanitizeCfiCrossDso) 2195 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2196 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2197 } 2198 2199 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2200 bool IsIncompleteFunction, 2201 bool IsThunk) { 2202 2203 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2204 // If this is an intrinsic function, set the function's attributes 2205 // to the intrinsic's attributes. 2206 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2207 return; 2208 } 2209 2210 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2211 2212 if (!IsIncompleteFunction) 2213 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2214 IsThunk); 2215 2216 // Add the Returned attribute for "this", except for iOS 5 and earlier 2217 // where substantial code, including the libstdc++ dylib, was compiled with 2218 // GCC and does not actually return "this". 2219 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2220 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2221 assert(!F->arg_empty() && 2222 F->arg_begin()->getType() 2223 ->canLosslesslyBitCastTo(F->getReturnType()) && 2224 "unexpected this return"); 2225 F->addParamAttr(0, llvm::Attribute::Returned); 2226 } 2227 2228 // Only a few attributes are set on declarations; these may later be 2229 // overridden by a definition. 2230 2231 setLinkageForGV(F, FD); 2232 setGVProperties(F, FD); 2233 2234 // Setup target-specific attributes. 2235 if (!IsIncompleteFunction && F->isDeclaration()) 2236 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2237 2238 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2239 F->setSection(CSA->getName()); 2240 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2241 F->setSection(SA->getName()); 2242 2243 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2244 if (EA->isError()) 2245 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2246 else if (EA->isWarning()) 2247 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2248 } 2249 2250 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2251 if (FD->isInlineBuiltinDeclaration()) { 2252 const FunctionDecl *FDBody; 2253 bool HasBody = FD->hasBody(FDBody); 2254 (void)HasBody; 2255 assert(HasBody && "Inline builtin declarations should always have an " 2256 "available body!"); 2257 if (shouldEmitFunction(FDBody)) 2258 F->addFnAttr(llvm::Attribute::NoBuiltin); 2259 } 2260 2261 if (FD->isReplaceableGlobalAllocationFunction()) { 2262 // A replaceable global allocation function does not act like a builtin by 2263 // default, only if it is invoked by a new-expression or delete-expression. 2264 F->addFnAttr(llvm::Attribute::NoBuiltin); 2265 } 2266 2267 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2268 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2269 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2270 if (MD->isVirtual()) 2271 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2272 2273 // Don't emit entries for function declarations in the cross-DSO mode. This 2274 // is handled with better precision by the receiving DSO. But if jump tables 2275 // are non-canonical then we need type metadata in order to produce the local 2276 // jump table. 2277 if (!CodeGenOpts.SanitizeCfiCrossDso || 2278 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2279 CreateFunctionTypeMetadataForIcall(FD, F); 2280 2281 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2282 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2283 2284 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2285 // Annotate the callback behavior as metadata: 2286 // - The callback callee (as argument number). 2287 // - The callback payloads (as argument numbers). 2288 llvm::LLVMContext &Ctx = F->getContext(); 2289 llvm::MDBuilder MDB(Ctx); 2290 2291 // The payload indices are all but the first one in the encoding. The first 2292 // identifies the callback callee. 2293 int CalleeIdx = *CB->encoding_begin(); 2294 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2295 F->addMetadata(llvm::LLVMContext::MD_callback, 2296 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2297 CalleeIdx, PayloadIndices, 2298 /* VarArgsArePassed */ false)})); 2299 } 2300 } 2301 2302 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2303 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2304 "Only globals with definition can force usage."); 2305 LLVMUsed.emplace_back(GV); 2306 } 2307 2308 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2309 assert(!GV->isDeclaration() && 2310 "Only globals with definition can force usage."); 2311 LLVMCompilerUsed.emplace_back(GV); 2312 } 2313 2314 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2315 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2316 "Only globals with definition can force usage."); 2317 if (getTriple().isOSBinFormatELF()) 2318 LLVMCompilerUsed.emplace_back(GV); 2319 else 2320 LLVMUsed.emplace_back(GV); 2321 } 2322 2323 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2324 std::vector<llvm::WeakTrackingVH> &List) { 2325 // Don't create llvm.used if there is no need. 2326 if (List.empty()) 2327 return; 2328 2329 // Convert List to what ConstantArray needs. 2330 SmallVector<llvm::Constant*, 8> UsedArray; 2331 UsedArray.resize(List.size()); 2332 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2333 UsedArray[i] = 2334 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2335 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2336 } 2337 2338 if (UsedArray.empty()) 2339 return; 2340 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2341 2342 auto *GV = new llvm::GlobalVariable( 2343 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2344 llvm::ConstantArray::get(ATy, UsedArray), Name); 2345 2346 GV->setSection("llvm.metadata"); 2347 } 2348 2349 void CodeGenModule::emitLLVMUsed() { 2350 emitUsed(*this, "llvm.used", LLVMUsed); 2351 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2352 } 2353 2354 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2355 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2356 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2357 } 2358 2359 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2360 llvm::SmallString<32> Opt; 2361 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2362 if (Opt.empty()) 2363 return; 2364 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2365 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2366 } 2367 2368 void CodeGenModule::AddDependentLib(StringRef Lib) { 2369 auto &C = getLLVMContext(); 2370 if (getTarget().getTriple().isOSBinFormatELF()) { 2371 ELFDependentLibraries.push_back( 2372 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2373 return; 2374 } 2375 2376 llvm::SmallString<24> Opt; 2377 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2378 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2379 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2380 } 2381 2382 /// Add link options implied by the given module, including modules 2383 /// it depends on, using a postorder walk. 2384 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2385 SmallVectorImpl<llvm::MDNode *> &Metadata, 2386 llvm::SmallPtrSet<Module *, 16> &Visited) { 2387 // Import this module's parent. 2388 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2389 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2390 } 2391 2392 // Import this module's dependencies. 2393 for (Module *Import : llvm::reverse(Mod->Imports)) { 2394 if (Visited.insert(Import).second) 2395 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2396 } 2397 2398 // Add linker options to link against the libraries/frameworks 2399 // described by this module. 2400 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2401 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2402 2403 // For modules that use export_as for linking, use that module 2404 // name instead. 2405 if (Mod->UseExportAsModuleLinkName) 2406 return; 2407 2408 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2409 // Link against a framework. Frameworks are currently Darwin only, so we 2410 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2411 if (LL.IsFramework) { 2412 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2413 llvm::MDString::get(Context, LL.Library)}; 2414 2415 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2416 continue; 2417 } 2418 2419 // Link against a library. 2420 if (IsELF) { 2421 llvm::Metadata *Args[2] = { 2422 llvm::MDString::get(Context, "lib"), 2423 llvm::MDString::get(Context, LL.Library), 2424 }; 2425 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2426 } else { 2427 llvm::SmallString<24> Opt; 2428 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2429 auto *OptString = llvm::MDString::get(Context, Opt); 2430 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2431 } 2432 } 2433 } 2434 2435 void CodeGenModule::EmitModuleLinkOptions() { 2436 // Collect the set of all of the modules we want to visit to emit link 2437 // options, which is essentially the imported modules and all of their 2438 // non-explicit child modules. 2439 llvm::SetVector<clang::Module *> LinkModules; 2440 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2441 SmallVector<clang::Module *, 16> Stack; 2442 2443 // Seed the stack with imported modules. 2444 for (Module *M : ImportedModules) { 2445 // Do not add any link flags when an implementation TU of a module imports 2446 // a header of that same module. 2447 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2448 !getLangOpts().isCompilingModule()) 2449 continue; 2450 if (Visited.insert(M).second) 2451 Stack.push_back(M); 2452 } 2453 2454 // Find all of the modules to import, making a little effort to prune 2455 // non-leaf modules. 2456 while (!Stack.empty()) { 2457 clang::Module *Mod = Stack.pop_back_val(); 2458 2459 bool AnyChildren = false; 2460 2461 // Visit the submodules of this module. 2462 for (const auto &SM : Mod->submodules()) { 2463 // Skip explicit children; they need to be explicitly imported to be 2464 // linked against. 2465 if (SM->IsExplicit) 2466 continue; 2467 2468 if (Visited.insert(SM).second) { 2469 Stack.push_back(SM); 2470 AnyChildren = true; 2471 } 2472 } 2473 2474 // We didn't find any children, so add this module to the list of 2475 // modules to link against. 2476 if (!AnyChildren) { 2477 LinkModules.insert(Mod); 2478 } 2479 } 2480 2481 // Add link options for all of the imported modules in reverse topological 2482 // order. We don't do anything to try to order import link flags with respect 2483 // to linker options inserted by things like #pragma comment(). 2484 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2485 Visited.clear(); 2486 for (Module *M : LinkModules) 2487 if (Visited.insert(M).second) 2488 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2489 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2490 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2491 2492 // Add the linker options metadata flag. 2493 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2494 for (auto *MD : LinkerOptionsMetadata) 2495 NMD->addOperand(MD); 2496 } 2497 2498 void CodeGenModule::EmitDeferred() { 2499 // Emit deferred declare target declarations. 2500 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2501 getOpenMPRuntime().emitDeferredTargetDecls(); 2502 2503 // Emit code for any potentially referenced deferred decls. Since a 2504 // previously unused static decl may become used during the generation of code 2505 // for a static function, iterate until no changes are made. 2506 2507 if (!DeferredVTables.empty()) { 2508 EmitDeferredVTables(); 2509 2510 // Emitting a vtable doesn't directly cause more vtables to 2511 // become deferred, although it can cause functions to be 2512 // emitted that then need those vtables. 2513 assert(DeferredVTables.empty()); 2514 } 2515 2516 // Emit CUDA/HIP static device variables referenced by host code only. 2517 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2518 // needed for further handling. 2519 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2520 llvm::append_range(DeferredDeclsToEmit, 2521 getContext().CUDADeviceVarODRUsedByHost); 2522 2523 // Stop if we're out of both deferred vtables and deferred declarations. 2524 if (DeferredDeclsToEmit.empty()) 2525 return; 2526 2527 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2528 // work, it will not interfere with this. 2529 std::vector<GlobalDecl> CurDeclsToEmit; 2530 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2531 2532 for (GlobalDecl &D : CurDeclsToEmit) { 2533 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2534 // to get GlobalValue with exactly the type we need, not something that 2535 // might had been created for another decl with the same mangled name but 2536 // different type. 2537 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2538 GetAddrOfGlobal(D, ForDefinition)); 2539 2540 // In case of different address spaces, we may still get a cast, even with 2541 // IsForDefinition equal to true. Query mangled names table to get 2542 // GlobalValue. 2543 if (!GV) 2544 GV = GetGlobalValue(getMangledName(D)); 2545 2546 // Make sure GetGlobalValue returned non-null. 2547 assert(GV); 2548 2549 // Check to see if we've already emitted this. This is necessary 2550 // for a couple of reasons: first, decls can end up in the 2551 // deferred-decls queue multiple times, and second, decls can end 2552 // up with definitions in unusual ways (e.g. by an extern inline 2553 // function acquiring a strong function redefinition). Just 2554 // ignore these cases. 2555 if (!GV->isDeclaration()) 2556 continue; 2557 2558 // If this is OpenMP, check if it is legal to emit this global normally. 2559 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2560 continue; 2561 2562 // Otherwise, emit the definition and move on to the next one. 2563 EmitGlobalDefinition(D, GV); 2564 2565 // If we found out that we need to emit more decls, do that recursively. 2566 // This has the advantage that the decls are emitted in a DFS and related 2567 // ones are close together, which is convenient for testing. 2568 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2569 EmitDeferred(); 2570 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2571 } 2572 } 2573 } 2574 2575 void CodeGenModule::EmitVTablesOpportunistically() { 2576 // Try to emit external vtables as available_externally if they have emitted 2577 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2578 // is not allowed to create new references to things that need to be emitted 2579 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2580 2581 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2582 && "Only emit opportunistic vtables with optimizations"); 2583 2584 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2585 assert(getVTables().isVTableExternal(RD) && 2586 "This queue should only contain external vtables"); 2587 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2588 VTables.GenerateClassData(RD); 2589 } 2590 OpportunisticVTables.clear(); 2591 } 2592 2593 void CodeGenModule::EmitGlobalAnnotations() { 2594 if (Annotations.empty()) 2595 return; 2596 2597 // Create a new global variable for the ConstantStruct in the Module. 2598 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2599 Annotations[0]->getType(), Annotations.size()), Annotations); 2600 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2601 llvm::GlobalValue::AppendingLinkage, 2602 Array, "llvm.global.annotations"); 2603 gv->setSection(AnnotationSection); 2604 } 2605 2606 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2607 llvm::Constant *&AStr = AnnotationStrings[Str]; 2608 if (AStr) 2609 return AStr; 2610 2611 // Not found yet, create a new global. 2612 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2613 auto *gv = 2614 new llvm::GlobalVariable(getModule(), s->getType(), true, 2615 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2616 gv->setSection(AnnotationSection); 2617 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2618 AStr = gv; 2619 return gv; 2620 } 2621 2622 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2623 SourceManager &SM = getContext().getSourceManager(); 2624 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2625 if (PLoc.isValid()) 2626 return EmitAnnotationString(PLoc.getFilename()); 2627 return EmitAnnotationString(SM.getBufferName(Loc)); 2628 } 2629 2630 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2631 SourceManager &SM = getContext().getSourceManager(); 2632 PresumedLoc PLoc = SM.getPresumedLoc(L); 2633 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2634 SM.getExpansionLineNumber(L); 2635 return llvm::ConstantInt::get(Int32Ty, LineNo); 2636 } 2637 2638 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2639 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2640 if (Exprs.empty()) 2641 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2642 2643 llvm::FoldingSetNodeID ID; 2644 for (Expr *E : Exprs) { 2645 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2646 } 2647 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2648 if (Lookup) 2649 return Lookup; 2650 2651 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2652 LLVMArgs.reserve(Exprs.size()); 2653 ConstantEmitter ConstEmiter(*this); 2654 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2655 const auto *CE = cast<clang::ConstantExpr>(E); 2656 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2657 CE->getType()); 2658 }); 2659 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2660 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2661 llvm::GlobalValue::PrivateLinkage, Struct, 2662 ".args"); 2663 GV->setSection(AnnotationSection); 2664 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2665 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2666 2667 Lookup = Bitcasted; 2668 return Bitcasted; 2669 } 2670 2671 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2672 const AnnotateAttr *AA, 2673 SourceLocation L) { 2674 // Get the globals for file name, annotation, and the line number. 2675 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2676 *UnitGV = EmitAnnotationUnit(L), 2677 *LineNoCst = EmitAnnotationLineNo(L), 2678 *Args = EmitAnnotationArgs(AA); 2679 2680 llvm::Constant *GVInGlobalsAS = GV; 2681 if (GV->getAddressSpace() != 2682 getDataLayout().getDefaultGlobalsAddressSpace()) { 2683 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2684 GV, GV->getValueType()->getPointerTo( 2685 getDataLayout().getDefaultGlobalsAddressSpace())); 2686 } 2687 2688 // Create the ConstantStruct for the global annotation. 2689 llvm::Constant *Fields[] = { 2690 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2691 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2692 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2693 LineNoCst, 2694 Args, 2695 }; 2696 return llvm::ConstantStruct::getAnon(Fields); 2697 } 2698 2699 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2700 llvm::GlobalValue *GV) { 2701 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2702 // Get the struct elements for these annotations. 2703 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2704 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2705 } 2706 2707 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2708 SourceLocation Loc) const { 2709 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2710 // NoSanitize by function name. 2711 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2712 return true; 2713 // NoSanitize by location. 2714 if (Loc.isValid()) 2715 return NoSanitizeL.containsLocation(Kind, Loc); 2716 // If location is unknown, this may be a compiler-generated function. Assume 2717 // it's located in the main file. 2718 auto &SM = Context.getSourceManager(); 2719 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2720 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2721 } 2722 return false; 2723 } 2724 2725 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2726 SourceLocation Loc, QualType Ty, 2727 StringRef Category) const { 2728 // For now globals can be ignored only in ASan and KASan. 2729 const SanitizerMask EnabledAsanMask = 2730 LangOpts.Sanitize.Mask & 2731 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2732 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2733 SanitizerKind::MemTag); 2734 if (!EnabledAsanMask) 2735 return false; 2736 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2737 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2738 return true; 2739 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2740 return true; 2741 // Check global type. 2742 if (!Ty.isNull()) { 2743 // Drill down the array types: if global variable of a fixed type is 2744 // not sanitized, we also don't instrument arrays of them. 2745 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2746 Ty = AT->getElementType(); 2747 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2748 // Only record types (classes, structs etc.) are ignored. 