1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MD5.h" 57 58 using namespace clang; 59 using namespace CodeGen; 60 61 static const char AnnotationSection[] = "llvm.metadata"; 62 63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 64 switch (CGM.getTarget().getCXXABI().getKind()) { 65 case TargetCXXABI::GenericAArch64: 66 case TargetCXXABI::GenericARM: 67 case TargetCXXABI::iOS: 68 case TargetCXXABI::iOS64: 69 case TargetCXXABI::WatchOS: 70 case TargetCXXABI::GenericMIPS: 71 case TargetCXXABI::GenericItanium: 72 case TargetCXXABI::WebAssembly: 73 return CreateItaniumCXXABI(CGM); 74 case TargetCXXABI::Microsoft: 75 return CreateMicrosoftCXXABI(CGM); 76 } 77 78 llvm_unreachable("invalid C++ ABI kind"); 79 } 80 81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 82 const PreprocessorOptions &PPO, 83 const CodeGenOptions &CGO, llvm::Module &M, 84 DiagnosticsEngine &diags, 85 CoverageSourceInfo *CoverageInfo) 86 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 87 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 88 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 89 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 90 Types(*this), VTables(*this), ObjCRuntime(nullptr), 91 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 92 DebugInfo(nullptr), ObjCData(nullptr), 93 NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr), 94 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 95 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 96 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 97 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 98 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 99 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 FloatTy = llvm::Type::getFloatTy(LLVMContext); 109 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 110 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 111 PointerAlignInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 113 IntAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 115 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 116 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 117 Int8PtrTy = Int8Ty->getPointerTo(0); 118 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 119 120 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 121 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 122 123 if (LangOpts.ObjC1) 124 createObjCRuntime(); 125 if (LangOpts.OpenCL) 126 createOpenCLRuntime(); 127 if (LangOpts.OpenMP) 128 createOpenMPRuntime(); 129 if (LangOpts.CUDA) 130 createCUDARuntime(); 131 132 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 133 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 134 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 135 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 136 getCXXABI().getMangleContext()); 137 138 // If debug info or coverage generation is enabled, create the CGDebugInfo 139 // object. 140 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 141 CodeGenOpts.EmitGcovArcs || 142 CodeGenOpts.EmitGcovNotes) 143 DebugInfo = new CGDebugInfo(*this); 144 145 Block.GlobalUniqueCount = 0; 146 147 if (C.getLangOpts().ObjC1) 148 ObjCData = new ObjCEntrypoints(); 149 150 if (!CodeGenOpts.InstrProfileInput.empty()) { 151 auto ReaderOrErr = 152 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 153 if (std::error_code EC = ReaderOrErr.getError()) { 154 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 155 "Could not read profile %0: %1"); 156 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 157 << EC.message(); 158 } else 159 PGOReader = std::move(ReaderOrErr.get()); 160 } 161 162 // If coverage mapping generation is enabled, create the 163 // CoverageMappingModuleGen object. 164 if (CodeGenOpts.CoverageMapping) 165 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 166 } 167 168 CodeGenModule::~CodeGenModule() { 169 delete ObjCRuntime; 170 delete OpenCLRuntime; 171 delete OpenMPRuntime; 172 delete CUDARuntime; 173 delete TheTargetCodeGenInfo; 174 delete TBAA; 175 delete DebugInfo; 176 delete ObjCData; 177 } 178 179 void CodeGenModule::createObjCRuntime() { 180 // This is just isGNUFamily(), but we want to force implementors of 181 // new ABIs to decide how best to do this. 182 switch (LangOpts.ObjCRuntime.getKind()) { 183 case ObjCRuntime::GNUstep: 184 case ObjCRuntime::GCC: 185 case ObjCRuntime::ObjFW: 186 ObjCRuntime = CreateGNUObjCRuntime(*this); 187 return; 188 189 case ObjCRuntime::FragileMacOSX: 190 case ObjCRuntime::MacOSX: 191 case ObjCRuntime::iOS: 192 case ObjCRuntime::WatchOS: 193 ObjCRuntime = CreateMacObjCRuntime(*this); 194 return; 195 } 196 llvm_unreachable("bad runtime kind"); 197 } 198 199 void CodeGenModule::createOpenCLRuntime() { 200 OpenCLRuntime = new CGOpenCLRuntime(*this); 201 } 202 203 void CodeGenModule::createOpenMPRuntime() { 204 OpenMPRuntime = new CGOpenMPRuntime(*this); 205 } 206 207 void CodeGenModule::createCUDARuntime() { 208 CUDARuntime = CreateNVCUDARuntime(*this); 209 } 210 211 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 212 Replacements[Name] = C; 213 } 214 215 void CodeGenModule::applyReplacements() { 216 for (auto &I : Replacements) { 217 StringRef MangledName = I.first(); 218 llvm::Constant *Replacement = I.second; 219 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 220 if (!Entry) 221 continue; 222 auto *OldF = cast<llvm::Function>(Entry); 223 auto *NewF = dyn_cast<llvm::Function>(Replacement); 224 if (!NewF) { 225 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 226 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 227 } else { 228 auto *CE = cast<llvm::ConstantExpr>(Replacement); 229 assert(CE->getOpcode() == llvm::Instruction::BitCast || 230 CE->getOpcode() == llvm::Instruction::GetElementPtr); 231 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 232 } 233 } 234 235 // Replace old with new, but keep the old order. 236 OldF->replaceAllUsesWith(Replacement); 237 if (NewF) { 238 NewF->removeFromParent(); 239 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 240 NewF); 241 } 242 OldF->eraseFromParent(); 243 } 244 } 245 246 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 247 GlobalValReplacements.push_back(std::make_pair(GV, C)); 248 } 249 250 void CodeGenModule::applyGlobalValReplacements() { 251 for (auto &I : GlobalValReplacements) { 252 llvm::GlobalValue *GV = I.first; 253 llvm::Constant *C = I.second; 254 255 GV->replaceAllUsesWith(C); 256 GV->eraseFromParent(); 257 } 258 } 259 260 // This is only used in aliases that we created and we know they have a 261 // linear structure. 262 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 263 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 264 const llvm::Constant *C = &GA; 265 for (;;) { 266 C = C->stripPointerCasts(); 267 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 268 return GO; 269 // stripPointerCasts will not walk over weak aliases. 270 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 271 if (!GA2) 272 return nullptr; 273 if (!Visited.insert(GA2).second) 274 return nullptr; 275 C = GA2->getAliasee(); 276 } 277 } 278 279 void CodeGenModule::checkAliases() { 280 // Check if the constructed aliases are well formed. It is really unfortunate 281 // that we have to do this in CodeGen, but we only construct mangled names 282 // and aliases during codegen. 283 bool Error = false; 284 DiagnosticsEngine &Diags = getDiags(); 285 for (const GlobalDecl &GD : Aliases) { 286 const auto *D = cast<ValueDecl>(GD.getDecl()); 287 const AliasAttr *AA = D->getAttr<AliasAttr>(); 288 StringRef MangledName = getMangledName(GD); 289 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 290 auto *Alias = cast<llvm::GlobalAlias>(Entry); 291 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 292 if (!GV) { 293 Error = true; 294 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 295 } else if (GV->isDeclaration()) { 296 Error = true; 297 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 298 } 299 300 llvm::Constant *Aliasee = Alias->getAliasee(); 301 llvm::GlobalValue *AliaseeGV; 302 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 303 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 304 else 305 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 306 307 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 308 StringRef AliasSection = SA->getName(); 309 if (AliasSection != AliaseeGV->getSection()) 310 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 311 << AliasSection; 312 } 313 314 // We have to handle alias to weak aliases in here. LLVM itself disallows 315 // this since the object semantics would not match the IL one. For 316 // compatibility with gcc we implement it by just pointing the alias 317 // to its aliasee's aliasee. We also warn, since the user is probably 318 // expecting the link to be weak. 319 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 320 if (GA->mayBeOverridden()) { 321 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 322 << GV->getName() << GA->getName(); 323 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 324 GA->getAliasee(), Alias->getType()); 325 Alias->setAliasee(Aliasee); 326 } 327 } 328 } 329 if (!Error) 330 return; 331 332 for (const GlobalDecl &GD : Aliases) { 333 StringRef MangledName = getMangledName(GD); 334 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 335 auto *Alias = cast<llvm::GlobalAlias>(Entry); 336 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 337 Alias->eraseFromParent(); 338 } 339 } 340 341 void CodeGenModule::clear() { 342 DeferredDeclsToEmit.clear(); 343 if (OpenMPRuntime) 344 OpenMPRuntime->clear(); 345 } 346 347 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 348 StringRef MainFile) { 349 if (!hasDiagnostics()) 350 return; 351 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 352 if (MainFile.empty()) 353 MainFile = "<stdin>"; 354 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 355 } else 356 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 357 << Mismatched; 358 } 359 360 void CodeGenModule::Release() { 361 EmitDeferred(); 362 applyGlobalValReplacements(); 363 applyReplacements(); 364 checkAliases(); 365 EmitCXXGlobalInitFunc(); 366 EmitCXXGlobalDtorFunc(); 367 EmitCXXThreadLocalInitFunc(); 368 if (ObjCRuntime) 369 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 370 AddGlobalCtor(ObjCInitFunction); 371 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 372 CUDARuntime) { 373 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 374 AddGlobalCtor(CudaCtorFunction); 375 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 376 AddGlobalDtor(CudaDtorFunction); 377 } 378 if (OpenMPRuntime) 379 if (llvm::Function *OpenMPRegistrationFunction = 380 OpenMPRuntime->emitRegistrationFunction()) 381 AddGlobalCtor(OpenMPRegistrationFunction, 0); 382 if (PGOReader) { 383 getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount()); 384 if (PGOStats.hasDiagnostics()) 385 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 386 } 387 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 388 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 389 EmitGlobalAnnotations(); 390 EmitStaticExternCAliases(); 391 EmitDeferredUnusedCoverageMappings(); 392 if (CoverageMapping) 393 CoverageMapping->emit(); 394 emitLLVMUsed(); 395 396 if (CodeGenOpts.Autolink && 397 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 398 EmitModuleLinkOptions(); 399 } 400 if (CodeGenOpts.DwarfVersion) { 401 // We actually want the latest version when there are conflicts. 402 // We can change from Warning to Latest if such mode is supported. 403 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 404 CodeGenOpts.DwarfVersion); 405 } 406 if (CodeGenOpts.EmitCodeView) { 407 // Indicate that we want CodeView in the metadata. 408 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 409 } 410 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 411 // We don't support LTO with 2 with different StrictVTablePointers 412 // FIXME: we could support it by stripping all the information introduced 413 // by StrictVTablePointers. 414 415 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 416 417 llvm::Metadata *Ops[2] = { 418 llvm::MDString::get(VMContext, "StrictVTablePointers"), 419 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 420 llvm::Type::getInt32Ty(VMContext), 1))}; 421 422 getModule().addModuleFlag(llvm::Module::Require, 423 "StrictVTablePointersRequirement", 424 llvm::MDNode::get(VMContext, Ops)); 425 } 426 if (DebugInfo) 427 // We support a single version in the linked module. The LLVM 428 // parser will drop debug info with a different version number 429 // (and warn about it, too). 430 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 431 llvm::DEBUG_METADATA_VERSION); 432 433 // We need to record the widths of enums and wchar_t, so that we can generate 434 // the correct build attributes in the ARM backend. 435 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 436 if ( Arch == llvm::Triple::arm 437 || Arch == llvm::Triple::armeb 438 || Arch == llvm::Triple::thumb 439 || Arch == llvm::Triple::thumbeb) { 440 // Width of wchar_t in bytes 441 uint64_t WCharWidth = 442 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 443 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 444 445 // The minimum width of an enum in bytes 446 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 447 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 448 } 449 450 if (CodeGenOpts.SanitizeCfiCrossDso) { 451 // Indicate that we want cross-DSO control flow integrity checks. 452 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 453 } 454 455 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 456 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 457 switch (PLevel) { 458 case 0: break; 459 case 1: PL = llvm::PICLevel::Small; break; 460 case 2: PL = llvm::PICLevel::Large; break; 461 default: llvm_unreachable("Invalid PIC Level"); 462 } 463 464 getModule().setPICLevel(PL); 465 } 466 467 SimplifyPersonality(); 468 469 if (getCodeGenOpts().EmitDeclMetadata) 470 EmitDeclMetadata(); 471 472 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 473 EmitCoverageFile(); 474 475 if (DebugInfo) 476 DebugInfo->finalize(); 477 478 EmitVersionIdentMetadata(); 479 480 EmitTargetMetadata(); 481 } 482 483 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 484 // Make sure that this type is translated. 485 Types.UpdateCompletedType(TD); 486 } 487 488 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 489 if (!TBAA) 490 return nullptr; 491 return TBAA->getTBAAInfo(QTy); 492 } 493 494 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 495 if (!TBAA) 496 return nullptr; 497 return TBAA->getTBAAInfoForVTablePtr(); 498 } 499 500 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 501 if (!TBAA) 502 return nullptr; 503 return TBAA->getTBAAStructInfo(QTy); 504 } 505 506 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 507 llvm::MDNode *AccessN, 508 uint64_t O) { 509 if (!TBAA) 510 return nullptr; 511 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 512 } 513 514 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 515 /// and struct-path aware TBAA, the tag has the same format: 516 /// base type, access type and offset. 517 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 518 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 519 llvm::MDNode *TBAAInfo, 520 bool ConvertTypeToTag) { 521 if (ConvertTypeToTag && TBAA) 522 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 523 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 524 else 525 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 526 } 527 528 void CodeGenModule::DecorateInstructionWithInvariantGroup( 529 llvm::Instruction *I, const CXXRecordDecl *RD) { 530 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 531 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 532 // Check if we have to wrap MDString in MDNode. 533 if (!MetaDataNode) 534 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 535 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 536 } 537 538 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 539 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 540 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 541 } 542 543 /// ErrorUnsupported - Print out an error that codegen doesn't support the 544 /// specified stmt yet. 545 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 546 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 547 "cannot compile this %0 yet"); 548 std::string Msg = Type; 549 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 550 << Msg << S->getSourceRange(); 551 } 552 553 /// ErrorUnsupported - Print out an error that codegen doesn't support the 554 /// specified decl yet. 555 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 556 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 557 "cannot compile this %0 yet"); 558 std::string Msg = Type; 559 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 560 } 561 562 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 563 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 564 } 565 566 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 567 const NamedDecl *D) const { 568 // Internal definitions always have default visibility. 569 if (GV->hasLocalLinkage()) { 570 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 571 return; 572 } 573 574 // Set visibility for definitions. 