xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 4b7a713accdce4e46a45f34bd8705e43b495ddec)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ProfileSummary.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 #include "llvm/Support/TimeProfiler.h"
62 
63 using namespace clang;
64 using namespace CodeGen;
65 
66 static llvm::cl::opt<bool> LimitedCoverage(
67     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
68     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
69     llvm::cl::init(false));
70 
71 static const char AnnotationSection[] = "llvm.metadata";
72 
73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
74   switch (CGM.getTarget().getCXXABI().getKind()) {
75   case TargetCXXABI::GenericAArch64:
76   case TargetCXXABI::GenericARM:
77   case TargetCXXABI::iOS:
78   case TargetCXXABI::iOS64:
79   case TargetCXXABI::WatchOS:
80   case TargetCXXABI::GenericMIPS:
81   case TargetCXXABI::GenericItanium:
82   case TargetCXXABI::WebAssembly:
83     return CreateItaniumCXXABI(CGM);
84   case TargetCXXABI::Microsoft:
85     return CreateMicrosoftCXXABI(CGM);
86   }
87 
88   llvm_unreachable("invalid C++ ABI kind");
89 }
90 
91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
92                              const PreprocessorOptions &PPO,
93                              const CodeGenOptions &CGO, llvm::Module &M,
94                              DiagnosticsEngine &diags,
95                              CoverageSourceInfo *CoverageInfo)
96     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
97       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
98       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
99       VMContext(M.getContext()), Types(*this), VTables(*this),
100       SanitizerMD(new SanitizerMetadata(*this)) {
101 
102   // Initialize the type cache.
103   llvm::LLVMContext &LLVMContext = M.getContext();
104   VoidTy = llvm::Type::getVoidTy(LLVMContext);
105   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
107   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
108   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
109   HalfTy = llvm::Type::getHalfTy(LLVMContext);
110   FloatTy = llvm::Type::getFloatTy(LLVMContext);
111   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
112   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
113   PointerAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
115   SizeSizeInBytes =
116     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
117   IntAlignInBytes =
118     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
119   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
120   IntPtrTy = llvm::IntegerType::get(LLVMContext,
121     C.getTargetInfo().getMaxPointerWidth());
122   Int8PtrTy = Int8Ty->getPointerTo(0);
123   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
124   AllocaInt8PtrTy = Int8Ty->getPointerTo(
125       M.getDataLayout().getAllocaAddrSpace());
126   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
127 
128   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
129 
130   if (LangOpts.ObjC)
131     createObjCRuntime();
132   if (LangOpts.OpenCL)
133     createOpenCLRuntime();
134   if (LangOpts.OpenMP)
135     createOpenMPRuntime();
136   if (LangOpts.CUDA)
137     createCUDARuntime();
138 
139   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
140   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
141       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
142     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
143                                getCXXABI().getMangleContext()));
144 
145   // If debug info or coverage generation is enabled, create the CGDebugInfo
146   // object.
147   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
148       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
149     DebugInfo.reset(new CGDebugInfo(*this));
150 
151   Block.GlobalUniqueCount = 0;
152 
153   if (C.getLangOpts().ObjC)
154     ObjCData.reset(new ObjCEntrypoints());
155 
156   if (CodeGenOpts.hasProfileClangUse()) {
157     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
158         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
159     if (auto E = ReaderOrErr.takeError()) {
160       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
161                                               "Could not read profile %0: %1");
162       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
163         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
164                                   << EI.message();
165       });
166     } else
167       PGOReader = std::move(ReaderOrErr.get());
168   }
169 
170   // If coverage mapping generation is enabled, create the
171   // CoverageMappingModuleGen object.
172   if (CodeGenOpts.CoverageMapping)
173     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
174 }
175 
176 CodeGenModule::~CodeGenModule() {}
177 
178 void CodeGenModule::createObjCRuntime() {
179   // This is just isGNUFamily(), but we want to force implementors of
180   // new ABIs to decide how best to do this.
181   switch (LangOpts.ObjCRuntime.getKind()) {
182   case ObjCRuntime::GNUstep:
183   case ObjCRuntime::GCC:
184   case ObjCRuntime::ObjFW:
185     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
186     return;
187 
188   case ObjCRuntime::FragileMacOSX:
189   case ObjCRuntime::MacOSX:
190   case ObjCRuntime::iOS:
191   case ObjCRuntime::WatchOS:
192     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
193     return;
194   }
195   llvm_unreachable("bad runtime kind");
196 }
197 
198 void CodeGenModule::createOpenCLRuntime() {
199   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
200 }
201 
202 void CodeGenModule::createOpenMPRuntime() {
203   // Select a specialized code generation class based on the target, if any.
204   // If it does not exist use the default implementation.
205   switch (getTriple().getArch()) {
206   case llvm::Triple::nvptx:
207   case llvm::Triple::nvptx64:
208     assert(getLangOpts().OpenMPIsDevice &&
209            "OpenMP NVPTX is only prepared to deal with device code.");
210     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
211     break;
212   default:
213     if (LangOpts.OpenMPSimd)
214       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
215     else
216       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
217     break;
218   }
219 }
220 
221 void CodeGenModule::createCUDARuntime() {
222   CUDARuntime.reset(CreateNVCUDARuntime(*this));
223 }
224 
225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
226   Replacements[Name] = C;
227 }
228 
229 void CodeGenModule::applyReplacements() {
230   for (auto &I : Replacements) {
231     StringRef MangledName = I.first();
232     llvm::Constant *Replacement = I.second;
233     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
234     if (!Entry)
235       continue;
236     auto *OldF = cast<llvm::Function>(Entry);
237     auto *NewF = dyn_cast<llvm::Function>(Replacement);
238     if (!NewF) {
239       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
240         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
241       } else {
242         auto *CE = cast<llvm::ConstantExpr>(Replacement);
243         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
244                CE->getOpcode() == llvm::Instruction::GetElementPtr);
245         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
246       }
247     }
248 
249     // Replace old with new, but keep the old order.
250     OldF->replaceAllUsesWith(Replacement);
251     if (NewF) {
252       NewF->removeFromParent();
253       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
254                                                        NewF);
255     }
256     OldF->eraseFromParent();
257   }
258 }
259 
260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
261   GlobalValReplacements.push_back(std::make_pair(GV, C));
262 }
263 
264 void CodeGenModule::applyGlobalValReplacements() {
265   for (auto &I : GlobalValReplacements) {
266     llvm::GlobalValue *GV = I.first;
267     llvm::Constant *C = I.second;
268 
269     GV->replaceAllUsesWith(C);
270     GV->eraseFromParent();
271   }
272 }
273 
274 // This is only used in aliases that we created and we know they have a
275 // linear structure.
276 static const llvm::GlobalObject *getAliasedGlobal(
277     const llvm::GlobalIndirectSymbol &GIS) {
278   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
279   const llvm::Constant *C = &GIS;
280   for (;;) {
281     C = C->stripPointerCasts();
282     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
283       return GO;
284     // stripPointerCasts will not walk over weak aliases.
285     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
286     if (!GIS2)
287       return nullptr;
288     if (!Visited.insert(GIS2).second)
289       return nullptr;
290     C = GIS2->getIndirectSymbol();
291   }
292 }
293 
294 void CodeGenModule::checkAliases() {
295   // Check if the constructed aliases are well formed. It is really unfortunate
296   // that we have to do this in CodeGen, but we only construct mangled names
297   // and aliases during codegen.
298   bool Error = false;
299   DiagnosticsEngine &Diags = getDiags();
300   for (const GlobalDecl &GD : Aliases) {
301     const auto *D = cast<ValueDecl>(GD.getDecl());
302     SourceLocation Location;
303     bool IsIFunc = D->hasAttr<IFuncAttr>();
304     if (const Attr *A = D->getDefiningAttr())
305       Location = A->getLocation();
306     else
307       llvm_unreachable("Not an alias or ifunc?");
308     StringRef MangledName = getMangledName(GD);
309     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
310     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
311     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
312     if (!GV) {
313       Error = true;
314       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
315     } else if (GV->isDeclaration()) {
316       Error = true;
317       Diags.Report(Location, diag::err_alias_to_undefined)
318           << IsIFunc << IsIFunc;
319     } else if (IsIFunc) {
320       // Check resolver function type.
321       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
322           GV->getType()->getPointerElementType());
323       assert(FTy);
324       if (!FTy->getReturnType()->isPointerTy())
325         Diags.Report(Location, diag::err_ifunc_resolver_return);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   registerGlobalDtorsWithAtExit();
402   EmitCXXThreadLocalInitFunc();
403   if (ObjCRuntime)
404     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
405       AddGlobalCtor(ObjCInitFunction);
406   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
407       CUDARuntime) {
408     if (llvm::Function *CudaCtorFunction =
409             CUDARuntime->makeModuleCtorFunction())
410       AddGlobalCtor(CudaCtorFunction);
411   }
412   if (OpenMPRuntime) {
413     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
414             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
415       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
416     }
417     if (llvm::Function *OpenMPRegistrationFunction =
418             OpenMPRuntime->emitRegistrationFunction()) {
419       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
420         OpenMPRegistrationFunction : nullptr;
421       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
422     }
423     OpenMPRuntime->clear();
424   }
425   if (PGOReader) {
426     getModule().setProfileSummary(
427         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
428         llvm::ProfileSummary::PSK_Instr);
429     if (PGOStats.hasDiagnostics())
430       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
431   }
432   EmitCtorList(GlobalCtors, "llvm.global_ctors");
433   EmitCtorList(GlobalDtors, "llvm.global_dtors");
434   EmitGlobalAnnotations();
435   EmitStaticExternCAliases();
436   EmitDeferredUnusedCoverageMappings();
437   if (CoverageMapping)
438     CoverageMapping->emit();
439   if (CodeGenOpts.SanitizeCfiCrossDso) {
440     CodeGenFunction(*this).EmitCfiCheckFail();
441     CodeGenFunction(*this).EmitCfiCheckStub();
442   }
443   emitAtAvailableLinkGuard();
444   emitLLVMUsed();
445   if (SanStats)
446     SanStats->finish();
447 
448   if (CodeGenOpts.Autolink &&
449       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
450     EmitModuleLinkOptions();
451   }
452 
453   // On ELF we pass the dependent library specifiers directly to the linker
454   // without manipulating them. This is in contrast to other platforms where
455   // they are mapped to a specific linker option by the compiler. This
456   // difference is a result of the greater variety of ELF linkers and the fact
457   // that ELF linkers tend to handle libraries in a more complicated fashion
458   // than on other platforms. This forces us to defer handling the dependent
459   // libs to the linker.
460   //
461   // CUDA/HIP device and host libraries are different. Currently there is no
462   // way to differentiate dependent libraries for host or device. Existing
463   // usage of #pragma comment(lib, *) is intended for host libraries on
464   // Windows. Therefore emit llvm.dependent-libraries only for host.
465   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
466     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
467     for (auto *MD : ELFDependentLibraries)
468       NMD->addOperand(MD);
469   }
470 
471   // Record mregparm value now so it is visible through rest of codegen.
472   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
473     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
474                               CodeGenOpts.NumRegisterParameters);
475 
476   if (CodeGenOpts.DwarfVersion) {
477     // We actually want the latest version when there are conflicts.
478     // We can change from Warning to Latest if such mode is supported.
479     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
480                               CodeGenOpts.DwarfVersion);
481   }
482   if (CodeGenOpts.EmitCodeView) {
483     // Indicate that we want CodeView in the metadata.
484     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
485   }
486   if (CodeGenOpts.CodeViewGHash) {
487     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
488   }
489   if (CodeGenOpts.ControlFlowGuard) {
490     // We want function ID tables for Control Flow Guard.
491     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
492   }
493   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
494     // We don't support LTO with 2 with different StrictVTablePointers
495     // FIXME: we could support it by stripping all the information introduced
496     // by StrictVTablePointers.
497 
498     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
499 
500     llvm::Metadata *Ops[2] = {
501               llvm::MDString::get(VMContext, "StrictVTablePointers"),
502               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
503                   llvm::Type::getInt32Ty(VMContext), 1))};
504 
505     getModule().addModuleFlag(llvm::Module::Require,
506                               "StrictVTablePointersRequirement",
507                               llvm::MDNode::get(VMContext, Ops));
508   }
509   if (DebugInfo)
510     // We support a single version in the linked module. The LLVM
511     // parser will drop debug info with a different version number
512     // (and warn about it, too).
513     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
514                               llvm::DEBUG_METADATA_VERSION);
515 
516   // We need to record the widths of enums and wchar_t, so that we can generate
517   // the correct build attributes in the ARM backend. wchar_size is also used by
518   // TargetLibraryInfo.
519   uint64_t WCharWidth =
520       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
521   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
522 
523   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
524   if (   Arch == llvm::Triple::arm
525       || Arch == llvm::Triple::armeb
526       || Arch == llvm::Triple::thumb
527       || Arch == llvm::Triple::thumbeb) {
528     // The minimum width of an enum in bytes
529     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
530     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
531   }
532 
533   if (CodeGenOpts.SanitizeCfiCrossDso) {
534     // Indicate that we want cross-DSO control flow integrity checks.
535     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
536   }
537 
538   if (CodeGenOpts.CFProtectionReturn &&
539       Target.checkCFProtectionReturnSupported(getDiags())) {
540     // Indicate that we want to instrument return control flow protection.
541     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
542                               1);
543   }
544 
545   if (CodeGenOpts.CFProtectionBranch &&
546       Target.checkCFProtectionBranchSupported(getDiags())) {
547     // Indicate that we want to instrument branch control flow protection.
548     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
549                               1);
550   }
551 
552   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
553     // Indicate whether __nvvm_reflect should be configured to flush denormal
554     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
555     // property.)
556     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
557                               CodeGenOpts.FlushDenorm ? 1 : 0);
558   }
559 
560   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
561   if (LangOpts.OpenCL) {
562     EmitOpenCLMetadata();
563     // Emit SPIR version.
564     if (getTriple().isSPIR()) {
565       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
566       // opencl.spir.version named metadata.
567       llvm::Metadata *SPIRVerElts[] = {
568           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
569               Int32Ty, LangOpts.OpenCLVersion / 100)),
570           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
571               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
572       llvm::NamedMDNode *SPIRVerMD =
573           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
574       llvm::LLVMContext &Ctx = TheModule.getContext();
575       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
576     }
577   }
578 
579   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
580     assert(PLevel < 3 && "Invalid PIC Level");
581     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
582     if (Context.getLangOpts().PIE)
583       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
584   }
585 
586   if (getCodeGenOpts().CodeModel.size() > 0) {
587     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
588                   .Case("tiny", llvm::CodeModel::Tiny)
589                   .Case("small", llvm::CodeModel::Small)
590                   .Case("kernel", llvm::CodeModel::Kernel)
591                   .Case("medium", llvm::CodeModel::Medium)
592                   .Case("large", llvm::CodeModel::Large)
593                   .Default(~0u);
594     if (CM != ~0u) {
595       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
596       getModule().setCodeModel(codeModel);
597     }
598   }
599 
600   if (CodeGenOpts.NoPLT)
601     getModule().setRtLibUseGOT();
602 
603   SimplifyPersonality();
604 
605   if (getCodeGenOpts().EmitDeclMetadata)
606     EmitDeclMetadata();
607 
608   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
609     EmitCoverageFile();
610 
611   if (DebugInfo)
612     DebugInfo->finalize();
613 
614   if (getCodeGenOpts().EmitVersionIdentMetadata)
615     EmitVersionIdentMetadata();
616 
617   if (!getCodeGenOpts().RecordCommandLine.empty())
618     EmitCommandLineMetadata();
619 
620   EmitTargetMetadata();
621 }
622 
623 void CodeGenModule::EmitOpenCLMetadata() {
624   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
625   // opencl.ocl.version named metadata node.
626   llvm::Metadata *OCLVerElts[] = {
627       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
628           Int32Ty, LangOpts.OpenCLVersion / 100)),
629       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
630           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
631   llvm::NamedMDNode *OCLVerMD =
632       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
633   llvm::LLVMContext &Ctx = TheModule.getContext();
634   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
635 }
636 
637 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
638   // Make sure that this type is translated.
639   Types.UpdateCompletedType(TD);
640 }
641 
642 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
643   // Make sure that this type is translated.
644   Types.RefreshTypeCacheForClass(RD);
645 }
646 
647 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
648   if (!TBAA)
649     return nullptr;
650   return TBAA->getTypeInfo(QTy);
651 }
652 
653 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
654   if (!TBAA)
655     return TBAAAccessInfo();
656   return TBAA->getAccessInfo(AccessType);
657 }
658 
659 TBAAAccessInfo
660 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
661   if (!TBAA)
662     return TBAAAccessInfo();
663   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
664 }
665 
666 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
667   if (!TBAA)
668     return nullptr;
669   return TBAA->getTBAAStructInfo(QTy);
670 }
671 
672 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
673   if (!TBAA)
674     return nullptr;
675   return TBAA->getBaseTypeInfo(QTy);
676 }
677 
678 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
679   if (!TBAA)
680     return nullptr;
681   return TBAA->getAccessTagInfo(Info);
682 }
683 
684 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
685                                                    TBAAAccessInfo TargetInfo) {
686   if (!TBAA)
687     return TBAAAccessInfo();
688   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
689 }
690 
691 TBAAAccessInfo
692 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
693                                                    TBAAAccessInfo InfoB) {
694   if (!TBAA)
695     return TBAAAccessInfo();
696   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
697 }
698 
699 TBAAAccessInfo
700 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
701                                               TBAAAccessInfo SrcInfo) {
702   if (!TBAA)
703     return TBAAAccessInfo();
704   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
705 }
706 
707 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
708                                                 TBAAAccessInfo TBAAInfo) {
709   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
710     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
711 }
712 
713 void CodeGenModule::DecorateInstructionWithInvariantGroup(
714     llvm::Instruction *I, const CXXRecordDecl *RD) {
715   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
716                  llvm::MDNode::get(getLLVMContext(), {}));
717 }
718 
719 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
720   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
721   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
722 }
723 
724 /// ErrorUnsupported - Print out an error that codegen doesn't support the
725 /// specified stmt yet.
726 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
727   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
728                                                "cannot compile this %0 yet");
729   std::string Msg = Type;
730   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
731       << Msg << S->getSourceRange();
732 }
733 
734 /// ErrorUnsupported - Print out an error that codegen doesn't support the
735 /// specified decl yet.
736 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
737   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
738                                                "cannot compile this %0 yet");
739   std::string Msg = Type;
740   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
741 }
742 
743 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
744   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
745 }
746 
747 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
748                                         const NamedDecl *D) const {
749   if (GV->hasDLLImportStorageClass())
750     return;
751   // Internal definitions always have default visibility.
752   if (GV->hasLocalLinkage()) {
753     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
754     return;
755   }
756   if (!D)
757     return;
758   // Set visibility for definitions, and for declarations if requested globally
759   // or set explicitly.
760   LinkageInfo LV = D->getLinkageAndVisibility();
761   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
762       !GV->isDeclarationForLinker())
763     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
764 }
765 
766 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
767                                  llvm::GlobalValue *GV) {
768   if (GV->hasLocalLinkage())
769     return true;
770 
771   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
772     return true;
773 
774   // DLLImport explicitly marks the GV as external.
775   if (GV->hasDLLImportStorageClass())
776     return false;
777 
778   const llvm::Triple &TT = CGM.getTriple();
779   if (TT.isWindowsGNUEnvironment()) {
780     // In MinGW, variables without DLLImport can still be automatically
781     // imported from a DLL by the linker; don't mark variables that
782     // potentially could come from another DLL as DSO local.
783     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
784         !GV->isThreadLocal())
785       return false;
786   }
787 
788   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
789   // remain unresolved in the link, they can be resolved to zero, which is
790   // outside the current DSO.
791   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
792     return false;
793 
794   // Every other GV is local on COFF.
795   // Make an exception for windows OS in the triple: Some firmware builds use
796   // *-win32-macho triples. This (accidentally?) produced windows relocations
797   // without GOT tables in older clang versions; Keep this behaviour.
798   // FIXME: even thread local variables?
799   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
800     return true;
801 
802   // Only handle COFF and ELF for now.
803   if (!TT.isOSBinFormatELF())
804     return false;
805 
806   // If this is not an executable, don't assume anything is local.
807   const auto &CGOpts = CGM.getCodeGenOpts();
808   llvm::Reloc::Model RM = CGOpts.RelocationModel;
809   const auto &LOpts = CGM.getLangOpts();
810   if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice)
811     return false;
812 
813   // A definition cannot be preempted from an executable.
814   if (!GV->isDeclarationForLinker())
815     return true;
816 
817   // Most PIC code sequences that assume that a symbol is local cannot produce a
818   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
819   // depended, it seems worth it to handle it here.
820   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
821     return false;
822 
823   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
824   llvm::Triple::ArchType Arch = TT.getArch();
825   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
826       Arch == llvm::Triple::ppc64le)
827     return false;
828 
829   // If we can use copy relocations we can assume it is local.
830   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
831     if (!Var->isThreadLocal() &&
832         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
833       return true;
834 
835   // If we can use a plt entry as the symbol address we can assume it
836   // is local.
837   // FIXME: This should work for PIE, but the gold linker doesn't support it.
838   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
839     return true;
840 
841   // Otherwise don't assue it is local.
842   return false;
843 }
844 
845 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
846   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
847 }
848 
849 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
850                                           GlobalDecl GD) const {
851   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
852   // C++ destructors have a few C++ ABI specific special cases.