2749 if (Ty->isRecordType()) { 2750 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2751 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2752 return true; 2753 } 2754 } 2755 return false; 2756 } 2757 2758 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2759 StringRef Category) const { 2760 const auto &XRayFilter = getContext().getXRayFilter(); 2761 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2762 auto Attr = ImbueAttr::NONE; 2763 if (Loc.isValid()) 2764 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2765 if (Attr == ImbueAttr::NONE) 2766 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2767 switch (Attr) { 2768 case ImbueAttr::NONE: 2769 return false; 2770 case ImbueAttr::ALWAYS: 2771 Fn->addFnAttr("function-instrument", "xray-always"); 2772 break; 2773 case ImbueAttr::ALWAYS_ARG1: 2774 Fn->addFnAttr("function-instrument", "xray-always"); 2775 Fn->addFnAttr("xray-log-args", "1"); 2776 break; 2777 case ImbueAttr::NEVER: 2778 Fn->addFnAttr("function-instrument", "xray-never"); 2779 break; 2780 } 2781 return true; 2782 } 2783 2784 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2785 SourceLocation Loc) const { 2786 const auto &ProfileList = getContext().getProfileList(); 2787 // If the profile list is empty, then instrument everything. 2788 if (ProfileList.isEmpty()) 2789 return false; 2790 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2791 // First, check the function name. 2792 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2793 if (V.hasValue()) 2794 return *V; 2795 // Next, check the source location. 2796 if (Loc.isValid()) { 2797 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2798 if (V.hasValue()) 2799 return *V; 2800 } 2801 // If location is unknown, this may be a compiler-generated function. Assume 2802 // it's located in the main file. 2803 auto &SM = Context.getSourceManager(); 2804 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2805 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2806 if (V.hasValue()) 2807 return *V; 2808 } 2809 return ProfileList.getDefault(); 2810 } 2811 2812 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2813 // Never defer when EmitAllDecls is specified. 2814 if (LangOpts.EmitAllDecls) 2815 return true; 2816 2817 if (CodeGenOpts.KeepStaticConsts) { 2818 const auto *VD = dyn_cast<VarDecl>(Global); 2819 if (VD && VD->getType().isConstQualified() && 2820 VD->getStorageDuration() == SD_Static) 2821 return true; 2822 } 2823 2824 return getContext().DeclMustBeEmitted(Global); 2825 } 2826 2827 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2828 // In OpenMP 5.0 variables and function may be marked as 2829 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2830 // that they must be emitted on the host/device. To be sure we need to have 2831 // seen a declare target with an explicit mentioning of the function, we know 2832 // we have if the level of the declare target attribute is -1. Note that we 2833 // check somewhere else if we should emit this at all. 2834 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2835 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2836 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2837 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2838 return false; 2839 } 2840 2841 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2842 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2843 // Implicit template instantiations may change linkage if they are later 2844 // explicitly instantiated, so they should not be emitted eagerly. 2845 return false; 2846 } 2847 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2848 if (Context.getInlineVariableDefinitionKind(VD) == 2849 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2850 // A definition of an inline constexpr static data member may change 2851 // linkage later if it's redeclared outside the class. 2852 return false; 2853 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2854 // codegen for global variables, because they may be marked as threadprivate. 2855 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2856 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2857 !isTypeConstant(Global->getType(), false) && 2858 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2859 return false; 2860 2861 return true; 2862 } 2863 2864 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2865 StringRef Name = getMangledName(GD); 2866 2867 // The UUID descriptor should be pointer aligned. 2868 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2869 2870 // Look for an existing global. 2871 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2872 return ConstantAddress(GV, GV->getValueType(), Alignment); 2873 2874 ConstantEmitter Emitter(*this); 2875 llvm::Constant *Init; 2876 2877 APValue &V = GD->getAsAPValue(); 2878 if (!V.isAbsent()) { 2879 // If possible, emit the APValue version of the initializer. In particular, 2880 // this gets the type of the constant right. 2881 Init = Emitter.emitForInitializer( 2882 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2883 } else { 2884 // As a fallback, directly construct the constant. 2885 // FIXME: This may get padding wrong under esoteric struct layout rules. 2886 // MSVC appears to create a complete type 'struct __s_GUID' that it 2887 // presumably uses to represent these constants. 2888 MSGuidDecl::Parts Parts = GD->getParts(); 2889 llvm::Constant *Fields[4] = { 2890 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2891 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2892 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2893 llvm::ConstantDataArray::getRaw( 2894 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2895 Int8Ty)}; 2896 Init = llvm::ConstantStruct::getAnon(Fields); 2897 } 2898 2899 auto *GV = new llvm::GlobalVariable( 2900 getModule(), Init->getType(), 2901 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2902 if (supportsCOMDAT()) 2903 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2904 setDSOLocal(GV); 2905 2906 if (!V.isAbsent()) { 2907 Emitter.finalize(GV); 2908 return ConstantAddress(GV, GV->getValueType(), Alignment); 2909 } 2910 2911 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2912 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 2913 GV, Ty->getPointerTo(GV->getAddressSpace())); 2914 return ConstantAddress(Addr, Ty, Alignment); 2915 } 2916 2917 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 2918 const UnnamedGlobalConstantDecl *GCD) { 2919 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 2920 2921 llvm::GlobalVariable **Entry = nullptr; 2922 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 2923 if (*Entry) 2924 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 2925 2926 ConstantEmitter Emitter(*this); 2927 llvm::Constant *Init; 2928 2929 const APValue &V = GCD->getValue(); 2930 2931 assert(!V.isAbsent()); 2932 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 2933 GCD->getType()); 2934 2935 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 2936 /*isConstant=*/true, 2937 llvm::GlobalValue::PrivateLinkage, Init, 2938 ".constant"); 2939 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2940 GV->setAlignment(Alignment.getAsAlign()); 2941 2942 Emitter.finalize(GV); 2943 2944 *Entry = GV; 2945 return ConstantAddress(GV, GV->getValueType(), Alignment); 2946 } 2947 2948 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2949 const TemplateParamObjectDecl *TPO) { 2950 StringRef Name = getMangledName(TPO); 2951 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2952 2953 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2954 return ConstantAddress(GV, GV->getValueType(), Alignment); 2955 2956 ConstantEmitter Emitter(*this); 2957 llvm::Constant *Init = Emitter.emitForInitializer( 2958 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2959 2960 if (!Init) { 2961 ErrorUnsupported(TPO, "template parameter object"); 2962 return ConstantAddress::invalid(); 2963 } 2964 2965 auto *GV = new llvm::GlobalVariable( 2966 getModule(), Init->getType(), 2967 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2968 if (supportsCOMDAT()) 2969 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2970 Emitter.finalize(GV); 2971 2972 return ConstantAddress(GV, GV->getValueType(), Alignment); 2973 } 2974 2975 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2976 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2977 assert(AA && "No alias?"); 2978 2979 CharUnits Alignment = getContext().getDeclAlign(VD); 2980 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2981 2982 // See if there is already something with the target's name in the module. 2983 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2984 if (Entry) { 2985 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2986 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2987 return ConstantAddress(Ptr, DeclTy, Alignment); 2988 } 2989 2990 llvm::Constant *Aliasee; 2991 if (isa<llvm::FunctionType>(DeclTy)) 2992 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2993 GlobalDecl(cast<FunctionDecl>(VD)), 2994 /*ForVTable=*/false); 2995 else 2996 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 2997 nullptr); 2998 2999 auto *F = cast<llvm::GlobalValue>(Aliasee); 3000 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3001 WeakRefReferences.insert(F); 3002 3003 return ConstantAddress(Aliasee, DeclTy, Alignment); 3004 } 3005 3006 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3007 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3008 3009 // Weak references don't produce any output by themselves. 3010 if (Global->hasAttr<WeakRefAttr>()) 3011 return; 3012 3013 // If this is an alias definition (which otherwise looks like a declaration) 3014 // emit it now. 3015 if (Global->hasAttr<AliasAttr>()) 3016 return EmitAliasDefinition(GD); 3017 3018 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3019 if (Global->hasAttr<IFuncAttr>()) 3020 return emitIFuncDefinition(GD); 3021 3022 // If this is a cpu_dispatch multiversion function, emit the resolver. 3023 if (Global->hasAttr<CPUDispatchAttr>()) 3024 return emitCPUDispatchDefinition(GD); 3025 3026 // If this is CUDA, be selective about which declarations we emit. 3027 if (LangOpts.CUDA) { 3028 if (LangOpts.CUDAIsDevice) { 3029 if (!Global->hasAttr<CUDADeviceAttr>() && 3030 !Global->hasAttr<CUDAGlobalAttr>() && 3031 !Global->hasAttr<CUDAConstantAttr>() && 3032 !Global->hasAttr<CUDASharedAttr>() && 3033 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3034 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3035 return; 3036 } else { 3037 // We need to emit host-side 'shadows' for all global 3038 // device-side variables because the CUDA runtime needs their 3039 // size and host-side address in order to provide access to 3040 // their device-side incarnations. 3041 3042 // So device-only functions are the only things we skip. 3043 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3044 Global->hasAttr<CUDADeviceAttr>()) 3045 return; 3046 3047 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3048 "Expected Variable or Function"); 3049 } 3050 } 3051 3052 if (LangOpts.OpenMP) { 3053 // If this is OpenMP, check if it is legal to emit this global normally. 3054 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3055 return; 3056 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3057 if (MustBeEmitted(Global)) 3058 EmitOMPDeclareReduction(DRD); 3059 return; 3060 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3061 if (MustBeEmitted(Global)) 3062 EmitOMPDeclareMapper(DMD); 3063 return; 3064 } 3065 } 3066 3067 // Ignore declarations, they will be emitted on their first use. 3068 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3069 // Forward declarations are emitted lazily on first use. 3070 if (!FD->doesThisDeclarationHaveABody()) { 3071 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3072 return; 3073 3074 StringRef MangledName = getMangledName(GD); 3075 3076 // Compute the function info and LLVM type. 3077 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3078 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3079 3080 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3081 /*DontDefer=*/false); 3082 return; 3083 } 3084 } else { 3085 const auto *VD = cast<VarDecl>(Global); 3086 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3087 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3088 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3089 if (LangOpts.OpenMP) { 3090 // Emit declaration of the must-be-emitted declare target variable. 3091 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3092 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3093 bool UnifiedMemoryEnabled = 3094 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3095 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3096 !UnifiedMemoryEnabled) { 3097 (void)GetAddrOfGlobalVar(VD); 3098 } else { 3099 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3100 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3101 UnifiedMemoryEnabled)) && 3102 "Link clause or to clause with unified memory expected."); 3103 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3104 } 3105 3106 return; 3107 } 3108 } 3109 // If this declaration may have caused an inline variable definition to 3110 // change linkage, make sure that it's emitted. 3111 if (Context.getInlineVariableDefinitionKind(VD) == 3112 ASTContext::InlineVariableDefinitionKind::Strong) 3113 GetAddrOfGlobalVar(VD); 3114 return; 3115 } 3116 } 3117 3118 // Defer code generation to first use when possible, e.g. if this is an inline 3119 // function. If the global must always be emitted, do it eagerly if possible 3120 // to benefit from cache locality. 3121 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3122 // Emit the definition if it can't be deferred. 3123 EmitGlobalDefinition(GD); 3124 return; 3125 } 3126 3127 // If we're deferring emission of a C++ variable with an 3128 // initializer, remember the order in which it appeared in the file. 3129 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3130 cast<VarDecl>(Global)->hasInit()) { 3131 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3132 CXXGlobalInits.push_back(nullptr); 3133 } 3134 3135 StringRef MangledName = getMangledName(GD); 3136 if (GetGlobalValue(MangledName) != nullptr) { 3137 // The value has already been used and should therefore be emitted. 3138 addDeferredDeclToEmit(GD); 3139 } else if (MustBeEmitted(Global)) { 3140 // The value must be emitted, but cannot be emitted eagerly. 3141 assert(!MayBeEmittedEagerly(Global)); 3142 addDeferredDeclToEmit(GD); 3143 } else { 3144 // Otherwise, remember that we saw a deferred decl with this name. The 3145 // first use of the mangled name will cause it to move into 3146 // DeferredDeclsToEmit. 3147 DeferredDecls[MangledName] = GD; 3148 } 3149 } 3150 3151 // Check if T is a class type with a destructor that's not dllimport. 3152 static bool HasNonDllImportDtor(QualType T) { 3153 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3154 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3155 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3156 return true; 3157 3158 return false; 3159 } 3160 3161 namespace { 3162 struct FunctionIsDirectlyRecursive 3163 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3164 const StringRef Name; 3165 const Builtin::Context &BI; 3166 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3167 : Name(N), BI(C) {} 3168 3169 bool VisitCallExpr(const CallExpr *E) { 3170 const FunctionDecl *FD = E->getDirectCallee(); 3171 if (!FD) 3172 return false; 3173 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3174 if (Attr && Name == Attr->getLabel()) 3175 return true; 3176 unsigned BuiltinID = FD->getBuiltinID(); 3177 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3178 return false; 3179 StringRef BuiltinName = BI.getName(BuiltinID); 3180 if (BuiltinName.startswith("__builtin_") && 3181 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3182 return true; 3183 } 3184 return false; 3185 } 3186 3187 bool VisitStmt(const Stmt *S) { 3188 for (const Stmt *Child : S->children()) 3189 if (Child && this->Visit(Child)) 3190 return true; 3191 return false; 3192 } 3193 }; 3194 3195 // Make sure we're not referencing non-imported vars or functions. 3196 struct DLLImportFunctionVisitor 3197 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3198 bool SafeToInline = true; 3199 3200 bool shouldVisitImplicitCode() const { return true; } 3201 3202 bool VisitVarDecl(VarDecl *VD) { 3203 if (VD->getTLSKind()) { 3204 // A thread-local variable cannot be imported. 3205 SafeToInline = false; 3206 return SafeToInline; 3207 } 3208 3209 // A variable definition might imply a destructor call. 3210 if (VD->isThisDeclarationADefinition()) 3211 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3212 3213 return SafeToInline; 3214 } 3215 3216 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3217 if (const auto *D = E->getTemporary()->getDestructor()) 3218 SafeToInline = D->hasAttr<DLLImportAttr>(); 3219 return SafeToInline; 3220 } 3221 3222 bool VisitDeclRefExpr(DeclRefExpr *E) { 3223 ValueDecl *VD = E->getDecl(); 3224 if (isa<FunctionDecl>(VD)) 3225 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3226 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3227 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3228 return SafeToInline; 3229 } 3230 3231 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3232 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3233 return SafeToInline; 3234 } 3235 3236 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3237 CXXMethodDecl *M = E->getMethodDecl(); 3238 if (!M) { 3239 // Call through a pointer to member function. This is safe to inline. 3240 SafeToInline = true; 3241 } else { 3242 SafeToInline = M->hasAttr<DLLImportAttr>(); 3243 } 3244 return SafeToInline; 3245 } 3246 3247 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3248 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3249 return SafeToInline; 3250 } 3251 3252 bool VisitCXXNewExpr(CXXNewExpr *E) { 3253 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3254 return SafeToInline; 3255 } 3256 }; 3257 } 3258 3259 // isTriviallyRecursive - Check if this function calls another 3260 // decl that, because of the asm attribute or the other decl being a builtin, 3261 // ends up pointing to itself. 3262 bool 3263 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3264 StringRef Name; 3265 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3266 // asm labels are a special kind of mangling we have to support. 3267 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3268 if (!Attr) 3269 return false; 3270 Name = Attr->getLabel(); 3271 } else { 3272 Name = FD->getName(); 3273 } 3274 3275 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3276 const Stmt *Body = FD->getBody(); 3277 return Body ? Walker.Visit(Body) : false; 3278 } 3279 3280 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3281 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3282 return true; 3283 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3284 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3285 return false; 3286 3287 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3288 // Check whether it would be safe to inline this dllimport function. 3289 DLLImportFunctionVisitor Visitor; 3290 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3291 if (!Visitor.SafeToInline) 3292 return false; 3293 3294 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3295 // Implicit destructor invocations aren't captured in the AST, so the 3296 // check above can't see them. Check for them manually here. 3297 for (const Decl *Member : Dtor->getParent()->decls()) 3298 if (isa<FieldDecl>(Member)) 3299 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3300 return false; 3301 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3302 if (HasNonDllImportDtor(B.getType())) 3303 return false; 3304 } 3305 } 3306 3307 // Inline builtins declaration must be emitted. They often are fortified 3308 // functions. 3309 if (F->isInlineBuiltinDeclaration()) 3310 return true; 3311 3312 // PR9614. Avoid cases where the source code is lying to us. An available 3313 // externally function should have an equivalent function somewhere else, 3314 // but a function that calls itself through asm label/`__builtin_` trickery is 3315 // clearly not equivalent to the real implementation. 3316 // This happens in glibc's btowc and in some configure checks. 3317 return !isTriviallyRecursive(F); 3318 } 3319 3320 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3321 return CodeGenOpts.OptimizationLevel > 0; 3322 } 3323 3324 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3325 llvm::GlobalValue *GV) { 3326 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3327 3328 if (FD->isCPUSpecificMultiVersion()) { 3329 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3330 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3331 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3332 } else if (FD->isTargetClonesMultiVersion()) { 3333 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3334 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3335 if (Clone->isFirstOfVersion(I)) 3336 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3337 // Ensure that the resolver function is also emitted. 