575 LinkageInfo LV = D->getLinkageAndVisibility(); 576 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 577 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 578 } 579 580 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 581 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 582 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 583 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 584 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 585 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 586 } 587 588 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 589 CodeGenOptions::TLSModel M) { 590 switch (M) { 591 case CodeGenOptions::GeneralDynamicTLSModel: 592 return llvm::GlobalVariable::GeneralDynamicTLSModel; 593 case CodeGenOptions::LocalDynamicTLSModel: 594 return llvm::GlobalVariable::LocalDynamicTLSModel; 595 case CodeGenOptions::InitialExecTLSModel: 596 return llvm::GlobalVariable::InitialExecTLSModel; 597 case CodeGenOptions::LocalExecTLSModel: 598 return llvm::GlobalVariable::LocalExecTLSModel; 599 } 600 llvm_unreachable("Invalid TLS model!"); 601 } 602 603 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 604 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 605 606 llvm::GlobalValue::ThreadLocalMode TLM; 607 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 608 609 // Override the TLS model if it is explicitly specified. 610 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 611 TLM = GetLLVMTLSModel(Attr->getModel()); 612 } 613 614 GV->setThreadLocalMode(TLM); 615 } 616 617 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 618 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 619 if (!FoundStr.empty()) 620 return FoundStr; 621 622 const auto *ND = cast<NamedDecl>(GD.getDecl()); 623 SmallString<256> Buffer; 624 StringRef Str; 625 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 626 llvm::raw_svector_ostream Out(Buffer); 627 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 628 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 629 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 630 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 631 else 632 getCXXABI().getMangleContext().mangleName(ND, Out); 633 Str = Out.str(); 634 } else { 635 IdentifierInfo *II = ND->getIdentifier(); 636 assert(II && "Attempt to mangle unnamed decl."); 637 Str = II->getName(); 638 } 639 640 // Keep the first result in the case of a mangling collision. 641 auto Result = Manglings.insert(std::make_pair(Str, GD)); 642 return FoundStr = Result.first->first(); 643 } 644 645 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 646 const BlockDecl *BD) { 647 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 648 const Decl *D = GD.getDecl(); 649 650 SmallString<256> Buffer; 651 llvm::raw_svector_ostream Out(Buffer); 652 if (!D) 653 MangleCtx.mangleGlobalBlock(BD, 654 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 655 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 656 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 657 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 658 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 659 else 660 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 661 662 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 663 return Result.first->first(); 664 } 665 666 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 667 return getModule().getNamedValue(Name); 668 } 669 670 /// AddGlobalCtor - Add a function to the list that will be called before 671 /// main() runs. 672 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 673 llvm::Constant *AssociatedData) { 674 // FIXME: Type coercion of void()* types. 675 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 676 } 677 678 /// AddGlobalDtor - Add a function to the list that will be called 679 /// when the module is unloaded. 680 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 681 // FIXME: Type coercion of void()* types. 682 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 683 } 684 685 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 686 // Ctor function type is void()*. 687 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 688 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 689 690 // Get the type of a ctor entry, { i32, void ()*, i8* }. 691 llvm::StructType *CtorStructTy = llvm::StructType::get( 692 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 693 694 // Construct the constructor and destructor arrays. 695 SmallVector<llvm::Constant *, 8> Ctors; 696 for (const auto &I : Fns) { 697 llvm::Constant *S[] = { 698 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 699 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 700 (I.AssociatedData 701 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 702 : llvm::Constant::getNullValue(VoidPtrTy))}; 703 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 704 } 705 706 if (!Ctors.empty()) { 707 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 708 new llvm::GlobalVariable(TheModule, AT, false, 709 llvm::GlobalValue::AppendingLinkage, 710 llvm::ConstantArray::get(AT, Ctors), 711 GlobalName); 712 } 713 } 714 715 llvm::GlobalValue::LinkageTypes 716 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 717 const auto *D = cast<FunctionDecl>(GD.getDecl()); 718 719 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 720 721 if (isa<CXXDestructorDecl>(D) && 722 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 723 GD.getDtorType())) { 724 // Destructor variants in the Microsoft C++ ABI are always internal or 725 // linkonce_odr thunks emitted on an as-needed basis. 726 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 727 : llvm::GlobalValue::LinkOnceODRLinkage; 728 } 729 730 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 731 } 732 733 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 734 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 735 736 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 737 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 738 // Don't dllexport/import destructor thunks. 739 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 740 return; 741 } 742 } 743 744 if (FD->hasAttr<DLLImportAttr>()) 745 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 746 else if (FD->hasAttr<DLLExportAttr>()) 747 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 748 else 749 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 750 } 751 752 llvm::ConstantInt * 753 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) { 754 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 755 if (!MDS) return nullptr; 756 757 llvm::MD5 md5; 758 llvm::MD5::MD5Result result; 759 md5.update(MDS->getString()); 760 md5.final(result); 761 uint64_t id = 0; 762 for (int i = 0; i < 8; ++i) 763 id |= static_cast<uint64_t>(result[i]) << (i * 8); 764 return llvm::ConstantInt::get(Int64Ty, id); 765 } 766 767 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 768 llvm::Function *F) { 769 setNonAliasAttributes(D, F); 770 } 771 772 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 773 const CGFunctionInfo &Info, 774 llvm::Function *F) { 775 unsigned CallingConv; 776 AttributeListType AttributeList; 777 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 778 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 779 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 780 } 781 782 /// Determines whether the language options require us to model 783 /// unwind exceptions. We treat -fexceptions as mandating this 784 /// except under the fragile ObjC ABI with only ObjC exceptions 785 /// enabled. This means, for example, that C with -fexceptions 786 /// enables this. 787 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 788 // If exceptions are completely disabled, obviously this is false. 789 if (!LangOpts.Exceptions) return false; 790 791 // If C++ exceptions are enabled, this is true. 792 if (LangOpts.CXXExceptions) return true; 793 794 // If ObjC exceptions are enabled, this depends on the ABI. 795 if (LangOpts.ObjCExceptions) { 796 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 797 } 798 799 return true; 800 } 801 802 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 803 llvm::Function *F) { 804 llvm::AttrBuilder B; 805 806 if (CodeGenOpts.UnwindTables) 807 B.addAttribute(llvm::Attribute::UWTable); 808 809 if (!hasUnwindExceptions(LangOpts)) 810 B.addAttribute(llvm::Attribute::NoUnwind); 811 812 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 813 B.addAttribute(llvm::Attribute::StackProtect); 814 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 815 B.addAttribute(llvm::Attribute::StackProtectStrong); 816 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 817 B.addAttribute(llvm::Attribute::StackProtectReq); 818 819 if (!D) { 820 F->addAttributes(llvm::AttributeSet::FunctionIndex, 821 llvm::AttributeSet::get( 822 F->getContext(), 823 llvm::AttributeSet::FunctionIndex, B)); 824 return; 825 } 826 827 if (D->hasAttr<NakedAttr>()) { 828 // Naked implies noinline: we should not be inlining such functions. 829 B.addAttribute(llvm::Attribute::Naked); 830 B.addAttribute(llvm::Attribute::NoInline); 831 } else if (D->hasAttr<NoDuplicateAttr>()) { 832 B.addAttribute(llvm::Attribute::NoDuplicate); 833 } else if (D->hasAttr<NoInlineAttr>()) { 834 B.addAttribute(llvm::Attribute::NoInline); 835 } else if (D->hasAttr<AlwaysInlineAttr>() && 836 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 837 llvm::Attribute::NoInline)) { 838 // (noinline wins over always_inline, and we can't specify both in IR) 839 B.addAttribute(llvm::Attribute::AlwaysInline); 840 } 841 842 if (D->hasAttr<ColdAttr>()) { 843 if (!D->hasAttr<OptimizeNoneAttr>()) 844 B.addAttribute(llvm::Attribute::OptimizeForSize); 845 B.addAttribute(llvm::Attribute::Cold); 846 } 847 848 if (D->hasAttr<MinSizeAttr>()) 849 B.addAttribute(llvm::Attribute::MinSize); 850 851 F->addAttributes(llvm::AttributeSet::FunctionIndex, 852 llvm::AttributeSet::get( 853 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 854 855 if (D->hasAttr<OptimizeNoneAttr>()) { 856 // OptimizeNone implies noinline; we should not be inlining such functions. 857 F->addFnAttr(llvm::Attribute::OptimizeNone); 858 F->addFnAttr(llvm::Attribute::NoInline); 859 860 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 861 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 862 F->removeFnAttr(llvm::Attribute::MinSize); 863 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 864 "OptimizeNone and AlwaysInline on same function!"); 865 866 // Attribute 'inlinehint' has no effect on 'optnone' functions. 867 // Explicitly remove it from the set of function attributes. 868 F->removeFnAttr(llvm::Attribute::InlineHint); 869 } 870 871 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 872 F->setUnnamedAddr(true); 873 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 874 if (MD->isVirtual()) 875 F->setUnnamedAddr(true); 876 877 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 878 if (alignment) 879 F->setAlignment(alignment); 880 881 // Some C++ ABIs require 2-byte alignment for member functions, in order to 882 // reserve a bit for differentiating between virtual and non-virtual member 883 // functions. If the current target's C++ ABI requires this and this is a 884 // member function, set its alignment accordingly. 885 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 886 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 887 F->setAlignment(2); 888 } 889 } 890 891 void CodeGenModule::SetCommonAttributes(const Decl *D, 892 llvm::GlobalValue *GV) { 893 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 894 setGlobalVisibility(GV, ND); 895 else 896 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 897 898 if (D && D->hasAttr<UsedAttr>()) 899 addUsedGlobal(GV); 900 } 901 902 void CodeGenModule::setAliasAttributes(const Decl *D, 903 llvm::GlobalValue *GV) { 904 SetCommonAttributes(D, GV); 905 906 // Process the dllexport attribute based on whether the original definition 907 // (not necessarily the aliasee) was exported. 908 if (D->hasAttr<DLLExportAttr>()) 909 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 910 } 911 912 void CodeGenModule::setNonAliasAttributes(const Decl *D, 913 llvm::GlobalObject *GO) { 914 SetCommonAttributes(D, GO); 915 916 if (D) 917 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 918 GO->setSection(SA->getName()); 919 920 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 921 } 922 923 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 924 llvm::Function *F, 925 const CGFunctionInfo &FI) { 926 SetLLVMFunctionAttributes(D, FI, F); 927 SetLLVMFunctionAttributesForDefinition(D, F); 928 929 F->setLinkage(llvm::Function::InternalLinkage); 930 931 setNonAliasAttributes(D, F); 932 } 933 934 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 935 const NamedDecl *ND) { 936 // Set linkage and visibility in case we never see a definition. 937 LinkageInfo LV = ND->getLinkageAndVisibility(); 938 if (LV.getLinkage() != ExternalLinkage) { 939 // Don't set internal linkage on declarations. 940 } else { 941 if (ND->hasAttr<DLLImportAttr>()) { 942 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 943 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 944 } else if (ND->hasAttr<DLLExportAttr>()) { 945 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 946 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 947 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 948 // "extern_weak" is overloaded in LLVM; we probably should have 949 // separate linkage types for this. 950 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 951 } 952 953 // Set visibility on a declaration only if it's explicit. 954 if (LV.isVisibilityExplicit()) 955 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 956 } 957 } 958 959 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD, 960 llvm::Function *F) { 961 // Only if we are checking indirect calls. 962 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 963 return; 964 965 // Non-static class methods are handled via vtable pointer checks elsewhere. 966 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 967 return; 968 969 // Additionally, if building with cross-DSO support... 970 if (CodeGenOpts.SanitizeCfiCrossDso) { 971 // Don't emit entries for function declarations. In cross-DSO mode these are 972 // handled with better precision at run time. 973 if (!FD->hasBody()) 974 return; 975 // Skip available_externally functions. They won't be codegen'ed in the 976 // current module anyway. 977 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 978 return; 979 } 980 981 llvm::NamedMDNode *BitsetsMD = 982 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 983 984 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 985 llvm::Metadata *BitsetOps[] = { 986 MD, llvm::ConstantAsMetadata::get(F), 987 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 988 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 989 990 // Emit a hash-based bit set entry for cross-DSO calls. 991 if (CodeGenOpts.SanitizeCfiCrossDso) { 992 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 993 llvm::Metadata *BitsetOps2[] = { 994 llvm::ConstantAsMetadata::get(TypeId), 995 llvm::ConstantAsMetadata::get(F), 996 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 997 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 998 } 999 } 1000 } 1001 1002 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1003 bool IsIncompleteFunction, 1004 bool IsThunk) { 1005 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1006 // If this is an intrinsic function, set the function's attributes 1007 // to the intrinsic's attributes. 1008 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1009 return; 1010 } 1011 1012 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1013 1014 if (!IsIncompleteFunction) 1015 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1016 1017 // Add the Returned attribute for "this", except for iOS 5 and earlier 1018 // where substantial code, including the libstdc++ dylib, was compiled with 1019 // GCC and does not actually return "this". 1020 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1021 !(getTarget().getTriple().isiOS() && 1022 getTarget().getTriple().isOSVersionLT(6))) { 1023 assert(!F->arg_empty() && 1024 F->arg_begin()->getType() 1025 ->canLosslesslyBitCastTo(F->getReturnType()) && 1026 "unexpected this return"); 1027 F->addAttribute(1, llvm::Attribute::Returned); 1028 } 1029 1030 // Only a few attributes are set on declarations; these may later be 1031 // overridden by a definition. 1032 1033 setLinkageAndVisibilityForGV(F, FD); 1034 1035 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1036 F->setSection(SA->getName()); 1037 1038 // A replaceable global allocation function does not act like a builtin by 1039 // default, only if it is invoked by a new-expression or delete-expression. 1040 if (FD->isReplaceableGlobalAllocationFunction()) 1041 F->addAttribute(llvm::AttributeSet::FunctionIndex, 1042 llvm::Attribute::NoBuiltin); 1043 1044 CreateFunctionBitSetEntry(FD, F); 1045 } 1046 1047 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1048 assert(!GV->isDeclaration() && 1049 "Only globals with definition can force usage."); 1050 LLVMUsed.emplace_back(GV); 1051 } 1052 1053 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1054 assert(!GV->isDeclaration() && 1055 "Only globals with definition can force usage."); 1056 LLVMCompilerUsed.emplace_back(GV); 1057 } 1058 1059 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1060 std::vector<llvm::WeakVH> &List) { 1061 // Don't create llvm.used if there is no need. 1062 if (List.empty()) 1063 return; 1064 1065 // Convert List to what ConstantArray needs. 