1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/CodeGen/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/RecordLayout.h" 27 #include "clang/Basic/Builtins.h" 28 #include "clang/Basic/Diagnostic.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Basic/ConvertUTF.h" 32 #include "llvm/CallingConv.h" 33 #include "llvm/Module.h" 34 #include "llvm/Intrinsics.h" 35 #include "llvm/LLVMContext.h" 36 #include "llvm/ADT/Triple.h" 37 #include "llvm/Target/TargetData.h" 38 #include "llvm/Support/CallSite.h" 39 #include "llvm/Support/ErrorHandling.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 44 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 45 llvm::Module &M, const llvm::TargetData &TD, 46 Diagnostic &diags) 47 : BlockModule(C, M, TD, Types, *this), Context(C), 48 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 49 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 50 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 51 VTables(*this), Runtime(0), ABI(0), 52 CFConstantStringClassRef(0), 53 NSConstantStringClassRef(0), 54 VMContext(M.getContext()) { 55 56 if (!Features.ObjC1) 57 Runtime = 0; 58 else if (!Features.NeXTRuntime) 59 Runtime = CreateGNUObjCRuntime(*this); 60 else if (Features.ObjCNonFragileABI) 61 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 62 else 63 Runtime = CreateMacObjCRuntime(*this); 64 65 if (!Features.CPlusPlus) 66 ABI = 0; 67 else createCXXABI(); 68 69 // If debug info generation is enabled, create the CGDebugInfo object. 70 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 71 } 72 73 CodeGenModule::~CodeGenModule() { 74 delete Runtime; 75 delete ABI; 76 delete DebugInfo; 77 } 78 79 void CodeGenModule::createObjCRuntime() { 80 if (!Features.NeXTRuntime) 81 Runtime = CreateGNUObjCRuntime(*this); 82 else if (Features.ObjCNonFragileABI) 83 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 84 else 85 Runtime = CreateMacObjCRuntime(*this); 86 } 87 88 void CodeGenModule::createCXXABI() { 89 // For now, just create an Itanium ABI. 90 ABI = CreateItaniumCXXABI(*this); 91 } 92 93 void CodeGenModule::Release() { 94 EmitDeferred(); 95 EmitCXXGlobalInitFunc(); 96 EmitCXXGlobalDtorFunc(); 97 if (Runtime) 98 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 99 AddGlobalCtor(ObjCInitFunction); 100 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 101 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 102 EmitAnnotations(); 103 EmitLLVMUsed(); 104 } 105 106 bool CodeGenModule::isTargetDarwin() const { 107 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 108 } 109 110 /// ErrorUnsupported - Print out an error that codegen doesn't support the 111 /// specified stmt yet. 112 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 113 bool OmitOnError) { 114 if (OmitOnError && getDiags().hasErrorOccurred()) 115 return; 116 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 117 "cannot compile this %0 yet"); 118 std::string Msg = Type; 119 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 120 << Msg << S->getSourceRange(); 121 } 122 123 /// ErrorUnsupported - Print out an error that codegen doesn't support the 124 /// specified decl yet. 125 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 126 bool OmitOnError) { 127 if (OmitOnError && getDiags().hasErrorOccurred()) 128 return; 129 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 130 "cannot compile this %0 yet"); 131 std::string Msg = Type; 132 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 133 } 134 135 LangOptions::VisibilityMode 136 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 137 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 138 if (VD->getStorageClass() == VarDecl::PrivateExtern) 139 return LangOptions::Hidden; 140 141 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 142 switch (attr->getVisibility()) { 143 default: assert(0 && "Unknown visibility!"); 144 case VisibilityAttr::DefaultVisibility: 145 return LangOptions::Default; 146 case VisibilityAttr::HiddenVisibility: 147 return LangOptions::Hidden; 148 case VisibilityAttr::ProtectedVisibility: 149 return LangOptions::Protected; 150 } 151 } 152 153 // This decl should have the same visibility as its parent. 154 if (const DeclContext *DC = D->getDeclContext()) 155 return getDeclVisibilityMode(cast<Decl>(DC)); 156 157 return getLangOptions().getVisibilityMode(); 158 } 159 160 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 161 const Decl *D) const { 162 // Internal definitions always have default visibility. 163 if (GV->hasLocalLinkage()) { 164 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 165 return; 166 } 167 168 switch (getDeclVisibilityMode(D)) { 169 default: assert(0 && "Unknown visibility!"); 170 case LangOptions::Default: 171 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 172 case LangOptions::Hidden: 173 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 174 case LangOptions::Protected: 175 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 176 } 177 } 178 179 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) { 180 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 181 182 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 183 return getMangledCXXCtorName(Buffer, D, GD.getCtorType()); 184 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 185 return getMangledCXXDtorName(Buffer, D, GD.getDtorType()); 186 187 return getMangledName(Buffer, ND); 188 } 189 190 /// \brief Retrieves the mangled name for the given declaration. 191 /// 192 /// If the given declaration requires a mangled name, returns an 193 /// const char* containing the mangled name. Otherwise, returns 194 /// the unmangled name. 195 /// 196 void CodeGenModule::getMangledName(MangleBuffer &Buffer, 197 const NamedDecl *ND) { 198 if (!getMangleContext().shouldMangleDeclName(ND)) { 199 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 200 Buffer.setString(ND->getNameAsCString()); 201 return; 202 } 203 204 getMangleContext().mangleName(ND, Buffer.getBuffer()); 205 } 206 207 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 208 return getModule().getNamedValue(Name); 209 } 210 211 /// AddGlobalCtor - Add a function to the list that will be called before 212 /// main() runs. 213 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 214 // FIXME: Type coercion of void()* types. 215 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 216 } 217 218 /// AddGlobalDtor - Add a function to the list that will be called 219 /// when the module is unloaded. 220 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 221 // FIXME: Type coercion of void()* types. 222 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 223 } 224 225 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 226 // Ctor function type is void()*. 227 llvm::FunctionType* CtorFTy = 228 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 229 std::vector<const llvm::Type*>(), 230 false); 231 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 232 233 // Get the type of a ctor entry, { i32, void ()* }. 234 llvm::StructType* CtorStructTy = 235 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 236 llvm::PointerType::getUnqual(CtorFTy), NULL); 237 238 // Construct the constructor and destructor arrays. 239 std::vector<llvm::Constant*> Ctors; 240 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 241 std::vector<llvm::Constant*> S; 242 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 243 I->second, false)); 244 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 245 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 246 } 247 248 if (!Ctors.empty()) { 249 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 250 new llvm::GlobalVariable(TheModule, AT, false, 251 llvm::GlobalValue::AppendingLinkage, 252 llvm::ConstantArray::get(AT, Ctors), 253 GlobalName); 254 } 255 } 256 257 void CodeGenModule::EmitAnnotations() { 258 if (Annotations.empty()) 259 return; 260 261 // Create a new global variable for the ConstantStruct in the Module. 