xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 4e786ddccbb1321d0cccac57da2e887dd5fd83cb)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/Diagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/ConvertUTF.h"
32 #include "llvm/CallingConv.h"
33 #include "llvm/Module.h"
34 #include "llvm/Intrinsics.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/ADT/Triple.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Support/CallSite.h"
39 #include "llvm/Support/ErrorHandling.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 
44 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
45                              llvm::Module &M, const llvm::TargetData &TD,
46                              Diagnostic &diags)
47   : BlockModule(C, M, TD, Types, *this), Context(C),
48     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
49     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
50     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
51     VTables(*this), Runtime(0), ABI(0),
52     CFConstantStringClassRef(0),
53     NSConstantStringClassRef(0),
54     VMContext(M.getContext()) {
55 
56   if (!Features.ObjC1)
57     Runtime = 0;
58   else if (!Features.NeXTRuntime)
59     Runtime = CreateGNUObjCRuntime(*this);
60   else if (Features.ObjCNonFragileABI)
61     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
62   else
63     Runtime = CreateMacObjCRuntime(*this);
64 
65   if (!Features.CPlusPlus)
66     ABI = 0;
67   else createCXXABI();
68 
69   // If debug info generation is enabled, create the CGDebugInfo object.
70   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
71 }
72 
73 CodeGenModule::~CodeGenModule() {
74   delete Runtime;
75   delete ABI;
76   delete DebugInfo;
77 }
78 
79 void CodeGenModule::createObjCRuntime() {
80   if (!Features.NeXTRuntime)
81     Runtime = CreateGNUObjCRuntime(*this);
82   else if (Features.ObjCNonFragileABI)
83     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
84   else
85     Runtime = CreateMacObjCRuntime(*this);
86 }
87 
88 void CodeGenModule::createCXXABI() {
89   // For now, just create an Itanium ABI.
90   ABI = CreateItaniumCXXABI(*this);
91 }
92 
93 void CodeGenModule::Release() {
94   EmitDeferred();
95   EmitCXXGlobalInitFunc();
96   EmitCXXGlobalDtorFunc();
97   if (Runtime)
98     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
99       AddGlobalCtor(ObjCInitFunction);
100   EmitCtorList(GlobalCtors, "llvm.global_ctors");
101   EmitCtorList(GlobalDtors, "llvm.global_dtors");
102   EmitAnnotations();
103   EmitLLVMUsed();
104 }
105 
106 bool CodeGenModule::isTargetDarwin() const {
107   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
108 }
109 
110 /// ErrorUnsupported - Print out an error that codegen doesn't support the
111 /// specified stmt yet.
112 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
113                                      bool OmitOnError) {
114   if (OmitOnError && getDiags().hasErrorOccurred())
115     return;
116   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
117                                                "cannot compile this %0 yet");
118   std::string Msg = Type;
119   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
120     << Msg << S->getSourceRange();
121 }
122 
123 /// ErrorUnsupported - Print out an error that codegen doesn't support the
124 /// specified decl yet.
125 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
126                                      bool OmitOnError) {
127   if (OmitOnError && getDiags().hasErrorOccurred())
128     return;
129   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
130                                                "cannot compile this %0 yet");
131   std::string Msg = Type;
132   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
133 }
134 
135 LangOptions::VisibilityMode
136 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
137   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
138     if (VD->getStorageClass() == VarDecl::PrivateExtern)
139       return LangOptions::Hidden;
140 
141   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
142     switch (attr->getVisibility()) {
143     default: assert(0 && "Unknown visibility!");
144     case VisibilityAttr::DefaultVisibility:
145       return LangOptions::Default;
146     case VisibilityAttr::HiddenVisibility:
147       return LangOptions::Hidden;
148     case VisibilityAttr::ProtectedVisibility:
149       return LangOptions::Protected;
150     }
151   }
152 
153   // This decl should have the same visibility as its parent.
154   if (const DeclContext *DC = D->getDeclContext())
155     return getDeclVisibilityMode(cast<Decl>(DC));
156 
157   return getLangOptions().getVisibilityMode();
158 }
159 
160 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
161                                         const Decl *D) const {
162   // Internal definitions always have default visibility.
163   if (GV->hasLocalLinkage()) {
164     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
165     return;
166   }
167 
168   switch (getDeclVisibilityMode(D)) {
169   default: assert(0 && "Unknown visibility!");
170   case LangOptions::Default:
171     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
172   case LangOptions::Hidden:
173     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
174   case LangOptions::Protected:
175     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
176   }
177 }
178 
179 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) {
180   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
181 
182   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
183     return getMangledCXXCtorName(Buffer, D, GD.getCtorType());
184   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
185     return getMangledCXXDtorName(Buffer, D, GD.getDtorType());
186 
187   return getMangledName(Buffer, ND);
188 }
189 
190 /// \brief Retrieves the mangled name for the given declaration.
191 ///
192 /// If the given declaration requires a mangled name, returns an
193 /// const char* containing the mangled name.  Otherwise, returns
194 /// the unmangled name.
195 ///
196 void CodeGenModule::getMangledName(MangleBuffer &Buffer,
197                                    const NamedDecl *ND) {
198   if (!getMangleContext().shouldMangleDeclName(ND)) {
199     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
200     Buffer.setString(ND->getNameAsCString());
201     return;
202   }
203 
204   getMangleContext().mangleName(ND, Buffer.getBuffer());
205 }
206 
207 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
208   return getModule().getNamedValue(Name);
209 }
210 
211 /// AddGlobalCtor - Add a function to the list that will be called before
212 /// main() runs.
213 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
214   // FIXME: Type coercion of void()* types.
215   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
216 }
217 
218 /// AddGlobalDtor - Add a function to the list that will be called
219 /// when the module is unloaded.
220 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
221   // FIXME: Type coercion of void()* types.
222   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
223 }
224 
225 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
226   // Ctor function type is void()*.
227   llvm::FunctionType* CtorFTy =
228     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
229                             std::vector<const llvm::Type*>(),
230                             false);
231   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
232 
233   // Get the type of a ctor entry, { i32, void ()* }.
234   llvm::StructType* CtorStructTy =
235     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
236                           llvm::PointerType::getUnqual(CtorFTy), NULL);
237 
238   // Construct the constructor and destructor arrays.
239   std::vector<llvm::Constant*> Ctors;
240   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
241     std::vector<llvm::Constant*> S;
242     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
243                 I->second, false));
244     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
245     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
246   }
247 
248   if (!Ctors.empty()) {
249     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
250     new llvm::GlobalVariable(TheModule, AT, false,
251                              llvm::GlobalValue::AppendingLinkage,
252                              llvm::ConstantArray::get(AT, Ctors),
253                              GlobalName);
254   }
255 }
256 
257 void CodeGenModule::EmitAnnotations() {
258   if (Annotations.empty())
259     return;
260 
261   // Create a new global variable for the ConstantStruct in the Module.
262   llvm::Constant *Array =
263   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
264                                                 Annotations.size()),
265                            Annotations);
266   llvm::GlobalValue *gv =
267   new llvm::GlobalVariable(TheModule, Array->getType(), false,
268                            llvm::GlobalValue::AppendingLinkage, Array,
269                            "llvm.global.annotations");
270   gv->setSection("llvm.metadata");
271 }
272 
273 static CodeGenModule::GVALinkage
274 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
275                       const LangOptions &Features) {
276   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
277 
278   Linkage L = FD->getLinkage();
279   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
280       FD->getType()->getLinkage() == UniqueExternalLinkage)
281     L = UniqueExternalLinkage;
282 
283   switch (L) {
284   case NoLinkage:
285   case InternalLinkage:
286   case UniqueExternalLinkage:
287     return CodeGenModule::GVA_Internal;
288 
289   case ExternalLinkage:
290     switch (FD->getTemplateSpecializationKind()) {
291     case TSK_Undeclared:
292     case TSK_ExplicitSpecialization:
293       External = CodeGenModule::GVA_StrongExternal;
294       break;
295 
296     case TSK_ExplicitInstantiationDefinition:
297       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
298 
299     case TSK_ExplicitInstantiationDeclaration:
300     case TSK_ImplicitInstantiation:
301       External = CodeGenModule::GVA_TemplateInstantiation;
302       break;
303     }
304   }
305 
306   if (!FD->isInlined())
307     return External;
308 
309   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
310     // GNU or C99 inline semantics. Determine whether this symbol should be
311     // externally visible.
