xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 4d90dba742fd0ec0f67dbd4d53c7e7213ce442ea)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 
71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                              llvm::Module &M, const llvm::DataLayout &TD,
73                              DiagnosticsEngine &diags)
74   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75     Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76     ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77     TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78     ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80     RRData(0), CFConstantStringClassRef(0),
81     ConstantStringClassRef(0), NSConstantStringType(0),
82     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83     BlockObjectAssign(0), BlockObjectDispose(0),
84     BlockDescriptorType(0), GenericBlockLiteralType(0),
85     LifetimeStartFn(0), LifetimeEndFn(0),
86     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87     SanOpts(SanitizerBlacklist.isIn(M) ?
88             SanitizerOptions::Disabled : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::Release() {
176   EmitDeferred();
177   EmitCXXGlobalInitFunc();
178   EmitCXXGlobalDtorFunc();
179   EmitCXXThreadLocalInitFunc();
180   if (ObjCRuntime)
181     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182       AddGlobalCtor(ObjCInitFunction);
183   EmitCtorList(GlobalCtors, "llvm.global_ctors");
184   EmitCtorList(GlobalDtors, "llvm.global_dtors");
185   EmitGlobalAnnotations();
186   EmitStaticExternCAliases();
187   EmitLLVMUsed();
188 
189   if (CodeGenOpts.Autolink &&
190       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
191     EmitModuleLinkOptions();
192   }
193 
194   SimplifyPersonality();
195 
196   if (getCodeGenOpts().EmitDeclMetadata)
197     EmitDeclMetadata();
198 
199   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
200     EmitCoverageFile();
201 
202   if (DebugInfo)
203     DebugInfo->finalize();
204 }
205 
206 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
207   // Make sure that this type is translated.
208   Types.UpdateCompletedType(TD);
209 }
210 
211 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
212   if (!TBAA)
213     return 0;
214   return TBAA->getTBAAInfo(QTy);
215 }
216 
217 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
218   if (!TBAA)
219     return 0;
220   return TBAA->getTBAAInfoForVTablePtr();
221 }
222 
223 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
224   if (!TBAA)
225     return 0;
226   return TBAA->getTBAAStructInfo(QTy);
227 }
228 
229 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
230   if (!TBAA)
231     return 0;
232   return TBAA->getTBAAStructTypeInfo(QTy);
233 }
234 
235 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
236                                                   llvm::MDNode *AccessN,
237                                                   uint64_t O) {
238   if (!TBAA)
239     return 0;
240   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
241 }
242 
243 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
244 /// is the same as the type. For struct-path aware TBAA, the tag
245 /// is different from the type: base type, access type and offset.
246 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
247 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
248                                         llvm::MDNode *TBAAInfo,
249                                         bool ConvertTypeToTag) {
250   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
251     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
252                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
253   else
254     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
255 }
256 
257 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
258   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
259   getDiags().Report(Context.getFullLoc(loc), diagID);
260 }
261 
262 /// ErrorUnsupported - Print out an error that codegen doesn't support the
263 /// specified stmt yet.
264 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
265                                      bool OmitOnError) {
266   if (OmitOnError && getDiags().hasErrorOccurred())
267     return;
268   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
269                                                "cannot compile this %0 yet");
270   std::string Msg = Type;
271   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
272     << Msg << S->getSourceRange();
273 }
274 
275 /// ErrorUnsupported - Print out an error that codegen doesn't support the
276 /// specified decl yet.
277 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
278                                      bool OmitOnError) {
279   if (OmitOnError && getDiags().hasErrorOccurred())
280     return;
281   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
282                                                "cannot compile this %0 yet");
283   std::string Msg = Type;
284   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
285 }
286 
287 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
288   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
289 }
290 
291 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
292                                         const NamedDecl *D) const {
293   // Internal definitions always have default visibility.
294   if (GV->hasLocalLinkage()) {
295     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
296     return;
297   }
298 
299   // Set visibility for definitions.
300   LinkageInfo LV = D->getLinkageAndVisibility();
301   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
302     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
303 }
304 
305 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
306   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
307       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
308       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
309       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
310       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
311 }
312 
313 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
314     CodeGenOptions::TLSModel M) {
315   switch (M) {
316   case CodeGenOptions::GeneralDynamicTLSModel:
317     return llvm::GlobalVariable::GeneralDynamicTLSModel;
318   case CodeGenOptions::LocalDynamicTLSModel:
319     return llvm::GlobalVariable::LocalDynamicTLSModel;
320   case CodeGenOptions::InitialExecTLSModel:
321     return llvm::GlobalVariable::InitialExecTLSModel;
322   case CodeGenOptions::LocalExecTLSModel:
323     return llvm::GlobalVariable::LocalExecTLSModel;
324   }
325   llvm_unreachable("Invalid TLS model!");
326 }
327 
328 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
329                                const VarDecl &D) const {
330   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
331 
332   llvm::GlobalVariable::ThreadLocalMode TLM;
333   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
334 
335   // Override the TLS model if it is explicitly specified.
336   if (D.hasAttr<TLSModelAttr>()) {
337     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
338     TLM = GetLLVMTLSModel(Attr->getModel());
339   }
340 
341   GV->setThreadLocalMode(TLM);
342 }
343 
344 /// Set the symbol visibility of type information (vtable and RTTI)
345 /// associated with the given type.
346 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
347                                       const CXXRecordDecl *RD,
348                                       TypeVisibilityKind TVK) const {
349   setGlobalVisibility(GV, RD);
350 
351   if (!CodeGenOpts.HiddenWeakVTables)
352     return;
353 
354   // We never want to drop the visibility for RTTI names.
355   if (TVK == TVK_ForRTTIName)
356     return;
357 
358   // We want to drop the visibility to hidden for weak type symbols.
359   // This isn't possible if there might be unresolved references
360   // elsewhere that rely on this symbol being visible.
361 
362   // This should be kept roughly in sync with setThunkVisibility
363   // in CGVTables.cpp.
364 
365   // Preconditions.
366   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
367       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
368     return;
369 
370   // Don't override an explicit visibility attribute.
371   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
372     return;
373 
374   switch (RD->getTemplateSpecializationKind()) {
375   // We have to disable the optimization if this is an EI definition
376   // because there might be EI declarations in other shared objects.
377   case TSK_ExplicitInstantiationDefinition:
378   case TSK_ExplicitInstantiationDeclaration:
379     return;
380 
381   // Every use of a non-template class's type information has to emit it.
382   case TSK_Undeclared:
383     break;
384 
385   // In theory, implicit instantiations can ignore the possibility of
386   // an explicit instantiation declaration because there necessarily
387   // must be an EI definition somewhere with default visibility.  In
388   // practice, it's possible to have an explicit instantiation for
389   // an arbitrary template class, and linkers aren't necessarily able
390   // to deal with mixed-visibility symbols.
391   case TSK_ExplicitSpecialization:
392   case TSK_ImplicitInstantiation:
393     return;
394   }
395 
396   // If there's a key function, there may be translation units
397   // that don't have the key function's definition.  But ignore
398   // this if we're emitting RTTI under -fno-rtti.
399   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
400     // FIXME: what should we do if we "lose" the key function during
401     // the emission of the file?
402     if (Context.getCurrentKeyFunction(RD))
403       return;
404   }
405 
406   // Otherwise, drop the visibility to hidden.
407   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
408   GV->setUnnamedAddr(true);
409 }
410 
411 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
412   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
413 
414   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
415   if (!Str.empty())
416     return Str;
417 
418   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
419     IdentifierInfo *II = ND->getIdentifier();
420     assert(II && "Attempt to mangle unnamed decl.");
421 
422     Str = II->getName();
423     return Str;
424   }
425 
426   SmallString<256> Buffer;
427   llvm::raw_svector_ostream Out(Buffer);
428   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
429     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
430   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
431     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
432   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
433     getCXXABI().getMangleContext().mangleBlock(BD, Out,
434       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
435   else
436     getCXXABI().getMangleContext().mangleName(ND, Out);
437 
438   // Allocate space for the mangled name.
439   Out.flush();
440   size_t Length = Buffer.size();
441   char *Name = MangledNamesAllocator.Allocate<char>(Length);
442   std::copy(Buffer.begin(), Buffer.end(), Name);
443 
444   Str = StringRef(Name, Length);
445 
446   return Str;
447 }
448 
449 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
450                                         const BlockDecl *BD) {
451   MangleContext &MangleCtx = getCXXABI().getMangleContext();
452   const Decl *D = GD.getDecl();
453   llvm::raw_svector_ostream Out(Buffer.getBuffer());
454   if (D == 0)
455     MangleCtx.mangleGlobalBlock(BD,
456       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
457   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
458     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
459   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
460     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
461   else
462     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
463 }
464 
465 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
466   return getModule().getNamedValue(Name);
467 }
468 
469 /// AddGlobalCtor - Add a function to the list that will be called before
470 /// main() runs.
471 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
472   // FIXME: Type coercion of void()* types.
473   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
474 }
475 
476 /// AddGlobalDtor - Add a function to the list that will be called
477 /// when the module is unloaded.
478 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
479   // FIXME: Type coercion of void()* types.
480   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
481 }
482 
483 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
484   // Ctor function type is void()*.
485   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
486   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
487 
488   // Get the type of a ctor entry, { i32, void ()* }.
489   llvm::StructType *CtorStructTy =
490     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
491 
492   // Construct the constructor and destructor arrays.
493   SmallVector<llvm::Constant*, 8> Ctors;
494   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
495     llvm::Constant *S[] = {
496       llvm::ConstantInt::get(Int32Ty, I->second, false),
497       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
498     };
499     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
500   }
501 
502   if (!Ctors.empty()) {
503     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
504     new llvm::GlobalVariable(TheModule, AT, false,
505                              llvm::GlobalValue::AppendingLinkage,
506                              llvm::ConstantArray::get(AT, Ctors),
507                              GlobalName);
508   }
509 }
510 
511 llvm::GlobalValue::LinkageTypes
512 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
513   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
514   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
515 
516   if (Linkage == GVA_Internal)
517     return llvm::Function::InternalLinkage;
518 
519   if (D->hasAttr<DLLExportAttr>())
520     return llvm::Function::DLLExportLinkage;
521 
522   if (D->hasAttr<WeakAttr>())
523     return llvm::Function::WeakAnyLinkage;
524 
525   // In C99 mode, 'inline' functions are guaranteed to have a strong
526   // definition somewhere else, so we can use available_externally linkage.
527   if (Linkage == GVA_C99Inline)
528     return llvm::Function::AvailableExternallyLinkage;
529 
530   // Note that Apple's kernel linker doesn't support symbol
531   // coalescing, so we need to avoid linkonce and weak linkages there.
532   // Normally, this means we just map to internal, but for explicit
533   // instantiations we'll map to external.
534 
535   // In C++, the compiler has to emit a definition in every translation unit
536   // that references the function.  We should use linkonce_odr because
537   // a) if all references in this translation unit are optimized away, we
538   // don't need to codegen it.  b) if the function persists, it needs to be
539   // merged with other definitions. c) C++ has the ODR, so we know the
540   // definition is dependable.
541   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
542     return !Context.getLangOpts().AppleKext
543              ? llvm::Function::LinkOnceODRLinkage
544              : llvm::Function::InternalLinkage;
545 
546   // An explicit instantiation of a template has weak linkage, since
547   // explicit instantiations can occur in multiple translation units
548   // and must all be equivalent. However, we are not allowed to
549   // throw away these explicit instantiations.
550   if (Linkage == GVA_ExplicitTemplateInstantiation)
551     return !Context.getLangOpts().AppleKext
552              ? llvm::Function::WeakODRLinkage
553              : llvm::Function::ExternalLinkage;
554 
555   // Otherwise, we have strong external linkage.
556   assert(Linkage == GVA_StrongExternal);
557   return llvm::Function::ExternalLinkage;
558 }
559 
560 
561 /// SetFunctionDefinitionAttributes - Set attributes for a global.
562 ///
563 /// FIXME: This is currently only done for aliases and functions, but not for
564 /// variables (these details are set in EmitGlobalVarDefinition for variables).