3338 GetOrCreateMultiVersionResolver(GD); 3339 } else 3340 EmitGlobalFunctionDefinition(GD, GV); 3341 } 3342 3343 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3344 const auto *D = cast<ValueDecl>(GD.getDecl()); 3345 3346 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3347 Context.getSourceManager(), 3348 "Generating code for declaration"); 3349 3350 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3351 // At -O0, don't generate IR for functions with available_externally 3352 // linkage. 3353 if (!shouldEmitFunction(GD)) 3354 return; 3355 3356 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3357 std::string Name; 3358 llvm::raw_string_ostream OS(Name); 3359 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3360 /*Qualified=*/true); 3361 return Name; 3362 }); 3363 3364 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3365 // Make sure to emit the definition(s) before we emit the thunks. 3366 // This is necessary for the generation of certain thunks. 3367 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3368 ABI->emitCXXStructor(GD); 3369 else if (FD->isMultiVersion()) 3370 EmitMultiVersionFunctionDefinition(GD, GV); 3371 else 3372 EmitGlobalFunctionDefinition(GD, GV); 3373 3374 if (Method->isVirtual()) 3375 getVTables().EmitThunks(GD); 3376 3377 return; 3378 } 3379 3380 if (FD->isMultiVersion()) 3381 return EmitMultiVersionFunctionDefinition(GD, GV); 3382 return EmitGlobalFunctionDefinition(GD, GV); 3383 } 3384 3385 if (const auto *VD = dyn_cast<VarDecl>(D)) 3386 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3387 3388 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3389 } 3390 3391 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3392 llvm::Function *NewFn); 3393 3394 static unsigned 3395 TargetMVPriority(const TargetInfo &TI, 3396 const CodeGenFunction::MultiVersionResolverOption &RO) { 3397 unsigned Priority = 0; 3398 for (StringRef Feat : RO.Conditions.Features) 3399 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3400 3401 if (!RO.Conditions.Architecture.empty()) 3402 Priority = std::max( 3403 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3404 return Priority; 3405 } 3406 3407 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3408 // TU can forward declare the function without causing problems. Particularly 3409 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3410 // work with internal linkage functions, so that the same function name can be 3411 // used with internal linkage in multiple TUs. 3412 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3413 GlobalDecl GD) { 3414 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3415 if (FD->getFormalLinkage() == InternalLinkage) 3416 return llvm::GlobalValue::InternalLinkage; 3417 return llvm::GlobalValue::WeakODRLinkage; 3418 } 3419 3420 void CodeGenModule::emitMultiVersionFunctions() { 3421 std::vector<GlobalDecl> MVFuncsToEmit; 3422 MultiVersionFuncs.swap(MVFuncsToEmit); 3423 for (GlobalDecl GD : MVFuncsToEmit) { 3424 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3425 assert(FD && "Expected a FunctionDecl"); 3426 3427 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3428 if (FD->isTargetMultiVersion()) { 3429 getContext().forEachMultiversionedFunctionVersion( 3430 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3431 GlobalDecl CurGD{ 3432 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3433 StringRef MangledName = getMangledName(CurGD); 3434 llvm::Constant *Func = GetGlobalValue(MangledName); 3435 if (!Func) { 3436 if (CurFD->isDefined()) { 3437 EmitGlobalFunctionDefinition(CurGD, nullptr); 3438 Func = GetGlobalValue(MangledName); 3439 } else { 3440 const CGFunctionInfo &FI = 3441 getTypes().arrangeGlobalDeclaration(GD); 3442 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3443 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3444 /*DontDefer=*/false, ForDefinition); 3445 } 3446 assert(Func && "This should have just been created"); 3447 } 3448 3449 const auto *TA = CurFD->getAttr<TargetAttr>(); 3450 llvm::SmallVector<StringRef, 8> Feats; 3451 TA->getAddedFeatures(Feats); 3452 3453 Options.emplace_back(cast<llvm::Function>(Func), 3454 TA->getArchitecture(), Feats); 3455 }); 3456 } else if (FD->isTargetClonesMultiVersion()) { 3457 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3458 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3459 ++VersionIndex) { 3460 if (!TC->isFirstOfVersion(VersionIndex)) 3461 continue; 3462 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3463 VersionIndex}; 3464 StringRef Version = TC->getFeatureStr(VersionIndex); 3465 StringRef MangledName = getMangledName(CurGD); 3466 llvm::Constant *Func = GetGlobalValue(MangledName); 3467 if (!Func) { 3468 if (FD->isDefined()) { 3469 EmitGlobalFunctionDefinition(CurGD, nullptr); 3470 Func = GetGlobalValue(MangledName); 3471 } else { 3472 const CGFunctionInfo &FI = 3473 getTypes().arrangeGlobalDeclaration(CurGD); 3474 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3475 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3476 /*DontDefer=*/false, ForDefinition); 3477 } 3478 assert(Func && "This should have just been created"); 3479 } 3480 3481 StringRef Architecture; 3482 llvm::SmallVector<StringRef, 1> Feature; 3483 3484 if (Version.startswith("arch=")) 3485 Architecture = Version.drop_front(sizeof("arch=") - 1); 3486 else if (Version != "default") 3487 Feature.push_back(Version); 3488 3489 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3490 } 3491 } else { 3492 assert(0 && "Expected a target or target_clones multiversion function"); 3493 continue; 3494 } 3495 3496 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3497 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3498 ResolverConstant = IFunc->getResolver(); 3499 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3500 3501 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3502 3503 if (supportsCOMDAT()) 3504 ResolverFunc->setComdat( 3505 getModule().getOrInsertComdat(ResolverFunc->getName())); 3506 3507 const TargetInfo &TI = getTarget(); 3508 llvm::stable_sort( 3509 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3510 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3511 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3512 }); 3513 CodeGenFunction CGF(*this); 3514 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3515 } 3516 3517 // Ensure that any additions to the deferred decls list caused by emitting a 3518 // variant are emitted. This can happen when the variant itself is inline and 3519 // calls a function without linkage. 3520 if (!MVFuncsToEmit.empty()) 3521 EmitDeferred(); 3522 3523 // Ensure that any additions to the multiversion funcs list from either the 3524 // deferred decls or the multiversion functions themselves are emitted. 3525 if (!MultiVersionFuncs.empty()) 3526 emitMultiVersionFunctions(); 3527 } 3528 3529 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3530 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3531 assert(FD && "Not a FunctionDecl?"); 3532 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3533 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3534 assert(DD && "Not a cpu_dispatch Function?"); 3535 3536 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3537 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3538 3539 StringRef ResolverName = getMangledName(GD); 3540 UpdateMultiVersionNames(GD, FD, ResolverName); 3541 3542 llvm::Type *ResolverType; 3543 GlobalDecl ResolverGD; 3544 if (getTarget().supportsIFunc()) { 3545 ResolverType = llvm::FunctionType::get( 3546 llvm::PointerType::get(DeclTy, 3547 Context.getTargetAddressSpace(FD->getType())), 3548 false); 3549 } 3550 else { 3551 ResolverType = DeclTy; 3552 ResolverGD = GD; 3553 } 3554 3555 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3556 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3557 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3558 if (supportsCOMDAT()) 3559 ResolverFunc->setComdat( 3560 getModule().getOrInsertComdat(ResolverFunc->getName())); 3561 3562 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3563 const TargetInfo &Target = getTarget(); 3564 unsigned Index = 0; 3565 for (const IdentifierInfo *II : DD->cpus()) { 3566 // Get the name of the target function so we can look it up/create it. 3567 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3568 getCPUSpecificMangling(*this, II->getName()); 3569 3570 llvm::Constant *Func = GetGlobalValue(MangledName); 3571 3572 if (!Func) { 3573 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3574 if (ExistingDecl.getDecl() && 3575 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3576 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3577 Func = GetGlobalValue(MangledName); 3578 } else { 3579 if (!ExistingDecl.getDecl()) 3580 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3581 3582 Func = GetOrCreateLLVMFunction( 3583 MangledName, DeclTy, ExistingDecl, 3584 /*ForVTable=*/false, /*DontDefer=*/true, 3585 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3586 } 3587 } 3588 3589 llvm::SmallVector<StringRef, 32> Features; 3590 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3591 llvm::transform(Features, Features.begin(), 3592 [](StringRef Str) { return Str.substr(1); }); 3593 llvm::erase_if(Features, [&Target](StringRef Feat) { 3594 return !Target.validateCpuSupports(Feat); 3595 }); 3596 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3597 ++Index; 3598 } 3599 3600 llvm::stable_sort( 3601 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3602 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3603 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3604 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3605 }); 3606 3607 // If the list contains multiple 'default' versions, such as when it contains 3608 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3609 // always run on at least a 'pentium'). We do this by deleting the 'least 3610 // advanced' (read, lowest mangling letter). 3611 while (Options.size() > 1 && 3612 llvm::X86::getCpuSupportsMask( 3613 (Options.end() - 2)->Conditions.Features) == 0) { 3614 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3615 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3616 if (LHSName.compare(RHSName) < 0) 3617 Options.erase(Options.end() - 2); 3618 else 3619 Options.erase(Options.end() - 1); 3620 } 3621 3622 CodeGenFunction CGF(*this); 3623 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3624 3625 if (getTarget().supportsIFunc()) { 3626 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3627 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3628 3629 // Fix up function declarations that were created for cpu_specific before 3630 // cpu_dispatch was known 3631 if (!dyn_cast<llvm::GlobalIFunc>(IFunc)) { 3632 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3633 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3634 &getModule()); 3635 GI->takeName(IFunc); 3636 IFunc->replaceAllUsesWith(GI); 3637 IFunc->eraseFromParent(); 3638 IFunc = GI; 3639 } 3640 3641 std::string AliasName = getMangledNameImpl( 3642 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3643 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3644 if (!AliasFunc) { 3645 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3646 &getModule()); 3647 SetCommonAttributes(GD, GA); 3648 } 3649 } 3650 } 3651 3652 /// If a dispatcher for the specified mangled name is not in the module, create 3653 /// and return an llvm Function with the specified type. 3654 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3655 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3656 assert(FD && "Not a FunctionDecl?"); 3657 3658 std::string MangledName = 3659 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3660 3661 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3662 // a separate resolver). 3663 std::string ResolverName = MangledName; 3664 if (getTarget().supportsIFunc()) 3665 ResolverName += ".ifunc"; 3666 else if (FD->isTargetMultiVersion()) 3667 ResolverName += ".resolver"; 3668 3669 // If the resolver has already been created, just return it. 3670 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3671 return ResolverGV; 3672 3673 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3674 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3675 3676 // The resolver needs to be created. For target and target_clones, defer 3677 // creation until the end of the TU. 3678 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3679 MultiVersionFuncs.push_back(GD); 3680 3681 // For cpu_specific, don't create an ifunc yet because we don't know if the 3682 // cpu_dispatch will be emitted in this translation unit. 3683 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3684 llvm::Type *ResolverType = llvm::FunctionType::get( 3685 llvm::PointerType::get( 3686 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3687 false); 3688 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3689 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3690 /*ForVTable=*/false); 3691 llvm::GlobalIFunc *GIF = 3692 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3693 "", Resolver, &getModule()); 3694 GIF->setName(ResolverName); 3695 SetCommonAttributes(FD, GIF); 3696 3697 return GIF; 3698 } 3699 3700 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3701 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3702 assert(isa<llvm::GlobalValue>(Resolver) && 3703 "Resolver should be created for the first time"); 3704 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3705 return Resolver; 3706 } 3707 3708 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3709 /// module, create and return an llvm Function with the specified type. If there 3710 /// is something in the module with the specified name, return it potentially 3711 /// bitcasted to the right type. 3712 /// 3713 /// If D is non-null, it specifies a decl that correspond to this. This is used 3714 /// to set the attributes on the function when it is first created. 3715 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3716 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3717 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3718 ForDefinition_t IsForDefinition) { 3719 const Decl *D = GD.getDecl(); 3720 3721 // Any attempts to use a MultiVersion function should result in retrieving 3722 // the iFunc instead. Name Mangling will handle the rest of the changes. 3723 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3724 // For the device mark the function as one that should be emitted. 3725 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3726 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3727 !DontDefer && !IsForDefinition) { 3728 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3729 GlobalDecl GDDef; 3730 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3731 GDDef = GlobalDecl(CD, GD.getCtorType()); 3732 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3733 GDDef = GlobalDecl(DD, GD.getDtorType()); 3734 else 3735 GDDef = GlobalDecl(FDDef); 3736 EmitGlobal(GDDef); 3737 } 3738 } 3739 3740 if (FD->isMultiVersion()) { 3741 UpdateMultiVersionNames(GD, FD, MangledName); 3742 if (!IsForDefinition) 3743 return GetOrCreateMultiVersionResolver(GD); 3744 } 3745 } 3746 3747 // Lookup the entry, lazily creating it if necessary. 3748 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3749 if (Entry) { 3750 if (WeakRefReferences.erase(Entry)) { 3751 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3752 if (FD && !FD->hasAttr<WeakAttr>()) 3753 Entry->setLinkage(llvm::Function::ExternalLinkage); 3754 } 3755 3756 // Handle dropped DLL attributes. 3757 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3758 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3759 setDSOLocal(Entry); 3760 } 3761 3762 // If there are two attempts to define the same mangled name, issue an 3763 // error. 3764 if (IsForDefinition && !Entry->isDeclaration()) { 3765 GlobalDecl OtherGD; 3766 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3767 // to make sure that we issue an error only once. 3768 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3769 (GD.getCanonicalDecl().getDecl() != 3770 OtherGD.getCanonicalDecl().getDecl()) && 3771 DiagnosedConflictingDefinitions.insert(GD).second) { 3772 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3773 << MangledName; 3774 getDiags().Report(OtherGD.getDecl()->getLocation(), 3775 diag::note_previous_definition); 3776 } 3777 } 3778 3779 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3780 (Entry->getValueType() == Ty)) { 3781 return Entry; 3782 } 3783 3784 // Make sure the result is of the correct type. 3785 // (If function is requested for a definition, we always need to create a new 3786 // function, not just return a bitcast.) 3787 if (!IsForDefinition) 3788 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3789 } 3790 3791 // This function doesn't have a complete type (for example, the return 3792 // type is an incomplete struct). Use a fake type instead, and make 3793 // sure not to try to set attributes. 3794 bool IsIncompleteFunction = false; 3795 3796 llvm::FunctionType *FTy; 3797 if (isa<llvm::FunctionType>(Ty)) { 3798 FTy = cast<llvm::FunctionType>(Ty); 3799 } else { 3800 FTy = llvm::FunctionType::get(VoidTy, false); 3801 IsIncompleteFunction = true; 3802 } 3803 3804 llvm::Function *F = 3805 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3806 Entry ? StringRef() : MangledName, &getModule()); 3807 3808 // If we already created a function with the same mangled name (but different 3809 // type) before, take its name and add it to the list of functions to be 3810 // replaced with F at the end of CodeGen. 3811 // 3812 // This happens if there is a prototype for a function (e.g. "int f()") and 3813 // then a definition of a different type (e.g. "int f(int x)"). 3814 if (Entry) { 3815 F->takeName(Entry); 3816 3817 // This might be an implementation of a function without a prototype, in 3818 // which case, try to do special replacement of calls which match the new 3819 // prototype. The really key thing here is that we also potentially drop 3820 // arguments from the call site so as to make a direct call, which makes the 3821 // inliner happier and suppresses a number of optimizer warnings (!) about 3822 // dropping arguments. 3823 if (!Entry->use_empty()) { 3824 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3825 Entry->removeDeadConstantUsers(); 3826 } 3827 3828 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3829 F, Entry->getValueType()->getPointerTo()); 3830 addGlobalValReplacement(Entry, BC); 3831 } 3832 3833 assert(F->getName() == MangledName && "name was uniqued!"); 3834 if (D) 3835 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3836 if (ExtraAttrs.hasFnAttrs()) { 3837 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 3838 F->addFnAttrs(B); 3839 } 3840 3841 if (!DontDefer) { 3842 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3843 // each other bottoming out with the base dtor. Therefore we emit non-base 3844 // dtors on usage, even if there is no dtor definition in the TU. 3845 if (D && isa<CXXDestructorDecl>(D) && 3846 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3847 GD.getDtorType())) 3848 addDeferredDeclToEmit(GD); 3849 3850 // This is the first use or definition of a mangled name. If there is a 3851 // deferred decl with this name, remember that we need to emit it at the end 3852 // of the file. 3853 auto DDI = DeferredDecls.find(MangledName); 3854 if (DDI != DeferredDecls.end()) { 3855 // Move the potentially referenced deferred decl to the 3856 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3857 // don't need it anymore). 3858 addDeferredDeclToEmit(DDI->second); 3859 DeferredDecls.erase(DDI); 3860 3861 // Otherwise, there are cases we have to worry about where we're 3862 // using a declaration for which we must emit a definition but where 3863 // we might not find a top-level definition: 3864 // - member functions defined inline in their classes 3865 // - friend functions defined inline in some class 3866 // - special member functions with implicit definitions 3867 // If we ever change our AST traversal to walk into class methods, 3868 // this will be unnecessary. 3869 // 3870 // We also don't emit a definition for a function if it's going to be an 3871 // entry in a vtable, unless it's already marked as used. 3872 } else if (getLangOpts().CPlusPlus && D) { 3873 // Look for a declaration that's lexically in a record. 3874 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3875 FD = FD->getPreviousDecl()) { 3876 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3877 if (FD->doesThisDeclarationHaveABody()) { 3878 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3879 break; 3880 } 3881 } 3882 } 3883 } 3884 } 3885 3886 // Make sure the result is of the requested type. 3887 if (!IsIncompleteFunction) { 3888 assert(F->getFunctionType() == Ty); 3889 return F; 3890 } 3891 3892 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3893 return llvm::ConstantExpr::getBitCast(F, PTy); 3894 } 3895 3896 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3897 /// non-null, then this function will use the specified type if it has to 3898 /// create it (this occurs when we see a definition of the function). 