312     if (FD->isInlineDefinitionExternallyVisible())
313       return External;
314 
315     // C99 inline semantics, where the symbol is not externally visible.
316     return CodeGenModule::GVA_C99Inline;
317   }
318 
319   // C++0x [temp.explicit]p9:
320   //   [ Note: The intent is that an inline function that is the subject of
321   //   an explicit instantiation declaration will still be implicitly
322   //   instantiated when used so that the body can be considered for
323   //   inlining, but that no out-of-line copy of the inline function would be
324   //   generated in the translation unit. -- end note ]
325   if (FD->getTemplateSpecializationKind()
326                                        == TSK_ExplicitInstantiationDeclaration)
327     return CodeGenModule::GVA_C99Inline;
328 
329   return CodeGenModule::GVA_CXXInline;
330 }
331 
332 llvm::GlobalValue::LinkageTypes
333 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
334   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
335 
336   if (Linkage == GVA_Internal) {
337     return llvm::Function::InternalLinkage;
338   } else if (D->hasAttr<DLLExportAttr>()) {
339     return llvm::Function::DLLExportLinkage;
340   } else if (D->hasAttr<WeakAttr>()) {
341     return llvm::Function::WeakAnyLinkage;
342   } else if (Linkage == GVA_C99Inline) {
343     // In C99 mode, 'inline' functions are guaranteed to have a strong
344     // definition somewhere else, so we can use available_externally linkage.
345     return llvm::Function::AvailableExternallyLinkage;
346   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
347     // In C++, the compiler has to emit a definition in every translation unit
348     // that references the function.  We should use linkonce_odr because
349     // a) if all references in this translation unit are optimized away, we
350     // don't need to codegen it.  b) if the function persists, it needs to be
351     // merged with other definitions. c) C++ has the ODR, so we know the
352     // definition is dependable.
353     return llvm::Function::LinkOnceODRLinkage;
354   } else if (Linkage == GVA_ExplicitTemplateInstantiation) {
355     // An explicit instantiation of a template has weak linkage, since
356     // explicit instantiations can occur in multiple translation units
357     // and must all be equivalent. However, we are not allowed to
358     // throw away these explicit instantiations.
359     return llvm::Function::WeakODRLinkage;
360   } else {
361     assert(Linkage == GVA_StrongExternal);
362     // Otherwise, we have strong external linkage.
363     return llvm::Function::ExternalLinkage;
364   }
365 }
366 
367 
368 /// SetFunctionDefinitionAttributes - Set attributes for a global.
369 ///
370 /// FIXME: This is currently only done for aliases and functions, but not for
371 /// variables (these details are set in EmitGlobalVarDefinition for variables).
372 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
373                                                     llvm::GlobalValue *GV) {
374   SetCommonAttributes(D, GV);
375 }
376 
377 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
378                                               const CGFunctionInfo &Info,
379                                               llvm::Function *F) {
380   unsigned CallingConv;
381   AttributeListType AttributeList;
382   ConstructAttributeList(Info, D, AttributeList, CallingConv);
383   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
384                                           AttributeList.size()));
385   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
386 }
387 
388 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
389                                                            llvm::Function *F) {
390   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
391     F->addFnAttr(llvm::Attribute::NoUnwind);
392 
393   if (D->hasAttr<AlwaysInlineAttr>())
394     F->addFnAttr(llvm::Attribute::AlwaysInline);
395 
396   if (D->hasAttr<NoInlineAttr>())
397     F->addFnAttr(llvm::Attribute::NoInline);
398 
399   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
400     F->addFnAttr(llvm::Attribute::StackProtect);
401   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
402     F->addFnAttr(llvm::Attribute::StackProtectReq);
403 
404   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
405     unsigned width = Context.Target.getCharWidth();
406     F->setAlignment(AA->getAlignment() / width);
407     while ((AA = AA->getNext<AlignedAttr>()))
408       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
409   }
410   // C++ ABI requires 2-byte alignment for member functions.
411   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
412     F->setAlignment(2);
413 }
414 
415 void CodeGenModule::SetCommonAttributes(const Decl *D,
416                                         llvm::GlobalValue *GV) {
417   setGlobalVisibility(GV, D);
418 
419   if (D->hasAttr<UsedAttr>())
420     AddUsedGlobal(GV);
421 
422   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
423     GV->setSection(SA->getName());
424 
425   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
426 }
427 
428 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
429                                                   llvm::Function *F,
430                                                   const CGFunctionInfo &FI) {
431   SetLLVMFunctionAttributes(D, FI, F);
432   SetLLVMFunctionAttributesForDefinition(D, F);
433 
434   F->setLinkage(llvm::Function::InternalLinkage);
435 
436   SetCommonAttributes(D, F);
437 }
438 
439 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
440                                           llvm::Function *F,
441                                           bool IsIncompleteFunction) {
442   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
443 
444   if (!IsIncompleteFunction)
445     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
446 
447   // Only a few attributes are set on declarations; these may later be
448   // overridden by a definition.
449 
450   if (FD->hasAttr<DLLImportAttr>()) {
451     F->setLinkage(llvm::Function::DLLImportLinkage);
452   } else if (FD->hasAttr<WeakAttr>() ||
453              FD->hasAttr<WeakImportAttr>()) {
454     // "extern_weak" is overloaded in LLVM; we probably should have
455     // separate linkage types for this.
456     F->setLinkage(llvm::Function::ExternalWeakLinkage);
457   } else {
458     F->setLinkage(llvm::Function::ExternalLinkage);
459   }
460 
461   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
462     F->setSection(SA->getName());
463 }
464 
465 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
466   assert(!GV->isDeclaration() &&
467          "Only globals with definition can force usage.");
468   LLVMUsed.push_back(GV);
469 }
470 
471 void CodeGenModule::EmitLLVMUsed() {
472   // Don't create llvm.used if there is no need.
473   if (LLVMUsed.empty())
474     return;
475 
476   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
477 
478   // Convert LLVMUsed to what ConstantArray needs.
479   std::vector<llvm::Constant*> UsedArray;
480   UsedArray.resize(LLVMUsed.size());
481   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
482     UsedArray[i] =
483      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
484                                       i8PTy);
485   }
486 
487   if (UsedArray.empty())
488     return;
489   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
490 
491   llvm::GlobalVariable *GV =
492     new llvm::GlobalVariable(getModule(), ATy, false,
493                              llvm::GlobalValue::AppendingLinkage,
494                              llvm::ConstantArray::get(ATy, UsedArray),
495                              "llvm.used");
496 
497   GV->setSection("llvm.metadata");
498 }
499 
500 void CodeGenModule::EmitDeferred() {
501   // Emit code for any potentially referenced deferred decls.  Since a
502   // previously unused static decl may become used during the generation of code
503   // for a static function, iterate until no  changes are made.
504 
505   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
506     if (!DeferredVTables.empty()) {
507       const CXXRecordDecl *RD = DeferredVTables.back();
508       DeferredVTables.pop_back();
509       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
510       continue;
511     }
512 
513     GlobalDecl D = DeferredDeclsToEmit.back();
514     DeferredDeclsToEmit.pop_back();
515 
516     // Look it up to see if it was defined with a stronger definition (e.g. an
517     // extern inline function with a strong function redefinition).  If so,
518     // just ignore the deferred decl.