1066 SmallVector<llvm::Constant*, 8> UsedArray; 1067 UsedArray.resize(List.size()); 1068 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1069 UsedArray[i] = 1070 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1071 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1072 } 1073 1074 if (UsedArray.empty()) 1075 return; 1076 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1077 1078 auto *GV = new llvm::GlobalVariable( 1079 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1080 llvm::ConstantArray::get(ATy, UsedArray), Name); 1081 1082 GV->setSection("llvm.metadata"); 1083 } 1084 1085 void CodeGenModule::emitLLVMUsed() { 1086 emitUsed(*this, "llvm.used", LLVMUsed); 1087 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1088 } 1089 1090 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1091 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1092 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1093 } 1094 1095 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1096 llvm::SmallString<32> Opt; 1097 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1098 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1099 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1100 } 1101 1102 void CodeGenModule::AddDependentLib(StringRef Lib) { 1103 llvm::SmallString<24> Opt; 1104 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1105 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1106 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1107 } 1108 1109 /// \brief Add link options implied by the given module, including modules 1110 /// it depends on, using a postorder walk. 1111 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1112 SmallVectorImpl<llvm::Metadata *> &Metadata, 1113 llvm::SmallPtrSet<Module *, 16> &Visited) { 1114 // Import this module's parent. 1115 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1116 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1117 } 1118 1119 // Import this module's dependencies. 1120 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1121 if (Visited.insert(Mod->Imports[I - 1]).second) 1122 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1123 } 1124 1125 // Add linker options to link against the libraries/frameworks 1126 // described by this module. 1127 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1128 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1129 // Link against a framework. Frameworks are currently Darwin only, so we 1130 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1131 if (Mod->LinkLibraries[I-1].IsFramework) { 1132 llvm::Metadata *Args[2] = { 1133 llvm::MDString::get(Context, "-framework"), 1134 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1135 1136 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1137 continue; 1138 } 1139 1140 // Link against a library. 1141 llvm::SmallString<24> Opt; 1142 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1143 Mod->LinkLibraries[I-1].Library, Opt); 1144 auto *OptString = llvm::MDString::get(Context, Opt); 1145 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1146 } 1147 } 1148 1149 void CodeGenModule::EmitModuleLinkOptions() { 1150 // Collect the set of all of the modules we want to visit to emit link 1151 // options, which is essentially the imported modules and all of their 1152 // non-explicit child modules. 1153 llvm::SetVector<clang::Module *> LinkModules; 1154 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1155 SmallVector<clang::Module *, 16> Stack; 1156 1157 // Seed the stack with imported modules. 1158 for (Module *M : ImportedModules) 1159 if (Visited.insert(M).second) 1160 Stack.push_back(M); 1161 1162 // Find all of the modules to import, making a little effort to prune 1163 // non-leaf modules. 1164 while (!Stack.empty()) { 1165 clang::Module *Mod = Stack.pop_back_val(); 1166 1167 bool AnyChildren = false; 1168 1169 // Visit the submodules of this module. 1170 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1171 SubEnd = Mod->submodule_end(); 1172 Sub != SubEnd; ++Sub) { 1173 // Skip explicit children; they need to be explicitly imported to be 1174 // linked against. 1175 if ((*Sub)->IsExplicit) 1176 continue; 1177 1178 if (Visited.insert(*Sub).second) { 1179 Stack.push_back(*Sub); 1180 AnyChildren = true; 1181 } 1182 } 1183 1184 // We didn't find any children, so add this module to the list of 1185 // modules to link against. 1186 if (!AnyChildren) { 1187 LinkModules.insert(Mod); 1188 } 1189 } 1190 1191 // Add link options for all of the imported modules in reverse topological 1192 // order. We don't do anything to try to order import link flags with respect 1193 // to linker options inserted by things like #pragma comment(). 1194 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1195 Visited.clear(); 1196 for (Module *M : LinkModules) 1197 if (Visited.insert(M).second) 1198 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1199 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1200 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1201 1202 // Add the linker options metadata flag. 1203 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1204 llvm::MDNode::get(getLLVMContext(), 1205 LinkerOptionsMetadata)); 1206 } 1207 1208 void CodeGenModule::EmitDeferred() { 1209 // Emit code for any potentially referenced deferred decls. Since a 1210 // previously unused static decl may become used during the generation of code 1211 // for a static function, iterate until no changes are made. 1212 1213 if (!DeferredVTables.empty()) { 1214 EmitDeferredVTables(); 1215 1216 // Emitting a v-table doesn't directly cause more v-tables to 1217 // become deferred, although it can cause functions to be 1218 // emitted that then need those v-tables. 1219 assert(DeferredVTables.empty()); 1220 } 1221 1222 // Stop if we're out of both deferred v-tables and deferred declarations. 1223 if (DeferredDeclsToEmit.empty()) 1224 return; 1225 1226 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1227 // work, it will not interfere with this. 1228 std::vector<DeferredGlobal> CurDeclsToEmit; 1229 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1230 1231 for (DeferredGlobal &G : CurDeclsToEmit) { 1232 GlobalDecl D = G.GD; 1233 llvm::GlobalValue *GV = G.GV; 1234 G.GV = nullptr; 1235 1236 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1237 // to get GlobalValue with exactly the type we need, not something that 1238 // might had been created for another decl with the same mangled name but 1239 // different type. 1240 // FIXME: Support for variables is not implemented yet. 1241 if (isa<FunctionDecl>(D.getDecl())) 1242 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1243 else 1244 if (!GV) 1245 GV = GetGlobalValue(getMangledName(D)); 1246 1247 // Check to see if we've already emitted this. This is necessary 1248 // for a couple of reasons: first, decls can end up in the 1249 // deferred-decls queue multiple times, and second, decls can end 1250 // up with definitions in unusual ways (e.g. by an extern inline 1251 // function acquiring a strong function redefinition). Just 1252 // ignore these cases. 1253 if (GV && !GV->isDeclaration()) 1254 continue; 1255 1256 // Otherwise, emit the definition and move on to the next one. 1257 EmitGlobalDefinition(D, GV); 1258 1259 // If we found out that we need to emit more decls, do that recursively. 1260 // This has the advantage that the decls are emitted in a DFS and related 1261 // ones are close together, which is convenient for testing. 1262 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1263 EmitDeferred(); 1264 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1265 } 1266 } 1267 } 1268 1269 void CodeGenModule::EmitGlobalAnnotations() { 1270 if (Annotations.empty()) 1271 return; 1272 1273 // Create a new global variable for the ConstantStruct in the Module. 1274 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1275 Annotations[0]->getType(), Annotations.size()), Annotations); 1276 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1277 llvm::GlobalValue::AppendingLinkage, 1278 Array, "llvm.global.annotations"); 1279 gv->setSection(AnnotationSection); 1280 } 1281 1282 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1283 llvm::Constant *&AStr = AnnotationStrings[Str]; 1284 if (AStr) 1285 return AStr; 1286 1287 // Not found yet, create a new global. 1288 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1289 auto *gv = 1290 new llvm::GlobalVariable(getModule(), s->getType(), true, 1291 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1292 gv->setSection(AnnotationSection); 1293 gv->setUnnamedAddr(true); 1294 AStr = gv; 1295 return gv; 1296 } 1297 1298 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1299 SourceManager &SM = getContext().getSourceManager(); 1300 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1301 if (PLoc.isValid()) 1302 return EmitAnnotationString(PLoc.getFilename()); 1303 return EmitAnnotationString(SM.getBufferName(Loc)); 1304 } 1305 1306 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1307 SourceManager &SM = getContext().getSourceManager(); 1308 PresumedLoc PLoc = SM.getPresumedLoc(L); 1309 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1310 SM.getExpansionLineNumber(L); 1311 return llvm::ConstantInt::get(Int32Ty, LineNo); 1312 } 1313 1314 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1315 const AnnotateAttr *AA, 1316 SourceLocation L) { 1317 // Get the globals for file name, annotation, and the line number. 1318 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1319 *UnitGV = EmitAnnotationUnit(L), 1320 *LineNoCst = EmitAnnotationLineNo(L); 1321 1322 // Create the ConstantStruct for the global annotation. 1323 llvm::Constant *Fields[4] = { 1324 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1325 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1326 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1327 LineNoCst 1328 }; 1329 return llvm::ConstantStruct::getAnon(Fields); 1330 } 1331 1332 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1333 llvm::GlobalValue *GV) { 1334 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1335 // Get the struct elements for these annotations. 1336 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1337 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1338 } 1339 1340 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1341 SourceLocation Loc) const { 1342 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1343 // Blacklist by function name. 1344 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1345 return true; 1346 // Blacklist by location. 1347 if (Loc.isValid()) 1348 return SanitizerBL.isBlacklistedLocation(Loc); 1349 // If location is unknown, this may be a compiler-generated function. Assume 1350 // it's located in the main file. 1351 auto &SM = Context.getSourceManager(); 1352 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1353 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1354 } 1355 return false; 1356 } 1357 1358 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1359 SourceLocation Loc, QualType Ty, 1360 StringRef Category) const { 1361 // For now globals can be blacklisted only in ASan and KASan. 1362 if (!LangOpts.Sanitize.hasOneOf( 1363 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1364 return false; 1365 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1366 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1367 return true; 1368 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1369 return true; 1370 // Check global type. 1371 if (!Ty.isNull()) { 1372 // Drill down the array types: if global variable of a fixed type is 1373 // blacklisted, we also don't instrument arrays of them. 1374 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1375 Ty = AT->getElementType(); 1376 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1377 // We allow to blacklist only record types (classes, structs etc.) 1378 if (Ty->isRecordType()) { 1379 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1380 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1381 return true; 1382 } 1383 } 1384 return false; 1385 } 1386 1387 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1388 // Never defer when EmitAllDecls is specified. 1389 if (LangOpts.EmitAllDecls) 1390 return true; 1391 1392 return getContext().DeclMustBeEmitted(Global); 1393 } 1394 1395 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1396 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1397 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1398 // Implicit template instantiations may change linkage if they are later 1399 // explicitly instantiated, so they should not be emitted eagerly. 1400 return false; 1401 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1402 // codegen for global variables, because they may be marked as threadprivate. 1403 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1404 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1405 return false; 1406 1407 return true; 1408 } 1409 1410 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1411 const CXXUuidofExpr* E) { 1412 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1413 // well-formed. 1414 StringRef Uuid = E->getUuidAsStringRef(Context); 1415 std::string Name = "_GUID_" + Uuid.lower(); 1416 std::replace(Name.begin(), Name.end(), '-', '_'); 1417 1418 // Contains a 32-bit field. 1419 CharUnits Alignment = CharUnits::fromQuantity(4); 1420 1421 // Look for an existing global. 1422 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1423 return ConstantAddress(GV, Alignment); 1424 1425 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1426 assert(Init && "failed to initialize as constant"); 1427 1428 auto *GV = new llvm::GlobalVariable( 1429 getModule(), Init->getType(), 1430 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1431 if (supportsCOMDAT()) 1432 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1433 return ConstantAddress(GV, Alignment); 1434 } 1435 1436 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1437 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1438 assert(AA && "No alias?"); 1439 1440 CharUnits Alignment = getContext().getDeclAlign(VD); 1441 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1442 1443 // See if there is already something with the target's name in the module. 1444 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1445 if (Entry) { 1446 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1447 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1448 return ConstantAddress(Ptr, Alignment); 1449 } 1450 1451 llvm::Constant *Aliasee; 1452 if (isa<llvm::FunctionType>(DeclTy)) 1453 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1454 GlobalDecl(cast<FunctionDecl>(VD)), 1455 /*ForVTable=*/false); 1456 else 1457 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1458 llvm::PointerType::getUnqual(DeclTy), 1459 nullptr); 1460 1461 auto *F = cast<llvm::GlobalValue>(Aliasee); 1462 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1463 WeakRefReferences.insert(F); 1464 1465 return ConstantAddress(Aliasee, Alignment); 1466 } 1467 1468 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1469 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1470 1471 // Weak references don't produce any output by themselves. 1472 if (Global->hasAttr<WeakRefAttr>()) 1473 return; 1474 1475 // If this is an alias definition (which otherwise looks like a declaration) 1476 // emit it now. 1477 if (Global->hasAttr<AliasAttr>()) 1478 return EmitAliasDefinition(GD); 1479 1480 // If this is CUDA, be selective about which declarations we emit. 1481 if (LangOpts.CUDA) { 1482 if (LangOpts.CUDAIsDevice) { 1483 if (!Global->hasAttr<CUDADeviceAttr>() && 1484 !Global->hasAttr<CUDAGlobalAttr>() && 1485 !Global->hasAttr<CUDAConstantAttr>() && 1486 !Global->hasAttr<CUDASharedAttr>()) 1487 return; 1488 } else { 1489 if (!Global->hasAttr<CUDAHostAttr>() && ( 1490 Global->hasAttr<CUDADeviceAttr>() || 1491 Global->hasAttr<CUDAConstantAttr>() || 1492 Global->hasAttr<CUDASharedAttr>())) 1493 return; 1494 } 1495 } 1496 1497 // If this is OpenMP device, check if it is legal to emit this global 1498 // normally. 1499 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1500 return; 1501 1502 // Ignore declarations, they will be emitted on their first use. 1503 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1504 // Forward declarations are emitted lazily on first use. 1505 if (!FD->doesThisDeclarationHaveABody()) { 1506 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1507 return; 1508 1509 StringRef MangledName = getMangledName(GD); 1510 1511 // Compute the function info and LLVM type. 1512 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1513 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1514 1515 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1516 /*DontDefer=*/false); 1517 return; 1518 } 1519 } else { 1520 const auto *VD = cast<VarDecl>(Global); 1521 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1522 1523 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1524 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1525 return; 1526 } 1527 1528 // Defer code generation to first use when possible, e.g. if this is an inline 1529 // function. If the global must always be emitted, do it eagerly if possible 1530 // to benefit from cache locality. 1531 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1532 // Emit the definition if it can't be deferred. 1533 EmitGlobalDefinition(GD); 1534 return; 1535 } 1536 1537 // If we're deferring emission of a C++ variable with an 1538 // initializer, remember the order in which it appeared in the file. 1539 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1540 cast<VarDecl>(Global)->hasInit()) { 1541 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1542 CXXGlobalInits.push_back(nullptr); 1543 } 1544 1545 StringRef MangledName = getMangledName(GD); 1546 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1547 // The value has already been used and should therefore be emitted. 1548 addDeferredDeclToEmit(GV, GD); 1549 } else if (MustBeEmitted(Global)) { 1550 // The value must be emitted, but cannot be emitted eagerly. 1551 assert(!MayBeEmittedEagerly(Global)); 1552 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1553 } else { 1554 // Otherwise, remember that we saw a deferred decl with this name. The 1555 // first use of the mangled name will cause it to move into 1556 // DeferredDeclsToEmit. 