565 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
566                                                     llvm::GlobalValue *GV) {
567   SetCommonAttributes(D, GV);
568 }
569 
570 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
571                                               const CGFunctionInfo &Info,
572                                               llvm::Function *F) {
573   unsigned CallingConv;
574   AttributeListType AttributeList;
575   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
576   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
577   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
578 }
579 
580 /// Determines whether the language options require us to model
581 /// unwind exceptions.  We treat -fexceptions as mandating this
582 /// except under the fragile ObjC ABI with only ObjC exceptions
583 /// enabled.  This means, for example, that C with -fexceptions
584 /// enables this.
585 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
586   // If exceptions are completely disabled, obviously this is false.
587   if (!LangOpts.Exceptions) return false;
588 
589   // If C++ exceptions are enabled, this is true.
590   if (LangOpts.CXXExceptions) return true;
591 
592   // If ObjC exceptions are enabled, this depends on the ABI.
593   if (LangOpts.ObjCExceptions) {
594     return LangOpts.ObjCRuntime.hasUnwindExceptions();
595   }
596 
597   return true;
598 }
599 
600 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
601                                                            llvm::Function *F) {
602   llvm::AttrBuilder B;
603 
604   if (CodeGenOpts.UnwindTables)
605     B.addAttribute(llvm::Attribute::UWTable);
606 
607   if (!hasUnwindExceptions(LangOpts))
608     B.addAttribute(llvm::Attribute::NoUnwind);
609 
610   if (D->hasAttr<NakedAttr>()) {
611     // Naked implies noinline: we should not be inlining such functions.
612     B.addAttribute(llvm::Attribute::Naked);
613     B.addAttribute(llvm::Attribute::NoInline);
614   } else if (D->hasAttr<NoInlineAttr>()) {
615     B.addAttribute(llvm::Attribute::NoInline);
616   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
617               D->hasAttr<ForceInlineAttr>()) &&
618              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
619                                               llvm::Attribute::NoInline)) {
620     // (noinline wins over always_inline, and we can't specify both in IR)
621     B.addAttribute(llvm::Attribute::AlwaysInline);
622   }
623 
624   if (D->hasAttr<ColdAttr>()) {
625     B.addAttribute(llvm::Attribute::OptimizeForSize);
626     B.addAttribute(llvm::Attribute::Cold);
627   }
628 
629   if (D->hasAttr<MinSizeAttr>())
630     B.addAttribute(llvm::Attribute::MinSize);
631 
632   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
633     B.addAttribute(llvm::Attribute::StackProtect);
634   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
635     B.addAttribute(llvm::Attribute::StackProtectReq);
636 
637   // Add sanitizer attributes if function is not blacklisted.
638   if (!SanitizerBlacklist.isIn(*F)) {
639     // When AddressSanitizer is enabled, set SanitizeAddress attribute
640     // unless __attribute__((no_sanitize_address)) is used.
641     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
642       B.addAttribute(llvm::Attribute::SanitizeAddress);
643     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
644     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
645       B.addAttribute(llvm::Attribute::SanitizeThread);
646     }
647     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
648     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
649       B.addAttribute(llvm::Attribute::SanitizeMemory);
650   }
651 
652   F->addAttributes(llvm::AttributeSet::FunctionIndex,
653                    llvm::AttributeSet::get(
654                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
655 
656   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
657     F->setUnnamedAddr(true);
658   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
659     if (MD->isVirtual())
660       F->setUnnamedAddr(true);
661 
662   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
663   if (alignment)
664     F->setAlignment(alignment);
665 
666   // C++ ABI requires 2-byte alignment for member functions.
667   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
668     F->setAlignment(2);
669 }
670 
671 void CodeGenModule::SetCommonAttributes(const Decl *D,
672                                         llvm::GlobalValue *GV) {
673   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
674     setGlobalVisibility(GV, ND);
675   else
676     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
677 
678   if (D->hasAttr<UsedAttr>())
679     AddUsedGlobal(GV);
680 
681   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
682     GV->setSection(SA->getName());
683 
684   // Alias cannot have attributes. Filter them here.
685   if (!isa<llvm::GlobalAlias>(GV))
686     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
687 }
688 
689 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
690                                                   llvm::Function *F,
691                                                   const CGFunctionInfo &FI) {
692   SetLLVMFunctionAttributes(D, FI, F);
693   SetLLVMFunctionAttributesForDefinition(D, F);
694 
695   F->setLinkage(llvm::Function::InternalLinkage);
696 
697   SetCommonAttributes(D, F);
698 }
699 
700 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
701                                           llvm::Function *F,
702                                           bool IsIncompleteFunction) {
703   if (unsigned IID = F->getIntrinsicID()) {
704     // If this is an intrinsic function, set the function's attributes
705     // to the intrinsic's attributes.
706     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
707                                                     (llvm::Intrinsic::ID)IID));
708     return;
709   }
710 
711   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
712 
713   if (!IsIncompleteFunction)
714     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
715 
716   // Only a few attributes are set on declarations; these may later be
717   // overridden by a definition.
718 
719   if (FD->hasAttr<DLLImportAttr>()) {
720     F->setLinkage(llvm::Function::DLLImportLinkage);
721   } else if (FD->hasAttr<WeakAttr>() ||
722              FD->isWeakImported()) {
723     // "extern_weak" is overloaded in LLVM; we probably should have
724     // separate linkage types for this.
725     F->setLinkage(llvm::Function::ExternalWeakLinkage);
726   } else {
727     F->setLinkage(llvm::Function::ExternalLinkage);
728 
729     LinkageInfo LV = FD->getLinkageAndVisibility();
730     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
731       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
732     }
733   }
734 
735   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
736     F->setSection(SA->getName());
737 }
738 
739 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
740   assert(!GV->isDeclaration() &&
741          "Only globals with definition can force usage.");
742   LLVMUsed.push_back(GV);
743 }
744 
745 void CodeGenModule::EmitLLVMUsed() {
746   // Don't create llvm.used if there is no need.
747   if (LLVMUsed.empty())
748     return;
749 
750   // Convert LLVMUsed to what ConstantArray needs.
751   SmallVector<llvm::Constant*, 8> UsedArray;
752   UsedArray.resize(LLVMUsed.size());
753   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
754     UsedArray[i] =
755      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
756                                     Int8PtrTy);
757   }
758 
759   if (UsedArray.empty())
760     return;
761   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
762 
763   llvm::GlobalVariable *GV =
764     new llvm::GlobalVariable(getModule(), ATy, false,
765                              llvm::GlobalValue::AppendingLinkage,
766                              llvm::ConstantArray::get(ATy, UsedArray),
767                              "llvm.used");
768 
769   GV->setSection("llvm.metadata");
770 }
771 
772 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
773   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
774   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
775 }
776 
777 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
778   llvm::SmallString<32> Opt;
779   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
780   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
781   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
782 }
783 
784 void CodeGenModule::AddDependentLib(StringRef Lib) {
785   llvm::SmallString<24> Opt;
786   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
787   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
788   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
789 }
790 
791 /// \brief Add link options implied by the given module, including modules
792 /// it depends on, using a postorder walk.
793 static void addLinkOptionsPostorder(CodeGenModule &CGM,
794                                     Module *Mod,
795                                     SmallVectorImpl<llvm::Value *> &Metadata,
796                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
797   // Import this module's parent.
798   if (Mod->Parent && Visited.insert(Mod->Parent)) {
799     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
800   }
801 
802   // Import this module's dependencies.
803   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
804     if (Visited.insert(Mod->Imports[I-1]))
805       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
806   }
807 
808   // Add linker options to link against the libraries/frameworks
809   // described by this module.
810   llvm::LLVMContext &Context = CGM.getLLVMContext();
811   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
812     // Link against a framework.  Frameworks are currently Darwin only, so we
813     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
814     if (Mod->LinkLibraries[I-1].IsFramework) {
815       llvm::Value *Args[2] = {
816         llvm::MDString::get(Context, "-framework"),
817         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
818       };
819 
820       Metadata.push_back(llvm::MDNode::get(Context, Args));
821       continue;
822     }
823 
824     // Link against a library.
825     llvm::SmallString<24> Opt;
826     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
827       Mod->LinkLibraries[I-1].Library, Opt);
828     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
829     Metadata.push_back(llvm::MDNode::get(Context, OptString));
830   }
831 }
832 
833 void CodeGenModule::EmitModuleLinkOptions() {
834   // Collect the set of all of the modules we want to visit to emit link
835   // options, which is essentially the imported modules and all of their
836   // non-explicit child modules.
837   llvm::SetVector<clang::Module *> LinkModules;
838   llvm::SmallPtrSet<clang::Module *, 16> Visited;
839   SmallVector<clang::Module *, 16> Stack;
840 
841   // Seed the stack with imported modules.
842   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
843                                                MEnd = ImportedModules.end();
844        M != MEnd; ++M) {
845     if (Visited.insert(*M))
846       Stack.push_back(*M);
847   }
848 
849   // Find all of the modules to import, making a little effort to prune
850   // non-leaf modules.
851   while (!Stack.empty()) {
852     clang::Module *Mod = Stack.back();
853     Stack.pop_back();
854 
855     bool AnyChildren = false;
856 
857     // Visit the submodules of this module.
858     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
859                                         SubEnd = Mod->submodule_end();
860          Sub != SubEnd; ++Sub) {
861       // Skip explicit children; they need to be explicitly imported to be
862       // linked against.
863       if ((*Sub)->IsExplicit)
864         continue;
865 
866       if (Visited.insert(*Sub)) {
867         Stack.push_back(*Sub);
868         AnyChildren = true;
869       }
870     }
871 
872     // We didn't find any children, so add this module to the list of
873     // modules to link against.
874     if (!AnyChildren) {
875       LinkModules.insert(Mod);
876     }
877   }
878 
879   // Add link options for all of the imported modules in reverse topological
880   // order.  We don't do anything to try to order import link flags with respect
881   // to linker options inserted by things like #pragma comment().
882   SmallVector<llvm::Value *, 16> MetadataArgs;
883   Visited.clear();
884   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
885                                                MEnd = LinkModules.end();
886        M != MEnd; ++M) {
887     if (Visited.insert(*M))
888       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
889   }
890   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
891   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
892 
893   // Add the linker options metadata flag.
894   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
895                             llvm::MDNode::get(getLLVMContext(),
896                                               LinkerOptionsMetadata));
897 }
898 
899 void CodeGenModule::EmitDeferred() {
900   // Emit code for any potentially referenced deferred decls.  Since a
901   // previously unused static decl may become used during the generation of code
902   // for a static function, iterate until no changes are made.
903 
904   while (true) {
905     if (!DeferredVTables.empty()) {
906       EmitDeferredVTables();
907 
908       // Emitting a v-table doesn't directly cause more v-tables to
909       // become deferred, although it can cause functions to be
910       // emitted that then need those v-tables.
911       assert(DeferredVTables.empty());
912     }
913 
914     // Stop if we're out of both deferred v-tables and deferred declarations.
915     if (DeferredDeclsToEmit.empty()) break;
916 
917     GlobalDecl D = DeferredDeclsToEmit.back();
918     DeferredDeclsToEmit.pop_back();
919 
920     // Check to see if we've already emitted this.  This is necessary
921     // for a couple of reasons: first, decls can end up in the
922     // deferred-decls queue multiple times, and second, decls can end
923     // up with definitions in unusual ways (e.g. by an extern inline
924     // function acquiring a strong function redefinition).  Just
925     // ignore these cases.
926     //
927     // TODO: That said, looking this up multiple times is very wasteful.
928     StringRef Name = getMangledName(D);
929     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
930     assert(CGRef && "Deferred decl wasn't referenced?");
931 
932     if (!CGRef->isDeclaration())
933       continue;
934 
935     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
936     // purposes an alias counts as a definition.
937     if (isa<llvm::GlobalAlias>(CGRef))
938       continue;
939 
940     // Otherwise, emit the definition and move on to the next one.