519     MangleBuffer Name;
520     getMangledName(Name, D);
521     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
522     assert(CGRef && "Deferred decl wasn't referenced?");
523 
524     if (!CGRef->isDeclaration())
525       continue;
526 
527     // Otherwise, emit the definition and move on to the next one.
528     EmitGlobalDefinition(D);
529   }
530 }
531 
532 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
533 /// annotation information for a given GlobalValue.  The annotation struct is
534 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
535 /// GlobalValue being annotated.  The second field is the constant string
536 /// created from the AnnotateAttr's annotation.  The third field is a constant
537 /// string containing the name of the translation unit.  The fourth field is
538 /// the line number in the file of the annotated value declaration.
539 ///
540 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
541 ///        appears to.
542 ///
543 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
544                                                 const AnnotateAttr *AA,
545                                                 unsigned LineNo) {
546   llvm::Module *M = &getModule();
547 
548   // get [N x i8] constants for the annotation string, and the filename string
549   // which are the 2nd and 3rd elements of the global annotation structure.
550   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
551   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
552                                                   AA->getAnnotation(), true);
553   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
554                                                   M->getModuleIdentifier(),
555                                                   true);
556 
557   // Get the two global values corresponding to the ConstantArrays we just
558   // created to hold the bytes of the strings.
559   llvm::GlobalValue *annoGV =
560     new llvm::GlobalVariable(*M, anno->getType(), false,
561                              llvm::GlobalValue::PrivateLinkage, anno,
562                              GV->getName());
563   // translation unit name string, emitted into the llvm.metadata section.
564   llvm::GlobalValue *unitGV =
565     new llvm::GlobalVariable(*M, unit->getType(), false,
566                              llvm::GlobalValue::PrivateLinkage, unit,
567                              ".str");
568 
569   // Create the ConstantStruct for the global annotation.
570   llvm::Constant *Fields[4] = {
571     llvm::ConstantExpr::getBitCast(GV, SBP),
572     llvm::ConstantExpr::getBitCast(annoGV, SBP),
573     llvm::ConstantExpr::getBitCast(unitGV, SBP),
574     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
575   };
576   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
577 }
578 
579 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
580   // Never defer when EmitAllDecls is specified or the decl has
581   // attribute used.
582   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
583     return false;
584 
585   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
586     // Constructors and destructors should never be deferred.
587     if (FD->hasAttr<ConstructorAttr>() ||
588         FD->hasAttr<DestructorAttr>())
589       return false;
590 
591     // The key function for a class must never be deferred.
592     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
593       const CXXRecordDecl *RD = MD->getParent();
594       if (MD->isOutOfLine() && RD->isDynamicClass()) {
595         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
596         if (KeyFunction &&
597             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
598           return false;
599       }
600     }
601 
602     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
603 
604     // static, static inline, always_inline, and extern inline functions can
605     // always be deferred.  Normal inline functions can be deferred in C99/C++.
606     // Implicit template instantiations can also be deferred in C++.
607     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
608         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
609       return true;
610     return false;
611   }
612 
613   const VarDecl *VD = cast<VarDecl>(Global);
614   assert(VD->isFileVarDecl() && "Invalid decl");
615 
616   // We never want to defer structs that have non-trivial constructors or
617   // destructors.
618 
619   // FIXME: Handle references.
620   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
621     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
622       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
623         return false;
624     }
625   }
626 
627   // Static data may be deferred, but out-of-line static data members
628   // cannot be.
629   Linkage L = VD->getLinkage();
630   if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
631       VD->getType()->getLinkage() == UniqueExternalLinkage)
632     L = UniqueExternalLinkage;
633 
634   switch (L) {
635   case NoLinkage:
636   case InternalLinkage:
637   case UniqueExternalLinkage:
638     // Initializer has side effects?
639     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
640       return false;
641     return !(VD->isStaticDataMember() && VD->isOutOfLine());
642 
643   case ExternalLinkage:
644     break;
645   }
646 
647   return false;
648 }
649 
650 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
651   const AliasAttr *AA = VD->getAttr<AliasAttr>();
652   assert(AA && "No alias?");
653 
654   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
655 
656   // See if there is already something with the target's name in the module.
657   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
658 
659   llvm::Constant *Aliasee;
660   if (isa<llvm::FunctionType>(DeclTy))
661     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
662   else
663     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
664                                     llvm::PointerType::getUnqual(DeclTy), 0);
665   if (!Entry) {
666     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
667     F->setLinkage(llvm::Function::ExternalWeakLinkage);
668     WeakRefReferences.insert(F);
669   }
670 
671   return Aliasee;
672 }
673 
674 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
675   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
676 
677   // Weak references don't produce any output by themselves.
678   if (Global->hasAttr<WeakRefAttr>())
679     return;
680 
681   // If this is an alias definition (which otherwise looks like a declaration)
682   // emit it now.
683   if (Global->hasAttr<AliasAttr>())
684     return EmitAliasDefinition(GD);
685 
686   // Ignore declarations, they will be emitted on their first use.
687   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
688     // Forward declarations are emitted lazily on first use.
689     if (!FD->isThisDeclarationADefinition())
690       return;
691   } else {
692     const VarDecl *VD = cast<VarDecl>(Global);
693     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
694 
695     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
696       return;
697   }
698 
699   // Defer code generation when possible if this is a static definition, inline
700   // function etc.  These we only want to emit if they are used.
701   if (!MayDeferGeneration(Global)) {
702     // Emit the definition if it can't be deferred.
703     EmitGlobalDefinition(GD);
704     return;
705   }
706 
707   // If the value has already been used, add it directly to the
708   // DeferredDeclsToEmit list.
709   MangleBuffer MangledName;
710   getMangledName(MangledName, GD);
711   if (GetGlobalValue(MangledName))
712     DeferredDeclsToEmit.push_back(GD);
713   else {
714     // Otherwise, remember that we saw a deferred decl with this name.  The
715     // first use of the mangled name will cause it to move into
716     // DeferredDeclsToEmit.
717     DeferredDecls[MangledName] = GD;
718   }
719 }
720 
721 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
722   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
723 
724   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
725                                  Context.getSourceManager(),
726                                  "Generating code for declaration");
727 
728   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
729     if (Method->isVirtual())
730       getVTables().EmitThunks(GD);
731 
732   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
733     return EmitCXXConstructor(CD, GD.getCtorType());
734 
735   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
736     return EmitCXXDestructor(DD, GD.getDtorType());
737 
738   if (isa<FunctionDecl>(D))
739     return EmitGlobalFunctionDefinition(GD);
740 
741   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
742     return EmitGlobalVarDefinition(VD);
743 
744   assert(0 && "Invalid argument to EmitGlobalDefinition()");
745 }
746 
747 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
748 /// module, create and return an llvm Function with the specified type. If there
749 /// is something in the module with the specified name, return it potentially
750 /// bitcasted to the right type.
751 ///
752 /// If D is non-null, it specifies a decl that correspond to this.  This is used
753 /// to set the attributes on the function when it is first created.
754 llvm::Constant *
755 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
756                                        const llvm::Type *Ty,
757                                        GlobalDecl D) {
758   // Lookup the entry, lazily creating it if necessary.
759   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
760   if (Entry) {
761     if (WeakRefReferences.count(Entry)) {
762       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
763       if (FD && !FD->hasAttr<WeakAttr>())
764         Entry->setLinkage(llvm::Function::ExternalLinkage);
765 
766       WeakRefReferences.erase(Entry);
767     }
768 
769     if (Entry->getType()->getElementType() == Ty)
770       return Entry;
771 
772     // Make sure the result is of the correct type.