853   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
854     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
855     return;
856   }
857   setDLLImportDLLExport(GV, D);
858 }
859 
860 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
861                                           const NamedDecl *D) const {
862   if (D && D->isExternallyVisible()) {
863     if (D->hasAttr<DLLImportAttr>())
864       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
865     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
866       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
867   }
868 }
869 
870 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
871                                     GlobalDecl GD) const {
872   setDLLImportDLLExport(GV, GD);
873   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
874 }
875 
876 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
877                                     const NamedDecl *D) const {
878   setDLLImportDLLExport(GV, D);
879   setGlobalVisibilityAndLocal(GV, D);
880 }
881 
882 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
883                                                 const NamedDecl *D) const {
884   setGlobalVisibility(GV, D);
885   setDSOLocal(GV);
886 }
887 
888 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
889   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
890       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
891       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
892       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
893       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
894 }
895 
896 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
897     CodeGenOptions::TLSModel M) {
898   switch (M) {
899   case CodeGenOptions::GeneralDynamicTLSModel:
900     return llvm::GlobalVariable::GeneralDynamicTLSModel;
901   case CodeGenOptions::LocalDynamicTLSModel:
902     return llvm::GlobalVariable::LocalDynamicTLSModel;
903   case CodeGenOptions::InitialExecTLSModel:
904     return llvm::GlobalVariable::InitialExecTLSModel;
905   case CodeGenOptions::LocalExecTLSModel:
906     return llvm::GlobalVariable::LocalExecTLSModel;
907   }
908   llvm_unreachable("Invalid TLS model!");
909 }
910 
911 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
912   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
913 
914   llvm::GlobalValue::ThreadLocalMode TLM;
915   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
916 
917   // Override the TLS model if it is explicitly specified.
918   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
919     TLM = GetLLVMTLSModel(Attr->getModel());
920   }
921 
922   GV->setThreadLocalMode(TLM);
923 }
924 
925 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
926                                           StringRef Name) {
927   const TargetInfo &Target = CGM.getTarget();
928   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
929 }
930 
931 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
932                                                  const CPUSpecificAttr *Attr,
933                                                  unsigned CPUIndex,
934                                                  raw_ostream &Out) {
935   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
936   // supported.
937   if (Attr)
938     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
939   else if (CGM.getTarget().supportsIFunc())
940     Out << ".resolver";
941 }
942 
943 static void AppendTargetMangling(const CodeGenModule &CGM,
944                                  const TargetAttr *Attr, raw_ostream &Out) {
945   if (Attr->isDefaultVersion())
946     return;
947 
948   Out << '.';
949   const TargetInfo &Target = CGM.getTarget();
950   TargetAttr::ParsedTargetAttr Info =
951       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
952         // Multiversioning doesn't allow "no-${feature}", so we can
953         // only have "+" prefixes here.
954         assert(LHS.startswith("+") && RHS.startswith("+") &&
955                "Features should always have a prefix.");
956         return Target.multiVersionSortPriority(LHS.substr(1)) >
957                Target.multiVersionSortPriority(RHS.substr(1));
958       });
959 
960   bool IsFirst = true;
961 
962   if (!Info.Architecture.empty()) {
963     IsFirst = false;
964     Out << "arch_" << Info.Architecture;
965   }
966 
967   for (StringRef Feat : Info.Features) {
968     if (!IsFirst)
969       Out << '_';
970     IsFirst = false;
971     Out << Feat.substr(1);
972   }
973 }
974 
975 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
976                                       const NamedDecl *ND,
977                                       bool OmitMultiVersionMangling = false) {
978   SmallString<256> Buffer;
979   llvm::raw_svector_ostream Out(Buffer);
980   MangleContext &MC = CGM.getCXXABI().getMangleContext();
981   if (MC.shouldMangleDeclName(ND)) {
982     llvm::raw_svector_ostream Out(Buffer);
983     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
984       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
985     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
986       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
987     else
988       MC.mangleName(ND, Out);
989   } else {
990     IdentifierInfo *II = ND->getIdentifier();
991     assert(II && "Attempt to mangle unnamed decl.");
992     const auto *FD = dyn_cast<FunctionDecl>(ND);
993 
994     if (FD &&
995         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
996       llvm::raw_svector_ostream Out(Buffer);
997       Out << "__regcall3__" << II->getName();
998     } else {
999       Out << II->getName();
1000     }
1001   }
1002 
1003   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1004     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1005       switch (FD->getMultiVersionKind()) {
1006       case MultiVersionKind::CPUDispatch:
1007       case MultiVersionKind::CPUSpecific:
1008         AppendCPUSpecificCPUDispatchMangling(CGM,
1009                                              FD->getAttr<CPUSpecificAttr>(),
1010                                              GD.getMultiVersionIndex(), Out);
1011         break;
1012       case MultiVersionKind::Target:
1013         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1014         break;
1015       case MultiVersionKind::None:
1016         llvm_unreachable("None multiversion type isn't valid here");
1017       }
1018     }
1019 
1020   return Out.str();
1021 }
1022 
1023 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1024                                             const FunctionDecl *FD) {
1025   if (!FD->isMultiVersion())
1026     return;
1027 
1028   // Get the name of what this would be without the 'target' attribute.  This
1029   // allows us to lookup the version that was emitted when this wasn't a
1030   // multiversion function.
1031   std::string NonTargetName =
1032       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1033   GlobalDecl OtherGD;
1034   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1035     assert(OtherGD.getCanonicalDecl()
1036                .getDecl()
1037                ->getAsFunction()
1038                ->isMultiVersion() &&
1039            "Other GD should now be a multiversioned function");
1040     // OtherFD is the version of this function that was mangled BEFORE
1041     // becoming a MultiVersion function.  It potentially needs to be updated.
1042     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1043                                       .getDecl()
1044                                       ->getAsFunction()
1045                                       ->getMostRecentDecl();
1046     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1047     // This is so that if the initial version was already the 'default'
1048     // version, we don't try to update it.
1049     if (OtherName != NonTargetName) {
1050       // Remove instead of erase, since others may have stored the StringRef
1051       // to this.
1052       const auto ExistingRecord = Manglings.find(NonTargetName);
1053       if (ExistingRecord != std::end(Manglings))
1054         Manglings.remove(&(*ExistingRecord));
1055       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1056       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1057       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1058         Entry->setName(OtherName);
1059     }
1060   }
1061 }
1062 
1063 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1064   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1065 
1066   // Some ABIs don't have constructor variants.  Make sure that base and
1067   // complete constructors get mangled the same.
1068   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1069     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1070       CXXCtorType OrigCtorType = GD.getCtorType();
1071       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1072       if (OrigCtorType == Ctor_Base)
1073         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1074     }
1075   }
1076 
1077   auto FoundName = MangledDeclNames.find(CanonicalGD);
1078   if (FoundName != MangledDeclNames.end())
1079     return FoundName->second;
1080 
1081   // Keep the first result in the case of a mangling collision.
1082   const auto *ND = cast<NamedDecl>(GD.getDecl());
1083   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1084 
1085   // Postfix kernel stub names with .stub to differentiate them from kernel
1086   // names in device binaries. This is to facilitate the debugger to find
1087   // the correct symbols for kernels in the device binary.
1088   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1089     if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice &&
1090         FD->hasAttr<CUDAGlobalAttr>())
1091       MangledName = MangledName + ".stub";
1092 
1093   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1094   return MangledDeclNames[CanonicalGD] = Result.first->first();
1095 }
1096 
1097 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1098                                              const BlockDecl *BD) {
1099   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1100   const Decl *D = GD.getDecl();
1101 
1102   SmallString<256> Buffer;
1103   llvm::raw_svector_ostream Out(Buffer);
1104   if (!D)
1105     MangleCtx.mangleGlobalBlock(BD,
1106       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1107   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1108     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1109   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1110     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1111   else
1112     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1113 
1114   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1115   return Result.first->first();
1116 }
1117 
1118 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1119   return getModule().getNamedValue(Name);
1120 }
1121 
1122 /// AddGlobalCtor - Add a function to the list that will be called before
1123 /// main() runs.
1124 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1125                                   llvm::Constant *AssociatedData) {
1126   // FIXME: Type coercion of void()* types.
1127   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1128 }
1129 
1130 /// AddGlobalDtor - Add a function to the list that will be called
1131 /// when the module is unloaded.
1132 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1133   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1134     DtorsUsingAtExit[Priority].push_back(Dtor);
1135     return;
1136   }
1137 
1138   // FIXME: Type coercion of void()* types.
1139   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1140 }
1141 
1142 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1143   if (Fns.empty()) return;
1144 
1145   // Ctor function type is void()*.
1146   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1147   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1148       TheModule.getDataLayout().getProgramAddressSpace());
1149 
1150   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1151   llvm::StructType *CtorStructTy = llvm::StructType::get(
1152       Int32Ty, CtorPFTy, VoidPtrTy);
1153 
1154   // Construct the constructor and destructor arrays.
1155   ConstantInitBuilder builder(*this);
1156   auto ctors = builder.beginArray(CtorStructTy);
1157   for (const auto &I : Fns) {
1158     auto ctor = ctors.beginStruct(CtorStructTy);
1159     ctor.addInt(Int32Ty, I.Priority);
1160     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1161     if (I.AssociatedData)
1162       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1163     else
1164       ctor.addNullPointer(VoidPtrTy);
1165     ctor.finishAndAddTo(ctors);
1166   }
1167 
1168   auto list =
1169     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1170                                 /*constant*/ false,
1171                                 llvm::GlobalValue::AppendingLinkage);
1172 
1173   // The LTO linker doesn't seem to like it when we set an alignment
1174   // on appending variables.  Take it off as a workaround.
1175   list->setAlignment(0);
1176 
1177   Fns.clear();
1178 }
1179 
1180 llvm::GlobalValue::LinkageTypes
1181 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1182   const auto *D = cast<FunctionDecl>(GD.getDecl());
1183 
1184   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1185 
1186   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1187     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1188 
1189   if (isa<CXXConstructorDecl>(D) &&
1190       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1191       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1192     // Our approach to inheriting constructors is fundamentally different from
1193     // that used by the MS ABI, so keep our inheriting constructor thunks
1194     // internal rather than trying to pick an unambiguous mangling for them.
1195     return llvm::GlobalValue::InternalLinkage;
1196   }
1197 
1198   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1199 }
1200 
1201 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1202   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1203   if (!MDS) return nullptr;
1204 
1205   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1206 }
1207 
1208 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1209                                               const CGFunctionInfo &Info,
1210                                               llvm::Function *F) {
1211   unsigned CallingConv;
1212   llvm::AttributeList PAL;
1213   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1214   F->setAttributes(PAL);
1215   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1216 }
1217 
1218 static void removeImageAccessQualifier(std::string& TyName) {
1219   std::string ReadOnlyQual("__read_only");
1220   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1221   if (ReadOnlyPos != std::string::npos)
1222     // "+ 1" for the space after access qualifier.
1223     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1224   else {
1225     std::string WriteOnlyQual("__write_only");
1226     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1227     if (WriteOnlyPos != std::string::npos)
1228       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1229     else {
1230       std::string ReadWriteQual("__read_write");
1231       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1232       if (ReadWritePos != std::string::npos)
1233         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1234     }
1235   }
1236 }
1237 
1238 // Returns the address space id that should be produced to the
1239 // kernel_arg_addr_space metadata. This is always fixed to the ids
1240 // as specified in the SPIR 2.0 specification in order to differentiate
1241 // for example in clGetKernelArgInfo() implementation between the address
1242 // spaces with targets without unique mapping to the OpenCL address spaces
1243 // (basically all single AS CPUs).
1244 static unsigned ArgInfoAddressSpace(LangAS AS) {
1245   switch (AS) {
1246   case LangAS::opencl_global:   return 1;
1247   case LangAS::opencl_constant: return 2;
1248   case LangAS::opencl_local:    return 3;
1249   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1250   default:
1251     return 0; // Assume private.
1252   }
1253 }
1254 
1255 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1256                                          const FunctionDecl *FD,
1257                                          CodeGenFunction *CGF) {
1258   assert(((FD && CGF) || (!FD && !CGF)) &&
1259          "Incorrect use - FD and CGF should either be both null or not!");
1260   // Create MDNodes that represent the kernel arg metadata.
1261   // Each MDNode is a list in the form of "key", N number of values which is
1262   // the same number of values as their are kernel arguments.
1263 
1264   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1265 
1266   // MDNode for the kernel argument address space qualifiers.
1267   SmallVector<llvm::Metadata *, 8> addressQuals;
1268 
1269   // MDNode for the kernel argument access qualifiers (images only).
1270   SmallVector<llvm::Metadata *, 8> accessQuals;
1271 
1272   // MDNode for the kernel argument type names.
1273   SmallVector<llvm::Metadata *, 8> argTypeNames;
1274 
1275   // MDNode for the kernel argument base type names.
1276   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1277 
1278   // MDNode for the kernel argument type qualifiers.
1279   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1280 
1281   // MDNode for the kernel argument names.
1282   SmallVector<llvm::Metadata *, 8> argNames;
1283 
1284   if (FD && CGF)
1285     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1286       const ParmVarDecl *parm = FD->getParamDecl(i);
1287       QualType ty = parm->getType();
1288       std::string typeQuals;
1289 
1290       if (ty->isPointerType()) {
1291         QualType pointeeTy = ty->getPointeeType();
1292 
1293         // Get address qualifier.
1294         addressQuals.push_back(
1295             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1296                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1297 
1298         // Get argument type name.
1299         std::string typeName =
1300             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1301 
1302         // Turn "unsigned type" to "utype"
1303         std::string::size_type pos = typeName.find("unsigned");
1304         if (pointeeTy.isCanonical() && pos != std::string::npos)
1305           typeName.erase(pos + 1, 8);
1306 
1307         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1308 
1309         std::string baseTypeName =
1310             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1311                 Policy) +
1312             "*";
1313 
1314         // Turn "unsigned type" to "utype"
1315         pos = baseTypeName.find("unsigned");
1316         if (pos != std::string::npos)
1317           baseTypeName.erase(pos + 1, 8);
1318 
1319         argBaseTypeNames.push_back(
1320             llvm::MDString::get(VMContext, baseTypeName));
1321 
1322         // Get argument type qualifiers:
1323         if (ty.isRestrictQualified())
1324           typeQuals = "restrict";
1325         if (pointeeTy.isConstQualified() ||
1326             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1327           typeQuals += typeQuals.empty() ? "const" : " const";
1328         if (pointeeTy.isVolatileQualified())
1329           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1330       } else {
1331         uint32_t AddrSpc = 0;
1332         bool isPipe = ty->isPipeType();
1333         if (ty->isImageType() || isPipe)
1334           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1335 
1336         addressQuals.push_back(
1337             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1338 
1339         // Get argument type name.
1340         std::string typeName;
1341         if (isPipe)
1342           typeName = ty.getCanonicalType()
1343                          ->getAs<PipeType>()
1344                          ->getElementType()
1345                          .getAsString(Policy);
1346         else
1347           typeName = ty.getUnqualifiedType().getAsString(Policy);
1348 
1349         // Turn "unsigned type" to "utype"
1350         std::string::size_type pos = typeName.find("unsigned");
1351         if (ty.isCanonical() && pos != std::string::npos)
1352           typeName.erase(pos + 1, 8);
1353 
1354         std::string baseTypeName;
1355         if (isPipe)
1356           baseTypeName = ty.getCanonicalType()
1357                              ->getAs<PipeType>()
1358                              ->getElementType()
1359                              .getCanonicalType()
1360                              .getAsString(Policy);
1361         else
1362           baseTypeName =
1363               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1364 
1365         // Remove access qualifiers on images
1366         // (as they are inseparable from type in clang implementation,
1367         // but OpenCL spec provides a special query to get access qualifier
1368         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1369         if (ty->isImageType()) {
1370           removeImageAccessQualifier(typeName);
1371           removeImageAccessQualifier(baseTypeName);
1372         }
1373 
1374         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1375 
1376         // Turn "unsigned type" to "utype"
1377         pos = baseTypeName.find("unsigned");
1378         if (pos != std::string::npos)
1379           baseTypeName.erase(pos + 1, 8);
1380 
1381         argBaseTypeNames.push_back(
1382             llvm::MDString::get(VMContext, baseTypeName));
1383 
1384         if (isPipe)
1385           typeQuals = "pipe";
1386       }
1387 
1388       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1389 
1390       // Get image and pipe access qualifier:
1391       if (ty->isImageType() || ty->isPipeType()) {
1392         const Decl *PDecl = parm;
1393         if (auto *TD = dyn_cast<TypedefType>(ty))
1394           PDecl = TD->getDecl();
1395         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1396         if (A && A->isWriteOnly())
1397           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1398         else if (A && A->isReadWrite())
1399           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1400         else
1401           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1402       } else
1403         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1404 
1405       // Get argument name.
1406       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1407     }
1408 
1409   Fn->setMetadata("kernel_arg_addr_space",
1410                   llvm::MDNode::get(VMContext, addressQuals));
1411   Fn->setMetadata("kernel_arg_access_qual",
1412                   llvm::MDNode::get(VMContext, accessQuals));
1413   Fn->setMetadata("kernel_arg_type",
1414                   llvm::MDNode::get(VMContext, argTypeNames));
1415   Fn->setMetadata("kernel_arg_base_type",
1416                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1417   Fn->setMetadata("kernel_arg_type_qual",
1418                   llvm::MDNode::get(VMContext, argTypeQuals));
1419   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1420     Fn->setMetadata("kernel_arg_name",
1421                     llvm::MDNode::get(VMContext, argNames));
1422 }
1423 
1424 /// Determines whether the language options require us to model
1425 /// unwind exceptions.  We treat -fexceptions as mandating this
1426 /// except under the fragile ObjC ABI with only ObjC exceptions
1427 /// enabled.  This means, for example, that C with -fexceptions
1428 /// enables this.
1429 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1430   // If exceptions are completely disabled, obviously this is false.
1431   if (!LangOpts.Exceptions) return false;
1432 
1433   // If C++ exceptions are enabled, this is true.
1434   if (LangOpts.CXXExceptions) return true;
1435 
1436   // If ObjC exceptions are enabled, this depends on the ABI.
1437   if (LangOpts.ObjCExceptions) {
1438     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1439   }
1440 
1441   return true;
1442 }
1443 
1444 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1445                                                       const CXXMethodDecl *MD) {
1446   // Check that the type metadata can ever actually be used by a call.
1447   if (!CGM.getCodeGenOpts().LTOUnit ||
1448       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1449     return false;
1450 
1451   // Only functions whose address can be taken with a member function pointer
1452   // need this sort of type metadata.
1453   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1454          !isa<CXXDestructorDecl>(MD);
1455 }
1456 
1457 std::vector<const CXXRecordDecl *>
1458 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1459   llvm::SetVector<const CXXRecordDecl *> MostBases;
1460 
1461   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1462   CollectMostBases = [&](const CXXRecordDecl *RD) {
1463     if (RD->getNumBases() == 0)
1464       MostBases.insert(RD);
1465     for (const CXXBaseSpecifier &B : RD->bases())
1466       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1467   };
1468   CollectMostBases(RD);
1469   return MostBases.takeVector();
1470 }
1471 
1472 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1473                                                            llvm::Function *F) {
1474   llvm::AttrBuilder B;
1475 
1476   if (CodeGenOpts.UnwindTables)
1477     B.addAttribute(llvm::Attribute::UWTable);
1478 
1479   if (!hasUnwindExceptions(LangOpts))
1480     B.addAttribute(llvm::Attribute::NoUnwind);
1481 
1482   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1483     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1484       B.addAttribute(llvm::Attribute::StackProtect);
1485     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1486       B.addAttribute(llvm::Attribute::StackProtectStrong);
1487     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1488       B.addAttribute(llvm::Attribute::StackProtectReq);
1489   }
1490 
1491   if (!D) {
1492     // If we don't have a declaration to control inlining, the function isn't
1493     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1494     // disabled, mark the function as noinline.
1495     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1496         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1497       B.addAttribute(llvm::Attribute::NoInline);
1498 
1499     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1500     return;
1501   }
1502 
1503   // Track whether we need to add the optnone LLVM attribute,
1504   // starting with the default for this optimization level.
1505   bool ShouldAddOptNone =
1506       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1507   // We can't add optnone in the following cases, it won't pass the verifier.
1508   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1509   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1510   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1511 
1512   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1513     B.addAttribute(llvm::Attribute::OptimizeNone);
1514 
1515     // OptimizeNone implies noinline; we should not be inlining such functions.
1516     B.addAttribute(llvm::Attribute::NoInline);
1517     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1518            "OptimizeNone and AlwaysInline on same function!");
1519 
1520     // We still need to handle naked functions even though optnone subsumes
1521     // much of their semantics.
1522     if (D->hasAttr<NakedAttr>())
1523       B.addAttribute(llvm::Attribute::Naked);
1524 
1525     // OptimizeNone wins over OptimizeForSize and MinSize.
1526     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1527     F->removeFnAttr(llvm::Attribute::MinSize);
1528   } else if (D->hasAttr<NakedAttr>()) {
1529     // Naked implies noinline: we should not be inlining such functions.
1530     B.addAttribute(llvm::Attribute::Naked);
1531     B.addAttribute(llvm::Attribute::NoInline);
1532   } else if (D->hasAttr<NoDuplicateAttr>()) {
1533     B.addAttribute(llvm::Attribute::NoDuplicate);
1534   } else if (D->hasAttr<NoInlineAttr>()) {
1535     B.addAttribute(llvm::Attribute::NoInline);
1536   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1537              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1538     // (noinline wins over always_inline, and we can't specify both in IR)
1539     B.addAttribute(llvm::Attribute::AlwaysInline);
1540   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1541     // If we're not inlining, then force everything that isn't always_inline to
1542     // carry an explicit noinline attribute.
1543     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1544       B.addAttribute(llvm::Attribute::NoInline);
1545   } else {
1546     // Otherwise, propagate the inline hint attribute and potentially use its
1547     // absence to mark things as noinline.
1548     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1549       // Search function and template pattern redeclarations for inline.