941     EmitGlobalDefinition(D);
942   }
943 }
944 
945 void CodeGenModule::EmitGlobalAnnotations() {
946   if (Annotations.empty())
947     return;
948 
949   // Create a new global variable for the ConstantStruct in the Module.
950   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
951     Annotations[0]->getType(), Annotations.size()), Annotations);
952   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
953     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
954     "llvm.global.annotations");
955   gv->setSection(AnnotationSection);
956 }
957 
958 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
959   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
960   if (i != AnnotationStrings.end())
961     return i->second;
962 
963   // Not found yet, create a new global.
964   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
965   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
966     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
967   gv->setSection(AnnotationSection);
968   gv->setUnnamedAddr(true);
969   AnnotationStrings[Str] = gv;
970   return gv;
971 }
972 
973 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
974   SourceManager &SM = getContext().getSourceManager();
975   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
976   if (PLoc.isValid())
977     return EmitAnnotationString(PLoc.getFilename());
978   return EmitAnnotationString(SM.getBufferName(Loc));
979 }
980 
981 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
982   SourceManager &SM = getContext().getSourceManager();
983   PresumedLoc PLoc = SM.getPresumedLoc(L);
984   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
985     SM.getExpansionLineNumber(L);
986   return llvm::ConstantInt::get(Int32Ty, LineNo);
987 }
988 
989 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
990                                                 const AnnotateAttr *AA,
991                                                 SourceLocation L) {
992   // Get the globals for file name, annotation, and the line number.
993   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
994                  *UnitGV = EmitAnnotationUnit(L),
995                  *LineNoCst = EmitAnnotationLineNo(L);
996 
997   // Create the ConstantStruct for the global annotation.
998   llvm::Constant *Fields[4] = {
999     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1000     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1001     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1002     LineNoCst
1003   };
1004   return llvm::ConstantStruct::getAnon(Fields);
1005 }
1006 
1007 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1008                                          llvm::GlobalValue *GV) {
1009   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1010   // Get the struct elements for these annotations.
1011   for (specific_attr_iterator<AnnotateAttr>
1012        ai = D->specific_attr_begin<AnnotateAttr>(),
1013        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1014     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1015 }
1016 
1017 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1018   // Never defer when EmitAllDecls is specified.
1019   if (LangOpts.EmitAllDecls)
1020     return false;
1021 
1022   return !getContext().DeclMustBeEmitted(Global);
1023 }
1024 
1025 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1026     const CXXUuidofExpr* E) {
1027   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1028   // well-formed.
1029   StringRef Uuid;
1030   if (E->isTypeOperand())
1031     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1032   else {
1033     // Special case: __uuidof(0) means an all-zero GUID.
1034     Expr *Op = E->getExprOperand();
1035     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1036       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1037     else
1038       Uuid = "00000000-0000-0000-0000-000000000000";
1039   }
1040   std::string Name = "__uuid_" + Uuid.str();
1041 
1042   // Look for an existing global.
1043   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1044     return GV;
1045 
1046   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1047   assert(Init && "failed to initialize as constant");
1048 
1049   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1050   // first field is declared as "long", which for many targets is 8 bytes.
1051   // Those architectures are not supported. (With the MS abi, long is always 4
1052   // bytes.)
1053   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1054   if (Init->getType() != GuidType) {
1055     DiagnosticsEngine &Diags = getDiags();
1056     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1057         "__uuidof codegen is not supported on this architecture");
1058     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1059     Init = llvm::UndefValue::get(GuidType);
1060   }
1061 
1062   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1063       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1064   GV->setUnnamedAddr(true);
1065   return GV;
1066 }
1067 
1068 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1069   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1070   assert(AA && "No alias?");
1071 
1072   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1073 
1074   // See if there is already something with the target's name in the module.
1075   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1076   if (Entry) {
1077     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1078     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1079   }
1080 
1081   llvm::Constant *Aliasee;
1082   if (isa<llvm::FunctionType>(DeclTy))
1083     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1084                                       GlobalDecl(cast<FunctionDecl>(VD)),
1085                                       /*ForVTable=*/false);
1086   else
1087     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1088                                     llvm::PointerType::getUnqual(DeclTy), 0);
1089 
1090   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1091   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1092   WeakRefReferences.insert(F);
1093 
1094   return Aliasee;
1095 }
1096 
1097 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1098   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1099 
1100   // Weak references don't produce any output by themselves.
1101   if (Global->hasAttr<WeakRefAttr>())
1102     return;
1103 
1104   // If this is an alias definition (which otherwise looks like a declaration)
1105   // emit it now.
1106   if (Global->hasAttr<AliasAttr>())
1107     return EmitAliasDefinition(GD);
1108 
1109   // If this is CUDA, be selective about which declarations we emit.
1110   if (LangOpts.CUDA) {
1111     if (CodeGenOpts.CUDAIsDevice) {
1112       if (!Global->hasAttr<CUDADeviceAttr>() &&
1113           !Global->hasAttr<CUDAGlobalAttr>() &&
1114           !Global->hasAttr<CUDAConstantAttr>() &&
1115           !Global->hasAttr<CUDASharedAttr>())
1116         return;
1117     } else {
1118       if (!Global->hasAttr<CUDAHostAttr>() && (
1119             Global->hasAttr<CUDADeviceAttr>() ||
1120             Global->hasAttr<CUDAConstantAttr>() ||
1121             Global->hasAttr<CUDASharedAttr>()))
1122         return;
1123     }
1124   }
1125 
1126   // Ignore declarations, they will be emitted on their first use.
1127   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1128     // Forward declarations are emitted lazily on first use.
1129     if (!FD->doesThisDeclarationHaveABody()) {
1130       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1131         return;
1132 
1133       const FunctionDecl *InlineDefinition = 0;
1134       FD->getBody(InlineDefinition);
1135 
1136       StringRef MangledName = getMangledName(GD);
1137       DeferredDecls.erase(MangledName);
1138       EmitGlobalDefinition(InlineDefinition);
1139       return;
1140     }
1141   } else {
1142     const VarDecl *VD = cast<VarDecl>(Global);
1143     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1144 
1145     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1146       return;
1147   }
1148 
1149   // Defer code generation when possible if this is a static definition, inline
1150   // function etc.  These we only want to emit if they are used.
1151   if (!MayDeferGeneration(Global)) {
1152     // Emit the definition if it can't be deferred.
1153     EmitGlobalDefinition(GD);
1154     return;
1155   }
1156 
1157   // If we're deferring emission of a C++ variable with an
1158   // initializer, remember the order in which it appeared in the file.
1159   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1160       cast<VarDecl>(Global)->hasInit()) {
1161     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1162     CXXGlobalInits.push_back(0);
1163   }
1164 
1165   // If the value has already been used, add it directly to the
1166   // DeferredDeclsToEmit list.
1167   StringRef MangledName = getMangledName(GD);
1168   if (GetGlobalValue(MangledName))
1169     DeferredDeclsToEmit.push_back(GD);
1170   else {
1171     // Otherwise, remember that we saw a deferred decl with this name.  The
1172     // first use of the mangled name will cause it to move into
1173     // DeferredDeclsToEmit.
1174     DeferredDecls[MangledName] = GD;
1175   }
1176 }
1177 
1178 namespace {
1179   struct FunctionIsDirectlyRecursive :
1180     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1181     const StringRef Name;
1182     const Builtin::Context &BI;
1183     bool Result;
1184     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1185       Name(N), BI(C), Result(false) {
1186     }
1187     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1188 
1189     bool TraverseCallExpr(CallExpr *E) {
1190       const FunctionDecl *FD = E->getDirectCallee();
1191       if (!FD)
1192         return true;
1193       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1194       if (Attr && Name == Attr->getLabel()) {
1195         Result = true;
1196         return false;
1197       }
1198       unsigned BuiltinID = FD->getBuiltinID();
1199       if (!BuiltinID)
1200         return true;
1201       StringRef BuiltinName = BI.GetName(BuiltinID);
1202       if (BuiltinName.startswith("__builtin_") &&
1203           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1204         Result = true;
1205         return false;
1206       }
1207       return true;
1208     }
1209   };
1210 }
1211 
1212 // isTriviallyRecursive - Check if this function calls another
1213 // decl that, because of the asm attribute or the other decl being a builtin,
1214 // ends up pointing to itself.
1215 bool
1216 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1217   StringRef Name;
1218   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1219     // asm labels are a special kind of mangling we have to support.
1220     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1221     if (!Attr)
1222       return false;
1223     Name = Attr->getLabel();
1224   } else {
1225     Name = FD->getName();
1226   }
1227 
1228   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1229   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1230   return Walker.Result;
1231 }
1232 
1233 bool
1234 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1235   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1236     return true;
1237   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1238   if (CodeGenOpts.OptimizationLevel == 0 &&
1239       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1240     return false;
1241   // PR9614. Avoid cases where the source code is lying to us. An available
1242   // externally function should have an equivalent function somewhere else,
1243   // but a function that calls itself is clearly not equivalent to the real
1244   // implementation.
1245   // This happens in glibc's btowc and in some configure checks.
1246   return !isTriviallyRecursive(F);
1247 }
1248 
1249 /// If the type for the method's class was generated by
1250 /// CGDebugInfo::createContextChain(), the cache contains only a
1251 /// limited DIType without any declarations. Since EmitFunctionStart()
1252 /// needs to find the canonical declaration for each method, we need
1253 /// to construct the complete type prior to emitting the method.
1254 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1255   if (!D->isInstance())
1256     return;
1257 
1258   if (CGDebugInfo *DI = getModuleDebugInfo())
1259     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1260       const PointerType *ThisPtr =
1261         cast<PointerType>(D->getThisType(getContext()));
1262       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1263     }
1264 }
1265 
1266 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1267   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1268 
1269   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1270                                  Context.getSourceManager(),
1271                                  "Generating code for declaration");
1272 
1273   if (isa<FunctionDecl>(D)) {
1274     // At -O0, don't generate IR for functions with available_externally
1275     // linkage.
1276     if (!shouldEmitFunction(GD))
1277       return;
1278 
1279     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1280       CompleteDIClassType(Method);
1281       // Make sure to emit the definition(s) before we emit the thunks.
1282       // This is necessary for the generation of certain thunks.
1283       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1284         EmitCXXConstructor(CD, GD.getCtorType());
1285       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1286         EmitCXXDestructor(DD, GD.getDtorType());
1287       else
1288         EmitGlobalFunctionDefinition(GD);
1289 
1290       if (Method->isVirtual())
1291         getVTables().EmitThunks(GD);
1292 
1293       return;
1294     }
1295 
1296     return EmitGlobalFunctionDefinition(GD);
1297   }
1298 
1299   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1300     return EmitGlobalVarDefinition(VD);
1301 
1302   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1303 }
1304 
1305 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1306 /// module, create and return an llvm Function with the specified type. If there
1307 /// is something in the module with the specified name, return it potentially
1308 /// bitcasted to the right type.
1309 ///
1310 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1311 /// to set the attributes on the function when it is first created.
1312 llvm::Constant *
1313 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1314                                        llvm::Type *Ty,
1315                                        GlobalDecl D, bool ForVTable,
1316                                        llvm::AttributeSet ExtraAttrs) {
1317   // Lookup the entry, lazily creating it if necessary.
1318   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1319   if (Entry) {
1320     if (WeakRefReferences.erase(Entry)) {
1321       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1322       if (FD && !FD->hasAttr<WeakAttr>())
1323         Entry->setLinkage(llvm::Function::ExternalLinkage);
1324     }
1325 
1326     if (Entry->getType()->getElementType() == Ty)
1327       return Entry;
1328 
1329     // Make sure the result is of the correct type.
1330     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1331   }
1332 
1333   // This function doesn't have a complete type (for example, the return
1334   // type is an incomplete struct). Use a fake type instead, and make
1335   // sure not to try to set attributes.