3899 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3900 llvm::Type *Ty, 3901 bool ForVTable, 3902 bool DontDefer, 3903 ForDefinition_t IsForDefinition) { 3904 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3905 "consteval function should never be emitted"); 3906 // If there was no specific requested type, just convert it now. 3907 if (!Ty) { 3908 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3909 Ty = getTypes().ConvertType(FD->getType()); 3910 } 3911 3912 // Devirtualized destructor calls may come through here instead of via 3913 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3914 // of the complete destructor when necessary. 3915 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3916 if (getTarget().getCXXABI().isMicrosoft() && 3917 GD.getDtorType() == Dtor_Complete && 3918 DD->getParent()->getNumVBases() == 0) 3919 GD = GlobalDecl(DD, Dtor_Base); 3920 } 3921 3922 StringRef MangledName = getMangledName(GD); 3923 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3924 /*IsThunk=*/false, llvm::AttributeList(), 3925 IsForDefinition); 3926 // Returns kernel handle for HIP kernel stub function. 3927 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3928 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3929 auto *Handle = getCUDARuntime().getKernelHandle( 3930 cast<llvm::Function>(F->stripPointerCasts()), GD); 3931 if (IsForDefinition) 3932 return F; 3933 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3934 } 3935 return F; 3936 } 3937 3938 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 3939 llvm::GlobalValue *F = 3940 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 3941 3942 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 3943 llvm::Type::getInt8PtrTy(VMContext)); 3944 } 3945 3946 static const FunctionDecl * 3947 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3948 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3949 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3950 3951 IdentifierInfo &CII = C.Idents.get(Name); 3952 for (const auto *Result : DC->lookup(&CII)) 3953 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3954 return FD; 3955 3956 if (!C.getLangOpts().CPlusPlus) 3957 return nullptr; 3958 3959 // Demangle the premangled name from getTerminateFn() 3960 IdentifierInfo &CXXII = 3961 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3962 ? C.Idents.get("terminate") 3963 : C.Idents.get(Name); 3964 3965 for (const auto &N : {"__cxxabiv1", "std"}) { 3966 IdentifierInfo &NS = C.Idents.get(N); 3967 for (const auto *Result : DC->lookup(&NS)) { 3968 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3969 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 3970 for (const auto *Result : LSD->lookup(&NS)) 3971 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3972 break; 3973 3974 if (ND) 3975 for (const auto *Result : ND->lookup(&CXXII)) 3976 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3977 return FD; 3978 } 3979 } 3980 3981 return nullptr; 3982 } 3983 3984 /// CreateRuntimeFunction - Create a new runtime function with the specified 3985 /// type and name. 3986 llvm::FunctionCallee 3987 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3988 llvm::AttributeList ExtraAttrs, bool Local, 3989 bool AssumeConvergent) { 3990 if (AssumeConvergent) { 3991 ExtraAttrs = 3992 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 3993 } 3994 3995 llvm::Constant *C = 3996 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3997 /*DontDefer=*/false, /*IsThunk=*/false, 3998 ExtraAttrs); 3999 4000 if (auto *F = dyn_cast<llvm::Function>(C)) { 4001 if (F->empty()) { 4002 F->setCallingConv(getRuntimeCC()); 4003 4004 // In Windows Itanium environments, try to mark runtime functions 4005 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4006 // will link their standard library statically or dynamically. Marking 4007 // functions imported when they are not imported can cause linker errors 4008 // and warnings. 4009 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4010 !getCodeGenOpts().LTOVisibilityPublicStd) { 4011 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4012 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4013 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4014 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4015 } 4016 } 4017 setDSOLocal(F); 4018 } 4019 } 4020 4021 return {FTy, C}; 4022 } 4023 4024 /// isTypeConstant - Determine whether an object of this type can be emitted 4025 /// as a constant. 4026 /// 4027 /// If ExcludeCtor is true, the duration when the object's constructor runs 4028 /// will not be considered. The caller will need to verify that the object is 4029 /// not written to during its construction. 4030 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4031 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4032 return false; 4033 4034 if (Context.getLangOpts().CPlusPlus) { 4035 if (const CXXRecordDecl *Record 4036 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4037 return ExcludeCtor && !Record->hasMutableFields() && 4038 Record->hasTrivialDestructor(); 4039 } 4040 4041 return true; 4042 } 4043 4044 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4045 /// create and return an llvm GlobalVariable with the specified type and address 4046 /// space. If there is something in the module with the specified name, return 4047 /// it potentially bitcasted to the right type. 4048 /// 4049 /// If D is non-null, it specifies a decl that correspond to this. This is used 4050 /// to set the attributes on the global when it is first created. 4051 /// 4052 /// If IsForDefinition is true, it is guaranteed that an actual global with 4053 /// type Ty will be returned, not conversion of a variable with the same 4054 /// mangled name but some other type. 4055 llvm::Constant * 4056 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4057 LangAS AddrSpace, const VarDecl *D, 4058 ForDefinition_t IsForDefinition) { 4059 // Lookup the entry, lazily creating it if necessary. 4060 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4061 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4062 if (Entry) { 4063 if (WeakRefReferences.erase(Entry)) { 4064 if (D && !D->hasAttr<WeakAttr>()) 4065 Entry->setLinkage(llvm::Function::ExternalLinkage); 4066 } 4067 4068 // Handle dropped DLL attributes. 4069 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 4070 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4071 4072 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4073 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4074 4075 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4076 return Entry; 4077 4078 // If there are two attempts to define the same mangled name, issue an 4079 // error. 4080 if (IsForDefinition && !Entry->isDeclaration()) { 4081 GlobalDecl OtherGD; 4082 const VarDecl *OtherD; 4083 4084 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4085 // to make sure that we issue an error only once. 4086 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4087 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4088 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4089 OtherD->hasInit() && 4090 DiagnosedConflictingDefinitions.insert(D).second) { 4091 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4092 << MangledName; 4093 getDiags().Report(OtherGD.getDecl()->getLocation(), 4094 diag::note_previous_definition); 4095 } 4096 } 4097 4098 // Make sure the result is of the correct type. 4099 if (Entry->getType()->getAddressSpace() != TargetAS) { 4100 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4101 Ty->getPointerTo(TargetAS)); 4102 } 4103 4104 // (If global is requested for a definition, we always need to create a new 4105 // global, not just return a bitcast.) 4106 if (!IsForDefinition) 4107 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4108 } 4109 4110 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4111 4112 auto *GV = new llvm::GlobalVariable( 4113 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4114 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4115 getContext().getTargetAddressSpace(DAddrSpace)); 4116 4117 // If we already created a global with the same mangled name (but different 4118 // type) before, take its name and remove it from its parent. 4119 if (Entry) { 4120 GV->takeName(Entry); 4121 4122 if (!Entry->use_empty()) { 4123 llvm::Constant *NewPtrForOldDecl = 4124 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4125 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4126 } 4127 4128 Entry->eraseFromParent(); 4129 } 4130 4131 // This is the first use or definition of a mangled name. If there is a 4132 // deferred decl with this name, remember that we need to emit it at the end 4133 // of the file. 4134 auto DDI = DeferredDecls.find(MangledName); 4135 if (DDI != DeferredDecls.end()) { 4136 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4137 // list, and remove it from DeferredDecls (since we don't need it anymore). 4138 addDeferredDeclToEmit(DDI->second); 4139 DeferredDecls.erase(DDI); 4140 } 4141 4142 // Handle things which are present even on external declarations. 4143 if (D) { 4144 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4145 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4146 4147 // FIXME: This code is overly simple and should be merged with other global 4148 // handling. 4149 GV->setConstant(isTypeConstant(D->getType(), false)); 4150 4151 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4152 4153 setLinkageForGV(GV, D); 4154 4155 if (D->getTLSKind()) { 4156 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4157 CXXThreadLocals.push_back(D); 4158 setTLSMode(GV, *D); 4159 } 4160 4161 setGVProperties(GV, D); 4162 4163 // If required by the ABI, treat declarations of static data members with 4164 // inline initializers as definitions. 4165 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4166 EmitGlobalVarDefinition(D); 4167 } 4168 4169 // Emit section information for extern variables. 4170 if (D->hasExternalStorage()) { 4171 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4172 GV->setSection(SA->getName()); 4173 } 4174 4175 // Handle XCore specific ABI requirements. 4176 if (getTriple().getArch() == llvm::Triple::xcore && 4177 D->getLanguageLinkage() == CLanguageLinkage && 4178 D->getType().isConstant(Context) && 4179 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4180 GV->setSection(".cp.rodata"); 4181 4182 // Check if we a have a const declaration with an initializer, we may be 4183 // able to emit it as available_externally to expose it's value to the 4184 // optimizer. 4185 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4186 D->getType().isConstQualified() && !GV->hasInitializer() && 4187 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4188 const auto *Record = 4189 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4190 bool HasMutableFields = Record && Record->hasMutableFields(); 4191 if (!HasMutableFields) { 4192 const VarDecl *InitDecl; 4193 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4194 if (InitExpr) { 4195 ConstantEmitter emitter(*this); 4196 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4197 if (Init) { 4198 auto *InitType = Init->getType(); 4199 if (GV->getValueType() != InitType) { 4200 // The type of the initializer does not match the definition. 4201 // This happens when an initializer has a different type from 4202 // the type of the global (because of padding at the end of a 4203 // structure for instance). 4204 GV->setName(StringRef()); 4205 // Make a new global with the correct type, this is now guaranteed 4206 // to work. 4207 auto *NewGV = cast<llvm::GlobalVariable>( 4208 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4209 ->stripPointerCasts()); 4210 4211 // Erase the old global, since it is no longer used. 4212 GV->eraseFromParent(); 4213 GV = NewGV; 4214 } else { 4215 GV->setInitializer(Init); 4216 GV->setConstant(true); 4217 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4218 } 4219 emitter.finalize(GV); 4220 } 4221 } 4222 } 4223 } 4224 } 4225 4226 if (GV->isDeclaration()) { 4227 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4228 // External HIP managed variables needed to be recorded for transformation 4229 // in both device and host compilations. 4230 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4231 D->hasExternalStorage()) 4232 getCUDARuntime().handleVarRegistration(D, *GV); 4233 } 4234 4235 LangAS ExpectedAS = 4236 D ? D->getType().getAddressSpace() 4237 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4238 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4239 if (DAddrSpace != ExpectedAS) { 4240 return getTargetCodeGenInfo().performAddrSpaceCast( 4241 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4242 } 4243 4244 return GV; 4245 } 4246 4247 llvm::Constant * 4248 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4249 const Decl *D = GD.getDecl(); 4250 4251 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4252 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4253 /*DontDefer=*/false, IsForDefinition); 4254 4255 if (isa<CXXMethodDecl>(D)) { 4256 auto FInfo = 4257 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4258 auto Ty = getTypes().GetFunctionType(*FInfo); 4259 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4260 IsForDefinition); 4261 } 4262 4263 if (isa<FunctionDecl>(D)) { 4264 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4265 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4266 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4267 IsForDefinition); 4268 } 4269 4270 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4271 } 4272 4273 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4274 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4275 unsigned Alignment) { 4276 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4277 llvm::GlobalVariable *OldGV = nullptr; 4278 4279 if (GV) { 4280 // Check if the variable has the right type. 4281 if (GV->getValueType() == Ty) 4282 return GV; 4283 4284 // Because C++ name mangling, the only way we can end up with an already 4285 // existing global with the same name is if it has been declared extern "C". 4286 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4287 OldGV = GV; 4288 } 4289 4290 // Create a new variable. 4291 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4292 Linkage, nullptr, Name); 4293 4294 if (OldGV) { 4295 // Replace occurrences of the old variable if needed. 4296 GV->takeName(OldGV); 4297 4298 if (!OldGV->use_empty()) { 4299 llvm::Constant *NewPtrForOldDecl = 4300 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4301 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4302 } 4303 4304 OldGV->eraseFromParent(); 4305 } 4306 4307 if (supportsCOMDAT() && GV->isWeakForLinker() && 4308 !GV->hasAvailableExternallyLinkage()) 4309 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4310 4311 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4312 4313 return GV; 4314 } 4315 4316 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4317 /// given global variable. If Ty is non-null and if the global doesn't exist, 4318 /// then it will be created with the specified type instead of whatever the 4319 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4320 /// that an actual global with type Ty will be returned, not conversion of a 4321 /// variable with the same mangled name but some other type. 4322 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4323 llvm::Type *Ty, 4324 ForDefinition_t IsForDefinition) { 4325 assert(D->hasGlobalStorage() && "Not a global variable"); 4326 QualType ASTTy = D->getType(); 4327 if (!Ty) 4328 Ty = getTypes().ConvertTypeForMem(ASTTy); 4329 4330 StringRef MangledName = getMangledName(D); 4331 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4332 IsForDefinition); 4333 } 4334 4335 /// CreateRuntimeVariable - Create a new runtime global variable with the 4336 /// specified type and name. 4337 llvm::Constant * 4338 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4339 StringRef Name) { 4340 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4341 : LangAS::Default; 4342 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4343 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4344 return Ret; 4345 } 4346 4347 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4348 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4349 4350 StringRef MangledName = getMangledName(D); 4351 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4352 4353 // We already have a definition, not declaration, with the same mangled name. 4354 // Emitting of declaration is not required (and actually overwrites emitted 4355 // definition). 4356 if (GV && !GV->isDeclaration()) 4357 return; 4358 4359 // If we have not seen a reference to this variable yet, place it into the 4360 // deferred declarations table to be emitted if needed later. 4361 if (!MustBeEmitted(D) && !GV) { 4362 DeferredDecls[MangledName] = D; 4363 return; 4364 } 4365 4366 // The tentative definition is the only definition. 4367 EmitGlobalVarDefinition(D); 4368 } 4369 4370 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4371 EmitExternalVarDeclaration(D); 4372 } 4373 4374 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4375 return Context.toCharUnitsFromBits( 4376 getDataLayout().getTypeStoreSizeInBits(Ty)); 4377 } 4378 4379 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4380 if (LangOpts.OpenCL) { 4381 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4382 assert(AS == LangAS::opencl_global || 4383 AS == LangAS::opencl_global_device || 4384 AS == LangAS::opencl_global_host || 4385 AS == LangAS::opencl_constant || 4386 AS == LangAS::opencl_local || 4387 AS >= LangAS::FirstTargetAddressSpace); 4388 return AS; 4389 } 4390 4391 if (LangOpts.SYCLIsDevice && 4392 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4393 return LangAS::sycl_global; 4394 4395 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4396 if (D && D->hasAttr<CUDAConstantAttr>()) 4397 return LangAS::cuda_constant; 4398 else if (D && D->hasAttr<CUDASharedAttr>()) 4399 return LangAS::cuda_shared; 4400 else if (D && D->hasAttr<CUDADeviceAttr>()) 4401 return LangAS::cuda_device; 4402 else if (D && D->getType().isConstQualified()) 4403 return LangAS::cuda_constant; 4404 else 4405 return LangAS::cuda_device; 4406 } 4407 4408 if (LangOpts.OpenMP) { 4409 LangAS AS; 4410 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4411 return AS; 4412 } 4413 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4414 } 4415 4416 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4417 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4418 if (LangOpts.OpenCL) 4419 return LangAS::opencl_constant; 4420 if (LangOpts.SYCLIsDevice) 4421 return LangAS::sycl_global; 4422 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4423 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4424 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4425 // with OpVariable instructions with Generic storage class which is not 4426 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4427 // UniformConstant storage class is not viable as pointers to it may not be 4428 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4429 return LangAS::cuda_device; 4430 if (auto AS = getTarget().getConstantAddressSpace()) 4431 return AS.getValue(); 4432 return LangAS::Default; 4433 } 4434 4435 // In address space agnostic languages, string literals are in default address 4436 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4437 // emitted in constant address space in LLVM IR. To be consistent with other 4438 // parts of AST, string literal global variables in constant address space 4439 // need to be casted to default address space before being put into address 4440 // map and referenced by other part of CodeGen. 4441 // In OpenCL, string literals are in constant address space in AST, therefore 4442 // they should not be casted to default address space. 4443 static llvm::Constant * 4444 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4445 llvm::GlobalVariable *GV) { 4446 llvm::Constant *Cast = GV; 4447 if (!CGM.getLangOpts().OpenCL) { 4448 auto AS = CGM.GetGlobalConstantAddressSpace(); 4449 if (AS != LangAS::Default) 4450 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4451 CGM, GV, AS, LangAS::Default, 4452 GV->getValueType()->getPointerTo( 4453 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4454 } 4455 return Cast; 4456 } 4457 4458 template<typename SomeDecl> 4459 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4460 llvm::GlobalValue *GV) { 4461 if (!getLangOpts().CPlusPlus) 4462 return; 4463 4464 // Must have 'used' attribute, or else inline assembly can't rely on 4465 // the name existing. 