xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 4b1ac72cd47f11ec55239dfd2978d85fd8dfbaef)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "CodeGenTBAA.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/Basic/Builtins.h"
37 #include "clang/Basic/CharInfo.h"
38 #include "clang/Basic/Diagnostic.h"
39 #include "clang/Basic/Module.h"
40 #include "clang/Basic/SourceManager.h"
41 #include "clang/Basic/TargetInfo.h"
42 #include "clang/Basic/Version.h"
43 #include "clang/Frontend/CodeGenOptions.h"
44 #include "clang/Sema/SemaDiagnostic.h"
45 #include "llvm/ADT/APSInt.h"
46 #include "llvm/ADT/Triple.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/CallingConv.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/ProfileData/InstrProfReader.h"
54 #include "llvm/Support/ConvertUTF.h"
55 #include "llvm/Support/ErrorHandling.h"
56 
57 using namespace clang;
58 using namespace CodeGen;
59 
60 static const char AnnotationSection[] = "llvm.metadata";
61 
62 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
63   switch (CGM.getTarget().getCXXABI().getKind()) {
64   case TargetCXXABI::GenericAArch64:
65   case TargetCXXABI::GenericARM:
66   case TargetCXXABI::iOS:
67   case TargetCXXABI::iOS64:
68   case TargetCXXABI::GenericMIPS:
69   case TargetCXXABI::GenericItanium:
70   case TargetCXXABI::WebAssembly:
71     return CreateItaniumCXXABI(CGM);
72   case TargetCXXABI::Microsoft:
73     return CreateMicrosoftCXXABI(CGM);
74   }
75 
76   llvm_unreachable("invalid C++ ABI kind");
77 }
78 
79 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
80                              const PreprocessorOptions &PPO,
81                              const CodeGenOptions &CGO, llvm::Module &M,
82                              DiagnosticsEngine &diags,
83                              CoverageSourceInfo *CoverageInfo)
84     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
85       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
86       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
87       VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr),
88       Types(*this), VTables(*this), ObjCRuntime(nullptr),
89       OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr),
90       DebugInfo(nullptr), ARCData(nullptr),
91       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
92       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
93       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
94       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
95       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
96       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
97       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   FloatTy = llvm::Type::getFloatTy(LLVMContext);
107   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
108   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
109   PointerAlignInBytes =
110     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
111   IntAlignInBytes =
112     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
113   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
114   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
115   Int8PtrTy = Int8Ty->getPointerTo(0);
116   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
117 
118   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
119   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
120 
121   if (LangOpts.ObjC1)
122     createObjCRuntime();
123   if (LangOpts.OpenCL)
124     createOpenCLRuntime();
125   if (LangOpts.OpenMP)
126     createOpenMPRuntime();
127   if (LangOpts.CUDA)
128     createCUDARuntime();
129 
130   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
131   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
132       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
133     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
134                            getCXXABI().getMangleContext());
135 
136   // If debug info or coverage generation is enabled, create the CGDebugInfo
137   // object.
138   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
139       CodeGenOpts.EmitGcovArcs ||
140       CodeGenOpts.EmitGcovNotes)
141     DebugInfo = new CGDebugInfo(*this);
142 
143   Block.GlobalUniqueCount = 0;
144 
145   if (C.getLangOpts().ObjCAutoRefCount)
146     ARCData = new ARCEntrypoints();
147   RRData = new RREntrypoints();
148 
149   if (!CodeGenOpts.InstrProfileInput.empty()) {
150     auto ReaderOrErr =
151         llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput);
152     if (std::error_code EC = ReaderOrErr.getError()) {
153       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
154                                               "Could not read profile %0: %1");
155       getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput
156                                 << EC.message();
157     } else
158       PGOReader = std::move(ReaderOrErr.get());
159   }
160 
161   // If coverage mapping generation is enabled, create the
162   // CoverageMappingModuleGen object.
163   if (CodeGenOpts.CoverageMapping)
164     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
165 }
166 
167 CodeGenModule::~CodeGenModule() {
168   delete ObjCRuntime;
169   delete OpenCLRuntime;
170   delete OpenMPRuntime;
171   delete CUDARuntime;
172   delete TheTargetCodeGenInfo;
173   delete TBAA;
174   delete DebugInfo;
175   delete ARCData;
176   delete RRData;
177 }
178 
179 void CodeGenModule::createObjCRuntime() {
180   // This is just isGNUFamily(), but we want to force implementors of
181   // new ABIs to decide how best to do this.
182   switch (LangOpts.ObjCRuntime.getKind()) {
183   case ObjCRuntime::GNUstep:
184   case ObjCRuntime::GCC:
185   case ObjCRuntime::ObjFW:
186     ObjCRuntime = CreateGNUObjCRuntime(*this);
187     return;
188 
189   case ObjCRuntime::FragileMacOSX:
190   case ObjCRuntime::MacOSX:
191   case ObjCRuntime::iOS:
192     ObjCRuntime = CreateMacObjCRuntime(*this);
193     return;
194   }
195   llvm_unreachable("bad runtime kind");
196 }
197 
198 void CodeGenModule::createOpenCLRuntime() {
199   OpenCLRuntime = new CGOpenCLRuntime(*this);
200 }
201 
202 void CodeGenModule::createOpenMPRuntime() {
203   OpenMPRuntime = new CGOpenMPRuntime(*this);
204 }
205 
206 void CodeGenModule::createCUDARuntime() {
207   CUDARuntime = CreateNVCUDARuntime(*this);
208 }
209 
210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
211   Replacements[Name] = C;
212 }
213 
214 void CodeGenModule::applyReplacements() {
215   for (auto &I : Replacements) {
216     StringRef MangledName = I.first();
217     llvm::Constant *Replacement = I.second;
218     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
219     if (!Entry)
220       continue;
221     auto *OldF = cast<llvm::Function>(Entry);
222     auto *NewF = dyn_cast<llvm::Function>(Replacement);
223     if (!NewF) {
224       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
225         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
226       } else {
227         auto *CE = cast<llvm::ConstantExpr>(Replacement);
228         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
229                CE->getOpcode() == llvm::Instruction::GetElementPtr);
230         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
231       }
232     }
233 
234     // Replace old with new, but keep the old order.
235     OldF->replaceAllUsesWith(Replacement);
236     if (NewF) {
237       NewF->removeFromParent();
238       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
239     }
240     OldF->eraseFromParent();
241   }
242 }
243 
244 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
245   GlobalValReplacements.push_back(std::make_pair(GV, C));
246 }
247 
248 void CodeGenModule::applyGlobalValReplacements() {
249   for (auto &I : GlobalValReplacements) {
250     llvm::GlobalValue *GV = I.first;
251     llvm::Constant *C = I.second;
252 
253     GV->replaceAllUsesWith(C);
254     GV->eraseFromParent();
255   }
256 }
257 
258 // This is only used in aliases that we created and we know they have a
259 // linear structure.
260 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
261   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
262   const llvm::Constant *C = &GA;
263   for (;;) {
264     C = C->stripPointerCasts();
265     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
266       return GO;
267     // stripPointerCasts will not walk over weak aliases.
268     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
269     if (!GA2)
270       return nullptr;
271     if (!Visited.insert(GA2).second)
272       return nullptr;
273     C = GA2->getAliasee();
274   }
275 }
276 
277 void CodeGenModule::checkAliases() {
278   // Check if the constructed aliases are well formed. It is really unfortunate
279   // that we have to do this in CodeGen, but we only construct mangled names
280   // and aliases during codegen.
281   bool Error = false;
282   DiagnosticsEngine &Diags = getDiags();
283   for (const GlobalDecl &GD : Aliases) {
284     const auto *D = cast<ValueDecl>(GD.getDecl());
285     const AliasAttr *AA = D->getAttr<AliasAttr>();
286     StringRef MangledName = getMangledName(GD);
287     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
288     auto *Alias = cast<llvm::GlobalAlias>(Entry);
289     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
290     if (!GV) {
291       Error = true;
292       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
293     } else if (GV->isDeclaration()) {
294       Error = true;
295       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
296     }
297 
298     llvm::Constant *Aliasee = Alias->getAliasee();
299     llvm::GlobalValue *AliaseeGV;
300     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
301       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
302     else
303       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
304 
305     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
306       StringRef AliasSection = SA->getName();
307       if (AliasSection != AliaseeGV->getSection())
308         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
309             << AliasSection;
310     }
311 
312     // We have to handle alias to weak aliases in here. LLVM itself disallows
313     // this since the object semantics would not match the IL one. For
314     // compatibility with gcc we implement it by just pointing the alias
315     // to its aliasee's aliasee. We also warn, since the user is probably
316     // expecting the link to be weak.
317     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
318       if (GA->mayBeOverridden()) {
319         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
320             << GV->getName() << GA->getName();
321         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
322             GA->getAliasee(), Alias->getType());
323         Alias->setAliasee(Aliasee);
324       }
325     }
326   }
327   if (!Error)
328     return;
329 
330   for (const GlobalDecl &GD : Aliases) {
331     StringRef MangledName = getMangledName(GD);
332     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
333     auto *Alias = cast<llvm::GlobalAlias>(Entry);
334     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
335     Alias->eraseFromParent();
336   }
337 }
338 
339 void CodeGenModule::clear() {
340   DeferredDeclsToEmit.clear();
341   if (OpenMPRuntime)
342     OpenMPRuntime->clear();
343 }
344 
345 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
346                                        StringRef MainFile) {
347   if (!hasDiagnostics())
348     return;
349   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
350     if (MainFile.empty())
351       MainFile = "<stdin>";
352     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
353   } else
354     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
355                                                       << Mismatched;
356 }
357 
358 void CodeGenModule::Release() {
359   EmitDeferred();
360   applyGlobalValReplacements();
361   applyReplacements();
362   checkAliases();
363   EmitCXXGlobalInitFunc();
364   EmitCXXGlobalDtorFunc();
365   EmitCXXThreadLocalInitFunc();
366   if (ObjCRuntime)
367     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
368       AddGlobalCtor(ObjCInitFunction);
369   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
370       CUDARuntime) {
371     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
372       AddGlobalCtor(CudaCtorFunction);
373     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
374       AddGlobalDtor(CudaDtorFunction);
375   }
376   if (PGOReader && PGOStats.hasDiagnostics())
377     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
378   EmitCtorList(GlobalCtors, "llvm.global_ctors");
379   EmitCtorList(GlobalDtors, "llvm.global_dtors");
380   EmitGlobalAnnotations();
381   EmitStaticExternCAliases();
382   EmitDeferredUnusedCoverageMappings();
383   if (CoverageMapping)
384     CoverageMapping->emit();
385   emitLLVMUsed();
386 
387   if (CodeGenOpts.Autolink &&
388       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
389     EmitModuleLinkOptions();
390   }
391   if (CodeGenOpts.DwarfVersion) {
392     // We actually want the latest version when there are conflicts.
393     // We can change from Warning to Latest if such mode is supported.
394     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
395                               CodeGenOpts.DwarfVersion);
396   }
397   if (CodeGenOpts.EmitCodeView) {
398     // Indicate that we want CodeView in the metadata.
399     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
400   }
401   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
402     // We don't support LTO with 2 with different StrictVTablePointers
403     // FIXME: we could support it by stripping all the information introduced
404     // by StrictVTablePointers.
405 
406     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
407 
408     llvm::Metadata *Ops[2] = {
409               llvm::MDString::get(VMContext, "StrictVTablePointers"),
410               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
411                   llvm::Type::getInt32Ty(VMContext), 1))};
412 
413     getModule().addModuleFlag(llvm::Module::Require,
414                               "StrictVTablePointersRequirement",
415                               llvm::MDNode::get(VMContext, Ops));
416   }
417   if (DebugInfo)
418     // We support a single version in the linked module. The LLVM
419     // parser will drop debug info with a different version number
420     // (and warn about it, too).
421     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
422                               llvm::DEBUG_METADATA_VERSION);
423 
424   // We need to record the widths of enums and wchar_t, so that we can generate
425   // the correct build attributes in the ARM backend.
426   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
427   if (   Arch == llvm::Triple::arm
428       || Arch == llvm::Triple::armeb
429       || Arch == llvm::Triple::thumb
430       || Arch == llvm::Triple::thumbeb) {
431     // Width of wchar_t in bytes
432     uint64_t WCharWidth =
433         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
434     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
435 
436     // The minimum width of an enum in bytes
437     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
438     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
439   }
440 
441   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
442     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
443     switch (PLevel) {
444     case 0: break;
445     case 1: PL = llvm::PICLevel::Small; break;
446     case 2: PL = llvm::PICLevel::Large; break;
447     default: llvm_unreachable("Invalid PIC Level");
448     }
449 
450     getModule().setPICLevel(PL);
451   }
452 
453   SimplifyPersonality();
454 
455   if (getCodeGenOpts().EmitDeclMetadata)
456     EmitDeclMetadata();
457 
458   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
459     EmitCoverageFile();
460 
461   if (DebugInfo)
462     DebugInfo->finalize();
463 
464   EmitVersionIdentMetadata();
465 
466   EmitTargetMetadata();
467 }
468 
469 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
470   // Make sure that this type is translated.
471   Types.UpdateCompletedType(TD);
472 }
473 
474 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
475   if (!TBAA)
476     return nullptr;
477   return TBAA->getTBAAInfo(QTy);
478 }
479 
480 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
481   if (!TBAA)
482     return nullptr;
483   return TBAA->getTBAAInfoForVTablePtr();
484 }
485 
486 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
487   if (!TBAA)
488     return nullptr;
489   return TBAA->getTBAAStructInfo(QTy);
490 }
491 
492 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
493   if (!TBAA)
494     return nullptr;
495   return TBAA->getTBAAStructTypeInfo(QTy);
496 }
497 
498 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
499                                                   llvm::MDNode *AccessN,
500                                                   uint64_t O) {
501   if (!TBAA)
502     return nullptr;
503   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
504 }
505 
506 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
507 /// and struct-path aware TBAA, the tag has the same format:
508 /// base type, access type and offset.
509 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
510 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
511                                                 llvm::MDNode *TBAAInfo,
512                                                 bool ConvertTypeToTag) {
513   if (ConvertTypeToTag && TBAA)
514     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
515                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
516   else
517     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
518 }
519 
520 void CodeGenModule::DecorateInstructionWithInvariantGroup(
521     llvm::Instruction *I, const CXXRecordDecl *RD) {
522   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
523   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
524   // Check if we have to wrap MDString in MDNode.
525   if (!MetaDataNode)
526     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
527   I->setMetadata("invariant.group", MetaDataNode);
528 }
529 
530 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
531   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
532   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
533 }
534 
535 /// ErrorUnsupported - Print out an error that codegen doesn't support the
536 /// specified stmt yet.
537 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
538   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
539                                                "cannot compile this %0 yet");
540   std::string Msg = Type;
541   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
542     << Msg << S->getSourceRange();
543 }
544 
545 /// ErrorUnsupported - Print out an error that codegen doesn't support the
546 /// specified decl yet.