1336   bool IsIncompleteFunction = false;
1337 
1338   llvm::FunctionType *FTy;
1339   if (isa<llvm::FunctionType>(Ty)) {
1340     FTy = cast<llvm::FunctionType>(Ty);
1341   } else {
1342     FTy = llvm::FunctionType::get(VoidTy, false);
1343     IsIncompleteFunction = true;
1344   }
1345 
1346   llvm::Function *F = llvm::Function::Create(FTy,
1347                                              llvm::Function::ExternalLinkage,
1348                                              MangledName, &getModule());
1349   assert(F->getName() == MangledName && "name was uniqued!");
1350   if (D.getDecl())
1351     SetFunctionAttributes(D, F, IsIncompleteFunction);
1352   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1353     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1354     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1355                      llvm::AttributeSet::get(VMContext,
1356                                              llvm::AttributeSet::FunctionIndex,
1357                                              B));
1358   }
1359 
1360   // This is the first use or definition of a mangled name.  If there is a
1361   // deferred decl with this name, remember that we need to emit it at the end
1362   // of the file.
1363   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1364   if (DDI != DeferredDecls.end()) {
1365     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1366     // list, and remove it from DeferredDecls (since we don't need it anymore).
1367     DeferredDeclsToEmit.push_back(DDI->second);
1368     DeferredDecls.erase(DDI);
1369 
1370   // Otherwise, there are cases we have to worry about where we're
1371   // using a declaration for which we must emit a definition but where
1372   // we might not find a top-level definition:
1373   //   - member functions defined inline in their classes
1374   //   - friend functions defined inline in some class
1375   //   - special member functions with implicit definitions
1376   // If we ever change our AST traversal to walk into class methods,
1377   // this will be unnecessary.
1378   //
1379   // We also don't emit a definition for a function if it's going to be an entry
1380   // in a vtable, unless it's already marked as used.
1381   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1382     // Look for a declaration that's lexically in a record.
1383     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1384     FD = FD->getMostRecentDecl();
1385     do {
1386       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1387         if (FD->isImplicit() && !ForVTable) {
1388           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1389           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1390           break;
1391         } else if (FD->doesThisDeclarationHaveABody()) {
1392           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1393           break;
1394         }
1395       }
1396       FD = FD->getPreviousDecl();
1397     } while (FD);
1398   }
1399 
1400   // Make sure the result is of the requested type.
1401   if (!IsIncompleteFunction) {
1402     assert(F->getType()->getElementType() == Ty);
1403     return F;
1404   }
1405 
1406   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1407   return llvm::ConstantExpr::getBitCast(F, PTy);
1408 }
1409 
1410 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1411 /// non-null, then this function will use the specified type if it has to
1412 /// create it (this occurs when we see a definition of the function).
1413 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1414                                                  llvm::Type *Ty,
1415                                                  bool ForVTable) {
1416   // If there was no specific requested type, just convert it now.
1417   if (!Ty)
1418     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1419 
1420   StringRef MangledName = getMangledName(GD);
1421   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1422 }
1423 
1424 /// CreateRuntimeFunction - Create a new runtime function with the specified
1425 /// type and name.
1426 llvm::Constant *
1427 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1428                                      StringRef Name,
1429                                      llvm::AttributeSet ExtraAttrs) {
1430   llvm::Constant *C
1431     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1432                               ExtraAttrs);
1433   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1434     if (F->empty())
1435       F->setCallingConv(getRuntimeCC());
1436   return C;
1437 }
1438 
1439 /// isTypeConstant - Determine whether an object of this type can be emitted
1440 /// as a constant.
1441 ///
1442 /// If ExcludeCtor is true, the duration when the object's constructor runs
1443 /// will not be considered. The caller will need to verify that the object is
1444 /// not written to during its construction.
1445 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1446   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1447     return false;
1448 
1449   if (Context.getLangOpts().CPlusPlus) {
1450     if (const CXXRecordDecl *Record
1451           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1452       return ExcludeCtor && !Record->hasMutableFields() &&
1453              Record->hasTrivialDestructor();
1454   }
1455 
1456   return true;
1457 }
1458 
1459 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1460 /// create and return an llvm GlobalVariable with the specified type.  If there
1461 /// is something in the module with the specified name, return it potentially
1462 /// bitcasted to the right type.
1463 ///
1464 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1465 /// to set the attributes on the global when it is first created.
1466 llvm::Constant *
1467 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1468                                      llvm::PointerType *Ty,
1469                                      const VarDecl *D,
1470                                      bool UnnamedAddr) {
1471   // Lookup the entry, lazily creating it if necessary.
1472   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1473   if (Entry) {
1474     if (WeakRefReferences.erase(Entry)) {
1475       if (D && !D->hasAttr<WeakAttr>())
1476         Entry->setLinkage(llvm::Function::ExternalLinkage);
1477     }
1478 
1479     if (UnnamedAddr)
1480       Entry->setUnnamedAddr(true);
1481 
1482     if (Entry->getType() == Ty)
1483       return Entry;
1484 
1485     // Make sure the result is of the correct type.
1486     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1487   }
1488 
1489   // This is the first use or definition of a mangled name.  If there is a
1490   // deferred decl with this name, remember that we need to emit it at the end
1491   // of the file.
1492   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1493   if (DDI != DeferredDecls.end()) {
1494     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1495     // list, and remove it from DeferredDecls (since we don't need it anymore).
1496     DeferredDeclsToEmit.push_back(DDI->second);
1497     DeferredDecls.erase(DDI);
1498   }
1499 
1500   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1501   llvm::GlobalVariable *GV =
1502     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1503                              llvm::GlobalValue::ExternalLinkage,
1504                              0, MangledName, 0,
1505                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1506 
1507   // Handle things which are present even on external declarations.
1508   if (D) {
1509     // FIXME: This code is overly simple and should be merged with other global
1510     // handling.
1511     GV->setConstant(isTypeConstant(D->getType(), false));
1512 
1513     // Set linkage and visibility in case we never see a definition.
1514     LinkageInfo LV = D->getLinkageAndVisibility();
1515     if (LV.getLinkage() != ExternalLinkage) {
1516       // Don't set internal linkage on declarations.
1517     } else {
1518       if (D->hasAttr<DLLImportAttr>())
1519         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1520       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1521         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1522 
1523       // Set visibility on a declaration only if it's explicit.
1524       if (LV.isVisibilityExplicit())
1525         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1526     }
1527 
1528     if (D->getTLSKind()) {
1529       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1530         CXXThreadLocals.push_back(std::make_pair(D, GV));
1531       setTLSMode(GV, *D);
1532     }
1533   }
1534 
1535   if (AddrSpace != Ty->getAddressSpace())
1536     return llvm::ConstantExpr::getBitCast(GV, Ty);
1537   else
1538     return GV;
1539 }
1540 
1541 
1542 llvm::GlobalVariable *
1543 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1544                                       llvm::Type *Ty,
1545                                       llvm::GlobalValue::LinkageTypes Linkage) {
1546   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1547   llvm::GlobalVariable *OldGV = 0;
1548 
1549 
1550   if (GV) {
1551     // Check if the variable has the right type.
1552     if (GV->getType()->getElementType() == Ty)
1553       return GV;
1554 
1555     // Because C++ name mangling, the only way we can end up with an already
1556     // existing global with the same name is if it has been declared extern "C".
1557     assert(GV->isDeclaration() && "Declaration has wrong type!");
1558     OldGV = GV;
1559   }
1560 
1561   // Create a new variable.
1562   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1563                                 Linkage, 0, Name);
1564 
1565   if (OldGV) {
1566     // Replace occurrences of the old variable if needed.
1567     GV->takeName(OldGV);
1568 
1569     if (!OldGV->use_empty()) {
1570       llvm::Constant *NewPtrForOldDecl =
1571       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1572       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1573     }
1574 
1575     OldGV->eraseFromParent();
1576   }
1577 
1578   return GV;
1579 }
1580 
1581 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1582 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1583 /// then it will be created with the specified type instead of whatever the
1584 /// normal requested type would be.
1585 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1586                                                   llvm::Type *Ty) {
1587   assert(D->hasGlobalStorage() && "Not a global variable");
1588   QualType ASTTy = D->getType();
1589   if (Ty == 0)
1590     Ty = getTypes().ConvertTypeForMem(ASTTy);
1591 
1592   llvm::PointerType *PTy =
1593     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1594 
1595   StringRef MangledName = getMangledName(D);
1596   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1597 }
1598 
1599 /// CreateRuntimeVariable - Create a new runtime global variable with the
1600 /// specified type and name.
1601 llvm::Constant *
1602 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1603                                      StringRef Name) {
1604   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1605                                true);
1606 }
1607 
1608 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1609   assert(!D->getInit() && "Cannot emit definite definitions here!");
1610 
1611   if (MayDeferGeneration(D)) {
1612     // If we have not seen a reference to this variable yet, place it
1613     // into the deferred declarations table to be emitted if needed
1614     // later.
1615     StringRef MangledName = getMangledName(D);
1616     if (!GetGlobalValue(MangledName)) {
1617       DeferredDecls[MangledName] = D;
1618       return;
1619     }
1620   }
1621 
1622   // The tentative definition is the only definition.
1623   EmitGlobalVarDefinition(D);
1624 }
1625 
1626 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1627     return Context.toCharUnitsFromBits(
1628       TheDataLayout.getTypeStoreSizeInBits(Ty));
1629 }
1630 
1631 llvm::Constant *
1632 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1633                                                        const Expr *rawInit) {
1634   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1635   if (const ExprWithCleanups *withCleanups =
1636           dyn_cast<ExprWithCleanups>(rawInit)) {
1637     cleanups = withCleanups->getObjects();
1638     rawInit = withCleanups->getSubExpr();
1639   }
1640 
1641   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1642   if (!init || !init->initializesStdInitializerList() ||
1643       init->getNumInits() == 0)
1644     return 0;
1645 
1646   ASTContext &ctx = getContext();
1647   unsigned numInits = init->getNumInits();
1648   // FIXME: This check is here because we would otherwise silently miscompile
1649   // nested global std::initializer_lists. Better would be to have a real
1650   // implementation.
1651   for (unsigned i = 0; i < numInits; ++i) {
1652     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1653     if (inner && inner->initializesStdInitializerList()) {
1654       ErrorUnsupported(inner, "nested global std::initializer_list");
1655       return 0;
1656     }
1657   }
1658 
1659   // Synthesize a fake VarDecl for the array and initialize that.
1660   QualType elementType = init->getInit(0)->getType();
1661   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1662   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1663                                                 ArrayType::Normal, 0);
1664 
1665   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1666   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1667                                               arrayType, D->getLocation());
1668   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1669                                                           D->getDeclContext()),
1670                                           D->getLocStart(), D->getLocation(),
1671                                           name, arrayType, sourceInfo,
1672                                           SC_Static);
1673   backingArray->setTSCSpec(D->getTSCSpec());
1674 
1675   // Now clone the InitListExpr to initialize the array instead.
1676   // Incredible hack: we want to use the existing InitListExpr here, so we need
1677   // to tell it that it no longer initializes a std::initializer_list.
1678   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1679                         init->getNumInits());
1680   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1681                                            init->getRBraceLoc());
1682   arrayInit->setType(arrayType);
1683 
1684   if (!cleanups.empty())
1685     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1686 
1687   backingArray->setInit(arrayInit);
1688 
1689   // Emit the definition of the array.
1690   EmitGlobalVarDefinition(backingArray);
1691 
1692   // Inspect the initializer list to validate it and determine its type.
1693   // FIXME: doing this every time is probably inefficient; caching would be nice
1694   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1695   RecordDecl::field_iterator field = record->field_begin();
1696   if (field == record->field_end()) {
1697     ErrorUnsupported(D, "weird std::initializer_list");
1698     return 0;
1699   }
1700   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1701   // Start pointer.
1702   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1703     ErrorUnsupported(D, "weird std::initializer_list");
1704     return 0;
1705   }
1706   ++field;
1707   if (field == record->field_end()) {
1708     ErrorUnsupported(D, "weird std::initializer_list");
1709     return 0;
1710   }
1711   bool isStartEnd = false;
1712   if (ctx.hasSameType(field->getType(), elementPtr)) {
1713     // End pointer.
1714     isStartEnd = true;
1715   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1716     ErrorUnsupported(D, "weird std::initializer_list");
1717     return 0;
1718   }
1719 
1720   // Now build an APValue representing the std::initializer_list.