262 llvm::Constant *Array = 263 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 264 Annotations.size()), 265 Annotations); 266 llvm::GlobalValue *gv = 267 new llvm::GlobalVariable(TheModule, Array->getType(), false, 268 llvm::GlobalValue::AppendingLinkage, Array, 269 "llvm.global.annotations"); 270 gv->setSection("llvm.metadata"); 271 } 272 273 static CodeGenModule::GVALinkage 274 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 275 const LangOptions &Features) { 276 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 277 278 Linkage L = FD->getLinkage(); 279 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 280 FD->getType()->getLinkage() == UniqueExternalLinkage) 281 L = UniqueExternalLinkage; 282 283 switch (L) { 284 case NoLinkage: 285 case InternalLinkage: 286 case UniqueExternalLinkage: 287 return CodeGenModule::GVA_Internal; 288 289 case ExternalLinkage: 290 switch (FD->getTemplateSpecializationKind()) { 291 case TSK_Undeclared: 292 case TSK_ExplicitSpecialization: 293 External = CodeGenModule::GVA_StrongExternal; 294 break; 295 296 case TSK_ExplicitInstantiationDefinition: 297 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 298 299 case TSK_ExplicitInstantiationDeclaration: 300 case TSK_ImplicitInstantiation: 301 External = CodeGenModule::GVA_TemplateInstantiation; 302 break; 303 } 304 } 305 306 if (!FD->isInlined()) 307 return External; 308 309 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 310 // GNU or C99 inline semantics. Determine whether this symbol should be 311 // externally visible. 312 if (FD->isInlineDefinitionExternallyVisible()) 313 return External; 314 315 // C99 inline semantics, where the symbol is not externally visible. 316 return CodeGenModule::GVA_C99Inline; 317 } 318 319 // C++0x [temp.explicit]p9: 320 // [ Note: The intent is that an inline function that is the subject of 321 // an explicit instantiation declaration will still be implicitly 322 // instantiated when used so that the body can be considered for 323 // inlining, but that no out-of-line copy of the inline function would be 324 // generated in the translation unit. -- end note ] 325 if (FD->getTemplateSpecializationKind() 326 == TSK_ExplicitInstantiationDeclaration) 327 return CodeGenModule::GVA_C99Inline; 328 329 return CodeGenModule::GVA_CXXInline; 330 } 331 332 llvm::GlobalValue::LinkageTypes 333 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 334 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 335 336 if (Linkage == GVA_Internal) { 337 return llvm::Function::InternalLinkage; 338 } else if (D->hasAttr<DLLExportAttr>()) { 339 return llvm::Function::DLLExportLinkage; 340 } else if (D->hasAttr<WeakAttr>()) { 341 return llvm::Function::WeakAnyLinkage; 342 } else if (Linkage == GVA_C99Inline) { 343 // In C99 mode, 'inline' functions are guaranteed to have a strong 344 // definition somewhere else, so we can use available_externally linkage. 345 return llvm::Function::AvailableExternallyLinkage; 346 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 347 // In C++, the compiler has to emit a definition in every translation unit 348 // that references the function. We should use linkonce_odr because 349 // a) if all references in this translation unit are optimized away, we 350 // don't need to codegen it. b) if the function persists, it needs to be 351 // merged with other definitions. c) C++ has the ODR, so we know the 352 // definition is dependable. 353 return llvm::Function::LinkOnceODRLinkage; 354 } else if (Linkage == GVA_ExplicitTemplateInstantiation) { 355 // An explicit instantiation of a template has weak linkage, since 356 // explicit instantiations can occur in multiple translation units 357 // and must all be equivalent. However, we are not allowed to 358 // throw away these explicit instantiations. 359 return llvm::Function::WeakODRLinkage; 360 } else { 361 assert(Linkage == GVA_StrongExternal); 362 // Otherwise, we have strong external linkage. 363 return llvm::Function::ExternalLinkage; 364 } 365 } 366 367 368 /// SetFunctionDefinitionAttributes - Set attributes for a global. 369 /// 370 /// FIXME: This is currently only done for aliases and functions, but not for 371 /// variables (these details are set in EmitGlobalVarDefinition for variables). 372 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 373 llvm::GlobalValue *GV) { 374 SetCommonAttributes(D, GV); 375 } 376 377 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 378 const CGFunctionInfo &Info, 379 llvm::Function *F) { 380 unsigned CallingConv; 381 AttributeListType AttributeList; 382 ConstructAttributeList(Info, D, AttributeList, CallingConv); 383 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 384 AttributeList.size())); 385 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 386 } 387 388 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 389 llvm::Function *F) { 390 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 391 F->addFnAttr(llvm::Attribute::NoUnwind); 392 393 if (D->hasAttr<AlwaysInlineAttr>()) 394 F->addFnAttr(llvm::Attribute::AlwaysInline); 395 396 if (D->hasAttr<NoInlineAttr>()) 397 F->addFnAttr(llvm::Attribute::NoInline); 398 399 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 400 F->addFnAttr(llvm::Attribute::StackProtect); 401 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 402 F->addFnAttr(llvm::Attribute::StackProtectReq); 403 404 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 405 unsigned width = Context.Target.getCharWidth(); 406 F->setAlignment(AA->getAlignment() / width); 407 while ((AA = AA->getNext<AlignedAttr>())) 408 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 409 } 410 // C++ ABI requires 2-byte alignment for member functions. 411 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 412 F->setAlignment(2); 413 } 414 415 void CodeGenModule::SetCommonAttributes(const Decl *D, 416 llvm::GlobalValue *GV) { 417 setGlobalVisibility(GV, D); 418 419 if (D->hasAttr<UsedAttr>()) 420 AddUsedGlobal(GV); 421 422 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 423 GV->setSection(SA->getName()); 424 425 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 426 } 427 428 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 429 llvm::Function *F, 430 const CGFunctionInfo &FI) { 431 SetLLVMFunctionAttributes(D, FI, F); 432 SetLLVMFunctionAttributesForDefinition(D, F); 433 434 F->setLinkage(llvm::Function::InternalLinkage); 435 436 SetCommonAttributes(D, F); 437 } 438 439 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 440 llvm::Function *F, 441 bool IsIncompleteFunction) { 442 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 443 444 if (!IsIncompleteFunction) 445 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 446 447 // Only a few attributes are set on declarations; these may later be 448 // overridden by a definition. 449 450 if (FD->hasAttr<DLLImportAttr>()) { 451 F->setLinkage(llvm::Function::DLLImportLinkage); 452 } else if (FD->hasAttr<WeakAttr>() || 453 FD->hasAttr<WeakImportAttr>()) { 454 // "extern_weak" is overloaded in LLVM; we probably should have 455 // separate linkage types for this. 456 F->setLinkage(llvm::Function::ExternalWeakLinkage); 457 } else { 458 F->setLinkage(llvm::Function::ExternalLinkage); 459 } 460 461 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 462 F->setSection(SA->getName()); 463 } 464 465 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 466 assert(!GV->isDeclaration() && 467 "Only globals with definition can force usage."); 468 LLVMUsed.push_back(GV); 469 } 470 471 void CodeGenModule::EmitLLVMUsed() { 472 // Don't create llvm.used if there is no need. 473 if (LLVMUsed.empty()) 474 return; 475 476 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 477 478 // Convert LLVMUsed to what ConstantArray needs. 479 std::vector<llvm::Constant*> UsedArray; 480 UsedArray.resize(LLVMUsed.size()); 481 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 482 UsedArray[i] = 483 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 484 i8PTy); 485 } 486 487 if (UsedArray.empty()) 488 return; 489 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 490 491 llvm::GlobalVariable *GV = 492 new llvm::GlobalVariable(getModule(), ATy, false, 493 llvm::GlobalValue::AppendingLinkage, 494 llvm::ConstantArray::get(ATy, UsedArray), 495 "llvm.used"); 496 497 GV->setSection("llvm.metadata"); 498 } 499 500 void CodeGenModule::EmitDeferred() { 501 // Emit code for any potentially referenced deferred decls. Since a 502 // previously unused static decl may become used during the generation of code 503 // for a static function, iterate until no changes are made. 504 505 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 506 if (!DeferredVTables.empty()) { 507 const CXXRecordDecl *RD = DeferredVTables.back(); 508 DeferredVTables.pop_back(); 509 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 510 continue; 511 } 512 513 GlobalDecl D = DeferredDeclsToEmit.back(); 514 DeferredDeclsToEmit.pop_back(); 515 516 // Look it up to see if it was defined with a stronger definition (e.g. an 517 // extern inline function with a strong function redefinition). If so, 518 // just ignore the deferred decl. 519 MangleBuffer Name; 520 getMangledName(Name, D); 521 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 522 assert(CGRef && "Deferred decl wasn't referenced?"); 523 524 if (!CGRef->isDeclaration()) 525 continue; 526 527 // Otherwise, emit the definition and move on to the next one. 528 EmitGlobalDefinition(D); 529 } 530 } 531 532 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 533 /// annotation information for a given GlobalValue. The annotation struct is 534 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 535 /// GlobalValue being annotated. The second field is the constant string 536 /// created from the AnnotateAttr's annotation. The third field is a constant 537 /// string containing the name of the translation unit. The fourth field is 538 /// the line number in the file of the annotated value declaration. 