1550       auto CheckForInline = [](const FunctionDecl *FD) {
1551         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1552           return Redecl->isInlineSpecified();
1553         };
1554         if (any_of(FD->redecls(), CheckRedeclForInline))
1555           return true;
1556         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1557         if (!Pattern)
1558           return false;
1559         return any_of(Pattern->redecls(), CheckRedeclForInline);
1560       };
1561       if (CheckForInline(FD)) {
1562         B.addAttribute(llvm::Attribute::InlineHint);
1563       } else if (CodeGenOpts.getInlining() ==
1564                      CodeGenOptions::OnlyHintInlining &&
1565                  !FD->isInlined() &&
1566                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1567         B.addAttribute(llvm::Attribute::NoInline);
1568       }
1569     }
1570   }
1571 
1572   // Add other optimization related attributes if we are optimizing this
1573   // function.
1574   if (!D->hasAttr<OptimizeNoneAttr>()) {
1575     if (D->hasAttr<ColdAttr>()) {
1576       if (!ShouldAddOptNone)
1577         B.addAttribute(llvm::Attribute::OptimizeForSize);
1578       B.addAttribute(llvm::Attribute::Cold);
1579     }
1580 
1581     if (D->hasAttr<MinSizeAttr>())
1582       B.addAttribute(llvm::Attribute::MinSize);
1583   }
1584 
1585   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1586 
1587   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1588   if (alignment)
1589     F->setAlignment(alignment);
1590 
1591   if (!D->hasAttr<AlignedAttr>())
1592     if (LangOpts.FunctionAlignment)
1593       F->setAlignment(1 << LangOpts.FunctionAlignment);
1594 
1595   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1596   // reserve a bit for differentiating between virtual and non-virtual member
1597   // functions. If the current target's C++ ABI requires this and this is a
1598   // member function, set its alignment accordingly.
1599   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1600     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1601       F->setAlignment(2);
1602   }
1603 
1604   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1605   if (CodeGenOpts.SanitizeCfiCrossDso)
1606     if (auto *FD = dyn_cast<FunctionDecl>(D))
1607       CreateFunctionTypeMetadataForIcall(FD, F);
1608 
1609   // Emit type metadata on member functions for member function pointer checks.
1610   // These are only ever necessary on definitions; we're guaranteed that the
1611   // definition will be present in the LTO unit as a result of LTO visibility.
1612   auto *MD = dyn_cast<CXXMethodDecl>(D);
1613   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1614     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1615       llvm::Metadata *Id =
1616           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1617               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1618       F->addTypeMetadata(0, Id);
1619     }
1620   }
1621 }
1622 
1623 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1624   const Decl *D = GD.getDecl();
1625   if (dyn_cast_or_null<NamedDecl>(D))
1626     setGVProperties(GV, GD);
1627   else
1628     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1629 
1630   if (D && D->hasAttr<UsedAttr>())
1631     addUsedGlobal(GV);
1632 
1633   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1634     const auto *VD = cast<VarDecl>(D);
1635     if (VD->getType().isConstQualified() &&
1636         VD->getStorageDuration() == SD_Static)
1637       addUsedGlobal(GV);
1638   }
1639 }
1640 
1641 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1642                                                 llvm::AttrBuilder &Attrs) {
1643   // Add target-cpu and target-features attributes to functions. If
1644   // we have a decl for the function and it has a target attribute then
1645   // parse that and add it to the feature set.
1646   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1647   std::vector<std::string> Features;
1648   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1649   FD = FD ? FD->getMostRecentDecl() : FD;
1650   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1651   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1652   bool AddedAttr = false;
1653   if (TD || SD) {
1654     llvm::StringMap<bool> FeatureMap;
1655     getFunctionFeatureMap(FeatureMap, GD);
1656 
1657     // Produce the canonical string for this set of features.
1658     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1659       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1660 
1661     // Now add the target-cpu and target-features to the function.
1662     // While we populated the feature map above, we still need to
1663     // get and parse the target attribute so we can get the cpu for
1664     // the function.
1665     if (TD) {
1666       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1667       if (ParsedAttr.Architecture != "" &&
1668           getTarget().isValidCPUName(ParsedAttr.Architecture))
1669         TargetCPU = ParsedAttr.Architecture;
1670     }
1671   } else {
1672     // Otherwise just add the existing target cpu and target features to the
1673     // function.
1674     Features = getTarget().getTargetOpts().Features;
1675   }
1676 
1677   if (TargetCPU != "") {
1678     Attrs.addAttribute("target-cpu", TargetCPU);
1679     AddedAttr = true;
1680   }
1681   if (!Features.empty()) {
1682     llvm::sort(Features);
1683     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1684     AddedAttr = true;
1685   }
1686 
1687   return AddedAttr;
1688 }
1689 
1690 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1691                                           llvm::GlobalObject *GO) {
1692   const Decl *D = GD.getDecl();
1693   SetCommonAttributes(GD, GO);
1694 
1695   if (D) {
1696     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1697       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1698         GV->addAttribute("bss-section", SA->getName());
1699       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1700         GV->addAttribute("data-section", SA->getName());
1701       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1702         GV->addAttribute("rodata-section", SA->getName());
1703     }
1704 
1705     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1706       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1707         if (!D->getAttr<SectionAttr>())
1708           F->addFnAttr("implicit-section-name", SA->getName());
1709 
1710       llvm::AttrBuilder Attrs;
1711       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1712         // We know that GetCPUAndFeaturesAttributes will always have the
1713         // newest set, since it has the newest possible FunctionDecl, so the
1714         // new ones should replace the old.
1715         F->removeFnAttr("target-cpu");
1716         F->removeFnAttr("target-features");
1717         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1718       }
1719     }
1720 
1721     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1722       GO->setSection(CSA->getName());
1723     else if (const auto *SA = D->getAttr<SectionAttr>())
1724       GO->setSection(SA->getName());
1725   }
1726 
1727   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1728 }
1729 
1730 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1731                                                   llvm::Function *F,
1732                                                   const CGFunctionInfo &FI) {
1733   const Decl *D = GD.getDecl();
1734   SetLLVMFunctionAttributes(GD, FI, F);
1735   SetLLVMFunctionAttributesForDefinition(D, F);
1736 
1737   F->setLinkage(llvm::Function::InternalLinkage);
1738 
1739   setNonAliasAttributes(GD, F);
1740 }
1741 
1742 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1743   // Set linkage and visibility in case we never see a definition.
1744   LinkageInfo LV = ND->getLinkageAndVisibility();
1745   // Don't set internal linkage on declarations.
1746   // "extern_weak" is overloaded in LLVM; we probably should have
1747   // separate linkage types for this.
1748   if (isExternallyVisible(LV.getLinkage()) &&
1749       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1750     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1751 }
1752 
1753 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1754                                                        llvm::Function *F) {
1755   // Only if we are checking indirect calls.
1756   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1757     return;
1758 
1759   // Non-static class methods are handled via vtable or member function pointer
1760   // checks elsewhere.
1761   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1762     return;
1763 
1764   // Additionally, if building with cross-DSO support...
1765   if (CodeGenOpts.SanitizeCfiCrossDso) {
1766     // Skip available_externally functions. They won't be codegen'ed in the
1767     // current module anyway.
1768     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1769       return;
1770   }
1771 
1772   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1773   F->addTypeMetadata(0, MD);
1774   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1775 
1776   // Emit a hash-based bit set entry for cross-DSO calls.
1777   if (CodeGenOpts.SanitizeCfiCrossDso)
1778     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1779       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1780 }
1781 
1782 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1783                                           bool IsIncompleteFunction,
1784                                           bool IsThunk) {
1785 
1786   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1787     // If this is an intrinsic function, set the function's attributes
1788     // to the intrinsic's attributes.
1789     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1790     return;
1791   }
1792 
1793   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1794 
1795   if (!IsIncompleteFunction)
1796     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1797 
1798   // Add the Returned attribute for "this", except for iOS 5 and earlier
1799   // where substantial code, including the libstdc++ dylib, was compiled with
1800   // GCC and does not actually return "this".
1801   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1802       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1803     assert(!F->arg_empty() &&
1804            F->arg_begin()->getType()
1805              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1806            "unexpected this return");
1807     F->addAttribute(1, llvm::Attribute::Returned);
1808   }
1809 
1810   // Only a few attributes are set on declarations; these may later be
1811   // overridden by a definition.
1812 
1813   setLinkageForGV(F, FD);
1814   setGVProperties(F, FD);
1815 
1816   // Setup target-specific attributes.
1817   if (!IsIncompleteFunction && F->isDeclaration())
1818     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1819 
1820   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1821     F->setSection(CSA->getName());
1822   else if (const auto *SA = FD->getAttr<SectionAttr>())
1823      F->setSection(SA->getName());
1824 
1825   if (FD->isReplaceableGlobalAllocationFunction()) {
1826     // A replaceable global allocation function does not act like a builtin by
1827     // default, only if it is invoked by a new-expression or delete-expression.
1828     F->addAttribute(llvm::AttributeList::FunctionIndex,
1829                     llvm::Attribute::NoBuiltin);
1830 
1831     // A sane operator new returns a non-aliasing pointer.
1832     // FIXME: Also add NonNull attribute to the return value
1833     // for the non-nothrow forms?
1834     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1835     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1836         (Kind == OO_New || Kind == OO_Array_New))
1837       F->addAttribute(llvm::AttributeList::ReturnIndex,
1838                       llvm::Attribute::NoAlias);
1839   }
1840 
1841   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1842     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1843   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1844     if (MD->isVirtual())
1845       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1846 
1847   // Don't emit entries for function declarations in the cross-DSO mode. This
1848   // is handled with better precision by the receiving DSO.
1849   if (!CodeGenOpts.SanitizeCfiCrossDso)
1850     CreateFunctionTypeMetadataForIcall(FD, F);
1851 
1852   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1853     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1854 
1855   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1856     // Annotate the callback behavior as metadata:
1857     //  - The callback callee (as argument number).
1858     //  - The callback payloads (as argument numbers).
1859     llvm::LLVMContext &Ctx = F->getContext();
1860     llvm::MDBuilder MDB(Ctx);
1861 
1862     // The payload indices are all but the first one in the encoding. The first
1863     // identifies the callback callee.
1864     int CalleeIdx = *CB->encoding_begin();
1865     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1866     F->addMetadata(llvm::LLVMContext::MD_callback,
1867                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1868                                                CalleeIdx, PayloadIndices,
1869                                                /* VarArgsArePassed */ false)}));
1870   }
1871 }
1872 
1873 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1874   assert(!GV->isDeclaration() &&
1875          "Only globals with definition can force usage.");
1876   LLVMUsed.emplace_back(GV);
1877 }
1878 
1879 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1880   assert(!GV->isDeclaration() &&
1881          "Only globals with definition can force usage.");
1882   LLVMCompilerUsed.emplace_back(GV);
1883 }
1884 
1885 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1886                      std::vector<llvm::WeakTrackingVH> &List) {
1887   // Don't create llvm.used if there is no need.
1888   if (List.empty())
1889     return;
1890 
1891   // Convert List to what ConstantArray needs.
1892   SmallVector<llvm::Constant*, 8> UsedArray;
1893   UsedArray.resize(List.size());
1894   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1895     UsedArray[i] =
1896         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1897             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1898   }
1899 
1900   if (UsedArray.empty())
1901     return;
1902   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1903 
1904   auto *GV = new llvm::GlobalVariable(
1905       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1906       llvm::ConstantArray::get(ATy, UsedArray), Name);
1907 
1908   GV->setSection("llvm.metadata");
1909 }
1910 
1911 void CodeGenModule::emitLLVMUsed() {
1912   emitUsed(*this, "llvm.used", LLVMUsed);
1913   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1914 }
1915 
1916 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1917   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1918   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1919 }
1920 
1921 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1922   llvm::SmallString<32> Opt;
1923   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1924   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1925   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1926 }
1927 
1928 void CodeGenModule::AddDependentLib(StringRef Lib) {
1929   auto &C = getLLVMContext();
1930   if (getTarget().getTriple().isOSBinFormatELF()) {
1931       ELFDependentLibraries.push_back(
1932         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1933     return;
1934   }
1935 
1936   llvm::SmallString<24> Opt;
1937   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1938   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1939   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1940 }
1941 
1942 /// Add link options implied by the given module, including modules
1943 /// it depends on, using a postorder walk.
1944 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1945                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1946                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1947   // Import this module's parent.
1948   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1949     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1950   }
1951 
1952   // Import this module's dependencies.
1953   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1954     if (Visited.insert(Mod->Imports[I - 1]).second)
1955       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1956   }
1957 
1958   // Add linker options to link against the libraries/frameworks
1959   // described by this module.
1960   llvm::LLVMContext &Context = CGM.getLLVMContext();
1961   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1962 
1963   // For modules that use export_as for linking, use that module
1964   // name instead.
1965   if (Mod->UseExportAsModuleLinkName)
1966     return;
1967 
1968   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1969     // Link against a framework.  Frameworks are currently Darwin only, so we
1970     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1971     if (Mod->LinkLibraries[I-1].IsFramework) {
1972       llvm::Metadata *Args[2] = {
1973           llvm::MDString::get(Context, "-framework"),
1974           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1975 
1976       Metadata.push_back(llvm::MDNode::get(Context, Args));
1977       continue;
1978     }
1979 
1980     // Link against a library.
1981     if (IsELF) {
1982       llvm::Metadata *Args[2] = {
1983           llvm::MDString::get(Context, "lib"),
1984           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1985       };
1986       Metadata.push_back(llvm::MDNode::get(Context, Args));
1987     } else {
1988       llvm::SmallString<24> Opt;
1989       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1990           Mod->LinkLibraries[I - 1].Library, Opt);
1991       auto *OptString = llvm::MDString::get(Context, Opt);
1992       Metadata.push_back(llvm::MDNode::get(Context, OptString));
1993     }
1994   }
1995 }
1996 
1997 void CodeGenModule::EmitModuleLinkOptions() {
1998   // Collect the set of all of the modules we want to visit to emit link
1999   // options, which is essentially the imported modules and all of their
2000   // non-explicit child modules.
2001   llvm::SetVector<clang::Module *> LinkModules;
2002   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2003   SmallVector<clang::Module *, 16> Stack;
2004 
2005   // Seed the stack with imported modules.
2006   for (Module *M : ImportedModules) {
2007     // Do not add any link flags when an implementation TU of a module imports
2008     // a header of that same module.
2009     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2010         !getLangOpts().isCompilingModule())
2011       continue;
2012     if (Visited.insert(M).second)
2013       Stack.push_back(M);
2014   }
2015 
2016   // Find all of the modules to import, making a little effort to prune
2017   // non-leaf modules.
2018   while (!Stack.empty()) {
2019     clang::Module *Mod = Stack.pop_back_val();
2020 
2021     bool AnyChildren = false;
2022 
2023     // Visit the submodules of this module.
2024     for (const auto &SM : Mod->submodules()) {
2025       // Skip explicit children; they need to be explicitly imported to be
2026       // linked against.
2027       if (SM->IsExplicit)
2028         continue;
2029 
2030       if (Visited.insert(SM).second) {
2031         Stack.push_back(SM);
2032         AnyChildren = true;
2033       }
2034     }
2035 
2036     // We didn't find any children, so add this module to the list of
2037     // modules to link against.
2038     if (!AnyChildren) {
2039       LinkModules.insert(Mod);
2040     }
2041   }
2042 
2043   // Add link options for all of the imported modules in reverse topological
2044   // order.  We don't do anything to try to order import link flags with respect
2045   // to linker options inserted by things like #pragma comment().
2046   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2047   Visited.clear();
2048   for (Module *M : LinkModules)
2049     if (Visited.insert(M).second)
2050       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2051   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2052   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2053 
2054   // Add the linker options metadata flag.
2055   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2056   for (auto *MD : LinkerOptionsMetadata)
2057     NMD->addOperand(MD);
2058 }
2059 
2060 void CodeGenModule::EmitDeferred() {
2061   // Emit deferred declare target declarations.
2062   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2063     getOpenMPRuntime().emitDeferredTargetDecls();
2064 
2065   // Emit code for any potentially referenced deferred decls.  Since a
2066   // previously unused static decl may become used during the generation of code
2067   // for a static function, iterate until no changes are made.
2068 
2069   if (!DeferredVTables.empty()) {
2070     EmitDeferredVTables();
2071 
2072     // Emitting a vtable doesn't directly cause more vtables to
2073     // become deferred, although it can cause functions to be
2074     // emitted that then need those vtables.
2075     assert(DeferredVTables.empty());
2076   }
2077 
2078   // Stop if we're out of both deferred vtables and deferred declarations.
2079   if (DeferredDeclsToEmit.empty())
2080     return;
2081 
2082   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2083   // work, it will not interfere with this.
2084   std::vector<GlobalDecl> CurDeclsToEmit;
2085   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2086 
2087   for (GlobalDecl &D : CurDeclsToEmit) {
2088     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2089     // to get GlobalValue with exactly the type we need, not something that
2090     // might had been created for another decl with the same mangled name but
2091     // different type.
2092     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2093         GetAddrOfGlobal(D, ForDefinition));
2094 
2095     // In case of different address spaces, we may still get a cast, even with
2096     // IsForDefinition equal to true. Query mangled names table to get
2097     // GlobalValue.
2098     if (!GV)
2099       GV = GetGlobalValue(getMangledName(D));
2100 
2101     // Make sure GetGlobalValue returned non-null.
2102     assert(GV);
2103 
2104     // Check to see if we've already emitted this.  This is necessary
2105     // for a couple of reasons: first, decls can end up in the
2106     // deferred-decls queue multiple times, and second, decls can end
2107     // up with definitions in unusual ways (e.g. by an extern inline
2108     // function acquiring a strong function redefinition).  Just
2109     // ignore these cases.
2110     if (!GV->isDeclaration())
2111       continue;
2112 
2113     // Otherwise, emit the definition and move on to the next one.
2114     EmitGlobalDefinition(D, GV);
2115 
2116     // If we found out that we need to emit more decls, do that recursively.
2117     // This has the advantage that the decls are emitted in a DFS and related
2118     // ones are close together, which is convenient for testing.
2119     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2120       EmitDeferred();
2121       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2122     }
2123   }
2124 }
2125 
2126 void CodeGenModule::EmitVTablesOpportunistically() {
2127   // Try to emit external vtables as available_externally if they have emitted
2128   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2129   // is not allowed to create new references to things that need to be emitted
2130   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2131 
2132   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2133          && "Only emit opportunistic vtables with optimizations");
2134 
2135   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2136     assert(getVTables().isVTableExternal(RD) &&
2137            "This queue should only contain external vtables");
2138     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2139       VTables.GenerateClassData(RD);
2140   }
2141   OpportunisticVTables.clear();
2142 }
2143 
2144 void CodeGenModule::EmitGlobalAnnotations() {
2145   if (Annotations.empty())
2146     return;
2147 
2148   // Create a new global variable for the ConstantStruct in the Module.
2149   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2150     Annotations[0]->getType(), Annotations.size()), Annotations);
2151   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2152                                       llvm::GlobalValue::AppendingLinkage,
2153                                       Array, "llvm.global.annotations");
2154   gv->setSection(AnnotationSection);
2155 }
2156 
2157 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2158   llvm::Constant *&AStr = AnnotationStrings[Str];
2159   if (AStr)
2160     return AStr;
2161 
2162   // Not found yet, create a new global.
2163   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2164   auto *gv =
2165       new llvm::GlobalVariable(getModule(), s->getType(), true,
2166                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2167   gv->setSection(AnnotationSection);
2168   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2169   AStr = gv;
2170   return gv;
2171 }
2172 
2173 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2174   SourceManager &SM = getContext().getSourceManager();
2175   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2176   if (PLoc.isValid())
2177     return EmitAnnotationString(PLoc.getFilename());
2178   return EmitAnnotationString(SM.getBufferName(Loc));
2179 }
2180 
2181 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2182   SourceManager &SM = getContext().getSourceManager();
2183   PresumedLoc PLoc = SM.getPresumedLoc(L);
2184   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2185     SM.getExpansionLineNumber(L);
2186   return llvm::ConstantInt::get(Int32Ty, LineNo);
2187 }
2188 
2189 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2190                                                 const AnnotateAttr *AA,
2191                                                 SourceLocation L) {
2192   // Get the globals for file name, annotation, and the line number.
2193   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2194                  *UnitGV = EmitAnnotationUnit(L),
2195                  *LineNoCst = EmitAnnotationLineNo(L);
2196 
2197   // Create the ConstantStruct for the global annotation.
2198   llvm::Constant *Fields[4] = {
2199     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
2200     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2201     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2202     LineNoCst
2203   };
2204   return llvm::ConstantStruct::getAnon(Fields);
2205 }
2206 
2207 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2208                                          llvm::GlobalValue *GV) {
2209   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2210   // Get the struct elements for these annotations.
2211   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2212     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2213 }
2214 
2215 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2216                                            llvm::Function *Fn,
2217                                            SourceLocation Loc) const {
2218   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2219   // Blacklist by function name.
2220   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2221     return true;
2222   // Blacklist by location.
2223   if (Loc.isValid())
2224     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2225   // If location is unknown, this may be a compiler-generated function. Assume
2226   // it's located in the main file.
2227   auto &SM = Context.getSourceManager();
2228   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2229     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2230   }
2231   return false;
2232 }
2233 
2234 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2235                                            SourceLocation Loc, QualType Ty,
2236                                            StringRef Category) const {
2237   // For now globals can be blacklisted only in ASan and KASan.
2238   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
2239       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2240        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
2241   if (!EnabledAsanMask)
2242     return false;
2243   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2244   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2245     return true;
2246   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2247     return true;
2248   // Check global type.
2249   if (!Ty.isNull()) {
2250     // Drill down the array types: if global variable of a fixed type is
2251     // blacklisted, we also don't instrument arrays of them.
2252     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2253       Ty = AT->getElementType();
2254     Ty = Ty.getCanonicalType().getUnqualifiedType();
2255     // We allow to blacklist only record types (classes, structs etc.)