1557 DeferredDecls[MangledName] = GD; 1558 } 1559 } 1560 1561 namespace { 1562 struct FunctionIsDirectlyRecursive : 1563 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1564 const StringRef Name; 1565 const Builtin::Context &BI; 1566 bool Result; 1567 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1568 Name(N), BI(C), Result(false) { 1569 } 1570 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1571 1572 bool TraverseCallExpr(CallExpr *E) { 1573 const FunctionDecl *FD = E->getDirectCallee(); 1574 if (!FD) 1575 return true; 1576 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1577 if (Attr && Name == Attr->getLabel()) { 1578 Result = true; 1579 return false; 1580 } 1581 unsigned BuiltinID = FD->getBuiltinID(); 1582 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1583 return true; 1584 StringRef BuiltinName = BI.getName(BuiltinID); 1585 if (BuiltinName.startswith("__builtin_") && 1586 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1587 Result = true; 1588 return false; 1589 } 1590 return true; 1591 } 1592 }; 1593 1594 struct DLLImportFunctionVisitor 1595 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1596 bool SafeToInline = true; 1597 1598 bool VisitVarDecl(VarDecl *VD) { 1599 // A thread-local variable cannot be imported. 1600 SafeToInline = !VD->getTLSKind(); 1601 return SafeToInline; 1602 } 1603 1604 // Make sure we're not referencing non-imported vars or functions. 1605 bool VisitDeclRefExpr(DeclRefExpr *E) { 1606 ValueDecl *VD = E->getDecl(); 1607 if (isa<FunctionDecl>(VD)) 1608 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1609 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1610 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1611 return SafeToInline; 1612 } 1613 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1614 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1615 return SafeToInline; 1616 } 1617 bool VisitCXXNewExpr(CXXNewExpr *E) { 1618 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1619 return SafeToInline; 1620 } 1621 }; 1622 } 1623 1624 // isTriviallyRecursive - Check if this function calls another 1625 // decl that, because of the asm attribute or the other decl being a builtin, 1626 // ends up pointing to itself. 1627 bool 1628 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1629 StringRef Name; 1630 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1631 // asm labels are a special kind of mangling we have to support. 1632 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1633 if (!Attr) 1634 return false; 1635 Name = Attr->getLabel(); 1636 } else { 1637 Name = FD->getName(); 1638 } 1639 1640 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1641 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1642 return Walker.Result; 1643 } 1644 1645 bool 1646 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1647 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1648 return true; 1649 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1650 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1651 return false; 1652 1653 if (F->hasAttr<DLLImportAttr>()) { 1654 // Check whether it would be safe to inline this dllimport function. 1655 DLLImportFunctionVisitor Visitor; 1656 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1657 if (!Visitor.SafeToInline) 1658 return false; 1659 } 1660 1661 // PR9614. Avoid cases where the source code is lying to us. An available 1662 // externally function should have an equivalent function somewhere else, 1663 // but a function that calls itself is clearly not equivalent to the real 1664 // implementation. 1665 // This happens in glibc's btowc and in some configure checks. 1666 return !isTriviallyRecursive(F); 1667 } 1668 1669 /// If the type for the method's class was generated by 1670 /// CGDebugInfo::createContextChain(), the cache contains only a 1671 /// limited DIType without any declarations. Since EmitFunctionStart() 1672 /// needs to find the canonical declaration for each method, we need 1673 /// to construct the complete type prior to emitting the method. 1674 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1675 if (!D->isInstance()) 1676 return; 1677 1678 if (CGDebugInfo *DI = getModuleDebugInfo()) 1679 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1680 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1681 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1682 } 1683 } 1684 1685 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1686 const auto *D = cast<ValueDecl>(GD.getDecl()); 1687 1688 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1689 Context.getSourceManager(), 1690 "Generating code for declaration"); 1691 1692 if (isa<FunctionDecl>(D)) { 1693 // At -O0, don't generate IR for functions with available_externally 1694 // linkage. 1695 if (!shouldEmitFunction(GD)) 1696 return; 1697 1698 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1699 CompleteDIClassType(Method); 1700 // Make sure to emit the definition(s) before we emit the thunks. 1701 // This is necessary for the generation of certain thunks. 1702 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1703 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1704 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1705 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1706 else 1707 EmitGlobalFunctionDefinition(GD, GV); 1708 1709 if (Method->isVirtual()) 1710 getVTables().EmitThunks(GD); 1711 1712 return; 1713 } 1714 1715 return EmitGlobalFunctionDefinition(GD, GV); 1716 } 1717 1718 if (const auto *VD = dyn_cast<VarDecl>(D)) 1719 return EmitGlobalVarDefinition(VD); 1720 1721 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1722 } 1723 1724 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1725 llvm::Function *NewFn); 1726 1727 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1728 /// module, create and return an llvm Function with the specified type. If there 1729 /// is something in the module with the specified name, return it potentially 1730 /// bitcasted to the right type. 1731 /// 1732 /// If D is non-null, it specifies a decl that correspond to this. This is used 1733 /// to set the attributes on the function when it is first created. 1734 llvm::Constant * 1735 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1736 llvm::Type *Ty, 1737 GlobalDecl GD, bool ForVTable, 1738 bool DontDefer, bool IsThunk, 1739 llvm::AttributeSet ExtraAttrs, 1740 bool IsForDefinition) { 1741 const Decl *D = GD.getDecl(); 1742 1743 // Lookup the entry, lazily creating it if necessary. 1744 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1745 if (Entry) { 1746 if (WeakRefReferences.erase(Entry)) { 1747 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1748 if (FD && !FD->hasAttr<WeakAttr>()) 1749 Entry->setLinkage(llvm::Function::ExternalLinkage); 1750 } 1751 1752 // Handle dropped DLL attributes. 1753 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1754 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1755 1756 // If there are two attempts to define the same mangled name, issue an 1757 // error. 1758 if (IsForDefinition && !Entry->isDeclaration()) { 1759 GlobalDecl OtherGD; 1760 // Check that GD is not yet in ExplicitDefinitions is required to make 1761 // sure that we issue an error only once. 1762 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1763 (GD.getCanonicalDecl().getDecl() != 1764 OtherGD.getCanonicalDecl().getDecl()) && 1765 DiagnosedConflictingDefinitions.insert(GD).second) { 1766 getDiags().Report(D->getLocation(), 1767 diag::err_duplicate_mangled_name); 1768 getDiags().Report(OtherGD.getDecl()->getLocation(), 1769 diag::note_previous_definition); 1770 } 1771 } 1772 1773 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1774 (Entry->getType()->getElementType() == Ty)) { 1775 return Entry; 1776 } 1777 1778 // Make sure the result is of the correct type. 1779 // (If function is requested for a definition, we always need to create a new 1780 // function, not just return a bitcast.) 1781 if (!IsForDefinition) 1782 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1783 } 1784 1785 // This function doesn't have a complete type (for example, the return 1786 // type is an incomplete struct). Use a fake type instead, and make 1787 // sure not to try to set attributes. 1788 bool IsIncompleteFunction = false; 1789 1790 llvm::FunctionType *FTy; 1791 if (isa<llvm::FunctionType>(Ty)) { 1792 FTy = cast<llvm::FunctionType>(Ty); 1793 } else { 1794 FTy = llvm::FunctionType::get(VoidTy, false); 1795 IsIncompleteFunction = true; 1796 } 1797 1798 llvm::Function *F = 1799 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1800 Entry ? StringRef() : MangledName, &getModule()); 1801 1802 // If we already created a function with the same mangled name (but different 1803 // type) before, take its name and add it to the list of functions to be 1804 // replaced with F at the end of CodeGen. 1805 // 1806 // This happens if there is a prototype for a function (e.g. "int f()") and 1807 // then a definition of a different type (e.g. "int f(int x)"). 1808 if (Entry) { 1809 F->takeName(Entry); 1810 1811 // This might be an implementation of a function without a prototype, in 1812 // which case, try to do special replacement of calls which match the new 1813 // prototype. The really key thing here is that we also potentially drop 1814 // arguments from the call site so as to make a direct call, which makes the 1815 // inliner happier and suppresses a number of optimizer warnings (!) about 1816 // dropping arguments. 1817 if (!Entry->use_empty()) { 1818 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1819 Entry->removeDeadConstantUsers(); 1820 } 1821 1822 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1823 F, Entry->getType()->getElementType()->getPointerTo()); 1824 addGlobalValReplacement(Entry, BC); 1825 } 1826 1827 assert(F->getName() == MangledName && "name was uniqued!"); 1828 if (D) 1829 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1830 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1831 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1832 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1833 llvm::AttributeSet::get(VMContext, 1834 llvm::AttributeSet::FunctionIndex, 1835 B)); 1836 } 1837 1838 if (!DontDefer) { 1839 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1840 // each other bottoming out with the base dtor. Therefore we emit non-base 1841 // dtors on usage, even if there is no dtor definition in the TU. 1842 if (D && isa<CXXDestructorDecl>(D) && 1843 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1844 GD.getDtorType())) 1845 addDeferredDeclToEmit(F, GD); 1846 1847 // This is the first use or definition of a mangled name. If there is a 1848 // deferred decl with this name, remember that we need to emit it at the end 1849 // of the file. 1850 auto DDI = DeferredDecls.find(MangledName); 1851 if (DDI != DeferredDecls.end()) { 1852 // Move the potentially referenced deferred decl to the 1853 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1854 // don't need it anymore). 1855 addDeferredDeclToEmit(F, DDI->second); 1856 DeferredDecls.erase(DDI); 1857 1858 // Otherwise, there are cases we have to worry about where we're 1859 // using a declaration for which we must emit a definition but where 1860 // we might not find a top-level definition: 1861 // - member functions defined inline in their classes 1862 // - friend functions defined inline in some class 1863 // - special member functions with implicit definitions 1864 // If we ever change our AST traversal to walk into class methods, 1865 // this will be unnecessary. 1866 // 1867 // We also don't emit a definition for a function if it's going to be an 1868 // entry in a vtable, unless it's already marked as used. 1869 } else if (getLangOpts().CPlusPlus && D) { 1870 // Look for a declaration that's lexically in a record. 1871 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1872 FD = FD->getPreviousDecl()) { 1873 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1874 if (FD->doesThisDeclarationHaveABody()) { 1875 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1876 break; 1877 } 1878 } 1879 } 1880 } 1881 } 1882 1883 // Make sure the result is of the requested type. 1884 if (!IsIncompleteFunction) { 1885 assert(F->getType()->getElementType() == Ty); 1886 return F; 1887 } 1888 1889 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1890 return llvm::ConstantExpr::getBitCast(F, PTy); 1891 } 1892 1893 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1894 /// non-null, then this function will use the specified type if it has to 1895 /// create it (this occurs when we see a definition of the function). 1896 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1897 llvm::Type *Ty, 1898 bool ForVTable, 1899 bool DontDefer, 1900 bool IsForDefinition) { 1901 // If there was no specific requested type, just convert it now. 1902 if (!Ty) { 1903 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1904 auto CanonTy = Context.getCanonicalType(FD->getType()); 1905 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 1906 } 1907 1908 StringRef MangledName = getMangledName(GD); 1909 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1910 /*IsThunk=*/false, llvm::AttributeSet(), 1911 IsForDefinition); 1912 } 1913 1914 /// CreateRuntimeFunction - Create a new runtime function with the specified 1915 /// type and name. 1916 llvm::Constant * 1917 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1918 StringRef Name, 1919 llvm::AttributeSet ExtraAttrs) { 1920 llvm::Constant *C = 1921 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1922 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1923 if (auto *F = dyn_cast<llvm::Function>(C)) 1924 if (F->empty()) 1925 F->setCallingConv(getRuntimeCC()); 1926 return C; 1927 } 1928 1929 /// CreateBuiltinFunction - Create a new builtin function with the specified 1930 /// type and name. 1931 llvm::Constant * 1932 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1933 StringRef Name, 1934 llvm::AttributeSet ExtraAttrs) { 1935 llvm::Constant *C = 1936 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1937 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1938 if (auto *F = dyn_cast<llvm::Function>(C)) 1939 if (F->empty()) 1940 F->setCallingConv(getBuiltinCC()); 1941 return C; 1942 } 1943 1944 /// isTypeConstant - Determine whether an object of this type can be emitted 1945 /// as a constant. 1946 /// 1947 /// If ExcludeCtor is true, the duration when the object's constructor runs 1948 /// will not be considered. The caller will need to verify that the object is 1949 /// not written to during its construction. 1950 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1951 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1952 return false; 1953 1954 if (Context.getLangOpts().CPlusPlus) { 1955 if (const CXXRecordDecl *Record 1956 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1957 return ExcludeCtor && !Record->hasMutableFields() && 1958 Record->hasTrivialDestructor(); 1959 } 1960 1961 return true; 1962 } 1963 1964 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1965 /// create and return an llvm GlobalVariable with the specified type. If there 1966 /// is something in the module with the specified name, return it potentially 1967 /// bitcasted to the right type. 1968 /// 1969 /// If D is non-null, it specifies a decl that correspond to this. This is used 1970 /// to set the attributes on the global when it is first created. 1971 llvm::Constant * 1972 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1973 llvm::PointerType *Ty, 1974 const VarDecl *D) { 1975 // Lookup the entry, lazily creating it if necessary. 1976 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1977 if (Entry) { 1978 if (WeakRefReferences.erase(Entry)) { 1979 if (D && !D->hasAttr<WeakAttr>()) 1980 Entry->setLinkage(llvm::Function::ExternalLinkage); 1981 } 1982 1983 // Handle dropped DLL attributes. 1984 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1985 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1986 1987 if (Entry->getType() == Ty) 1988 return Entry; 1989 1990 // Make sure the result is of the correct type. 1991 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1992 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1993 1994 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1995 } 1996 1997 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1998 auto *GV = new llvm::GlobalVariable( 1999 getModule(), Ty->getElementType(), false, 2000 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2001 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2002 2003 // This is the first use or definition of a mangled name. If there is a 2004 // deferred decl with this name, remember that we need to emit it at the end 2005 // of the file. 2006 auto DDI = DeferredDecls.find(MangledName); 2007 if (DDI != DeferredDecls.end()) { 2008 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2009 // list, and remove it from DeferredDecls (since we don't need it anymore). 2010 addDeferredDeclToEmit(GV, DDI->second); 2011 DeferredDecls.erase(DDI); 2012 } 2013 2014 // Handle things which are present even on external declarations. 2015 if (D) { 2016 // FIXME: This code is overly simple and should be merged with other global 2017 // handling. 2018 GV->setConstant(isTypeConstant(D->getType(), false)); 2019 2020 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2021 2022 setLinkageAndVisibilityForGV(GV, D); 2023 2024 if (D->getTLSKind()) { 2025 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2026 CXXThreadLocals.push_back(D); 2027 setTLSMode(GV, *D); 2028 } 2029 2030 // If required by the ABI, treat declarations of static data members with 2031 // inline initializers as definitions. 