773     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
774     return llvm::ConstantExpr::getBitCast(Entry, PTy);
775   }
776 
777   // This function doesn't have a complete type (for example, the return
778   // type is an incomplete struct). Use a fake type instead, and make
779   // sure not to try to set attributes.
780   bool IsIncompleteFunction = false;
781 
782   const llvm::FunctionType *FTy;
783   if (isa<llvm::FunctionType>(Ty)) {
784     FTy = cast<llvm::FunctionType>(Ty);
785   } else {
786     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
787                                   std::vector<const llvm::Type*>(), false);
788     IsIncompleteFunction = true;
789   }
790   llvm::Function *F = llvm::Function::Create(FTy,
791                                              llvm::Function::ExternalLinkage,
792                                              MangledName, &getModule());
793   assert(F->getName() == MangledName && "name was uniqued!");
794   if (D.getDecl())
795     SetFunctionAttributes(D, F, IsIncompleteFunction);
796 
797   // This is the first use or definition of a mangled name.  If there is a
798   // deferred decl with this name, remember that we need to emit it at the end
799   // of the file.
800   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
801   if (DDI != DeferredDecls.end()) {
802     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
803     // list, and remove it from DeferredDecls (since we don't need it anymore).
804     DeferredDeclsToEmit.push_back(DDI->second);
805     DeferredDecls.erase(DDI);
806   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
807     // If this the first reference to a C++ inline function in a class, queue up
808     // the deferred function body for emission.  These are not seen as
809     // top-level declarations.
810     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
811       DeferredDeclsToEmit.push_back(D);
812     // A called constructor which has no definition or declaration need be
813     // synthesized.
814     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
815       if (CD->isImplicit()) {
816         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
817         DeferredDeclsToEmit.push_back(D);
818       }
819     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
820       if (DD->isImplicit()) {
821         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
822         DeferredDeclsToEmit.push_back(D);
823       }
824     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
825       if (MD->isCopyAssignment() && MD->isImplicit()) {
826         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
827         DeferredDeclsToEmit.push_back(D);
828       }
829     }
830   }
831 
832   // Make sure the result is of the requested type.
833   if (!IsIncompleteFunction) {
834     assert(F->getType()->getElementType() == Ty);
835     return F;
836   }
837 
838   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
839   return llvm::ConstantExpr::getBitCast(F, PTy);
840 }
841 
842 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
843 /// non-null, then this function will use the specified type if it has to
844 /// create it (this occurs when we see a definition of the function).
845 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
846                                                  const llvm::Type *Ty) {
847   // If there was no specific requested type, just convert it now.
848   if (!Ty)
849     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
850   MangleBuffer MangledName;
851   getMangledName(MangledName, GD);
852   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
853 }
854 
855 /// CreateRuntimeFunction - Create a new runtime function with the specified
856 /// type and name.
857 llvm::Constant *
858 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
859                                      llvm::StringRef Name) {
860   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
861 }
862 
863 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
864   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
865     return false;
866   if (Context.getLangOptions().CPlusPlus &&
867       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
868     // FIXME: We should do something fancier here!
869     return false;
870   }
871   return true;
872 }
873 
874 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
875 /// create and return an llvm GlobalVariable with the specified type.  If there
876 /// is something in the module with the specified name, return it potentially
877 /// bitcasted to the right type.
878 ///
879 /// If D is non-null, it specifies a decl that correspond to this.  This is used
880 /// to set the attributes on the global when it is first created.
881 llvm::Constant *
882 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
883                                      const llvm::PointerType *Ty,
884                                      const VarDecl *D) {
885   // Lookup the entry, lazily creating it if necessary.
886   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
887   if (Entry) {
888     if (WeakRefReferences.count(Entry)) {
889       if (D && !D->hasAttr<WeakAttr>())
890         Entry->setLinkage(llvm::Function::ExternalLinkage);
891 
892       WeakRefReferences.erase(Entry);
893     }
894 
895     if (Entry->getType() == Ty)
896       return Entry;
897 
898     // Make sure the result is of the correct type.
899     return llvm::ConstantExpr::getBitCast(Entry, Ty);
900   }
901 
902   // This is the first use or definition of a mangled name.  If there is a
903   // deferred decl with this name, remember that we need to emit it at the end
904   // of the file.
905   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
906   if (DDI != DeferredDecls.end()) {
907     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
908     // list, and remove it from DeferredDecls (since we don't need it anymore).
909     DeferredDeclsToEmit.push_back(DDI->second);
910     DeferredDecls.erase(DDI);
911   }
912 
913   llvm::GlobalVariable *GV =
914     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
915                              llvm::GlobalValue::ExternalLinkage,
916                              0, MangledName, 0,
917                              false, Ty->getAddressSpace());
918 
919   // Handle things which are present even on external declarations.
920   if (D) {
921     // FIXME: This code is overly simple and should be merged with other global
922     // handling.
923     GV->setConstant(DeclIsConstantGlobal(Context, D));
924 
925     // FIXME: Merge with other attribute handling code.
926     if (D->getStorageClass() == VarDecl::PrivateExtern)
927       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
928 
929     if (D->hasAttr<WeakAttr>() ||
930         D->hasAttr<WeakImportAttr>())
931       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
932 
933     GV->setThreadLocal(D->isThreadSpecified());
934   }
935 
936   return GV;
937 }
938 
939 
940 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
941 /// given global variable.  If Ty is non-null and if the global doesn't exist,
942 /// then it will be greated with the specified type instead of whatever the
943 /// normal requested type would be.
944 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
945                                                   const llvm::Type *Ty) {
946   assert(D->hasGlobalStorage() && "Not a global variable");
947   QualType ASTTy = D->getType();
948   if (Ty == 0)
949     Ty = getTypes().ConvertTypeForMem(ASTTy);
950 
951   const llvm::PointerType *PTy =
952     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
953 
954   MangleBuffer MangledName;
955   getMangledName(MangledName, D);
956   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
957 }
958 
959 /// CreateRuntimeVariable - Create a new runtime global variable with the
960 /// specified type and name.
961 llvm::Constant *
962 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
963                                      llvm::StringRef Name) {
964   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
965 }
966 
967 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
968   assert(!D->getInit() && "Cannot emit definite definitions here!");
969 
970   if (MayDeferGeneration(D)) {
971     // If we have not seen a reference to this variable yet, place it
972     // into the deferred declarations table to be emitted if needed
973     // later.
974     MangleBuffer MangledName;
975     getMangledName(MangledName, D);
976     if (!GetGlobalValue(MangledName)) {
977       DeferredDecls[MangledName] = D;
978       return;
979     }
980   }
981 
982   // The tentative definition is the only definition.
983   EmitGlobalVarDefinition(D);
984 }
985 
986 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
987   if (DefinitionRequired)
988     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
989 }
990 
991 llvm::GlobalVariable::LinkageTypes
992 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
993   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
994     return llvm::GlobalVariable::InternalLinkage;
995 
996   if (const CXXMethodDecl *KeyFunction
997                                     = RD->getASTContext().getKeyFunction(RD)) {
998     // If this class has a key function, use that to determine the linkage of
999     // the vtable.
1000     const FunctionDecl *Def = 0;
1001     if (KeyFunction->getBody(Def))
1002       KeyFunction = cast<CXXMethodDecl>(Def);
1003 
1004     switch (KeyFunction->getTemplateSpecializationKind()) {
1005       case TSK_Undeclared:
1006       case TSK_ExplicitSpecialization:
1007         if (KeyFunction->isInlined())
1008           return llvm::GlobalVariable::WeakODRLinkage;
1009 
1010         return llvm::GlobalVariable::ExternalLinkage;
1011 
1012       case TSK_ImplicitInstantiation:
1013       case TSK_ExplicitInstantiationDefinition:
1014         return llvm::GlobalVariable::WeakODRLinkage;
1015 
1016       case TSK_ExplicitInstantiationDeclaration:
1017         // FIXME: Use available_externally linkage. However, this currently
1018         // breaks LLVM's build due to undefined symbols.