547 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
548   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
549                                                "cannot compile this %0 yet");
550   std::string Msg = Type;
551   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
552 }
553 
554 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
555   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
556 }
557 
558 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
559                                         const NamedDecl *D) const {
560   // Internal definitions always have default visibility.
561   if (GV->hasLocalLinkage()) {
562     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
563     return;
564   }
565 
566   // Set visibility for definitions.
567   LinkageInfo LV = D->getLinkageAndVisibility();
568   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
569     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
570 }
571 
572 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
573   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
574       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
575       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
576       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
577       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
578 }
579 
580 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
581     CodeGenOptions::TLSModel M) {
582   switch (M) {
583   case CodeGenOptions::GeneralDynamicTLSModel:
584     return llvm::GlobalVariable::GeneralDynamicTLSModel;
585   case CodeGenOptions::LocalDynamicTLSModel:
586     return llvm::GlobalVariable::LocalDynamicTLSModel;
587   case CodeGenOptions::InitialExecTLSModel:
588     return llvm::GlobalVariable::InitialExecTLSModel;
589   case CodeGenOptions::LocalExecTLSModel:
590     return llvm::GlobalVariable::LocalExecTLSModel;
591   }
592   llvm_unreachable("Invalid TLS model!");
593 }
594 
595 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
596   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
597 
598   llvm::GlobalValue::ThreadLocalMode TLM;
599   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
600 
601   // Override the TLS model if it is explicitly specified.
602   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
603     TLM = GetLLVMTLSModel(Attr->getModel());
604   }
605 
606   GV->setThreadLocalMode(TLM);
607 }
608 
609 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
610   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
611   if (!FoundStr.empty())
612     return FoundStr;
613 
614   const auto *ND = cast<NamedDecl>(GD.getDecl());
615   SmallString<256> Buffer;
616   StringRef Str;
617   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
618     llvm::raw_svector_ostream Out(Buffer);
619     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
620       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
621     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
622       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
623     else
624       getCXXABI().getMangleContext().mangleName(ND, Out);
625     Str = Out.str();
626   } else {
627     IdentifierInfo *II = ND->getIdentifier();
628     assert(II && "Attempt to mangle unnamed decl.");
629     Str = II->getName();
630   }
631 
632   // Keep the first result in the case of a mangling collision.
633   auto Result = Manglings.insert(std::make_pair(Str, GD));
634   return FoundStr = Result.first->first();
635 }
636 
637 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
638                                              const BlockDecl *BD) {
639   MangleContext &MangleCtx = getCXXABI().getMangleContext();
640   const Decl *D = GD.getDecl();
641 
642   SmallString<256> Buffer;
643   llvm::raw_svector_ostream Out(Buffer);
644   if (!D)
645     MangleCtx.mangleGlobalBlock(BD,
646       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
647   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
648     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
649   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
650     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
651   else
652     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
653 
654   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
655   return Result.first->first();
656 }
657 
658 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
659   return getModule().getNamedValue(Name);
660 }
661 
662 /// AddGlobalCtor - Add a function to the list that will be called before
663 /// main() runs.
664 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
665                                   llvm::Constant *AssociatedData) {
666   // FIXME: Type coercion of void()* types.
667   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
668 }
669 
670 /// AddGlobalDtor - Add a function to the list that will be called
671 /// when the module is unloaded.
672 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
673   // FIXME: Type coercion of void()* types.
674   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
675 }
676 
677 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
678   // Ctor function type is void()*.
679   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
680   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
681 
682   // Get the type of a ctor entry, { i32, void ()*, i8* }.
683   llvm::StructType *CtorStructTy = llvm::StructType::get(
684       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
685 
686   // Construct the constructor and destructor arrays.
687   SmallVector<llvm::Constant *, 8> Ctors;
688   for (const auto &I : Fns) {
689     llvm::Constant *S[] = {
690         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
691         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
692         (I.AssociatedData
693              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
694              : llvm::Constant::getNullValue(VoidPtrTy))};
695     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
696   }
697 
698   if (!Ctors.empty()) {
699     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
700     new llvm::GlobalVariable(TheModule, AT, false,
701                              llvm::GlobalValue::AppendingLinkage,
702                              llvm::ConstantArray::get(AT, Ctors),
703                              GlobalName);
704   }
705 }
706 
707 llvm::GlobalValue::LinkageTypes
708 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
709   const auto *D = cast<FunctionDecl>(GD.getDecl());
710 
711   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
712 
713   if (isa<CXXDestructorDecl>(D) &&
714       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
715                                          GD.getDtorType())) {
716     // Destructor variants in the Microsoft C++ ABI are always internal or
717     // linkonce_odr thunks emitted on an as-needed basis.
718     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
719                                    : llvm::GlobalValue::LinkOnceODRLinkage;
720   }
721 
722   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
723 }
724 
725 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
726   const auto *FD = cast<FunctionDecl>(GD.getDecl());
727 
728   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
729     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
730       // Don't dllexport/import destructor thunks.
731       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
732       return;
733     }
734   }
735 
736   if (FD->hasAttr<DLLImportAttr>())
737     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
738   else if (FD->hasAttr<DLLExportAttr>())
739     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
740   else
741     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
742 }
743 
744 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
745                                                     llvm::Function *F) {
746   setNonAliasAttributes(D, F);
747 }
748 
749 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
750                                               const CGFunctionInfo &Info,
751                                               llvm::Function *F) {
752   unsigned CallingConv;
753   AttributeListType AttributeList;
754   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
755   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
756   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
757 }
758 
759 /// Determines whether the language options require us to model
760 /// unwind exceptions.  We treat -fexceptions as mandating this
761 /// except under the fragile ObjC ABI with only ObjC exceptions
762 /// enabled.  This means, for example, that C with -fexceptions
763 /// enables this.
764 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
765   // If exceptions are completely disabled, obviously this is false.
766   if (!LangOpts.Exceptions) return false;
767 
768   // If C++ exceptions are enabled, this is true.
769   if (LangOpts.CXXExceptions) return true;
770 
771   // If ObjC exceptions are enabled, this depends on the ABI.
772   if (LangOpts.ObjCExceptions) {
773     return LangOpts.ObjCRuntime.hasUnwindExceptions();
774   }
775 
776   return true;
777 }
778 
779 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
780                                                            llvm::Function *F) {
781   llvm::AttrBuilder B;
782 
783   if (CodeGenOpts.UnwindTables)
784     B.addAttribute(llvm::Attribute::UWTable);
785 
786   if (!hasUnwindExceptions(LangOpts))
787     B.addAttribute(llvm::Attribute::NoUnwind);
788 
789   if (D->hasAttr<NakedAttr>()) {
790     // Naked implies noinline: we should not be inlining such functions.
791     B.addAttribute(llvm::Attribute::Naked);
792     B.addAttribute(llvm::Attribute::NoInline);
793   } else if (D->hasAttr<NoDuplicateAttr>()) {
794     B.addAttribute(llvm::Attribute::NoDuplicate);
795   } else if (D->hasAttr<NoInlineAttr>()) {
796     B.addAttribute(llvm::Attribute::NoInline);
797   } else if (D->hasAttr<AlwaysInlineAttr>() &&
798              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
799                                               llvm::Attribute::NoInline)) {
800     // (noinline wins over always_inline, and we can't specify both in IR)
801     B.addAttribute(llvm::Attribute::AlwaysInline);
802   }
803 
804   if (D->hasAttr<ColdAttr>()) {
805     if (!D->hasAttr<OptimizeNoneAttr>())
806       B.addAttribute(llvm::Attribute::OptimizeForSize);
807     B.addAttribute(llvm::Attribute::Cold);
808   }
809 
810   if (D->hasAttr<MinSizeAttr>())
811     B.addAttribute(llvm::Attribute::MinSize);
812 
813   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
814     B.addAttribute(llvm::Attribute::StackProtect);
815   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
816     B.addAttribute(llvm::Attribute::StackProtectStrong);
817   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
818     B.addAttribute(llvm::Attribute::StackProtectReq);
819 
820   F->addAttributes(llvm::AttributeSet::FunctionIndex,
821                    llvm::AttributeSet::get(
822                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
823 
824   if (D->hasAttr<OptimizeNoneAttr>()) {
825     // OptimizeNone implies noinline; we should not be inlining such functions.
826     F->addFnAttr(llvm::Attribute::OptimizeNone);
827     F->addFnAttr(llvm::Attribute::NoInline);
828 
829     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
830     assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) &&
831            "OptimizeNone and OptimizeForSize on same function!");
832     assert(!F->hasFnAttribute(llvm::Attribute::MinSize) &&
833            "OptimizeNone and MinSize on same function!");
834     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
835            "OptimizeNone and AlwaysInline on same function!");
836 
837     // Attribute 'inlinehint' has no effect on 'optnone' functions.
838     // Explicitly remove it from the set of function attributes.
839     F->removeFnAttr(llvm::Attribute::InlineHint);
840   }
841 
842   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
843     F->setUnnamedAddr(true);
844   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
845     if (MD->isVirtual())
846       F->setUnnamedAddr(true);
847 
848   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
849   if (alignment)
850     F->setAlignment(alignment);
851 
852   // Some C++ ABIs require 2-byte alignment for member functions, in order to
853   // reserve a bit for differentiating between virtual and non-virtual member
854   // functions. If the current target's C++ ABI requires this and this is a
855   // member function, set its alignment accordingly.
856   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
857     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
858       F->setAlignment(2);
859   }
860 }
861 
862 void CodeGenModule::SetCommonAttributes(const Decl *D,
863                                         llvm::GlobalValue *GV) {
864   if (const auto *ND = dyn_cast<NamedDecl>(D))
865     setGlobalVisibility(GV, ND);
866   else
867     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
868 
869   if (D->hasAttr<UsedAttr>())
870     addUsedGlobal(GV);
871 }
872 
873 void CodeGenModule::setAliasAttributes(const Decl *D,
874                                        llvm::GlobalValue *GV) {
875   SetCommonAttributes(D, GV);
876 
877   // Process the dllexport attribute based on whether the original definition
878   // (not necessarily the aliasee) was exported.
879   if (D->hasAttr<DLLExportAttr>())
880     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
881 }
882 
883 void CodeGenModule::setNonAliasAttributes(const Decl *D,
884                                           llvm::GlobalObject *GO) {
885   SetCommonAttributes(D, GO);
886 
887   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
888     GO->setSection(SA->getName());
889 
890   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
891 }
892 
893 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
894                                                   llvm::Function *F,
895                                                   const CGFunctionInfo &FI) {
896   SetLLVMFunctionAttributes(D, FI, F);
897   SetLLVMFunctionAttributesForDefinition(D, F);
898 
899   F->setLinkage(llvm::Function::InternalLinkage);
900 
901   setNonAliasAttributes(D, F);
902 }
903 
904 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
905                                          const NamedDecl *ND) {
906   // Set linkage and visibility in case we never see a definition.
907   LinkageInfo LV = ND->getLinkageAndVisibility();
908   if (LV.getLinkage() != ExternalLinkage) {
909     // Don't set internal linkage on declarations.
910   } else {
911     if (ND->hasAttr<DLLImportAttr>()) {
912       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
913       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
914     } else if (ND->hasAttr<DLLExportAttr>()) {
915       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
916       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
917     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
918       // "extern_weak" is overloaded in LLVM; we probably should have
919       // separate linkage types for this.
920       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
921     }
922 
923     // Set visibility on a declaration only if it's explicit.
924     if (LV.isVisibilityExplicit())
925       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
926   }
927 }
928 
929 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
930                                           bool IsIncompleteFunction,
931                                           bool IsThunk) {
932   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
933     // If this is an intrinsic function, set the function's attributes
934     // to the intrinsic's attributes.
935     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
936     return;
937   }
938 
939   const auto *FD = cast<FunctionDecl>(GD.getDecl());
940 
941   if (!IsIncompleteFunction)
942     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
943 
944   // Add the Returned attribute for "this", except for iOS 5 and earlier
945   // where substantial code, including the libstdc++ dylib, was compiled with
946   // GCC and does not actually return "this".
947   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
948       !(getTarget().getTriple().isiOS() &&
949         getTarget().getTriple().isOSVersionLT(6))) {
950     assert(!F->arg_empty() &&
951            F->arg_begin()->getType()
952              ->canLosslesslyBitCastTo(F->getReturnType()) &&
953            "unexpected this return");
954     F->addAttribute(1, llvm::Attribute::Returned);
955   }
956 
957   // Only a few attributes are set on declarations; these may later be
958   // overridden by a definition.
959 
960   setLinkageAndVisibilityForGV(F, FD);
961 
962   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
963     F->setSection(SA->getName());
964 
965   // A replaceable global allocation function does not act like a builtin by
966   // default, only if it is invoked by a new-expression or delete-expression.
967   if (FD->isReplaceableGlobalAllocationFunction())
968     F->addAttribute(llvm::AttributeSet::FunctionIndex,
969                     llvm::Attribute::NoBuiltin);
970 
971   // If we are checking indirect calls and this is not a non-static member
972   // function, emit a bit set entry for the function type.
973   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall) &&
974       !(isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())) {
975     llvm::NamedMDNode *BitsetsMD =
976         getModule().getOrInsertNamedMetadata("llvm.bitsets");
977 
978     llvm::Metadata *BitsetOps[] = {
979         CreateMetadataIdentifierForType(FD->getType()),
980         llvm::ConstantAsMetadata::get(F),
981         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
982     BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
983   }
984 }
985 
986 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
987   assert(!GV->isDeclaration() &&
988          "Only globals with definition can force usage.");
989   LLVMUsed.emplace_back(GV);
990 }
991 
992 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
993   assert(!GV->isDeclaration() &&
994          "Only globals with definition can force usage.");
995   LLVMCompilerUsed.emplace_back(GV);
996 }
997 
998 static void emitUsed(CodeGenModule &CGM, StringRef Name,
999                      std::vector<llvm::WeakVH> &List) {
1000   // Don't create llvm.used if there is no need.
1001   if (List.empty())
1002     return;
1003 
1004   // Convert List to what ConstantArray needs.
1005   SmallVector<llvm::Constant*, 8> UsedArray;
1006   UsedArray.resize(List.size());
1007   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1008     UsedArray[i] =
1009         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1010             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1011   }
1012 
1013   if (UsedArray.empty())
1014     return;
1015   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1016 
1017   auto *GV = new llvm::GlobalVariable(
1018       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1019       llvm::ConstantArray::get(ATy, UsedArray), Name);
1020 
1021   GV->setSection("llvm.metadata");
1022 }
1023 
1024 void CodeGenModule::emitLLVMUsed() {
1025   emitUsed(*this, "llvm.used", LLVMUsed);
1026   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1027 }
1028 
1029 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1030   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1031   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1032 }
1033 
1034 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1035   llvm::SmallString<32> Opt;
1036   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1037   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1038   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1039 }
1040 
1041 void CodeGenModule::AddDependentLib(StringRef Lib) {
1042   llvm::SmallString<24> Opt;
1043   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1044   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1045   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1046 }
1047 
1048 /// \brief Add link options implied by the given module, including modules
1049 /// it depends on, using a postorder walk.