2256     if (Ty->isRecordType()) {
2257       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2258       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2259         return true;
2260     }
2261   }
2262   return false;
2263 }
2264 
2265 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2266                                    StringRef Category) const {
2267   const auto &XRayFilter = getContext().getXRayFilter();
2268   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2269   auto Attr = ImbueAttr::NONE;
2270   if (Loc.isValid())
2271     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2272   if (Attr == ImbueAttr::NONE)
2273     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2274   switch (Attr) {
2275   case ImbueAttr::NONE:
2276     return false;
2277   case ImbueAttr::ALWAYS:
2278     Fn->addFnAttr("function-instrument", "xray-always");
2279     break;
2280   case ImbueAttr::ALWAYS_ARG1:
2281     Fn->addFnAttr("function-instrument", "xray-always");
2282     Fn->addFnAttr("xray-log-args", "1");
2283     break;
2284   case ImbueAttr::NEVER:
2285     Fn->addFnAttr("function-instrument", "xray-never");
2286     break;
2287   }
2288   return true;
2289 }
2290 
2291 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2292   // Never defer when EmitAllDecls is specified.
2293   if (LangOpts.EmitAllDecls)
2294     return true;
2295 
2296   if (CodeGenOpts.KeepStaticConsts) {
2297     const auto *VD = dyn_cast<VarDecl>(Global);
2298     if (VD && VD->getType().isConstQualified() &&
2299         VD->getStorageDuration() == SD_Static)
2300       return true;
2301   }
2302 
2303   return getContext().DeclMustBeEmitted(Global);
2304 }
2305 
2306 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2307   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2308     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2309       // Implicit template instantiations may change linkage if they are later
2310       // explicitly instantiated, so they should not be emitted eagerly.
2311       return false;
2312   if (const auto *VD = dyn_cast<VarDecl>(Global))
2313     if (Context.getInlineVariableDefinitionKind(VD) ==
2314         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2315       // A definition of an inline constexpr static data member may change
2316       // linkage later if it's redeclared outside the class.
2317       return false;
2318   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2319   // codegen for global variables, because they may be marked as threadprivate.
2320   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2321       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2322       !isTypeConstant(Global->getType(), false) &&
2323       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2324     return false;
2325 
2326   return true;
2327 }
2328 
2329 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2330     const CXXUuidofExpr* E) {
2331   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2332   // well-formed.
2333   StringRef Uuid = E->getUuidStr();
2334   std::string Name = "_GUID_" + Uuid.lower();
2335   std::replace(Name.begin(), Name.end(), '-', '_');
2336 
2337   // The UUID descriptor should be pointer aligned.
2338   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2339 
2340   // Look for an existing global.
2341   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2342     return ConstantAddress(GV, Alignment);
2343 
2344   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2345   assert(Init && "failed to initialize as constant");
2346 
2347   auto *GV = new llvm::GlobalVariable(
2348       getModule(), Init->getType(),
2349       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2350   if (supportsCOMDAT())
2351     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2352   setDSOLocal(GV);
2353   return ConstantAddress(GV, Alignment);
2354 }
2355 
2356 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2357   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2358   assert(AA && "No alias?");
2359 
2360   CharUnits Alignment = getContext().getDeclAlign(VD);
2361   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2362 
2363   // See if there is already something with the target's name in the module.
2364   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2365   if (Entry) {
2366     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2367     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2368     return ConstantAddress(Ptr, Alignment);
2369   }
2370 
2371   llvm::Constant *Aliasee;
2372   if (isa<llvm::FunctionType>(DeclTy))
2373     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2374                                       GlobalDecl(cast<FunctionDecl>(VD)),
2375                                       /*ForVTable=*/false);
2376   else
2377     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2378                                     llvm::PointerType::getUnqual(DeclTy),
2379                                     nullptr);
2380 
2381   auto *F = cast<llvm::GlobalValue>(Aliasee);
2382   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2383   WeakRefReferences.insert(F);
2384 
2385   return ConstantAddress(Aliasee, Alignment);
2386 }
2387 
2388 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2389   const auto *Global = cast<ValueDecl>(GD.getDecl());
2390 
2391   // Weak references don't produce any output by themselves.
2392   if (Global->hasAttr<WeakRefAttr>())
2393     return;
2394 
2395   // If this is an alias definition (which otherwise looks like a declaration)
2396   // emit it now.
2397   if (Global->hasAttr<AliasAttr>())
2398     return EmitAliasDefinition(GD);
2399 
2400   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2401   if (Global->hasAttr<IFuncAttr>())
2402     return emitIFuncDefinition(GD);
2403 
2404   // If this is a cpu_dispatch multiversion function, emit the resolver.
2405   if (Global->hasAttr<CPUDispatchAttr>())
2406     return emitCPUDispatchDefinition(GD);
2407 
2408   // If this is CUDA, be selective about which declarations we emit.
2409   if (LangOpts.CUDA) {
2410     if (LangOpts.CUDAIsDevice) {
2411       if (!Global->hasAttr<CUDADeviceAttr>() &&
2412           !Global->hasAttr<CUDAGlobalAttr>() &&
2413           !Global->hasAttr<CUDAConstantAttr>() &&
2414           !Global->hasAttr<CUDASharedAttr>())
2415         return;
2416     } else {
2417       // We need to emit host-side 'shadows' for all global
2418       // device-side variables because the CUDA runtime needs their
2419       // size and host-side address in order to provide access to
2420       // their device-side incarnations.
2421 
2422       // So device-only functions are the only things we skip.
2423       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2424           Global->hasAttr<CUDADeviceAttr>())
2425         return;
2426 
2427       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2428              "Expected Variable or Function");
2429     }
2430   }
2431 
2432   if (LangOpts.OpenMP) {
2433     // If this is OpenMP device, check if it is legal to emit this global
2434     // normally.
2435     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2436       return;
2437     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2438       if (MustBeEmitted(Global))
2439         EmitOMPDeclareReduction(DRD);
2440       return;
2441     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2442       if (MustBeEmitted(Global))
2443         EmitOMPDeclareMapper(DMD);
2444       return;
2445     }
2446   }
2447 
2448   // Ignore declarations, they will be emitted on their first use.
2449   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2450     // Forward declarations are emitted lazily on first use.
2451     if (!FD->doesThisDeclarationHaveABody()) {
2452       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2453         return;
2454 
2455       StringRef MangledName = getMangledName(GD);
2456 
2457       // Compute the function info and LLVM type.
2458       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2459       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2460 
2461       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2462                               /*DontDefer=*/false);
2463       return;
2464     }
2465   } else {
2466     const auto *VD = cast<VarDecl>(Global);
2467     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2468     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2469         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2470       if (LangOpts.OpenMP) {
2471         // Emit declaration of the must-be-emitted declare target variable.
2472         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2473                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2474           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2475             (void)GetAddrOfGlobalVar(VD);
2476           } else {
2477             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2478                    "link claue expected.");
2479             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2480           }
2481           return;
2482         }
2483       }
2484       // If this declaration may have caused an inline variable definition to
2485       // change linkage, make sure that it's emitted.
2486       if (Context.getInlineVariableDefinitionKind(VD) ==
2487           ASTContext::InlineVariableDefinitionKind::Strong)
2488         GetAddrOfGlobalVar(VD);
2489       return;
2490     }
2491   }
2492 
2493   // Defer code generation to first use when possible, e.g. if this is an inline
2494   // function. If the global must always be emitted, do it eagerly if possible
2495   // to benefit from cache locality.
2496   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2497     // Emit the definition if it can't be deferred.
2498     EmitGlobalDefinition(GD);
2499     return;
2500   }
2501 
2502   // If we're deferring emission of a C++ variable with an
2503   // initializer, remember the order in which it appeared in the file.
2504   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2505       cast<VarDecl>(Global)->hasInit()) {
2506     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2507     CXXGlobalInits.push_back(nullptr);
2508   }
2509 
2510   StringRef MangledName = getMangledName(GD);
2511   if (GetGlobalValue(MangledName) != nullptr) {
2512     // The value has already been used and should therefore be emitted.
2513     addDeferredDeclToEmit(GD);
2514   } else if (MustBeEmitted(Global)) {
2515     // The value must be emitted, but cannot be emitted eagerly.
2516     assert(!MayBeEmittedEagerly(Global));
2517     addDeferredDeclToEmit(GD);
2518   } else {
2519     // Otherwise, remember that we saw a deferred decl with this name.  The
2520     // first use of the mangled name will cause it to move into
2521     // DeferredDeclsToEmit.
2522     DeferredDecls[MangledName] = GD;
2523   }
2524 }
2525 
2526 // Check if T is a class type with a destructor that's not dllimport.
2527 static bool HasNonDllImportDtor(QualType T) {
2528   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2529     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2530       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2531         return true;
2532 
2533   return false;
2534 }
2535 
2536 namespace {
2537   struct FunctionIsDirectlyRecursive
2538       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2539     const StringRef Name;
2540     const Builtin::Context &BI;
2541     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2542         : Name(N), BI(C) {}
2543 
2544     bool VisitCallExpr(const CallExpr *E) {
2545       const FunctionDecl *FD = E->getDirectCallee();
2546       if (!FD)
2547         return false;
2548       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2549       if (Attr && Name == Attr->getLabel())
2550         return true;
2551       unsigned BuiltinID = FD->getBuiltinID();
2552       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2553         return false;
2554       StringRef BuiltinName = BI.getName(BuiltinID);
2555       if (BuiltinName.startswith("__builtin_") &&
2556           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2557         return true;
2558       }
2559       return false;
2560     }
2561 
2562     bool VisitStmt(const Stmt *S) {
2563       for (const Stmt *Child : S->children())
2564         if (Child && this->Visit(Child))
2565           return true;
2566       return false;
2567     }
2568   };
2569 
2570   // Make sure we're not referencing non-imported vars or functions.
2571   struct DLLImportFunctionVisitor
2572       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2573     bool SafeToInline = true;
2574 
2575     bool shouldVisitImplicitCode() const { return true; }
2576 
2577     bool VisitVarDecl(VarDecl *VD) {
2578       if (VD->getTLSKind()) {
2579         // A thread-local variable cannot be imported.
2580         SafeToInline = false;
2581         return SafeToInline;
2582       }
2583 
2584       // A variable definition might imply a destructor call.
2585       if (VD->isThisDeclarationADefinition())
2586         SafeToInline = !HasNonDllImportDtor(VD->getType());
2587 
2588       return SafeToInline;
2589     }
2590 
2591     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2592       if (const auto *D = E->getTemporary()->getDestructor())
2593         SafeToInline = D->hasAttr<DLLImportAttr>();
2594       return SafeToInline;
2595     }
2596 
2597     bool VisitDeclRefExpr(DeclRefExpr *E) {
2598       ValueDecl *VD = E->getDecl();
2599       if (isa<FunctionDecl>(VD))
2600         SafeToInline = VD->hasAttr<DLLImportAttr>();
2601       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2602         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2603       return SafeToInline;
2604     }
2605 
2606     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2607       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2608       return SafeToInline;
2609     }
2610 
2611     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2612       CXXMethodDecl *M = E->getMethodDecl();
2613       if (!M) {
2614         // Call through a pointer to member function. This is safe to inline.
2615         SafeToInline = true;
2616       } else {
2617         SafeToInline = M->hasAttr<DLLImportAttr>();
2618       }
2619       return SafeToInline;
2620     }
2621 
2622     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2623       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2624       return SafeToInline;
2625     }
2626 
2627     bool VisitCXXNewExpr(CXXNewExpr *E) {
2628       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2629       return SafeToInline;
2630     }
2631   };
2632 }
2633 
2634 // isTriviallyRecursive - Check if this function calls another
2635 // decl that, because of the asm attribute or the other decl being a builtin,
2636 // ends up pointing to itself.
2637 bool
2638 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2639   StringRef Name;
2640   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2641     // asm labels are a special kind of mangling we have to support.
2642     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2643     if (!Attr)
2644       return false;
2645     Name = Attr->getLabel();
2646   } else {
2647     Name = FD->getName();
2648   }
2649 
2650   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2651   const Stmt *Body = FD->getBody();
2652   return Body ? Walker.Visit(Body) : false;
2653 }
2654 
2655 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2656   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2657     return true;
2658   const auto *F = cast<FunctionDecl>(GD.getDecl());
2659   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2660     return false;
2661 
2662   if (F->hasAttr<DLLImportAttr>()) {
2663     // Check whether it would be safe to inline this dllimport function.
2664     DLLImportFunctionVisitor Visitor;
2665     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2666     if (!Visitor.SafeToInline)
2667       return false;
2668 
2669     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2670       // Implicit destructor invocations aren't captured in the AST, so the
2671       // check above can't see them. Check for them manually here.
2672       for (const Decl *Member : Dtor->getParent()->decls())
2673         if (isa<FieldDecl>(Member))
2674           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2675             return false;
2676       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2677         if (HasNonDllImportDtor(B.getType()))
2678           return false;
2679     }
2680   }
2681 
2682   // PR9614. Avoid cases where the source code is lying to us. An available
2683   // externally function should have an equivalent function somewhere else,
2684   // but a function that calls itself is clearly not equivalent to the real
2685   // implementation.
2686   // This happens in glibc's btowc and in some configure checks.
2687   return !isTriviallyRecursive(F);
2688 }
2689 
2690 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2691   return CodeGenOpts.OptimizationLevel > 0;
2692 }
2693 
2694 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2695                                                        llvm::GlobalValue *GV) {
2696   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2697 
2698   if (FD->isCPUSpecificMultiVersion()) {
2699     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2700     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2701       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2702     // Requires multiple emits.
2703   } else
2704     EmitGlobalFunctionDefinition(GD, GV);
2705 }
2706 
2707 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2708   const auto *D = cast<ValueDecl>(GD.getDecl());
2709 
2710   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2711                                  Context.getSourceManager(),
2712                                  "Generating code for declaration");
2713 
2714   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2715     // At -O0, don't generate IR for functions with available_externally
2716     // linkage.
2717     if (!shouldEmitFunction(GD))
2718       return;
2719 
2720     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2721       std::string Name;
2722       llvm::raw_string_ostream OS(Name);
2723       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2724                                /*Qualified=*/true);
2725       return Name;
2726     });
2727 
2728     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2729       // Make sure to emit the definition(s) before we emit the thunks.
2730       // This is necessary for the generation of certain thunks.
2731       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2732         ABI->emitCXXStructor(GD);
2733       else if (FD->isMultiVersion())
2734         EmitMultiVersionFunctionDefinition(GD, GV);
2735       else
2736         EmitGlobalFunctionDefinition(GD, GV);
2737 
2738       if (Method->isVirtual())
2739         getVTables().EmitThunks(GD);
2740 
2741       return;
2742     }
2743 
2744     if (FD->isMultiVersion())
2745       return EmitMultiVersionFunctionDefinition(GD, GV);
2746     return EmitGlobalFunctionDefinition(GD, GV);
2747   }
2748 
2749   if (const auto *VD = dyn_cast<VarDecl>(D))
2750     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2751 
2752   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2753 }
2754 
2755 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2756                                                       llvm::Function *NewFn);
2757 
2758 static unsigned
2759 TargetMVPriority(const TargetInfo &TI,
2760                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2761   unsigned Priority = 0;
2762   for (StringRef Feat : RO.Conditions.Features)
2763     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2764 
2765   if (!RO.Conditions.Architecture.empty())
2766     Priority = std::max(
2767         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2768   return Priority;
2769 }
2770 
2771 void CodeGenModule::emitMultiVersionFunctions() {
2772   for (GlobalDecl GD : MultiVersionFuncs) {
2773     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2774     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2775     getContext().forEachMultiversionedFunctionVersion(
2776         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2777           GlobalDecl CurGD{
2778               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2779           StringRef MangledName = getMangledName(CurGD);
2780           llvm::Constant *Func = GetGlobalValue(MangledName);
2781           if (!Func) {
2782             if (CurFD->isDefined()) {
2783               EmitGlobalFunctionDefinition(CurGD, nullptr);
2784               Func = GetGlobalValue(MangledName);
2785             } else {
2786               const CGFunctionInfo &FI =
2787                   getTypes().arrangeGlobalDeclaration(GD);
2788               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2789               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2790                                        /*DontDefer=*/false, ForDefinition);
2791             }
2792             assert(Func && "This should have just been created");
2793           }
2794 
2795           const auto *TA = CurFD->getAttr<TargetAttr>();
2796           llvm::SmallVector<StringRef, 8> Feats;
2797           TA->getAddedFeatures(Feats);
2798 
2799           Options.emplace_back(cast<llvm::Function>(Func),
2800                                TA->getArchitecture(), Feats);
2801         });
2802 
2803     llvm::Function *ResolverFunc;
2804     const TargetInfo &TI = getTarget();
2805 
2806     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2807       ResolverFunc = cast<llvm::Function>(
2808           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2809     else
2810       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2811 
2812     if (supportsCOMDAT())
2813       ResolverFunc->setComdat(
2814           getModule().getOrInsertComdat(ResolverFunc->getName()));
2815 
2816     llvm::stable_sort(
2817         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2818                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2819           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2820         });
2821     CodeGenFunction CGF(*this);
2822     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2823   }
2824 }
2825 
2826 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2827   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2828   assert(FD && "Not a FunctionDecl?");
2829   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2830   assert(DD && "Not a cpu_dispatch Function?");
2831   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2832 
2833   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2834     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2835     DeclTy = getTypes().GetFunctionType(FInfo);
2836   }
2837 
2838   StringRef ResolverName = getMangledName(GD);
2839 
2840   llvm::Type *ResolverType;
2841   GlobalDecl ResolverGD;
2842   if (getTarget().supportsIFunc())
2843     ResolverType = llvm::FunctionType::get(
2844         llvm::PointerType::get(DeclTy,
2845                                Context.getTargetAddressSpace(FD->getType())),
2846         false);
2847   else {
2848     ResolverType = DeclTy;
2849     ResolverGD = GD;
2850   }
2851 
2852   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2853       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2854 
2855   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2856   const TargetInfo &Target = getTarget();
2857   unsigned Index = 0;
2858   for (const IdentifierInfo *II : DD->cpus()) {
2859     // Get the name of the target function so we can look it up/create it.
2860     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2861                               getCPUSpecificMangling(*this, II->getName());
2862 
2863     llvm::Constant *Func = GetGlobalValue(MangledName);
2864 
2865     if (!Func) {
2866       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2867       if (ExistingDecl.getDecl() &&
2868           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2869         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2870         Func = GetGlobalValue(MangledName);
2871       } else {
2872         if (!ExistingDecl.getDecl())
2873           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2874 
2875       Func = GetOrCreateLLVMFunction(
2876           MangledName, DeclTy, ExistingDecl,
2877           /*ForVTable=*/false, /*DontDefer=*/true,
2878           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2879       }
2880     }
2881 
2882     llvm::SmallVector<StringRef, 32> Features;
2883     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2884     llvm::transform(Features, Features.begin(),
2885                     [](StringRef Str) { return Str.substr(1); });
2886     Features.erase(std::remove_if(
2887         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2888           return !Target.validateCpuSupports(Feat);
2889         }), Features.end());
2890     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2891     ++Index;
2892   }
2893 
2894   llvm::sort(
2895       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2896                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2897         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2898                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2899       });
2900 
2901   // If the list contains multiple 'default' versions, such as when it contains
2902   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2903   // always run on at least a 'pentium'). We do this by deleting the 'least
2904   // advanced' (read, lowest mangling letter).
2905   while (Options.size() > 1 &&
2906          CodeGenFunction::GetX86CpuSupportsMask(
2907              (Options.end() - 2)->Conditions.Features) == 0) {
2908     StringRef LHSName = (Options.end() - 2)->Function->getName();
2909     StringRef RHSName = (Options.end() - 1)->Function->getName();
2910     if (LHSName.compare(RHSName) < 0)
2911       Options.erase(Options.end() - 2);
2912     else
2913       Options.erase(Options.end() - 1);
2914   }
2915 
2916   CodeGenFunction CGF(*this);
2917   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2918 }
2919 
2920 /// If a dispatcher for the specified mangled name is not in the module, create
2921 /// and return an llvm Function with the specified type.
2922 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2923     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2924   std::string MangledName =
2925       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2926 
2927   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2928   // a separate resolver).
2929   std::string ResolverName = MangledName;
2930   if (getTarget().supportsIFunc())
2931     ResolverName += ".ifunc";
2932   else if (FD->isTargetMultiVersion())
2933     ResolverName += ".resolver";
2934 
2935   // If this already exists, just return that one.
2936   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2937     return ResolverGV;
2938 
2939   // Since this is the first time we've created this IFunc, make sure
2940   // that we put this multiversioned function into the list to be
2941   // replaced later if necessary (target multiversioning only).
2942   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2943     MultiVersionFuncs.push_back(GD);
2944 
2945   if (getTarget().supportsIFunc()) {
2946     llvm::Type *ResolverType = llvm::FunctionType::get(
2947         llvm::PointerType::get(
2948             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2949         false);
2950     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2951         MangledName + ".resolver", ResolverType, GlobalDecl{},
2952         /*ForVTable=*/false);
2953     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2954         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2955     GIF->setName(ResolverName);
2956     SetCommonAttributes(FD, GIF);
2957 
2958     return GIF;
2959   }
2960 
2961   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2962       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2963   assert(isa<llvm::GlobalValue>(Resolver) &&
2964          "Resolver should be created for the first time");
2965   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2966   return Resolver;
2967 }
2968 
2969 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2970 /// module, create and return an llvm Function with the specified type. If there
2971 /// is something in the module with the specified name, return it potentially
2972 /// bitcasted to the right type.
2973 ///
2974 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2975 /// to set the attributes on the function when it is first created.
2976 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2977     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2978     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2979     ForDefinition_t IsForDefinition) {
2980   const Decl *D = GD.getDecl();
2981 
2982   // Any attempts to use a MultiVersion function should result in retrieving
2983   // the iFunc instead. Name Mangling will handle the rest of the changes.
2984   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2985     // For the device mark the function as one that should be emitted.