1019         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1020         return llvm::GlobalVariable::WeakODRLinkage;
1021     }
1022   }
1023 
1024   switch (RD->getTemplateSpecializationKind()) {
1025   case TSK_Undeclared:
1026   case TSK_ExplicitSpecialization:
1027   case TSK_ImplicitInstantiation:
1028   case TSK_ExplicitInstantiationDefinition:
1029     return llvm::GlobalVariable::WeakODRLinkage;
1030 
1031   case TSK_ExplicitInstantiationDeclaration:
1032     // FIXME: Use available_externally linkage. However, this currently
1033     // breaks LLVM's build due to undefined symbols.
1034     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1035     return llvm::GlobalVariable::WeakODRLinkage;
1036   }
1037 
1038   // Silence GCC warning.
1039   return llvm::GlobalVariable::WeakODRLinkage;
1040 }
1041 
1042 static CodeGenModule::GVALinkage
1043 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1044   // If this is a static data member, compute the kind of template
1045   // specialization. Otherwise, this variable is not part of a
1046   // template.
1047   TemplateSpecializationKind TSK = TSK_Undeclared;
1048   if (VD->isStaticDataMember())
1049     TSK = VD->getTemplateSpecializationKind();
1050 
1051   Linkage L = VD->getLinkage();
1052   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1053       VD->getType()->getLinkage() == UniqueExternalLinkage)
1054     L = UniqueExternalLinkage;
1055 
1056   switch (L) {
1057   case NoLinkage:
1058   case InternalLinkage:
1059   case UniqueExternalLinkage:
1060     return CodeGenModule::GVA_Internal;
1061 
1062   case ExternalLinkage:
1063     switch (TSK) {
1064     case TSK_Undeclared:
1065     case TSK_ExplicitSpecialization:
1066       return CodeGenModule::GVA_StrongExternal;
1067 
1068     case TSK_ExplicitInstantiationDeclaration:
1069       llvm_unreachable("Variable should not be instantiated");
1070       // Fall through to treat this like any other instantiation.
1071 
1072     case TSK_ExplicitInstantiationDefinition:
1073       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
1074 
1075     case TSK_ImplicitInstantiation:
1076       return CodeGenModule::GVA_TemplateInstantiation;
1077     }
1078   }
1079 
1080   return CodeGenModule::GVA_StrongExternal;
1081 }
1082 
1083 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1084     return CharUnits::fromQuantity(
1085       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1086 }
1087 
1088 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1089   llvm::Constant *Init = 0;
1090   QualType ASTTy = D->getType();
1091   bool NonConstInit = false;
1092 
1093   const Expr *InitExpr = D->getAnyInitializer();
1094 
1095   if (!InitExpr) {
1096     // This is a tentative definition; tentative definitions are
1097     // implicitly initialized with { 0 }.
1098     //
1099     // Note that tentative definitions are only emitted at the end of
1100     // a translation unit, so they should never have incomplete
1101     // type. In addition, EmitTentativeDefinition makes sure that we
1102     // never attempt to emit a tentative definition if a real one
1103     // exists. A use may still exists, however, so we still may need
1104     // to do a RAUW.
1105     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1106     Init = EmitNullConstant(D->getType());
1107   } else {
1108     Init = EmitConstantExpr(InitExpr, D->getType());
1109     if (!Init) {
1110       QualType T = InitExpr->getType();
1111       if (D->getType()->isReferenceType())
1112         T = D->getType();
1113 
1114       if (getLangOptions().CPlusPlus) {
1115         EmitCXXGlobalVarDeclInitFunc(D);
1116         Init = EmitNullConstant(T);
1117         NonConstInit = true;
1118       } else {
1119         ErrorUnsupported(D, "static initializer");
1120         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1121       }
1122     }
1123   }
1124 
1125   const llvm::Type* InitType = Init->getType();
1126   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1127 
1128   // Strip off a bitcast if we got one back.
1129   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1130     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1131            // all zero index gep.
1132            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1133     Entry = CE->getOperand(0);
1134   }
1135 
1136   // Entry is now either a Function or GlobalVariable.
1137   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1138 
1139   // We have a definition after a declaration with the wrong type.
1140   // We must make a new GlobalVariable* and update everything that used OldGV
1141   // (a declaration or tentative definition) with the new GlobalVariable*
1142   // (which will be a definition).
1143   //
1144   // This happens if there is a prototype for a global (e.g.
1145   // "extern int x[];") and then a definition of a different type (e.g.
1146   // "int x[10];"). This also happens when an initializer has a different type
1147   // from the type of the global (this happens with unions).
1148   if (GV == 0 ||
1149       GV->getType()->getElementType() != InitType ||
1150       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1151 
1152     // Move the old entry aside so that we'll create a new one.
1153     Entry->setName(llvm::StringRef());
1154 
1155     // Make a new global with the correct type, this is now guaranteed to work.
1156     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1157 
1158     // Replace all uses of the old global with the new global
1159     llvm::Constant *NewPtrForOldDecl =
1160         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1161     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1162 
1163     // Erase the old global, since it is no longer used.
1164     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1165   }
1166 
1167   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1168     SourceManager &SM = Context.getSourceManager();
1169     AddAnnotation(EmitAnnotateAttr(GV, AA,
1170                               SM.getInstantiationLineNumber(D->getLocation())));
1171   }
1172 
1173   GV->setInitializer(Init);
1174 
1175   // If it is safe to mark the global 'constant', do so now.
1176   GV->setConstant(false);
1177   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1178     GV->setConstant(true);
1179 
1180   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1181 
1182   // Set the llvm linkage type as appropriate.
1183   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1184   if (Linkage == GVA_Internal)
1185     GV->setLinkage(llvm::Function::InternalLinkage);
1186   else if (D->hasAttr<DLLImportAttr>())
1187     GV->setLinkage(llvm::Function::DLLImportLinkage);
1188   else if (D->hasAttr<DLLExportAttr>())
1189     GV->setLinkage(llvm::Function::DLLExportLinkage);
1190   else if (D->hasAttr<WeakAttr>()) {
1191     if (GV->isConstant())
1192       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1193     else
1194       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1195   } else if (Linkage == GVA_TemplateInstantiation ||
1196              Linkage == GVA_ExplicitTemplateInstantiation)
1197     // FIXME: It seems like we can provide more specific linkage here
1198     // (LinkOnceODR, WeakODR).
1199     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1200   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1201            !D->hasExternalStorage() && !D->getInit() &&
1202            !D->getAttr<SectionAttr>()) {
1203     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1204     // common vars aren't constant even if declared const.
1205     GV->setConstant(false);
1206   } else
1207     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1208 
1209   SetCommonAttributes(D, GV);
1210 
1211   // Emit global variable debug information.
1212   if (CGDebugInfo *DI = getDebugInfo()) {
1213     DI->setLocation(D->getLocation());
1214     DI->EmitGlobalVariable(GV, D);
1215   }
1216 }
1217 
1218 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1219 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1220 /// existing call uses of the old function in the module, this adjusts them to
1221 /// call the new function directly.
1222 ///
1223 /// This is not just a cleanup: the always_inline pass requires direct calls to
1224 /// functions to be able to inline them.  If there is a bitcast in the way, it
1225 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1226 /// run at -O0.
1227 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1228                                                       llvm::Function *NewFn) {
1229   // If we're redefining a global as a function, don't transform it.
1230   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1231   if (OldFn == 0) return;
1232 
1233   const llvm::Type *NewRetTy = NewFn->getReturnType();
1234   llvm::SmallVector<llvm::Value*, 4> ArgList;
1235 
1236   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1237        UI != E; ) {
1238     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1239     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1240     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1241     llvm::CallSite CS(CI);
1242     if (!CI || !CS.isCallee(I)) continue;
1243 
1244     // If the return types don't match exactly, and if the call isn't dead, then
1245     // we can't transform this call.