2032 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2033 EmitGlobalVarDefinition(D); 2034 } 2035 2036 // Handle XCore specific ABI requirements. 2037 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 2038 D->getLanguageLinkage() == CLanguageLinkage && 2039 D->getType().isConstant(Context) && 2040 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2041 GV->setSection(".cp.rodata"); 2042 } 2043 2044 if (AddrSpace != Ty->getAddressSpace()) 2045 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 2046 2047 return GV; 2048 } 2049 2050 llvm::Constant * 2051 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2052 bool IsForDefinition) { 2053 if (isa<CXXConstructorDecl>(GD.getDecl())) 2054 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 2055 getFromCtorType(GD.getCtorType()), 2056 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2057 /*DontDefer=*/false, IsForDefinition); 2058 else if (isa<CXXDestructorDecl>(GD.getDecl())) 2059 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 2060 getFromDtorType(GD.getDtorType()), 2061 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2062 /*DontDefer=*/false, IsForDefinition); 2063 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2064 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2065 cast<CXXMethodDecl>(GD.getDecl())); 2066 auto Ty = getTypes().GetFunctionType(*FInfo); 2067 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2068 IsForDefinition); 2069 } else if (isa<FunctionDecl>(GD.getDecl())) { 2070 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2071 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2072 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2073 IsForDefinition); 2074 } else 2075 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl())); 2076 } 2077 2078 llvm::GlobalVariable * 2079 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2080 llvm::Type *Ty, 2081 llvm::GlobalValue::LinkageTypes Linkage) { 2082 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2083 llvm::GlobalVariable *OldGV = nullptr; 2084 2085 if (GV) { 2086 // Check if the variable has the right type. 2087 if (GV->getType()->getElementType() == Ty) 2088 return GV; 2089 2090 // Because C++ name mangling, the only way we can end up with an already 2091 // existing global with the same name is if it has been declared extern "C". 2092 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2093 OldGV = GV; 2094 } 2095 2096 // Create a new variable. 2097 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2098 Linkage, nullptr, Name); 2099 2100 if (OldGV) { 2101 // Replace occurrences of the old variable if needed. 2102 GV->takeName(OldGV); 2103 2104 if (!OldGV->use_empty()) { 2105 llvm::Constant *NewPtrForOldDecl = 2106 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2107 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2108 } 2109 2110 OldGV->eraseFromParent(); 2111 } 2112 2113 if (supportsCOMDAT() && GV->isWeakForLinker() && 2114 !GV->hasAvailableExternallyLinkage()) 2115 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2116 2117 return GV; 2118 } 2119 2120 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2121 /// given global variable. If Ty is non-null and if the global doesn't exist, 2122 /// then it will be created with the specified type instead of whatever the 2123 /// normal requested type would be. 2124 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2125 llvm::Type *Ty) { 2126 assert(D->hasGlobalStorage() && "Not a global variable"); 2127 QualType ASTTy = D->getType(); 2128 if (!Ty) 2129 Ty = getTypes().ConvertTypeForMem(ASTTy); 2130 2131 llvm::PointerType *PTy = 2132 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2133 2134 StringRef MangledName = getMangledName(D); 2135 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 2136 } 2137 2138 /// CreateRuntimeVariable - Create a new runtime global variable with the 2139 /// specified type and name. 2140 llvm::Constant * 2141 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2142 StringRef Name) { 2143 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2144 } 2145 2146 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2147 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2148 2149 if (!MustBeEmitted(D)) { 2150 // If we have not seen a reference to this variable yet, place it 2151 // into the deferred declarations table to be emitted if needed 2152 // later. 2153 StringRef MangledName = getMangledName(D); 2154 if (!GetGlobalValue(MangledName)) { 2155 DeferredDecls[MangledName] = D; 2156 return; 2157 } 2158 } 2159 2160 // The tentative definition is the only definition. 2161 EmitGlobalVarDefinition(D); 2162 } 2163 2164 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2165 return Context.toCharUnitsFromBits( 2166 getDataLayout().getTypeStoreSizeInBits(Ty)); 2167 } 2168 2169 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2170 unsigned AddrSpace) { 2171 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2172 if (D->hasAttr<CUDAConstantAttr>()) 2173 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2174 else if (D->hasAttr<CUDASharedAttr>()) 2175 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2176 else 2177 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2178 } 2179 2180 return AddrSpace; 2181 } 2182 2183 template<typename SomeDecl> 2184 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2185 llvm::GlobalValue *GV) { 2186 if (!getLangOpts().CPlusPlus) 2187 return; 2188 2189 // Must have 'used' attribute, or else inline assembly can't rely on 2190 // the name existing. 2191 if (!D->template hasAttr<UsedAttr>()) 2192 return; 2193 2194 // Must have internal linkage and an ordinary name. 2195 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2196 return; 2197 2198 // Must be in an extern "C" context. Entities declared directly within 2199 // a record are not extern "C" even if the record is in such a context. 2200 const SomeDecl *First = D->getFirstDecl(); 2201 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2202 return; 2203 2204 // OK, this is an internal linkage entity inside an extern "C" linkage 2205 // specification. Make a note of that so we can give it the "expected" 2206 // mangled name if nothing else is using that name. 2207 std::pair<StaticExternCMap::iterator, bool> R = 2208 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2209 2210 // If we have multiple internal linkage entities with the same name 2211 // in extern "C" regions, none of them gets that name. 2212 if (!R.second) 2213 R.first->second = nullptr; 2214 } 2215 2216 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2217 if (!CGM.supportsCOMDAT()) 2218 return false; 2219 2220 if (D.hasAttr<SelectAnyAttr>()) 2221 return true; 2222 2223 GVALinkage Linkage; 2224 if (auto *VD = dyn_cast<VarDecl>(&D)) 2225 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2226 else 2227 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2228 2229 switch (Linkage) { 2230 case GVA_Internal: 2231 case GVA_AvailableExternally: 2232 case GVA_StrongExternal: 2233 return false; 2234 case GVA_DiscardableODR: 2235 case GVA_StrongODR: 2236 return true; 2237 } 2238 llvm_unreachable("No such linkage"); 2239 } 2240 2241 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2242 llvm::GlobalObject &GO) { 2243 if (!shouldBeInCOMDAT(*this, D)) 2244 return; 2245 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2246 } 2247 2248 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 2249 llvm::Constant *Init = nullptr; 2250 QualType ASTTy = D->getType(); 2251 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2252 bool NeedsGlobalCtor = false; 2253 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2254 2255 const VarDecl *InitDecl; 2256 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2257 2258 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2259 // of their declaration." 2260 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2261 && D->hasAttr<CUDASharedAttr>()) { 2262 if (InitExpr) { 2263 const auto *C = dyn_cast<CXXConstructExpr>(InitExpr); 2264 if (C == nullptr || !C->getConstructor()->hasTrivialBody()) 2265 Error(D->getLocation(), 2266 "__shared__ variable cannot have an initialization."); 2267 } 2268 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2269 } else if (!InitExpr) { 2270 // This is a tentative definition; tentative definitions are 2271 // implicitly initialized with { 0 }. 2272 // 2273 // Note that tentative definitions are only emitted at the end of 2274 // a translation unit, so they should never have incomplete 2275 // type. In addition, EmitTentativeDefinition makes sure that we 2276 // never attempt to emit a tentative definition if a real one 2277 // exists. A use may still exists, however, so we still may need 2278 // to do a RAUW. 2279 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2280 Init = EmitNullConstant(D->getType()); 2281 } else { 2282 initializedGlobalDecl = GlobalDecl(D); 2283 Init = EmitConstantInit(*InitDecl); 2284 2285 if (!Init) { 2286 QualType T = InitExpr->getType(); 2287 if (D->getType()->isReferenceType()) 2288 T = D->getType(); 2289 2290 if (getLangOpts().CPlusPlus) { 2291 Init = EmitNullConstant(T); 2292 NeedsGlobalCtor = true; 2293 } else { 2294 ErrorUnsupported(D, "static initializer"); 2295 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2296 } 2297 } else { 2298 // We don't need an initializer, so remove the entry for the delayed 2299 // initializer position (just in case this entry was delayed) if we 2300 // also don't need to register a destructor. 2301 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2302 DelayedCXXInitPosition.erase(D); 2303 } 2304 } 2305 2306 llvm::Type* InitType = Init->getType(); 2307 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2308 2309 // Strip off a bitcast if we got one back. 2310 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2311 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2312 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2313 // All zero index gep. 2314 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2315 Entry = CE->getOperand(0); 2316 } 2317 2318 // Entry is now either a Function or GlobalVariable. 2319 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2320 2321 // We have a definition after a declaration with the wrong type. 2322 // We must make a new GlobalVariable* and update everything that used OldGV 2323 // (a declaration or tentative definition) with the new GlobalVariable* 2324 // (which will be a definition). 2325 // 2326 // This happens if there is a prototype for a global (e.g. 2327 // "extern int x[];") and then a definition of a different type (e.g. 2328 // "int x[10];"). This also happens when an initializer has a different type 2329 // from the type of the global (this happens with unions). 2330 if (!GV || 2331 GV->getType()->getElementType() != InitType || 2332 GV->getType()->getAddressSpace() != 2333 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2334 2335 // Move the old entry aside so that we'll create a new one. 2336 Entry->setName(StringRef()); 2337 2338 // Make a new global with the correct type, this is now guaranteed to work. 2339 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2340 2341 // Replace all uses of the old global with the new global 2342 llvm::Constant *NewPtrForOldDecl = 2343 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2344 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2345 2346 // Erase the old global, since it is no longer used. 2347 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2348 } 2349 2350 MaybeHandleStaticInExternC(D, GV); 2351 2352 if (D->hasAttr<AnnotateAttr>()) 2353 AddGlobalAnnotations(D, GV); 2354 2355 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2356 // the device. [...]" 2357 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2358 // __device__, declares a variable that: [...] 2359 // Is accessible from all the threads within the grid and from the host 2360 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2361 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2362 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2363 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2364 GV->setExternallyInitialized(true); 2365 } 2366 GV->setInitializer(Init); 2367 2368 // If it is safe to mark the global 'constant', do so now. 2369 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2370 isTypeConstant(D->getType(), true)); 2371 2372 // If it is in a read-only section, mark it 'constant'. 2373 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2374 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2375 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2376 GV->setConstant(true); 2377 } 2378 2379 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2380 2381 // Set the llvm linkage type as appropriate. 2382 llvm::GlobalValue::LinkageTypes Linkage = 2383 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2384 2385 // On Darwin, if the normal linkage of a C++ thread_local variable is 2386 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2387 // copies within a linkage unit; otherwise, the backing variable has 2388 // internal linkage and all accesses should just be calls to the 2389 // Itanium-specified entry point, which has the normal linkage of the 2390 // variable. This is to preserve the ability to change the implementation 2391 // behind the scenes. 2392 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2393 Context.getTargetInfo().getTriple().isOSDarwin() && 2394 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2395 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2396 Linkage = llvm::GlobalValue::InternalLinkage; 2397 2398 GV->setLinkage(Linkage); 2399 if (D->hasAttr<DLLImportAttr>()) 2400 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2401 else if (D->hasAttr<DLLExportAttr>()) 2402 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2403 else 2404 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2405 2406 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2407 // common vars aren't constant even if declared const. 2408 GV->setConstant(false); 2409 2410 setNonAliasAttributes(D, GV); 2411 2412 if (D->getTLSKind() && !GV->isThreadLocal()) { 2413 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2414 CXXThreadLocals.push_back(D); 2415 setTLSMode(GV, *D); 2416 } 2417 2418 maybeSetTrivialComdat(*D, *GV); 2419 2420 // Emit the initializer function if necessary. 2421 if (NeedsGlobalCtor || NeedsGlobalDtor) 2422 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2423 2424 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2425 2426 // Emit global variable debug information. 2427 if (CGDebugInfo *DI = getModuleDebugInfo()) 2428 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2429 DI->EmitGlobalVariable(GV, D); 2430 } 2431 2432 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2433 CodeGenModule &CGM, const VarDecl *D, 2434 bool NoCommon) { 2435 // Don't give variables common linkage if -fno-common was specified unless it 2436 // was overridden by a NoCommon attribute. 2437 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2438 return true; 2439 2440 // C11 6.9.2/2: 2441 // A declaration of an identifier for an object that has file scope without 2442 // an initializer, and without a storage-class specifier or with the 2443 // storage-class specifier static, constitutes a tentative definition. 2444 if (D->getInit() || D->hasExternalStorage()) 2445 return true; 2446 2447 // A variable cannot be both common and exist in a section. 2448 if (D->hasAttr<SectionAttr>()) 2449 return true; 2450 2451 // Thread local vars aren't considered common linkage. 2452 if (D->getTLSKind()) 2453 return true; 2454 2455 // Tentative definitions marked with WeakImportAttr are true definitions. 2456 if (D->hasAttr<WeakImportAttr>()) 2457 return true; 2458 2459 // A variable cannot be both common and exist in a comdat. 2460 if (shouldBeInCOMDAT(CGM, *D)) 2461 return true; 2462 2463 // Declarations with a required alignment do not have common linakge in MSVC 2464 // mode. 2465 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2466 if (D->hasAttr<AlignedAttr>()) 2467 return true; 2468 QualType VarType = D->getType(); 2469 if (Context.isAlignmentRequired(VarType)) 2470 return true; 2471 2472 if (const auto *RT = VarType->getAs<RecordType>()) { 2473 const RecordDecl *RD = RT->getDecl(); 2474 for (const FieldDecl *FD : RD->fields()) { 2475 if (FD->isBitField()) 2476 continue; 2477 if (FD->hasAttr<AlignedAttr>()) 2478 return true; 2479 if (Context.isAlignmentRequired(FD->getType())) 2480 return true; 2481 } 2482 } 2483 } 2484 2485 return false; 2486 } 2487 2488 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2489 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2490 if (Linkage == GVA_Internal) 2491 return llvm::Function::InternalLinkage; 2492 2493 if (D->hasAttr<WeakAttr>()) { 2494 if (IsConstantVariable) 2495 return llvm::GlobalVariable::WeakODRLinkage; 2496 else 2497 return llvm::GlobalVariable::WeakAnyLinkage; 2498 } 2499 2500 // We are guaranteed to have a strong definition somewhere else, 2501 // so we can use available_externally linkage. 2502 if (Linkage == GVA_AvailableExternally) 2503 return llvm::Function::AvailableExternallyLinkage; 2504 2505 // Note that Apple's kernel linker doesn't support symbol 2506 // coalescing, so we need to avoid linkonce and weak linkages there. 2507 // Normally, this means we just map to internal, but for explicit 2508 // instantiations we'll map to external. 2509 2510 // In C++, the compiler has to emit a definition in every translation unit 2511 // that references the function. We should use linkonce_odr because 2512 // a) if all references in this translation unit are optimized away, we 2513 // don't need to codegen it. b) if the function persists, it needs to be 2514 // merged with other definitions. c) C++ has the ODR, so we know the 2515 // definition is dependable. 