xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 4af6bf1fdcdbb86c9b9258d37b3e8f6487c094ad)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "Mangle.h"
22 #include "TargetInfo.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/TargetData.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/ErrorHandling.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
47   switch (CGM.getContext().Target.getCXXABI()) {
48   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
49   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
50   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
51   }
52 
53   llvm_unreachable("invalid C++ ABI kind");
54   return *CreateItaniumCXXABI(CGM);
55 }
56 
57 
58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
59                              llvm::Module &M, const llvm::TargetData &TD,
60                              Diagnostic &diags)
61   : BlockModule(C, M, TD, Types, *this), Context(C),
62     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0){
74 
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info generation is enabled, create the CGDebugInfo object.
90   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91 }
92 
93 CodeGenModule::~CodeGenModule() {
94   delete Runtime;
95   delete &ABI;
96   delete TBAA;
97   delete DebugInfo;
98 }
99 
100 void CodeGenModule::createObjCRuntime() {
101   if (!Features.NeXTRuntime)
102     Runtime = CreateGNUObjCRuntime(*this);
103   else if (Features.ObjCNonFragileABI)
104     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
105   else
106     Runtime = CreateMacObjCRuntime(*this);
107 }
108 
109 void CodeGenModule::Release() {
110   EmitDeferred();
111   EmitCXXGlobalInitFunc();
112   EmitCXXGlobalDtorFunc();
113   if (Runtime)
114     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
115       AddGlobalCtor(ObjCInitFunction);
116   EmitCtorList(GlobalCtors, "llvm.global_ctors");
117   EmitCtorList(GlobalDtors, "llvm.global_dtors");
118   EmitAnnotations();
119   EmitLLVMUsed();
120 
121   SimplifyPersonality();
122 
123   if (getCodeGenOpts().EmitDeclMetadata)
124     EmitDeclMetadata();
125 }
126 
127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
128   if (!TBAA)
129     return 0;
130   return TBAA->getTBAAInfo(QTy);
131 }
132 
133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
134                                         llvm::MDNode *TBAAInfo) {
135   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
136 }
137 
138 bool CodeGenModule::isTargetDarwin() const {
139   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
140 }
141 
142 /// ErrorUnsupported - Print out an error that codegen doesn't support the
143 /// specified stmt yet.
144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
145                                      bool OmitOnError) {
146   if (OmitOnError && getDiags().hasErrorOccurred())
147     return;
148   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
149                                                "cannot compile this %0 yet");
150   std::string Msg = Type;
151   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
152     << Msg << S->getSourceRange();
153 }
154 
155 /// ErrorUnsupported - Print out an error that codegen doesn't support the
156 /// specified decl yet.
157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
158                                      bool OmitOnError) {
159   if (OmitOnError && getDiags().hasErrorOccurred())
160     return;
161   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
162                                                "cannot compile this %0 yet");
163   std::string Msg = Type;
164   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
165 }
166 
167 static llvm::GlobalValue::VisibilityTypes GetLLVMVisibility(Visibility V) {
168   switch (V) {
169   case DefaultVisibility:   return llvm::GlobalValue::DefaultVisibility;
170   case HiddenVisibility:    return llvm::GlobalValue::HiddenVisibility;
171   case ProtectedVisibility: return llvm::GlobalValue::ProtectedVisibility;
172   }
173   llvm_unreachable("unknown visibility!");
174   return llvm::GlobalValue::DefaultVisibility;
175 }
176 
177 
178 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
179                                         const NamedDecl *D) const {
180   // Internal definitions always have default visibility.
181   if (GV->hasLocalLinkage()) {
182     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
183     return;
184   }
185 
186   GV->setVisibility(GetLLVMVisibility(D->getVisibility()));
187 }
188 
189 /// Set the symbol visibility of type information (vtable and RTTI)
190 /// associated with the given type.
191 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
192                                       const CXXRecordDecl *RD,
193                                       bool IsForRTTI) const {
194   setGlobalVisibility(GV, RD);
195 
196   if (!CodeGenOpts.HiddenWeakVTables)
197     return;
198 
199   // We want to drop the visibility to hidden for weak type symbols.
200   // This isn't possible if there might be unresolved references
201   // elsewhere that rely on this symbol being visible.
202 
203   // This should be kept roughly in sync with setThunkVisibility
204   // in CGVTables.cpp.
205 
206   // Preconditions.
207   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
208       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
209     return;
210 
211   // Don't override an explicit visibility attribute.