539 /// 540 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 541 /// appears to. 542 /// 543 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 544 const AnnotateAttr *AA, 545 unsigned LineNo) { 546 llvm::Module *M = &getModule(); 547 548 // get [N x i8] constants for the annotation string, and the filename string 549 // which are the 2nd and 3rd elements of the global annotation structure. 550 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 551 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 552 AA->getAnnotation(), true); 553 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 554 M->getModuleIdentifier(), 555 true); 556 557 // Get the two global values corresponding to the ConstantArrays we just 558 // created to hold the bytes of the strings. 559 llvm::GlobalValue *annoGV = 560 new llvm::GlobalVariable(*M, anno->getType(), false, 561 llvm::GlobalValue::PrivateLinkage, anno, 562 GV->getName()); 563 // translation unit name string, emitted into the llvm.metadata section. 564 llvm::GlobalValue *unitGV = 565 new llvm::GlobalVariable(*M, unit->getType(), false, 566 llvm::GlobalValue::PrivateLinkage, unit, 567 ".str"); 568 569 // Create the ConstantStruct for the global annotation. 570 llvm::Constant *Fields[4] = { 571 llvm::ConstantExpr::getBitCast(GV, SBP), 572 llvm::ConstantExpr::getBitCast(annoGV, SBP), 573 llvm::ConstantExpr::getBitCast(unitGV, SBP), 574 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 575 }; 576 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 577 } 578 579 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 580 // Never defer when EmitAllDecls is specified or the decl has 581 // attribute used. 582 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 583 return false; 584 585 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 586 // Constructors and destructors should never be deferred. 587 if (FD->hasAttr<ConstructorAttr>() || 588 FD->hasAttr<DestructorAttr>()) 589 return false; 590 591 // The key function for a class must never be deferred. 592 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 593 const CXXRecordDecl *RD = MD->getParent(); 594 if (MD->isOutOfLine() && RD->isDynamicClass()) { 595 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 596 if (KeyFunction && 597 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 598 return false; 599 } 600 } 601 602 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 603 604 // static, static inline, always_inline, and extern inline functions can 605 // always be deferred. Normal inline functions can be deferred in C99/C++. 606 // Implicit template instantiations can also be deferred in C++. 607 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 608 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 609 return true; 610 return false; 611 } 612 613 const VarDecl *VD = cast<VarDecl>(Global); 614 assert(VD->isFileVarDecl() && "Invalid decl"); 615 616 // We never want to defer structs that have non-trivial constructors or 617 // destructors. 618 619 // FIXME: Handle references. 620 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 621 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 622 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 623 return false; 624 } 625 } 626 627 // Static data may be deferred, but out-of-line static data members 628 // cannot be. 629 Linkage L = VD->getLinkage(); 630 if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus && 631 VD->getType()->getLinkage() == UniqueExternalLinkage) 632 L = UniqueExternalLinkage; 633 634 switch (L) { 635 case NoLinkage: 636 case InternalLinkage: 637 case UniqueExternalLinkage: 638 // Initializer has side effects? 639 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 640 return false; 641 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 642 643 case ExternalLinkage: 644 break; 645 } 646 647 return false; 648 } 649 650 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 651 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 652 assert(AA && "No alias?"); 653 654 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 655 656 // See if there is already something with the target's name in the module. 657 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 658 659 llvm::Constant *Aliasee; 660 if (isa<llvm::FunctionType>(DeclTy)) 661 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 662 else 663 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 664 llvm::PointerType::getUnqual(DeclTy), 0); 665 if (!Entry) { 666 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 667 F->setLinkage(llvm::Function::ExternalWeakLinkage); 668 WeakRefReferences.insert(F); 669 } 670 671 return Aliasee; 672 } 673 674 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 675 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 676 677 // Weak references don't produce any output by themselves. 678 if (Global->hasAttr<WeakRefAttr>()) 679 return; 680 681 // If this is an alias definition (which otherwise looks like a declaration) 682 // emit it now. 683 if (Global->hasAttr<AliasAttr>()) 684 return EmitAliasDefinition(GD); 685 686 // Ignore declarations, they will be emitted on their first use. 687 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 688 // Forward declarations are emitted lazily on first use. 689 if (!FD->isThisDeclarationADefinition()) 690 return; 691 } else { 692 const VarDecl *VD = cast<VarDecl>(Global); 693 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 694 695 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 696 return; 697 } 698 699 // Defer code generation when possible if this is a static definition, inline 700 // function etc. These we only want to emit if they are used. 701 if (!MayDeferGeneration(Global)) { 702 // Emit the definition if it can't be deferred. 703 EmitGlobalDefinition(GD); 704 return; 705 } 706 707 // If the value has already been used, add it directly to the 708 // DeferredDeclsToEmit list. 709 MangleBuffer MangledName; 710 getMangledName(MangledName, GD); 711 if (GetGlobalValue(MangledName)) 712 DeferredDeclsToEmit.push_back(GD); 713 else { 714 // Otherwise, remember that we saw a deferred decl with this name. The 715 // first use of the mangled name will cause it to move into 716 // DeferredDeclsToEmit. 717 DeferredDecls[MangledName] = GD; 718 } 719 } 720 721 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 722 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 723 724 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 725 Context.getSourceManager(), 726 "Generating code for declaration"); 727 728 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 729 if (Method->isVirtual()) 730 getVTables().EmitThunks(GD); 731 732 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 733 return EmitCXXConstructor(CD, GD.getCtorType()); 734 735 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 736 return EmitCXXDestructor(DD, GD.getDtorType()); 737 738 if (isa<FunctionDecl>(D)) 739 return EmitGlobalFunctionDefinition(GD); 740 741 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 742 return EmitGlobalVarDefinition(VD); 743 744 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 745 } 746 747 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 748 /// module, create and return an llvm Function with the specified type. If there 749 /// is something in the module with the specified name, return it potentially 750 /// bitcasted to the right type. 751 /// 752 /// If D is non-null, it specifies a decl that correspond to this. This is used 753 /// to set the attributes on the function when it is first created. 754 llvm::Constant * 755 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 756 const llvm::Type *Ty, 757 GlobalDecl D) { 758 // Lookup the entry, lazily creating it if necessary. 759 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 760 if (Entry) { 761 if (WeakRefReferences.count(Entry)) { 762 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 763 if (FD && !FD->hasAttr<WeakAttr>()) 764 Entry->setLinkage(llvm::Function::ExternalLinkage); 765 766 WeakRefReferences.erase(Entry); 767 } 768 769 if (Entry->getType()->getElementType() == Ty) 770 return Entry; 771 772 // Make sure the result is of the correct type. 773 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 774 return llvm::ConstantExpr::getBitCast(Entry, PTy); 775 } 776 777 // This function doesn't have a complete type (for example, the return 778 // type is an incomplete struct). Use a fake type instead, and make 779 // sure not to try to set attributes. 