1246     if (CI->getType() != NewRetTy && !CI->use_empty())
1247       continue;
1248 
1249     // If the function was passed too few arguments, don't transform.  If extra
1250     // arguments were passed, we silently drop them.  If any of the types
1251     // mismatch, we don't transform.
1252     unsigned ArgNo = 0;
1253     bool DontTransform = false;
1254     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1255          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1256       if (CS.arg_size() == ArgNo ||
1257           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1258         DontTransform = true;
1259         break;
1260       }
1261     }
1262     if (DontTransform)
1263       continue;
1264 
1265     // Okay, we can transform this.  Create the new call instruction and copy
1266     // over the required information.
1267     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1268     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1269                                                      ArgList.end(), "", CI);
1270     ArgList.clear();
1271     if (!NewCall->getType()->isVoidTy())
1272       NewCall->takeName(CI);
1273     NewCall->setAttributes(CI->getAttributes());
1274     NewCall->setCallingConv(CI->getCallingConv());
1275 
1276     // Finally, remove the old call, replacing any uses with the new one.
1277     if (!CI->use_empty())
1278       CI->replaceAllUsesWith(NewCall);
1279 
1280     // Copy debug location attached to CI.
1281     if (!CI->getDebugLoc().isUnknown())
1282       NewCall->setDebugLoc(CI->getDebugLoc());
1283     CI->eraseFromParent();
1284   }
1285 }
1286 
1287 
1288 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1289   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1290   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1291   getMangleContext().mangleInitDiscriminator();
1292   // Get or create the prototype for the function.
1293   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1294 
1295   // Strip off a bitcast if we got one back.
1296   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1297     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1298     Entry = CE->getOperand(0);
1299   }
1300 
1301 
1302   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1303     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1304 
1305     // If the types mismatch then we have to rewrite the definition.
1306     assert(OldFn->isDeclaration() &&
1307            "Shouldn't replace non-declaration");
1308 
1309     // F is the Function* for the one with the wrong type, we must make a new
1310     // Function* and update everything that used F (a declaration) with the new
1311     // Function* (which will be a definition).
1312     //
1313     // This happens if there is a prototype for a function
1314     // (e.g. "int f()") and then a definition of a different type
1315     // (e.g. "int f(int x)").  Move the old function aside so that it
1316     // doesn't interfere with GetAddrOfFunction.
1317     OldFn->setName(llvm::StringRef());
1318     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1319 
1320     // If this is an implementation of a function without a prototype, try to
1321     // replace any existing uses of the function (which may be calls) with uses
1322     // of the new function
1323     if (D->getType()->isFunctionNoProtoType()) {
1324       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1325       OldFn->removeDeadConstantUsers();
1326     }
1327 
1328     // Replace uses of F with the Function we will endow with a body.
1329     if (!Entry->use_empty()) {
1330       llvm::Constant *NewPtrForOldDecl =
1331         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1332       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1333     }
1334 
1335     // Ok, delete the old function now, which is dead.
1336     OldFn->eraseFromParent();
1337 
1338     Entry = NewFn;
1339   }
1340 
1341   llvm::Function *Fn = cast<llvm::Function>(Entry);
1342   setFunctionLinkage(D, Fn);
1343 
1344   CodeGenFunction(*this).GenerateCode(D, Fn);
1345 
1346   SetFunctionDefinitionAttributes(D, Fn);
1347   SetLLVMFunctionAttributesForDefinition(D, Fn);
1348 
1349   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1350     AddGlobalCtor(Fn, CA->getPriority());
1351   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1352     AddGlobalDtor(Fn, DA->getPriority());
1353 }
1354 
1355 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1356   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1357   const AliasAttr *AA = D->getAttr<AliasAttr>();
1358   assert(AA && "Not an alias?");
1359 
1360   MangleBuffer MangledName;
1361   getMangledName(MangledName, GD);
1362 
1363   // If there is a definition in the module, then it wins over the alias.
1364   // This is dubious, but allow it to be safe.  Just ignore the alias.
1365   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1366   if (Entry && !Entry->isDeclaration())
1367     return;
1368 
1369   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1370 
1371   // Create a reference to the named value.  This ensures that it is emitted
1372   // if a deferred decl.
1373   llvm::Constant *Aliasee;
1374   if (isa<llvm::FunctionType>(DeclTy))
1375     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1376   else
1377     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1378                                     llvm::PointerType::getUnqual(DeclTy), 0);
1379 
1380   // Create the new alias itself, but don't set a name yet.
1381   llvm::GlobalValue *GA =
1382     new llvm::GlobalAlias(Aliasee->getType(),
1383                           llvm::Function::ExternalLinkage,
1384                           "", Aliasee, &getModule());
1385 
1386   if (Entry) {
1387     assert(Entry->isDeclaration());
1388 
1389     // If there is a declaration in the module, then we had an extern followed
1390     // by the alias, as in:
1391     //   extern int test6();
1392     //   ...
1393     //   int test6() __attribute__((alias("test7")));
1394     //
1395     // Remove it and replace uses of it with the alias.
1396     GA->takeName(Entry);
1397 
1398     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1399                                                           Entry->getType()));
1400     Entry->eraseFromParent();
1401   } else {
1402     GA->setName(MangledName.getString());
1403   }
1404 
1405   // Set attributes which are particular to an alias; this is a
1406   // specialization of the attributes which may be set on a global
1407   // variable/function.
1408   if (D->hasAttr<DLLExportAttr>()) {
1409     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1410       // The dllexport attribute is ignored for undefined symbols.
1411       if (FD->getBody())
1412         GA->setLinkage(llvm::Function::DLLExportLinkage);
1413     } else {
1414       GA->setLinkage(llvm::Function::DLLExportLinkage);
1415     }
1416   } else if (D->hasAttr<WeakAttr>() ||
1417              D->hasAttr<WeakRefAttr>() ||
1418              D->hasAttr<WeakImportAttr>()) {
1419     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1420   }
1421 
1422   SetCommonAttributes(D, GA);
1423 }
1424 
1425 /// getBuiltinLibFunction - Given a builtin id for a function like
1426 /// "__builtin_fabsf", return a Function* for "fabsf".
1427 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1428                                                   unsigned BuiltinID) {
1429   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1430           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1431          "isn't a lib fn");
1432 
1433   // Get the name, skip over the __builtin_ prefix (if necessary).
1434   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1435   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1436     Name += 10;
1437 
1438   const llvm::FunctionType *Ty =
1439     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1440 
1441   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1442 }
1443 
1444 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1445                                             unsigned NumTys) {
1446   return llvm::Intrinsic::getDeclaration(&getModule(),
1447                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1448 }
1449 
1450 
1451 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1452                                            const llvm::Type *SrcType,
1453                                            const llvm::Type *SizeType) {
1454   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1455   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1456 }
1457 
1458 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1459                                             const llvm::Type *SrcType,
1460                                             const llvm::Type *SizeType) {
1461   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1462   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1463 }
1464 
1465 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1466                                            const llvm::Type *SizeType) {
1467   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1468   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1469 }
1470 
1471 static llvm::StringMapEntry<llvm::Constant*> &
1472 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1473                          const StringLiteral *Literal,
1474                          bool TargetIsLSB,
1475                          bool &IsUTF16,
1476                          unsigned &StringLength) {
1477   unsigned NumBytes = Literal->getByteLength();
1478 
1479   // Check for simple case.
1480   if (!Literal->containsNonAsciiOrNull()) {
1481     StringLength = NumBytes;
1482     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1483                                                 StringLength));
1484   }
1485 
1486   // Otherwise, convert the UTF8 literals into a byte string.