2516 if (Linkage == GVA_DiscardableODR) 2517 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2518 : llvm::Function::InternalLinkage; 2519 2520 // An explicit instantiation of a template has weak linkage, since 2521 // explicit instantiations can occur in multiple translation units 2522 // and must all be equivalent. However, we are not allowed to 2523 // throw away these explicit instantiations. 2524 if (Linkage == GVA_StrongODR) 2525 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2526 : llvm::Function::ExternalLinkage; 2527 2528 // C++ doesn't have tentative definitions and thus cannot have common 2529 // linkage. 2530 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2531 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2532 CodeGenOpts.NoCommon)) 2533 return llvm::GlobalVariable::CommonLinkage; 2534 2535 // selectany symbols are externally visible, so use weak instead of 2536 // linkonce. MSVC optimizes away references to const selectany globals, so 2537 // all definitions should be the same and ODR linkage should be used. 2538 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2539 if (D->hasAttr<SelectAnyAttr>()) 2540 return llvm::GlobalVariable::WeakODRLinkage; 2541 2542 // Otherwise, we have strong external linkage. 2543 assert(Linkage == GVA_StrongExternal); 2544 return llvm::GlobalVariable::ExternalLinkage; 2545 } 2546 2547 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2548 const VarDecl *VD, bool IsConstant) { 2549 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2550 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2551 } 2552 2553 /// Replace the uses of a function that was declared with a non-proto type. 2554 /// We want to silently drop extra arguments from call sites 2555 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2556 llvm::Function *newFn) { 2557 // Fast path. 2558 if (old->use_empty()) return; 2559 2560 llvm::Type *newRetTy = newFn->getReturnType(); 2561 SmallVector<llvm::Value*, 4> newArgs; 2562 SmallVector<llvm::OperandBundleDef, 1> newBundles; 2563 2564 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2565 ui != ue; ) { 2566 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2567 llvm::User *user = use->getUser(); 2568 2569 // Recognize and replace uses of bitcasts. Most calls to 2570 // unprototyped functions will use bitcasts. 2571 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2572 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2573 replaceUsesOfNonProtoConstant(bitcast, newFn); 2574 continue; 2575 } 2576 2577 // Recognize calls to the function. 2578 llvm::CallSite callSite(user); 2579 if (!callSite) continue; 2580 if (!callSite.isCallee(&*use)) continue; 2581 2582 // If the return types don't match exactly, then we can't 2583 // transform this call unless it's dead. 2584 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2585 continue; 2586 2587 // Get the call site's attribute list. 2588 SmallVector<llvm::AttributeSet, 8> newAttrs; 2589 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2590 2591 // Collect any return attributes from the call. 2592 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2593 newAttrs.push_back( 2594 llvm::AttributeSet::get(newFn->getContext(), 2595 oldAttrs.getRetAttributes())); 2596 2597 // If the function was passed too few arguments, don't transform. 2598 unsigned newNumArgs = newFn->arg_size(); 2599 if (callSite.arg_size() < newNumArgs) continue; 2600 2601 // If extra arguments were passed, we silently drop them. 2602 // If any of the types mismatch, we don't transform. 2603 unsigned argNo = 0; 2604 bool dontTransform = false; 2605 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2606 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2607 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2608 dontTransform = true; 2609 break; 2610 } 2611 2612 // Add any parameter attributes. 2613 if (oldAttrs.hasAttributes(argNo + 1)) 2614 newAttrs. 2615 push_back(llvm:: 2616 AttributeSet::get(newFn->getContext(), 2617 oldAttrs.getParamAttributes(argNo + 1))); 2618 } 2619 if (dontTransform) 2620 continue; 2621 2622 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2623 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2624 oldAttrs.getFnAttributes())); 2625 2626 // Okay, we can transform this. Create the new call instruction and copy 2627 // over the required information. 2628 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2629 2630 // Copy over any operand bundles. 2631 callSite.getOperandBundlesAsDefs(newBundles); 2632 2633 llvm::CallSite newCall; 2634 if (callSite.isCall()) { 2635 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 2636 callSite.getInstruction()); 2637 } else { 2638 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2639 newCall = llvm::InvokeInst::Create(newFn, 2640 oldInvoke->getNormalDest(), 2641 oldInvoke->getUnwindDest(), 2642 newArgs, newBundles, "", 2643 callSite.getInstruction()); 2644 } 2645 newArgs.clear(); // for the next iteration 2646 2647 if (!newCall->getType()->isVoidTy()) 2648 newCall->takeName(callSite.getInstruction()); 2649 newCall.setAttributes( 2650 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2651 newCall.setCallingConv(callSite.getCallingConv()); 2652 2653 // Finally, remove the old call, replacing any uses with the new one. 2654 if (!callSite->use_empty()) 2655 callSite->replaceAllUsesWith(newCall.getInstruction()); 2656 2657 // Copy debug location attached to CI. 2658 if (callSite->getDebugLoc()) 2659 newCall->setDebugLoc(callSite->getDebugLoc()); 2660 2661 callSite->eraseFromParent(); 2662 } 2663 } 2664 2665 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2666 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2667 /// existing call uses of the old function in the module, this adjusts them to 2668 /// call the new function directly. 2669 /// 2670 /// This is not just a cleanup: the always_inline pass requires direct calls to 2671 /// functions to be able to inline them. If there is a bitcast in the way, it 2672 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2673 /// run at -O0. 2674 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2675 llvm::Function *NewFn) { 2676 // If we're redefining a global as a function, don't transform it. 2677 if (!isa<llvm::Function>(Old)) return; 2678 2679 replaceUsesOfNonProtoConstant(Old, NewFn); 2680 } 2681 2682 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2683 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2684 // If we have a definition, this might be a deferred decl. If the 2685 // instantiation is explicit, make sure we emit it at the end. 2686 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2687 GetAddrOfGlobalVar(VD); 2688 2689 EmitTopLevelDecl(VD); 2690 } 2691 2692 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2693 llvm::GlobalValue *GV) { 2694 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2695 2696 // Compute the function info and LLVM type. 2697 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2698 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2699 2700 // Get or create the prototype for the function. 2701 if (!GV || (GV->getType()->getElementType() != Ty)) 2702 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2703 /*DontDefer=*/true, 2704 /*IsForDefinition=*/true)); 2705 2706 // Already emitted. 2707 if (!GV->isDeclaration()) 2708 return; 2709 2710 // We need to set linkage and visibility on the function before 2711 // generating code for it because various parts of IR generation 2712 // want to propagate this information down (e.g. to local static 2713 // declarations). 2714 auto *Fn = cast<llvm::Function>(GV); 2715 setFunctionLinkage(GD, Fn); 2716 setFunctionDLLStorageClass(GD, Fn); 2717 2718 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2719 setGlobalVisibility(Fn, D); 2720 2721 MaybeHandleStaticInExternC(D, Fn); 2722 2723 maybeSetTrivialComdat(*D, *Fn); 2724 2725 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2726 2727 setFunctionDefinitionAttributes(D, Fn); 2728 SetLLVMFunctionAttributesForDefinition(D, Fn); 2729 2730 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2731 AddGlobalCtor(Fn, CA->getPriority()); 2732 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2733 AddGlobalDtor(Fn, DA->getPriority()); 2734 if (D->hasAttr<AnnotateAttr>()) 2735 AddGlobalAnnotations(D, Fn); 2736 } 2737 2738 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2739 const auto *D = cast<ValueDecl>(GD.getDecl()); 2740 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2741 assert(AA && "Not an alias?"); 2742 2743 StringRef MangledName = getMangledName(GD); 2744 2745 if (AA->getAliasee() == MangledName) { 2746 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2747 return; 2748 } 2749 2750 // If there is a definition in the module, then it wins over the alias. 2751 // This is dubious, but allow it to be safe. Just ignore the alias. 2752 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2753 if (Entry && !Entry->isDeclaration()) 2754 return; 2755 2756 Aliases.push_back(GD); 2757 2758 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2759 2760 // Create a reference to the named value. This ensures that it is emitted 2761 // if a deferred decl. 2762 llvm::Constant *Aliasee; 2763 if (isa<llvm::FunctionType>(DeclTy)) 2764 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2765 /*ForVTable=*/false); 2766 else 2767 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2768 llvm::PointerType::getUnqual(DeclTy), 2769 /*D=*/nullptr); 2770 2771 // Create the new alias itself, but don't set a name yet. 2772 auto *GA = llvm::GlobalAlias::create( 2773 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2774 2775 if (Entry) { 2776 if (GA->getAliasee() == Entry) { 2777 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2778 return; 2779 } 2780 2781 assert(Entry->isDeclaration()); 2782 2783 // If there is a declaration in the module, then we had an extern followed 2784 // by the alias, as in: 2785 // extern int test6(); 2786 // ... 2787 // int test6() __attribute__((alias("test7"))); 2788 // 2789 // Remove it and replace uses of it with the alias. 2790 GA->takeName(Entry); 2791 2792 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2793 Entry->getType())); 2794 Entry->eraseFromParent(); 2795 } else { 2796 GA->setName(MangledName); 2797 } 2798 2799 // Set attributes which are particular to an alias; this is a 2800 // specialization of the attributes which may be set on a global 2801 // variable/function. 2802 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2803 D->isWeakImported()) { 2804 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2805 } 2806 2807 if (const auto *VD = dyn_cast<VarDecl>(D)) 2808 if (VD->getTLSKind()) 2809 setTLSMode(GA, *VD); 2810 2811 setAliasAttributes(D, GA); 2812 } 2813 2814 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2815 ArrayRef<llvm::Type*> Tys) { 2816 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2817 Tys); 2818 } 2819 2820 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2821 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2822 const StringLiteral *Literal, bool TargetIsLSB, 2823 bool &IsUTF16, unsigned &StringLength) { 2824 StringRef String = Literal->getString(); 2825 unsigned NumBytes = String.size(); 2826 2827 // Check for simple case. 2828 if (!Literal->containsNonAsciiOrNull()) { 2829 StringLength = NumBytes; 2830 return *Map.insert(std::make_pair(String, nullptr)).first; 2831 } 2832 2833 // Otherwise, convert the UTF8 literals into a string of shorts. 2834 IsUTF16 = true; 2835 2836 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2837 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2838 UTF16 *ToPtr = &ToBuf[0]; 2839 2840 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2841 &ToPtr, ToPtr + NumBytes, 2842 strictConversion); 2843 2844 // ConvertUTF8toUTF16 returns the length in ToPtr. 2845 StringLength = ToPtr - &ToBuf[0]; 2846 2847 // Add an explicit null. 2848 *ToPtr = 0; 2849 return *Map.insert(std::make_pair( 2850 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2851 (StringLength + 1) * 2), 2852 nullptr)).first; 2853 } 2854 2855 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2856 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2857 const StringLiteral *Literal, unsigned &StringLength) { 2858 StringRef String = Literal->getString(); 2859 StringLength = String.size(); 2860 return *Map.insert(std::make_pair(String, nullptr)).first; 2861 } 2862 2863 ConstantAddress 2864 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2865 unsigned StringLength = 0; 2866 bool isUTF16 = false; 2867 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2868 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2869 getDataLayout().isLittleEndian(), isUTF16, 2870 StringLength); 2871 2872 if (auto *C = Entry.second) 2873 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2874 2875 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2876 llvm::Constant *Zeros[] = { Zero, Zero }; 2877 llvm::Value *V; 2878 2879 // If we don't already have it, get __CFConstantStringClassReference. 2880 if (!CFConstantStringClassRef) { 2881 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2882 Ty = llvm::ArrayType::get(Ty, 0); 2883 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2884 "__CFConstantStringClassReference"); 2885 // Decay array -> ptr 2886 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2887 CFConstantStringClassRef = V; 2888 } 2889 else 2890 V = CFConstantStringClassRef; 2891 2892 QualType CFTy = getContext().getCFConstantStringType(); 2893 2894 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2895 2896 llvm::Constant *Fields[4]; 2897 2898 // Class pointer. 2899 Fields[0] = cast<llvm::ConstantExpr>(V); 2900 2901 // Flags. 2902 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2903 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2904 llvm::ConstantInt::get(Ty, 0x07C8); 2905 2906 // String pointer. 2907 llvm::Constant *C = nullptr; 2908 if (isUTF16) { 2909 auto Arr = llvm::makeArrayRef( 2910 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2911 Entry.first().size() / 2); 2912 C = llvm::ConstantDataArray::get(VMContext, Arr); 2913 } else { 2914 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2915 } 2916 2917 // Note: -fwritable-strings doesn't make the backing store strings of 2918 // CFStrings writable. (See <rdar://problem/10657500>) 2919 auto *GV = 2920 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2921 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2922 GV->setUnnamedAddr(true); 2923 // Don't enforce the target's minimum global alignment, since the only use 2924 // of the string is via this class initializer. 2925 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2926 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2927 // that changes the section it ends in, which surprises ld64. 2928 if (isUTF16) { 2929 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2930 GV->setAlignment(Align.getQuantity()); 2931 GV->setSection("__TEXT,__ustring"); 2932 } else { 2933 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2934 GV->setAlignment(Align.getQuantity()); 2935 GV->setSection("__TEXT,__cstring,cstring_literals"); 2936 } 2937 2938 // String. 2939 Fields[2] = 2940 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2941 2942 if (isUTF16) 2943 // Cast the UTF16 string to the correct type. 2944 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2945 2946 // String length. 2947 Ty = getTypes().ConvertType(getContext().LongTy); 2948 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2949 2950 CharUnits Alignment = getPointerAlign(); 2951 2952 // The struct. 2953 C = llvm::ConstantStruct::get(STy, Fields); 2954 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2955 llvm::GlobalVariable::PrivateLinkage, C, 2956 "_unnamed_cfstring_"); 2957 GV->setSection("__DATA,__cfstring"); 2958 GV->setAlignment(Alignment.getQuantity()); 2959 Entry.second = GV; 2960 2961 return ConstantAddress(GV, Alignment); 2962 } 2963 2964 ConstantAddress 2965 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2966 unsigned StringLength = 0; 2967 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2968 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2969 2970 if (auto *C = Entry.second) 2971 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2972 2973 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2974 llvm::Constant *Zeros[] = { Zero, Zero }; 2975 llvm::Value *V; 2976 // If we don't already have it, get _NSConstantStringClassReference. 2977 if (!ConstantStringClassRef) { 2978 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2979 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2980 llvm::Constant *GV; 2981 if (LangOpts.ObjCRuntime.isNonFragile()) { 2982 std::string str = 2983 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2984 : "OBJC_CLASS_$_" + StringClass; 2985 GV = getObjCRuntime().GetClassGlobal(str); 2986 // Make sure the result is of the correct type. 2987 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2988 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2989 ConstantStringClassRef = V; 2990 } else { 2991 std::string str = 2992 StringClass.empty() ? "_NSConstantStringClassReference" 2993 : "_" + StringClass + "ClassReference"; 2994 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2995 GV = CreateRuntimeVariable(PTy, str); 2996 // Decay array -> ptr 2997 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2998 ConstantStringClassRef = V; 2999 } 3000 } else 3001 V = ConstantStringClassRef; 3002 3003 if (!NSConstantStringType) { 3004 // Construct the type for a constant NSString. 