2986     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2987         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2988         !DontDefer && !IsForDefinition) {
2989       if (const FunctionDecl *FDDef = FD->getDefinition()) {
2990         GlobalDecl GDDef;
2991         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2992           GDDef = GlobalDecl(CD, GD.getCtorType());
2993         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2994           GDDef = GlobalDecl(DD, GD.getDtorType());
2995         else
2996           GDDef = GlobalDecl(FDDef);
2997         EmitGlobal(GDDef);
2998       }
2999     }
3000 
3001     if (FD->isMultiVersion()) {
3002       const auto *TA = FD->getAttr<TargetAttr>();
3003       if (TA && TA->isDefaultVersion())
3004         UpdateMultiVersionNames(GD, FD);
3005       if (!IsForDefinition)
3006         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3007     }
3008   }
3009 
3010   // Lookup the entry, lazily creating it if necessary.
3011   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3012   if (Entry) {
3013     if (WeakRefReferences.erase(Entry)) {
3014       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3015       if (FD && !FD->hasAttr<WeakAttr>())
3016         Entry->setLinkage(llvm::Function::ExternalLinkage);
3017     }
3018 
3019     // Handle dropped DLL attributes.
3020     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3021       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3022       setDSOLocal(Entry);
3023     }
3024 
3025     // If there are two attempts to define the same mangled name, issue an
3026     // error.
3027     if (IsForDefinition && !Entry->isDeclaration()) {
3028       GlobalDecl OtherGD;
3029       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3030       // to make sure that we issue an error only once.
3031       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3032           (GD.getCanonicalDecl().getDecl() !=
3033            OtherGD.getCanonicalDecl().getDecl()) &&
3034           DiagnosedConflictingDefinitions.insert(GD).second) {
3035         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3036             << MangledName;
3037         getDiags().Report(OtherGD.getDecl()->getLocation(),
3038                           diag::note_previous_definition);
3039       }
3040     }
3041 
3042     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3043         (Entry->getType()->getElementType() == Ty)) {
3044       return Entry;
3045     }
3046 
3047     // Make sure the result is of the correct type.
3048     // (If function is requested for a definition, we always need to create a new
3049     // function, not just return a bitcast.)
3050     if (!IsForDefinition)
3051       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3052   }
3053 
3054   // This function doesn't have a complete type (for example, the return
3055   // type is an incomplete struct). Use a fake type instead, and make
3056   // sure not to try to set attributes.
3057   bool IsIncompleteFunction = false;
3058 
3059   llvm::FunctionType *FTy;
3060   if (isa<llvm::FunctionType>(Ty)) {
3061     FTy = cast<llvm::FunctionType>(Ty);
3062   } else {
3063     FTy = llvm::FunctionType::get(VoidTy, false);
3064     IsIncompleteFunction = true;
3065   }
3066 
3067   llvm::Function *F =
3068       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3069                              Entry ? StringRef() : MangledName, &getModule());
3070 
3071   // If we already created a function with the same mangled name (but different
3072   // type) before, take its name and add it to the list of functions to be
3073   // replaced with F at the end of CodeGen.
3074   //
3075   // This happens if there is a prototype for a function (e.g. "int f()") and
3076   // then a definition of a different type (e.g. "int f(int x)").
3077   if (Entry) {
3078     F->takeName(Entry);
3079 
3080     // This might be an implementation of a function without a prototype, in
3081     // which case, try to do special replacement of calls which match the new
3082     // prototype.  The really key thing here is that we also potentially drop
3083     // arguments from the call site so as to make a direct call, which makes the
3084     // inliner happier and suppresses a number of optimizer warnings (!) about
3085     // dropping arguments.
3086     if (!Entry->use_empty()) {
3087       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3088       Entry->removeDeadConstantUsers();
3089     }
3090 
3091     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3092         F, Entry->getType()->getElementType()->getPointerTo());
3093     addGlobalValReplacement(Entry, BC);
3094   }
3095 
3096   assert(F->getName() == MangledName && "name was uniqued!");
3097   if (D)
3098     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3099   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3100     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3101     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3102   }
3103 
3104   if (!DontDefer) {
3105     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3106     // each other bottoming out with the base dtor.  Therefore we emit non-base
3107     // dtors on usage, even if there is no dtor definition in the TU.
3108     if (D && isa<CXXDestructorDecl>(D) &&
3109         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3110                                            GD.getDtorType()))
3111       addDeferredDeclToEmit(GD);
3112 
3113     // This is the first use or definition of a mangled name.  If there is a
3114     // deferred decl with this name, remember that we need to emit it at the end
3115     // of the file.
3116     auto DDI = DeferredDecls.find(MangledName);
3117     if (DDI != DeferredDecls.end()) {
3118       // Move the potentially referenced deferred decl to the
3119       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3120       // don't need it anymore).
3121       addDeferredDeclToEmit(DDI->second);
3122       DeferredDecls.erase(DDI);
3123 
3124       // Otherwise, there are cases we have to worry about where we're
3125       // using a declaration for which we must emit a definition but where
3126       // we might not find a top-level definition:
3127       //   - member functions defined inline in their classes
3128       //   - friend functions defined inline in some class
3129       //   - special member functions with implicit definitions
3130       // If we ever change our AST traversal to walk into class methods,
3131       // this will be unnecessary.
3132       //
3133       // We also don't emit a definition for a function if it's going to be an
3134       // entry in a vtable, unless it's already marked as used.
3135     } else if (getLangOpts().CPlusPlus && D) {
3136       // Look for a declaration that's lexically in a record.
3137       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3138            FD = FD->getPreviousDecl()) {
3139         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3140           if (FD->doesThisDeclarationHaveABody()) {
3141             addDeferredDeclToEmit(GD.getWithDecl(FD));
3142             break;
3143           }
3144         }
3145       }
3146     }
3147   }
3148 
3149   // Make sure the result is of the requested type.
3150   if (!IsIncompleteFunction) {
3151     assert(F->getType()->getElementType() == Ty);
3152     return F;
3153   }
3154 
3155   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3156   return llvm::ConstantExpr::getBitCast(F, PTy);
3157 }
3158 
3159 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3160 /// non-null, then this function will use the specified type if it has to
3161 /// create it (this occurs when we see a definition of the function).
3162 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3163                                                  llvm::Type *Ty,
3164                                                  bool ForVTable,
3165                                                  bool DontDefer,
3166                                               ForDefinition_t IsForDefinition) {
3167   // If there was no specific requested type, just convert it now.
3168   if (!Ty) {
3169     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3170     Ty = getTypes().ConvertType(FD->getType());
3171   }
3172 
3173   // Devirtualized destructor calls may come through here instead of via
3174   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3175   // of the complete destructor when necessary.
3176   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3177     if (getTarget().getCXXABI().isMicrosoft() &&
3178         GD.getDtorType() == Dtor_Complete &&
3179         DD->getParent()->getNumVBases() == 0)
3180       GD = GlobalDecl(DD, Dtor_Base);
3181   }
3182 
3183   StringRef MangledName = getMangledName(GD);
3184   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3185                                  /*IsThunk=*/false, llvm::AttributeList(),
3186                                  IsForDefinition);
3187 }
3188 
3189 static const FunctionDecl *
3190 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3191   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3192   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3193 
3194   IdentifierInfo &CII = C.Idents.get(Name);
3195   for (const auto &Result : DC->lookup(&CII))
3196     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3197       return FD;
3198 
3199   if (!C.getLangOpts().CPlusPlus)
3200     return nullptr;
3201 
3202   // Demangle the premangled name from getTerminateFn()
3203   IdentifierInfo &CXXII =
3204       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3205           ? C.Idents.get("terminate")
3206           : C.Idents.get(Name);
3207 
3208   for (const auto &N : {"__cxxabiv1", "std"}) {
3209     IdentifierInfo &NS = C.Idents.get(N);
3210     for (const auto &Result : DC->lookup(&NS)) {
3211       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3212       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3213         for (const auto &Result : LSD->lookup(&NS))
3214           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3215             break;
3216 
3217       if (ND)
3218         for (const auto &Result : ND->lookup(&CXXII))
3219           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3220             return FD;
3221     }
3222   }
3223 
3224   return nullptr;
3225 }
3226 
3227 /// CreateRuntimeFunction - Create a new runtime function with the specified
3228 /// type and name.
3229 llvm::FunctionCallee
3230 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3231                                      llvm::AttributeList ExtraAttrs,
3232                                      bool Local) {
3233   llvm::Constant *C =
3234       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3235                               /*DontDefer=*/false, /*IsThunk=*/false,
3236                               ExtraAttrs);
3237 
3238   if (auto *F = dyn_cast<llvm::Function>(C)) {
3239     if (F->empty()) {
3240       F->setCallingConv(getRuntimeCC());
3241 
3242       // In Windows Itanium environments, try to mark runtime functions
3243       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3244       // will link their standard library statically or dynamically. Marking
3245       // functions imported when they are not imported can cause linker errors
3246       // and warnings.
3247       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3248           !getCodeGenOpts().LTOVisibilityPublicStd) {
3249         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3250         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3251           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3252           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3253         }
3254       }
3255       setDSOLocal(F);
3256     }
3257   }
3258 
3259   return {FTy, C};
3260 }
3261 
3262 /// isTypeConstant - Determine whether an object of this type can be emitted
3263 /// as a constant.
3264 ///
3265 /// If ExcludeCtor is true, the duration when the object's constructor runs
3266 /// will not be considered. The caller will need to verify that the object is
3267 /// not written to during its construction.
3268 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3269   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3270     return false;
3271 
3272   if (Context.getLangOpts().CPlusPlus) {
3273     if (const CXXRecordDecl *Record
3274           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3275       return ExcludeCtor && !Record->hasMutableFields() &&
3276              Record->hasTrivialDestructor();
3277   }
3278 
3279   return true;
3280 }
3281 
3282 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3283 /// create and return an llvm GlobalVariable with the specified type.  If there
3284 /// is something in the module with the specified name, return it potentially
3285 /// bitcasted to the right type.
3286 ///
3287 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3288 /// to set the attributes on the global when it is first created.
3289 ///
3290 /// If IsForDefinition is true, it is guaranteed that an actual global with
3291 /// type Ty will be returned, not conversion of a variable with the same
3292 /// mangled name but some other type.
3293 llvm::Constant *
3294 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3295                                      llvm::PointerType *Ty,
3296                                      const VarDecl *D,
3297                                      ForDefinition_t IsForDefinition) {
3298   // Lookup the entry, lazily creating it if necessary.
3299   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3300   if (Entry) {
3301     if (WeakRefReferences.erase(Entry)) {
3302       if (D && !D->hasAttr<WeakAttr>())
3303         Entry->setLinkage(llvm::Function::ExternalLinkage);
3304     }
3305 
3306     // Handle dropped DLL attributes.
3307     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3308       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3309 
3310     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3311       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3312 
3313     if (Entry->getType() == Ty)
3314       return Entry;
3315 
3316     // If there are two attempts to define the same mangled name, issue an
3317     // error.
3318     if (IsForDefinition && !Entry->isDeclaration()) {
3319       GlobalDecl OtherGD;
3320       const VarDecl *OtherD;
3321 
3322       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3323       // to make sure that we issue an error only once.
3324       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3325           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3326           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3327           OtherD->hasInit() &&
3328           DiagnosedConflictingDefinitions.insert(D).second) {
3329         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3330             << MangledName;
3331         getDiags().Report(OtherGD.getDecl()->getLocation(),
3332                           diag::note_previous_definition);
3333       }
3334     }
3335 
3336     // Make sure the result is of the correct type.
3337     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3338       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3339 
3340     // (If global is requested for a definition, we always need to create a new
3341     // global, not just return a bitcast.)
3342     if (!IsForDefinition)
3343       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3344   }
3345 
3346   auto AddrSpace = GetGlobalVarAddressSpace(D);
3347   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3348 
3349   auto *GV = new llvm::GlobalVariable(
3350       getModule(), Ty->getElementType(), false,
3351       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3352       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3353 
3354   // If we already created a global with the same mangled name (but different
3355   // type) before, take its name and remove it from its parent.
3356   if (Entry) {
3357     GV->takeName(Entry);
3358 
3359     if (!Entry->use_empty()) {
3360       llvm::Constant *NewPtrForOldDecl =
3361           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3362       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3363     }
3364 
3365     Entry->eraseFromParent();
3366   }
3367 
3368   // This is the first use or definition of a mangled name.  If there is a
3369   // deferred decl with this name, remember that we need to emit it at the end
3370   // of the file.
3371   auto DDI = DeferredDecls.find(MangledName);
3372   if (DDI != DeferredDecls.end()) {
3373     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3374     // list, and remove it from DeferredDecls (since we don't need it anymore).
3375     addDeferredDeclToEmit(DDI->second);
3376     DeferredDecls.erase(DDI);
3377   }
3378 
3379   // Handle things which are present even on external declarations.
3380   if (D) {
3381     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3382       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3383 
3384     // FIXME: This code is overly simple and should be merged with other global
3385     // handling.
3386     GV->setConstant(isTypeConstant(D->getType(), false));
3387 
3388     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3389 
3390     setLinkageForGV(GV, D);
3391 
3392     if (D->getTLSKind()) {
3393       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3394         CXXThreadLocals.push_back(D);
3395       setTLSMode(GV, *D);
3396     }
3397 
3398     setGVProperties(GV, D);
3399 
3400     // If required by the ABI, treat declarations of static data members with
3401     // inline initializers as definitions.
3402     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3403       EmitGlobalVarDefinition(D);
3404     }
3405 
3406     // Emit section information for extern variables.
3407     if (D->hasExternalStorage()) {
3408       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3409         GV->setSection(SA->getName());
3410     }
3411 
3412     // Handle XCore specific ABI requirements.
3413     if (getTriple().getArch() == llvm::Triple::xcore &&
3414         D->getLanguageLinkage() == CLanguageLinkage &&
3415         D->getType().isConstant(Context) &&
3416         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3417       GV->setSection(".cp.rodata");
3418 
3419     // Check if we a have a const declaration with an initializer, we may be
3420     // able to emit it as available_externally to expose it's value to the
3421     // optimizer.
3422     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3423         D->getType().isConstQualified() && !GV->hasInitializer() &&
3424         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3425       const auto *Record =
3426           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3427       bool HasMutableFields = Record && Record->hasMutableFields();
3428       if (!HasMutableFields) {
3429         const VarDecl *InitDecl;
3430         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3431         if (InitExpr) {
3432           ConstantEmitter emitter(*this);
3433           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3434           if (Init) {
3435             auto *InitType = Init->getType();
3436             if (GV->getType()->getElementType() != InitType) {
3437               // The type of the initializer does not match the definition.
3438               // This happens when an initializer has a different type from
3439               // the type of the global (because of padding at the end of a
3440               // structure for instance).
3441               GV->setName(StringRef());
3442               // Make a new global with the correct type, this is now guaranteed
3443               // to work.
3444               auto *NewGV = cast<llvm::GlobalVariable>(
3445                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3446 
3447               // Erase the old global, since it is no longer used.
3448               GV->eraseFromParent();
3449               GV = NewGV;
3450             } else {
3451               GV->setInitializer(Init);
3452               GV->setConstant(true);
3453               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3454             }
3455             emitter.finalize(GV);
3456           }
3457         }
3458       }
3459     }
3460   }
3461 
3462   LangAS ExpectedAS =
3463       D ? D->getType().getAddressSpace()
3464         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3465   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3466          Ty->getPointerAddressSpace());
3467   if (AddrSpace != ExpectedAS)
3468     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3469                                                        ExpectedAS, Ty);
3470 
3471   if (GV->isDeclaration())
3472     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3473 
3474   return GV;
3475 }
3476 
3477 llvm::Constant *
3478 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3479                                ForDefinition_t IsForDefinition) {
3480   const Decl *D = GD.getDecl();
3481   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3482     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3483                                 /*DontDefer=*/false, IsForDefinition);
3484   else if (isa<CXXMethodDecl>(D)) {
3485     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3486         cast<CXXMethodDecl>(D));
3487     auto Ty = getTypes().GetFunctionType(*FInfo);
3488     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3489                              IsForDefinition);
3490   } else if (isa<FunctionDecl>(D)) {
3491     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3492     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3493     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3494                              IsForDefinition);
3495   } else
3496     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3497                               IsForDefinition);
3498 }
3499 
3500 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3501     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3502     unsigned Alignment) {
3503   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3504   llvm::GlobalVariable *OldGV = nullptr;
3505 
3506   if (GV) {
3507     // Check if the variable has the right type.
3508     if (GV->getType()->getElementType() == Ty)
3509       return GV;
3510 
3511     // Because C++ name mangling, the only way we can end up with an already
3512     // existing global with the same name is if it has been declared extern "C".
3513     assert(GV->isDeclaration() && "Declaration has wrong type!");
3514     OldGV = GV;
3515   }
3516 
3517   // Create a new variable.
3518   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3519                                 Linkage, nullptr, Name);
3520 
3521   if (OldGV) {
3522     // Replace occurrences of the old variable if needed.
3523     GV->takeName(OldGV);
3524 
3525     if (!OldGV->use_empty()) {
3526       llvm::Constant *NewPtrForOldDecl =
3527       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3528       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3529     }
3530 
3531     OldGV->eraseFromParent();
3532   }
3533 
3534   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3535       !GV->hasAvailableExternallyLinkage())
3536     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3537 
3538   GV->setAlignment(Alignment);
3539 
3540   return GV;
3541 }
3542 
3543 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3544 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3545 /// then it will be created with the specified type instead of whatever the
3546 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3547 /// that an actual global with type Ty will be returned, not conversion of a
3548 /// variable with the same mangled name but some other type.
3549 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3550                                                   llvm::Type *Ty,
3551                                            ForDefinition_t IsForDefinition) {
3552   assert(D->hasGlobalStorage() && "Not a global variable");
3553   QualType ASTTy = D->getType();
3554   if (!Ty)
3555     Ty = getTypes().ConvertTypeForMem(ASTTy);
3556 
3557   llvm::PointerType *PTy =
3558     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3559 
3560   StringRef MangledName = getMangledName(D);
3561   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3562 }
3563 
3564 /// CreateRuntimeVariable - Create a new runtime global variable with the
3565 /// specified type and name.
3566 llvm::Constant *
3567 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3568                                      StringRef Name) {
3569   auto *Ret =
3570       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3571   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3572   return Ret;
3573 }
3574 
3575 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3576   assert(!D->getInit() && "Cannot emit definite definitions here!");
3577 
3578   StringRef MangledName = getMangledName(D);
3579   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3580 
3581   // We already have a definition, not declaration, with the same mangled name.
3582   // Emitting of declaration is not required (and actually overwrites emitted
3583   // definition).
3584   if (GV && !GV->isDeclaration())
3585     return;
3586 
3587   // If we have not seen a reference to this variable yet, place it into the
3588   // deferred declarations table to be emitted if needed later.
3589   if (!MustBeEmitted(D) && !GV) {
3590       DeferredDecls[MangledName] = D;
3591       return;
3592   }
3593 
3594   // The tentative definition is the only definition.
3595   EmitGlobalVarDefinition(D);
3596 }
3597 
3598 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3599   return Context.toCharUnitsFromBits(
3600       getDataLayout().getTypeStoreSizeInBits(Ty));
3601 }
3602 
3603 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3604   LangAS AddrSpace = LangAS::Default;
3605   if (LangOpts.OpenCL) {
3606     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3607     assert(AddrSpace == LangAS::opencl_global ||
3608            AddrSpace == LangAS::opencl_constant ||
3609            AddrSpace == LangAS::opencl_local ||
3610            AddrSpace >= LangAS::FirstTargetAddressSpace);
3611     return AddrSpace;
3612   }
3613 
3614   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3615     if (D && D->hasAttr<CUDAConstantAttr>())
3616       return LangAS::cuda_constant;
3617     else if (D && D->hasAttr<CUDASharedAttr>())
3618       return LangAS::cuda_shared;
3619     else if (D && D->hasAttr<CUDADeviceAttr>())
3620       return LangAS::cuda_device;
3621     else if (D && D->getType().isConstQualified())
3622       return LangAS::cuda_constant;
3623     else
3624       return LangAS::cuda_device;
3625   }
3626 
3627   if (LangOpts.OpenMP) {
3628     LangAS AS;
3629     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3630       return AS;
3631   }
3632   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3633 }
3634 
3635 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3636   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3637   if (LangOpts.OpenCL)
3638     return LangAS::opencl_constant;
3639   if (auto AS = getTarget().getConstantAddressSpace())
3640     return AS.getValue();
3641   return LangAS::Default;
3642 }
3643 
3644 // In address space agnostic languages, string literals are in default address
3645 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3646 // emitted in constant address space in LLVM IR. To be consistent with other
3647 // parts of AST, string literal global variables in constant address space
3648 // need to be casted to default address space before being put into address
3649 // map and referenced by other part of CodeGen.
3650 // In OpenCL, string literals are in constant address space in AST, therefore
3651 // they should not be casted to default address space.
3652 static llvm::Constant *
3653 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3654                                        llvm::GlobalVariable *GV) {
3655   llvm::Constant *Cast = GV;
3656   if (!CGM.getLangOpts().OpenCL) {
3657     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3658       if (AS != LangAS::Default)
3659         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3660             CGM, GV, AS.getValue(), LangAS::Default,
3661             GV->getValueType()->getPointerTo(
3662                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3663     }
3664   }
3665   return Cast;
3666 }
3667 
3668 template<typename SomeDecl>
3669 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3670                                                llvm::GlobalValue *GV) {
3671   if (!getLangOpts().CPlusPlus)
3672     return;
3673 
3674   // Must have 'used' attribute, or else inline assembly can't rely on
3675   // the name existing.
3676   if (!D->template hasAttr<UsedAttr>())
3677     return;
3678 
3679   // Must have internal linkage and an ordinary name.
3680   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3681     return;
3682 
3683   // Must be in an extern "C" context. Entities declared directly within
3684   // a record are not extern "C" even if the record is in such a context.