1050 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1051                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1052                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1053   // Import this module's parent.
1054   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1055     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1056   }
1057 
1058   // Import this module's dependencies.
1059   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1060     if (Visited.insert(Mod->Imports[I - 1]).second)
1061       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1062   }
1063 
1064   // Add linker options to link against the libraries/frameworks
1065   // described by this module.
1066   llvm::LLVMContext &Context = CGM.getLLVMContext();
1067   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1068     // Link against a framework.  Frameworks are currently Darwin only, so we
1069     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1070     if (Mod->LinkLibraries[I-1].IsFramework) {
1071       llvm::Metadata *Args[2] = {
1072           llvm::MDString::get(Context, "-framework"),
1073           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1074 
1075       Metadata.push_back(llvm::MDNode::get(Context, Args));
1076       continue;
1077     }
1078 
1079     // Link against a library.
1080     llvm::SmallString<24> Opt;
1081     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1082       Mod->LinkLibraries[I-1].Library, Opt);
1083     auto *OptString = llvm::MDString::get(Context, Opt);
1084     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1085   }
1086 }
1087 
1088 void CodeGenModule::EmitModuleLinkOptions() {
1089   // Collect the set of all of the modules we want to visit to emit link
1090   // options, which is essentially the imported modules and all of their
1091   // non-explicit child modules.
1092   llvm::SetVector<clang::Module *> LinkModules;
1093   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1094   SmallVector<clang::Module *, 16> Stack;
1095 
1096   // Seed the stack with imported modules.
1097   for (Module *M : ImportedModules)
1098     if (Visited.insert(M).second)
1099       Stack.push_back(M);
1100 
1101   // Find all of the modules to import, making a little effort to prune
1102   // non-leaf modules.
1103   while (!Stack.empty()) {
1104     clang::Module *Mod = Stack.pop_back_val();
1105 
1106     bool AnyChildren = false;
1107 
1108     // Visit the submodules of this module.
1109     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1110                                         SubEnd = Mod->submodule_end();
1111          Sub != SubEnd; ++Sub) {
1112       // Skip explicit children; they need to be explicitly imported to be
1113       // linked against.
1114       if ((*Sub)->IsExplicit)
1115         continue;
1116 
1117       if (Visited.insert(*Sub).second) {
1118         Stack.push_back(*Sub);
1119         AnyChildren = true;
1120       }
1121     }
1122 
1123     // We didn't find any children, so add this module to the list of
1124     // modules to link against.
1125     if (!AnyChildren) {
1126       LinkModules.insert(Mod);
1127     }
1128   }
1129 
1130   // Add link options for all of the imported modules in reverse topological
1131   // order.  We don't do anything to try to order import link flags with respect
1132   // to linker options inserted by things like #pragma comment().
1133   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1134   Visited.clear();
1135   for (Module *M : LinkModules)
1136     if (Visited.insert(M).second)
1137       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1138   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1139   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1140 
1141   // Add the linker options metadata flag.
1142   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1143                             llvm::MDNode::get(getLLVMContext(),
1144                                               LinkerOptionsMetadata));
1145 }
1146 
1147 void CodeGenModule::EmitDeferred() {
1148   // Emit code for any potentially referenced deferred decls.  Since a
1149   // previously unused static decl may become used during the generation of code
1150   // for a static function, iterate until no changes are made.
1151 
1152   if (!DeferredVTables.empty()) {
1153     EmitDeferredVTables();
1154 
1155     // Emitting a v-table doesn't directly cause more v-tables to
1156     // become deferred, although it can cause functions to be
1157     // emitted that then need those v-tables.
1158     assert(DeferredVTables.empty());
1159   }
1160 
1161   // Stop if we're out of both deferred v-tables and deferred declarations.
1162   if (DeferredDeclsToEmit.empty())
1163     return;
1164 
1165   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1166   // work, it will not interfere with this.
1167   std::vector<DeferredGlobal> CurDeclsToEmit;
1168   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1169 
1170   for (DeferredGlobal &G : CurDeclsToEmit) {
1171     GlobalDecl D = G.GD;
1172     llvm::GlobalValue *GV = G.GV;
1173     G.GV = nullptr;
1174 
1175     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1176     // to get GlobalValue with exactly the type we need, not something that
1177     // might had been created for another decl with the same mangled name but
1178     // different type.
1179     // FIXME: Support for variables is not implemented yet.
1180     if (isa<FunctionDecl>(D.getDecl()))
1181       GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1182     else
1183       if (!GV)
1184         GV = GetGlobalValue(getMangledName(D));
1185 
1186     // Check to see if we've already emitted this.  This is necessary
1187     // for a couple of reasons: first, decls can end up in the
1188     // deferred-decls queue multiple times, and second, decls can end
1189     // up with definitions in unusual ways (e.g. by an extern inline
1190     // function acquiring a strong function redefinition).  Just
1191     // ignore these cases.
1192     if (GV && !GV->isDeclaration())
1193       continue;
1194 
1195     // Otherwise, emit the definition and move on to the next one.
1196     EmitGlobalDefinition(D, GV);
1197 
1198     // If we found out that we need to emit more decls, do that recursively.
1199     // This has the advantage that the decls are emitted in a DFS and related
1200     // ones are close together, which is convenient for testing.
1201     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1202       EmitDeferred();
1203       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1204     }
1205   }
1206 }
1207 
1208 void CodeGenModule::EmitGlobalAnnotations() {
1209   if (Annotations.empty())
1210     return;
1211 
1212   // Create a new global variable for the ConstantStruct in the Module.
1213   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1214     Annotations[0]->getType(), Annotations.size()), Annotations);
1215   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1216                                       llvm::GlobalValue::AppendingLinkage,
1217                                       Array, "llvm.global.annotations");
1218   gv->setSection(AnnotationSection);
1219 }
1220 
1221 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1222   llvm::Constant *&AStr = AnnotationStrings[Str];
1223   if (AStr)
1224     return AStr;
1225 
1226   // Not found yet, create a new global.
1227   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1228   auto *gv =
1229       new llvm::GlobalVariable(getModule(), s->getType(), true,
1230                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1231   gv->setSection(AnnotationSection);
1232   gv->setUnnamedAddr(true);
1233   AStr = gv;
1234   return gv;
1235 }
1236 
1237 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1238   SourceManager &SM = getContext().getSourceManager();
1239   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1240   if (PLoc.isValid())
1241     return EmitAnnotationString(PLoc.getFilename());
1242   return EmitAnnotationString(SM.getBufferName(Loc));
1243 }
1244 
1245 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1246   SourceManager &SM = getContext().getSourceManager();
1247   PresumedLoc PLoc = SM.getPresumedLoc(L);
1248   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1249     SM.getExpansionLineNumber(L);
1250   return llvm::ConstantInt::get(Int32Ty, LineNo);
1251 }
1252 
1253 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1254                                                 const AnnotateAttr *AA,
1255                                                 SourceLocation L) {
1256   // Get the globals for file name, annotation, and the line number.
1257   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1258                  *UnitGV = EmitAnnotationUnit(L),
1259                  *LineNoCst = EmitAnnotationLineNo(L);
1260 
1261   // Create the ConstantStruct for the global annotation.
1262   llvm::Constant *Fields[4] = {
1263     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1264     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1265     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1266     LineNoCst
1267   };
1268   return llvm::ConstantStruct::getAnon(Fields);
1269 }
1270 
1271 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1272                                          llvm::GlobalValue *GV) {
1273   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1274   // Get the struct elements for these annotations.
1275   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1276     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1277 }
1278 
1279 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1280                                            SourceLocation Loc) const {
1281   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1282   // Blacklist by function name.
1283   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1284     return true;
1285   // Blacklist by location.
1286   if (!Loc.isInvalid())
1287     return SanitizerBL.isBlacklistedLocation(Loc);
1288   // If location is unknown, this may be a compiler-generated function. Assume
1289   // it's located in the main file.
1290   auto &SM = Context.getSourceManager();
1291   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1292     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1293   }
1294   return false;
1295 }
1296 
1297 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1298                                            SourceLocation Loc, QualType Ty,
1299                                            StringRef Category) const {
1300   // For now globals can be blacklisted only in ASan and KASan.
1301   if (!LangOpts.Sanitize.hasOneOf(
1302           SanitizerKind::Address | SanitizerKind::KernelAddress))
1303     return false;
1304   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1305   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1306     return true;
1307   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1308     return true;
1309   // Check global type.
1310   if (!Ty.isNull()) {
1311     // Drill down the array types: if global variable of a fixed type is
1312     // blacklisted, we also don't instrument arrays of them.
1313     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1314       Ty = AT->getElementType();
1315     Ty = Ty.getCanonicalType().getUnqualifiedType();
1316     // We allow to blacklist only record types (classes, structs etc.)
1317     if (Ty->isRecordType()) {
1318       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1319       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1320         return true;
1321     }
1322   }
1323   return false;
1324 }
1325 
1326 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1327   // Never defer when EmitAllDecls is specified.
1328   if (LangOpts.EmitAllDecls)
1329     return true;
1330 
1331   return getContext().DeclMustBeEmitted(Global);
1332 }
1333 
1334 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1335   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1336     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1337       // Implicit template instantiations may change linkage if they are later
1338       // explicitly instantiated, so they should not be emitted eagerly.
1339       return false;
1340   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1341   // codegen for global variables, because they may be marked as threadprivate.
1342   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1343       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1344     return false;
1345 
1346   return true;
1347 }
1348 
1349 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1350     const CXXUuidofExpr* E) {
1351   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1352   // well-formed.
1353   StringRef Uuid = E->getUuidAsStringRef(Context);
1354   std::string Name = "_GUID_" + Uuid.lower();
1355   std::replace(Name.begin(), Name.end(), '-', '_');
1356 
1357   // Contains a 32-bit field.
1358   CharUnits Alignment = CharUnits::fromQuantity(4);
1359 
1360   // Look for an existing global.
1361   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1362     return ConstantAddress(GV, Alignment);
1363 
1364   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1365   assert(Init && "failed to initialize as constant");
1366 
1367   auto *GV = new llvm::GlobalVariable(
1368       getModule(), Init->getType(),
1369       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1370   if (supportsCOMDAT())
1371     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1372   return ConstantAddress(GV, Alignment);
1373 }
1374 
1375 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1376   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1377   assert(AA && "No alias?");
1378 
1379   CharUnits Alignment = getContext().getDeclAlign(VD);
1380   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1381 
1382   // See if there is already something with the target's name in the module.
1383   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1384   if (Entry) {
1385     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1386     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1387     return ConstantAddress(Ptr, Alignment);
1388   }
1389 
1390   llvm::Constant *Aliasee;
1391   if (isa<llvm::FunctionType>(DeclTy))
1392     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1393                                       GlobalDecl(cast<FunctionDecl>(VD)),
1394                                       /*ForVTable=*/false);
1395   else
1396     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1397                                     llvm::PointerType::getUnqual(DeclTy),
1398                                     nullptr);
1399 
1400   auto *F = cast<llvm::GlobalValue>(Aliasee);
1401   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1402   WeakRefReferences.insert(F);
1403 
1404   return ConstantAddress(Aliasee, Alignment);
1405 }
1406 
1407 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1408   const auto *Global = cast<ValueDecl>(GD.getDecl());
1409 
1410   // Weak references don't produce any output by themselves.
1411   if (Global->hasAttr<WeakRefAttr>())
1412     return;
1413 
1414   // If this is an alias definition (which otherwise looks like a declaration)
1415   // emit it now.
1416   if (Global->hasAttr<AliasAttr>())
1417     return EmitAliasDefinition(GD);
1418 
1419   // If this is CUDA, be selective about which declarations we emit.
1420   if (LangOpts.CUDA) {
1421     if (LangOpts.CUDAIsDevice) {
1422       if (!Global->hasAttr<CUDADeviceAttr>() &&
1423           !Global->hasAttr<CUDAGlobalAttr>() &&
1424           !Global->hasAttr<CUDAConstantAttr>() &&
1425           !Global->hasAttr<CUDASharedAttr>())
1426         return;
1427     } else {
1428       if (!Global->hasAttr<CUDAHostAttr>() && (
1429             Global->hasAttr<CUDADeviceAttr>() ||
1430             Global->hasAttr<CUDAConstantAttr>() ||
1431             Global->hasAttr<CUDASharedAttr>()))
1432         return;
1433     }
1434   }
1435 
1436   // Ignore declarations, they will be emitted on their first use.
1437   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1438     // Forward declarations are emitted lazily on first use.
1439     if (!FD->doesThisDeclarationHaveABody()) {
1440       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1441         return;
1442 
1443       StringRef MangledName = getMangledName(GD);
1444 
1445       // Compute the function info and LLVM type.
1446       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1447       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1448 
1449       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1450                               /*DontDefer=*/false);
1451       return;
1452     }
1453   } else {
1454     const auto *VD = cast<VarDecl>(Global);
1455     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1456 
1457     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1458         !Context.isMSStaticDataMemberInlineDefinition(VD))
1459       return;
1460   }
1461 
1462   // Defer code generation to first use when possible, e.g. if this is an inline
1463   // function. If the global must always be emitted, do it eagerly if possible
1464   // to benefit from cache locality.
1465   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1466     // Emit the definition if it can't be deferred.
1467     EmitGlobalDefinition(GD);
1468     return;
1469   }
1470 
1471   // If we're deferring emission of a C++ variable with an
1472   // initializer, remember the order in which it appeared in the file.
1473   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1474       cast<VarDecl>(Global)->hasInit()) {
1475     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1476     CXXGlobalInits.push_back(nullptr);
1477   }
1478 
1479   StringRef MangledName = getMangledName(GD);
1480   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1481     // The value has already been used and should therefore be emitted.
1482     addDeferredDeclToEmit(GV, GD);
1483   } else if (MustBeEmitted(Global)) {
1484     // The value must be emitted, but cannot be emitted eagerly.
1485     assert(!MayBeEmittedEagerly(Global));
1486     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1487   } else {
1488     // Otherwise, remember that we saw a deferred decl with this name.  The
1489     // first use of the mangled name will cause it to move into
1490     // DeferredDeclsToEmit.
1491     DeferredDecls[MangledName] = GD;
1492   }
1493 }
1494 
1495 namespace {
1496   struct FunctionIsDirectlyRecursive :
1497     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1498     const StringRef Name;
1499     const Builtin::Context &BI;
1500     bool Result;
1501     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1502       Name(N), BI(C), Result(false) {
1503     }
1504     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1505 
1506     bool TraverseCallExpr(CallExpr *E) {
1507       const FunctionDecl *FD = E->getDirectCallee();
1508       if (!FD)
1509         return true;
1510       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1511       if (Attr && Name == Attr->getLabel()) {
1512         Result = true;
1513         return false;
1514       }
1515       unsigned BuiltinID = FD->getBuiltinID();
1516       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1517         return true;
1518       StringRef BuiltinName = BI.getName(BuiltinID);
1519       if (BuiltinName.startswith("__builtin_") &&
1520           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1521         Result = true;
1522         return false;
1523       }
1524       return true;
1525     }
1526   };
1527 
1528   struct DLLImportFunctionVisitor
1529       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1530     bool SafeToInline = true;
1531 
1532     bool VisitVarDecl(VarDecl *VD) {
1533       // A thread-local variable cannot be imported.