3005 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 3006 D->startDefinition(); 3007 3008 QualType FieldTypes[3]; 3009 3010 // const int *isa; 3011 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 3012 // const char *str; 3013 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 3014 // unsigned int length; 3015 FieldTypes[2] = Context.UnsignedIntTy; 3016 3017 // Create fields 3018 for (unsigned i = 0; i < 3; ++i) { 3019 FieldDecl *Field = FieldDecl::Create(Context, D, 3020 SourceLocation(), 3021 SourceLocation(), nullptr, 3022 FieldTypes[i], /*TInfo=*/nullptr, 3023 /*BitWidth=*/nullptr, 3024 /*Mutable=*/false, 3025 ICIS_NoInit); 3026 Field->setAccess(AS_public); 3027 D->addDecl(Field); 3028 } 3029 3030 D->completeDefinition(); 3031 QualType NSTy = Context.getTagDeclType(D); 3032 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 3033 } 3034 3035 llvm::Constant *Fields[3]; 3036 3037 // Class pointer. 3038 Fields[0] = cast<llvm::ConstantExpr>(V); 3039 3040 // String pointer. 3041 llvm::Constant *C = 3042 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3043 3044 llvm::GlobalValue::LinkageTypes Linkage; 3045 bool isConstant; 3046 Linkage = llvm::GlobalValue::PrivateLinkage; 3047 isConstant = !LangOpts.WritableStrings; 3048 3049 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 3050 Linkage, C, ".str"); 3051 GV->setUnnamedAddr(true); 3052 // Don't enforce the target's minimum global alignment, since the only use 3053 // of the string is via this class initializer. 3054 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 3055 GV->setAlignment(Align.getQuantity()); 3056 Fields[1] = 3057 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3058 3059 // String length. 3060 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 3061 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 3062 3063 // The struct. 3064 CharUnits Alignment = getPointerAlign(); 3065 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3066 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3067 llvm::GlobalVariable::PrivateLinkage, C, 3068 "_unnamed_nsstring_"); 3069 GV->setAlignment(Alignment.getQuantity()); 3070 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3071 const char *NSStringNonFragileABISection = 3072 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3073 // FIXME. Fix section. 3074 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3075 ? NSStringNonFragileABISection 3076 : NSStringSection); 3077 Entry.second = GV; 3078 3079 return ConstantAddress(GV, Alignment); 3080 } 3081 3082 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3083 if (ObjCFastEnumerationStateType.isNull()) { 3084 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3085 D->startDefinition(); 3086 3087 QualType FieldTypes[] = { 3088 Context.UnsignedLongTy, 3089 Context.getPointerType(Context.getObjCIdType()), 3090 Context.getPointerType(Context.UnsignedLongTy), 3091 Context.getConstantArrayType(Context.UnsignedLongTy, 3092 llvm::APInt(32, 5), ArrayType::Normal, 0) 3093 }; 3094 3095 for (size_t i = 0; i < 4; ++i) { 3096 FieldDecl *Field = FieldDecl::Create(Context, 3097 D, 3098 SourceLocation(), 3099 SourceLocation(), nullptr, 3100 FieldTypes[i], /*TInfo=*/nullptr, 3101 /*BitWidth=*/nullptr, 3102 /*Mutable=*/false, 3103 ICIS_NoInit); 3104 Field->setAccess(AS_public); 3105 D->addDecl(Field); 3106 } 3107 3108 D->completeDefinition(); 3109 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3110 } 3111 3112 return ObjCFastEnumerationStateType; 3113 } 3114 3115 llvm::Constant * 3116 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3117 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3118 3119 // Don't emit it as the address of the string, emit the string data itself 3120 // as an inline array. 3121 if (E->getCharByteWidth() == 1) { 3122 SmallString<64> Str(E->getString()); 3123 3124 // Resize the string to the right size, which is indicated by its type. 3125 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3126 Str.resize(CAT->getSize().getZExtValue()); 3127 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3128 } 3129 3130 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3131 llvm::Type *ElemTy = AType->getElementType(); 3132 unsigned NumElements = AType->getNumElements(); 3133 3134 // Wide strings have either 2-byte or 4-byte elements. 3135 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3136 SmallVector<uint16_t, 32> Elements; 3137 Elements.reserve(NumElements); 3138 3139 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3140 Elements.push_back(E->getCodeUnit(i)); 3141 Elements.resize(NumElements); 3142 return llvm::ConstantDataArray::get(VMContext, Elements); 3143 } 3144 3145 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3146 SmallVector<uint32_t, 32> Elements; 3147 Elements.reserve(NumElements); 3148 3149 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3150 Elements.push_back(E->getCodeUnit(i)); 3151 Elements.resize(NumElements); 3152 return llvm::ConstantDataArray::get(VMContext, Elements); 3153 } 3154 3155 static llvm::GlobalVariable * 3156 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3157 CodeGenModule &CGM, StringRef GlobalName, 3158 CharUnits Alignment) { 3159 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3160 unsigned AddrSpace = 0; 3161 if (CGM.getLangOpts().OpenCL) 3162 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3163 3164 llvm::Module &M = CGM.getModule(); 3165 // Create a global variable for this string 3166 auto *GV = new llvm::GlobalVariable( 3167 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3168 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3169 GV->setAlignment(Alignment.getQuantity()); 3170 GV->setUnnamedAddr(true); 3171 if (GV->isWeakForLinker()) { 3172 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3173 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3174 } 3175 3176 return GV; 3177 } 3178 3179 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3180 /// constant array for the given string literal. 3181 ConstantAddress 3182 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3183 StringRef Name) { 3184 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3185 3186 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3187 llvm::GlobalVariable **Entry = nullptr; 3188 if (!LangOpts.WritableStrings) { 3189 Entry = &ConstantStringMap[C]; 3190 if (auto GV = *Entry) { 3191 if (Alignment.getQuantity() > GV->getAlignment()) 3192 GV->setAlignment(Alignment.getQuantity()); 3193 return ConstantAddress(GV, Alignment); 3194 } 3195 } 3196 3197 SmallString<256> MangledNameBuffer; 3198 StringRef GlobalVariableName; 3199 llvm::GlobalValue::LinkageTypes LT; 3200 3201 // Mangle the string literal if the ABI allows for it. However, we cannot 3202 // do this if we are compiling with ASan or -fwritable-strings because they 3203 // rely on strings having normal linkage. 3204 if (!LangOpts.WritableStrings && 3205 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3206 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3207 llvm::raw_svector_ostream Out(MangledNameBuffer); 3208 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3209 3210 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3211 GlobalVariableName = MangledNameBuffer; 3212 } else { 3213 LT = llvm::GlobalValue::PrivateLinkage; 3214 GlobalVariableName = Name; 3215 } 3216 3217 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3218 if (Entry) 3219 *Entry = GV; 3220 3221 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3222 QualType()); 3223 return ConstantAddress(GV, Alignment); 3224 } 3225 3226 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3227 /// array for the given ObjCEncodeExpr node. 3228 ConstantAddress 3229 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3230 std::string Str; 3231 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3232 3233 return GetAddrOfConstantCString(Str); 3234 } 3235 3236 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3237 /// the literal and a terminating '\0' character. 3238 /// The result has pointer to array type. 3239 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3240 const std::string &Str, const char *GlobalName) { 3241 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3242 CharUnits Alignment = 3243 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3244 3245 llvm::Constant *C = 3246 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3247 3248 // Don't share any string literals if strings aren't constant. 3249 llvm::GlobalVariable **Entry = nullptr; 3250 if (!LangOpts.WritableStrings) { 3251 Entry = &ConstantStringMap[C]; 3252 if (auto GV = *Entry) { 3253 if (Alignment.getQuantity() > GV->getAlignment()) 3254 GV->setAlignment(Alignment.getQuantity()); 3255 return ConstantAddress(GV, Alignment); 3256 } 3257 } 3258 3259 // Get the default prefix if a name wasn't specified. 3260 if (!GlobalName) 3261 GlobalName = ".str"; 3262 // Create a global variable for this. 3263 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3264 GlobalName, Alignment); 3265 if (Entry) 3266 *Entry = GV; 3267 return ConstantAddress(GV, Alignment); 3268 } 3269 3270 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3271 const MaterializeTemporaryExpr *E, const Expr *Init) { 3272 assert((E->getStorageDuration() == SD_Static || 3273 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3274 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3275 3276 // If we're not materializing a subobject of the temporary, keep the 3277 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3278 QualType MaterializedType = Init->getType(); 3279 if (Init == E->GetTemporaryExpr()) 3280 MaterializedType = E->getType(); 3281 3282 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3283 3284 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3285 return ConstantAddress(Slot, Align); 3286 3287 // FIXME: If an externally-visible declaration extends multiple temporaries, 3288 // we need to give each temporary the same name in every translation unit (and 3289 // we also need to make the temporaries externally-visible). 3290 SmallString<256> Name; 3291 llvm::raw_svector_ostream Out(Name); 3292 getCXXABI().getMangleContext().mangleReferenceTemporary( 3293 VD, E->getManglingNumber(), Out); 3294 3295 APValue *Value = nullptr; 3296 if (E->getStorageDuration() == SD_Static) { 3297 // We might have a cached constant initializer for this temporary. Note 3298 // that this might have a different value from the value computed by 3299 // evaluating the initializer if the surrounding constant expression 3300 // modifies the temporary. 3301 Value = getContext().getMaterializedTemporaryValue(E, false); 3302 if (Value && Value->isUninit()) 3303 Value = nullptr; 3304 } 3305 3306 // Try evaluating it now, it might have a constant initializer. 3307 Expr::EvalResult EvalResult; 3308 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3309 !EvalResult.hasSideEffects()) 3310 Value = &EvalResult.Val; 3311 3312 llvm::Constant *InitialValue = nullptr; 3313 bool Constant = false; 3314 llvm::Type *Type; 3315 if (Value) { 3316 // The temporary has a constant initializer, use it. 3317 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3318 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3319 Type = InitialValue->getType(); 3320 } else { 3321 // No initializer, the initialization will be provided when we 3322 // initialize the declaration which performed lifetime extension. 3323 Type = getTypes().ConvertTypeForMem(MaterializedType); 3324 } 3325 3326 // Create a global variable for this lifetime-extended temporary. 3327 llvm::GlobalValue::LinkageTypes Linkage = 3328 getLLVMLinkageVarDefinition(VD, Constant); 3329 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3330 const VarDecl *InitVD; 3331 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3332 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3333 // Temporaries defined inside a class get linkonce_odr linkage because the 3334 // class can be defined in multipe translation units. 3335 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3336 } else { 3337 // There is no need for this temporary to have external linkage if the 3338 // VarDecl has external linkage. 3339 Linkage = llvm::GlobalVariable::InternalLinkage; 3340 } 3341 } 3342 unsigned AddrSpace = GetGlobalVarAddressSpace( 3343 VD, getContext().getTargetAddressSpace(MaterializedType)); 3344 auto *GV = new llvm::GlobalVariable( 3345 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3346 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3347 AddrSpace); 3348 setGlobalVisibility(GV, VD); 3349 GV->setAlignment(Align.getQuantity()); 3350 if (supportsCOMDAT() && GV->isWeakForLinker()) 3351 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3352 if (VD->getTLSKind()) 3353 setTLSMode(GV, *VD); 3354 MaterializedGlobalTemporaryMap[E] = GV; 3355 return ConstantAddress(GV, Align); 3356 } 3357 3358 /// EmitObjCPropertyImplementations - Emit information for synthesized 3359 /// properties for an implementation. 3360 void CodeGenModule::EmitObjCPropertyImplementations(const 3361 ObjCImplementationDecl *D) { 3362 for (const auto *PID : D->property_impls()) { 3363 // Dynamic is just for type-checking. 3364 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3365 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3366 3367 // Determine which methods need to be implemented, some may have 3368 // been overridden. Note that ::isPropertyAccessor is not the method 3369 // we want, that just indicates if the decl came from a 3370 // property. What we want to know is if the method is defined in 3371 // this implementation. 3372 if (!D->getInstanceMethod(PD->getGetterName())) 3373 CodeGenFunction(*this).GenerateObjCGetter( 3374 const_cast<ObjCImplementationDecl *>(D), PID); 3375 if (!PD->isReadOnly() && 3376 !D->getInstanceMethod(PD->getSetterName())) 3377 CodeGenFunction(*this).GenerateObjCSetter( 3378 const_cast<ObjCImplementationDecl *>(D), PID); 3379 } 3380 } 3381 } 3382 3383 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3384 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3385 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3386 ivar; ivar = ivar->getNextIvar()) 3387 if (ivar->getType().isDestructedType()) 3388 return true; 3389 3390 return false; 3391 } 3392 3393 static bool AllTrivialInitializers(CodeGenModule &CGM, 3394 ObjCImplementationDecl *D) { 3395 CodeGenFunction CGF(CGM); 3396 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3397 E = D->init_end(); B != E; ++B) { 3398 CXXCtorInitializer *CtorInitExp = *B; 3399 Expr *Init = CtorInitExp->getInit(); 3400 if (!CGF.isTrivialInitializer(Init)) 3401 return false; 3402 } 3403 return true; 3404 } 3405 3406 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3407 /// for an implementation. 3408 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3409 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3410 if (needsDestructMethod(D)) { 3411 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3412 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3413 ObjCMethodDecl *DTORMethod = 3414 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3415 cxxSelector, getContext().VoidTy, nullptr, D, 3416 /*isInstance=*/true, /*isVariadic=*/false, 3417 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3418 /*isDefined=*/false, ObjCMethodDecl::Required); 3419 D->addInstanceMethod(DTORMethod); 3420 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3421 D->setHasDestructors(true); 3422 } 3423 3424 // If the implementation doesn't have any ivar initializers, we don't need 3425 // a .cxx_construct. 3426 if (D->getNumIvarInitializers() == 0 || 3427 AllTrivialInitializers(*this, D)) 3428 return; 3429 3430 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3431 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3432 // The constructor returns 'self'. 3433 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3434 D->getLocation(), 3435 D->getLocation(), 3436 cxxSelector, 3437 getContext().getObjCIdType(), 3438 nullptr, D, /*isInstance=*/true, 3439 /*isVariadic=*/false, 3440 /*isPropertyAccessor=*/true, 3441 /*isImplicitlyDeclared=*/true, 3442 /*isDefined=*/false, 3443 ObjCMethodDecl::Required); 3444 D->addInstanceMethod(CTORMethod); 3445 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3446 D->setHasNonZeroConstructors(true); 3447 } 3448 3449 /// EmitNamespace - Emit all declarations in a namespace. 3450 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3451 for (auto *I : ND->decls()) { 3452 if (const auto *VD = dyn_cast<VarDecl>(I)) 3453 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3454 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3455 continue; 3456 EmitTopLevelDecl(I); 3457 } 3458 } 3459 3460 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3461 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3462 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3463 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3464 ErrorUnsupported(LSD, "linkage spec"); 3465 return; 3466 } 3467 3468 for (auto *I : LSD->decls()) { 3469 // Meta-data for ObjC class includes references to implemented methods. 3470 // Generate class's method definitions first. 3471 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3472 for (auto *M : OID->methods()) 3473 EmitTopLevelDecl(M); 3474 } 3475 EmitTopLevelDecl(I); 3476 } 3477 } 3478 3479 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3480 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3481 // Ignore dependent declarations. 3482 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3483 return; 3484 3485 switch (D->getKind()) { 3486 case Decl::CXXConversion: 3487 case Decl::CXXMethod: 3488 case Decl::Function: 3489 // Skip function templates 3490 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3491 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3492 return; 3493 3494 EmitGlobal(cast<FunctionDecl>(D)); 3495 // Always provide some coverage mapping 3496 // even for the functions that aren't emitted. 