1721   APValue initListValue(APValue::UninitStruct(), 0, 2);
1722   APValue &startField = initListValue.getStructField(0);
1723   APValue::LValuePathEntry startOffsetPathEntry;
1724   startOffsetPathEntry.ArrayIndex = 0;
1725   startField = APValue(APValue::LValueBase(backingArray),
1726                        CharUnits::fromQuantity(0),
1727                        llvm::makeArrayRef(startOffsetPathEntry),
1728                        /*IsOnePastTheEnd=*/false, 0);
1729 
1730   if (isStartEnd) {
1731     APValue &endField = initListValue.getStructField(1);
1732     APValue::LValuePathEntry endOffsetPathEntry;
1733     endOffsetPathEntry.ArrayIndex = numInits;
1734     endField = APValue(APValue::LValueBase(backingArray),
1735                        ctx.getTypeSizeInChars(elementType) * numInits,
1736                        llvm::makeArrayRef(endOffsetPathEntry),
1737                        /*IsOnePastTheEnd=*/true, 0);
1738   } else {
1739     APValue &sizeField = initListValue.getStructField(1);
1740     sizeField = APValue(llvm::APSInt(numElements));
1741   }
1742 
1743   // Emit the constant for the initializer_list.
1744   llvm::Constant *llvmInit =
1745       EmitConstantValueForMemory(initListValue, D->getType());
1746   assert(llvmInit && "failed to initialize as constant");
1747   return llvmInit;
1748 }
1749 
1750 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1751                                                  unsigned AddrSpace) {
1752   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1753     if (D->hasAttr<CUDAConstantAttr>())
1754       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1755     else if (D->hasAttr<CUDASharedAttr>())
1756       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1757     else
1758       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1759   }
1760 
1761   return AddrSpace;
1762 }
1763 
1764 template<typename SomeDecl>
1765 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1766                                                llvm::GlobalValue *GV) {
1767   if (!getLangOpts().CPlusPlus)
1768     return;
1769 
1770   // Must have 'used' attribute, or else inline assembly can't rely on
1771   // the name existing.
1772   if (!D->template hasAttr<UsedAttr>())
1773     return;
1774 
1775   // Must have internal linkage and an ordinary name.
1776   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1777     return;
1778 
1779   // Must be in an extern "C" context. Entities declared directly within
1780   // a record are not extern "C" even if the record is in such a context.
1781   const SomeDecl *First = D->getFirstDeclaration();
1782   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1783     return;
1784 
1785   // OK, this is an internal linkage entity inside an extern "C" linkage
1786   // specification. Make a note of that so we can give it the "expected"
1787   // mangled name if nothing else is using that name.
1788   std::pair<StaticExternCMap::iterator, bool> R =
1789       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1790 
1791   // If we have multiple internal linkage entities with the same name
1792   // in extern "C" regions, none of them gets that name.
1793   if (!R.second)
1794     R.first->second = 0;
1795 }
1796 
1797 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1798   llvm::Constant *Init = 0;
1799   QualType ASTTy = D->getType();
1800   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1801   bool NeedsGlobalCtor = false;
1802   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1803 
1804   const VarDecl *InitDecl;
1805   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1806 
1807   if (!InitExpr) {
1808     // This is a tentative definition; tentative definitions are
1809     // implicitly initialized with { 0 }.
1810     //
1811     // Note that tentative definitions are only emitted at the end of
1812     // a translation unit, so they should never have incomplete
1813     // type. In addition, EmitTentativeDefinition makes sure that we
1814     // never attempt to emit a tentative definition if a real one
1815     // exists. A use may still exists, however, so we still may need
1816     // to do a RAUW.
1817     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1818     Init = EmitNullConstant(D->getType());
1819   } else {
1820     // If this is a std::initializer_list, emit the special initializer.
1821     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1822     // An empty init list will perform zero-initialization, which happens
1823     // to be exactly what we want.
1824     // FIXME: It does so in a global constructor, which is *not* what we
1825     // want.
1826 
1827     if (!Init) {
1828       initializedGlobalDecl = GlobalDecl(D);
1829       Init = EmitConstantInit(*InitDecl);
1830     }
1831     if (!Init) {
1832       QualType T = InitExpr->getType();
1833       if (D->getType()->isReferenceType())
1834         T = D->getType();
1835 
1836       if (getLangOpts().CPlusPlus) {
1837         Init = EmitNullConstant(T);
1838         NeedsGlobalCtor = true;
1839       } else {
1840         ErrorUnsupported(D, "static initializer");
1841         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1842       }
1843     } else {
1844       // We don't need an initializer, so remove the entry for the delayed
1845       // initializer position (just in case this entry was delayed) if we
1846       // also don't need to register a destructor.
1847       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1848         DelayedCXXInitPosition.erase(D);
1849     }
1850   }
1851 
1852   llvm::Type* InitType = Init->getType();
1853   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1854 
1855   // Strip off a bitcast if we got one back.
1856   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1857     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1858            // all zero index gep.
1859            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1860     Entry = CE->getOperand(0);
1861   }
1862 
1863   // Entry is now either a Function or GlobalVariable.
1864   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1865 
1866   // We have a definition after a declaration with the wrong type.
1867   // We must make a new GlobalVariable* and update everything that used OldGV
1868   // (a declaration or tentative definition) with the new GlobalVariable*
1869   // (which will be a definition).
1870   //
1871   // This happens if there is a prototype for a global (e.g.
1872   // "extern int x[];") and then a definition of a different type (e.g.
1873   // "int x[10];"). This also happens when an initializer has a different type
1874   // from the type of the global (this happens with unions).
1875   if (GV == 0 ||
1876       GV->getType()->getElementType() != InitType ||
1877       GV->getType()->getAddressSpace() !=
1878        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1879 
1880     // Move the old entry aside so that we'll create a new one.
1881     Entry->setName(StringRef());
1882 
1883     // Make a new global with the correct type, this is now guaranteed to work.
1884     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1885 
1886     // Replace all uses of the old global with the new global
1887     llvm::Constant *NewPtrForOldDecl =
1888         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1889     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1890 
1891     // Erase the old global, since it is no longer used.
1892     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1893   }
1894 
1895   MaybeHandleStaticInExternC(D, GV);
1896 
1897   if (D->hasAttr<AnnotateAttr>())
1898     AddGlobalAnnotations(D, GV);
1899 
1900   GV->setInitializer(Init);
1901 
1902   // If it is safe to mark the global 'constant', do so now.
1903   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1904                   isTypeConstant(D->getType(), true));
1905 
1906   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1907 
1908   // Set the llvm linkage type as appropriate.
1909   llvm::GlobalValue::LinkageTypes Linkage =
1910     GetLLVMLinkageVarDefinition(D, GV);
1911   GV->setLinkage(Linkage);
1912   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1913     // common vars aren't constant even if declared const.
1914     GV->setConstant(false);
1915 
1916   SetCommonAttributes(D, GV);
1917 
1918   // Emit the initializer function if necessary.
1919   if (NeedsGlobalCtor || NeedsGlobalDtor)
1920     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1921 
1922   // If we are compiling with ASan, add metadata indicating dynamically
1923   // initialized globals.
1924   if (SanOpts.Address && NeedsGlobalCtor) {
1925     llvm::Module &M = getModule();
1926 
1927     llvm::NamedMDNode *DynamicInitializers =
1928         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1929     llvm::Value *GlobalToAdd[] = { GV };
1930     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1931     DynamicInitializers->addOperand(ThisGlobal);
1932   }
1933 
1934   // Emit global variable debug information.
1935   if (CGDebugInfo *DI = getModuleDebugInfo())
1936     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1937       DI->EmitGlobalVariable(GV, D);
1938 }
1939 
1940 llvm::GlobalValue::LinkageTypes
1941 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1942                                            llvm::GlobalVariable *GV) {
1943   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1944   if (Linkage == GVA_Internal)
1945     return llvm::Function::InternalLinkage;
1946   else if (D->hasAttr<DLLImportAttr>())
1947     return llvm::Function::DLLImportLinkage;
1948   else if (D->hasAttr<DLLExportAttr>())
1949     return llvm::Function::DLLExportLinkage;
1950   else if (D->hasAttr<SelectAnyAttr>()) {
1951     // selectany symbols are externally visible, so use weak instead of
1952     // linkonce.  MSVC optimizes away references to const selectany globals, so
1953     // all definitions should be the same and ODR linkage should be used.
1954     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1955     return llvm::GlobalVariable::WeakODRLinkage;
1956   } else if (D->hasAttr<WeakAttr>()) {
1957     if (GV->isConstant())
1958       return llvm::GlobalVariable::WeakODRLinkage;
1959     else
1960       return llvm::GlobalVariable::WeakAnyLinkage;
1961   } else if (Linkage == GVA_TemplateInstantiation ||
1962              Linkage == GVA_ExplicitTemplateInstantiation)
1963     return llvm::GlobalVariable::WeakODRLinkage;
1964   else if (!getLangOpts().CPlusPlus &&
1965            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1966              D->getAttr<CommonAttr>()) &&
1967            !D->hasExternalStorage() && !D->getInit() &&
1968            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1969            !D->getAttr<WeakImportAttr>()) {
1970     // Thread local vars aren't considered common linkage.
1971     return llvm::GlobalVariable::CommonLinkage;
1972   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1973              getTarget().getTriple().isMacOSX())
1974     // On Darwin, the backing variable for a C++11 thread_local variable always
1975     // has internal linkage; all accesses should just be calls to the
1976     // Itanium-specified entry point, which has the normal linkage of the
1977     // variable.
1978     return llvm::GlobalValue::InternalLinkage;
1979   return llvm::GlobalVariable::ExternalLinkage;
1980 }
1981 
1982 /// Replace the uses of a function that was declared with a non-proto type.
1983 /// We want to silently drop extra arguments from call sites
1984 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1985                                           llvm::Function *newFn) {
1986   // Fast path.
1987   if (old->use_empty()) return;
1988 
1989   llvm::Type *newRetTy = newFn->getReturnType();
1990   SmallVector<llvm::Value*, 4> newArgs;
1991 
1992   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1993          ui != ue; ) {
1994     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1995     llvm::User *user = *use;
1996 
1997     // Recognize and replace uses of bitcasts.  Most calls to
1998     // unprototyped functions will use bitcasts.
1999     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2000       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2001         replaceUsesOfNonProtoConstant(bitcast, newFn);
2002       continue;
2003     }
2004 
2005     // Recognize calls to the function.
2006     llvm::CallSite callSite(user);
2007     if (!callSite) continue;
2008     if (!callSite.isCallee(use)) continue;
2009 
2010     // If the return types don't match exactly, then we can't
2011     // transform this call unless it's dead.
2012     if (callSite->getType() != newRetTy && !callSite->use_empty())
2013       continue;
2014 
2015     // Get the call site's attribute list.
2016     SmallVector<llvm::AttributeSet, 8> newAttrs;
2017     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2018 
2019     // Collect any return attributes from the call.
2020     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2021       newAttrs.push_back(
2022         llvm::AttributeSet::get(newFn->getContext(),
2023                                 oldAttrs.getRetAttributes()));
2024 
2025     // If the function was passed too few arguments, don't transform.
2026     unsigned newNumArgs = newFn->arg_size();
2027     if (callSite.arg_size() < newNumArgs) continue;
2028 
2029     // If extra arguments were passed, we silently drop them.
2030     // If any of the types mismatch, we don't transform.
2031     unsigned argNo = 0;
2032     bool dontTransform = false;
2033     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2034            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2035       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2036         dontTransform = true;
2037         break;
2038       }
2039 
2040       // Add any parameter attributes.
2041       if (oldAttrs.hasAttributes(argNo + 1))
2042         newAttrs.
2043           push_back(llvm::
2044                     AttributeSet::get(newFn->getContext(),
2045                                       oldAttrs.getParamAttributes(argNo + 1)));
2046     }
2047     if (dontTransform)
2048       continue;
2049 
2050     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2051       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2052                                                  oldAttrs.getFnAttributes()));
2053 
2054     // Okay, we can transform this.  Create the new call instruction and copy
2055     // over the required information.