1534       SafeToInline = !VD->getTLSKind();
1535       return SafeToInline;
1536     }
1537 
1538     // Make sure we're not referencing non-imported vars or functions.
1539     bool VisitDeclRefExpr(DeclRefExpr *E) {
1540       ValueDecl *VD = E->getDecl();
1541       if (isa<FunctionDecl>(VD))
1542         SafeToInline = VD->hasAttr<DLLImportAttr>();
1543       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1544         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1545       return SafeToInline;
1546     }
1547     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1548       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1549       return SafeToInline;
1550     }
1551     bool VisitCXXNewExpr(CXXNewExpr *E) {
1552       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1553       return SafeToInline;
1554     }
1555   };
1556 }
1557 
1558 // isTriviallyRecursive - Check if this function calls another
1559 // decl that, because of the asm attribute or the other decl being a builtin,
1560 // ends up pointing to itself.
1561 bool
1562 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1563   StringRef Name;
1564   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1565     // asm labels are a special kind of mangling we have to support.
1566     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1567     if (!Attr)
1568       return false;
1569     Name = Attr->getLabel();
1570   } else {
1571     Name = FD->getName();
1572   }
1573 
1574   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1575   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1576   return Walker.Result;
1577 }
1578 
1579 bool
1580 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1581   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1582     return true;
1583   const auto *F = cast<FunctionDecl>(GD.getDecl());
1584   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1585     return false;
1586 
1587   if (F->hasAttr<DLLImportAttr>()) {
1588     // Check whether it would be safe to inline this dllimport function.
1589     DLLImportFunctionVisitor Visitor;
1590     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1591     if (!Visitor.SafeToInline)
1592       return false;
1593   }
1594 
1595   // PR9614. Avoid cases where the source code is lying to us. An available
1596   // externally function should have an equivalent function somewhere else,
1597   // but a function that calls itself is clearly not equivalent to the real
1598   // implementation.
1599   // This happens in glibc's btowc and in some configure checks.
1600   return !isTriviallyRecursive(F);
1601 }
1602 
1603 /// If the type for the method's class was generated by
1604 /// CGDebugInfo::createContextChain(), the cache contains only a
1605 /// limited DIType without any declarations. Since EmitFunctionStart()
1606 /// needs to find the canonical declaration for each method, we need
1607 /// to construct the complete type prior to emitting the method.
1608 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1609   if (!D->isInstance())
1610     return;
1611 
1612   if (CGDebugInfo *DI = getModuleDebugInfo())
1613     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1614       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1615       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1616     }
1617 }
1618 
1619 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1620   const auto *D = cast<ValueDecl>(GD.getDecl());
1621 
1622   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1623                                  Context.getSourceManager(),
1624                                  "Generating code for declaration");
1625 
1626   if (isa<FunctionDecl>(D)) {
1627     // At -O0, don't generate IR for functions with available_externally
1628     // linkage.
1629     if (!shouldEmitFunction(GD))
1630       return;
1631 
1632     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1633       CompleteDIClassType(Method);
1634       // Make sure to emit the definition(s) before we emit the thunks.
1635       // This is necessary for the generation of certain thunks.
1636       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1637         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1638       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1639         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1640       else
1641         EmitGlobalFunctionDefinition(GD, GV);
1642 
1643       if (Method->isVirtual())
1644         getVTables().EmitThunks(GD);
1645 
1646       return;
1647     }
1648 
1649     return EmitGlobalFunctionDefinition(GD, GV);
1650   }
1651 
1652   if (const auto *VD = dyn_cast<VarDecl>(D))
1653     return EmitGlobalVarDefinition(VD);
1654 
1655   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1656 }
1657 
1658 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1659                                                       llvm::Function *NewFn);
1660 
1661 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1662 /// module, create and return an llvm Function with the specified type. If there
1663 /// is something in the module with the specified name, return it potentially
1664 /// bitcasted to the right type.
1665 ///
1666 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1667 /// to set the attributes on the function when it is first created.
1668 llvm::Constant *
1669 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1670                                        llvm::Type *Ty,
1671                                        GlobalDecl GD, bool ForVTable,
1672                                        bool DontDefer, bool IsThunk,
1673                                        llvm::AttributeSet ExtraAttrs,
1674                                        bool IsForDefinition) {
1675   const Decl *D = GD.getDecl();
1676 
1677   // Lookup the entry, lazily creating it if necessary.
1678   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1679   if (Entry) {
1680     if (WeakRefReferences.erase(Entry)) {
1681       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1682       if (FD && !FD->hasAttr<WeakAttr>())
1683         Entry->setLinkage(llvm::Function::ExternalLinkage);
1684     }
1685 
1686     // Handle dropped DLL attributes.
1687     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1688       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1689 
1690     // If there are two attempts to define the same mangled name, issue an
1691     // error.
1692     if (IsForDefinition && !Entry->isDeclaration()) {
1693       GlobalDecl OtherGD;
1694       // Check that GD is not yet in ExplicitDefinitions is required to make
1695       // sure that we issue an error only once.
1696       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1697           (GD.getCanonicalDecl().getDecl() !=
1698            OtherGD.getCanonicalDecl().getDecl()) &&
1699           DiagnosedConflictingDefinitions.insert(GD).second) {
1700         getDiags().Report(D->getLocation(),
1701                           diag::err_duplicate_mangled_name);
1702         getDiags().Report(OtherGD.getDecl()->getLocation(),
1703                           diag::note_previous_definition);
1704       }
1705     }
1706 
1707     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1708         (Entry->getType()->getElementType() == Ty)) {
1709       return Entry;
1710     }
1711 
1712     // Make sure the result is of the correct type.
1713     // (If function is requested for a definition, we always need to create a new
1714     // function, not just return a bitcast.)
1715     if (!IsForDefinition)
1716       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1717   }
1718 
1719   // This function doesn't have a complete type (for example, the return
1720   // type is an incomplete struct). Use a fake type instead, and make
1721   // sure not to try to set attributes.
1722   bool IsIncompleteFunction = false;
1723 
1724   llvm::FunctionType *FTy;
1725   if (isa<llvm::FunctionType>(Ty)) {
1726     FTy = cast<llvm::FunctionType>(Ty);
1727   } else {
1728     FTy = llvm::FunctionType::get(VoidTy, false);
1729     IsIncompleteFunction = true;
1730   }
1731 
1732   llvm::Function *F =
1733       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1734                              Entry ? StringRef() : MangledName, &getModule());
1735 
1736   // If we already created a function with the same mangled name (but different
1737   // type) before, take its name and add it to the list of functions to be
1738   // replaced with F at the end of CodeGen.
1739   //
1740   // This happens if there is a prototype for a function (e.g. "int f()") and
1741   // then a definition of a different type (e.g. "int f(int x)").
1742   if (Entry) {
1743     F->takeName(Entry);
1744 
1745     // This might be an implementation of a function without a prototype, in
1746     // which case, try to do special replacement of calls which match the new
1747     // prototype.  The really key thing here is that we also potentially drop
1748     // arguments from the call site so as to make a direct call, which makes the
1749     // inliner happier and suppresses a number of optimizer warnings (!) about
1750     // dropping arguments.
1751     if (!Entry->use_empty()) {
1752       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1753       Entry->removeDeadConstantUsers();
1754     }
1755 
1756     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1757         F, Entry->getType()->getElementType()->getPointerTo());
1758     addGlobalValReplacement(Entry, BC);
1759   }
1760 
1761   assert(F->getName() == MangledName && "name was uniqued!");
1762   if (D)
1763     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1764   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1765     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1766     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1767                      llvm::AttributeSet::get(VMContext,
1768                                              llvm::AttributeSet::FunctionIndex,
1769                                              B));
1770   }
1771 
1772   if (!DontDefer) {
1773     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1774     // each other bottoming out with the base dtor.  Therefore we emit non-base
1775     // dtors on usage, even if there is no dtor definition in the TU.
1776     if (D && isa<CXXDestructorDecl>(D) &&
1777         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1778                                            GD.getDtorType()))
1779       addDeferredDeclToEmit(F, GD);
1780 
1781     // This is the first use or definition of a mangled name.  If there is a
1782     // deferred decl with this name, remember that we need to emit it at the end
1783     // of the file.
1784     auto DDI = DeferredDecls.find(MangledName);
1785     if (DDI != DeferredDecls.end()) {
1786       // Move the potentially referenced deferred decl to the
1787       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1788       // don't need it anymore).
1789       addDeferredDeclToEmit(F, DDI->second);
1790       DeferredDecls.erase(DDI);
1791 
1792       // Otherwise, there are cases we have to worry about where we're
1793       // using a declaration for which we must emit a definition but where
1794       // we might not find a top-level definition:
1795       //   - member functions defined inline in their classes
1796       //   - friend functions defined inline in some class
1797       //   - special member functions with implicit definitions
1798       // If we ever change our AST traversal to walk into class methods,
1799       // this will be unnecessary.
1800       //
1801       // We also don't emit a definition for a function if it's going to be an
1802       // entry in a vtable, unless it's already marked as used.
1803     } else if (getLangOpts().CPlusPlus && D) {
1804       // Look for a declaration that's lexically in a record.
1805       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1806            FD = FD->getPreviousDecl()) {
1807         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1808           if (FD->doesThisDeclarationHaveABody()) {
1809             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1810             break;
1811           }
1812         }
1813       }
1814     }
1815   }
1816 
1817   // Make sure the result is of the requested type.
1818   if (!IsIncompleteFunction) {
1819     assert(F->getType()->getElementType() == Ty);
1820     return F;
1821   }
1822 
1823   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1824   return llvm::ConstantExpr::getBitCast(F, PTy);
1825 }
1826 
1827 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1828 /// non-null, then this function will use the specified type if it has to
1829 /// create it (this occurs when we see a definition of the function).
1830 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1831                                                  llvm::Type *Ty,
1832                                                  bool ForVTable,
1833                                                  bool DontDefer,
1834                                                  bool IsForDefinition) {
1835   // If there was no specific requested type, just convert it now.
1836   if (!Ty)
1837     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1838 
1839   StringRef MangledName = getMangledName(GD);
1840   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
1841                                  /*IsThunk=*/false, llvm::AttributeSet(),
1842                                  IsForDefinition);
1843 }
1844 
1845 /// CreateRuntimeFunction - Create a new runtime function with the specified
1846 /// type and name.
1847 llvm::Constant *
1848 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1849                                      StringRef Name,
1850                                      llvm::AttributeSet ExtraAttrs) {
1851   llvm::Constant *C =
1852       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1853                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1854   if (auto *F = dyn_cast<llvm::Function>(C))
1855     if (F->empty())
1856       F->setCallingConv(getRuntimeCC());
1857   return C;
1858 }
1859 
1860 /// CreateBuiltinFunction - Create a new builtin function with the specified
1861 /// type and name.
1862 llvm::Constant *
1863 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
1864                                      StringRef Name,
1865                                      llvm::AttributeSet ExtraAttrs) {
1866   llvm::Constant *C =
1867       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1868                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1869   if (auto *F = dyn_cast<llvm::Function>(C))
1870     if (F->empty())
1871       F->setCallingConv(getBuiltinCC());
1872   return C;
1873 }
1874 
1875 /// isTypeConstant - Determine whether an object of this type can be emitted
1876 /// as a constant.
1877 ///
1878 /// If ExcludeCtor is true, the duration when the object's constructor runs
1879 /// will not be considered. The caller will need to verify that the object is
1880 /// not written to during its construction.
1881 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1882   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1883     return false;
1884 
1885   if (Context.getLangOpts().CPlusPlus) {
1886     if (const CXXRecordDecl *Record
1887           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1888       return ExcludeCtor && !Record->hasMutableFields() &&
1889              Record->hasTrivialDestructor();
1890   }
1891 
1892   return true;
1893 }
1894 
1895 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1896 /// create and return an llvm GlobalVariable with the specified type.  If there
1897 /// is something in the module with the specified name, return it potentially
1898 /// bitcasted to the right type.
1899 ///
1900 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1901 /// to set the attributes on the global when it is first created.
1902 llvm::Constant *
1903 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1904                                      llvm::PointerType *Ty,
1905                                      const VarDecl *D) {
1906   // Lookup the entry, lazily creating it if necessary.
1907   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1908   if (Entry) {
1909     if (WeakRefReferences.erase(Entry)) {
1910       if (D && !D->hasAttr<WeakAttr>())
1911         Entry->setLinkage(llvm::Function::ExternalLinkage);
1912     }
1913 
1914     // Handle dropped DLL attributes.
1915     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1916       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1917 
1918     if (Entry->getType() == Ty)
1919       return Entry;
1920 
1921     // Make sure the result is of the correct type.
1922     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1923       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1924 
1925     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1926   }
1927 
1928   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1929   auto *GV = new llvm::GlobalVariable(
1930       getModule(), Ty->getElementType(), false,
1931       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1932       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1933 
1934   // This is the first use or definition of a mangled name.  If there is a
1935   // deferred decl with this name, remember that we need to emit it at the end
1936   // of the file.
1937   auto DDI = DeferredDecls.find(MangledName);
1938   if (DDI != DeferredDecls.end()) {
1939     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1940     // list, and remove it from DeferredDecls (since we don't need it anymore).
1941     addDeferredDeclToEmit(GV, DDI->second);
1942     DeferredDecls.erase(DDI);
1943   }
1944 
1945   // Handle things which are present even on external declarations.
1946   if (D) {
1947     // FIXME: This code is overly simple and should be merged with other global
1948     // handling.
1949     GV->setConstant(isTypeConstant(D->getType(), false));
1950 
1951     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1952 
1953     setLinkageAndVisibilityForGV(GV, D);
1954 
1955     if (D->getTLSKind()) {
1956       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1957         CXXThreadLocals.push_back(std::make_pair(D, GV));
1958       setTLSMode(GV, *D);
1959     }
1960 
1961     // If required by the ABI, treat declarations of static data members with
1962     // inline initializers as definitions.
1963     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1964       EmitGlobalVarDefinition(D);
1965     }
1966 
1967     // Handle XCore specific ABI requirements.