780 bool IsIncompleteFunction = false; 781 782 const llvm::FunctionType *FTy; 783 if (isa<llvm::FunctionType>(Ty)) { 784 FTy = cast<llvm::FunctionType>(Ty); 785 } else { 786 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 787 std::vector<const llvm::Type*>(), false); 788 IsIncompleteFunction = true; 789 } 790 llvm::Function *F = llvm::Function::Create(FTy, 791 llvm::Function::ExternalLinkage, 792 MangledName, &getModule()); 793 assert(F->getName() == MangledName && "name was uniqued!"); 794 if (D.getDecl()) 795 SetFunctionAttributes(D, F, IsIncompleteFunction); 796 797 // This is the first use or definition of a mangled name. If there is a 798 // deferred decl with this name, remember that we need to emit it at the end 799 // of the file. 800 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 801 if (DDI != DeferredDecls.end()) { 802 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 803 // list, and remove it from DeferredDecls (since we don't need it anymore). 804 DeferredDeclsToEmit.push_back(DDI->second); 805 DeferredDecls.erase(DDI); 806 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 807 // If this the first reference to a C++ inline function in a class, queue up 808 // the deferred function body for emission. These are not seen as 809 // top-level declarations. 810 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 811 DeferredDeclsToEmit.push_back(D); 812 // A called constructor which has no definition or declaration need be 813 // synthesized. 814 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 815 if (CD->isImplicit()) { 816 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 817 DeferredDeclsToEmit.push_back(D); 818 } 819 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 820 if (DD->isImplicit()) { 821 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 822 DeferredDeclsToEmit.push_back(D); 823 } 824 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 825 if (MD->isCopyAssignment() && MD->isImplicit()) { 826 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 827 DeferredDeclsToEmit.push_back(D); 828 } 829 } 830 } 831 832 // Make sure the result is of the requested type. 833 if (!IsIncompleteFunction) { 834 assert(F->getType()->getElementType() == Ty); 835 return F; 836 } 837 838 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 839 return llvm::ConstantExpr::getBitCast(F, PTy); 840 } 841 842 /// GetAddrOfFunction - Return the address of the given function. If Ty is 843 /// non-null, then this function will use the specified type if it has to 844 /// create it (this occurs when we see a definition of the function). 845 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 846 const llvm::Type *Ty) { 847 // If there was no specific requested type, just convert it now. 848 if (!Ty) 849 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 850 MangleBuffer MangledName; 851 getMangledName(MangledName, GD); 852 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 853 } 854 855 /// CreateRuntimeFunction - Create a new runtime function with the specified 856 /// type and name. 857 llvm::Constant * 858 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 859 llvm::StringRef Name) { 860 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 861 } 862 863 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 864 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 865 return false; 866 if (Context.getLangOptions().CPlusPlus && 867 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 868 // FIXME: We should do something fancier here! 869 return false; 870 } 871 return true; 872 } 873 874 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 875 /// create and return an llvm GlobalVariable with the specified type. If there 876 /// is something in the module with the specified name, return it potentially 877 /// bitcasted to the right type. 878 /// 879 /// If D is non-null, it specifies a decl that correspond to this. This is used 880 /// to set the attributes on the global when it is first created. 881 llvm::Constant * 882 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 883 const llvm::PointerType *Ty, 884 const VarDecl *D) { 885 // Lookup the entry, lazily creating it if necessary. 886 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 887 if (Entry) { 888 if (WeakRefReferences.count(Entry)) { 889 if (D && !D->hasAttr<WeakAttr>()) 890 Entry->setLinkage(llvm::Function::ExternalLinkage); 891 892 WeakRefReferences.erase(Entry); 893 } 894 895 if (Entry->getType() == Ty) 896 return Entry; 897 898 // Make sure the result is of the correct type. 899 return llvm::ConstantExpr::getBitCast(Entry, Ty); 900 } 901 902 // This is the first use or definition of a mangled name. If there is a 903 // deferred decl with this name, remember that we need to emit it at the end 904 // of the file. 905 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 906 if (DDI != DeferredDecls.end()) { 907 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 908 // list, and remove it from DeferredDecls (since we don't need it anymore). 909 DeferredDeclsToEmit.push_back(DDI->second); 910 DeferredDecls.erase(DDI); 911 } 912 913 llvm::GlobalVariable *GV = 914 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 915 llvm::GlobalValue::ExternalLinkage, 916 0, MangledName, 0, 917 false, Ty->getAddressSpace()); 918 919 // Handle things which are present even on external declarations. 920 if (D) { 921 // FIXME: This code is overly simple and should be merged with other global 922 // handling. 923 GV->setConstant(DeclIsConstantGlobal(Context, D)); 924 925 // FIXME: Merge with other attribute handling code. 926 if (D->getStorageClass() == VarDecl::PrivateExtern) 927 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 928 929 if (D->hasAttr<WeakAttr>() || 930 D->hasAttr<WeakImportAttr>()) 931 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 932 933 GV->setThreadLocal(D->isThreadSpecified()); 934 } 935 936 return GV; 937 } 938 939 940 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 941 /// given global variable. If Ty is non-null and if the global doesn't exist, 942 /// then it will be greated with the specified type instead of whatever the 943 /// normal requested type would be. 944 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 945 const llvm::Type *Ty) { 946 assert(D->hasGlobalStorage() && "Not a global variable"); 947 QualType ASTTy = D->getType(); 948 if (Ty == 0) 949 Ty = getTypes().ConvertTypeForMem(ASTTy); 950 951 const llvm::PointerType *PTy = 952 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 953 954 MangleBuffer MangledName; 955 getMangledName(MangledName, D); 956 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 957 } 958 959 /// CreateRuntimeVariable - Create a new runtime global variable with the 960 /// specified type and name. 961 llvm::Constant * 962 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 963 llvm::StringRef Name) { 964 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 965 } 966 967 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 968 assert(!D->getInit() && "Cannot emit definite definitions here!"); 969 970 if (MayDeferGeneration(D)) { 971 // If we have not seen a reference to this variable yet, place it 972 // into the deferred declarations table to be emitted if needed 973 // later. 974 MangleBuffer MangledName; 975 getMangledName(MangledName, D); 976 if (!GetGlobalValue(MangledName)) { 977 DeferredDecls[MangledName] = D; 978 return; 979 } 980 } 981 982 // The tentative definition is the only definition. 983 EmitGlobalVarDefinition(D); 984 } 985 986 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 987 if (DefinitionRequired) 988 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 989 } 990 991 llvm::GlobalVariable::LinkageTypes 992 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 993 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 994 return llvm::GlobalVariable::InternalLinkage; 995 996 if (const CXXMethodDecl *KeyFunction 997 = RD->getASTContext().getKeyFunction(RD)) { 998 // If this class has a key function, use that to determine the linkage of 999 // the vtable. 