212   if (RD->hasAttr<VisibilityAttr>())
213     return;
214 
215   switch (RD->getTemplateSpecializationKind()) {
216   // We have to disable the optimization if this is an EI definition
217   // because there might be EI declarations in other shared objects.
218   case TSK_ExplicitInstantiationDefinition:
219   case TSK_ExplicitInstantiationDeclaration:
220     return;
221 
222   // Every use of a non-template class's type information has to emit it.
223   case TSK_Undeclared:
224     break;
225 
226   // In theory, implicit instantiations can ignore the possibility of
227   // an explicit instantiation declaration because there necessarily
228   // must be an EI definition somewhere with default visibility.  In
229   // practice, it's possible to have an explicit instantiation for
230   // an arbitrary template class, and linkers aren't necessarily able
231   // to deal with mixed-visibility symbols.
232   case TSK_ExplicitSpecialization:
233   case TSK_ImplicitInstantiation:
234     if (!CodeGenOpts.HiddenWeakTemplateVTables)
235       return;
236     break;
237   }
238 
239   // If there's a key function, there may be translation units
240   // that don't have the key function's definition.  But ignore
241   // this if we're emitting RTTI under -fno-rtti.
242   if (!IsForRTTI || Features.RTTI)
243     if (Context.getKeyFunction(RD))
244       return;
245 
246   // Otherwise, drop the visibility to hidden.
247   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
248 }
249 
250 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
251   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
252 
253   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
254   if (!Str.empty())
255     return Str;
256 
257   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
258     IdentifierInfo *II = ND->getIdentifier();
259     assert(II && "Attempt to mangle unnamed decl.");
260 
261     Str = II->getName();
262     return Str;
263   }
264 
265   llvm::SmallString<256> Buffer;
266   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
267     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
268   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
269     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
270   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
271     getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer);
272   else
273     getCXXABI().getMangleContext().mangleName(ND, Buffer);
274 
275   // Allocate space for the mangled name.
276   size_t Length = Buffer.size();
277   char *Name = MangledNamesAllocator.Allocate<char>(Length);
278   std::copy(Buffer.begin(), Buffer.end(), Name);
279 
280   Str = llvm::StringRef(Name, Length);
281 
282   return Str;
283 }
284 
285 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
286                                    const BlockDecl *BD) {
287   getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
288 }
289 
290 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
291   return getModule().getNamedValue(Name);
292 }
293 
294 /// AddGlobalCtor - Add a function to the list that will be called before
295 /// main() runs.
296 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
297   // FIXME: Type coercion of void()* types.
298   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
299 }
300 
301 /// AddGlobalDtor - Add a function to the list that will be called
302 /// when the module is unloaded.
303 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
304   // FIXME: Type coercion of void()* types.
305   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
306 }
307 
308 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
309   // Ctor function type is void()*.
310   llvm::FunctionType* CtorFTy =
311     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
312                             std::vector<const llvm::Type*>(),
313                             false);
314   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
315 
316   // Get the type of a ctor entry, { i32, void ()* }.
317   llvm::StructType* CtorStructTy =
318     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
319                           llvm::PointerType::getUnqual(CtorFTy), NULL);
320 
321   // Construct the constructor and destructor arrays.
322   std::vector<llvm::Constant*> Ctors;
323   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
324     std::vector<llvm::Constant*> S;
325     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
326                 I->second, false));
327     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
328     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
329   }
330 
331   if (!Ctors.empty()) {
332     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
333     new llvm::GlobalVariable(TheModule, AT, false,
334                              llvm::GlobalValue::AppendingLinkage,
335                              llvm::ConstantArray::get(AT, Ctors),
336                              GlobalName);
337   }
338 }
339 
340 void CodeGenModule::EmitAnnotations() {
341   if (Annotations.empty())
342     return;
343 
344   // Create a new global variable for the ConstantStruct in the Module.
345   llvm::Constant *Array =
346   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
347                                                 Annotations.size()),
348                            Annotations);
349   llvm::GlobalValue *gv =
350   new llvm::GlobalVariable(TheModule, Array->getType(), false,
351                            llvm::GlobalValue::AppendingLinkage, Array,
352                            "llvm.global.annotations");
353   gv->setSection("llvm.metadata");
354 }
355 
356 llvm::GlobalValue::LinkageTypes
357 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
358   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
359 
360   if (Linkage == GVA_Internal)
361     return llvm::Function::InternalLinkage;
362 
363   if (D->hasAttr<DLLExportAttr>())
364     return llvm::Function::DLLExportLinkage;
365 
366   if (D->hasAttr<WeakAttr>())
367     return llvm::Function::WeakAnyLinkage;
368 
369   // In C99 mode, 'inline' functions are guaranteed to have a strong
370   // definition somewhere else, so we can use available_externally linkage.