1968     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1969         D->getLanguageLinkage() == CLanguageLinkage &&
1970         D->getType().isConstant(Context) &&
1971         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1972       GV->setSection(".cp.rodata");
1973   }
1974 
1975   if (AddrSpace != Ty->getAddressSpace())
1976     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1977 
1978   return GV;
1979 }
1980 
1981 llvm::Constant *
1982 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
1983                                bool IsForDefinition) {
1984   if (isa<CXXConstructorDecl>(GD.getDecl()))
1985     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
1986                                 getFromCtorType(GD.getCtorType()),
1987                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
1988                                 /*DontDefer=*/false, IsForDefinition);
1989   else if (isa<CXXDestructorDecl>(GD.getDecl()))
1990     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
1991                                 getFromDtorType(GD.getDtorType()),
1992                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
1993                                 /*DontDefer=*/false, IsForDefinition);
1994   else if (isa<CXXMethodDecl>(GD.getDecl())) {
1995     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
1996         cast<CXXMethodDecl>(GD.getDecl()));
1997     auto Ty = getTypes().GetFunctionType(*FInfo);
1998     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
1999                              IsForDefinition);
2000   } else if (isa<FunctionDecl>(GD.getDecl())) {
2001     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2002     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2003     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2004                              IsForDefinition);
2005   } else
2006     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()));
2007 }
2008 
2009 llvm::GlobalVariable *
2010 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2011                                       llvm::Type *Ty,
2012                                       llvm::GlobalValue::LinkageTypes Linkage) {
2013   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2014   llvm::GlobalVariable *OldGV = nullptr;
2015 
2016   if (GV) {
2017     // Check if the variable has the right type.
2018     if (GV->getType()->getElementType() == Ty)
2019       return GV;
2020 
2021     // Because C++ name mangling, the only way we can end up with an already
2022     // existing global with the same name is if it has been declared extern "C".
2023     assert(GV->isDeclaration() && "Declaration has wrong type!");
2024     OldGV = GV;
2025   }
2026 
2027   // Create a new variable.
2028   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2029                                 Linkage, nullptr, Name);
2030 
2031   if (OldGV) {
2032     // Replace occurrences of the old variable if needed.
2033     GV->takeName(OldGV);
2034 
2035     if (!OldGV->use_empty()) {
2036       llvm::Constant *NewPtrForOldDecl =
2037       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2038       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2039     }
2040 
2041     OldGV->eraseFromParent();
2042   }
2043 
2044   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2045       !GV->hasAvailableExternallyLinkage())
2046     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2047 
2048   return GV;
2049 }
2050 
2051 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2052 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2053 /// then it will be created with the specified type instead of whatever the
2054 /// normal requested type would be.
2055 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2056                                                   llvm::Type *Ty) {
2057   assert(D->hasGlobalStorage() && "Not a global variable");
2058   QualType ASTTy = D->getType();
2059   if (!Ty)
2060     Ty = getTypes().ConvertTypeForMem(ASTTy);
2061 
2062   llvm::PointerType *PTy =
2063     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2064 
2065   StringRef MangledName = getMangledName(D);
2066   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
2067 }
2068 
2069 /// CreateRuntimeVariable - Create a new runtime global variable with the
2070 /// specified type and name.
2071 llvm::Constant *
2072 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2073                                      StringRef Name) {
2074   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2075 }
2076 
2077 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2078   assert(!D->getInit() && "Cannot emit definite definitions here!");
2079 
2080   if (!MustBeEmitted(D)) {
2081     // If we have not seen a reference to this variable yet, place it
2082     // into the deferred declarations table to be emitted if needed
2083     // later.
2084     StringRef MangledName = getMangledName(D);
2085     if (!GetGlobalValue(MangledName)) {
2086       DeferredDecls[MangledName] = D;
2087       return;
2088     }
2089   }
2090 
2091   // The tentative definition is the only definition.
2092   EmitGlobalVarDefinition(D);
2093 }
2094 
2095 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2096   return Context.toCharUnitsFromBits(
2097       getDataLayout().getTypeStoreSizeInBits(Ty));
2098 }
2099 
2100 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2101                                                  unsigned AddrSpace) {
2102   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2103     if (D->hasAttr<CUDAConstantAttr>())
2104       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2105     else if (D->hasAttr<CUDASharedAttr>())
2106       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2107     else
2108       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2109   }
2110 
2111   return AddrSpace;
2112 }
2113 
2114 template<typename SomeDecl>
2115 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2116                                                llvm::GlobalValue *GV) {
2117   if (!getLangOpts().CPlusPlus)
2118     return;
2119 
2120   // Must have 'used' attribute, or else inline assembly can't rely on
2121   // the name existing.
2122   if (!D->template hasAttr<UsedAttr>())
2123     return;
2124 
2125   // Must have internal linkage and an ordinary name.
2126   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2127     return;
2128 
2129   // Must be in an extern "C" context. Entities declared directly within
2130   // a record are not extern "C" even if the record is in such a context.
2131   const SomeDecl *First = D->getFirstDecl();
2132   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2133     return;
2134 
2135   // OK, this is an internal linkage entity inside an extern "C" linkage
2136   // specification. Make a note of that so we can give it the "expected"
2137   // mangled name if nothing else is using that name.
2138   std::pair<StaticExternCMap::iterator, bool> R =
2139       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2140 
2141   // If we have multiple internal linkage entities with the same name
2142   // in extern "C" regions, none of them gets that name.
2143   if (!R.second)
2144     R.first->second = nullptr;
2145 }
2146 
2147 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2148   if (!CGM.supportsCOMDAT())
2149     return false;
2150 
2151   if (D.hasAttr<SelectAnyAttr>())
2152     return true;
2153 
2154   GVALinkage Linkage;
2155   if (auto *VD = dyn_cast<VarDecl>(&D))
2156     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2157   else
2158     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2159 
2160   switch (Linkage) {
2161   case GVA_Internal:
2162   case GVA_AvailableExternally:
2163   case GVA_StrongExternal:
2164     return false;
2165   case GVA_DiscardableODR:
2166   case GVA_StrongODR:
2167     return true;
2168   }
2169   llvm_unreachable("No such linkage");
2170 }
2171 
2172 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2173                                           llvm::GlobalObject &GO) {
2174   if (!shouldBeInCOMDAT(*this, D))
2175     return;
2176   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2177 }
2178 
2179 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
2180   llvm::Constant *Init = nullptr;
2181   QualType ASTTy = D->getType();
2182   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2183   bool NeedsGlobalCtor = false;
2184   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2185 
2186   const VarDecl *InitDecl;
2187   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2188 
2189   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part
2190   // of their declaration."
2191   if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice
2192       && D->hasAttr<CUDASharedAttr>()) {
2193     if (InitExpr) {
2194       const auto *C = dyn_cast<CXXConstructExpr>(InitExpr);
2195       if (C == nullptr || !C->getConstructor()->hasTrivialBody())
2196         Error(D->getLocation(),
2197               "__shared__ variable cannot have an initialization.");
2198     }
2199     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2200   } else if (!InitExpr) {
2201     // This is a tentative definition; tentative definitions are
2202     // implicitly initialized with { 0 }.
2203     //
2204     // Note that tentative definitions are only emitted at the end of
2205     // a translation unit, so they should never have incomplete
2206     // type. In addition, EmitTentativeDefinition makes sure that we
2207     // never attempt to emit a tentative definition if a real one
2208     // exists. A use may still exists, however, so we still may need
2209     // to do a RAUW.
2210     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2211     Init = EmitNullConstant(D->getType());
2212   } else {
2213     initializedGlobalDecl = GlobalDecl(D);
2214     Init = EmitConstantInit(*InitDecl);
2215 
2216     if (!Init) {
2217       QualType T = InitExpr->getType();
2218       if (D->getType()->isReferenceType())
2219         T = D->getType();
2220 
2221       if (getLangOpts().CPlusPlus) {
2222         Init = EmitNullConstant(T);
2223         NeedsGlobalCtor = true;
2224       } else {
2225         ErrorUnsupported(D, "static initializer");
2226         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2227       }
2228     } else {
2229       // We don't need an initializer, so remove the entry for the delayed
2230       // initializer position (just in case this entry was delayed) if we
2231       // also don't need to register a destructor.
2232       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2233         DelayedCXXInitPosition.erase(D);
2234     }
2235   }
2236 
2237   llvm::Type* InitType = Init->getType();
2238   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
2239 
2240   // Strip off a bitcast if we got one back.
2241   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2242     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2243            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2244            // All zero index gep.
2245            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2246     Entry = CE->getOperand(0);
2247   }
2248 
2249   // Entry is now either a Function or GlobalVariable.
2250   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2251 
2252   // We have a definition after a declaration with the wrong type.
2253   // We must make a new GlobalVariable* and update everything that used OldGV
2254   // (a declaration or tentative definition) with the new GlobalVariable*
2255   // (which will be a definition).
2256   //
2257   // This happens if there is a prototype for a global (e.g.
2258   // "extern int x[];") and then a definition of a different type (e.g.
2259   // "int x[10];"). This also happens when an initializer has a different type
2260   // from the type of the global (this happens with unions).
2261   if (!GV ||
2262       GV->getType()->getElementType() != InitType ||
2263       GV->getType()->getAddressSpace() !=
2264        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2265 
2266     // Move the old entry aside so that we'll create a new one.
2267     Entry->setName(StringRef());
2268 
2269     // Make a new global with the correct type, this is now guaranteed to work.
2270     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
2271 
2272     // Replace all uses of the old global with the new global
2273     llvm::Constant *NewPtrForOldDecl =
2274         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2275     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2276 
2277     // Erase the old global, since it is no longer used.
2278     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2279   }
2280 
2281   MaybeHandleStaticInExternC(D, GV);
2282 
2283   if (D->hasAttr<AnnotateAttr>())
2284     AddGlobalAnnotations(D, GV);
2285 
2286   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2287   // the device. [...]"
2288   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2289   // __device__, declares a variable that: [...]
2290   // Is accessible from all the threads within the grid and from the host
2291   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2292   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2293   if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice &&
2294       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) {
2295     GV->setExternallyInitialized(true);
2296   }
2297   GV->setInitializer(Init);
2298 
2299   // If it is safe to mark the global 'constant', do so now.
2300   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2301                   isTypeConstant(D->getType(), true));
2302 
2303   // If it is in a read-only section, mark it 'constant'.
2304   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2305     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2306     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2307       GV->setConstant(true);
2308   }
2309 
2310   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2311 
2312   // Set the llvm linkage type as appropriate.
2313   llvm::GlobalValue::LinkageTypes Linkage =
2314       getLLVMLinkageVarDefinition(D, GV->isConstant());
2315 
2316   // On Darwin, the backing variable for a C++11 thread_local variable always
2317   // has internal linkage; all accesses should just be calls to the
2318   // Itanium-specified entry point, which has the normal linkage of the
2319   // variable.
2320   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2321       Context.getTargetInfo().getTriple().isMacOSX())
2322     Linkage = llvm::GlobalValue::InternalLinkage;
2323 
2324   GV->setLinkage(Linkage);
2325   if (D->hasAttr<DLLImportAttr>())
2326     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2327   else if (D->hasAttr<DLLExportAttr>())
2328     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2329   else
2330     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2331 
2332   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2333     // common vars aren't constant even if declared const.
2334     GV->setConstant(false);
2335 
2336   setNonAliasAttributes(D, GV);
2337 
2338   if (D->getTLSKind() && !GV->isThreadLocal()) {
2339     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2340       CXXThreadLocals.push_back(std::make_pair(D, GV));
2341     setTLSMode(GV, *D);
2342   }
2343 
2344   maybeSetTrivialComdat(*D, *GV);
2345 
2346   // Emit the initializer function if necessary.
2347   if (NeedsGlobalCtor || NeedsGlobalDtor)
2348     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2349 
2350   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2351 
2352   // Emit global variable debug information.
2353   if (CGDebugInfo *DI = getModuleDebugInfo())
2354     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2355       DI->EmitGlobalVariable(GV, D);
2356 }
2357 
2358 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2359                                       CodeGenModule &CGM, const VarDecl *D,
2360                                       bool NoCommon) {
2361   // Don't give variables common linkage if -fno-common was specified unless it
2362   // was overridden by a NoCommon attribute.
2363   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2364     return true;
2365 
2366   // C11 6.9.2/2:
2367   //   A declaration of an identifier for an object that has file scope without
2368   //   an initializer, and without a storage-class specifier or with the
2369   //   storage-class specifier static, constitutes a tentative definition.
2370   if (D->getInit() || D->hasExternalStorage())
2371     return true;
2372 
2373   // A variable cannot be both common and exist in a section.
2374   if (D->hasAttr<SectionAttr>())
2375     return true;
2376 
2377   // Thread local vars aren't considered common linkage.
2378   if (D->getTLSKind())
2379     return true;
2380 
2381   // Tentative definitions marked with WeakImportAttr are true definitions.
2382   if (D->hasAttr<WeakImportAttr>())
2383     return true;
2384 
2385   // A variable cannot be both common and exist in a comdat.
2386   if (shouldBeInCOMDAT(CGM, *D))
2387     return true;
2388 
2389   // Declarations with a required alignment do not have common linakge in MSVC
2390   // mode.
2391   if (Context.getLangOpts().MSVCCompat) {
2392     if (D->hasAttr<AlignedAttr>())
2393       return true;
2394     QualType VarType = D->getType();
2395     if (Context.isAlignmentRequired(VarType))
2396       return true;
2397 
2398     if (const auto *RT = VarType->getAs<RecordType>()) {
2399       const RecordDecl *RD = RT->getDecl();
2400       for (const FieldDecl *FD : RD->fields()) {
2401         if (FD->isBitField())
2402           continue;
2403         if (FD->hasAttr<AlignedAttr>())
2404           return true;
2405         if (Context.isAlignmentRequired(FD->getType()))
2406           return true;
2407       }
2408     }
2409   }
2410 
2411   return false;
2412 }
2413 
2414 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2415     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2416   if (Linkage == GVA_Internal)
2417     return llvm::Function::InternalLinkage;
2418 
2419   if (D->hasAttr<WeakAttr>()) {
2420     if (IsConstantVariable)
2421       return llvm::GlobalVariable::WeakODRLinkage;
2422     else
2423       return llvm::GlobalVariable::WeakAnyLinkage;
2424   }
2425 
2426   // We are guaranteed to have a strong definition somewhere else,
2427   // so we can use available_externally linkage.
2428   if (Linkage == GVA_AvailableExternally)
2429     return llvm::Function::AvailableExternallyLinkage;
2430 
2431   // Note that Apple's kernel linker doesn't support symbol
2432   // coalescing, so we need to avoid linkonce and weak linkages there.
2433   // Normally, this means we just map to internal, but for explicit
2434   // instantiations we'll map to external.
2435 
2436   // In C++, the compiler has to emit a definition in every translation unit
2437   // that references the function.  We should use linkonce_odr because
2438   // a) if all references in this translation unit are optimized away, we
2439   // don't need to codegen it.  b) if the function persists, it needs to be
2440   // merged with other definitions. c) C++ has the ODR, so we know the
2441   // definition is dependable.
2442   if (Linkage == GVA_DiscardableODR)
2443     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2444                                             : llvm::Function::InternalLinkage;
2445 
2446   // An explicit instantiation of a template has weak linkage, since
2447   // explicit instantiations can occur in multiple translation units
2448   // and must all be equivalent. However, we are not allowed to
2449   // throw away these explicit instantiations.
2450   if (Linkage == GVA_StrongODR)
2451     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2452                                             : llvm::Function::ExternalLinkage;
2453 
2454   // C++ doesn't have tentative definitions and thus cannot have common
2455   // linkage.