4466 if (!D->template hasAttr<UsedAttr>()) 4467 return; 4468 4469 // Must have internal linkage and an ordinary name. 4470 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4471 return; 4472 4473 // Must be in an extern "C" context. Entities declared directly within 4474 // a record are not extern "C" even if the record is in such a context. 4475 const SomeDecl *First = D->getFirstDecl(); 4476 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4477 return; 4478 4479 // OK, this is an internal linkage entity inside an extern "C" linkage 4480 // specification. Make a note of that so we can give it the "expected" 4481 // mangled name if nothing else is using that name. 4482 std::pair<StaticExternCMap::iterator, bool> R = 4483 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4484 4485 // If we have multiple internal linkage entities with the same name 4486 // in extern "C" regions, none of them gets that name. 4487 if (!R.second) 4488 R.first->second = nullptr; 4489 } 4490 4491 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4492 if (!CGM.supportsCOMDAT()) 4493 return false; 4494 4495 if (D.hasAttr<SelectAnyAttr>()) 4496 return true; 4497 4498 GVALinkage Linkage; 4499 if (auto *VD = dyn_cast<VarDecl>(&D)) 4500 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4501 else 4502 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4503 4504 switch (Linkage) { 4505 case GVA_Internal: 4506 case GVA_AvailableExternally: 4507 case GVA_StrongExternal: 4508 return false; 4509 case GVA_DiscardableODR: 4510 case GVA_StrongODR: 4511 return true; 4512 } 4513 llvm_unreachable("No such linkage"); 4514 } 4515 4516 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4517 llvm::GlobalObject &GO) { 4518 if (!shouldBeInCOMDAT(*this, D)) 4519 return; 4520 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4521 } 4522 4523 /// Pass IsTentative as true if you want to create a tentative definition. 4524 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4525 bool IsTentative) { 4526 // OpenCL global variables of sampler type are translated to function calls, 4527 // therefore no need to be translated. 4528 QualType ASTTy = D->getType(); 4529 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4530 return; 4531 4532 // If this is OpenMP device, check if it is legal to emit this global 4533 // normally. 4534 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4535 OpenMPRuntime->emitTargetGlobalVariable(D)) 4536 return; 4537 4538 llvm::TrackingVH<llvm::Constant> Init; 4539 bool NeedsGlobalCtor = false; 4540 bool NeedsGlobalDtor = 4541 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4542 4543 const VarDecl *InitDecl; 4544 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4545 4546 Optional<ConstantEmitter> emitter; 4547 4548 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4549 // as part of their declaration." Sema has already checked for 4550 // error cases, so we just need to set Init to UndefValue. 4551 bool IsCUDASharedVar = 4552 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4553 // Shadows of initialized device-side global variables are also left 4554 // undefined. 4555 // Managed Variables should be initialized on both host side and device side. 4556 bool IsCUDAShadowVar = 4557 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4558 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4559 D->hasAttr<CUDASharedAttr>()); 4560 bool IsCUDADeviceShadowVar = 4561 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4562 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4563 D->getType()->isCUDADeviceBuiltinTextureType()); 4564 if (getLangOpts().CUDA && 4565 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4566 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4567 else if (D->hasAttr<LoaderUninitializedAttr>()) 4568 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4569 else if (!InitExpr) { 4570 // This is a tentative definition; tentative definitions are 4571 // implicitly initialized with { 0 }. 4572 // 4573 // Note that tentative definitions are only emitted at the end of 4574 // a translation unit, so they should never have incomplete 4575 // type. In addition, EmitTentativeDefinition makes sure that we 4576 // never attempt to emit a tentative definition if a real one 4577 // exists. A use may still exists, however, so we still may need 4578 // to do a RAUW. 4579 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4580 Init = EmitNullConstant(D->getType()); 4581 } else { 4582 initializedGlobalDecl = GlobalDecl(D); 4583 emitter.emplace(*this); 4584 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4585 if (!Initializer) { 4586 QualType T = InitExpr->getType(); 4587 if (D->getType()->isReferenceType()) 4588 T = D->getType(); 4589 4590 if (getLangOpts().CPlusPlus) { 4591 Init = EmitNullConstant(T); 4592 NeedsGlobalCtor = true; 4593 } else { 4594 ErrorUnsupported(D, "static initializer"); 4595 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4596 } 4597 } else { 4598 Init = Initializer; 4599 // We don't need an initializer, so remove the entry for the delayed 4600 // initializer position (just in case this entry was delayed) if we 4601 // also don't need to register a destructor. 4602 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4603 DelayedCXXInitPosition.erase(D); 4604 } 4605 } 4606 4607 llvm::Type* InitType = Init->getType(); 4608 llvm::Constant *Entry = 4609 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4610 4611 // Strip off pointer casts if we got them. 4612 Entry = Entry->stripPointerCasts(); 4613 4614 // Entry is now either a Function or GlobalVariable. 4615 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4616 4617 // We have a definition after a declaration with the wrong type. 4618 // We must make a new GlobalVariable* and update everything that used OldGV 4619 // (a declaration or tentative definition) with the new GlobalVariable* 4620 // (which will be a definition). 4621 // 4622 // This happens if there is a prototype for a global (e.g. 4623 // "extern int x[];") and then a definition of a different type (e.g. 4624 // "int x[10];"). This also happens when an initializer has a different type 4625 // from the type of the global (this happens with unions). 4626 if (!GV || GV->getValueType() != InitType || 4627 GV->getType()->getAddressSpace() != 4628 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4629 4630 // Move the old entry aside so that we'll create a new one. 4631 Entry->setName(StringRef()); 4632 4633 // Make a new global with the correct type, this is now guaranteed to work. 4634 GV = cast<llvm::GlobalVariable>( 4635 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4636 ->stripPointerCasts()); 4637 4638 // Replace all uses of the old global with the new global 4639 llvm::Constant *NewPtrForOldDecl = 4640 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4641 Entry->getType()); 4642 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4643 4644 // Erase the old global, since it is no longer used. 4645 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4646 } 4647 4648 MaybeHandleStaticInExternC(D, GV); 4649 4650 if (D->hasAttr<AnnotateAttr>()) 4651 AddGlobalAnnotations(D, GV); 4652 4653 // Set the llvm linkage type as appropriate. 4654 llvm::GlobalValue::LinkageTypes Linkage = 4655 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4656 4657 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4658 // the device. [...]" 4659 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4660 // __device__, declares a variable that: [...] 4661 // Is accessible from all the threads within the grid and from the host 4662 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4663 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4664 if (GV && LangOpts.CUDA) { 4665 if (LangOpts.CUDAIsDevice) { 4666 if (Linkage != llvm::GlobalValue::InternalLinkage && 4667 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4668 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4669 D->getType()->isCUDADeviceBuiltinTextureType())) 4670 GV->setExternallyInitialized(true); 4671 } else { 4672 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4673 } 4674 getCUDARuntime().handleVarRegistration(D, *GV); 4675 } 4676 4677 GV->setInitializer(Init); 4678 if (emitter) 4679 emitter->finalize(GV); 4680 4681 // If it is safe to mark the global 'constant', do so now. 4682 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4683 isTypeConstant(D->getType(), true)); 4684 4685 // If it is in a read-only section, mark it 'constant'. 4686 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4687 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4688 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4689 GV->setConstant(true); 4690 } 4691 4692 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4693 4694 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4695 // function is only defined alongside the variable, not also alongside 4696 // callers. Normally, all accesses to a thread_local go through the 4697 // thread-wrapper in order to ensure initialization has occurred, underlying 4698 // variable will never be used other than the thread-wrapper, so it can be 4699 // converted to internal linkage. 4700 // 4701 // However, if the variable has the 'constinit' attribute, it _can_ be 4702 // referenced directly, without calling the thread-wrapper, so the linkage 4703 // must not be changed. 4704 // 4705 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4706 // weak or linkonce, the de-duplication semantics are important to preserve, 4707 // so we don't change the linkage. 4708 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4709 Linkage == llvm::GlobalValue::ExternalLinkage && 4710 Context.getTargetInfo().getTriple().isOSDarwin() && 4711 !D->hasAttr<ConstInitAttr>()) 4712 Linkage = llvm::GlobalValue::InternalLinkage; 4713 4714 GV->setLinkage(Linkage); 4715 if (D->hasAttr<DLLImportAttr>()) 4716 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4717 else if (D->hasAttr<DLLExportAttr>()) 4718 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4719 else 4720 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4721 4722 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4723 // common vars aren't constant even if declared const. 4724 GV->setConstant(false); 4725 // Tentative definition of global variables may be initialized with 4726 // non-zero null pointers. In this case they should have weak linkage 4727 // since common linkage must have zero initializer and must not have 4728 // explicit section therefore cannot have non-zero initial value. 4729 if (!GV->getInitializer()->isNullValue()) 4730 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4731 } 4732 4733 setNonAliasAttributes(D, GV); 4734 4735 if (D->getTLSKind() && !GV->isThreadLocal()) { 4736 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4737 CXXThreadLocals.push_back(D); 4738 setTLSMode(GV, *D); 4739 } 4740 4741 maybeSetTrivialComdat(*D, *GV); 4742 4743 // Emit the initializer function if necessary. 4744 if (NeedsGlobalCtor || NeedsGlobalDtor) 4745 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4746 4747 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4748 4749 // Emit global variable debug information. 4750 if (CGDebugInfo *DI = getModuleDebugInfo()) 4751 if (getCodeGenOpts().hasReducedDebugInfo()) 4752 DI->EmitGlobalVariable(GV, D); 4753 } 4754 4755 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4756 if (CGDebugInfo *DI = getModuleDebugInfo()) 4757 if (getCodeGenOpts().hasReducedDebugInfo()) { 4758 QualType ASTTy = D->getType(); 4759 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4760 llvm::Constant *GV = 4761 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4762 DI->EmitExternalVariable( 4763 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4764 } 4765 } 4766 4767 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4768 CodeGenModule &CGM, const VarDecl *D, 4769 bool NoCommon) { 4770 // Don't give variables common linkage if -fno-common was specified unless it 4771 // was overridden by a NoCommon attribute. 4772 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4773 return true; 4774 4775 // C11 6.9.2/2: 4776 // A declaration of an identifier for an object that has file scope without 4777 // an initializer, and without a storage-class specifier or with the 4778 // storage-class specifier static, constitutes a tentative definition. 4779 if (D->getInit() || D->hasExternalStorage()) 4780 return true; 4781 4782 // A variable cannot be both common and exist in a section. 4783 if (D->hasAttr<SectionAttr>()) 4784 return true; 4785 4786 // A variable cannot be both common and exist in a section. 4787 // We don't try to determine which is the right section in the front-end. 4788 // If no specialized section name is applicable, it will resort to default. 4789 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4790 D->hasAttr<PragmaClangDataSectionAttr>() || 4791 D->hasAttr<PragmaClangRelroSectionAttr>() || 4792 D->hasAttr<PragmaClangRodataSectionAttr>()) 4793 return true; 4794 4795 // Thread local vars aren't considered common linkage. 4796 if (D->getTLSKind()) 4797 return true; 4798 4799 // Tentative definitions marked with WeakImportAttr are true definitions. 4800 if (D->hasAttr<WeakImportAttr>()) 4801 return true; 4802 4803 // A variable cannot be both common and exist in a comdat. 4804 if (shouldBeInCOMDAT(CGM, *D)) 4805 return true; 4806 4807 // Declarations with a required alignment do not have common linkage in MSVC 4808 // mode. 4809 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4810 if (D->hasAttr<AlignedAttr>()) 4811 return true; 4812 QualType VarType = D->getType(); 4813 if (Context.isAlignmentRequired(VarType)) 4814 return true; 4815 4816 if (const auto *RT = VarType->getAs<RecordType>()) { 4817 const RecordDecl *RD = RT->getDecl(); 4818 for (const FieldDecl *FD : RD->fields()) { 4819 if (FD->isBitField()) 4820 continue; 4821 if (FD->hasAttr<AlignedAttr>()) 4822 return true; 4823 if (Context.isAlignmentRequired(FD->getType())) 4824 return true; 4825 } 4826 } 4827 } 4828 4829 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4830 // common symbols, so symbols with greater alignment requirements cannot be 4831 // common. 4832 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4833 // alignments for common symbols via the aligncomm directive, so this 4834 // restriction only applies to MSVC environments. 4835 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4836 Context.getTypeAlignIfKnown(D->getType()) > 4837 Context.toBits(CharUnits::fromQuantity(32))) 4838 return true; 4839 4840 return false; 4841 } 4842 4843 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4844 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4845 if (Linkage == GVA_Internal) 4846 return llvm::Function::InternalLinkage; 4847 4848 if (D->hasAttr<WeakAttr>()) { 4849 if (IsConstantVariable) 4850 return llvm::GlobalVariable::WeakODRLinkage; 4851 else 4852 return llvm::GlobalVariable::WeakAnyLinkage; 4853 } 4854 4855 if (const auto *FD = D->getAsFunction()) 4856 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4857 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4858 4859 // We are guaranteed to have a strong definition somewhere else, 4860 // so we can use available_externally linkage. 4861 if (Linkage == GVA_AvailableExternally) 4862 return llvm::GlobalValue::AvailableExternallyLinkage; 4863 4864 // Note that Apple's kernel linker doesn't support symbol 4865 // coalescing, so we need to avoid linkonce and weak linkages there. 4866 // Normally, this means we just map to internal, but for explicit 4867 // instantiations we'll map to external. 4868 4869 // In C++, the compiler has to emit a definition in every translation unit 4870 // that references the function. We should use linkonce_odr because 4871 // a) if all references in this translation unit are optimized away, we 4872 // don't need to codegen it. b) if the function persists, it needs to be 4873 // merged with other definitions. c) C++ has the ODR, so we know the 4874 // definition is dependable. 4875 if (Linkage == GVA_DiscardableODR) 4876 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4877 : llvm::Function::InternalLinkage; 4878 4879 // An explicit instantiation of a template has weak linkage, since 4880 // explicit instantiations can occur in multiple translation units 4881 // and must all be equivalent. However, we are not allowed to 4882 // throw away these explicit instantiations. 4883 // 4884 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4885 // so say that CUDA templates are either external (for kernels) or internal. 4886 // This lets llvm perform aggressive inter-procedural optimizations. For 4887 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4888 // therefore we need to follow the normal linkage paradigm. 4889 if (Linkage == GVA_StrongODR) { 4890 if (getLangOpts().AppleKext) 4891 return llvm::Function::ExternalLinkage; 4892 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4893 !getLangOpts().GPURelocatableDeviceCode) 4894 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4895 : llvm::Function::InternalLinkage; 4896 return llvm::Function::WeakODRLinkage; 4897 } 4898 4899 // C++ doesn't have tentative definitions and thus cannot have common 4900 // linkage. 4901 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4902 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4903 CodeGenOpts.NoCommon)) 4904 return llvm::GlobalVariable::CommonLinkage; 4905 4906 // selectany symbols are externally visible, so use weak instead of 4907 // linkonce. MSVC optimizes away references to const selectany globals, so 4908 // all definitions should be the same and ODR linkage should be used. 4909 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4910 if (D->hasAttr<SelectAnyAttr>()) 4911 return llvm::GlobalVariable::WeakODRLinkage; 4912 4913 // Otherwise, we have strong external linkage. 4914 assert(Linkage == GVA_StrongExternal); 4915 return llvm::GlobalVariable::ExternalLinkage; 4916 } 4917 4918 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4919 const VarDecl *VD, bool IsConstant) { 4920 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4921 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4922 } 4923 4924 /// Replace the uses of a function that was declared with a non-proto type. 4925 /// We want to silently drop extra arguments from call sites 4926 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4927 llvm::Function *newFn) { 4928 // Fast path. 4929 if (old->use_empty()) return; 4930 4931 llvm::Type *newRetTy = newFn->getReturnType(); 4932 SmallVector<llvm::Value*, 4> newArgs; 4933 4934 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4935 ui != ue; ) { 4936 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4937 llvm::User *user = use->getUser(); 4938 4939 // Recognize and replace uses of bitcasts. Most calls to 4940 // unprototyped functions will use bitcasts. 4941 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4942 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4943 replaceUsesOfNonProtoConstant(bitcast, newFn); 4944 continue; 4945 } 4946 4947 // Recognize calls to the function. 4948 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4949 if (!callSite) continue; 4950 if (!callSite->isCallee(&*use)) 4951 continue; 4952 4953 // If the return types don't match exactly, then we can't 4954 // transform this call unless it's dead. 4955 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4956 continue; 4957 4958 // Get the call site's attribute list. 4959 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4960 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4961 4962 // If the function was passed too few arguments, don't transform. 4963 unsigned newNumArgs = newFn->arg_size(); 4964 if (callSite->arg_size() < newNumArgs) 4965 continue; 4966 4967 // If extra arguments were passed, we silently drop them. 4968 // If any of the types mismatch, we don't transform. 4969 unsigned argNo = 0; 4970 bool dontTransform = false; 4971 for (llvm::Argument &A : newFn->args()) { 4972 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4973 dontTransform = true; 4974 break; 4975 } 4976 4977 // Add any parameter attributes. 4978 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 4979 argNo++; 4980 } 4981 if (dontTransform) 4982 continue; 4983 4984 // Okay, we can transform this. Create the new call instruction and copy 4985 // over the required information. 4986 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4987 4988 // Copy over any operand bundles. 