1487   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1488   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1489   UTF16 *ToPtr = &ToBuf[0];
1490 
1491   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1492                                                &ToPtr, ToPtr + NumBytes,
1493                                                strictConversion);
1494 
1495   // Check for conversion failure.
1496   if (Result != conversionOK) {
1497     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1498     // this duplicate code.
1499     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1500     StringLength = NumBytes;
1501     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1502                                                 StringLength));
1503   }
1504 
1505   // ConvertUTF8toUTF16 returns the length in ToPtr.
1506   StringLength = ToPtr - &ToBuf[0];
1507 
1508   // Render the UTF-16 string into a byte array and convert to the target byte
1509   // order.
1510   //
1511   // FIXME: This isn't something we should need to do here.
1512   llvm::SmallString<128> AsBytes;
1513   AsBytes.reserve(StringLength * 2);
1514   for (unsigned i = 0; i != StringLength; ++i) {
1515     unsigned short Val = ToBuf[i];
1516     if (TargetIsLSB) {
1517       AsBytes.push_back(Val & 0xFF);
1518       AsBytes.push_back(Val >> 8);
1519     } else {
1520       AsBytes.push_back(Val >> 8);
1521       AsBytes.push_back(Val & 0xFF);
1522     }
1523   }
1524   // Append one extra null character, the second is automatically added by our
1525   // caller.
1526   AsBytes.push_back(0);
1527 
1528   IsUTF16 = true;
1529   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1530 }
1531 
1532 llvm::Constant *
1533 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1534   unsigned StringLength = 0;
1535   bool isUTF16 = false;
1536   llvm::StringMapEntry<llvm::Constant*> &Entry =
1537     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1538                              getTargetData().isLittleEndian(),
1539                              isUTF16, StringLength);
1540 
1541   if (llvm::Constant *C = Entry.getValue())
1542     return C;
1543 
1544   llvm::Constant *Zero =
1545       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1546   llvm::Constant *Zeros[] = { Zero, Zero };
1547 
1548   // If we don't already have it, get __CFConstantStringClassReference.
1549   if (!CFConstantStringClassRef) {
1550     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1551     Ty = llvm::ArrayType::get(Ty, 0);
1552     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1553                                            "__CFConstantStringClassReference");
1554     // Decay array -> ptr
1555     CFConstantStringClassRef =
1556       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1557   }
1558 
1559   QualType CFTy = getContext().getCFConstantStringType();
1560 
1561   const llvm::StructType *STy =
1562     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1563 
1564   std::vector<llvm::Constant*> Fields(4);
1565 
1566   // Class pointer.
1567   Fields[0] = CFConstantStringClassRef;
1568 
1569   // Flags.
1570   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1571   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1572     llvm::ConstantInt::get(Ty, 0x07C8);
1573 
1574   // String pointer.
1575   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1576 
1577   llvm::GlobalValue::LinkageTypes Linkage;
1578   bool isConstant;
1579   if (isUTF16) {
1580     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1581     Linkage = llvm::GlobalValue::InternalLinkage;
1582     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1583     // does make plain ascii ones writable.
1584     isConstant = true;
1585   } else {
1586     Linkage = llvm::GlobalValue::PrivateLinkage;
1587     isConstant = !Features.WritableStrings;
1588   }
1589 
1590   llvm::GlobalVariable *GV =
1591     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1592                              ".str");
1593   if (isUTF16) {
1594     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1595     GV->setAlignment(Align.getQuantity());
1596   }
1597   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1598 
1599   // String length.
1600   Ty = getTypes().ConvertType(getContext().LongTy);
1601   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1602 
1603   // The struct.
1604   C = llvm::ConstantStruct::get(STy, Fields);
1605   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1606                                 llvm::GlobalVariable::PrivateLinkage, C,
1607                                 "_unnamed_cfstring_");
1608   if (const char *Sect = getContext().Target.getCFStringSection())
1609     GV->setSection(Sect);
1610   Entry.setValue(GV);
1611 
1612   return GV;
1613 }
1614 
1615 llvm::Constant *
1616 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1617   unsigned StringLength = 0;
1618   bool isUTF16 = false;
1619   llvm::StringMapEntry<llvm::Constant*> &Entry =
1620     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1621                              getTargetData().isLittleEndian(),
1622                              isUTF16, StringLength);
1623 
1624   if (llvm::Constant *C = Entry.getValue())
1625     return C;
1626 
1627   llvm::Constant *Zero =
1628   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1629   llvm::Constant *Zeros[] = { Zero, Zero };
1630 
1631   // If we don't already have it, get _NSConstantStringClassReference.
1632   if (!NSConstantStringClassRef) {
1633     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1634     Ty = llvm::ArrayType::get(Ty, 0);
1635     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1636                                         Features.ObjCNonFragileABI ?
1637                                         "OBJC_CLASS_$_NSConstantString" :
1638                                         "_NSConstantStringClassReference");
1639     // Decay array -> ptr
1640     NSConstantStringClassRef =
1641       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1642   }
1643 
1644   QualType NSTy = getContext().getNSConstantStringType();
1645 
1646   const llvm::StructType *STy =
1647   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1648 
1649   std::vector<llvm::Constant*> Fields(3);
1650 
1651   // Class pointer.
1652   Fields[0] = NSConstantStringClassRef;
1653 
1654   // String pointer.
1655   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1656 
1657   llvm::GlobalValue::LinkageTypes Linkage;
1658   bool isConstant;
1659   if (isUTF16) {
1660     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1661     Linkage = llvm::GlobalValue::InternalLinkage;
1662     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1663     // does make plain ascii ones writable.
1664     isConstant = true;
1665   } else {
1666     Linkage = llvm::GlobalValue::PrivateLinkage;
1667     isConstant = !Features.WritableStrings;
1668   }
1669 
1670   llvm::GlobalVariable *GV =
1671   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1672                            ".str");
1673   if (isUTF16) {
1674     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1675     GV->setAlignment(Align.getQuantity());
1676   }
1677   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1678 
1679   // String length.
1680   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1681   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1682 
1683   // The struct.
1684   C = llvm::ConstantStruct::get(STy, Fields);
1685   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1686                                 llvm::GlobalVariable::PrivateLinkage, C,
1687                                 "_unnamed_nsstring_");
1688   // FIXME. Fix section.
1689   if (const char *Sect =
1690         Features.ObjCNonFragileABI
1691           ? getContext().Target.getNSStringNonFragileABISection()
1692           : getContext().Target.getNSStringSection())
1693     GV->setSection(Sect);
1694   Entry.setValue(GV);
1695 
1696   return GV;
1697 }
1698 
1699 /// GetStringForStringLiteral - Return the appropriate bytes for a
1700 /// string literal, properly padded to match the literal type.
1701 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1702   const char *StrData = E->getStrData();
1703   unsigned Len = E->getByteLength();
1704 
1705   const ConstantArrayType *CAT =
1706     getContext().getAsConstantArrayType(E->getType());
1707   assert(CAT && "String isn't pointer or array!");
1708 
1709   // Resize the string to the right size.
1710   std::string Str(StrData, StrData+Len);
1711   uint64_t RealLen = CAT->getSize().getZExtValue();
1712 
1713   if (E->isWide())
1714     RealLen *= getContext().Target.getWCharWidth()/8;
1715 
1716   Str.resize(RealLen, '\0');
1717 
1718   return Str;
1719 }
1720 
1721 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1722 /// constant array for the given string literal.
1723 llvm::Constant *
1724 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1725   // FIXME: This can be more efficient.
1726   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1727   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1728   if (S->isWide()) {
1729     llvm::Type *DestTy =
1730         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1731     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1732   }
1733   return C;
1734 }
1735 
1736 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1737 /// array for the given ObjCEncodeExpr node.