3685   const SomeDecl *First = D->getFirstDecl();
3686   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3687     return;
3688 
3689   // OK, this is an internal linkage entity inside an extern "C" linkage
3690   // specification. Make a note of that so we can give it the "expected"
3691   // mangled name if nothing else is using that name.
3692   std::pair<StaticExternCMap::iterator, bool> R =
3693       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3694 
3695   // If we have multiple internal linkage entities with the same name
3696   // in extern "C" regions, none of them gets that name.
3697   if (!R.second)
3698     R.first->second = nullptr;
3699 }
3700 
3701 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3702   if (!CGM.supportsCOMDAT())
3703     return false;
3704 
3705   if (D.hasAttr<SelectAnyAttr>())
3706     return true;
3707 
3708   GVALinkage Linkage;
3709   if (auto *VD = dyn_cast<VarDecl>(&D))
3710     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3711   else
3712     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3713 
3714   switch (Linkage) {
3715   case GVA_Internal:
3716   case GVA_AvailableExternally:
3717   case GVA_StrongExternal:
3718     return false;
3719   case GVA_DiscardableODR:
3720   case GVA_StrongODR:
3721     return true;
3722   }
3723   llvm_unreachable("No such linkage");
3724 }
3725 
3726 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3727                                           llvm::GlobalObject &GO) {
3728   if (!shouldBeInCOMDAT(*this, D))
3729     return;
3730   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3731 }
3732 
3733 /// Pass IsTentative as true if you want to create a tentative definition.
3734 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3735                                             bool IsTentative) {
3736   // OpenCL global variables of sampler type are translated to function calls,
3737   // therefore no need to be translated.
3738   QualType ASTTy = D->getType();
3739   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3740     return;
3741 
3742   // If this is OpenMP device, check if it is legal to emit this global
3743   // normally.
3744   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3745       OpenMPRuntime->emitTargetGlobalVariable(D))
3746     return;
3747 
3748   llvm::Constant *Init = nullptr;
3749   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3750   bool NeedsGlobalCtor = false;
3751   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3752 
3753   const VarDecl *InitDecl;
3754   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3755 
3756   Optional<ConstantEmitter> emitter;
3757 
3758   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3759   // as part of their declaration."  Sema has already checked for
3760   // error cases, so we just need to set Init to UndefValue.
3761   bool IsCUDASharedVar =
3762       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3763   // Shadows of initialized device-side global variables are also left
3764   // undefined.
3765   bool IsCUDAShadowVar =
3766       !getLangOpts().CUDAIsDevice &&
3767       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3768        D->hasAttr<CUDASharedAttr>());
3769   if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar))
3770     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3771   else if (!InitExpr) {
3772     // This is a tentative definition; tentative definitions are
3773     // implicitly initialized with { 0 }.
3774     //
3775     // Note that tentative definitions are only emitted at the end of
3776     // a translation unit, so they should never have incomplete
3777     // type. In addition, EmitTentativeDefinition makes sure that we
3778     // never attempt to emit a tentative definition if a real one
3779     // exists. A use may still exists, however, so we still may need
3780     // to do a RAUW.
3781     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3782     Init = EmitNullConstant(D->getType());
3783   } else {
3784     initializedGlobalDecl = GlobalDecl(D);
3785     emitter.emplace(*this);
3786     Init = emitter->tryEmitForInitializer(*InitDecl);
3787 
3788     if (!Init) {
3789       QualType T = InitExpr->getType();
3790       if (D->getType()->isReferenceType())
3791         T = D->getType();
3792 
3793       if (getLangOpts().CPlusPlus) {
3794         Init = EmitNullConstant(T);
3795         NeedsGlobalCtor = true;
3796       } else {
3797         ErrorUnsupported(D, "static initializer");
3798         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3799       }
3800     } else {
3801       // We don't need an initializer, so remove the entry for the delayed
3802       // initializer position (just in case this entry was delayed) if we
3803       // also don't need to register a destructor.
3804       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3805         DelayedCXXInitPosition.erase(D);
3806     }
3807   }
3808 
3809   llvm::Type* InitType = Init->getType();
3810   llvm::Constant *Entry =
3811       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3812 
3813   // Strip off a bitcast if we got one back.
3814   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3815     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3816            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3817            // All zero index gep.
3818            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3819     Entry = CE->getOperand(0);
3820   }
3821 
3822   // Entry is now either a Function or GlobalVariable.
3823   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3824 
3825   // We have a definition after a declaration with the wrong type.
3826   // We must make a new GlobalVariable* and update everything that used OldGV
3827   // (a declaration or tentative definition) with the new GlobalVariable*
3828   // (which will be a definition).
3829   //
3830   // This happens if there is a prototype for a global (e.g.
3831   // "extern int x[];") and then a definition of a different type (e.g.
3832   // "int x[10];"). This also happens when an initializer has a different type
3833   // from the type of the global (this happens with unions).
3834   if (!GV || GV->getType()->getElementType() != InitType ||
3835       GV->getType()->getAddressSpace() !=
3836           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3837 
3838     // Move the old entry aside so that we'll create a new one.
3839     Entry->setName(StringRef());
3840 
3841     // Make a new global with the correct type, this is now guaranteed to work.
3842     GV = cast<llvm::GlobalVariable>(
3843         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3844 
3845     // Replace all uses of the old global with the new global
3846     llvm::Constant *NewPtrForOldDecl =
3847         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3848     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3849 
3850     // Erase the old global, since it is no longer used.
3851     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3852   }
3853 
3854   MaybeHandleStaticInExternC(D, GV);
3855 
3856   if (D->hasAttr<AnnotateAttr>())
3857     AddGlobalAnnotations(D, GV);
3858 
3859   // Set the llvm linkage type as appropriate.
3860   llvm::GlobalValue::LinkageTypes Linkage =
3861       getLLVMLinkageVarDefinition(D, GV->isConstant());
3862 
3863   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3864   // the device. [...]"
3865   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3866   // __device__, declares a variable that: [...]
3867   // Is accessible from all the threads within the grid and from the host
3868   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3869   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3870   if (GV && LangOpts.CUDA) {
3871     if (LangOpts.CUDAIsDevice) {
3872       if (Linkage != llvm::GlobalValue::InternalLinkage &&
3873           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
3874         GV->setExternallyInitialized(true);
3875     } else {
3876       // Host-side shadows of external declarations of device-side
3877       // global variables become internal definitions. These have to
3878       // be internal in order to prevent name conflicts with global
3879       // host variables with the same name in a different TUs.
3880       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3881         Linkage = llvm::GlobalValue::InternalLinkage;
3882 
3883         // Shadow variables and their properties must be registered
3884         // with CUDA runtime.
3885         unsigned Flags = 0;
3886         if (!D->hasDefinition())
3887           Flags |= CGCUDARuntime::ExternDeviceVar;
3888         if (D->hasAttr<CUDAConstantAttr>())
3889           Flags |= CGCUDARuntime::ConstantDeviceVar;
3890         // Extern global variables will be registered in the TU where they are
3891         // defined.
3892         if (!D->hasExternalStorage())
3893           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
3894       } else if (D->hasAttr<CUDASharedAttr>())
3895         // __shared__ variables are odd. Shadows do get created, but
3896         // they are not registered with the CUDA runtime, so they
3897         // can't really be used to access their device-side
3898         // counterparts. It's not clear yet whether it's nvcc's bug or
3899         // a feature, but we've got to do the same for compatibility.
3900         Linkage = llvm::GlobalValue::InternalLinkage;
3901     }
3902   }
3903 
3904   GV->setInitializer(Init);
3905   if (emitter) emitter->finalize(GV);
3906 
3907   // If it is safe to mark the global 'constant', do so now.
3908   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3909                   isTypeConstant(D->getType(), true));
3910 
3911   // If it is in a read-only section, mark it 'constant'.
3912   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3913     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3914     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3915       GV->setConstant(true);
3916   }
3917 
3918   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3919 
3920 
3921   // On Darwin, if the normal linkage of a C++ thread_local variable is
3922   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3923   // copies within a linkage unit; otherwise, the backing variable has
3924   // internal linkage and all accesses should just be calls to the
3925   // Itanium-specified entry point, which has the normal linkage of the
3926   // variable. This is to preserve the ability to change the implementation
3927   // behind the scenes.
3928   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3929       Context.getTargetInfo().getTriple().isOSDarwin() &&
3930       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3931       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3932     Linkage = llvm::GlobalValue::InternalLinkage;
3933 
3934   GV->setLinkage(Linkage);
3935   if (D->hasAttr<DLLImportAttr>())
3936     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3937   else if (D->hasAttr<DLLExportAttr>())
3938     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3939   else
3940     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3941 
3942   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3943     // common vars aren't constant even if declared const.
3944     GV->setConstant(false);
3945     // Tentative definition of global variables may be initialized with
3946     // non-zero null pointers. In this case they should have weak linkage
3947     // since common linkage must have zero initializer and must not have
3948     // explicit section therefore cannot have non-zero initial value.
3949     if (!GV->getInitializer()->isNullValue())
3950       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3951   }
3952 
3953   setNonAliasAttributes(D, GV);
3954 
3955   if (D->getTLSKind() && !GV->isThreadLocal()) {
3956     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3957       CXXThreadLocals.push_back(D);
3958     setTLSMode(GV, *D);
3959   }
3960 
3961   maybeSetTrivialComdat(*D, *GV);
3962 
3963   // Emit the initializer function if necessary.
3964   if (NeedsGlobalCtor || NeedsGlobalDtor)
3965     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3966 
3967   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3968 
3969   // Emit global variable debug information.
3970   if (CGDebugInfo *DI = getModuleDebugInfo())
3971     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3972       DI->EmitGlobalVariable(GV, D);
3973 }
3974 
3975 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3976                                       CodeGenModule &CGM, const VarDecl *D,
3977                                       bool NoCommon) {
3978   // Don't give variables common linkage if -fno-common was specified unless it
3979   // was overridden by a NoCommon attribute.
3980   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3981     return true;
3982 
3983   // C11 6.9.2/2:
3984   //   A declaration of an identifier for an object that has file scope without
3985   //   an initializer, and without a storage-class specifier or with the
3986   //   storage-class specifier static, constitutes a tentative definition.
3987   if (D->getInit() || D->hasExternalStorage())
3988     return true;
3989 
3990   // A variable cannot be both common and exist in a section.
3991   if (D->hasAttr<SectionAttr>())
3992     return true;
3993 
3994   // A variable cannot be both common and exist in a section.
3995   // We don't try to determine which is the right section in the front-end.
3996   // If no specialized section name is applicable, it will resort to default.
3997   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3998       D->hasAttr<PragmaClangDataSectionAttr>() ||
3999       D->hasAttr<PragmaClangRodataSectionAttr>())
4000     return true;
4001 
4002   // Thread local vars aren't considered common linkage.
4003   if (D->getTLSKind())
4004     return true;
4005 
4006   // Tentative definitions marked with WeakImportAttr are true definitions.
4007   if (D->hasAttr<WeakImportAttr>())
4008     return true;
4009 
4010   // A variable cannot be both common and exist in a comdat.
4011   if (shouldBeInCOMDAT(CGM, *D))
4012     return true;
4013 
4014   // Declarations with a required alignment do not have common linkage in MSVC
4015   // mode.
4016   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4017     if (D->hasAttr<AlignedAttr>())
4018       return true;
4019     QualType VarType = D->getType();
4020     if (Context.isAlignmentRequired(VarType))
4021       return true;
4022 
4023     if (const auto *RT = VarType->getAs<RecordType>()) {
4024       const RecordDecl *RD = RT->getDecl();
4025       for (const FieldDecl *FD : RD->fields()) {
4026         if (FD->isBitField())
4027           continue;
4028         if (FD->hasAttr<AlignedAttr>())
4029           return true;
4030         if (Context.isAlignmentRequired(FD->getType()))
4031           return true;
4032       }
4033     }
4034   }
4035 
4036   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4037   // common symbols, so symbols with greater alignment requirements cannot be
4038   // common.
4039   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4040   // alignments for common symbols via the aligncomm directive, so this
4041   // restriction only applies to MSVC environments.
4042   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4043       Context.getTypeAlignIfKnown(D->getType()) >
4044           Context.toBits(CharUnits::fromQuantity(32)))
4045     return true;
4046 
4047   return false;
4048 }
4049 
4050 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4051     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4052   if (Linkage == GVA_Internal)
4053     return llvm::Function::InternalLinkage;
4054 
4055   if (D->hasAttr<WeakAttr>()) {
4056     if (IsConstantVariable)
4057       return llvm::GlobalVariable::WeakODRLinkage;
4058     else
4059       return llvm::GlobalVariable::WeakAnyLinkage;
4060   }
4061 
4062   if (const auto *FD = D->getAsFunction())
4063     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4064       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4065 
4066   // We are guaranteed to have a strong definition somewhere else,
4067   // so we can use available_externally linkage.
4068   if (Linkage == GVA_AvailableExternally)
4069     return llvm::GlobalValue::AvailableExternallyLinkage;
4070 
4071   // Note that Apple's kernel linker doesn't support symbol
4072   // coalescing, so we need to avoid linkonce and weak linkages there.
4073   // Normally, this means we just map to internal, but for explicit
4074   // instantiations we'll map to external.
4075 
4076   // In C++, the compiler has to emit a definition in every translation unit
4077   // that references the function.  We should use linkonce_odr because
4078   // a) if all references in this translation unit are optimized away, we
4079   // don't need to codegen it.  b) if the function persists, it needs to be
4080   // merged with other definitions. c) C++ has the ODR, so we know the
4081   // definition is dependable.
4082   if (Linkage == GVA_DiscardableODR)
4083     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4084                                             : llvm::Function::InternalLinkage;
4085 
4086   // An explicit instantiation of a template has weak linkage, since
4087   // explicit instantiations can occur in multiple translation units
4088   // and must all be equivalent. However, we are not allowed to
4089   // throw away these explicit instantiations.
4090   //
4091   // We don't currently support CUDA device code spread out across multiple TUs,
4092   // so say that CUDA templates are either external (for kernels) or internal.
4093   // This lets llvm perform aggressive inter-procedural optimizations.
4094   if (Linkage == GVA_StrongODR) {
4095     if (Context.getLangOpts().AppleKext)
4096       return llvm::Function::ExternalLinkage;
4097     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4098       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4099                                           : llvm::Function::InternalLinkage;
4100     return llvm::Function::WeakODRLinkage;
4101   }
4102 
4103   // C++ doesn't have tentative definitions and thus cannot have common
4104   // linkage.
4105   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4106       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4107                                  CodeGenOpts.NoCommon))
4108     return llvm::GlobalVariable::CommonLinkage;
4109 
4110   // selectany symbols are externally visible, so use weak instead of
4111   // linkonce.  MSVC optimizes away references to const selectany globals, so
4112   // all definitions should be the same and ODR linkage should be used.
4113   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4114   if (D->hasAttr<SelectAnyAttr>())
4115     return llvm::GlobalVariable::WeakODRLinkage;
4116 
4117   // Otherwise, we have strong external linkage.
4118   assert(Linkage == GVA_StrongExternal);
4119   return llvm::GlobalVariable::ExternalLinkage;
4120 }
4121 
4122 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4123     const VarDecl *VD, bool IsConstant) {
4124   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4125   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4126 }
4127 
4128 /// Replace the uses of a function that was declared with a non-proto type.
4129 /// We want to silently drop extra arguments from call sites
4130 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4131                                           llvm::Function *newFn) {
4132   // Fast path.
4133   if (old->use_empty()) return;
4134 
4135   llvm::Type *newRetTy = newFn->getReturnType();
4136   SmallVector<llvm::Value*, 4> newArgs;
4137   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4138 
4139   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4140          ui != ue; ) {
4141     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4142     llvm::User *user = use->getUser();
4143 
4144     // Recognize and replace uses of bitcasts.  Most calls to
4145     // unprototyped functions will use bitcasts.
4146     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4147       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4148         replaceUsesOfNonProtoConstant(bitcast, newFn);
4149       continue;
4150     }
4151 
4152     // Recognize calls to the function.
4153     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4154     if (!callSite) continue;
4155     if (!callSite->isCallee(&*use))
4156       continue;
4157 
4158     // If the return types don't match exactly, then we can't
4159     // transform this call unless it's dead.
4160     if (callSite->getType() != newRetTy && !callSite->use_empty())
4161       continue;
4162 
4163     // Get the call site's attribute list.
4164     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4165     llvm::AttributeList oldAttrs = callSite->getAttributes();
4166 
4167     // If the function was passed too few arguments, don't transform.
4168     unsigned newNumArgs = newFn->arg_size();
4169     if (callSite->arg_size() < newNumArgs)
4170       continue;
4171 
4172     // If extra arguments were passed, we silently drop them.
4173     // If any of the types mismatch, we don't transform.
4174     unsigned argNo = 0;
4175     bool dontTransform = false;
4176     for (llvm::Argument &A : newFn->args()) {
4177       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4178         dontTransform = true;
4179         break;
4180       }
4181 
4182       // Add any parameter attributes.
4183       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4184       argNo++;
4185     }
4186     if (dontTransform)
4187       continue;
4188 
4189     // Okay, we can transform this.  Create the new call instruction and copy
4190     // over the required information.
4191     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4192 
4193     // Copy over any operand bundles.
4194     callSite->getOperandBundlesAsDefs(newBundles);
4195 
4196     llvm::CallBase *newCall;
4197     if (dyn_cast<llvm::CallInst>(callSite)) {
4198       newCall =
4199           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4200     } else {
4201       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4202       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4203                                          oldInvoke->getUnwindDest(), newArgs,
4204                                          newBundles, "", callSite);
4205     }
4206     newArgs.clear(); // for the next iteration
4207 
4208     if (!newCall->getType()->isVoidTy())
4209       newCall->takeName(callSite);
4210     newCall->setAttributes(llvm::AttributeList::get(
4211         newFn->getContext(), oldAttrs.getFnAttributes(),
4212         oldAttrs.getRetAttributes(), newArgAttrs));
4213     newCall->setCallingConv(callSite->getCallingConv());
4214 
4215     // Finally, remove the old call, replacing any uses with the new one.
4216     if (!callSite->use_empty())
4217       callSite->replaceAllUsesWith(newCall);
4218 
4219     // Copy debug location attached to CI.
4220     if (callSite->getDebugLoc())
4221       newCall->setDebugLoc(callSite->getDebugLoc());
4222 
4223     callSite->eraseFromParent();
4224   }
4225 }
4226 
4227 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4228 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4229 /// existing call uses of the old function in the module, this adjusts them to
4230 /// call the new function directly.
4231 ///
4232 /// This is not just a cleanup: the always_inline pass requires direct calls to
4233 /// functions to be able to inline them.  If there is a bitcast in the way, it
4234 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4235 /// run at -O0.
4236 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4237                                                       llvm::Function *NewFn) {
4238   // If we're redefining a global as a function, don't transform it.
4239   if (!isa<llvm::Function>(Old)) return;
4240 
4241   replaceUsesOfNonProtoConstant(Old, NewFn);
4242 }
4243 
4244 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4245   auto DK = VD->isThisDeclarationADefinition();
4246   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4247     return;
4248 
4249   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4250   // If we have a definition, this might be a deferred decl. If the
4251   // instantiation is explicit, make sure we emit it at the end.
4252   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4253     GetAddrOfGlobalVar(VD);
4254 
4255   EmitTopLevelDecl(VD);
4256 }
4257 
4258 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4259                                                  llvm::GlobalValue *GV) {
4260   const auto *D = cast<FunctionDecl>(GD.getDecl());
4261 
4262   // Compute the function info and LLVM type.
4263   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4264   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4265 
4266   // Get or create the prototype for the function.
4267   if (!GV || (GV->getType()->getElementType() != Ty))
4268     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4269                                                    /*DontDefer=*/true,
4270                                                    ForDefinition));
4271 
4272   // Already emitted.
4273   if (!GV->isDeclaration())
4274     return;
4275 
4276   // We need to set linkage and visibility on the function before
4277   // generating code for it because various parts of IR generation
4278   // want to propagate this information down (e.g. to local static
4279   // declarations).
4280   auto *Fn = cast<llvm::Function>(GV);
4281   setFunctionLinkage(GD, Fn);
4282 
4283   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4284   setGVProperties(Fn, GD);
4285 
4286   MaybeHandleStaticInExternC(D, Fn);
4287 
4288 
4289   maybeSetTrivialComdat(*D, *Fn);
4290 
4291   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4292 
4293   setNonAliasAttributes(GD, Fn);
4294   SetLLVMFunctionAttributesForDefinition(D, Fn);
4295 
4296   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4297     AddGlobalCtor(Fn, CA->getPriority());
4298   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4299     AddGlobalDtor(Fn, DA->getPriority());
4300   if (D->hasAttr<AnnotateAttr>())
4301     AddGlobalAnnotations(D, Fn);
4302 }
4303 
4304 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4305   const auto *D = cast<ValueDecl>(GD.getDecl());
4306   const AliasAttr *AA = D->getAttr<AliasAttr>();
4307   assert(AA && "Not an alias?");
4308 
4309   StringRef MangledName = getMangledName(GD);
4310 
4311   if (AA->getAliasee() == MangledName) {
4312     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4313     return;
4314   }
4315 
4316   // If there is a definition in the module, then it wins over the alias.
4317   // This is dubious, but allow it to be safe.  Just ignore the alias.
4318   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4319   if (Entry && !Entry->isDeclaration())
4320     return;
4321 
4322   Aliases.push_back(GD);
4323 
4324   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4325 
4326   // Create a reference to the named value.  This ensures that it is emitted
4327   // if a deferred decl.
4328   llvm::Constant *Aliasee;
4329   if (isa<llvm::FunctionType>(DeclTy))
4330     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4331                                       /*ForVTable=*/false);
4332   else
4333     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4334                                     llvm::PointerType::getUnqual(DeclTy),
4335                                     /*D=*/nullptr);
4336 
4337   // Create the new alias itself, but don't set a name yet.