1000 const FunctionDecl *Def = 0; 1001 if (KeyFunction->getBody(Def)) 1002 KeyFunction = cast<CXXMethodDecl>(Def); 1003 1004 switch (KeyFunction->getTemplateSpecializationKind()) { 1005 case TSK_Undeclared: 1006 case TSK_ExplicitSpecialization: 1007 if (KeyFunction->isInlined()) 1008 return llvm::GlobalVariable::WeakODRLinkage; 1009 1010 return llvm::GlobalVariable::ExternalLinkage; 1011 1012 case TSK_ImplicitInstantiation: 1013 case TSK_ExplicitInstantiationDefinition: 1014 return llvm::GlobalVariable::WeakODRLinkage; 1015 1016 case TSK_ExplicitInstantiationDeclaration: 1017 // FIXME: Use available_externally linkage. However, this currently 1018 // breaks LLVM's build due to undefined symbols. 1019 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1020 return llvm::GlobalVariable::WeakODRLinkage; 1021 } 1022 } 1023 1024 switch (RD->getTemplateSpecializationKind()) { 1025 case TSK_Undeclared: 1026 case TSK_ExplicitSpecialization: 1027 case TSK_ImplicitInstantiation: 1028 case TSK_ExplicitInstantiationDefinition: 1029 return llvm::GlobalVariable::WeakODRLinkage; 1030 1031 case TSK_ExplicitInstantiationDeclaration: 1032 // FIXME: Use available_externally linkage. However, this currently 1033 // breaks LLVM's build due to undefined symbols. 1034 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1035 return llvm::GlobalVariable::WeakODRLinkage; 1036 } 1037 1038 // Silence GCC warning. 1039 return llvm::GlobalVariable::WeakODRLinkage; 1040 } 1041 1042 static CodeGenModule::GVALinkage 1043 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 1044 // If this is a static data member, compute the kind of template 1045 // specialization. Otherwise, this variable is not part of a 1046 // template. 1047 TemplateSpecializationKind TSK = TSK_Undeclared; 1048 if (VD->isStaticDataMember()) 1049 TSK = VD->getTemplateSpecializationKind(); 1050 1051 Linkage L = VD->getLinkage(); 1052 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 1053 VD->getType()->getLinkage() == UniqueExternalLinkage) 1054 L = UniqueExternalLinkage; 1055 1056 switch (L) { 1057 case NoLinkage: 1058 case InternalLinkage: 1059 case UniqueExternalLinkage: 1060 return CodeGenModule::GVA_Internal; 1061 1062 case ExternalLinkage: 1063 switch (TSK) { 1064 case TSK_Undeclared: 1065 case TSK_ExplicitSpecialization: 1066 return CodeGenModule::GVA_StrongExternal; 1067 1068 case TSK_ExplicitInstantiationDeclaration: 1069 llvm_unreachable("Variable should not be instantiated"); 1070 // Fall through to treat this like any other instantiation. 1071 1072 case TSK_ExplicitInstantiationDefinition: 1073 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 1074 1075 case TSK_ImplicitInstantiation: 1076 return CodeGenModule::GVA_TemplateInstantiation; 1077 } 1078 } 1079 1080 return CodeGenModule::GVA_StrongExternal; 1081 } 1082 1083 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1084 return CharUnits::fromQuantity( 1085 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1086 } 1087 1088 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1089 llvm::Constant *Init = 0; 1090 QualType ASTTy = D->getType(); 1091 bool NonConstInit = false; 1092 1093 const Expr *InitExpr = D->getAnyInitializer(); 1094 1095 if (!InitExpr) { 1096 // This is a tentative definition; tentative definitions are 1097 // implicitly initialized with { 0 }. 1098 // 1099 // Note that tentative definitions are only emitted at the end of 1100 // a translation unit, so they should never have incomplete 1101 // type. In addition, EmitTentativeDefinition makes sure that we 1102 // never attempt to emit a tentative definition if a real one 1103 // exists. A use may still exists, however, so we still may need 1104 // to do a RAUW. 1105 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1106 Init = EmitNullConstant(D->getType()); 1107 } else { 1108 Init = EmitConstantExpr(InitExpr, D->getType()); 1109 if (!Init) { 1110 QualType T = InitExpr->getType(); 1111 if (D->getType()->isReferenceType()) 1112 T = D->getType(); 1113 1114 if (getLangOptions().CPlusPlus) { 1115 EmitCXXGlobalVarDeclInitFunc(D); 1116 Init = EmitNullConstant(T); 1117 NonConstInit = true; 1118 } else { 1119 ErrorUnsupported(D, "static initializer"); 1120 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1121 } 1122 } 1123 } 1124 1125 const llvm::Type* InitType = Init->getType(); 1126 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1127 1128 // Strip off a bitcast if we got one back. 1129 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1130 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1131 // all zero index gep. 1132 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1133 Entry = CE->getOperand(0); 1134 } 1135 1136 // Entry is now either a Function or GlobalVariable. 1137 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1138 1139 // We have a definition after a declaration with the wrong type. 1140 // We must make a new GlobalVariable* and update everything that used OldGV 1141 // (a declaration or tentative definition) with the new GlobalVariable* 1142 // (which will be a definition). 1143 // 1144 // This happens if there is a prototype for a global (e.g. 1145 // "extern int x[];") and then a definition of a different type (e.g. 1146 // "int x[10];"). This also happens when an initializer has a different type 1147 // from the type of the global (this happens with unions). 1148 if (GV == 0 || 1149 GV->getType()->getElementType() != InitType || 1150 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1151 1152 // Move the old entry aside so that we'll create a new one. 1153 Entry->setName(llvm::StringRef()); 1154 1155 // Make a new global with the correct type, this is now guaranteed to work. 1156 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1157 1158 // Replace all uses of the old global with the new global 1159 llvm::Constant *NewPtrForOldDecl = 1160 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1161 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1162 1163 // Erase the old global, since it is no longer used. 1164 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1165 } 1166 1167 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1168 SourceManager &SM = Context.getSourceManager(); 1169 AddAnnotation(EmitAnnotateAttr(GV, AA, 1170 SM.getInstantiationLineNumber(D->getLocation()))); 1171 } 1172 1173 GV->setInitializer(Init); 1174 1175 // If it is safe to mark the global 'constant', do so now. 1176 GV->setConstant(false); 1177 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1178 GV->setConstant(true); 1179 1180 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1181 1182 // Set the llvm linkage type as appropriate. 1183 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1184 if (Linkage == GVA_Internal) 1185 GV->setLinkage(llvm::Function::InternalLinkage); 1186 else if (D->hasAttr<DLLImportAttr>()) 1187 GV->setLinkage(llvm::Function::DLLImportLinkage); 1188 else if (D->hasAttr<DLLExportAttr>()) 1189 GV->setLinkage(llvm::Function::DLLExportLinkage); 1190 else if (D->hasAttr<WeakAttr>()) { 1191 if (GV->isConstant()) 1192 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1193 else 1194 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1195 } else if (Linkage == GVA_TemplateInstantiation || 1196 Linkage == GVA_ExplicitTemplateInstantiation) 1197 // FIXME: It seems like we can provide more specific linkage here 1198 // (LinkOnceODR, WeakODR). 1199 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1200 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1201 !D->hasExternalStorage() && !D->getInit() && 1202 !D->getAttr<SectionAttr>()) { 1203 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1204 // common vars aren't constant even if declared const. 1205 GV->setConstant(false); 1206 } else 1207 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1208 1209 SetCommonAttributes(D, GV); 1210 1211 // Emit global variable debug information. 1212 if (CGDebugInfo *DI = getDebugInfo()) { 1213 DI->setLocation(D->getLocation()); 1214 DI->EmitGlobalVariable(GV, D); 1215 } 1216 } 1217 1218 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1219 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1220 /// existing call uses of the old function in the module, this adjusts them to 1221 /// call the new function directly. 1222 /// 1223 /// This is not just a cleanup: the always_inline pass requires direct calls to 1224 /// functions to be able to inline them. If there is a bitcast in the way, it 1225 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1226 /// run at -O0. 