2056     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2057 
2058     llvm::CallSite newCall;
2059     if (callSite.isCall()) {
2060       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2061                                        callSite.getInstruction());
2062     } else {
2063       llvm::InvokeInst *oldInvoke =
2064         cast<llvm::InvokeInst>(callSite.getInstruction());
2065       newCall = llvm::InvokeInst::Create(newFn,
2066                                          oldInvoke->getNormalDest(),
2067                                          oldInvoke->getUnwindDest(),
2068                                          newArgs, "",
2069                                          callSite.getInstruction());
2070     }
2071     newArgs.clear(); // for the next iteration
2072 
2073     if (!newCall->getType()->isVoidTy())
2074       newCall->takeName(callSite.getInstruction());
2075     newCall.setAttributes(
2076                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2077     newCall.setCallingConv(callSite.getCallingConv());
2078 
2079     // Finally, remove the old call, replacing any uses with the new one.
2080     if (!callSite->use_empty())
2081       callSite->replaceAllUsesWith(newCall.getInstruction());
2082 
2083     // Copy debug location attached to CI.
2084     if (!callSite->getDebugLoc().isUnknown())
2085       newCall->setDebugLoc(callSite->getDebugLoc());
2086     callSite->eraseFromParent();
2087   }
2088 }
2089 
2090 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2091 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2092 /// existing call uses of the old function in the module, this adjusts them to
2093 /// call the new function directly.
2094 ///
2095 /// This is not just a cleanup: the always_inline pass requires direct calls to
2096 /// functions to be able to inline them.  If there is a bitcast in the way, it
2097 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2098 /// run at -O0.
2099 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2100                                                       llvm::Function *NewFn) {
2101   // If we're redefining a global as a function, don't transform it.
2102   if (!isa<llvm::Function>(Old)) return;
2103 
2104   replaceUsesOfNonProtoConstant(Old, NewFn);
2105 }
2106 
2107 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2108   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2109   // If we have a definition, this might be a deferred decl. If the
2110   // instantiation is explicit, make sure we emit it at the end.
2111   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2112     GetAddrOfGlobalVar(VD);
2113 
2114   EmitTopLevelDecl(VD);
2115 }
2116 
2117 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2118   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2119 
2120   // Compute the function info and LLVM type.
2121   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2122   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2123 
2124   // Get or create the prototype for the function.
2125   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2126 
2127   // Strip off a bitcast if we got one back.
2128   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2129     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2130     Entry = CE->getOperand(0);
2131   }
2132 
2133 
2134   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2135     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2136 
2137     // If the types mismatch then we have to rewrite the definition.
2138     assert(OldFn->isDeclaration() &&
2139            "Shouldn't replace non-declaration");
2140 
2141     // F is the Function* for the one with the wrong type, we must make a new
2142     // Function* and update everything that used F (a declaration) with the new
2143     // Function* (which will be a definition).
2144     //
2145     // This happens if there is a prototype for a function
2146     // (e.g. "int f()") and then a definition of a different type
2147     // (e.g. "int f(int x)").  Move the old function aside so that it
2148     // doesn't interfere with GetAddrOfFunction.
2149     OldFn->setName(StringRef());
2150     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2151 
2152     // This might be an implementation of a function without a
2153     // prototype, in which case, try to do special replacement of
2154     // calls which match the new prototype.  The really key thing here
2155     // is that we also potentially drop arguments from the call site
2156     // so as to make a direct call, which makes the inliner happier
2157     // and suppresses a number of optimizer warnings (!) about
2158     // dropping arguments.
2159     if (!OldFn->use_empty()) {
2160       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2161       OldFn->removeDeadConstantUsers();
2162     }
2163 
2164     // Replace uses of F with the Function we will endow with a body.
2165     if (!Entry->use_empty()) {
2166       llvm::Constant *NewPtrForOldDecl =
2167         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2168       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2169     }
2170 
2171     // Ok, delete the old function now, which is dead.
2172     OldFn->eraseFromParent();
2173 
2174     Entry = NewFn;
2175   }
2176 
2177   // We need to set linkage and visibility on the function before
2178   // generating code for it because various parts of IR generation
2179   // want to propagate this information down (e.g. to local static
2180   // declarations).
2181   llvm::Function *Fn = cast<llvm::Function>(Entry);
2182   setFunctionLinkage(GD, Fn);
2183 
2184   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2185   setGlobalVisibility(Fn, D);
2186 
2187   MaybeHandleStaticInExternC(D, Fn);
2188 
2189   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2190 
2191   SetFunctionDefinitionAttributes(D, Fn);
2192   SetLLVMFunctionAttributesForDefinition(D, Fn);
2193 
2194   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2195     AddGlobalCtor(Fn, CA->getPriority());
2196   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2197     AddGlobalDtor(Fn, DA->getPriority());
2198   if (D->hasAttr<AnnotateAttr>())
2199     AddGlobalAnnotations(D, Fn);
2200 }
2201 
2202 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2203   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2204   const AliasAttr *AA = D->getAttr<AliasAttr>();
2205   assert(AA && "Not an alias?");
2206 
2207   StringRef MangledName = getMangledName(GD);
2208 
2209   // If there is a definition in the module, then it wins over the alias.
2210   // This is dubious, but allow it to be safe.  Just ignore the alias.
2211   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2212   if (Entry && !Entry->isDeclaration())
2213     return;
2214 
2215   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2216 
2217   // Create a reference to the named value.  This ensures that it is emitted
2218   // if a deferred decl.
2219   llvm::Constant *Aliasee;
2220   if (isa<llvm::FunctionType>(DeclTy))
2221     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2222                                       /*ForVTable=*/false);
2223   else
2224     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2225                                     llvm::PointerType::getUnqual(DeclTy), 0);
2226 
2227   // Create the new alias itself, but don't set a name yet.
2228   llvm::GlobalValue *GA =
2229     new llvm::GlobalAlias(Aliasee->getType(),
2230                           llvm::Function::ExternalLinkage,
2231                           "", Aliasee, &getModule());
2232 
2233   if (Entry) {
2234     assert(Entry->isDeclaration());
2235 
2236     // If there is a declaration in the module, then we had an extern followed
2237     // by the alias, as in:
2238     //   extern int test6();
2239     //   ...
2240     //   int test6() __attribute__((alias("test7")));
2241     //
2242     // Remove it and replace uses of it with the alias.
2243     GA->takeName(Entry);
2244 
2245     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2246                                                           Entry->getType()));
2247     Entry->eraseFromParent();
2248   } else {
2249     GA->setName(MangledName);
2250   }
2251 
2252   // Set attributes which are particular to an alias; this is a
2253   // specialization of the attributes which may be set on a global
2254   // variable/function.
2255   if (D->hasAttr<DLLExportAttr>()) {
2256     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2257       // The dllexport attribute is ignored for undefined symbols.
2258       if (FD->hasBody())
2259         GA->setLinkage(llvm::Function::DLLExportLinkage);
2260     } else {
2261       GA->setLinkage(llvm::Function::DLLExportLinkage);
2262     }
2263   } else if (D->hasAttr<WeakAttr>() ||
2264              D->hasAttr<WeakRefAttr>() ||
2265              D->isWeakImported()) {
2266     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2267   }
2268 
2269   SetCommonAttributes(D, GA);
2270 }
2271 
2272 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2273                                             ArrayRef<llvm::Type*> Tys) {
2274   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2275                                          Tys);
2276 }
2277 
2278 static llvm::StringMapEntry<llvm::Constant*> &
2279 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2280                          const StringLiteral *Literal,
2281                          bool TargetIsLSB,
2282                          bool &IsUTF16,
2283                          unsigned &StringLength) {
2284   StringRef String = Literal->getString();
2285   unsigned NumBytes = String.size();
2286 
2287   // Check for simple case.
2288   if (!Literal->containsNonAsciiOrNull()) {
2289     StringLength = NumBytes;
2290     return Map.GetOrCreateValue(String);
2291   }
2292 
2293   // Otherwise, convert the UTF8 literals into a string of shorts.
2294   IsUTF16 = true;
2295 
2296   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2297   const UTF8 *FromPtr = (const UTF8 *)String.data();
2298   UTF16 *ToPtr = &ToBuf[0];
2299 
2300   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2301                            &ToPtr, ToPtr + NumBytes,
2302                            strictConversion);
2303 
2304   // ConvertUTF8toUTF16 returns the length in ToPtr.
2305   StringLength = ToPtr - &ToBuf[0];
2306 
2307   // Add an explicit null.
2308   *ToPtr = 0;
2309   return Map.
2310     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2311                                (StringLength + 1) * 2));
2312 }
2313 
2314 static llvm::StringMapEntry<llvm::Constant*> &
2315 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2316                        const StringLiteral *Literal,
2317                        unsigned &StringLength) {
2318   StringRef String = Literal->getString();
2319   StringLength = String.size();
2320   return Map.GetOrCreateValue(String);
2321 }
2322 
2323 llvm::Constant *
2324 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2325   unsigned StringLength = 0;
2326   bool isUTF16 = false;
2327   llvm::StringMapEntry<llvm::Constant*> &Entry =
2328     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2329                              getDataLayout().isLittleEndian(),
2330                              isUTF16, StringLength);
2331 
2332   if (llvm::Constant *C = Entry.getValue())
2333     return C;
2334 
2335   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2336   llvm::Constant *Zeros[] = { Zero, Zero };
2337   llvm::Value *V;
2338 
2339   // If we don't already have it, get __CFConstantStringClassReference.
2340   if (!CFConstantStringClassRef) {
2341     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2342     Ty = llvm::ArrayType::get(Ty, 0);
2343     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2344                                            "__CFConstantStringClassReference");
2345     // Decay array -> ptr
2346     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2347     CFConstantStringClassRef = V;
2348   }
2349   else
2350     V = CFConstantStringClassRef;
2351 
2352   QualType CFTy = getContext().getCFConstantStringType();
2353 
2354   llvm::StructType *STy =
2355     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2356 
2357   llvm::Constant *Fields[4];
2358 
2359   // Class pointer.
2360   Fields[0] = cast<llvm::ConstantExpr>(V);
2361 
2362   // Flags.
2363   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2364   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2365     llvm::ConstantInt::get(Ty, 0x07C8);
2366 
2367   // String pointer.
2368   llvm::Constant *C = 0;
2369   if (isUTF16) {
2370     ArrayRef<uint16_t> Arr =
2371       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2372                                      const_cast<char *>(Entry.getKey().data())),
2373                                    Entry.getKey().size() / 2);
2374     C = llvm::ConstantDataArray::get(VMContext, Arr);
2375   } else {
2376     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2377   }
2378 
2379   llvm::GlobalValue::LinkageTypes Linkage;
2380   if (isUTF16)
2381     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2382     Linkage = llvm::GlobalValue::InternalLinkage;
2383   else
2384     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2385     // when using private linkage. It is not clear if this is a bug in ld
2386     // or a reasonable new restriction.
2387     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2388 
2389   // Note: -fwritable-strings doesn't make the backing store strings of
2390   // CFStrings writable. (See <rdar://problem/10657500>)
2391   llvm::GlobalVariable *GV =
2392     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2393                              Linkage, C, ".str");
2394   GV->setUnnamedAddr(true);
2395   // Don't enforce the target's minimum global alignment, since the only use
2396   // of the string is via this class initializer.
2397   if (isUTF16) {
2398     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2399     GV->setAlignment(Align.getQuantity());
2400   } else {
2401     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2402     GV->setAlignment(Align.getQuantity());
2403   }
2404 
2405   // String.
2406   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2407 
2408   if (isUTF16)
2409     // Cast the UTF16 string to the correct type.
2410     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2411 
2412   // String length.
2413   Ty = getTypes().ConvertType(getContext().LongTy);
2414   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2415 
2416   // The struct.