4338   auto *GA = llvm::GlobalAlias::create(
4339       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4340 
4341   if (Entry) {
4342     if (GA->getAliasee() == Entry) {
4343       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4344       return;
4345     }
4346 
4347     assert(Entry->isDeclaration());
4348 
4349     // If there is a declaration in the module, then we had an extern followed
4350     // by the alias, as in:
4351     //   extern int test6();
4352     //   ...
4353     //   int test6() __attribute__((alias("test7")));
4354     //
4355     // Remove it and replace uses of it with the alias.
4356     GA->takeName(Entry);
4357 
4358     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4359                                                           Entry->getType()));
4360     Entry->eraseFromParent();
4361   } else {
4362     GA->setName(MangledName);
4363   }
4364 
4365   // Set attributes which are particular to an alias; this is a
4366   // specialization of the attributes which may be set on a global
4367   // variable/function.
4368   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4369       D->isWeakImported()) {
4370     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4371   }
4372 
4373   if (const auto *VD = dyn_cast<VarDecl>(D))
4374     if (VD->getTLSKind())
4375       setTLSMode(GA, *VD);
4376 
4377   SetCommonAttributes(GD, GA);
4378 }
4379 
4380 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4381   const auto *D = cast<ValueDecl>(GD.getDecl());
4382   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4383   assert(IFA && "Not an ifunc?");
4384 
4385   StringRef MangledName = getMangledName(GD);
4386 
4387   if (IFA->getResolver() == MangledName) {
4388     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4389     return;
4390   }
4391 
4392   // Report an error if some definition overrides ifunc.
4393   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4394   if (Entry && !Entry->isDeclaration()) {
4395     GlobalDecl OtherGD;
4396     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4397         DiagnosedConflictingDefinitions.insert(GD).second) {
4398       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4399           << MangledName;
4400       Diags.Report(OtherGD.getDecl()->getLocation(),
4401                    diag::note_previous_definition);
4402     }
4403     return;
4404   }
4405 
4406   Aliases.push_back(GD);
4407 
4408   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4409   llvm::Constant *Resolver =
4410       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4411                               /*ForVTable=*/false);
4412   llvm::GlobalIFunc *GIF =
4413       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4414                                 "", Resolver, &getModule());
4415   if (Entry) {
4416     if (GIF->getResolver() == Entry) {
4417       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4418       return;
4419     }
4420     assert(Entry->isDeclaration());
4421 
4422     // If there is a declaration in the module, then we had an extern followed
4423     // by the ifunc, as in:
4424     //   extern int test();
4425     //   ...
4426     //   int test() __attribute__((ifunc("resolver")));
4427     //
4428     // Remove it and replace uses of it with the ifunc.
4429     GIF->takeName(Entry);
4430 
4431     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4432                                                           Entry->getType()));
4433     Entry->eraseFromParent();
4434   } else
4435     GIF->setName(MangledName);
4436 
4437   SetCommonAttributes(GD, GIF);
4438 }
4439 
4440 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4441                                             ArrayRef<llvm::Type*> Tys) {
4442   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4443                                          Tys);
4444 }
4445 
4446 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4447 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4448                          const StringLiteral *Literal, bool TargetIsLSB,
4449                          bool &IsUTF16, unsigned &StringLength) {
4450   StringRef String = Literal->getString();
4451   unsigned NumBytes = String.size();
4452 
4453   // Check for simple case.
4454   if (!Literal->containsNonAsciiOrNull()) {
4455     StringLength = NumBytes;
4456     return *Map.insert(std::make_pair(String, nullptr)).first;
4457   }
4458 
4459   // Otherwise, convert the UTF8 literals into a string of shorts.
4460   IsUTF16 = true;
4461 
4462   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4463   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4464   llvm::UTF16 *ToPtr = &ToBuf[0];
4465 
4466   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4467                                  ToPtr + NumBytes, llvm::strictConversion);
4468 
4469   // ConvertUTF8toUTF16 returns the length in ToPtr.
4470   StringLength = ToPtr - &ToBuf[0];
4471 
4472   // Add an explicit null.
4473   *ToPtr = 0;
4474   return *Map.insert(std::make_pair(
4475                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4476                                    (StringLength + 1) * 2),
4477                          nullptr)).first;
4478 }
4479 
4480 ConstantAddress
4481 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4482   unsigned StringLength = 0;
4483   bool isUTF16 = false;
4484   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4485       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4486                                getDataLayout().isLittleEndian(), isUTF16,
4487                                StringLength);
4488 
4489   if (auto *C = Entry.second)
4490     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4491 
4492   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4493   llvm::Constant *Zeros[] = { Zero, Zero };
4494 
4495   const ASTContext &Context = getContext();
4496   const llvm::Triple &Triple = getTriple();
4497 
4498   const auto CFRuntime = getLangOpts().CFRuntime;
4499   const bool IsSwiftABI =
4500       static_cast<unsigned>(CFRuntime) >=
4501       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4502   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4503 
4504   // If we don't already have it, get __CFConstantStringClassReference.
4505   if (!CFConstantStringClassRef) {
4506     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4507     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4508     Ty = llvm::ArrayType::get(Ty, 0);
4509 
4510     switch (CFRuntime) {
4511     default: break;
4512     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4513     case LangOptions::CoreFoundationABI::Swift5_0:
4514       CFConstantStringClassName =
4515           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4516                               : "$s10Foundation19_NSCFConstantStringCN";
4517       Ty = IntPtrTy;
4518       break;
4519     case LangOptions::CoreFoundationABI::Swift4_2:
4520       CFConstantStringClassName =
4521           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4522                               : "$S10Foundation19_NSCFConstantStringCN";
4523       Ty = IntPtrTy;
4524       break;
4525     case LangOptions::CoreFoundationABI::Swift4_1:
4526       CFConstantStringClassName =
4527           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4528                               : "__T010Foundation19_NSCFConstantStringCN";
4529       Ty = IntPtrTy;
4530       break;
4531     }
4532 
4533     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4534 
4535     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4536       llvm::GlobalValue *GV = nullptr;
4537 
4538       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4539         IdentifierInfo &II = Context.Idents.get(GV->getName());
4540         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4541         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4542 
4543         const VarDecl *VD = nullptr;
4544         for (const auto &Result : DC->lookup(&II))
4545           if ((VD = dyn_cast<VarDecl>(Result)))
4546             break;
4547 
4548         if (Triple.isOSBinFormatELF()) {
4549           if (!VD)
4550             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4551         } else {
4552           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4553           if (!VD || !VD->hasAttr<DLLExportAttr>())
4554             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4555           else
4556             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4557         }
4558 
4559         setDSOLocal(GV);
4560       }
4561     }
4562 
4563     // Decay array -> ptr
4564     CFConstantStringClassRef =
4565         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4566                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4567   }
4568 
4569   QualType CFTy = Context.getCFConstantStringType();
4570 
4571   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4572 
4573   ConstantInitBuilder Builder(*this);
4574   auto Fields = Builder.beginStruct(STy);
4575 
4576   // Class pointer.
4577   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4578 
4579   // Flags.
4580   if (IsSwiftABI) {
4581     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4582     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4583   } else {
4584     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4585   }
4586 
4587   // String pointer.
4588   llvm::Constant *C = nullptr;
4589   if (isUTF16) {
4590     auto Arr = llvm::makeArrayRef(
4591         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4592         Entry.first().size() / 2);
4593     C = llvm::ConstantDataArray::get(VMContext, Arr);
4594   } else {
4595     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4596   }
4597 
4598   // Note: -fwritable-strings doesn't make the backing store strings of
4599   // CFStrings writable. (See <rdar://problem/10657500>)
4600   auto *GV =
4601       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4602                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4603   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4604   // Don't enforce the target's minimum global alignment, since the only use
4605   // of the string is via this class initializer.
4606   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4607                             : Context.getTypeAlignInChars(Context.CharTy);
4608   GV->setAlignment(Align.getQuantity());
4609 
4610   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4611   // Without it LLVM can merge the string with a non unnamed_addr one during
4612   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4613   if (Triple.isOSBinFormatMachO())
4614     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4615                            : "__TEXT,__cstring,cstring_literals");
4616   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4617   // the static linker to adjust permissions to read-only later on.
4618   else if (Triple.isOSBinFormatELF())
4619     GV->setSection(".rodata");
4620 
4621   // String.
4622   llvm::Constant *Str =
4623       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4624 
4625   if (isUTF16)
4626     // Cast the UTF16 string to the correct type.
4627     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4628   Fields.add(Str);
4629 
4630   // String length.
4631   llvm::IntegerType *LengthTy =
4632       llvm::IntegerType::get(getModule().getContext(),
4633                              Context.getTargetInfo().getLongWidth());
4634   if (IsSwiftABI) {
4635     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4636         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4637       LengthTy = Int32Ty;
4638     else
4639       LengthTy = IntPtrTy;
4640   }
4641   Fields.addInt(LengthTy, StringLength);
4642 
4643   CharUnits Alignment = getPointerAlign();
4644 
4645   // The struct.
4646   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4647                                     /*isConstant=*/false,
4648                                     llvm::GlobalVariable::PrivateLinkage);
4649   switch (Triple.getObjectFormat()) {
4650   case llvm::Triple::UnknownObjectFormat:
4651     llvm_unreachable("unknown file format");
4652   case llvm::Triple::XCOFF:
4653     llvm_unreachable("XCOFF is not yet implemented");
4654   case llvm::Triple::COFF:
4655   case llvm::Triple::ELF:
4656   case llvm::Triple::Wasm:
4657     GV->setSection("cfstring");
4658     break;
4659   case llvm::Triple::MachO:
4660     GV->setSection("__DATA,__cfstring");
4661     break;
4662   }
4663   Entry.second = GV;
4664 
4665   return ConstantAddress(GV, Alignment);
4666 }
4667 
4668 bool CodeGenModule::getExpressionLocationsEnabled() const {
4669   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4670 }
4671 
4672 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4673   if (ObjCFastEnumerationStateType.isNull()) {
4674     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4675     D->startDefinition();
4676 
4677     QualType FieldTypes[] = {
4678       Context.UnsignedLongTy,
4679       Context.getPointerType(Context.getObjCIdType()),
4680       Context.getPointerType(Context.UnsignedLongTy),
4681       Context.getConstantArrayType(Context.UnsignedLongTy,
4682                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4683     };
4684 
4685     for (size_t i = 0; i < 4; ++i) {
4686       FieldDecl *Field = FieldDecl::Create(Context,
4687                                            D,
4688                                            SourceLocation(),
4689                                            SourceLocation(), nullptr,
4690                                            FieldTypes[i], /*TInfo=*/nullptr,
4691                                            /*BitWidth=*/nullptr,
4692                                            /*Mutable=*/false,
4693                                            ICIS_NoInit);
4694       Field->setAccess(AS_public);
4695       D->addDecl(Field);
4696     }
4697 
4698     D->completeDefinition();
4699     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4700   }
4701 
4702   return ObjCFastEnumerationStateType;
4703 }
4704 
4705 llvm::Constant *
4706 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4707   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4708 
4709   // Don't emit it as the address of the string, emit the string data itself
4710   // as an inline array.
4711   if (E->getCharByteWidth() == 1) {
4712     SmallString<64> Str(E->getString());
4713 
4714     // Resize the string to the right size, which is indicated by its type.
4715     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4716     Str.resize(CAT->getSize().getZExtValue());
4717     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4718   }
4719 
4720   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4721   llvm::Type *ElemTy = AType->getElementType();
4722   unsigned NumElements = AType->getNumElements();
4723 
4724   // Wide strings have either 2-byte or 4-byte elements.
4725   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4726     SmallVector<uint16_t, 32> Elements;
4727     Elements.reserve(NumElements);
4728 
4729     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4730       Elements.push_back(E->getCodeUnit(i));
4731     Elements.resize(NumElements);
4732     return llvm::ConstantDataArray::get(VMContext, Elements);
4733   }
4734 
4735   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4736   SmallVector<uint32_t, 32> Elements;
4737   Elements.reserve(NumElements);
4738 
4739   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4740     Elements.push_back(E->getCodeUnit(i));
4741   Elements.resize(NumElements);
4742   return llvm::ConstantDataArray::get(VMContext, Elements);
4743 }
4744 
4745 static llvm::GlobalVariable *
4746 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4747                       CodeGenModule &CGM, StringRef GlobalName,
4748                       CharUnits Alignment) {
4749   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4750       CGM.getStringLiteralAddressSpace());
4751 
4752   llvm::Module &M = CGM.getModule();
4753   // Create a global variable for this string
4754   auto *GV = new llvm::GlobalVariable(
4755       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4756       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4757   GV->setAlignment(Alignment.getQuantity());
4758   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4759   if (GV->isWeakForLinker()) {
4760     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4761     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4762   }
4763   CGM.setDSOLocal(GV);
4764 
4765   return GV;
4766 }
4767 
4768 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4769 /// constant array for the given string literal.
4770 ConstantAddress
4771 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4772                                                   StringRef Name) {
4773   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4774 
4775   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4776   llvm::GlobalVariable **Entry = nullptr;
4777   if (!LangOpts.WritableStrings) {
4778     Entry = &ConstantStringMap[C];
4779     if (auto GV = *Entry) {
4780       if (Alignment.getQuantity() > GV->getAlignment())
4781         GV->setAlignment(Alignment.getQuantity());
4782       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4783                              Alignment);
4784     }
4785   }
4786 
4787   SmallString<256> MangledNameBuffer;
4788   StringRef GlobalVariableName;
4789   llvm::GlobalValue::LinkageTypes LT;
4790 
4791   // Mangle the string literal if that's how the ABI merges duplicate strings.
4792   // Don't do it if they are writable, since we don't want writes in one TU to
4793   // affect strings in another.
4794   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4795       !LangOpts.WritableStrings) {
4796     llvm::raw_svector_ostream Out(MangledNameBuffer);
4797     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4798     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4799     GlobalVariableName = MangledNameBuffer;
4800   } else {
4801     LT = llvm::GlobalValue::PrivateLinkage;
4802     GlobalVariableName = Name;
4803   }
4804 
4805   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4806   if (Entry)
4807     *Entry = GV;
4808 
4809   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4810                                   QualType());
4811 
4812   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4813                          Alignment);
4814 }
4815 
4816 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4817 /// array for the given ObjCEncodeExpr node.
4818 ConstantAddress
4819 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4820   std::string Str;
4821   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4822 
4823   return GetAddrOfConstantCString(Str);
4824 }
4825 
4826 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4827 /// the literal and a terminating '\0' character.
4828 /// The result has pointer to array type.
4829 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4830     const std::string &Str, const char *GlobalName) {
4831   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4832   CharUnits Alignment =
4833     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4834 
4835   llvm::Constant *C =
4836       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4837 
4838   // Don't share any string literals if strings aren't constant.
4839   llvm::GlobalVariable **Entry = nullptr;
4840   if (!LangOpts.WritableStrings) {
4841     Entry = &ConstantStringMap[C];
4842     if (auto GV = *Entry) {
4843       if (Alignment.getQuantity() > GV->getAlignment())
4844         GV->setAlignment(Alignment.getQuantity());
4845       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4846                              Alignment);
4847     }
4848   }
4849 
4850   // Get the default prefix if a name wasn't specified.
4851   if (!GlobalName)
4852     GlobalName = ".str";
4853   // Create a global variable for this.
4854   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4855                                   GlobalName, Alignment);
4856   if (Entry)
4857     *Entry = GV;
4858 
4859   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4860                          Alignment);
4861 }
4862 
4863 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4864     const MaterializeTemporaryExpr *E, const Expr *Init) {
4865   assert((E->getStorageDuration() == SD_Static ||
4866           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4867   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4868 
4869   // If we're not materializing a subobject of the temporary, keep the
4870   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4871   QualType MaterializedType = Init->getType();
4872   if (Init == E->GetTemporaryExpr())
4873     MaterializedType = E->getType();
4874 
4875   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4876 
4877   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4878     return ConstantAddress(Slot, Align);
4879 
4880   // FIXME: If an externally-visible declaration extends multiple temporaries,
4881   // we need to give each temporary the same name in every translation unit (and
4882   // we also need to make the temporaries externally-visible).
4883   SmallString<256> Name;
4884   llvm::raw_svector_ostream Out(Name);
4885   getCXXABI().getMangleContext().mangleReferenceTemporary(
4886       VD, E->getManglingNumber(), Out);
4887 
4888   APValue *Value = nullptr;
4889   if (E->getStorageDuration() == SD_Static) {
4890     // We might have a cached constant initializer for this temporary. Note
4891     // that this might have a different value from the value computed by
4892     // evaluating the initializer if the surrounding constant expression
4893     // modifies the temporary.
4894     Value = getContext().getMaterializedTemporaryValue(E, false);
4895     if (Value && Value->isAbsent())
4896       Value = nullptr;
4897   }
4898 
4899   // Try evaluating it now, it might have a constant initializer.
4900   Expr::EvalResult EvalResult;
4901   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4902       !EvalResult.hasSideEffects())
4903     Value = &EvalResult.Val;
4904 
4905   LangAS AddrSpace =
4906       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4907 
4908   Optional<ConstantEmitter> emitter;
4909   llvm::Constant *InitialValue = nullptr;
4910   bool Constant = false;
4911   llvm::Type *Type;
4912   if (Value) {
4913     // The temporary has a constant initializer, use it.
4914     emitter.emplace(*this);
4915     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4916                                                MaterializedType);
4917     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4918     Type = InitialValue->getType();
4919   } else {
4920     // No initializer, the initialization will be provided when we
4921     // initialize the declaration which performed lifetime extension.
4922     Type = getTypes().ConvertTypeForMem(MaterializedType);
4923   }
4924 
4925   // Create a global variable for this lifetime-extended temporary.
4926   llvm::GlobalValue::LinkageTypes Linkage =
4927       getLLVMLinkageVarDefinition(VD, Constant);
4928   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4929     const VarDecl *InitVD;
4930     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4931         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4932       // Temporaries defined inside a class get linkonce_odr linkage because the
4933       // class can be defined in multiple translation units.
4934       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4935     } else {
4936       // There is no need for this temporary to have external linkage if the
4937       // VarDecl has external linkage.
4938       Linkage = llvm::GlobalVariable::InternalLinkage;
4939     }
4940   }
4941   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4942   auto *GV = new llvm::GlobalVariable(
4943       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4944       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4945   if (emitter) emitter->finalize(GV);
4946   setGVProperties(GV, VD);
4947   GV->setAlignment(Align.getQuantity());
4948   if (supportsCOMDAT() && GV->isWeakForLinker())
4949     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4950   if (VD->getTLSKind())
4951     setTLSMode(GV, *VD);
4952   llvm::Constant *CV = GV;
4953   if (AddrSpace != LangAS::Default)
4954     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4955         *this, GV, AddrSpace, LangAS::Default,
4956         Type->getPointerTo(
4957             getContext().getTargetAddressSpace(LangAS::Default)));
4958   MaterializedGlobalTemporaryMap[E] = CV;
4959   return ConstantAddress(CV, Align);
4960 }
4961 
4962 /// EmitObjCPropertyImplementations - Emit information for synthesized
4963 /// properties for an implementation.
4964 void CodeGenModule::EmitObjCPropertyImplementations(const
4965                                                     ObjCImplementationDecl *D) {
4966   for (const auto *PID : D->property_impls()) {
4967     // Dynamic is just for type-checking.
4968     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4969       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4970 
4971       // Determine which methods need to be implemented, some may have
4972       // been overridden. Note that ::isPropertyAccessor is not the method
4973       // we want, that just indicates if the decl came from a
4974       // property. What we want to know is if the method is defined in
4975       // this implementation.
4976       if (!D->getInstanceMethod(PD->getGetterName()))
4977         CodeGenFunction(*this).GenerateObjCGetter(
4978                                  const_cast<ObjCImplementationDecl *>(D), PID);
4979       if (!PD->isReadOnly() &&
4980           !D->getInstanceMethod(PD->getSetterName()))
4981         CodeGenFunction(*this).GenerateObjCSetter(
4982                                  const_cast<ObjCImplementationDecl *>(D), PID);
4983     }
4984   }
4985 }
4986 
4987 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4988   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4989   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4990        ivar; ivar = ivar->getNextIvar())
4991     if (ivar->getType().isDestructedType())
4992       return true;
4993 
4994   return false;
4995 }
4996 
4997 static bool AllTrivialInitializers(CodeGenModule &CGM,
4998                                    ObjCImplementationDecl *D) {
4999   CodeGenFunction CGF(CGM);
5000   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5001        E = D->init_end(); B != E; ++B) {
5002     CXXCtorInitializer *CtorInitExp = *B;
5003     Expr *Init = CtorInitExp->getInit();
5004     if (!CGF.isTrivialInitializer(Init))
5005       return false;
5006   }
5007   return true;
5008 }
5009 
5010 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5011 /// for an implementation.
5012 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5013   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5014   if (needsDestructMethod(D)) {
5015     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5016     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5017     ObjCMethodDecl *DTORMethod =
5018       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
5019                              cxxSelector, getContext().VoidTy, nullptr, D,
5020                              /*isInstance=*/true, /*isVariadic=*/false,
5021                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
5022                              /*isDefined=*/false, ObjCMethodDecl::Required);
5023     D->addInstanceMethod(DTORMethod);
5024     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5025     D->setHasDestructors(true);
5026   }
5027 
5028   // If the implementation doesn't have any ivar initializers, we don't need
5029   // a .cxx_construct.
5030   if (D->getNumIvarInitializers() == 0 ||
5031       AllTrivialInitializers(*this, D))
5032     return;
5033 
5034   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5035   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5036   // The constructor returns 'self'.