1227 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1228 llvm::Function *NewFn) { 1229 // If we're redefining a global as a function, don't transform it. 1230 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1231 if (OldFn == 0) return; 1232 1233 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1234 llvm::SmallVector<llvm::Value*, 4> ArgList; 1235 1236 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1237 UI != E; ) { 1238 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1239 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1240 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1241 llvm::CallSite CS(CI); 1242 if (!CI || !CS.isCallee(I)) continue; 1243 1244 // If the return types don't match exactly, and if the call isn't dead, then 1245 // we can't transform this call. 1246 if (CI->getType() != NewRetTy && !CI->use_empty()) 1247 continue; 1248 1249 // If the function was passed too few arguments, don't transform. If extra 1250 // arguments were passed, we silently drop them. If any of the types 1251 // mismatch, we don't transform. 1252 unsigned ArgNo = 0; 1253 bool DontTransform = false; 1254 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1255 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1256 if (CS.arg_size() == ArgNo || 1257 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1258 DontTransform = true; 1259 break; 1260 } 1261 } 1262 if (DontTransform) 1263 continue; 1264 1265 // Okay, we can transform this. Create the new call instruction and copy 1266 // over the required information. 1267 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1268 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1269 ArgList.end(), "", CI); 1270 ArgList.clear(); 1271 if (!NewCall->getType()->isVoidTy()) 1272 NewCall->takeName(CI); 1273 NewCall->setAttributes(CI->getAttributes()); 1274 NewCall->setCallingConv(CI->getCallingConv()); 1275 1276 // Finally, remove the old call, replacing any uses with the new one. 1277 if (!CI->use_empty()) 1278 CI->replaceAllUsesWith(NewCall); 1279 1280 // Copy debug location attached to CI. 1281 if (!CI->getDebugLoc().isUnknown()) 1282 NewCall->setDebugLoc(CI->getDebugLoc()); 1283 CI->eraseFromParent(); 1284 } 1285 } 1286 1287 1288 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1289 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1290 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1291 getMangleContext().mangleInitDiscriminator(); 1292 // Get or create the prototype for the function. 1293 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1294 1295 // Strip off a bitcast if we got one back. 1296 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1297 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1298 Entry = CE->getOperand(0); 1299 } 1300 1301 1302 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1303 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1304 1305 // If the types mismatch then we have to rewrite the definition. 1306 assert(OldFn->isDeclaration() && 1307 "Shouldn't replace non-declaration"); 1308 1309 // F is the Function* for the one with the wrong type, we must make a new 1310 // Function* and update everything that used F (a declaration) with the new 1311 // Function* (which will be a definition). 1312 // 1313 // This happens if there is a prototype for a function 1314 // (e.g. "int f()") and then a definition of a different type 1315 // (e.g. "int f(int x)"). Move the old function aside so that it 1316 // doesn't interfere with GetAddrOfFunction. 1317 OldFn->setName(llvm::StringRef()); 1318 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1319 1320 // If this is an implementation of a function without a prototype, try to 1321 // replace any existing uses of the function (which may be calls) with uses 1322 // of the new function 1323 if (D->getType()->isFunctionNoProtoType()) { 1324 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1325 OldFn->removeDeadConstantUsers(); 1326 } 1327 1328 // Replace uses of F with the Function we will endow with a body. 1329 if (!Entry->use_empty()) { 1330 llvm::Constant *NewPtrForOldDecl = 1331 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1332 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1333 } 1334 1335 // Ok, delete the old function now, which is dead. 1336 OldFn->eraseFromParent(); 1337 1338 Entry = NewFn; 1339 } 1340 1341 llvm::Function *Fn = cast<llvm::Function>(Entry); 1342 setFunctionLinkage(D, Fn); 1343 1344 CodeGenFunction(*this).GenerateCode(D, Fn); 1345 1346 SetFunctionDefinitionAttributes(D, Fn); 1347 SetLLVMFunctionAttributesForDefinition(D, Fn); 1348 1349 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1350 AddGlobalCtor(Fn, CA->getPriority()); 1351 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1352 AddGlobalDtor(Fn, DA->getPriority()); 1353 } 1354 1355 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1356 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1357 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1358 assert(AA && "Not an alias?"); 1359 1360 MangleBuffer MangledName; 1361 getMangledName(MangledName, GD); 1362 1363 // If there is a definition in the module, then it wins over the alias. 1364 // This is dubious, but allow it to be safe. Just ignore the alias. 1365 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1366 if (Entry && !Entry->isDeclaration()) 1367 return; 1368 1369 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1370 1371 // Create a reference to the named value. This ensures that it is emitted 1372 // if a deferred decl. 1373 llvm::Constant *Aliasee; 1374 if (isa<llvm::FunctionType>(DeclTy)) 1375 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1376 else 1377 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1378 llvm::PointerType::getUnqual(DeclTy), 0); 1379 1380 // Create the new alias itself, but don't set a name yet. 1381 llvm::GlobalValue *GA = 1382 new llvm::GlobalAlias(Aliasee->getType(), 1383 llvm::Function::ExternalLinkage, 1384 "", Aliasee, &getModule()); 1385 1386 if (Entry) { 1387 assert(Entry->isDeclaration()); 1388 1389 // If there is a declaration in the module, then we had an extern followed 1390 // by the alias, as in: 1391 // extern int test6(); 1392 // ... 1393 // int test6() __attribute__((alias("test7"))); 1394 // 1395 // Remove it and replace uses of it with the alias. 1396 GA->takeName(Entry); 1397 1398 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1399 Entry->getType())); 1400 Entry->eraseFromParent(); 1401 } else { 1402 GA->setName(MangledName.getString()); 1403 } 1404 1405 // Set attributes which are particular to an alias; this is a 1406 // specialization of the attributes which may be set on a global 1407 // variable/function. 1408 if (D->hasAttr<DLLExportAttr>()) { 1409 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1410 // The dllexport attribute is ignored for undefined symbols. 1411 if (FD->getBody()) 1412 GA->setLinkage(llvm::Function::DLLExportLinkage); 1413 } else { 1414 GA->setLinkage(llvm::Function::DLLExportLinkage); 1415 } 1416 } else if (D->hasAttr<WeakAttr>() || 1417 D->hasAttr<WeakRefAttr>() || 1418 D->hasAttr<WeakImportAttr>()) { 1419 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1420 } 1421 1422 SetCommonAttributes(D, GA); 1423 } 1424 1425 /// getBuiltinLibFunction - Given a builtin id for a function like 1426 /// "__builtin_fabsf", return a Function* for "fabsf". 1427 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1428 unsigned BuiltinID) { 1429 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1430 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1431 "isn't a lib fn"); 1432 1433 // Get the name, skip over the __builtin_ prefix (if necessary). 1434 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1435 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1436 Name += 10; 1437 1438 const llvm::FunctionType *Ty = 1439 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1440 1441 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1442 } 1443 1444 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1445 unsigned NumTys) { 1446 return llvm::Intrinsic::getDeclaration(&getModule(), 1447 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1448 } 1449 1450 1451 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1452 const llvm::Type *SrcType, 1453 const llvm::Type *SizeType) { 1454 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1455 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1456 } 1457 1458 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1459 const llvm::Type *SrcType, 1460 const llvm::Type *SizeType) { 1461 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1462 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1463 } 1464 1465 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1466 const llvm::Type *SizeType) { 1467 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1468 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1469 } 1470 1471 static llvm::StringMapEntry<llvm::Constant*> & 1472 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1473 const StringLiteral *Literal, 1474 bool TargetIsLSB, 1475 bool &IsUTF16, 1476 unsigned &StringLength) { 1477 unsigned NumBytes = Literal->getByteLength(); 1478 1479 // Check for simple case. 1480 if (!Literal->containsNonAsciiOrNull()) { 1481 StringLength = NumBytes; 1482 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1483 StringLength)); 1484 } 1485 1486 // Otherwise, convert the UTF8 literals into a byte string. 