1738 llvm::Constant *
1739 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1740   std::string Str;
1741   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1742 
1743   return GetAddrOfConstantCString(Str);
1744 }
1745 
1746 
1747 /// GenerateWritableString -- Creates storage for a string literal.
1748 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1749                                              bool constant,
1750                                              CodeGenModule &CGM,
1751                                              const char *GlobalName) {
1752   // Create Constant for this string literal. Don't add a '\0'.
1753   llvm::Constant *C =
1754       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1755 
1756   // Create a global variable for this string
1757   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1758                                   llvm::GlobalValue::PrivateLinkage,
1759                                   C, GlobalName);
1760 }
1761 
1762 /// GetAddrOfConstantString - Returns a pointer to a character array
1763 /// containing the literal. This contents are exactly that of the
1764 /// given string, i.e. it will not be null terminated automatically;
1765 /// see GetAddrOfConstantCString. Note that whether the result is
1766 /// actually a pointer to an LLVM constant depends on
1767 /// Feature.WriteableStrings.
1768 ///
1769 /// The result has pointer to array type.
1770 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1771                                                        const char *GlobalName) {
1772   bool IsConstant = !Features.WritableStrings;
1773 
1774   // Get the default prefix if a name wasn't specified.
1775   if (!GlobalName)
1776     GlobalName = ".str";
1777 
1778   // Don't share any string literals if strings aren't constant.
1779   if (!IsConstant)
1780     return GenerateStringLiteral(str, false, *this, GlobalName);
1781 
1782   llvm::StringMapEntry<llvm::Constant *> &Entry =
1783     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1784 
1785   if (Entry.getValue())
1786     return Entry.getValue();
1787 
1788   // Create a global variable for this.
1789   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1790   Entry.setValue(C);
1791   return C;
1792 }
1793 
1794 /// GetAddrOfConstantCString - Returns a pointer to a character
1795 /// array containing the literal and a terminating '\-'
1796 /// character. The result has pointer to array type.
1797 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1798                                                         const char *GlobalName){
1799   return GetAddrOfConstantString(str + '\0', GlobalName);
1800 }
1801 
1802 /// EmitObjCPropertyImplementations - Emit information for synthesized
1803 /// properties for an implementation.
1804 void CodeGenModule::EmitObjCPropertyImplementations(const
1805                                                     ObjCImplementationDecl *D) {
1806   for (ObjCImplementationDecl::propimpl_iterator
1807          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1808     ObjCPropertyImplDecl *PID = *i;
1809 
1810     // Dynamic is just for type-checking.
1811     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1812       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1813 
1814       // Determine which methods need to be implemented, some may have
1815       // been overridden. Note that ::isSynthesized is not the method
1816       // we want, that just indicates if the decl came from a
1817       // property. What we want to know is if the method is defined in
1818       // this implementation.
1819       if (!D->getInstanceMethod(PD->getGetterName()))
1820         CodeGenFunction(*this).GenerateObjCGetter(
1821                                  const_cast<ObjCImplementationDecl *>(D), PID);
1822       if (!PD->isReadOnly() &&
1823           !D->getInstanceMethod(PD->getSetterName()))
1824         CodeGenFunction(*this).GenerateObjCSetter(
1825                                  const_cast<ObjCImplementationDecl *>(D), PID);
1826     }
1827   }
1828 }
1829 
1830 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1831 /// for an implementation.
1832 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1833   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1834     return;
1835   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1836   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1837   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1838   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1839   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1840                                                   D->getLocation(),
1841                                                   D->getLocation(), cxxSelector,
1842                                                   getContext().VoidTy, 0,
1843                                                   DC, true, false, true,
1844                                                   ObjCMethodDecl::Required);
1845   D->addInstanceMethod(DTORMethod);
1846   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1847 
1848   II = &getContext().Idents.get(".cxx_construct");
1849   cxxSelector = getContext().Selectors.getSelector(0, &II);
1850   // The constructor returns 'self'.
1851   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1852                                                 D->getLocation(),
1853                                                 D->getLocation(), cxxSelector,
1854                                                 getContext().getObjCIdType(), 0,
1855                                                 DC, true, false, true,
1856                                                 ObjCMethodDecl::Required);
1857   D->addInstanceMethod(CTORMethod);
1858   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1859 
1860 
1861 }
1862 
1863 /// EmitNamespace - Emit all declarations in a namespace.
1864 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1865   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1866        I != E; ++I)
1867     EmitTopLevelDecl(*I);
1868 }
1869 
1870 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1871 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1872   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1873       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1874     ErrorUnsupported(LSD, "linkage spec");
1875     return;
1876   }
1877 
1878   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1879        I != E; ++I)
1880     EmitTopLevelDecl(*I);
1881 }
1882 
1883 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1884 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1885   // If an error has occurred, stop code generation, but continue
1886   // parsing and semantic analysis (to ensure all warnings and errors
1887   // are emitted).
1888   if (Diags.hasErrorOccurred())
1889     return;
1890 
1891   // Ignore dependent declarations.
1892   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1893     return;
1894 
1895   switch (D->getKind()) {
1896   case Decl::CXXConversion:
1897   case Decl::CXXMethod:
1898   case Decl::Function:
1899     // Skip function templates
1900     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1901       return;
1902 
1903     EmitGlobal(cast<FunctionDecl>(D));
1904     break;
1905 
1906   case Decl::Var:
1907     EmitGlobal(cast<VarDecl>(D));
1908     break;
1909 
1910   // C++ Decls
1911   case Decl::Namespace:
1912     EmitNamespace(cast<NamespaceDecl>(D));
1913     break;
1914     // No code generation needed.
1915   case Decl::UsingShadow:
1916   case Decl::Using:
1917   case Decl::UsingDirective:
1918   case Decl::ClassTemplate:
1919   case Decl::FunctionTemplate:
1920   case Decl::NamespaceAlias:
1921     break;
1922   case Decl::CXXConstructor:
1923     // Skip function templates
1924     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1925       return;
1926 
1927     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1928     break;
1929   case Decl::CXXDestructor:
1930     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1931     break;
1932 
1933   case Decl::StaticAssert:
1934     // Nothing to do.
1935     break;
1936 
1937   // Objective-C Decls
1938 
1939   // Forward declarations, no (immediate) code generation.
1940   case Decl::ObjCClass:
1941   case Decl::ObjCForwardProtocol:
1942   case Decl::ObjCCategory:
1943   case Decl::ObjCInterface:
1944     break;
1945 
1946   case Decl::ObjCProtocol:
1947     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1948     break;
1949 
1950   case Decl::ObjCCategoryImpl:
1951     // Categories have properties but don't support synthesize so we
1952     // can ignore them here.
1953     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1954     break;
1955 
1956   case Decl::ObjCImplementation: {
1957     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1958     EmitObjCPropertyImplementations(OMD);
1959     EmitObjCIvarInitializations(OMD);
1960     Runtime->GenerateClass(OMD);
1961     break;
1962   }
1963   case Decl::ObjCMethod: {
1964     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1965     // If this is not a prototype, emit the body.
1966     if (OMD->getBody())
1967       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1968     break;
1969   }
1970   case Decl::ObjCCompatibleAlias:
1971     // compatibility-alias is a directive and has no code gen.
1972     break;
1973 
1974   case Decl::LinkageSpec:
1975     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1976     break;
1977 
1978   case Decl::FileScopeAsm: {
1979     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1980     llvm::StringRef AsmString = AD->getAsmString()->getString();
1981 
1982     const std::string &S = getModule().getModuleInlineAsm();
1983     if (S.empty())
1984       getModule().setModuleInlineAsm(AsmString);
1985     else
1986       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1987     break;
1988   }
1989 
1990   default:
1991     // Make sure we handled everything we should, every other kind is a
1992     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1993     // function. Need to recode Decl::Kind to do that easily.
1994     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1995   }
1996 }
1997