2456   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2457       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2458                                  CodeGenOpts.NoCommon))
2459     return llvm::GlobalVariable::CommonLinkage;
2460 
2461   // selectany symbols are externally visible, so use weak instead of
2462   // linkonce.  MSVC optimizes away references to const selectany globals, so
2463   // all definitions should be the same and ODR linkage should be used.
2464   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2465   if (D->hasAttr<SelectAnyAttr>())
2466     return llvm::GlobalVariable::WeakODRLinkage;
2467 
2468   // Otherwise, we have strong external linkage.
2469   assert(Linkage == GVA_StrongExternal);
2470   return llvm::GlobalVariable::ExternalLinkage;
2471 }
2472 
2473 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2474     const VarDecl *VD, bool IsConstant) {
2475   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2476   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2477 }
2478 
2479 /// Replace the uses of a function that was declared with a non-proto type.
2480 /// We want to silently drop extra arguments from call sites
2481 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2482                                           llvm::Function *newFn) {
2483   // Fast path.
2484   if (old->use_empty()) return;
2485 
2486   llvm::Type *newRetTy = newFn->getReturnType();
2487   SmallVector<llvm::Value*, 4> newArgs;
2488 
2489   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2490          ui != ue; ) {
2491     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2492     llvm::User *user = use->getUser();
2493 
2494     // Recognize and replace uses of bitcasts.  Most calls to
2495     // unprototyped functions will use bitcasts.
2496     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2497       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2498         replaceUsesOfNonProtoConstant(bitcast, newFn);
2499       continue;
2500     }
2501 
2502     // Recognize calls to the function.
2503     llvm::CallSite callSite(user);
2504     if (!callSite) continue;
2505     if (!callSite.isCallee(&*use)) continue;
2506 
2507     // If the return types don't match exactly, then we can't
2508     // transform this call unless it's dead.
2509     if (callSite->getType() != newRetTy && !callSite->use_empty())
2510       continue;
2511 
2512     // Get the call site's attribute list.
2513     SmallVector<llvm::AttributeSet, 8> newAttrs;
2514     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2515 
2516     // Collect any return attributes from the call.
2517     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2518       newAttrs.push_back(
2519         llvm::AttributeSet::get(newFn->getContext(),
2520                                 oldAttrs.getRetAttributes()));
2521 
2522     // If the function was passed too few arguments, don't transform.
2523     unsigned newNumArgs = newFn->arg_size();
2524     if (callSite.arg_size() < newNumArgs) continue;
2525 
2526     // If extra arguments were passed, we silently drop them.
2527     // If any of the types mismatch, we don't transform.
2528     unsigned argNo = 0;
2529     bool dontTransform = false;
2530     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2531            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2532       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2533         dontTransform = true;
2534         break;
2535       }
2536 
2537       // Add any parameter attributes.
2538       if (oldAttrs.hasAttributes(argNo + 1))
2539         newAttrs.
2540           push_back(llvm::
2541                     AttributeSet::get(newFn->getContext(),
2542                                       oldAttrs.getParamAttributes(argNo + 1)));
2543     }
2544     if (dontTransform)
2545       continue;
2546 
2547     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2548       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2549                                                  oldAttrs.getFnAttributes()));
2550 
2551     // Okay, we can transform this.  Create the new call instruction and copy
2552     // over the required information.
2553     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2554 
2555     llvm::CallSite newCall;
2556     if (callSite.isCall()) {
2557       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2558                                        callSite.getInstruction());
2559     } else {
2560       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2561       newCall = llvm::InvokeInst::Create(newFn,
2562                                          oldInvoke->getNormalDest(),
2563                                          oldInvoke->getUnwindDest(),
2564                                          newArgs, "",
2565                                          callSite.getInstruction());
2566     }
2567     newArgs.clear(); // for the next iteration
2568 
2569     if (!newCall->getType()->isVoidTy())
2570       newCall->takeName(callSite.getInstruction());
2571     newCall.setAttributes(
2572                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2573     newCall.setCallingConv(callSite.getCallingConv());
2574 
2575     // Finally, remove the old call, replacing any uses with the new one.
2576     if (!callSite->use_empty())
2577       callSite->replaceAllUsesWith(newCall.getInstruction());
2578 
2579     // Copy debug location attached to CI.
2580     if (callSite->getDebugLoc())
2581       newCall->setDebugLoc(callSite->getDebugLoc());
2582     callSite->eraseFromParent();
2583   }
2584 }
2585 
2586 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2587 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2588 /// existing call uses of the old function in the module, this adjusts them to
2589 /// call the new function directly.
2590 ///
2591 /// This is not just a cleanup: the always_inline pass requires direct calls to
2592 /// functions to be able to inline them.  If there is a bitcast in the way, it
2593 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2594 /// run at -O0.
2595 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2596                                                       llvm::Function *NewFn) {
2597   // If we're redefining a global as a function, don't transform it.
2598   if (!isa<llvm::Function>(Old)) return;
2599 
2600   replaceUsesOfNonProtoConstant(Old, NewFn);
2601 }
2602 
2603 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2604   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2605   // If we have a definition, this might be a deferred decl. If the
2606   // instantiation is explicit, make sure we emit it at the end.
2607   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2608     GetAddrOfGlobalVar(VD);
2609 
2610   EmitTopLevelDecl(VD);
2611 }
2612 
2613 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2614                                                  llvm::GlobalValue *GV) {
2615   const auto *D = cast<FunctionDecl>(GD.getDecl());
2616 
2617   // Compute the function info and LLVM type.
2618   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2619   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2620 
2621   // Get or create the prototype for the function.
2622   if (!GV || (GV->getType()->getElementType() != Ty))
2623     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2624                                                    /*DontDefer=*/true,
2625                                                    /*IsForDefinition=*/true));
2626 
2627   // Already emitted.
2628   if (!GV->isDeclaration())
2629     return;
2630 
2631   // We need to set linkage and visibility on the function before
2632   // generating code for it because various parts of IR generation
2633   // want to propagate this information down (e.g. to local static
2634   // declarations).
2635   auto *Fn = cast<llvm::Function>(GV);
2636   setFunctionLinkage(GD, Fn);
2637   setFunctionDLLStorageClass(GD, Fn);
2638 
2639   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2640   setGlobalVisibility(Fn, D);
2641 
2642   MaybeHandleStaticInExternC(D, Fn);
2643 
2644   maybeSetTrivialComdat(*D, *Fn);
2645 
2646   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2647 
2648   setFunctionDefinitionAttributes(D, Fn);
2649   SetLLVMFunctionAttributesForDefinition(D, Fn);
2650 
2651   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2652     AddGlobalCtor(Fn, CA->getPriority());
2653   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2654     AddGlobalDtor(Fn, DA->getPriority());
2655   if (D->hasAttr<AnnotateAttr>())
2656     AddGlobalAnnotations(D, Fn);
2657 }
2658 
2659 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2660   const auto *D = cast<ValueDecl>(GD.getDecl());
2661   const AliasAttr *AA = D->getAttr<AliasAttr>();
2662   assert(AA && "Not an alias?");
2663 
2664   StringRef MangledName = getMangledName(GD);
2665 
2666   if (AA->getAliasee() == MangledName) {
2667     Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2668     return;
2669   }
2670 
2671   // If there is a definition in the module, then it wins over the alias.
2672   // This is dubious, but allow it to be safe.  Just ignore the alias.
2673   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2674   if (Entry && !Entry->isDeclaration())
2675     return;
2676 
2677   Aliases.push_back(GD);
2678 
2679   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2680 
2681   // Create a reference to the named value.  This ensures that it is emitted
2682   // if a deferred decl.
2683   llvm::Constant *Aliasee;
2684   if (isa<llvm::FunctionType>(DeclTy))
2685     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2686                                       /*ForVTable=*/false);
2687   else
2688     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2689                                     llvm::PointerType::getUnqual(DeclTy),
2690                                     /*D=*/nullptr);
2691 
2692   // Create the new alias itself, but don't set a name yet.
2693   auto *GA = llvm::GlobalAlias::create(
2694       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2695 
2696   if (Entry) {
2697     if (GA->getAliasee() == Entry) {
2698       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2699       return;
2700     }
2701 
2702     assert(Entry->isDeclaration());
2703 
2704     // If there is a declaration in the module, then we had an extern followed
2705     // by the alias, as in:
2706     //   extern int test6();
2707     //   ...
2708     //   int test6() __attribute__((alias("test7")));
2709     //
2710     // Remove it and replace uses of it with the alias.
2711     GA->takeName(Entry);
2712 
2713     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2714                                                           Entry->getType()));
2715     Entry->eraseFromParent();
2716   } else {
2717     GA->setName(MangledName);
2718   }
2719 
2720   // Set attributes which are particular to an alias; this is a
2721   // specialization of the attributes which may be set on a global
2722   // variable/function.
2723   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2724       D->isWeakImported()) {
2725     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2726   }
2727 
2728   if (const auto *VD = dyn_cast<VarDecl>(D))
2729     if (VD->getTLSKind())
2730       setTLSMode(GA, *VD);
2731 
2732   setAliasAttributes(D, GA);
2733 }
2734 
2735 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2736                                             ArrayRef<llvm::Type*> Tys) {
2737   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2738                                          Tys);
2739 }
2740 
2741 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2742 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2743                          const StringLiteral *Literal, bool TargetIsLSB,
2744                          bool &IsUTF16, unsigned &StringLength) {
2745   StringRef String = Literal->getString();
2746   unsigned NumBytes = String.size();
2747 
2748   // Check for simple case.
2749   if (!Literal->containsNonAsciiOrNull()) {
2750     StringLength = NumBytes;
2751     return *Map.insert(std::make_pair(String, nullptr)).first;
2752   }
2753 
2754   // Otherwise, convert the UTF8 literals into a string of shorts.
2755   IsUTF16 = true;
2756 
2757   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2758   const UTF8 *FromPtr = (const UTF8 *)String.data();
2759   UTF16 *ToPtr = &ToBuf[0];
2760 
2761   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2762                            &ToPtr, ToPtr + NumBytes,
2763                            strictConversion);
2764 
2765   // ConvertUTF8toUTF16 returns the length in ToPtr.
2766   StringLength = ToPtr - &ToBuf[0];
2767 
2768   // Add an explicit null.
2769   *ToPtr = 0;
2770   return *Map.insert(std::make_pair(
2771                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2772                                    (StringLength + 1) * 2),
2773                          nullptr)).first;
2774 }
2775 
2776 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2777 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2778                        const StringLiteral *Literal, unsigned &StringLength) {
2779   StringRef String = Literal->getString();
2780   StringLength = String.size();
2781   return *Map.insert(std::make_pair(String, nullptr)).first;
2782 }
2783 
2784 ConstantAddress
2785 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2786   unsigned StringLength = 0;
2787   bool isUTF16 = false;
2788   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2789       GetConstantCFStringEntry(CFConstantStringMap, Literal,
2790                                getDataLayout().isLittleEndian(), isUTF16,
2791                                StringLength);
2792 
2793   if (auto *C = Entry.second)
2794     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
2795 
2796   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2797   llvm::Constant *Zeros[] = { Zero, Zero };
2798   llvm::Value *V;
2799 
2800   // If we don't already have it, get __CFConstantStringClassReference.
2801   if (!CFConstantStringClassRef) {
2802     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2803     Ty = llvm::ArrayType::get(Ty, 0);
2804     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2805                                            "__CFConstantStringClassReference");
2806     // Decay array -> ptr
2807     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
2808     CFConstantStringClassRef = V;
2809   }
2810   else
2811     V = CFConstantStringClassRef;
2812 
2813   QualType CFTy = getContext().getCFConstantStringType();
2814 
2815   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2816 
2817   llvm::Constant *Fields[4];
2818 
2819   // Class pointer.
2820   Fields[0] = cast<llvm::ConstantExpr>(V);
2821 
2822   // Flags.
2823   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2824   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2825     llvm::ConstantInt::get(Ty, 0x07C8);
2826 
2827   // String pointer.
2828   llvm::Constant *C = nullptr;
2829   if (isUTF16) {
2830     ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>(
2831         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
2832         Entry.first().size() / 2);
2833     C = llvm::ConstantDataArray::get(VMContext, Arr);
2834   } else {
2835     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
2836   }
2837 
2838   // Note: -fwritable-strings doesn't make the backing store strings of
2839   // CFStrings writable. (See <rdar://problem/10657500>)
2840   auto *GV =
2841       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2842                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2843   GV->setUnnamedAddr(true);
2844   // Don't enforce the target's minimum global alignment, since the only use
2845   // of the string is via this class initializer.
2846   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2847   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2848   // that changes the section it ends in, which surprises ld64.
2849   if (isUTF16) {
2850     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2851     GV->setAlignment(Align.getQuantity());
2852     GV->setSection("__TEXT,__ustring");
2853   } else {
2854     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2855     GV->setAlignment(Align.getQuantity());
2856     GV->setSection("__TEXT,__cstring,cstring_literals");
2857   }
2858 
2859   // String.
2860   Fields[2] =
2861       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
2862 
2863   if (isUTF16)
2864     // Cast the UTF16 string to the correct type.
2865     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2866 
2867   // String length.
2868   Ty = getTypes().ConvertType(getContext().LongTy);
2869   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2870 
2871   CharUnits Alignment = getPointerAlign();
2872 
2873   // The struct.
2874   C = llvm::ConstantStruct::get(STy, Fields);
2875   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2876                                 llvm::GlobalVariable::PrivateLinkage, C,
2877                                 "_unnamed_cfstring_");
2878   GV->setSection("__DATA,__cfstring");
2879   GV->setAlignment(Alignment.getQuantity());
2880   Entry.second = GV;
2881 
2882   return ConstantAddress(GV, Alignment);
2883 }
2884 
2885 ConstantAddress
2886 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2887   unsigned StringLength = 0;
2888   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2889       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2890 
2891   if (auto *C = Entry.second)
2892     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
2893 
2894   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2895   llvm::Constant *Zeros[] = { Zero, Zero };
2896   llvm::Value *V;
2897   // If we don't already have it, get _NSConstantStringClassReference.
2898   if (!ConstantStringClassRef) {
2899     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2900     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2901     llvm::Constant *GV;
2902     if (LangOpts.ObjCRuntime.isNonFragile()) {
2903       std::string str =
2904         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2905                             : "OBJC_CLASS_$_" + StringClass;
2906       GV = getObjCRuntime().GetClassGlobal(str);
2907       // Make sure the result is of the correct type.
2908       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2909       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2910       ConstantStringClassRef = V;
2911     } else {
2912       std::string str =
2913         StringClass.empty() ? "_NSConstantStringClassReference"
2914                             : "_" + StringClass + "ClassReference";
2915       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2916       GV = CreateRuntimeVariable(PTy, str);
2917       // Decay array -> ptr
2918       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
2919       ConstantStringClassRef = V;
2920     }
2921   } else
2922     V = ConstantStringClassRef;
2923 
2924   if (!NSConstantStringType) {
2925     // Construct the type for a constant NSString.