1487 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1488 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1489 UTF16 *ToPtr = &ToBuf[0]; 1490 1491 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1492 &ToPtr, ToPtr + NumBytes, 1493 strictConversion); 1494 1495 // Check for conversion failure. 1496 if (Result != conversionOK) { 1497 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1498 // this duplicate code. 1499 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1500 StringLength = NumBytes; 1501 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1502 StringLength)); 1503 } 1504 1505 // ConvertUTF8toUTF16 returns the length in ToPtr. 1506 StringLength = ToPtr - &ToBuf[0]; 1507 1508 // Render the UTF-16 string into a byte array and convert to the target byte 1509 // order. 1510 // 1511 // FIXME: This isn't something we should need to do here. 1512 llvm::SmallString<128> AsBytes; 1513 AsBytes.reserve(StringLength * 2); 1514 for (unsigned i = 0; i != StringLength; ++i) { 1515 unsigned short Val = ToBuf[i]; 1516 if (TargetIsLSB) { 1517 AsBytes.push_back(Val & 0xFF); 1518 AsBytes.push_back(Val >> 8); 1519 } else { 1520 AsBytes.push_back(Val >> 8); 1521 AsBytes.push_back(Val & 0xFF); 1522 } 1523 } 1524 // Append one extra null character, the second is automatically added by our 1525 // caller. 1526 AsBytes.push_back(0); 1527 1528 IsUTF16 = true; 1529 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1530 } 1531 1532 llvm::Constant * 1533 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1534 unsigned StringLength = 0; 1535 bool isUTF16 = false; 1536 llvm::StringMapEntry<llvm::Constant*> &Entry = 1537 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1538 getTargetData().isLittleEndian(), 1539 isUTF16, StringLength); 1540 1541 if (llvm::Constant *C = Entry.getValue()) 1542 return C; 1543 1544 llvm::Constant *Zero = 1545 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1546 llvm::Constant *Zeros[] = { Zero, Zero }; 1547 1548 // If we don't already have it, get __CFConstantStringClassReference. 1549 if (!CFConstantStringClassRef) { 1550 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1551 Ty = llvm::ArrayType::get(Ty, 0); 1552 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1553 "__CFConstantStringClassReference"); 1554 // Decay array -> ptr 1555 CFConstantStringClassRef = 1556 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1557 } 1558 1559 QualType CFTy = getContext().getCFConstantStringType(); 1560 1561 const llvm::StructType *STy = 1562 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1563 1564 std::vector<llvm::Constant*> Fields(4); 1565 1566 // Class pointer. 1567 Fields[0] = CFConstantStringClassRef; 1568 1569 // Flags. 1570 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1571 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1572 llvm::ConstantInt::get(Ty, 0x07C8); 1573 1574 // String pointer. 1575 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1576 1577 llvm::GlobalValue::LinkageTypes Linkage; 1578 bool isConstant; 1579 if (isUTF16) { 1580 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1581 Linkage = llvm::GlobalValue::InternalLinkage; 1582 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1583 // does make plain ascii ones writable. 1584 isConstant = true; 1585 } else { 1586 Linkage = llvm::GlobalValue::PrivateLinkage; 1587 isConstant = !Features.WritableStrings; 1588 } 1589 1590 llvm::GlobalVariable *GV = 1591 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1592 ".str"); 1593 if (isUTF16) { 1594 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1595 GV->setAlignment(Align.getQuantity()); 1596 } 1597 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1598 1599 // String length. 1600 Ty = getTypes().ConvertType(getContext().LongTy); 1601 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1602 1603 // The struct. 1604 C = llvm::ConstantStruct::get(STy, Fields); 1605 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1606 llvm::GlobalVariable::PrivateLinkage, C, 1607 "_unnamed_cfstring_"); 1608 if (const char *Sect = getContext().Target.getCFStringSection()) 1609 GV->setSection(Sect); 1610 Entry.setValue(GV); 1611 1612 return GV; 1613 } 1614 1615 llvm::Constant * 1616 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1617 unsigned StringLength = 0; 1618 bool isUTF16 = false; 1619 llvm::StringMapEntry<llvm::Constant*> &Entry = 1620 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1621 getTargetData().isLittleEndian(), 1622 isUTF16, StringLength); 1623 1624 if (llvm::Constant *C = Entry.getValue()) 1625 return C; 1626 1627 llvm::Constant *Zero = 1628 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1629 llvm::Constant *Zeros[] = { Zero, Zero }; 1630 1631 // If we don't already have it, get _NSConstantStringClassReference. 1632 if (!NSConstantStringClassRef) { 1633 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1634 Ty = llvm::ArrayType::get(Ty, 0); 1635 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1636 Features.ObjCNonFragileABI ? 1637 "OBJC_CLASS_$_NSConstantString" : 1638 "_NSConstantStringClassReference"); 1639 // Decay array -> ptr 1640 NSConstantStringClassRef = 1641 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1642 } 1643 1644 QualType NSTy = getContext().getNSConstantStringType(); 1645 1646 const llvm::StructType *STy = 1647 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1648 1649 std::vector<llvm::Constant*> Fields(3); 1650 1651 // Class pointer. 1652 Fields[0] = NSConstantStringClassRef; 1653 1654 // String pointer. 1655 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1656 1657 llvm::GlobalValue::LinkageTypes Linkage; 1658 bool isConstant; 1659 if (isUTF16) { 1660 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1661 Linkage = llvm::GlobalValue::InternalLinkage; 1662 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1663 // does make plain ascii ones writable. 1664 isConstant = true; 1665 } else { 1666 Linkage = llvm::GlobalValue::PrivateLinkage; 1667 isConstant = !Features.WritableStrings; 1668 } 1669 1670 llvm::GlobalVariable *GV = 1671 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1672 ".str"); 1673 if (isUTF16) { 1674 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1675 GV->setAlignment(Align.getQuantity()); 1676 } 1677 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1678 1679 // String length. 1680 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1681 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1682 1683 // The struct. 1684 C = llvm::ConstantStruct::get(STy, Fields); 1685 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1686 llvm::GlobalVariable::PrivateLinkage, C, 1687 "_unnamed_nsstring_"); 1688 // FIXME. Fix section. 1689 if (const char *Sect = 1690 Features.ObjCNonFragileABI 1691 ? getContext().Target.getNSStringNonFragileABISection() 1692 : getContext().Target.getNSStringSection()) 1693 GV->setSection(Sect); 1694 Entry.setValue(GV); 1695 1696 return GV; 1697 } 1698 1699 /// GetStringForStringLiteral - Return the appropriate bytes for a 1700 /// string literal, properly padded to match the literal type. 1701 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1702 const char *StrData = E->getStrData(); 1703 unsigned Len = E->getByteLength(); 1704 1705 const ConstantArrayType *CAT = 1706 getContext().getAsConstantArrayType(E->getType()); 1707 assert(CAT && "String isn't pointer or array!"); 1708 1709 // Resize the string to the right size. 1710 std::string Str(StrData, StrData+Len); 1711 uint64_t RealLen = CAT->getSize().getZExtValue(); 1712 1713 if (E->isWide()) 1714 RealLen *= getContext().Target.getWCharWidth()/8; 1715 1716 Str.resize(RealLen, '\0'); 1717 1718 return Str; 1719 } 1720 1721 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1722 /// constant array for the given string literal. 1723 llvm::Constant * 1724 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1725 // FIXME: This can be more efficient. 1726 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1727 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1728 if (S->isWide()) { 1729 llvm::Type *DestTy = 1730 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1731 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1732 } 1733 return C; 1734 } 1735 1736 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1737 /// array for the given ObjCEncodeExpr node. 1738 llvm::Constant * 1739 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1740 std::string Str; 1741 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1742 1743 return GetAddrOfConstantCString(Str); 1744 } 1745 1746 1747 /// GenerateWritableString -- Creates storage for a string literal. 