2417   C = llvm::ConstantStruct::get(STy, Fields);
2418   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2419                                 llvm::GlobalVariable::PrivateLinkage, C,
2420                                 "_unnamed_cfstring_");
2421   if (const char *Sect = getTarget().getCFStringSection())
2422     GV->setSection(Sect);
2423   Entry.setValue(GV);
2424 
2425   return GV;
2426 }
2427 
2428 static RecordDecl *
2429 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2430                  DeclContext *DC, IdentifierInfo *Id) {
2431   SourceLocation Loc;
2432   if (Ctx.getLangOpts().CPlusPlus)
2433     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2434   else
2435     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2436 }
2437 
2438 llvm::Constant *
2439 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2440   unsigned StringLength = 0;
2441   llvm::StringMapEntry<llvm::Constant*> &Entry =
2442     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2443 
2444   if (llvm::Constant *C = Entry.getValue())
2445     return C;
2446 
2447   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2448   llvm::Constant *Zeros[] = { Zero, Zero };
2449   llvm::Value *V;
2450   // If we don't already have it, get _NSConstantStringClassReference.
2451   if (!ConstantStringClassRef) {
2452     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2453     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2454     llvm::Constant *GV;
2455     if (LangOpts.ObjCRuntime.isNonFragile()) {
2456       std::string str =
2457         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2458                             : "OBJC_CLASS_$_" + StringClass;
2459       GV = getObjCRuntime().GetClassGlobal(str);
2460       // Make sure the result is of the correct type.
2461       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2462       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2463       ConstantStringClassRef = V;
2464     } else {
2465       std::string str =
2466         StringClass.empty() ? "_NSConstantStringClassReference"
2467                             : "_" + StringClass + "ClassReference";
2468       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2469       GV = CreateRuntimeVariable(PTy, str);
2470       // Decay array -> ptr
2471       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2472       ConstantStringClassRef = V;
2473     }
2474   }
2475   else
2476     V = ConstantStringClassRef;
2477 
2478   if (!NSConstantStringType) {
2479     // Construct the type for a constant NSString.
2480     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2481                                      Context.getTranslationUnitDecl(),
2482                                    &Context.Idents.get("__builtin_NSString"));
2483     D->startDefinition();
2484 
2485     QualType FieldTypes[3];
2486 
2487     // const int *isa;
2488     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2489     // const char *str;
2490     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2491     // unsigned int length;
2492     FieldTypes[2] = Context.UnsignedIntTy;
2493 
2494     // Create fields
2495     for (unsigned i = 0; i < 3; ++i) {
2496       FieldDecl *Field = FieldDecl::Create(Context, D,
2497                                            SourceLocation(),
2498                                            SourceLocation(), 0,
2499                                            FieldTypes[i], /*TInfo=*/0,
2500                                            /*BitWidth=*/0,
2501                                            /*Mutable=*/false,
2502                                            ICIS_NoInit);
2503       Field->setAccess(AS_public);
2504       D->addDecl(Field);
2505     }
2506 
2507     D->completeDefinition();
2508     QualType NSTy = Context.getTagDeclType(D);
2509     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2510   }
2511 
2512   llvm::Constant *Fields[3];
2513 
2514   // Class pointer.
2515   Fields[0] = cast<llvm::ConstantExpr>(V);
2516 
2517   // String pointer.
2518   llvm::Constant *C =
2519     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2520 
2521   llvm::GlobalValue::LinkageTypes Linkage;
2522   bool isConstant;
2523   Linkage = llvm::GlobalValue::PrivateLinkage;
2524   isConstant = !LangOpts.WritableStrings;
2525 
2526   llvm::GlobalVariable *GV =
2527   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2528                            ".str");
2529   GV->setUnnamedAddr(true);
2530   // Don't enforce the target's minimum global alignment, since the only use
2531   // of the string is via this class initializer.
2532   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2533   GV->setAlignment(Align.getQuantity());
2534   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2535 
2536   // String length.
2537   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2538   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2539 
2540   // The struct.
2541   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2542   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2543                                 llvm::GlobalVariable::PrivateLinkage, C,
2544                                 "_unnamed_nsstring_");
2545   // FIXME. Fix section.
2546   if (const char *Sect =
2547         LangOpts.ObjCRuntime.isNonFragile()
2548           ? getTarget().getNSStringNonFragileABISection()
2549           : getTarget().getNSStringSection())
2550     GV->setSection(Sect);
2551   Entry.setValue(GV);
2552 
2553   return GV;
2554 }
2555 
2556 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2557   if (ObjCFastEnumerationStateType.isNull()) {
2558     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2559                                      Context.getTranslationUnitDecl(),
2560                       &Context.Idents.get("__objcFastEnumerationState"));
2561     D->startDefinition();
2562 
2563     QualType FieldTypes[] = {
2564       Context.UnsignedLongTy,
2565       Context.getPointerType(Context.getObjCIdType()),
2566       Context.getPointerType(Context.UnsignedLongTy),
2567       Context.getConstantArrayType(Context.UnsignedLongTy,
2568                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2569     };
2570 
2571     for (size_t i = 0; i < 4; ++i) {
2572       FieldDecl *Field = FieldDecl::Create(Context,
2573                                            D,
2574                                            SourceLocation(),
2575                                            SourceLocation(), 0,
2576                                            FieldTypes[i], /*TInfo=*/0,
2577                                            /*BitWidth=*/0,
2578                                            /*Mutable=*/false,
2579                                            ICIS_NoInit);
2580       Field->setAccess(AS_public);
2581       D->addDecl(Field);
2582     }
2583 
2584     D->completeDefinition();
2585     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2586   }
2587 
2588   return ObjCFastEnumerationStateType;
2589 }
2590 
2591 llvm::Constant *
2592 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2593   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2594 
2595   // Don't emit it as the address of the string, emit the string data itself
2596   // as an inline array.
2597   if (E->getCharByteWidth() == 1) {
2598     SmallString<64> Str(E->getString());
2599 
2600     // Resize the string to the right size, which is indicated by its type.
2601     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2602     Str.resize(CAT->getSize().getZExtValue());
2603     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2604   }
2605 
2606   llvm::ArrayType *AType =
2607     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2608   llvm::Type *ElemTy = AType->getElementType();
2609   unsigned NumElements = AType->getNumElements();
2610 
2611   // Wide strings have either 2-byte or 4-byte elements.
2612   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2613     SmallVector<uint16_t, 32> Elements;
2614     Elements.reserve(NumElements);
2615 
2616     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2617       Elements.push_back(E->getCodeUnit(i));
2618     Elements.resize(NumElements);
2619     return llvm::ConstantDataArray::get(VMContext, Elements);
2620   }
2621 
2622   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2623   SmallVector<uint32_t, 32> Elements;
2624   Elements.reserve(NumElements);
2625 
2626   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2627     Elements.push_back(E->getCodeUnit(i));
2628   Elements.resize(NumElements);
2629   return llvm::ConstantDataArray::get(VMContext, Elements);
2630 }
2631 
2632 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2633 /// constant array for the given string literal.
2634 llvm::Constant *
2635 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2636   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2637   if (S->isAscii() || S->isUTF8()) {
2638     SmallString<64> Str(S->getString());
2639 
2640     // Resize the string to the right size, which is indicated by its type.
2641     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2642     Str.resize(CAT->getSize().getZExtValue());
2643     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2644   }
2645 
2646   // FIXME: the following does not memoize wide strings.
2647   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2648   llvm::GlobalVariable *GV =
2649     new llvm::GlobalVariable(getModule(),C->getType(),
2650                              !LangOpts.WritableStrings,
2651                              llvm::GlobalValue::PrivateLinkage,
2652                              C,".str");
2653 
2654   GV->setAlignment(Align.getQuantity());
2655   GV->setUnnamedAddr(true);
2656   return GV;
2657 }
2658 
2659 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2660 /// array for the given ObjCEncodeExpr node.
2661 llvm::Constant *
2662 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2663   std::string Str;
2664   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2665 
2666   return GetAddrOfConstantCString(Str);
2667 }
2668 
2669 
2670 /// GenerateWritableString -- Creates storage for a string literal.
2671 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2672                                              bool constant,
2673                                              CodeGenModule &CGM,
2674                                              const char *GlobalName,
2675                                              unsigned Alignment) {
2676   // Create Constant for this string literal. Don't add a '\0'.
2677   llvm::Constant *C =
2678       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2679 
2680   // Create a global variable for this string
2681   llvm::GlobalVariable *GV =
2682     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2683                              llvm::GlobalValue::PrivateLinkage,
2684                              C, GlobalName);
2685   GV->setAlignment(Alignment);
2686   GV->setUnnamedAddr(true);
2687   return GV;
2688 }
2689 
2690 /// GetAddrOfConstantString - Returns a pointer to a character array
2691 /// containing the literal. This contents are exactly that of the
2692 /// given string, i.e. it will not be null terminated automatically;
2693 /// see GetAddrOfConstantCString. Note that whether the result is
2694 /// actually a pointer to an LLVM constant depends on
2695 /// Feature.WriteableStrings.
2696 ///
2697 /// The result has pointer to array type.
2698 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2699                                                        const char *GlobalName,
2700                                                        unsigned Alignment) {
2701   // Get the default prefix if a name wasn't specified.
2702   if (!GlobalName)
2703     GlobalName = ".str";
2704 
2705   if (Alignment == 0)
2706     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2707       .getQuantity();
2708 
2709   // Don't share any string literals if strings aren't constant.
2710   if (LangOpts.WritableStrings)
2711     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2712 
2713   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2714     ConstantStringMap.GetOrCreateValue(Str);
2715 
2716   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2717     if (Alignment > GV->getAlignment()) {
2718       GV->setAlignment(Alignment);
2719     }
2720     return GV;
2721   }
2722 
2723   // Create a global variable for this.
2724   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2725                                                    Alignment);
2726   Entry.setValue(GV);
2727   return GV;
2728 }
2729 
2730 /// GetAddrOfConstantCString - Returns a pointer to a character
2731 /// array containing the literal and a terminating '\0'
2732 /// character. The result has pointer to array type.
2733 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2734                                                         const char *GlobalName,
2735                                                         unsigned Alignment) {
2736   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2737   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2738 }
2739 
2740 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2741     const MaterializeTemporaryExpr *E, const Expr *Inner) {
2742   assert((E->getStorageDuration() == SD_Static ||
2743           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2744   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2745 
2746   // If we're not materializing a subobject of the temporary, keep the
2747   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2748   if (Inner == E->GetTemporaryExpr())
2749     Inner = E;
2750 
2751   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2752   if (Slot)
2753     return Slot;
2754 
2755   // FIXME: If an externally-visible declaration extends multiple temporaries,
2756   // we need to give each temporary the same name in every translation unit (and
2757   // we also need to make the temporaries externally-visible).
2758   SmallString<256> Name;
2759   llvm::raw_svector_ostream Out(Name);
2760   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2761   Out.flush();
2762 
2763   llvm::Constant *InitialValue = 0;
2764   APValue *Value = 0;
2765   if (E->getStorageDuration() == SD_Static) {
2766     // We might have a constant initializer for this temporary.
2767     Value = getContext().getMaterializedTemporaryValue(E, false);
2768     if (Value && Value->isUninit())
2769       Value = 0;
2770   }
2771 
2772   bool Constant;
2773   if (Value) {
2774     // The temporary has a constant initializer, use it.
2775     InitialValue = EmitConstantValue(*Value, Inner->getType(), 0);
2776     Constant = isTypeConstant(Inner->getType(), /*ExcludeCtor*/Value);
2777   } else {
2778     // No constant initializer, the initialization will be provided when we
2779     // initialize the declaration which performed lifetime extension.
2780     InitialValue = EmitNullConstant(Inner->getType());
2781     Constant = false;
2782   }
2783 
2784   // Create a global variable for this lifetime-extended temporary.
2785   llvm::GlobalVariable *GV =
2786     new llvm::GlobalVariable(getModule(), InitialValue->getType(), Constant,
2787                              llvm::GlobalValue::PrivateLinkage, InitialValue,
2788                              Name.c_str());
2789   GV->setAlignment(
2790       getContext().getTypeAlignInChars(Inner->getType()).getQuantity());
2791   if (VD->getTLSKind())
2792     setTLSMode(GV, *VD);
2793   Slot = GV;
2794   return GV;
2795 }
2796 
2797 /// EmitObjCPropertyImplementations - Emit information for synthesized
2798 /// properties for an implementation.