2926     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2927     D->startDefinition();
2928 
2929     QualType FieldTypes[3];
2930 
2931     // const int *isa;
2932     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2933     // const char *str;
2934     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2935     // unsigned int length;
2936     FieldTypes[2] = Context.UnsignedIntTy;
2937 
2938     // Create fields
2939     for (unsigned i = 0; i < 3; ++i) {
2940       FieldDecl *Field = FieldDecl::Create(Context, D,
2941                                            SourceLocation(),
2942                                            SourceLocation(), nullptr,
2943                                            FieldTypes[i], /*TInfo=*/nullptr,
2944                                            /*BitWidth=*/nullptr,
2945                                            /*Mutable=*/false,
2946                                            ICIS_NoInit);
2947       Field->setAccess(AS_public);
2948       D->addDecl(Field);
2949     }
2950 
2951     D->completeDefinition();
2952     QualType NSTy = Context.getTagDeclType(D);
2953     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2954   }
2955 
2956   llvm::Constant *Fields[3];
2957 
2958   // Class pointer.
2959   Fields[0] = cast<llvm::ConstantExpr>(V);
2960 
2961   // String pointer.
2962   llvm::Constant *C =
2963       llvm::ConstantDataArray::getString(VMContext, Entry.first());
2964 
2965   llvm::GlobalValue::LinkageTypes Linkage;
2966   bool isConstant;
2967   Linkage = llvm::GlobalValue::PrivateLinkage;
2968   isConstant = !LangOpts.WritableStrings;
2969 
2970   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2971                                       Linkage, C, ".str");
2972   GV->setUnnamedAddr(true);
2973   // Don't enforce the target's minimum global alignment, since the only use
2974   // of the string is via this class initializer.
2975   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2976   GV->setAlignment(Align.getQuantity());
2977   Fields[1] =
2978       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
2979 
2980   // String length.
2981   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2982   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2983 
2984   // The struct.
2985   CharUnits Alignment = getPointerAlign();
2986   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2987   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2988                                 llvm::GlobalVariable::PrivateLinkage, C,
2989                                 "_unnamed_nsstring_");
2990   GV->setAlignment(Alignment.getQuantity());
2991   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2992   const char *NSStringNonFragileABISection =
2993       "__DATA,__objc_stringobj,regular,no_dead_strip";
2994   // FIXME. Fix section.
2995   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2996                      ? NSStringNonFragileABISection
2997                      : NSStringSection);
2998   Entry.second = GV;
2999 
3000   return ConstantAddress(GV, Alignment);
3001 }
3002 
3003 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3004   if (ObjCFastEnumerationStateType.isNull()) {
3005     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3006     D->startDefinition();
3007 
3008     QualType FieldTypes[] = {
3009       Context.UnsignedLongTy,
3010       Context.getPointerType(Context.getObjCIdType()),
3011       Context.getPointerType(Context.UnsignedLongTy),
3012       Context.getConstantArrayType(Context.UnsignedLongTy,
3013                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3014     };
3015 
3016     for (size_t i = 0; i < 4; ++i) {
3017       FieldDecl *Field = FieldDecl::Create(Context,
3018                                            D,
3019                                            SourceLocation(),
3020                                            SourceLocation(), nullptr,
3021                                            FieldTypes[i], /*TInfo=*/nullptr,
3022                                            /*BitWidth=*/nullptr,
3023                                            /*Mutable=*/false,
3024                                            ICIS_NoInit);
3025       Field->setAccess(AS_public);
3026       D->addDecl(Field);
3027     }
3028 
3029     D->completeDefinition();
3030     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3031   }
3032 
3033   return ObjCFastEnumerationStateType;
3034 }
3035 
3036 llvm::Constant *
3037 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3038   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3039 
3040   // Don't emit it as the address of the string, emit the string data itself
3041   // as an inline array.
3042   if (E->getCharByteWidth() == 1) {
3043     SmallString<64> Str(E->getString());
3044 
3045     // Resize the string to the right size, which is indicated by its type.
3046     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3047     Str.resize(CAT->getSize().getZExtValue());
3048     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3049   }
3050 
3051   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3052   llvm::Type *ElemTy = AType->getElementType();
3053   unsigned NumElements = AType->getNumElements();
3054 
3055   // Wide strings have either 2-byte or 4-byte elements.
3056   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3057     SmallVector<uint16_t, 32> Elements;
3058     Elements.reserve(NumElements);
3059 
3060     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3061       Elements.push_back(E->getCodeUnit(i));
3062     Elements.resize(NumElements);
3063     return llvm::ConstantDataArray::get(VMContext, Elements);
3064   }
3065 
3066   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3067   SmallVector<uint32_t, 32> Elements;
3068   Elements.reserve(NumElements);
3069 
3070   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3071     Elements.push_back(E->getCodeUnit(i));
3072   Elements.resize(NumElements);
3073   return llvm::ConstantDataArray::get(VMContext, Elements);
3074 }
3075 
3076 static llvm::GlobalVariable *
3077 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3078                       CodeGenModule &CGM, StringRef GlobalName,
3079                       CharUnits Alignment) {
3080   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3081   unsigned AddrSpace = 0;
3082   if (CGM.getLangOpts().OpenCL)
3083     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3084 
3085   llvm::Module &M = CGM.getModule();
3086   // Create a global variable for this string
3087   auto *GV = new llvm::GlobalVariable(
3088       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3089       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3090   GV->setAlignment(Alignment.getQuantity());
3091   GV->setUnnamedAddr(true);
3092   if (GV->isWeakForLinker()) {
3093     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3094     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3095   }
3096 
3097   return GV;
3098 }
3099 
3100 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3101 /// constant array for the given string literal.
3102 ConstantAddress
3103 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3104                                                   StringRef Name) {
3105   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3106 
3107   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3108   llvm::GlobalVariable **Entry = nullptr;
3109   if (!LangOpts.WritableStrings) {
3110     Entry = &ConstantStringMap[C];
3111     if (auto GV = *Entry) {
3112       if (Alignment.getQuantity() > GV->getAlignment())
3113         GV->setAlignment(Alignment.getQuantity());
3114       return ConstantAddress(GV, Alignment);
3115     }
3116   }
3117 
3118   SmallString<256> MangledNameBuffer;
3119   StringRef GlobalVariableName;
3120   llvm::GlobalValue::LinkageTypes LT;
3121 
3122   // Mangle the string literal if the ABI allows for it.  However, we cannot
3123   // do this if  we are compiling with ASan or -fwritable-strings because they
3124   // rely on strings having normal linkage.
3125   if (!LangOpts.WritableStrings &&
3126       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3127       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3128     llvm::raw_svector_ostream Out(MangledNameBuffer);
3129     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3130 
3131     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3132     GlobalVariableName = MangledNameBuffer;
3133   } else {
3134     LT = llvm::GlobalValue::PrivateLinkage;
3135     GlobalVariableName = Name;
3136   }
3137 
3138   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3139   if (Entry)
3140     *Entry = GV;
3141 
3142   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3143                                   QualType());
3144   return ConstantAddress(GV, Alignment);
3145 }
3146 
3147 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3148 /// array for the given ObjCEncodeExpr node.
3149 ConstantAddress
3150 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3151   std::string Str;
3152   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3153 
3154   return GetAddrOfConstantCString(Str);
3155 }
3156 
3157 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3158 /// the literal and a terminating '\0' character.
3159 /// The result has pointer to array type.
3160 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3161     const std::string &Str, const char *GlobalName) {
3162   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3163   CharUnits Alignment =
3164     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3165 
3166   llvm::Constant *C =
3167       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3168 
3169   // Don't share any string literals if strings aren't constant.
3170   llvm::GlobalVariable **Entry = nullptr;
3171   if (!LangOpts.WritableStrings) {
3172     Entry = &ConstantStringMap[C];
3173     if (auto GV = *Entry) {
3174       if (Alignment.getQuantity() > GV->getAlignment())
3175         GV->setAlignment(Alignment.getQuantity());
3176       return ConstantAddress(GV, Alignment);
3177     }
3178   }
3179 
3180   // Get the default prefix if a name wasn't specified.
3181   if (!GlobalName)
3182     GlobalName = ".str";
3183   // Create a global variable for this.
3184   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3185                                   GlobalName, Alignment);
3186   if (Entry)
3187     *Entry = GV;
3188   return ConstantAddress(GV, Alignment);
3189 }
3190 
3191 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3192     const MaterializeTemporaryExpr *E, const Expr *Init) {
3193   assert((E->getStorageDuration() == SD_Static ||
3194           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3195   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3196 
3197   // If we're not materializing a subobject of the temporary, keep the
3198   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3199   QualType MaterializedType = Init->getType();
3200   if (Init == E->GetTemporaryExpr())
3201     MaterializedType = E->getType();
3202 
3203   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3204 
3205   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3206     return ConstantAddress(Slot, Align);
3207 
3208   // FIXME: If an externally-visible declaration extends multiple temporaries,
3209   // we need to give each temporary the same name in every translation unit (and
3210   // we also need to make the temporaries externally-visible).
3211   SmallString<256> Name;
3212   llvm::raw_svector_ostream Out(Name);
3213   getCXXABI().getMangleContext().mangleReferenceTemporary(
3214       VD, E->getManglingNumber(), Out);
3215 
3216   APValue *Value = nullptr;
3217   if (E->getStorageDuration() == SD_Static) {
3218     // We might have a cached constant initializer for this temporary. Note
3219     // that this might have a different value from the value computed by
3220     // evaluating the initializer if the surrounding constant expression
3221     // modifies the temporary.
3222     Value = getContext().getMaterializedTemporaryValue(E, false);
3223     if (Value && Value->isUninit())
3224       Value = nullptr;
3225   }
3226 
3227   // Try evaluating it now, it might have a constant initializer.
3228   Expr::EvalResult EvalResult;
3229   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3230       !EvalResult.hasSideEffects())
3231     Value = &EvalResult.Val;
3232 
3233   llvm::Constant *InitialValue = nullptr;
3234   bool Constant = false;
3235   llvm::Type *Type;
3236   if (Value) {
3237     // The temporary has a constant initializer, use it.
3238     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3239     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3240     Type = InitialValue->getType();
3241   } else {
3242     // No initializer, the initialization will be provided when we
3243     // initialize the declaration which performed lifetime extension.
3244     Type = getTypes().ConvertTypeForMem(MaterializedType);
3245   }
3246 
3247   // Create a global variable for this lifetime-extended temporary.
3248   llvm::GlobalValue::LinkageTypes Linkage =
3249       getLLVMLinkageVarDefinition(VD, Constant);
3250   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3251     const VarDecl *InitVD;
3252     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3253         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3254       // Temporaries defined inside a class get linkonce_odr linkage because the
3255       // class can be defined in multipe translation units.
3256       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3257     } else {
3258       // There is no need for this temporary to have external linkage if the
3259       // VarDecl has external linkage.
3260       Linkage = llvm::GlobalVariable::InternalLinkage;
3261     }
3262   }
3263   unsigned AddrSpace = GetGlobalVarAddressSpace(
3264       VD, getContext().getTargetAddressSpace(MaterializedType));
3265   auto *GV = new llvm::GlobalVariable(
3266       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3267       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3268       AddrSpace);
3269   setGlobalVisibility(GV, VD);
3270   GV->setAlignment(Align.getQuantity());
3271   if (supportsCOMDAT() && GV->isWeakForLinker())
3272     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3273   if (VD->getTLSKind())
3274     setTLSMode(GV, *VD);
3275   MaterializedGlobalTemporaryMap[E] = GV;
3276   return ConstantAddress(GV, Align);
3277 }
3278 
3279 /// EmitObjCPropertyImplementations - Emit information for synthesized
3280 /// properties for an implementation.
3281 void CodeGenModule::EmitObjCPropertyImplementations(const
3282                                                     ObjCImplementationDecl *D) {
3283   for (const auto *PID : D->property_impls()) {
3284     // Dynamic is just for type-checking.
3285     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3286       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3287 
3288       // Determine which methods need to be implemented, some may have
3289       // been overridden. Note that ::isPropertyAccessor is not the method
3290       // we want, that just indicates if the decl came from a
3291       // property. What we want to know is if the method is defined in
3292       // this implementation.
3293       if (!D->getInstanceMethod(PD->getGetterName()))
3294         CodeGenFunction(*this).GenerateObjCGetter(
3295                                  const_cast<ObjCImplementationDecl *>(D), PID);
3296       if (!PD->isReadOnly() &&
3297           !D->getInstanceMethod(PD->getSetterName()))
3298         CodeGenFunction(*this).GenerateObjCSetter(
3299                                  const_cast<ObjCImplementationDecl *>(D), PID);
3300     }
3301   }
3302 }
3303 
3304 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3305   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3306   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3307        ivar; ivar = ivar->getNextIvar())
3308     if (ivar->getType().isDestructedType())
3309       return true;
3310 
3311   return false;
3312 }
3313 
3314 static bool AllTrivialInitializers(CodeGenModule &CGM,
3315                                    ObjCImplementationDecl *D) {
3316   CodeGenFunction CGF(CGM);
3317   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3318        E = D->init_end(); B != E; ++B) {
3319     CXXCtorInitializer *CtorInitExp = *B;
3320     Expr *Init = CtorInitExp->getInit();
3321     if (!CGF.isTrivialInitializer(Init))
3322       return false;
3323   }
3324   return true;
3325 }
3326 
3327 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3328 /// for an implementation.
3329 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3330   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3331   if (needsDestructMethod(D)) {
3332     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3333     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3334     ObjCMethodDecl *DTORMethod =
3335       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3336                              cxxSelector, getContext().VoidTy, nullptr, D,
3337                              /*isInstance=*/true, /*isVariadic=*/false,
3338                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3339                              /*isDefined=*/false, ObjCMethodDecl::Required);
3340     D->addInstanceMethod(DTORMethod);
3341     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3342     D->setHasDestructors(true);
3343   }
3344 
3345   // If the implementation doesn't have any ivar initializers, we don't need
3346   // a .cxx_construct.
3347   if (D->getNumIvarInitializers() == 0 ||
3348       AllTrivialInitializers(*this, D))
3349     return;
3350 
3351   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3352   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3353   // The constructor returns 'self'.
3354   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3355                                                 D->getLocation(),
3356                                                 D->getLocation(),
3357                                                 cxxSelector,
3358                                                 getContext().getObjCIdType(),
3359                                                 nullptr, D, /*isInstance=*/true,
3360                                                 /*isVariadic=*/false,
3361                                                 /*isPropertyAccessor=*/true,
3362                                                 /*isImplicitlyDeclared=*/true,
3363                                                 /*isDefined=*/false,
3364                                                 ObjCMethodDecl::Required);
3365   D->addInstanceMethod(CTORMethod);
3366   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3367   D->setHasNonZeroConstructors(true);
3368 }
3369 
3370 /// EmitNamespace - Emit all declarations in a namespace.
3371 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3372   for (auto *I : ND->decls()) {
3373     if (const auto *VD = dyn_cast<VarDecl>(I))
3374       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3375           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3376         continue;
3377     EmitTopLevelDecl(I);
3378   }
3379 }
3380 
3381 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3382 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3383   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3384       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3385     ErrorUnsupported(LSD, "linkage spec");
3386     return;
3387   }
3388 
3389   for (auto *I : LSD->decls()) {
3390     // Meta-data for ObjC class includes references to implemented methods.