1748 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1749 bool constant, 1750 CodeGenModule &CGM, 1751 const char *GlobalName) { 1752 // Create Constant for this string literal. Don't add a '\0'. 1753 llvm::Constant *C = 1754 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1755 1756 // Create a global variable for this string 1757 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1758 llvm::GlobalValue::PrivateLinkage, 1759 C, GlobalName); 1760 } 1761 1762 /// GetAddrOfConstantString - Returns a pointer to a character array 1763 /// containing the literal. This contents are exactly that of the 1764 /// given string, i.e. it will not be null terminated automatically; 1765 /// see GetAddrOfConstantCString. Note that whether the result is 1766 /// actually a pointer to an LLVM constant depends on 1767 /// Feature.WriteableStrings. 1768 /// 1769 /// The result has pointer to array type. 1770 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1771 const char *GlobalName) { 1772 bool IsConstant = !Features.WritableStrings; 1773 1774 // Get the default prefix if a name wasn't specified. 1775 if (!GlobalName) 1776 GlobalName = ".str"; 1777 1778 // Don't share any string literals if strings aren't constant. 1779 if (!IsConstant) 1780 return GenerateStringLiteral(str, false, *this, GlobalName); 1781 1782 llvm::StringMapEntry<llvm::Constant *> &Entry = 1783 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1784 1785 if (Entry.getValue()) 1786 return Entry.getValue(); 1787 1788 // Create a global variable for this. 1789 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1790 Entry.setValue(C); 1791 return C; 1792 } 1793 1794 /// GetAddrOfConstantCString - Returns a pointer to a character 1795 /// array containing the literal and a terminating '\-' 1796 /// character. The result has pointer to array type. 1797 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1798 const char *GlobalName){ 1799 return GetAddrOfConstantString(str + '\0', GlobalName); 1800 } 1801 1802 /// EmitObjCPropertyImplementations - Emit information for synthesized 1803 /// properties for an implementation. 1804 void CodeGenModule::EmitObjCPropertyImplementations(const 1805 ObjCImplementationDecl *D) { 1806 for (ObjCImplementationDecl::propimpl_iterator 1807 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1808 ObjCPropertyImplDecl *PID = *i; 1809 1810 // Dynamic is just for type-checking. 1811 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1812 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1813 1814 // Determine which methods need to be implemented, some may have 1815 // been overridden. Note that ::isSynthesized is not the method 1816 // we want, that just indicates if the decl came from a 1817 // property. What we want to know is if the method is defined in 1818 // this implementation. 1819 if (!D->getInstanceMethod(PD->getGetterName())) 1820 CodeGenFunction(*this).GenerateObjCGetter( 1821 const_cast<ObjCImplementationDecl *>(D), PID); 1822 if (!PD->isReadOnly() && 1823 !D->getInstanceMethod(PD->getSetterName())) 1824 CodeGenFunction(*this).GenerateObjCSetter( 1825 const_cast<ObjCImplementationDecl *>(D), PID); 1826 } 1827 } 1828 } 1829 1830 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1831 /// for an implementation. 1832 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1833 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1834 return; 1835 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1836 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1837 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1838 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1839 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1840 D->getLocation(), 1841 D->getLocation(), cxxSelector, 1842 getContext().VoidTy, 0, 1843 DC, true, false, true, 1844 ObjCMethodDecl::Required); 1845 D->addInstanceMethod(DTORMethod); 1846 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1847 1848 II = &getContext().Idents.get(".cxx_construct"); 1849 cxxSelector = getContext().Selectors.getSelector(0, &II); 1850 // The constructor returns 'self'. 1851 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1852 D->getLocation(), 1853 D->getLocation(), cxxSelector, 1854 getContext().getObjCIdType(), 0, 1855 DC, true, false, true, 1856 ObjCMethodDecl::Required); 1857 D->addInstanceMethod(CTORMethod); 1858 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1859 1860 1861 } 1862 1863 /// EmitNamespace - Emit all declarations in a namespace. 1864 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1865 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1866 I != E; ++I) 1867 EmitTopLevelDecl(*I); 1868 } 1869 1870 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1871 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1872 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1873 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1874 ErrorUnsupported(LSD, "linkage spec"); 1875 return; 1876 } 1877 1878 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1879 I != E; ++I) 1880 EmitTopLevelDecl(*I); 1881 } 1882 1883 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1884 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1885 // If an error has occurred, stop code generation, but continue 1886 // parsing and semantic analysis (to ensure all warnings and errors 1887 // are emitted). 1888 if (Diags.hasErrorOccurred()) 1889 return; 1890 1891 // Ignore dependent declarations. 1892 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1893 return; 1894 1895 switch (D->getKind()) { 1896 case Decl::CXXConversion: 1897 case Decl::CXXMethod: 1898 case Decl::Function: 1899 // Skip function templates 1900 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1901 return; 1902 1903 EmitGlobal(cast<FunctionDecl>(D)); 1904 break; 1905 1906 case Decl::Var: 1907 EmitGlobal(cast<VarDecl>(D)); 1908 break; 1909 1910 // C++ Decls 1911 case Decl::Namespace: 1912 EmitNamespace(cast<NamespaceDecl>(D)); 1913 break; 1914 // No code generation needed. 1915 case Decl::UsingShadow: 1916 case Decl::Using: 1917 case Decl::UsingDirective: 1918 case Decl::ClassTemplate: 1919 case Decl::FunctionTemplate: 1920 case Decl::NamespaceAlias: 1921 break; 1922 case Decl::CXXConstructor: 1923 // Skip function templates 1924 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1925 return; 1926 1927 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1928 break; 1929 case Decl::CXXDestructor: 1930 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1931 break; 1932 1933 case Decl::StaticAssert: 1934 // Nothing to do. 1935 break; 1936 1937 // Objective-C Decls 1938 1939 // Forward declarations, no (immediate) code generation. 1940 case Decl::ObjCClass: 1941 case Decl::ObjCForwardProtocol: 1942 case Decl::ObjCCategory: 1943 case Decl::ObjCInterface: 1944 break; 1945 1946 case Decl::ObjCProtocol: 1947 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1948 break; 1949 1950 case Decl::ObjCCategoryImpl: 1951 // Categories have properties but don't support synthesize so we 1952 // can ignore them here. 1953 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1954 break; 1955 1956 case Decl::ObjCImplementation: { 1957 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1958 EmitObjCPropertyImplementations(OMD); 1959 EmitObjCIvarInitializations(OMD); 1960 Runtime->GenerateClass(OMD); 1961 break; 1962 } 1963 case Decl::ObjCMethod: { 1964 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1965 // If this is not a prototype, emit the body. 1966 if (OMD->getBody()) 1967 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1968 break; 1969 } 1970 case Decl::ObjCCompatibleAlias: 1971 // compatibility-alias is a directive and has no code gen. 1972 break; 1973 1974 case Decl::LinkageSpec: 1975 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1976 break; 1977 1978 case Decl::FileScopeAsm: { 1979 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1980 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1981 1982 const std::string &S = getModule().getModuleInlineAsm(); 1983 if (S.empty()) 1984 getModule().setModuleInlineAsm(AsmString); 1985 else 1986 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1987 break; 1988 } 1989 1990 default: 1991 // Make sure we handled everything we should, every other kind is a 1992 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1993 // function. Need to recode Decl::Kind to do that easily. 1994 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1995 } 1996 } 1997