2799 void CodeGenModule::EmitObjCPropertyImplementations(const
2800                                                     ObjCImplementationDecl *D) {
2801   for (ObjCImplementationDecl::propimpl_iterator
2802          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2803     ObjCPropertyImplDecl *PID = *i;
2804 
2805     // Dynamic is just for type-checking.
2806     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2807       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2808 
2809       // Determine which methods need to be implemented, some may have
2810       // been overridden. Note that ::isPropertyAccessor is not the method
2811       // we want, that just indicates if the decl came from a
2812       // property. What we want to know is if the method is defined in
2813       // this implementation.
2814       if (!D->getInstanceMethod(PD->getGetterName()))
2815         CodeGenFunction(*this).GenerateObjCGetter(
2816                                  const_cast<ObjCImplementationDecl *>(D), PID);
2817       if (!PD->isReadOnly() &&
2818           !D->getInstanceMethod(PD->getSetterName()))
2819         CodeGenFunction(*this).GenerateObjCSetter(
2820                                  const_cast<ObjCImplementationDecl *>(D), PID);
2821     }
2822   }
2823 }
2824 
2825 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2826   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2827   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2828        ivar; ivar = ivar->getNextIvar())
2829     if (ivar->getType().isDestructedType())
2830       return true;
2831 
2832   return false;
2833 }
2834 
2835 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2836 /// for an implementation.
2837 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2838   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2839   if (needsDestructMethod(D)) {
2840     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2841     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2842     ObjCMethodDecl *DTORMethod =
2843       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2844                              cxxSelector, getContext().VoidTy, 0, D,
2845                              /*isInstance=*/true, /*isVariadic=*/false,
2846                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2847                              /*isDefined=*/false, ObjCMethodDecl::Required);
2848     D->addInstanceMethod(DTORMethod);
2849     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2850     D->setHasDestructors(true);
2851   }
2852 
2853   // If the implementation doesn't have any ivar initializers, we don't need
2854   // a .cxx_construct.
2855   if (D->getNumIvarInitializers() == 0)
2856     return;
2857 
2858   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2859   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2860   // The constructor returns 'self'.
2861   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2862                                                 D->getLocation(),
2863                                                 D->getLocation(),
2864                                                 cxxSelector,
2865                                                 getContext().getObjCIdType(), 0,
2866                                                 D, /*isInstance=*/true,
2867                                                 /*isVariadic=*/false,
2868                                                 /*isPropertyAccessor=*/true,
2869                                                 /*isImplicitlyDeclared=*/true,
2870                                                 /*isDefined=*/false,
2871                                                 ObjCMethodDecl::Required);
2872   D->addInstanceMethod(CTORMethod);
2873   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2874   D->setHasNonZeroConstructors(true);
2875 }
2876 
2877 /// EmitNamespace - Emit all declarations in a namespace.
2878 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2879   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2880        I != E; ++I)
2881     EmitTopLevelDecl(*I);
2882 }
2883 
2884 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2885 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2886   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2887       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2888     ErrorUnsupported(LSD, "linkage spec");
2889     return;
2890   }
2891 
2892   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2893        I != E; ++I) {
2894     // Meta-data for ObjC class includes references to implemented methods.
2895     // Generate class's method definitions first.
2896     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2897       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2898            MEnd = OID->meth_end();
2899            M != MEnd; ++M)
2900         EmitTopLevelDecl(*M);
2901     }
2902     EmitTopLevelDecl(*I);
2903   }
2904 }
2905 
2906 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2907 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2908   // If an error has occurred, stop code generation, but continue
2909   // parsing and semantic analysis (to ensure all warnings and errors
2910   // are emitted).
2911   if (Diags.hasErrorOccurred())
2912     return;
2913 
2914   // Ignore dependent declarations.
2915   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2916     return;
2917 
2918   switch (D->getKind()) {
2919   case Decl::CXXConversion:
2920   case Decl::CXXMethod:
2921   case Decl::Function:
2922     // Skip function templates
2923     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2924         cast<FunctionDecl>(D)->isLateTemplateParsed())
2925       return;
2926 
2927     EmitGlobal(cast<FunctionDecl>(D));
2928     break;
2929 
2930   case Decl::Var:
2931     EmitGlobal(cast<VarDecl>(D));
2932     break;
2933 
2934   // Indirect fields from global anonymous structs and unions can be
2935   // ignored; only the actual variable requires IR gen support.
2936   case Decl::IndirectField:
2937     break;
2938 
2939   // C++ Decls
2940   case Decl::Namespace:
2941     EmitNamespace(cast<NamespaceDecl>(D));
2942     break;
2943     // No code generation needed.
2944   case Decl::UsingShadow:
2945   case Decl::Using:
2946   case Decl::ClassTemplate:
2947   case Decl::FunctionTemplate:
2948   case Decl::TypeAliasTemplate:
2949   case Decl::Block:
2950   case Decl::Empty:
2951     break;
2952   case Decl::NamespaceAlias:
2953     if (CGDebugInfo *DI = getModuleDebugInfo())
2954         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2955     return;
2956   case Decl::UsingDirective: // using namespace X; [C++]
2957     if (CGDebugInfo *DI = getModuleDebugInfo())
2958       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2959     return;
2960   case Decl::CXXConstructor:
2961     // Skip function templates
2962     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2963         cast<FunctionDecl>(D)->isLateTemplateParsed())
2964       return;
2965 
2966     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2967     break;
2968   case Decl::CXXDestructor:
2969     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2970       return;
2971     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2972     break;
2973 
2974   case Decl::StaticAssert:
2975     // Nothing to do.
2976     break;
2977 
2978   // Objective-C Decls
2979 
2980   // Forward declarations, no (immediate) code generation.
2981   case Decl::ObjCInterface:
2982   case Decl::ObjCCategory:
2983     break;
2984 
2985   case Decl::ObjCProtocol: {
2986     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2987     if (Proto->isThisDeclarationADefinition())
2988       ObjCRuntime->GenerateProtocol(Proto);
2989     break;
2990   }
2991 
2992   case Decl::ObjCCategoryImpl:
2993     // Categories have properties but don't support synthesize so we
2994     // can ignore them here.
2995     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2996     break;
2997 
2998   case Decl::ObjCImplementation: {
2999     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
3000     EmitObjCPropertyImplementations(OMD);
3001     EmitObjCIvarInitializations(OMD);
3002     ObjCRuntime->GenerateClass(OMD);
3003     // Emit global variable debug information.
3004     if (CGDebugInfo *DI = getModuleDebugInfo())
3005       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3006         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3007             OMD->getClassInterface()), OMD->getLocation());
3008     break;
3009   }
3010   case Decl::ObjCMethod: {
3011     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
3012     // If this is not a prototype, emit the body.
3013     if (OMD->getBody())
3014       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3015     break;
3016   }
3017   case Decl::ObjCCompatibleAlias:
3018     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3019     break;
3020 
3021   case Decl::LinkageSpec:
3022     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3023     break;
3024 
3025   case Decl::FileScopeAsm: {
3026     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
3027     StringRef AsmString = AD->getAsmString()->getString();
3028 
3029     const std::string &S = getModule().getModuleInlineAsm();
3030     if (S.empty())
3031       getModule().setModuleInlineAsm(AsmString);
3032     else if (S.end()[-1] == '\n')
3033       getModule().setModuleInlineAsm(S + AsmString.str());
3034     else
3035       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3036     break;
3037   }
3038 
3039   case Decl::Import: {
3040     ImportDecl *Import = cast<ImportDecl>(D);
3041 
3042     // Ignore import declarations that come from imported modules.
3043     if (clang::Module *Owner = Import->getOwningModule()) {
3044       if (getLangOpts().CurrentModule.empty() ||
3045           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3046         break;
3047     }
3048 
3049     ImportedModules.insert(Import->getImportedModule());
3050     break;
3051  }
3052 
3053   default:
3054     // Make sure we handled everything we should, every other kind is a
3055     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3056     // function. Need to recode Decl::Kind to do that easily.
3057     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3058   }
3059 }
3060 
3061 /// Turns the given pointer into a constant.
3062 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3063                                           const void *Ptr) {
3064   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3065   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3066   return llvm::ConstantInt::get(i64, PtrInt);
3067 }
3068 
3069 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3070                                    llvm::NamedMDNode *&GlobalMetadata,
3071                                    GlobalDecl D,
3072                                    llvm::GlobalValue *Addr) {
3073   if (!GlobalMetadata)
3074     GlobalMetadata =
3075       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3076 
3077   // TODO: should we report variant information for ctors/dtors?
3078   llvm::Value *Ops[] = {
3079     Addr,
3080     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3081   };
3082   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3083 }
3084 
3085 /// For each function which is declared within an extern "C" region and marked
3086 /// as 'used', but has internal linkage, create an alias from the unmangled
3087 /// name to the mangled name if possible. People expect to be able to refer
3088 /// to such functions with an unmangled name from inline assembly within the
3089 /// same translation unit.
3090 void CodeGenModule::EmitStaticExternCAliases() {
3091   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3092                                   E = StaticExternCValues.end();
3093        I != E; ++I) {
3094     IdentifierInfo *Name = I->first;
3095     llvm::GlobalValue *Val = I->second;
3096     if (Val && !getModule().getNamedValue(Name->getName()))
3097       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3098                                           Name->getName(), Val, &getModule()));
3099   }
3100 }
3101 
3102 /// Emits metadata nodes associating all the global values in the
3103 /// current module with the Decls they came from.  This is useful for
3104 /// projects using IR gen as a subroutine.
3105 ///
3106 /// Since there's currently no way to associate an MDNode directly
3107 /// with an llvm::GlobalValue, we create a global named metadata
3108 /// with the name 'clang.global.decl.ptrs'.
3109 void CodeGenModule::EmitDeclMetadata() {
3110   llvm::NamedMDNode *GlobalMetadata = 0;
3111 
3112   // StaticLocalDeclMap
3113   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3114          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3115        I != E; ++I) {
3116     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3117     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3118   }
3119 }
3120 
3121 /// Emits metadata nodes for all the local variables in the current
3122 /// function.
3123 void CodeGenFunction::EmitDeclMetadata() {
3124   if (LocalDeclMap.empty()) return;
3125 
3126   llvm::LLVMContext &Context = getLLVMContext();
3127 
3128   // Find the unique metadata ID for this name.
3129   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3130 
3131   llvm::NamedMDNode *GlobalMetadata = 0;
3132 
3133   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3134          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3135     const Decl *D = I->first;
3136     llvm::Value *Addr = I->second;
3137 
3138     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3139       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3140       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3141     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3142       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3143       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3144     }
3145   }
3146 }
3147 
3148 void CodeGenModule::EmitCoverageFile() {
3149   if (!getCodeGenOpts().CoverageFile.empty()) {
3150     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3151       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3152       llvm::LLVMContext &Ctx = TheModule.getContext();
3153       llvm::MDString *CoverageFile =
3154           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3155       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3156         llvm::MDNode *CU = CUNode->getOperand(i);
3157         llvm::Value *node[] = { CoverageFile, CU };
3158         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3159         GCov->addOperand(N);
3160       }
3161     }
3162   }
3163 }
3164 
3165 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3166                                                      QualType GuidType) {
3167   // Sema has checked that all uuid strings are of the form
3168   // "12345678-1234-1234-1234-1234567890ab".
3169   assert(Uuid.size() == 36);
3170   const char *Uuidstr = Uuid.data();
3171   for (int i = 0; i < 36; ++i) {
3172     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3173     else                                         assert(isHexDigit(Uuidstr[i]));
3174   }
3175 
3176   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3177   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3178   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3179   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3180 
3181   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3182   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3183   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3184   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3185   APValue& Arr = InitStruct.getStructField(3);
3186   Arr = APValue(APValue::UninitArray(), 8, 8);
3187   for (int t = 0; t < 8; ++t)
3188     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3189           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3190 
3191   return EmitConstantValue(InitStruct, GuidType);
3192 }
3193