4989 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4990 callSite->getOperandBundlesAsDefs(newBundles); 4991 4992 llvm::CallBase *newCall; 4993 if (isa<llvm::CallInst>(callSite)) { 4994 newCall = 4995 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4996 } else { 4997 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4998 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4999 oldInvoke->getUnwindDest(), newArgs, 5000 newBundles, "", callSite); 5001 } 5002 newArgs.clear(); // for the next iteration 5003 5004 if (!newCall->getType()->isVoidTy()) 5005 newCall->takeName(callSite); 5006 newCall->setAttributes( 5007 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5008 oldAttrs.getRetAttrs(), newArgAttrs)); 5009 newCall->setCallingConv(callSite->getCallingConv()); 5010 5011 // Finally, remove the old call, replacing any uses with the new one. 5012 if (!callSite->use_empty()) 5013 callSite->replaceAllUsesWith(newCall); 5014 5015 // Copy debug location attached to CI. 5016 if (callSite->getDebugLoc()) 5017 newCall->setDebugLoc(callSite->getDebugLoc()); 5018 5019 callSite->eraseFromParent(); 5020 } 5021 } 5022 5023 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5024 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5025 /// existing call uses of the old function in the module, this adjusts them to 5026 /// call the new function directly. 5027 /// 5028 /// This is not just a cleanup: the always_inline pass requires direct calls to 5029 /// functions to be able to inline them. If there is a bitcast in the way, it 5030 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5031 /// run at -O0. 5032 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5033 llvm::Function *NewFn) { 5034 // If we're redefining a global as a function, don't transform it. 5035 if (!isa<llvm::Function>(Old)) return; 5036 5037 replaceUsesOfNonProtoConstant(Old, NewFn); 5038 } 5039 5040 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5041 auto DK = VD->isThisDeclarationADefinition(); 5042 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5043 return; 5044 5045 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5046 // If we have a definition, this might be a deferred decl. If the 5047 // instantiation is explicit, make sure we emit it at the end. 5048 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5049 GetAddrOfGlobalVar(VD); 5050 5051 EmitTopLevelDecl(VD); 5052 } 5053 5054 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5055 llvm::GlobalValue *GV) { 5056 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5057 5058 // Compute the function info and LLVM type. 5059 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5060 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5061 5062 // Get or create the prototype for the function. 5063 if (!GV || (GV->getValueType() != Ty)) 5064 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5065 /*DontDefer=*/true, 5066 ForDefinition)); 5067 5068 // Already emitted. 5069 if (!GV->isDeclaration()) 5070 return; 5071 5072 // We need to set linkage and visibility on the function before 5073 // generating code for it because various parts of IR generation 5074 // want to propagate this information down (e.g. to local static 5075 // declarations). 5076 auto *Fn = cast<llvm::Function>(GV); 5077 setFunctionLinkage(GD, Fn); 5078 5079 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5080 setGVProperties(Fn, GD); 5081 5082 MaybeHandleStaticInExternC(D, Fn); 5083 5084 maybeSetTrivialComdat(*D, *Fn); 5085 5086 // Set CodeGen attributes that represent floating point environment. 5087 setLLVMFunctionFEnvAttributes(D, Fn); 5088 5089 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5090 5091 setNonAliasAttributes(GD, Fn); 5092 SetLLVMFunctionAttributesForDefinition(D, Fn); 5093 5094 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5095 AddGlobalCtor(Fn, CA->getPriority()); 5096 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5097 AddGlobalDtor(Fn, DA->getPriority(), true); 5098 if (D->hasAttr<AnnotateAttr>()) 5099 AddGlobalAnnotations(D, Fn); 5100 } 5101 5102 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5103 const auto *D = cast<ValueDecl>(GD.getDecl()); 5104 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5105 assert(AA && "Not an alias?"); 5106 5107 StringRef MangledName = getMangledName(GD); 5108 5109 if (AA->getAliasee() == MangledName) { 5110 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5111 return; 5112 } 5113 5114 // If there is a definition in the module, then it wins over the alias. 5115 // This is dubious, but allow it to be safe. Just ignore the alias. 5116 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5117 if (Entry && !Entry->isDeclaration()) 5118 return; 5119 5120 Aliases.push_back(GD); 5121 5122 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5123 5124 // Create a reference to the named value. This ensures that it is emitted 5125 // if a deferred decl. 5126 llvm::Constant *Aliasee; 5127 llvm::GlobalValue::LinkageTypes LT; 5128 if (isa<llvm::FunctionType>(DeclTy)) { 5129 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5130 /*ForVTable=*/false); 5131 LT = getFunctionLinkage(GD); 5132 } else { 5133 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5134 /*D=*/nullptr); 5135 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5136 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5137 else 5138 LT = getFunctionLinkage(GD); 5139 } 5140 5141 // Create the new alias itself, but don't set a name yet. 5142 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5143 auto *GA = 5144 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5145 5146 if (Entry) { 5147 if (GA->getAliasee() == Entry) { 5148 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5149 return; 5150 } 5151 5152 assert(Entry->isDeclaration()); 5153 5154 // If there is a declaration in the module, then we had an extern followed 5155 // by the alias, as in: 5156 // extern int test6(); 5157 // ... 5158 // int test6() __attribute__((alias("test7"))); 5159 // 5160 // Remove it and replace uses of it with the alias. 5161 GA->takeName(Entry); 5162 5163 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5164 Entry->getType())); 5165 Entry->eraseFromParent(); 5166 } else { 5167 GA->setName(MangledName); 5168 } 5169 5170 // Set attributes which are particular to an alias; this is a 5171 // specialization of the attributes which may be set on a global 5172 // variable/function. 5173 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5174 D->isWeakImported()) { 5175 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5176 } 5177 5178 if (const auto *VD = dyn_cast<VarDecl>(D)) 5179 if (VD->getTLSKind()) 5180 setTLSMode(GA, *VD); 5181 5182 SetCommonAttributes(GD, GA); 5183 5184 // Emit global alias debug information. 5185 if (isa<VarDecl>(D)) 5186 if (CGDebugInfo *DI = getModuleDebugInfo()) 5187 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD); 5188 } 5189 5190 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5191 const auto *D = cast<ValueDecl>(GD.getDecl()); 5192 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5193 assert(IFA && "Not an ifunc?"); 5194 5195 StringRef MangledName = getMangledName(GD); 5196 5197 if (IFA->getResolver() == MangledName) { 5198 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5199 return; 5200 } 5201 5202 // Report an error if some definition overrides ifunc. 5203 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5204 if (Entry && !Entry->isDeclaration()) { 5205 GlobalDecl OtherGD; 5206 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5207 DiagnosedConflictingDefinitions.insert(GD).second) { 5208 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5209 << MangledName; 5210 Diags.Report(OtherGD.getDecl()->getLocation(), 5211 diag::note_previous_definition); 5212 } 5213 return; 5214 } 5215 5216 Aliases.push_back(GD); 5217 5218 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5219 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5220 llvm::Constant *Resolver = 5221 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5222 /*ForVTable=*/false); 5223 llvm::GlobalIFunc *GIF = 5224 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5225 "", Resolver, &getModule()); 5226 if (Entry) { 5227 if (GIF->getResolver() == Entry) { 5228 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5229 return; 5230 } 5231 assert(Entry->isDeclaration()); 5232 5233 // If there is a declaration in the module, then we had an extern followed 5234 // by the ifunc, as in: 5235 // extern int test(); 5236 // ... 5237 // int test() __attribute__((ifunc("resolver"))); 5238 // 5239 // Remove it and replace uses of it with the ifunc. 5240 GIF->takeName(Entry); 5241 5242 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5243 Entry->getType())); 5244 Entry->eraseFromParent(); 5245 } else 5246 GIF->setName(MangledName); 5247 5248 SetCommonAttributes(GD, GIF); 5249 } 5250 5251 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5252 ArrayRef<llvm::Type*> Tys) { 5253 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5254 Tys); 5255 } 5256 5257 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5258 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5259 const StringLiteral *Literal, bool TargetIsLSB, 5260 bool &IsUTF16, unsigned &StringLength) { 5261 StringRef String = Literal->getString(); 5262 unsigned NumBytes = String.size(); 5263 5264 // Check for simple case. 5265 if (!Literal->containsNonAsciiOrNull()) { 5266 StringLength = NumBytes; 5267 return *Map.insert(std::make_pair(String, nullptr)).first; 5268 } 5269 5270 // Otherwise, convert the UTF8 literals into a string of shorts. 5271 IsUTF16 = true; 5272 5273 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5274 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5275 llvm::UTF16 *ToPtr = &ToBuf[0]; 5276 5277 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5278 ToPtr + NumBytes, llvm::strictConversion); 5279 5280 // ConvertUTF8toUTF16 returns the length in ToPtr. 5281 StringLength = ToPtr - &ToBuf[0]; 5282 5283 // Add an explicit null. 5284 *ToPtr = 0; 5285 return *Map.insert(std::make_pair( 5286 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5287 (StringLength + 1) * 2), 5288 nullptr)).first; 5289 } 5290 5291 ConstantAddress 5292 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5293 unsigned StringLength = 0; 5294 bool isUTF16 = false; 5295 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5296 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5297 getDataLayout().isLittleEndian(), isUTF16, 5298 StringLength); 5299 5300 if (auto *C = Entry.second) 5301 return ConstantAddress( 5302 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5303 5304 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5305 llvm::Constant *Zeros[] = { Zero, Zero }; 5306 5307 const ASTContext &Context = getContext(); 5308 const llvm::Triple &Triple = getTriple(); 5309 5310 const auto CFRuntime = getLangOpts().CFRuntime; 5311 const bool IsSwiftABI = 5312 static_cast<unsigned>(CFRuntime) >= 5313 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5314 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5315 5316 // If we don't already have it, get __CFConstantStringClassReference. 5317 if (!CFConstantStringClassRef) { 5318 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5319 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5320 Ty = llvm::ArrayType::get(Ty, 0); 5321 5322 switch (CFRuntime) { 5323 default: break; 5324 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5325 case LangOptions::CoreFoundationABI::Swift5_0: 5326 CFConstantStringClassName = 5327 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5328 : "$s10Foundation19_NSCFConstantStringCN"; 5329 Ty = IntPtrTy; 5330 break; 5331 case LangOptions::CoreFoundationABI::Swift4_2: 5332 CFConstantStringClassName = 5333 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5334 : "$S10Foundation19_NSCFConstantStringCN"; 5335 Ty = IntPtrTy; 5336 break; 5337 case LangOptions::CoreFoundationABI::Swift4_1: 5338 CFConstantStringClassName = 5339 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5340 : "__T010Foundation19_NSCFConstantStringCN"; 5341 Ty = IntPtrTy; 5342 break; 5343 } 5344 5345 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5346 5347 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5348 llvm::GlobalValue *GV = nullptr; 5349 5350 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5351 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5352 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5353 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5354 5355 const VarDecl *VD = nullptr; 5356 for (const auto *Result : DC->lookup(&II)) 5357 if ((VD = dyn_cast<VarDecl>(Result))) 5358 break; 5359 5360 if (Triple.isOSBinFormatELF()) { 5361 if (!VD) 5362 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5363 } else { 5364 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5365 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5366 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5367 else 5368 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5369 } 5370 5371 setDSOLocal(GV); 5372 } 5373 } 5374 5375 // Decay array -> ptr 5376 CFConstantStringClassRef = 5377 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5378 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5379 } 5380 5381 QualType CFTy = Context.getCFConstantStringType(); 5382 5383 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5384 5385 ConstantInitBuilder Builder(*this); 5386 auto Fields = Builder.beginStruct(STy); 5387 5388 // Class pointer. 5389 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5390 5391 // Flags. 5392 if (IsSwiftABI) { 5393 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5394 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5395 } else { 5396 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5397 } 5398 5399 // String pointer. 5400 llvm::Constant *C = nullptr; 5401 if (isUTF16) { 5402 auto Arr = llvm::makeArrayRef( 5403 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5404 Entry.first().size() / 2); 5405 C = llvm::ConstantDataArray::get(VMContext, Arr); 5406 } else { 5407 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5408 } 5409 5410 // Note: -fwritable-strings doesn't make the backing store strings of 5411 // CFStrings writable. (See <rdar://problem/10657500>) 5412 auto *GV = 5413 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5414 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5415 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5416 // Don't enforce the target's minimum global alignment, since the only use 5417 // of the string is via this class initializer. 5418 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5419 : Context.getTypeAlignInChars(Context.CharTy); 5420 GV->setAlignment(Align.getAsAlign()); 5421 5422 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5423 // Without it LLVM can merge the string with a non unnamed_addr one during 5424 // LTO. Doing that changes the section it ends in, which surprises ld64. 5425 if (Triple.isOSBinFormatMachO()) 5426 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5427 : "__TEXT,__cstring,cstring_literals"); 5428 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5429 // the static linker to adjust permissions to read-only later on. 5430 else if (Triple.isOSBinFormatELF()) 5431 GV->setSection(".rodata"); 5432 5433 // String. 5434 llvm::Constant *Str = 5435 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5436 5437 if (isUTF16) 5438 // Cast the UTF16 string to the correct type. 5439 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5440 Fields.add(Str); 5441 5442 // String length. 5443 llvm::IntegerType *LengthTy = 5444 llvm::IntegerType::get(getModule().getContext(), 5445 Context.getTargetInfo().getLongWidth()); 5446 if (IsSwiftABI) { 5447 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5448 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5449 LengthTy = Int32Ty; 5450 else 5451 LengthTy = IntPtrTy; 5452 } 5453 Fields.addInt(LengthTy, StringLength); 5454 5455 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5456 // properly aligned on 32-bit platforms. 5457 CharUnits Alignment = 5458 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5459 5460 // The struct. 5461 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5462 /*isConstant=*/false, 5463 llvm::GlobalVariable::PrivateLinkage); 5464 GV->addAttribute("objc_arc_inert"); 5465 switch (Triple.getObjectFormat()) { 5466 case llvm::Triple::UnknownObjectFormat: 5467 llvm_unreachable("unknown file format"); 5468 case llvm::Triple::GOFF: 5469 llvm_unreachable("GOFF is not yet implemented"); 5470 case llvm::Triple::XCOFF: 5471 llvm_unreachable("XCOFF is not yet implemented"); 5472 case llvm::Triple::DXContainer: 5473 llvm_unreachable("DXContainer is not yet implemented"); 5474 case llvm::Triple::COFF: 5475 case llvm::Triple::ELF: 5476 case llvm::Triple::Wasm: 5477 GV->setSection("cfstring"); 5478 break; 5479 case llvm::Triple::MachO: 5480 GV->setSection("__DATA,__cfstring"); 5481 break; 5482 } 5483 Entry.second = GV; 5484 5485 return ConstantAddress(GV, GV->getValueType(), Alignment); 5486 } 5487 5488 bool CodeGenModule::getExpressionLocationsEnabled() const { 5489 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5490 } 5491 5492 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5493 if (ObjCFastEnumerationStateType.isNull()) { 5494 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5495 D->startDefinition(); 5496 5497 QualType FieldTypes[] = { 5498 Context.UnsignedLongTy, 5499 Context.getPointerType(Context.getObjCIdType()), 5500 Context.getPointerType(Context.UnsignedLongTy), 5501 Context.getConstantArrayType(Context.UnsignedLongTy, 5502 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5503 }; 5504 5505 for (size_t i = 0; i < 4; ++i) { 5506 FieldDecl *Field = FieldDecl::Create(Context, 5507 D, 5508 SourceLocation(), 5509 SourceLocation(), nullptr, 5510 FieldTypes[i], /*TInfo=*/nullptr, 5511 /*BitWidth=*/nullptr, 5512 /*Mutable=*/false, 5513 ICIS_NoInit); 5514 Field->setAccess(AS_public); 5515 D->addDecl(Field); 5516 } 5517 5518 D->completeDefinition(); 5519 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5520 } 5521 5522 return ObjCFastEnumerationStateType; 5523 } 5524 5525 llvm::Constant * 5526 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5527 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5528 5529 // Don't emit it as the address of the string, emit the string data itself 5530 // as an inline array. 5531 if (E->getCharByteWidth() == 1) { 5532 SmallString<64> Str(E->getString()); 5533 5534 // Resize the string to the right size, which is indicated by its type. 5535 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5536 Str.resize(CAT->getSize().getZExtValue()); 5537 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5538 } 5539 5540 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5541 llvm::Type *ElemTy = AType->getElementType(); 5542 unsigned NumElements = AType->getNumElements(); 5543 5544 // Wide strings have either 2-byte or 4-byte elements. 5545 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5546 SmallVector<uint16_t, 32> Elements; 5547 Elements.reserve(NumElements); 5548 5549 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5550 Elements.push_back(E->getCodeUnit(i)); 5551 Elements.resize(NumElements); 5552 return llvm::ConstantDataArray::get(VMContext, Elements); 5553 } 5554 5555 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5556 SmallVector<uint32_t, 32> Elements; 5557 Elements.reserve(NumElements); 5558 5559 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5560 Elements.push_back(E->getCodeUnit(i)); 5561 Elements.resize(NumElements); 5562 return llvm::ConstantDataArray::get(VMContext, Elements); 5563 } 5564 5565 static llvm::GlobalVariable * 5566 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5567 CodeGenModule &CGM, StringRef GlobalName, 5568 CharUnits Alignment) { 5569 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5570 CGM.GetGlobalConstantAddressSpace()); 5571 5572 llvm::Module &M = CGM.getModule(); 5573 // Create a global variable for this string 5574 auto *GV = new llvm::GlobalVariable( 5575 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5576 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5577 GV->setAlignment(Alignment.getAsAlign()); 5578 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5579 if (GV->isWeakForLinker()) { 5580 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5581 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5582 } 5583 CGM.setDSOLocal(GV); 5584 5585 return GV; 5586 } 5587 5588 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5589 /// constant array for the given string literal. 5590 ConstantAddress 5591 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5592 StringRef Name) { 5593 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5594 5595 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5596 llvm::GlobalVariable **Entry = nullptr; 5597 if (!LangOpts.WritableStrings) { 5598 Entry = &ConstantStringMap[C]; 5599 if (auto GV = *Entry) { 5600 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5601 GV->setAlignment(Alignment.getAsAlign()); 5602 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5603 GV->getValueType(), Alignment); 5604 } 5605 } 5606 5607 SmallString<256> MangledNameBuffer; 5608 StringRef GlobalVariableName; 5609 llvm::GlobalValue::LinkageTypes LT; 5610 5611 // Mangle the string literal if that's how the ABI merges duplicate strings. 5612 // Don't do it if they are writable, since we don't want writes in one TU to 5613 // affect strings in another. 