5037   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
5038                                                 D->getLocation(),
5039                                                 D->getLocation(),
5040                                                 cxxSelector,
5041                                                 getContext().getObjCIdType(),
5042                                                 nullptr, D, /*isInstance=*/true,
5043                                                 /*isVariadic=*/false,
5044                                                 /*isPropertyAccessor=*/true,
5045                                                 /*isImplicitlyDeclared=*/true,
5046                                                 /*isDefined=*/false,
5047                                                 ObjCMethodDecl::Required);
5048   D->addInstanceMethod(CTORMethod);
5049   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5050   D->setHasNonZeroConstructors(true);
5051 }
5052 
5053 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5054 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5055   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5056       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5057     ErrorUnsupported(LSD, "linkage spec");
5058     return;
5059   }
5060 
5061   EmitDeclContext(LSD);
5062 }
5063 
5064 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5065   for (auto *I : DC->decls()) {
5066     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5067     // are themselves considered "top-level", so EmitTopLevelDecl on an
5068     // ObjCImplDecl does not recursively visit them. We need to do that in
5069     // case they're nested inside another construct (LinkageSpecDecl /
5070     // ExportDecl) that does stop them from being considered "top-level".
5071     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5072       for (auto *M : OID->methods())
5073         EmitTopLevelDecl(M);
5074     }
5075 
5076     EmitTopLevelDecl(I);
5077   }
5078 }
5079 
5080 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5081 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5082   // Ignore dependent declarations.
5083   if (D->isTemplated())
5084     return;
5085 
5086   switch (D->getKind()) {
5087   case Decl::CXXConversion:
5088   case Decl::CXXMethod:
5089   case Decl::Function:
5090     EmitGlobal(cast<FunctionDecl>(D));
5091     // Always provide some coverage mapping
5092     // even for the functions that aren't emitted.
5093     AddDeferredUnusedCoverageMapping(D);
5094     break;
5095 
5096   case Decl::CXXDeductionGuide:
5097     // Function-like, but does not result in code emission.
5098     break;
5099 
5100   case Decl::Var:
5101   case Decl::Decomposition:
5102   case Decl::VarTemplateSpecialization:
5103     EmitGlobal(cast<VarDecl>(D));
5104     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5105       for (auto *B : DD->bindings())
5106         if (auto *HD = B->getHoldingVar())
5107           EmitGlobal(HD);
5108     break;
5109 
5110   // Indirect fields from global anonymous structs and unions can be
5111   // ignored; only the actual variable requires IR gen support.
5112   case Decl::IndirectField:
5113     break;
5114 
5115   // C++ Decls
5116   case Decl::Namespace:
5117     EmitDeclContext(cast<NamespaceDecl>(D));
5118     break;
5119   case Decl::ClassTemplateSpecialization: {
5120     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5121     if (DebugInfo &&
5122         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5123         Spec->hasDefinition())
5124       DebugInfo->completeTemplateDefinition(*Spec);
5125   } LLVM_FALLTHROUGH;
5126   case Decl::CXXRecord:
5127     if (DebugInfo) {
5128       if (auto *ES = D->getASTContext().getExternalSource())
5129         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5130           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5131     }
5132     // Emit any static data members, they may be definitions.
5133     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5134       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5135         EmitTopLevelDecl(I);
5136     break;
5137     // No code generation needed.
5138   case Decl::UsingShadow:
5139   case Decl::ClassTemplate:
5140   case Decl::VarTemplate:
5141   case Decl::VarTemplatePartialSpecialization:
5142   case Decl::FunctionTemplate:
5143   case Decl::TypeAliasTemplate:
5144   case Decl::Block:
5145   case Decl::Empty:
5146   case Decl::Binding:
5147     break;
5148   case Decl::Using:          // using X; [C++]
5149     if (CGDebugInfo *DI = getModuleDebugInfo())
5150         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5151     return;
5152   case Decl::NamespaceAlias:
5153     if (CGDebugInfo *DI = getModuleDebugInfo())
5154         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5155     return;
5156   case Decl::UsingDirective: // using namespace X; [C++]
5157     if (CGDebugInfo *DI = getModuleDebugInfo())
5158       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5159     return;
5160   case Decl::CXXConstructor:
5161     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5162     break;
5163   case Decl::CXXDestructor:
5164     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5165     break;
5166 
5167   case Decl::StaticAssert:
5168     // Nothing to do.
5169     break;
5170 
5171   // Objective-C Decls
5172 
5173   // Forward declarations, no (immediate) code generation.
5174   case Decl::ObjCInterface:
5175   case Decl::ObjCCategory:
5176     break;
5177 
5178   case Decl::ObjCProtocol: {
5179     auto *Proto = cast<ObjCProtocolDecl>(D);
5180     if (Proto->isThisDeclarationADefinition())
5181       ObjCRuntime->GenerateProtocol(Proto);
5182     break;
5183   }
5184 
5185   case Decl::ObjCCategoryImpl:
5186     // Categories have properties but don't support synthesize so we
5187     // can ignore them here.
5188     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5189     break;
5190 
5191   case Decl::ObjCImplementation: {
5192     auto *OMD = cast<ObjCImplementationDecl>(D);
5193     EmitObjCPropertyImplementations(OMD);
5194     EmitObjCIvarInitializations(OMD);
5195     ObjCRuntime->GenerateClass(OMD);
5196     // Emit global variable debug information.
5197     if (CGDebugInfo *DI = getModuleDebugInfo())
5198       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5199         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5200             OMD->getClassInterface()), OMD->getLocation());
5201     break;
5202   }
5203   case Decl::ObjCMethod: {
5204     auto *OMD = cast<ObjCMethodDecl>(D);
5205     // If this is not a prototype, emit the body.
5206     if (OMD->getBody())
5207       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5208     break;
5209   }
5210   case Decl::ObjCCompatibleAlias:
5211     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5212     break;
5213 
5214   case Decl::PragmaComment: {
5215     const auto *PCD = cast<PragmaCommentDecl>(D);
5216     switch (PCD->getCommentKind()) {
5217     case PCK_Unknown:
5218       llvm_unreachable("unexpected pragma comment kind");
5219     case PCK_Linker:
5220       AppendLinkerOptions(PCD->getArg());
5221       break;
5222     case PCK_Lib:
5223         AddDependentLib(PCD->getArg());
5224       break;
5225     case PCK_Compiler:
5226     case PCK_ExeStr:
5227     case PCK_User:
5228       break; // We ignore all of these.
5229     }
5230     break;
5231   }
5232 
5233   case Decl::PragmaDetectMismatch: {
5234     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5235     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5236     break;
5237   }
5238 
5239   case Decl::LinkageSpec:
5240     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5241     break;
5242 
5243   case Decl::FileScopeAsm: {
5244     // File-scope asm is ignored during device-side CUDA compilation.
5245     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5246       break;
5247     // File-scope asm is ignored during device-side OpenMP compilation.
5248     if (LangOpts.OpenMPIsDevice)
5249       break;
5250     auto *AD = cast<FileScopeAsmDecl>(D);
5251     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5252     break;
5253   }
5254 
5255   case Decl::Import: {
5256     auto *Import = cast<ImportDecl>(D);
5257 
5258     // If we've already imported this module, we're done.
5259     if (!ImportedModules.insert(Import->getImportedModule()))
5260       break;
5261 
5262     // Emit debug information for direct imports.
5263     if (!Import->getImportedOwningModule()) {
5264       if (CGDebugInfo *DI = getModuleDebugInfo())
5265         DI->EmitImportDecl(*Import);
5266     }
5267 
5268     // Find all of the submodules and emit the module initializers.
5269     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5270     SmallVector<clang::Module *, 16> Stack;
5271     Visited.insert(Import->getImportedModule());
5272     Stack.push_back(Import->getImportedModule());
5273 
5274     while (!Stack.empty()) {
5275       clang::Module *Mod = Stack.pop_back_val();
5276       if (!EmittedModuleInitializers.insert(Mod).second)
5277         continue;
5278 
5279       for (auto *D : Context.getModuleInitializers(Mod))
5280         EmitTopLevelDecl(D);
5281 
5282       // Visit the submodules of this module.
5283       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5284                                              SubEnd = Mod->submodule_end();
5285            Sub != SubEnd; ++Sub) {
5286         // Skip explicit children; they need to be explicitly imported to emit
5287         // the initializers.
5288         if ((*Sub)->IsExplicit)
5289           continue;
5290 
5291         if (Visited.insert(*Sub).second)
5292           Stack.push_back(*Sub);
5293       }
5294     }
5295     break;
5296   }
5297 
5298   case Decl::Export:
5299     EmitDeclContext(cast<ExportDecl>(D));
5300     break;
5301 
5302   case Decl::OMPThreadPrivate:
5303     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5304     break;
5305 
5306   case Decl::OMPAllocate:
5307     break;
5308 
5309   case Decl::OMPDeclareReduction:
5310     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5311     break;
5312 
5313   case Decl::OMPDeclareMapper:
5314     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5315     break;
5316 
5317   case Decl::OMPRequires:
5318     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5319     break;
5320 
5321   default:
5322     // Make sure we handled everything we should, every other kind is a
5323     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5324     // function. Need to recode Decl::Kind to do that easily.
5325     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5326     break;
5327   }
5328 }
5329 
5330 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5331   // Do we need to generate coverage mapping?
5332   if (!CodeGenOpts.CoverageMapping)
5333     return;
5334   switch (D->getKind()) {
5335   case Decl::CXXConversion:
5336   case Decl::CXXMethod:
5337   case Decl::Function:
5338   case Decl::ObjCMethod:
5339   case Decl::CXXConstructor:
5340   case Decl::CXXDestructor: {
5341     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5342       return;
5343     SourceManager &SM = getContext().getSourceManager();
5344     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5345       return;
5346     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5347     if (I == DeferredEmptyCoverageMappingDecls.end())
5348       DeferredEmptyCoverageMappingDecls[D] = true;
5349     break;
5350   }
5351   default:
5352     break;
5353   };
5354 }
5355 
5356 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5357   // Do we need to generate coverage mapping?
5358   if (!CodeGenOpts.CoverageMapping)
5359     return;
5360   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5361     if (Fn->isTemplateInstantiation())
5362       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5363   }
5364   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5365   if (I == DeferredEmptyCoverageMappingDecls.end())
5366     DeferredEmptyCoverageMappingDecls[D] = false;
5367   else
5368     I->second = false;
5369 }
5370 
5371 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5372   // We call takeVector() here to avoid use-after-free.
5373   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5374   // we deserialize function bodies to emit coverage info for them, and that
5375   // deserializes more declarations. How should we handle that case?
5376   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5377     if (!Entry.second)
5378       continue;
5379     const Decl *D = Entry.first;
5380     switch (D->getKind()) {
5381     case Decl::CXXConversion:
5382     case Decl::CXXMethod:
5383     case Decl::Function:
5384     case Decl::ObjCMethod: {
5385       CodeGenPGO PGO(*this);
5386       GlobalDecl GD(cast<FunctionDecl>(D));
5387       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5388                                   getFunctionLinkage(GD));
5389       break;
5390     }
5391     case Decl::CXXConstructor: {
5392       CodeGenPGO PGO(*this);
5393       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5394       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5395                                   getFunctionLinkage(GD));
5396       break;
5397     }
5398     case Decl::CXXDestructor: {
5399       CodeGenPGO PGO(*this);
5400       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5401       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5402                                   getFunctionLinkage(GD));
5403       break;
5404     }
5405     default:
5406       break;
5407     };
5408   }
5409 }
5410 
5411 /// Turns the given pointer into a constant.
5412 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5413                                           const void *Ptr) {
5414   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5415   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5416   return llvm::ConstantInt::get(i64, PtrInt);
5417 }
5418 
5419 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5420                                    llvm::NamedMDNode *&GlobalMetadata,
5421                                    GlobalDecl D,
5422                                    llvm::GlobalValue *Addr) {
5423   if (!GlobalMetadata)
5424     GlobalMetadata =
5425       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5426 
5427   // TODO: should we report variant information for ctors/dtors?
5428   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5429                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5430                                CGM.getLLVMContext(), D.getDecl()))};
5431   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5432 }
5433 
5434 /// For each function which is declared within an extern "C" region and marked
5435 /// as 'used', but has internal linkage, create an alias from the unmangled
5436 /// name to the mangled name if possible. People expect to be able to refer
5437 /// to such functions with an unmangled name from inline assembly within the
5438 /// same translation unit.
5439 void CodeGenModule::EmitStaticExternCAliases() {
5440   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5441     return;
5442   for (auto &I : StaticExternCValues) {
5443     IdentifierInfo *Name = I.first;
5444     llvm::GlobalValue *Val = I.second;
5445     if (Val && !getModule().getNamedValue(Name->getName()))
5446       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5447   }
5448 }
5449 
5450 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5451                                              GlobalDecl &Result) const {
5452   auto Res = Manglings.find(MangledName);
5453   if (Res == Manglings.end())
5454     return false;
5455   Result = Res->getValue();
5456   return true;
5457 }
5458 
5459 /// Emits metadata nodes associating all the global values in the
5460 /// current module with the Decls they came from.  This is useful for
5461 /// projects using IR gen as a subroutine.
5462 ///
5463 /// Since there's currently no way to associate an MDNode directly
5464 /// with an llvm::GlobalValue, we create a global named metadata
5465 /// with the name 'clang.global.decl.ptrs'.
5466 void CodeGenModule::EmitDeclMetadata() {
5467   llvm::NamedMDNode *GlobalMetadata = nullptr;
5468 
5469   for (auto &I : MangledDeclNames) {
5470     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5471     // Some mangled names don't necessarily have an associated GlobalValue
5472     // in this module, e.g. if we mangled it for DebugInfo.
5473     if (Addr)
5474       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5475   }
5476 }
5477 
5478 /// Emits metadata nodes for all the local variables in the current
5479 /// function.
5480 void CodeGenFunction::EmitDeclMetadata() {
5481   if (LocalDeclMap.empty()) return;
5482 
5483   llvm::LLVMContext &Context = getLLVMContext();
5484 
5485   // Find the unique metadata ID for this name.
5486   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5487 
5488   llvm::NamedMDNode *GlobalMetadata = nullptr;
5489 
5490   for (auto &I : LocalDeclMap) {
5491     const Decl *D = I.first;
5492     llvm::Value *Addr = I.second.getPointer();
5493     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5494       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5495       Alloca->setMetadata(
5496           DeclPtrKind, llvm::MDNode::get(
5497                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5498     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5499       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5500       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5501     }
5502   }
5503 }
5504 
5505 void CodeGenModule::EmitVersionIdentMetadata() {
5506   llvm::NamedMDNode *IdentMetadata =
5507     TheModule.getOrInsertNamedMetadata("llvm.ident");
5508   std::string Version = getClangFullVersion();
5509   llvm::LLVMContext &Ctx = TheModule.getContext();
5510 
5511   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5512   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5513 }
5514 
5515 void CodeGenModule::EmitCommandLineMetadata() {
5516   llvm::NamedMDNode *CommandLineMetadata =
5517     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5518   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5519   llvm::LLVMContext &Ctx = TheModule.getContext();
5520 
5521   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5522   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5523 }
5524 
5525 void CodeGenModule::EmitTargetMetadata() {
5526   // Warning, new MangledDeclNames may be appended within this loop.
5527   // We rely on MapVector insertions adding new elements to the end
5528   // of the container.
5529   // FIXME: Move this loop into the one target that needs it, and only
5530   // loop over those declarations for which we couldn't emit the target
5531   // metadata when we emitted the declaration.
5532   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5533     auto Val = *(MangledDeclNames.begin() + I);
5534     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5535     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5536     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5537   }
5538 }
5539 
5540 void CodeGenModule::EmitCoverageFile() {
5541   if (getCodeGenOpts().CoverageDataFile.empty() &&
5542       getCodeGenOpts().CoverageNotesFile.empty())
5543     return;
5544 
5545   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5546   if (!CUNode)
5547     return;
5548 
5549   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5550   llvm::LLVMContext &Ctx = TheModule.getContext();
5551   auto *CoverageDataFile =
5552       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5553   auto *CoverageNotesFile =
5554       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5555   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5556     llvm::MDNode *CU = CUNode->getOperand(i);
5557     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5558     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5559   }
5560 }
5561 
5562 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5563   // Sema has checked that all uuid strings are of the form
5564   // "12345678-1234-1234-1234-1234567890ab".
5565   assert(Uuid.size() == 36);
5566   for (unsigned i = 0; i < 36; ++i) {
5567     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5568     else                                         assert(isHexDigit(Uuid[i]));
5569   }
5570 
5571   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5572   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5573 
5574   llvm::Constant *Field3[8];
5575   for (unsigned Idx = 0; Idx < 8; ++Idx)
5576     Field3[Idx] = llvm::ConstantInt::get(
5577         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5578 
5579   llvm::Constant *Fields[4] = {
5580     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5581     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5582     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5583     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5584   };
5585 
5586   return llvm::ConstantStruct::getAnon(Fields);
5587 }
5588 
5589 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5590                                                        bool ForEH) {
5591   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5592   // FIXME: should we even be calling this method if RTTI is disabled
5593   // and it's not for EH?
5594   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5595     return llvm::Constant::getNullValue(Int8PtrTy);
5596 
5597   if (ForEH && Ty->isObjCObjectPointerType() &&
5598       LangOpts.ObjCRuntime.isGNUFamily())
5599     return ObjCRuntime->GetEHType(Ty);
5600 
5601   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5602 }
5603 
5604 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5605   // Do not emit threadprivates in simd-only mode.
5606   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5607     return;
5608   for (auto RefExpr : D->varlists()) {
5609     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5610     bool PerformInit =
5611         VD->getAnyInitializer() &&
5612         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5613                                                         /*ForRef=*/false);
5614 
5615     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5616     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5617             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5618       CXXGlobalInits.push_back(InitFunction);
5619   }
5620 }
5621 
5622 llvm::Metadata *
5623 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5624                                             StringRef Suffix) {
5625   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5626   if (InternalId)
5627     return InternalId;
5628 
5629   if (isExternallyVisible(T->getLinkage())) {
5630     std::string OutName;
5631     llvm::raw_string_ostream Out(OutName);
5632     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5633     Out << Suffix;
5634 
5635     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5636   } else {
5637     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5638                                            llvm::ArrayRef<llvm::Metadata *>());
5639   }
5640 
5641   return InternalId;
5642 }
5643 
5644 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5645   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5646 }
5647 
5648 llvm::Metadata *
5649 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5650   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5651 }
5652 
5653 // Generalize pointer types to a void pointer with the qualifiers of the
5654 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5655 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5656 // 'void *'.
5657 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5658   if (!Ty->isPointerType())
5659     return Ty;
5660 
5661   return Ctx.getPointerType(
5662       QualType(Ctx.VoidTy).withCVRQualifiers(
5663           Ty->getPointeeType().getCVRQualifiers()));
5664 }
5665 
5666 // Apply type generalization to a FunctionType's return and argument types
5667 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5668   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5669     SmallVector<QualType, 8> GeneralizedParams;
5670     for (auto &Param : FnType->param_types())
5671       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5672 
5673     return Ctx.getFunctionType(
5674         GeneralizeType(Ctx, FnType->getReturnType()),
5675         GeneralizedParams, FnType->getExtProtoInfo());
5676   }
5677 
5678   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5679     return Ctx.getFunctionNoProtoType(
5680         GeneralizeType(Ctx, FnType->getReturnType()));
5681 
5682   llvm_unreachable("Encountered unknown FunctionType");
5683 }
5684 
5685 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5686   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5687                                       GeneralizedMetadataIdMap, ".generalized");
5688 }
5689 
5690 /// Returns whether this module needs the "all-vtables" type identifier.
5691 bool CodeGenModule::NeedAllVtablesTypeId() const {
5692   // Returns true if at least one of vtable-based CFI checkers is enabled and
5693   // is not in the trapping mode.
5694   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5695            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5696           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5697            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5698           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5699            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5700           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5701            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5702 }
5703 
5704 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5705                                           CharUnits Offset,
5706                                           const CXXRecordDecl *RD) {
5707   llvm::Metadata *MD =
5708       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5709   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5710 
5711   if (CodeGenOpts.SanitizeCfiCrossDso)
5712     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5713       VTable->addTypeMetadata(Offset.getQuantity(),
5714                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5715 
5716   if (NeedAllVtablesTypeId()) {
5717     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5718     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5719   }
5720 }
5721 
5722 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5723   assert(TD != nullptr);
5724   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5725 
5726   ParsedAttr.Features.erase(
5727       llvm::remove_if(ParsedAttr.Features,
5728                       [&](const std::string &Feat) {
5729                         return !Target.isValidFeatureName(
5730                             StringRef{Feat}.substr(1));
5731                       }),
5732       ParsedAttr.Features.end());
5733   return ParsedAttr;
5734 }
5735 
5736 
5737 // Fills in the supplied string map with the set of target features for the
5738 // passed in function.
5739 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5740                                           GlobalDecl GD) {
5741   StringRef TargetCPU = Target.getTargetOpts().CPU;
5742   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5743   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5744     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5745 
5746     // Make a copy of the features as passed on the command line into the
5747     // beginning of the additional features from the function to override.
5748     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5749                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5750                             Target.getTargetOpts().FeaturesAsWritten.end());
5751 
5752     if (ParsedAttr.Architecture != "" &&
5753         Target.isValidCPUName(ParsedAttr.Architecture))
5754       TargetCPU = ParsedAttr.Architecture;
5755 
5756     // Now populate the feature map, first with the TargetCPU which is either
5757     // the default or a new one from the target attribute string. Then we'll use
5758     // the passed in features (FeaturesAsWritten) along with the new ones from
5759     // the attribute.
5760     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5761                           ParsedAttr.Features);
5762   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5763     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5764     Target.getCPUSpecificCPUDispatchFeatures(
5765         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5766     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5767     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5768   } else {
5769     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5770                           Target.getTargetOpts().Features);
5771   }
5772 }
5773 
5774 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5775   if (!SanStats)
5776     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5777 
5778   return *SanStats;
5779 }
5780 llvm::Value *
5781 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5782                                                   CodeGenFunction &CGF) {
5783   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5784   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5785   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5786   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5787                                 "__translate_sampler_initializer"),
5788                                 {C});
5789 }
5790