3391     // Generate class's method definitions first.
3392     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3393       for (auto *M : OID->methods())
3394         EmitTopLevelDecl(M);
3395     }
3396     EmitTopLevelDecl(I);
3397   }
3398 }
3399 
3400 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3401 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3402   // Ignore dependent declarations.
3403   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3404     return;
3405 
3406   switch (D->getKind()) {
3407   case Decl::CXXConversion:
3408   case Decl::CXXMethod:
3409   case Decl::Function:
3410     // Skip function templates
3411     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3412         cast<FunctionDecl>(D)->isLateTemplateParsed())
3413       return;
3414 
3415     EmitGlobal(cast<FunctionDecl>(D));
3416     // Always provide some coverage mapping
3417     // even for the functions that aren't emitted.
3418     AddDeferredUnusedCoverageMapping(D);
3419     break;
3420 
3421   case Decl::Var:
3422     // Skip variable templates
3423     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3424       return;
3425   case Decl::VarTemplateSpecialization:
3426     EmitGlobal(cast<VarDecl>(D));
3427     break;
3428 
3429   // Indirect fields from global anonymous structs and unions can be
3430   // ignored; only the actual variable requires IR gen support.
3431   case Decl::IndirectField:
3432     break;
3433 
3434   // C++ Decls
3435   case Decl::Namespace:
3436     EmitNamespace(cast<NamespaceDecl>(D));
3437     break;
3438     // No code generation needed.
3439   case Decl::UsingShadow:
3440   case Decl::ClassTemplate:
3441   case Decl::VarTemplate:
3442   case Decl::VarTemplatePartialSpecialization:
3443   case Decl::FunctionTemplate:
3444   case Decl::TypeAliasTemplate:
3445   case Decl::Block:
3446   case Decl::Empty:
3447     break;
3448   case Decl::Using:          // using X; [C++]
3449     if (CGDebugInfo *DI = getModuleDebugInfo())
3450         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3451     return;
3452   case Decl::NamespaceAlias:
3453     if (CGDebugInfo *DI = getModuleDebugInfo())
3454         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3455     return;
3456   case Decl::UsingDirective: // using namespace X; [C++]
3457     if (CGDebugInfo *DI = getModuleDebugInfo())
3458       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3459     return;
3460   case Decl::CXXConstructor:
3461     // Skip function templates
3462     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3463         cast<FunctionDecl>(D)->isLateTemplateParsed())
3464       return;
3465 
3466     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3467     break;
3468   case Decl::CXXDestructor:
3469     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3470       return;
3471     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3472     break;
3473 
3474   case Decl::StaticAssert:
3475     // Nothing to do.
3476     break;
3477 
3478   // Objective-C Decls
3479 
3480   // Forward declarations, no (immediate) code generation.
3481   case Decl::ObjCInterface:
3482   case Decl::ObjCCategory:
3483     break;
3484 
3485   case Decl::ObjCProtocol: {
3486     auto *Proto = cast<ObjCProtocolDecl>(D);
3487     if (Proto->isThisDeclarationADefinition())
3488       ObjCRuntime->GenerateProtocol(Proto);
3489     break;
3490   }
3491 
3492   case Decl::ObjCCategoryImpl:
3493     // Categories have properties but don't support synthesize so we
3494     // can ignore them here.
3495     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3496     break;
3497 
3498   case Decl::ObjCImplementation: {
3499     auto *OMD = cast<ObjCImplementationDecl>(D);
3500     EmitObjCPropertyImplementations(OMD);
3501     EmitObjCIvarInitializations(OMD);
3502     ObjCRuntime->GenerateClass(OMD);
3503     // Emit global variable debug information.
3504     if (CGDebugInfo *DI = getModuleDebugInfo())
3505       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3506         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3507             OMD->getClassInterface()), OMD->getLocation());
3508     break;
3509   }
3510   case Decl::ObjCMethod: {
3511     auto *OMD = cast<ObjCMethodDecl>(D);
3512     // If this is not a prototype, emit the body.
3513     if (OMD->getBody())
3514       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3515     break;
3516   }
3517   case Decl::ObjCCompatibleAlias:
3518     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3519     break;
3520 
3521   case Decl::LinkageSpec:
3522     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3523     break;
3524 
3525   case Decl::FileScopeAsm: {
3526     // File-scope asm is ignored during device-side CUDA compilation.
3527     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3528       break;
3529     auto *AD = cast<FileScopeAsmDecl>(D);
3530     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3531     break;
3532   }
3533 
3534   case Decl::Import: {
3535     auto *Import = cast<ImportDecl>(D);
3536 
3537     // Ignore import declarations that come from imported modules.
3538     if (Import->getImportedOwningModule())
3539       break;
3540     if (CGDebugInfo *DI = getModuleDebugInfo())
3541       DI->EmitImportDecl(*Import);
3542 
3543     ImportedModules.insert(Import->getImportedModule());
3544     break;
3545   }
3546 
3547   case Decl::OMPThreadPrivate:
3548     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3549     break;
3550 
3551   case Decl::ClassTemplateSpecialization: {
3552     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3553     if (DebugInfo &&
3554         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3555         Spec->hasDefinition())
3556       DebugInfo->completeTemplateDefinition(*Spec);
3557     break;
3558   }
3559 
3560   default:
3561     // Make sure we handled everything we should, every other kind is a
3562     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3563     // function. Need to recode Decl::Kind to do that easily.
3564     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3565     break;
3566   }
3567 }
3568 
3569 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3570   // Do we need to generate coverage mapping?
3571   if (!CodeGenOpts.CoverageMapping)
3572     return;
3573   switch (D->getKind()) {
3574   case Decl::CXXConversion:
3575   case Decl::CXXMethod:
3576   case Decl::Function:
3577   case Decl::ObjCMethod:
3578   case Decl::CXXConstructor:
3579   case Decl::CXXDestructor: {
3580     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3581       return;
3582     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3583     if (I == DeferredEmptyCoverageMappingDecls.end())
3584       DeferredEmptyCoverageMappingDecls[D] = true;
3585     break;
3586   }
3587   default:
3588     break;
3589   };
3590 }
3591 
3592 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3593   // Do we need to generate coverage mapping?
3594   if (!CodeGenOpts.CoverageMapping)
3595     return;
3596   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3597     if (Fn->isTemplateInstantiation())
3598       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3599   }
3600   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3601   if (I == DeferredEmptyCoverageMappingDecls.end())
3602     DeferredEmptyCoverageMappingDecls[D] = false;
3603   else
3604     I->second = false;
3605 }
3606 
3607 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3608   std::vector<const Decl *> DeferredDecls;
3609   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3610     if (!I.second)
3611       continue;
3612     DeferredDecls.push_back(I.first);
3613   }
3614   // Sort the declarations by their location to make sure that the tests get a
3615   // predictable order for the coverage mapping for the unused declarations.
3616   if (CodeGenOpts.DumpCoverageMapping)
3617     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3618               [] (const Decl *LHS, const Decl *RHS) {
3619       return LHS->getLocStart() < RHS->getLocStart();
3620     });
3621   for (const auto *D : DeferredDecls) {
3622     switch (D->getKind()) {
3623     case Decl::CXXConversion:
3624     case Decl::CXXMethod:
3625     case Decl::Function:
3626     case Decl::ObjCMethod: {
3627       CodeGenPGO PGO(*this);
3628       GlobalDecl GD(cast<FunctionDecl>(D));
3629       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3630                                   getFunctionLinkage(GD));
3631       break;
3632     }
3633     case Decl::CXXConstructor: {
3634       CodeGenPGO PGO(*this);
3635       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3636       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3637                                   getFunctionLinkage(GD));
3638       break;
3639     }
3640     case Decl::CXXDestructor: {
3641       CodeGenPGO PGO(*this);
3642       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3643       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3644                                   getFunctionLinkage(GD));
3645       break;
3646     }
3647     default:
3648       break;
3649     };
3650   }
3651 }
3652 
3653 /// Turns the given pointer into a constant.
3654 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3655                                           const void *Ptr) {
3656   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3657   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3658   return llvm::ConstantInt::get(i64, PtrInt);
3659 }
3660 
3661 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3662                                    llvm::NamedMDNode *&GlobalMetadata,
3663                                    GlobalDecl D,
3664                                    llvm::GlobalValue *Addr) {
3665   if (!GlobalMetadata)
3666     GlobalMetadata =
3667       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3668 
3669   // TODO: should we report variant information for ctors/dtors?
3670   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3671                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3672                                CGM.getLLVMContext(), D.getDecl()))};
3673   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3674 }
3675 
3676 /// For each function which is declared within an extern "C" region and marked
3677 /// as 'used', but has internal linkage, create an alias from the unmangled
3678 /// name to the mangled name if possible. People expect to be able to refer
3679 /// to such functions with an unmangled name from inline assembly within the
3680 /// same translation unit.
3681 void CodeGenModule::EmitStaticExternCAliases() {
3682   for (auto &I : StaticExternCValues) {
3683     IdentifierInfo *Name = I.first;
3684     llvm::GlobalValue *Val = I.second;
3685     if (Val && !getModule().getNamedValue(Name->getName()))
3686       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3687   }
3688 }
3689 
3690 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3691                                              GlobalDecl &Result) const {
3692   auto Res = Manglings.find(MangledName);
3693   if (Res == Manglings.end())
3694     return false;
3695   Result = Res->getValue();
3696   return true;
3697 }
3698 
3699 /// Emits metadata nodes associating all the global values in the
3700 /// current module with the Decls they came from.  This is useful for
3701 /// projects using IR gen as a subroutine.
3702 ///
3703 /// Since there's currently no way to associate an MDNode directly
3704 /// with an llvm::GlobalValue, we create a global named metadata
3705 /// with the name 'clang.global.decl.ptrs'.
3706 void CodeGenModule::EmitDeclMetadata() {
3707   llvm::NamedMDNode *GlobalMetadata = nullptr;
3708 
3709   // StaticLocalDeclMap
3710   for (auto &I : MangledDeclNames) {
3711     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3712     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3713   }
3714 }
3715 
3716 /// Emits metadata nodes for all the local variables in the current
3717 /// function.
3718 void CodeGenFunction::EmitDeclMetadata() {
3719   if (LocalDeclMap.empty()) return;
3720 
3721   llvm::LLVMContext &Context = getLLVMContext();
3722 
3723   // Find the unique metadata ID for this name.
3724   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3725 
3726   llvm::NamedMDNode *GlobalMetadata = nullptr;
3727 
3728   for (auto &I : LocalDeclMap) {
3729     const Decl *D = I.first;
3730     llvm::Value *Addr = I.second.getPointer();
3731     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3732       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3733       Alloca->setMetadata(
3734           DeclPtrKind, llvm::MDNode::get(
3735                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
3736     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3737       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3738       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3739     }
3740   }
3741 }
3742 
3743 void CodeGenModule::EmitVersionIdentMetadata() {
3744   llvm::NamedMDNode *IdentMetadata =
3745     TheModule.getOrInsertNamedMetadata("llvm.ident");
3746   std::string Version = getClangFullVersion();
3747   llvm::LLVMContext &Ctx = TheModule.getContext();
3748 
3749   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
3750   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3751 }
3752 
3753 void CodeGenModule::EmitTargetMetadata() {
3754   // Warning, new MangledDeclNames may be appended within this loop.
3755   // We rely on MapVector insertions adding new elements to the end
3756   // of the container.
3757   // FIXME: Move this loop into the one target that needs it, and only
3758   // loop over those declarations for which we couldn't emit the target
3759   // metadata when we emitted the declaration.
3760   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3761     auto Val = *(MangledDeclNames.begin() + I);
3762     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3763     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3764     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3765   }
3766 }
3767 
3768 void CodeGenModule::EmitCoverageFile() {
3769   if (!getCodeGenOpts().CoverageFile.empty()) {
3770     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3771       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3772       llvm::LLVMContext &Ctx = TheModule.getContext();
3773       llvm::MDString *CoverageFile =
3774           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3775       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3776         llvm::MDNode *CU = CUNode->getOperand(i);
3777         llvm::Metadata *Elts[] = {CoverageFile, CU};
3778         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
3779       }
3780     }
3781   }
3782 }
3783 
3784 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3785   // Sema has checked that all uuid strings are of the form
3786   // "12345678-1234-1234-1234-1234567890ab".
3787   assert(Uuid.size() == 36);
3788   for (unsigned i = 0; i < 36; ++i) {
3789     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3790     else                                         assert(isHexDigit(Uuid[i]));
3791   }
3792 
3793   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3794   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3795 
3796   llvm::Constant *Field3[8];
3797   for (unsigned Idx = 0; Idx < 8; ++Idx)
3798     Field3[Idx] = llvm::ConstantInt::get(
3799         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3800 
3801   llvm::Constant *Fields[4] = {
3802     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3803     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3804     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3805     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3806   };
3807 
3808   return llvm::ConstantStruct::getAnon(Fields);
3809 }
3810 
3811 llvm::Constant *
3812 CodeGenModule::getAddrOfCXXCatchHandlerType(QualType Ty,
3813                                             QualType CatchHandlerType) {
3814   return getCXXABI().getAddrOfCXXCatchHandlerType(Ty, CatchHandlerType);
3815 }
3816 
3817 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3818                                                        bool ForEH) {
3819   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3820   // FIXME: should we even be calling this method if RTTI is disabled
3821   // and it's not for EH?
3822   if (!ForEH && !getLangOpts().RTTI)
3823     return llvm::Constant::getNullValue(Int8PtrTy);
3824 
3825   if (ForEH && Ty->isObjCObjectPointerType() &&
3826       LangOpts.ObjCRuntime.isGNUFamily())
3827     return ObjCRuntime->GetEHType(Ty);
3828 
3829   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3830 }
3831 
3832 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
3833   for (auto RefExpr : D->varlists()) {
3834     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
3835     bool PerformInit =
3836         VD->getAnyInitializer() &&
3837         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
3838                                                         /*ForRef=*/false);
3839 
3840     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
3841     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
3842             VD, Addr, RefExpr->getLocStart(), PerformInit))
3843       CXXGlobalInits.push_back(InitFunction);
3844   }
3845 }
3846 
3847 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
3848   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
3849   if (InternalId)
3850     return InternalId;
3851 
3852   if (isExternallyVisible(T->getLinkage())) {
3853     std::string OutName;
3854     llvm::raw_string_ostream Out(OutName);
3855     getCXXABI().getMangleContext().mangleTypeName(T, Out);
3856 
3857     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
3858   } else {
3859     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
3860                                            llvm::ArrayRef<llvm::Metadata *>());
3861   }
3862 
3863   return InternalId;
3864 }
3865 
3866 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry(
3867     llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) {
3868   llvm::Metadata *BitsetOps[] = {
3869       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)),
3870       llvm::ConstantAsMetadata::get(VTable),
3871       llvm::ConstantAsMetadata::get(
3872           llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
3873   return llvm::MDTuple::get(getLLVMContext(), BitsetOps);
3874 }
3875