5614 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5615 !LangOpts.WritableStrings) { 5616 llvm::raw_svector_ostream Out(MangledNameBuffer); 5617 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5618 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5619 GlobalVariableName = MangledNameBuffer; 5620 } else { 5621 LT = llvm::GlobalValue::PrivateLinkage; 5622 GlobalVariableName = Name; 5623 } 5624 5625 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5626 if (Entry) 5627 *Entry = GV; 5628 5629 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5630 QualType()); 5631 5632 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5633 GV->getValueType(), Alignment); 5634 } 5635 5636 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5637 /// array for the given ObjCEncodeExpr node. 5638 ConstantAddress 5639 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5640 std::string Str; 5641 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5642 5643 return GetAddrOfConstantCString(Str); 5644 } 5645 5646 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5647 /// the literal and a terminating '\0' character. 5648 /// The result has pointer to array type. 5649 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5650 const std::string &Str, const char *GlobalName) { 5651 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5652 CharUnits Alignment = 5653 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5654 5655 llvm::Constant *C = 5656 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5657 5658 // Don't share any string literals if strings aren't constant. 5659 llvm::GlobalVariable **Entry = nullptr; 5660 if (!LangOpts.WritableStrings) { 5661 Entry = &ConstantStringMap[C]; 5662 if (auto GV = *Entry) { 5663 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5664 GV->setAlignment(Alignment.getAsAlign()); 5665 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5666 GV->getValueType(), Alignment); 5667 } 5668 } 5669 5670 // Get the default prefix if a name wasn't specified. 5671 if (!GlobalName) 5672 GlobalName = ".str"; 5673 // Create a global variable for this. 5674 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5675 GlobalName, Alignment); 5676 if (Entry) 5677 *Entry = GV; 5678 5679 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5680 GV->getValueType(), Alignment); 5681 } 5682 5683 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5684 const MaterializeTemporaryExpr *E, const Expr *Init) { 5685 assert((E->getStorageDuration() == SD_Static || 5686 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5687 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5688 5689 // If we're not materializing a subobject of the temporary, keep the 5690 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5691 QualType MaterializedType = Init->getType(); 5692 if (Init == E->getSubExpr()) 5693 MaterializedType = E->getType(); 5694 5695 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5696 5697 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5698 if (!InsertResult.second) { 5699 // We've seen this before: either we already created it or we're in the 5700 // process of doing so. 5701 if (!InsertResult.first->second) { 5702 // We recursively re-entered this function, probably during emission of 5703 // the initializer. Create a placeholder. We'll clean this up in the 5704 // outer call, at the end of this function. 5705 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5706 InsertResult.first->second = new llvm::GlobalVariable( 5707 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5708 nullptr); 5709 } 5710 return ConstantAddress(InsertResult.first->second, 5711 llvm::cast<llvm::GlobalVariable>( 5712 InsertResult.first->second->stripPointerCasts()) 5713 ->getValueType(), 5714 Align); 5715 } 5716 5717 // FIXME: If an externally-visible declaration extends multiple temporaries, 5718 // we need to give each temporary the same name in every translation unit (and 5719 // we also need to make the temporaries externally-visible). 5720 SmallString<256> Name; 5721 llvm::raw_svector_ostream Out(Name); 5722 getCXXABI().getMangleContext().mangleReferenceTemporary( 5723 VD, E->getManglingNumber(), Out); 5724 5725 APValue *Value = nullptr; 5726 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5727 // If the initializer of the extending declaration is a constant 5728 // initializer, we should have a cached constant initializer for this 5729 // temporary. Note that this might have a different value from the value 5730 // computed by evaluating the initializer if the surrounding constant 5731 // expression modifies the temporary. 5732 Value = E->getOrCreateValue(false); 5733 } 5734 5735 // Try evaluating it now, it might have a constant initializer. 5736 Expr::EvalResult EvalResult; 5737 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5738 !EvalResult.hasSideEffects()) 5739 Value = &EvalResult.Val; 5740 5741 LangAS AddrSpace = 5742 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5743 5744 Optional<ConstantEmitter> emitter; 5745 llvm::Constant *InitialValue = nullptr; 5746 bool Constant = false; 5747 llvm::Type *Type; 5748 if (Value) { 5749 // The temporary has a constant initializer, use it. 5750 emitter.emplace(*this); 5751 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5752 MaterializedType); 5753 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5754 Type = InitialValue->getType(); 5755 } else { 5756 // No initializer, the initialization will be provided when we 5757 // initialize the declaration which performed lifetime extension. 5758 Type = getTypes().ConvertTypeForMem(MaterializedType); 5759 } 5760 5761 // Create a global variable for this lifetime-extended temporary. 5762 llvm::GlobalValue::LinkageTypes Linkage = 5763 getLLVMLinkageVarDefinition(VD, Constant); 5764 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5765 const VarDecl *InitVD; 5766 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5767 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5768 // Temporaries defined inside a class get linkonce_odr linkage because the 5769 // class can be defined in multiple translation units. 5770 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5771 } else { 5772 // There is no need for this temporary to have external linkage if the 5773 // VarDecl has external linkage. 5774 Linkage = llvm::GlobalVariable::InternalLinkage; 5775 } 5776 } 5777 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5778 auto *GV = new llvm::GlobalVariable( 5779 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5780 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5781 if (emitter) emitter->finalize(GV); 5782 setGVProperties(GV, VD); 5783 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 5784 // The reference temporary should never be dllexport. 5785 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5786 GV->setAlignment(Align.getAsAlign()); 5787 if (supportsCOMDAT() && GV->isWeakForLinker()) 5788 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5789 if (VD->getTLSKind()) 5790 setTLSMode(GV, *VD); 5791 llvm::Constant *CV = GV; 5792 if (AddrSpace != LangAS::Default) 5793 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5794 *this, GV, AddrSpace, LangAS::Default, 5795 Type->getPointerTo( 5796 getContext().getTargetAddressSpace(LangAS::Default))); 5797 5798 // Update the map with the new temporary. If we created a placeholder above, 5799 // replace it with the new global now. 5800 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5801 if (Entry) { 5802 Entry->replaceAllUsesWith( 5803 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5804 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5805 } 5806 Entry = CV; 5807 5808 return ConstantAddress(CV, Type, Align); 5809 } 5810 5811 /// EmitObjCPropertyImplementations - Emit information for synthesized 5812 /// properties for an implementation. 5813 void CodeGenModule::EmitObjCPropertyImplementations(const 5814 ObjCImplementationDecl *D) { 5815 for (const auto *PID : D->property_impls()) { 5816 // Dynamic is just for type-checking. 5817 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5818 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5819 5820 // Determine which methods need to be implemented, some may have 5821 // been overridden. Note that ::isPropertyAccessor is not the method 5822 // we want, that just indicates if the decl came from a 5823 // property. What we want to know is if the method is defined in 5824 // this implementation. 5825 auto *Getter = PID->getGetterMethodDecl(); 5826 if (!Getter || Getter->isSynthesizedAccessorStub()) 5827 CodeGenFunction(*this).GenerateObjCGetter( 5828 const_cast<ObjCImplementationDecl *>(D), PID); 5829 auto *Setter = PID->getSetterMethodDecl(); 5830 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5831 CodeGenFunction(*this).GenerateObjCSetter( 5832 const_cast<ObjCImplementationDecl *>(D), PID); 5833 } 5834 } 5835 } 5836 5837 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5838 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5839 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5840 ivar; ivar = ivar->getNextIvar()) 5841 if (ivar->getType().isDestructedType()) 5842 return true; 5843 5844 return false; 5845 } 5846 5847 static bool AllTrivialInitializers(CodeGenModule &CGM, 5848 ObjCImplementationDecl *D) { 5849 CodeGenFunction CGF(CGM); 5850 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5851 E = D->init_end(); B != E; ++B) { 5852 CXXCtorInitializer *CtorInitExp = *B; 5853 Expr *Init = CtorInitExp->getInit(); 5854 if (!CGF.isTrivialInitializer(Init)) 5855 return false; 5856 } 5857 return true; 5858 } 5859 5860 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5861 /// for an implementation. 5862 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5863 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5864 if (needsDestructMethod(D)) { 5865 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5866 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5867 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5868 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5869 getContext().VoidTy, nullptr, D, 5870 /*isInstance=*/true, /*isVariadic=*/false, 5871 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5872 /*isImplicitlyDeclared=*/true, 5873 /*isDefined=*/false, ObjCMethodDecl::Required); 5874 D->addInstanceMethod(DTORMethod); 5875 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5876 D->setHasDestructors(true); 5877 } 5878 5879 // If the implementation doesn't have any ivar initializers, we don't need 5880 // a .cxx_construct. 5881 if (D->getNumIvarInitializers() == 0 || 5882 AllTrivialInitializers(*this, D)) 5883 return; 5884 5885 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5886 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5887 // The constructor returns 'self'. 5888 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5889 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5890 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5891 /*isVariadic=*/false, 5892 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5893 /*isImplicitlyDeclared=*/true, 5894 /*isDefined=*/false, ObjCMethodDecl::Required); 5895 D->addInstanceMethod(CTORMethod); 5896 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5897 D->setHasNonZeroConstructors(true); 5898 } 5899 5900 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5901 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5902 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5903 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5904 ErrorUnsupported(LSD, "linkage spec"); 5905 return; 5906 } 5907 5908 EmitDeclContext(LSD); 5909 } 5910 5911 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5912 for (auto *I : DC->decls()) { 5913 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5914 // are themselves considered "top-level", so EmitTopLevelDecl on an 5915 // ObjCImplDecl does not recursively visit them. We need to do that in 5916 // case they're nested inside another construct (LinkageSpecDecl / 5917 // ExportDecl) that does stop them from being considered "top-level". 5918 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5919 for (auto *M : OID->methods()) 5920 EmitTopLevelDecl(M); 5921 } 5922 5923 EmitTopLevelDecl(I); 5924 } 5925 } 5926 5927 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5928 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5929 // Ignore dependent declarations. 5930 if (D->isTemplated()) 5931 return; 5932 5933 // Consteval function shouldn't be emitted. 5934 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5935 if (FD->isConsteval()) 5936 return; 5937 5938 switch (D->getKind()) { 5939 case Decl::CXXConversion: 5940 case Decl::CXXMethod: 5941 case Decl::Function: 5942 EmitGlobal(cast<FunctionDecl>(D)); 5943 // Always provide some coverage mapping 5944 // even for the functions that aren't emitted. 5945 AddDeferredUnusedCoverageMapping(D); 5946 break; 5947 5948 case Decl::CXXDeductionGuide: 5949 // Function-like, but does not result in code emission. 5950 break; 5951 5952 case Decl::Var: 5953 case Decl::Decomposition: 5954 case Decl::VarTemplateSpecialization: 5955 EmitGlobal(cast<VarDecl>(D)); 5956 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5957 for (auto *B : DD->bindings()) 5958 if (auto *HD = B->getHoldingVar()) 5959 EmitGlobal(HD); 5960 break; 5961 5962 // Indirect fields from global anonymous structs and unions can be 5963 // ignored; only the actual variable requires IR gen support. 5964 case Decl::IndirectField: 5965 break; 5966 5967 // C++ Decls 5968 case Decl::Namespace: 5969 EmitDeclContext(cast<NamespaceDecl>(D)); 5970 break; 5971 case Decl::ClassTemplateSpecialization: { 5972 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5973 if (CGDebugInfo *DI = getModuleDebugInfo()) 5974 if (Spec->getSpecializationKind() == 5975 TSK_ExplicitInstantiationDefinition && 5976 Spec->hasDefinition()) 5977 DI->completeTemplateDefinition(*Spec); 5978 } LLVM_FALLTHROUGH; 5979 case Decl::CXXRecord: { 5980 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5981 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5982 if (CRD->hasDefinition()) 5983 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5984 if (auto *ES = D->getASTContext().getExternalSource()) 5985 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5986 DI->completeUnusedClass(*CRD); 5987 } 5988 // Emit any static data members, they may be definitions. 5989 for (auto *I : CRD->decls()) 5990 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5991 EmitTopLevelDecl(I); 5992 break; 5993 } 5994 // No code generation needed. 5995 case Decl::UsingShadow: 5996 case Decl::ClassTemplate: 5997 case Decl::VarTemplate: 5998 case Decl::Concept: 5999 case Decl::VarTemplatePartialSpecialization: 6000 case Decl::FunctionTemplate: 6001 case Decl::TypeAliasTemplate: 6002 case Decl::Block: 6003 case Decl::Empty: 6004 case Decl::Binding: 6005 break; 6006 case Decl::Using: // using X; [C++] 6007 if (CGDebugInfo *DI = getModuleDebugInfo()) 6008 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6009 break; 6010 case Decl::UsingEnum: // using enum X; [C++] 6011 if (CGDebugInfo *DI = getModuleDebugInfo()) 6012 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6013 break; 6014 case Decl::NamespaceAlias: 6015 if (CGDebugInfo *DI = getModuleDebugInfo()) 6016 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6017 break; 6018 case Decl::UsingDirective: // using namespace X; [C++] 6019 if (CGDebugInfo *DI = getModuleDebugInfo()) 6020 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6021 break; 6022 case Decl::CXXConstructor: 6023 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6024 break; 6025 case Decl::CXXDestructor: 6026 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6027 break; 6028 6029 case Decl::StaticAssert: 6030 // Nothing to do. 6031 break; 6032 6033 // Objective-C Decls 6034 6035 // Forward declarations, no (immediate) code generation. 6036 case Decl::ObjCInterface: 6037 case Decl::ObjCCategory: 6038 break; 6039 6040 case Decl::ObjCProtocol: { 6041 auto *Proto = cast<ObjCProtocolDecl>(D); 6042 if (Proto->isThisDeclarationADefinition()) 6043 ObjCRuntime->GenerateProtocol(Proto); 6044 break; 6045 } 6046 6047 case Decl::ObjCCategoryImpl: 6048 // Categories have properties but don't support synthesize so we 6049 // can ignore them here. 6050 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6051 break; 6052 6053 case Decl::ObjCImplementation: { 6054 auto *OMD = cast<ObjCImplementationDecl>(D); 6055 EmitObjCPropertyImplementations(OMD); 6056 EmitObjCIvarInitializations(OMD); 6057 ObjCRuntime->GenerateClass(OMD); 6058 // Emit global variable debug information. 6059 if (CGDebugInfo *DI = getModuleDebugInfo()) 6060 if (getCodeGenOpts().hasReducedDebugInfo()) 6061 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6062 OMD->getClassInterface()), OMD->getLocation()); 6063 break; 6064 } 6065 case Decl::ObjCMethod: { 6066 auto *OMD = cast<ObjCMethodDecl>(D); 6067 // If this is not a prototype, emit the body. 6068 if (OMD->getBody()) 6069 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6070 break; 6071 } 6072 case Decl::ObjCCompatibleAlias: 6073 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6074 break; 6075 6076 case Decl::PragmaComment: { 6077 const auto *PCD = cast<PragmaCommentDecl>(D); 6078 switch (PCD->getCommentKind()) { 6079 case PCK_Unknown: 6080 llvm_unreachable("unexpected pragma comment kind"); 6081 case PCK_Linker: 6082 AppendLinkerOptions(PCD->getArg()); 6083 break; 6084 case PCK_Lib: 6085 AddDependentLib(PCD->getArg()); 6086 break; 6087 case PCK_Compiler: 6088 case PCK_ExeStr: 6089 case PCK_User: 6090 break; // We ignore all of these. 6091 } 6092 break; 6093 } 6094 6095 case Decl::PragmaDetectMismatch: { 6096 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6097 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6098 break; 6099 } 6100 6101 case Decl::LinkageSpec: 6102 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6103 break; 6104 6105 case Decl::FileScopeAsm: { 6106 // File-scope asm is ignored during device-side CUDA compilation. 6107 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6108 break; 6109 // File-scope asm is ignored during device-side OpenMP compilation. 6110 if (LangOpts.OpenMPIsDevice) 6111 break; 6112 // File-scope asm is ignored during device-side SYCL compilation. 6113 if (LangOpts.SYCLIsDevice) 6114 break; 6115 auto *AD = cast<FileScopeAsmDecl>(D); 6116 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6117 break; 6118 } 6119 6120 case Decl::Import: { 6121 auto *Import = cast<ImportDecl>(D); 6122 6123 // If we've already imported this module, we're done. 6124 if (!ImportedModules.insert(Import->getImportedModule())) 6125 break; 6126 6127 // Emit debug information for direct imports. 6128 if (!Import->getImportedOwningModule()) { 6129 if (CGDebugInfo *DI = getModuleDebugInfo()) 6130 DI->EmitImportDecl(*Import); 6131 } 6132 6133 // Find all of the submodules and emit the module initializers. 6134 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6135 SmallVector<clang::Module *, 16> Stack; 6136 Visited.insert(Import->getImportedModule()); 6137 Stack.push_back(Import->getImportedModule()); 6138 6139 while (!Stack.empty()) { 6140 clang::Module *Mod = Stack.pop_back_val(); 6141 if (!EmittedModuleInitializers.insert(Mod).second) 6142 continue; 6143 6144 for (auto *D : Context.getModuleInitializers(Mod)) 6145 EmitTopLevelDecl(D); 6146 6147 // Visit the submodules of this module. 6148 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6149 SubEnd = Mod->submodule_end(); 6150 Sub != SubEnd; ++Sub) { 6151 // Skip explicit children; they need to be explicitly imported to emit 6152 // the initializers. 6153 if ((*Sub)->IsExplicit) 6154 continue; 6155 6156 if (Visited.insert(*Sub).second) 6157 Stack.push_back(*Sub); 6158 } 6159 } 6160 break; 6161 } 6162 6163 case Decl::Export: 6164 EmitDeclContext(cast<ExportDecl>(D)); 6165 break; 6166 6167 case Decl::OMPThreadPrivate: 6168 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6169 break; 6170 6171 case Decl::OMPAllocate: 6172 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6173 break; 6174 6175 case Decl::OMPDeclareReduction: 6176 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6177 break; 6178 6179 case Decl::OMPDeclareMapper: 6180 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6181 break; 6182 6183 case Decl::OMPRequires: 6184 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6185 break; 6186 6187 case Decl::Typedef: 6188 case Decl::TypeAlias: // using foo = bar; [C++11] 6189 if (CGDebugInfo *DI = getModuleDebugInfo()) 6190 DI->EmitAndRetainType( 6191 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6192 break; 6193 6194 case Decl::Record: 6195 if (CGDebugInfo *DI = getModuleDebugInfo()) 6196 if (cast<RecordDecl>(D)->getDefinition()) 6197 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6198 break; 6199 6200 case Decl::Enum: 6201 if (CGDebugInfo *DI = getModuleDebugInfo()) 6202 if (cast<EnumDecl>(D)->getDefinition()) 6203 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6204 break; 6205 6206 default: 6207 // Make sure we handled everything we should, every other kind is a 6208 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6209 // function. Need to recode Decl::Kind to do that easily. 