3497 AddDeferredUnusedCoverageMapping(D); 3498 break; 3499 3500 case Decl::Var: 3501 // Skip variable templates 3502 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3503 return; 3504 case Decl::VarTemplateSpecialization: 3505 EmitGlobal(cast<VarDecl>(D)); 3506 break; 3507 3508 // Indirect fields from global anonymous structs and unions can be 3509 // ignored; only the actual variable requires IR gen support. 3510 case Decl::IndirectField: 3511 break; 3512 3513 // C++ Decls 3514 case Decl::Namespace: 3515 EmitNamespace(cast<NamespaceDecl>(D)); 3516 break; 3517 // No code generation needed. 3518 case Decl::UsingShadow: 3519 case Decl::ClassTemplate: 3520 case Decl::VarTemplate: 3521 case Decl::VarTemplatePartialSpecialization: 3522 case Decl::FunctionTemplate: 3523 case Decl::TypeAliasTemplate: 3524 case Decl::Block: 3525 case Decl::Empty: 3526 break; 3527 case Decl::Using: // using X; [C++] 3528 if (CGDebugInfo *DI = getModuleDebugInfo()) 3529 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3530 return; 3531 case Decl::NamespaceAlias: 3532 if (CGDebugInfo *DI = getModuleDebugInfo()) 3533 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3534 return; 3535 case Decl::UsingDirective: // using namespace X; [C++] 3536 if (CGDebugInfo *DI = getModuleDebugInfo()) 3537 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3538 return; 3539 case Decl::CXXConstructor: 3540 // Skip function templates 3541 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3542 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3543 return; 3544 3545 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3546 break; 3547 case Decl::CXXDestructor: 3548 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3549 return; 3550 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3551 break; 3552 3553 case Decl::StaticAssert: 3554 // Nothing to do. 3555 break; 3556 3557 // Objective-C Decls 3558 3559 // Forward declarations, no (immediate) code generation. 3560 case Decl::ObjCInterface: 3561 case Decl::ObjCCategory: 3562 break; 3563 3564 case Decl::ObjCProtocol: { 3565 auto *Proto = cast<ObjCProtocolDecl>(D); 3566 if (Proto->isThisDeclarationADefinition()) 3567 ObjCRuntime->GenerateProtocol(Proto); 3568 break; 3569 } 3570 3571 case Decl::ObjCCategoryImpl: 3572 // Categories have properties but don't support synthesize so we 3573 // can ignore them here. 3574 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3575 break; 3576 3577 case Decl::ObjCImplementation: { 3578 auto *OMD = cast<ObjCImplementationDecl>(D); 3579 EmitObjCPropertyImplementations(OMD); 3580 EmitObjCIvarInitializations(OMD); 3581 ObjCRuntime->GenerateClass(OMD); 3582 // Emit global variable debug information. 3583 if (CGDebugInfo *DI = getModuleDebugInfo()) 3584 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3585 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3586 OMD->getClassInterface()), OMD->getLocation()); 3587 break; 3588 } 3589 case Decl::ObjCMethod: { 3590 auto *OMD = cast<ObjCMethodDecl>(D); 3591 // If this is not a prototype, emit the body. 3592 if (OMD->getBody()) 3593 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3594 break; 3595 } 3596 case Decl::ObjCCompatibleAlias: 3597 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3598 break; 3599 3600 case Decl::LinkageSpec: 3601 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3602 break; 3603 3604 case Decl::FileScopeAsm: { 3605 // File-scope asm is ignored during device-side CUDA compilation. 3606 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3607 break; 3608 // File-scope asm is ignored during device-side OpenMP compilation. 3609 if (LangOpts.OpenMPIsDevice) 3610 break; 3611 auto *AD = cast<FileScopeAsmDecl>(D); 3612 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3613 break; 3614 } 3615 3616 case Decl::Import: { 3617 auto *Import = cast<ImportDecl>(D); 3618 3619 // Ignore import declarations that come from imported modules. 3620 if (Import->getImportedOwningModule()) 3621 break; 3622 if (CGDebugInfo *DI = getModuleDebugInfo()) 3623 DI->EmitImportDecl(*Import); 3624 3625 ImportedModules.insert(Import->getImportedModule()); 3626 break; 3627 } 3628 3629 case Decl::OMPThreadPrivate: 3630 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3631 break; 3632 3633 case Decl::ClassTemplateSpecialization: { 3634 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3635 if (DebugInfo && 3636 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3637 Spec->hasDefinition()) 3638 DebugInfo->completeTemplateDefinition(*Spec); 3639 break; 3640 } 3641 3642 default: 3643 // Make sure we handled everything we should, every other kind is a 3644 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3645 // function. Need to recode Decl::Kind to do that easily. 3646 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3647 break; 3648 } 3649 } 3650 3651 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3652 // Do we need to generate coverage mapping? 3653 if (!CodeGenOpts.CoverageMapping) 3654 return; 3655 switch (D->getKind()) { 3656 case Decl::CXXConversion: 3657 case Decl::CXXMethod: 3658 case Decl::Function: 3659 case Decl::ObjCMethod: 3660 case Decl::CXXConstructor: 3661 case Decl::CXXDestructor: { 3662 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3663 return; 3664 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3665 if (I == DeferredEmptyCoverageMappingDecls.end()) 3666 DeferredEmptyCoverageMappingDecls[D] = true; 3667 break; 3668 } 3669 default: 3670 break; 3671 }; 3672 } 3673 3674 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3675 // Do we need to generate coverage mapping? 3676 if (!CodeGenOpts.CoverageMapping) 3677 return; 3678 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3679 if (Fn->isTemplateInstantiation()) 3680 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3681 } 3682 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3683 if (I == DeferredEmptyCoverageMappingDecls.end()) 3684 DeferredEmptyCoverageMappingDecls[D] = false; 3685 else 3686 I->second = false; 3687 } 3688 3689 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3690 std::vector<const Decl *> DeferredDecls; 3691 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3692 if (!I.second) 3693 continue; 3694 DeferredDecls.push_back(I.first); 3695 } 3696 // Sort the declarations by their location to make sure that the tests get a 3697 // predictable order for the coverage mapping for the unused declarations. 3698 if (CodeGenOpts.DumpCoverageMapping) 3699 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3700 [] (const Decl *LHS, const Decl *RHS) { 3701 return LHS->getLocStart() < RHS->getLocStart(); 3702 }); 3703 for (const auto *D : DeferredDecls) { 3704 switch (D->getKind()) { 3705 case Decl::CXXConversion: 3706 case Decl::CXXMethod: 3707 case Decl::Function: 3708 case Decl::ObjCMethod: { 3709 CodeGenPGO PGO(*this); 3710 GlobalDecl GD(cast<FunctionDecl>(D)); 3711 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3712 getFunctionLinkage(GD)); 3713 break; 3714 } 3715 case Decl::CXXConstructor: { 3716 CodeGenPGO PGO(*this); 3717 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3718 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3719 getFunctionLinkage(GD)); 3720 break; 3721 } 3722 case Decl::CXXDestructor: { 3723 CodeGenPGO PGO(*this); 3724 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3725 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3726 getFunctionLinkage(GD)); 3727 break; 3728 } 3729 default: 3730 break; 3731 }; 3732 } 3733 } 3734 3735 /// Turns the given pointer into a constant. 3736 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3737 const void *Ptr) { 3738 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3739 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3740 return llvm::ConstantInt::get(i64, PtrInt); 3741 } 3742 3743 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3744 llvm::NamedMDNode *&GlobalMetadata, 3745 GlobalDecl D, 3746 llvm::GlobalValue *Addr) { 3747 if (!GlobalMetadata) 3748 GlobalMetadata = 3749 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3750 3751 // TODO: should we report variant information for ctors/dtors? 3752 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3753 llvm::ConstantAsMetadata::get(GetPointerConstant( 3754 CGM.getLLVMContext(), D.getDecl()))}; 3755 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3756 } 3757 3758 /// For each function which is declared within an extern "C" region and marked 3759 /// as 'used', but has internal linkage, create an alias from the unmangled 3760 /// name to the mangled name if possible. People expect to be able to refer 3761 /// to such functions with an unmangled name from inline assembly within the 3762 /// same translation unit. 3763 void CodeGenModule::EmitStaticExternCAliases() { 3764 for (auto &I : StaticExternCValues) { 3765 IdentifierInfo *Name = I.first; 3766 llvm::GlobalValue *Val = I.second; 3767 if (Val && !getModule().getNamedValue(Name->getName())) 3768 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3769 } 3770 } 3771 3772 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3773 GlobalDecl &Result) const { 3774 auto Res = Manglings.find(MangledName); 3775 if (Res == Manglings.end()) 3776 return false; 3777 Result = Res->getValue(); 3778 return true; 3779 } 3780 3781 /// Emits metadata nodes associating all the global values in the 3782 /// current module with the Decls they came from. This is useful for 3783 /// projects using IR gen as a subroutine. 3784 /// 3785 /// Since there's currently no way to associate an MDNode directly 3786 /// with an llvm::GlobalValue, we create a global named metadata 3787 /// with the name 'clang.global.decl.ptrs'. 3788 void CodeGenModule::EmitDeclMetadata() { 3789 llvm::NamedMDNode *GlobalMetadata = nullptr; 3790 3791 for (auto &I : MangledDeclNames) { 3792 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3793 // Some mangled names don't necessarily have an associated GlobalValue 3794 // in this module, e.g. if we mangled it for DebugInfo. 3795 if (Addr) 3796 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3797 } 3798 } 3799 3800 /// Emits metadata nodes for all the local variables in the current 3801 /// function. 3802 void CodeGenFunction::EmitDeclMetadata() { 3803 if (LocalDeclMap.empty()) return; 3804 3805 llvm::LLVMContext &Context = getLLVMContext(); 3806 3807 // Find the unique metadata ID for this name. 3808 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3809 3810 llvm::NamedMDNode *GlobalMetadata = nullptr; 3811 3812 for (auto &I : LocalDeclMap) { 3813 const Decl *D = I.first; 3814 llvm::Value *Addr = I.second.getPointer(); 3815 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3816 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3817 Alloca->setMetadata( 3818 DeclPtrKind, llvm::MDNode::get( 3819 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3820 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3821 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3822 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3823 } 3824 } 3825 } 3826 3827 void CodeGenModule::EmitVersionIdentMetadata() { 3828 llvm::NamedMDNode *IdentMetadata = 3829 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3830 std::string Version = getClangFullVersion(); 3831 llvm::LLVMContext &Ctx = TheModule.getContext(); 3832 3833 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3834 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3835 } 3836 3837 void CodeGenModule::EmitTargetMetadata() { 3838 // Warning, new MangledDeclNames may be appended within this loop. 3839 // We rely on MapVector insertions adding new elements to the end 3840 // of the container. 3841 // FIXME: Move this loop into the one target that needs it, and only 3842 // loop over those declarations for which we couldn't emit the target 3843 // metadata when we emitted the declaration. 3844 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3845 auto Val = *(MangledDeclNames.begin() + I); 3846 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3847 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3848 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3849 } 3850 } 3851 3852 void CodeGenModule::EmitCoverageFile() { 3853 if (!getCodeGenOpts().CoverageFile.empty()) { 3854 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3855 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3856 llvm::LLVMContext &Ctx = TheModule.getContext(); 3857 llvm::MDString *CoverageFile = 3858 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3859 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3860 llvm::MDNode *CU = CUNode->getOperand(i); 3861 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3862 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3863 } 3864 } 3865 } 3866 } 3867 3868 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3869 // Sema has checked that all uuid strings are of the form 3870 // "12345678-1234-1234-1234-1234567890ab". 3871 assert(Uuid.size() == 36); 3872 for (unsigned i = 0; i < 36; ++i) { 3873 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3874 else assert(isHexDigit(Uuid[i])); 3875 } 3876 3877 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3878 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3879 3880 llvm::Constant *Field3[8]; 3881 for (unsigned Idx = 0; Idx < 8; ++Idx) 3882 Field3[Idx] = llvm::ConstantInt::get( 3883 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3884 3885 llvm::Constant *Fields[4] = { 3886 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3887 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3888 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3889 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3890 }; 3891 3892 return llvm::ConstantStruct::getAnon(Fields); 3893 } 3894 3895 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3896 bool ForEH) { 3897 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3898 // FIXME: should we even be calling this method if RTTI is disabled 3899 // and it's not for EH? 3900 if (!ForEH && !getLangOpts().RTTI) 3901 return llvm::Constant::getNullValue(Int8PtrTy); 3902 3903 if (ForEH && Ty->isObjCObjectPointerType() && 3904 LangOpts.ObjCRuntime.isGNUFamily()) 3905 return ObjCRuntime->GetEHType(Ty); 3906 3907 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3908 } 3909 3910 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3911 for (auto RefExpr : D->varlists()) { 3912 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3913 bool PerformInit = 3914 VD->getAnyInitializer() && 3915 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3916 /*ForRef=*/false); 3917 3918 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 3919 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3920 VD, Addr, RefExpr->getLocStart(), PerformInit)) 3921 CXXGlobalInits.push_back(InitFunction); 3922 } 3923 } 3924 3925 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 3926 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 3927 if (InternalId) 3928 return InternalId; 3929 3930 if (isExternallyVisible(T->getLinkage())) { 3931 std::string OutName; 3932 llvm::raw_string_ostream Out(OutName); 3933 getCXXABI().getMangleContext().mangleTypeName(T, Out); 3934 3935 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 3936 } else { 3937 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 3938 llvm::ArrayRef<llvm::Metadata *>()); 3939 } 3940 3941 return InternalId; 3942 } 3943 3944 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD, 3945 llvm::GlobalVariable *VTable, 3946 CharUnits Offset, 3947 const CXXRecordDecl *RD) { 3948 llvm::Metadata *MD = 3949 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 3950 llvm::Metadata *BitsetOps[] = { 3951 MD, llvm::ConstantAsMetadata::get(VTable), 3952 llvm::ConstantAsMetadata::get( 3953 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3954 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 3955 3956 if (CodeGenOpts.SanitizeCfiCrossDso) { 3957 if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) { 3958 llvm::Metadata *BitsetOps2[] = { 3959 llvm::ConstantAsMetadata::get(TypeId), 3960 llvm::ConstantAsMetadata::get(VTable), 3961 llvm::ConstantAsMetadata::get( 3962 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3963 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2)); 3964 } 3965 } 3966 } 3967 3968 // Fills in the supplied string map with the set of target features for the 3969 // passed in function. 3970 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 3971 const FunctionDecl *FD) { 3972 StringRef TargetCPU = Target.getTargetOpts().CPU; 3973 if (const auto *TD = FD->getAttr<TargetAttr>()) { 3974 // If we have a TargetAttr build up the feature map based on that. 3975 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 3976 3977 // Make a copy of the features as passed on the command line into the 3978 // beginning of the additional features from the function to override. 3979 ParsedAttr.first.insert(ParsedAttr.first.begin(), 3980 Target.getTargetOpts().FeaturesAsWritten.begin(), 3981 Target.getTargetOpts().FeaturesAsWritten.end()); 3982 3983 if (ParsedAttr.second != "") 3984 TargetCPU = ParsedAttr.second; 3985 3986 // Now populate the feature map, first with the TargetCPU which is either 3987 // the default or a new one from the target attribute string. Then we'll use 3988 // the passed in features (FeaturesAsWritten) along with the new ones from 3989 // the attribute. 3990 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 3991 } else { 3992 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 3993 Target.getTargetOpts().Features); 3994 } 3995 } 3996