6210 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6211 break; 6212 } 6213 } 6214 6215 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6216 // Do we need to generate coverage mapping? 6217 if (!CodeGenOpts.CoverageMapping) 6218 return; 6219 switch (D->getKind()) { 6220 case Decl::CXXConversion: 6221 case Decl::CXXMethod: 6222 case Decl::Function: 6223 case Decl::ObjCMethod: 6224 case Decl::CXXConstructor: 6225 case Decl::CXXDestructor: { 6226 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6227 break; 6228 SourceManager &SM = getContext().getSourceManager(); 6229 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6230 break; 6231 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6232 if (I == DeferredEmptyCoverageMappingDecls.end()) 6233 DeferredEmptyCoverageMappingDecls[D] = true; 6234 break; 6235 } 6236 default: 6237 break; 6238 }; 6239 } 6240 6241 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6242 // Do we need to generate coverage mapping? 6243 if (!CodeGenOpts.CoverageMapping) 6244 return; 6245 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6246 if (Fn->isTemplateInstantiation()) 6247 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6248 } 6249 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6250 if (I == DeferredEmptyCoverageMappingDecls.end()) 6251 DeferredEmptyCoverageMappingDecls[D] = false; 6252 else 6253 I->second = false; 6254 } 6255 6256 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6257 // We call takeVector() here to avoid use-after-free. 6258 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6259 // we deserialize function bodies to emit coverage info for them, and that 6260 // deserializes more declarations. How should we handle that case? 6261 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6262 if (!Entry.second) 6263 continue; 6264 const Decl *D = Entry.first; 6265 switch (D->getKind()) { 6266 case Decl::CXXConversion: 6267 case Decl::CXXMethod: 6268 case Decl::Function: 6269 case Decl::ObjCMethod: { 6270 CodeGenPGO PGO(*this); 6271 GlobalDecl GD(cast<FunctionDecl>(D)); 6272 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6273 getFunctionLinkage(GD)); 6274 break; 6275 } 6276 case Decl::CXXConstructor: { 6277 CodeGenPGO PGO(*this); 6278 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6279 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6280 getFunctionLinkage(GD)); 6281 break; 6282 } 6283 case Decl::CXXDestructor: { 6284 CodeGenPGO PGO(*this); 6285 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6286 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6287 getFunctionLinkage(GD)); 6288 break; 6289 } 6290 default: 6291 break; 6292 }; 6293 } 6294 } 6295 6296 void CodeGenModule::EmitMainVoidAlias() { 6297 // In order to transition away from "__original_main" gracefully, emit an 6298 // alias for "main" in the no-argument case so that libc can detect when 6299 // new-style no-argument main is in used. 6300 if (llvm::Function *F = getModule().getFunction("main")) { 6301 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6302 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 6303 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 6304 } 6305 } 6306 6307 /// Turns the given pointer into a constant. 6308 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6309 const void *Ptr) { 6310 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6311 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6312 return llvm::ConstantInt::get(i64, PtrInt); 6313 } 6314 6315 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6316 llvm::NamedMDNode *&GlobalMetadata, 6317 GlobalDecl D, 6318 llvm::GlobalValue *Addr) { 6319 if (!GlobalMetadata) 6320 GlobalMetadata = 6321 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6322 6323 // TODO: should we report variant information for ctors/dtors? 6324 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6325 llvm::ConstantAsMetadata::get(GetPointerConstant( 6326 CGM.getLLVMContext(), D.getDecl()))}; 6327 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6328 } 6329 6330 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6331 llvm::GlobalValue *CppFunc) { 6332 // Store the list of ifuncs we need to replace uses in. 6333 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6334 // List of ConstantExprs that we should be able to delete when we're done 6335 // here. 6336 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6337 6338 // First make sure that all users of this are ifuncs (or ifuncs via a 6339 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6340 // later. 6341 for (llvm::User *User : Elem->users()) { 6342 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6343 // ifunc directly. In any other case, just give up, as we don't know what we 6344 // could break by changing those. 6345 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6346 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6347 return false; 6348 6349 for (llvm::User *CEUser : ConstExpr->users()) { 6350 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6351 IFuncs.push_back(IFunc); 6352 } else { 6353 return false; 6354 } 6355 } 6356 CEs.push_back(ConstExpr); 6357 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6358 IFuncs.push_back(IFunc); 6359 } else { 6360 // This user is one we don't know how to handle, so fail redirection. This 6361 // will result in an ifunc retaining a resolver name that will ultimately 6362 // fail to be resolved to a defined function. 6363 return false; 6364 } 6365 } 6366 6367 // Now we know this is a valid case where we can do this alias replacement, we 6368 // need to remove all of the references to Elem (and the bitcasts!) so we can 6369 // delete it. 6370 for (llvm::GlobalIFunc *IFunc : IFuncs) 6371 IFunc->setResolver(nullptr); 6372 for (llvm::ConstantExpr *ConstExpr : CEs) 6373 ConstExpr->destroyConstant(); 6374 6375 // We should now be out of uses for the 'old' version of this function, so we 6376 // can erase it as well. 6377 Elem->eraseFromParent(); 6378 6379 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6380 // The type of the resolver is always just a function-type that returns the 6381 // type of the IFunc, so create that here. If the type of the actual 6382 // resolver doesn't match, it just gets bitcast to the right thing. 6383 auto *ResolverTy = 6384 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6385 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6386 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6387 IFunc->setResolver(Resolver); 6388 } 6389 return true; 6390 } 6391 6392 /// For each function which is declared within an extern "C" region and marked 6393 /// as 'used', but has internal linkage, create an alias from the unmangled 6394 /// name to the mangled name if possible. People expect to be able to refer 6395 /// to such functions with an unmangled name from inline assembly within the 6396 /// same translation unit. 6397 void CodeGenModule::EmitStaticExternCAliases() { 6398 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6399 return; 6400 for (auto &I : StaticExternCValues) { 6401 IdentifierInfo *Name = I.first; 6402 llvm::GlobalValue *Val = I.second; 6403 6404 // If Val is null, that implies there were multiple declarations that each 6405 // had a claim to the unmangled name. In this case, generation of the alias 6406 // is suppressed. See CodeGenModule::MaybeHandleStaticInExterC. 6407 if (!Val) 6408 break; 6409 6410 llvm::GlobalValue *ExistingElem = 6411 getModule().getNamedValue(Name->getName()); 6412 6413 // If there is either not something already by this name, or we were able to 6414 // replace all uses from IFuncs, create the alias. 6415 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6416 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6417 } 6418 } 6419 6420 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6421 GlobalDecl &Result) const { 6422 auto Res = Manglings.find(MangledName); 6423 if (Res == Manglings.end()) 6424 return false; 6425 Result = Res->getValue(); 6426 return true; 6427 } 6428 6429 /// Emits metadata nodes associating all the global values in the 6430 /// current module with the Decls they came from. This is useful for 6431 /// projects using IR gen as a subroutine. 6432 /// 6433 /// Since there's currently no way to associate an MDNode directly 6434 /// with an llvm::GlobalValue, we create a global named metadata 6435 /// with the name 'clang.global.decl.ptrs'. 6436 void CodeGenModule::EmitDeclMetadata() { 6437 llvm::NamedMDNode *GlobalMetadata = nullptr; 6438 6439 for (auto &I : MangledDeclNames) { 6440 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6441 // Some mangled names don't necessarily have an associated GlobalValue 6442 // in this module, e.g. if we mangled it for DebugInfo. 6443 if (Addr) 6444 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6445 } 6446 } 6447 6448 /// Emits metadata nodes for all the local variables in the current 6449 /// function. 6450 void CodeGenFunction::EmitDeclMetadata() { 6451 if (LocalDeclMap.empty()) return; 6452 6453 llvm::LLVMContext &Context = getLLVMContext(); 6454 6455 // Find the unique metadata ID for this name. 6456 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6457 6458 llvm::NamedMDNode *GlobalMetadata = nullptr; 6459 6460 for (auto &I : LocalDeclMap) { 6461 const Decl *D = I.first; 6462 llvm::Value *Addr = I.second.getPointer(); 6463 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6464 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6465 Alloca->setMetadata( 6466 DeclPtrKind, llvm::MDNode::get( 6467 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6468 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6469 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6470 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6471 } 6472 } 6473 } 6474 6475 void CodeGenModule::EmitVersionIdentMetadata() { 6476 llvm::NamedMDNode *IdentMetadata = 6477 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6478 std::string Version = getClangFullVersion(); 6479 llvm::LLVMContext &Ctx = TheModule.getContext(); 6480 6481 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6482 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6483 } 6484 6485 void CodeGenModule::EmitCommandLineMetadata() { 6486 llvm::NamedMDNode *CommandLineMetadata = 6487 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6488 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6489 llvm::LLVMContext &Ctx = TheModule.getContext(); 6490 6491 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6492 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6493 } 6494 6495 void CodeGenModule::EmitCoverageFile() { 6496 if (getCodeGenOpts().CoverageDataFile.empty() && 6497 getCodeGenOpts().CoverageNotesFile.empty()) 6498 return; 6499 6500 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6501 if (!CUNode) 6502 return; 6503 6504 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6505 llvm::LLVMContext &Ctx = TheModule.getContext(); 6506 auto *CoverageDataFile = 6507 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6508 auto *CoverageNotesFile = 6509 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6510 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6511 llvm::MDNode *CU = CUNode->getOperand(i); 6512 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6513 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6514 } 6515 } 6516 6517 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6518 bool ForEH) { 6519 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6520 // FIXME: should we even be calling this method if RTTI is disabled 6521 // and it's not for EH? 6522 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6523 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6524 getTriple().isNVPTX())) 6525 return llvm::Constant::getNullValue(Int8PtrTy); 6526 6527 if (ForEH && Ty->isObjCObjectPointerType() && 6528 LangOpts.ObjCRuntime.isGNUFamily()) 6529 return ObjCRuntime->GetEHType(Ty); 6530 6531 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6532 } 6533 6534 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6535 // Do not emit threadprivates in simd-only mode. 6536 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6537 return; 6538 for (auto RefExpr : D->varlists()) { 6539 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6540 bool PerformInit = 6541 VD->getAnyInitializer() && 6542 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6543 /*ForRef=*/false); 6544 6545 Address Addr(GetAddrOfGlobalVar(VD), 6546 getTypes().ConvertTypeForMem(VD->getType()), 6547 getContext().getDeclAlign(VD)); 6548 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6549 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6550 CXXGlobalInits.push_back(InitFunction); 6551 } 6552 } 6553 6554 llvm::Metadata * 6555 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6556 StringRef Suffix) { 6557 if (auto *FnType = T->getAs<FunctionProtoType>()) 6558 T = getContext().getFunctionType( 6559 FnType->getReturnType(), FnType->getParamTypes(), 6560 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6561 6562 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6563 if (InternalId) 6564 return InternalId; 6565 6566 if (isExternallyVisible(T->getLinkage())) { 6567 std::string OutName; 6568 llvm::raw_string_ostream Out(OutName); 6569 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6570 Out << Suffix; 6571 6572 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6573 } else { 6574 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6575 llvm::ArrayRef<llvm::Metadata *>()); 6576 } 6577 6578 return InternalId; 6579 } 6580 6581 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6582 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6583 } 6584 6585 llvm::Metadata * 6586 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6587 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6588 } 6589 6590 // Generalize pointer types to a void pointer with the qualifiers of the 6591 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6592 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6593 // 'void *'. 6594 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6595 if (!Ty->isPointerType()) 6596 return Ty; 6597 6598 return Ctx.getPointerType( 6599 QualType(Ctx.VoidTy).withCVRQualifiers( 6600 Ty->getPointeeType().getCVRQualifiers())); 6601 } 6602 6603 // Apply type generalization to a FunctionType's return and argument types 6604 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6605 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6606 SmallVector<QualType, 8> GeneralizedParams; 6607 for (auto &Param : FnType->param_types()) 6608 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6609 6610 return Ctx.getFunctionType( 6611 GeneralizeType(Ctx, FnType->getReturnType()), 6612 GeneralizedParams, FnType->getExtProtoInfo()); 6613 } 6614 6615 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6616 return Ctx.getFunctionNoProtoType( 6617 GeneralizeType(Ctx, FnType->getReturnType())); 6618 6619 llvm_unreachable("Encountered unknown FunctionType"); 6620 } 6621 6622 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6623 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6624 GeneralizedMetadataIdMap, ".generalized"); 6625 } 6626 6627 /// Returns whether this module needs the "all-vtables" type identifier. 6628 bool CodeGenModule::NeedAllVtablesTypeId() const { 6629 // Returns true if at least one of vtable-based CFI checkers is enabled and 6630 // is not in the trapping mode. 6631 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6632 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6633 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6634 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6635 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6636 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6637 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6638 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6639 } 6640 6641 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6642 CharUnits Offset, 6643 const CXXRecordDecl *RD) { 6644 llvm::Metadata *MD = 6645 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6646 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6647 6648 if (CodeGenOpts.SanitizeCfiCrossDso) 6649 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6650 VTable->addTypeMetadata(Offset.getQuantity(), 6651 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6652 6653 if (NeedAllVtablesTypeId()) { 6654 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6655 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6656 } 6657 } 6658 6659 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6660 if (!SanStats) 6661 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6662 6663 return *SanStats; 6664 } 6665 6666 llvm::Value * 6667 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6668 CodeGenFunction &CGF) { 6669 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6670 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6671 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6672 auto *Call = CGF.EmitRuntimeCall( 6673 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6674 return Call; 6675 } 6676 6677 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6678 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6679 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6680 /* forPointeeType= */ true); 6681 } 6682 6683 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6684 LValueBaseInfo *BaseInfo, 6685 TBAAAccessInfo *TBAAInfo, 6686 bool forPointeeType) { 6687 if (TBAAInfo) 6688 *TBAAInfo = getTBAAAccessInfo(T); 6689 6690 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6691 // that doesn't return the information we need to compute BaseInfo. 6692 6693 // Honor alignment typedef attributes even on incomplete types. 6694 // We also honor them straight for C++ class types, even as pointees; 6695 // there's an expressivity gap here. 6696 if (auto TT = T->getAs<TypedefType>()) { 6697 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6698 if (BaseInfo) 6699 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6700 return getContext().toCharUnitsFromBits(Align); 6701 } 6702 } 6703 6704 bool AlignForArray = T->isArrayType(); 6705 6706 // Analyze the base element type, so we don't get confused by incomplete 6707 // array types. 6708 T = getContext().getBaseElementType(T); 6709 6710 if (T->isIncompleteType()) { 6711 // We could try to replicate the logic from 6712 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6713 // type is incomplete, so it's impossible to test. We could try to reuse 6714 // getTypeAlignIfKnown, but that doesn't return the information we need 6715 // to set BaseInfo. So just ignore the possibility that the alignment is 6716 // greater than one. 6717 if (BaseInfo) 6718 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6719 return CharUnits::One(); 6720 } 6721 6722 if (BaseInfo) 6723 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6724 6725 CharUnits Alignment; 6726 const CXXRecordDecl *RD; 6727 if (T.getQualifiers().hasUnaligned()) { 6728 Alignment = CharUnits::One(); 6729 } else if (forPointeeType && !AlignForArray && 6730 (RD = T->getAsCXXRecordDecl())) { 6731 // For C++ class pointees, we don't know whether we're pointing at a 6732 // base or a complete object, so we generally need to use the 6733 // non-virtual alignment. 6734 Alignment = getClassPointerAlignment(RD); 6735 } else { 6736 Alignment = getContext().getTypeAlignInChars(T); 6737 } 6738 6739 // Cap to the global maximum type alignment unless the alignment 6740 // was somehow explicit on the type. 6741 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6742 if (Alignment.getQuantity() > MaxAlign && 6743 !getContext().isAlignmentRequired(T)) 6744 Alignment = CharUnits::fromQuantity(MaxAlign); 6745 } 6746 return Alignment; 6747 } 6748 6749 bool CodeGenModule::stopAutoInit() { 6750 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6751 if (StopAfter) { 6752 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6753 // used 6754 if (NumAutoVarInit >= StopAfter) { 6755 return true; 6756 } 6757 if (!NumAutoVarInit) { 6758 unsigned DiagID = getDiags().getCustomDiagID( 6759 DiagnosticsEngine::Warning, 6760 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6761 "number of times ftrivial-auto-var-init=%1 gets applied."); 6762 getDiags().Report(DiagID) 6763 << StopAfter 6764 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6765 LangOptions::TrivialAutoVarInitKind::Zero 6766 ? "zero" 6767 : "pattern"); 6768 } 6769 ++NumAutoVarInit; 6770 } 6771 return false; 6772 } 6773 6774 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 6775 const Decl *D) const { 6776 OS << (isa<VarDecl>(D) ? "__static__" : ".anon.") 6777 << getContext().getCUIDHash(); 6778 } 6779