371   if (Linkage == GVA_C99Inline)
372     return llvm::Function::AvailableExternallyLinkage;
373 
374   // In C++, the compiler has to emit a definition in every translation unit
375   // that references the function.  We should use linkonce_odr because
376   // a) if all references in this translation unit are optimized away, we
377   // don't need to codegen it.  b) if the function persists, it needs to be
378   // merged with other definitions. c) C++ has the ODR, so we know the
379   // definition is dependable.
380   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
381     return llvm::Function::LinkOnceODRLinkage;
382 
383   // An explicit instantiation of a template has weak linkage, since
384   // explicit instantiations can occur in multiple translation units
385   // and must all be equivalent. However, we are not allowed to
386   // throw away these explicit instantiations.
387   if (Linkage == GVA_ExplicitTemplateInstantiation)
388     return llvm::Function::WeakODRLinkage;
389 
390   // Otherwise, we have strong external linkage.
391   assert(Linkage == GVA_StrongExternal);
392   return llvm::Function::ExternalLinkage;
393 }
394 
395 
396 /// SetFunctionDefinitionAttributes - Set attributes for a global.
397 ///
398 /// FIXME: This is currently only done for aliases and functions, but not for
399 /// variables (these details are set in EmitGlobalVarDefinition for variables).
400 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
401                                                     llvm::GlobalValue *GV) {
402   SetCommonAttributes(D, GV);
403 }
404 
405 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
406                                               const CGFunctionInfo &Info,
407                                               llvm::Function *F) {
408   unsigned CallingConv;
409   AttributeListType AttributeList;
410   ConstructAttributeList(Info, D, AttributeList, CallingConv);
411   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
412                                           AttributeList.size()));
413   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
414 }
415 
416 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
417                                                            llvm::Function *F) {
418   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
419     F->addFnAttr(llvm::Attribute::NoUnwind);
420 
421   if (D->hasAttr<AlwaysInlineAttr>())
422     F->addFnAttr(llvm::Attribute::AlwaysInline);
423 
424   if (D->hasAttr<NakedAttr>())
425     F->addFnAttr(llvm::Attribute::Naked);
426 
427   if (D->hasAttr<NoInlineAttr>())
428     F->addFnAttr(llvm::Attribute::NoInline);
429 
430   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
431     F->addFnAttr(llvm::Attribute::StackProtect);
432   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
433     F->addFnAttr(llvm::Attribute::StackProtectReq);
434 
435   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
436   if (alignment)
437     F->setAlignment(alignment);
438 
439   // C++ ABI requires 2-byte alignment for member functions.
440   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
441     F->setAlignment(2);
442 }
443 
444 void CodeGenModule::SetCommonAttributes(const Decl *D,
445                                         llvm::GlobalValue *GV) {
446   if (isa<NamedDecl>(D))
447     setGlobalVisibility(GV, cast<NamedDecl>(D));
448   else
449     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
450 
451   if (D->hasAttr<UsedAttr>())
452     AddUsedGlobal(GV);
453 
454   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
455     GV->setSection(SA->getName());
456 
457   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
458 }
459 
460 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
461                                                   llvm::Function *F,
462                                                   const CGFunctionInfo &FI) {
463   SetLLVMFunctionAttributes(D, FI, F);
464   SetLLVMFunctionAttributesForDefinition(D, F);
465 
466   F->setLinkage(llvm::Function::InternalLinkage);
467 
468   SetCommonAttributes(D, F);
469 }
470 
471 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
472                                           llvm::Function *F,
473                                           bool IsIncompleteFunction) {
474   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
475 
476   if (!IsIncompleteFunction)
477     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
478 
479   // Only a few attributes are set on declarations; these may later be
480   // overridden by a definition.
481 
482   if (FD->hasAttr<DLLImportAttr>()) {
483     F->setLinkage(llvm::Function::DLLImportLinkage);
484   } else if (FD->hasAttr<WeakAttr>() ||
485              FD->hasAttr<WeakImportAttr>()) {
486     // "extern_weak" is overloaded in LLVM; we probably should have
487     // separate linkage types for this.
488     F->setLinkage(llvm::Function::ExternalWeakLinkage);
489   } else {
490     F->setLinkage(llvm::Function::ExternalLinkage);
491   }
492 
493   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
494     F->setSection(SA->getName());
495 }
496 
497 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
498   assert(!GV->isDeclaration() &&
499          "Only globals with definition can force usage.");
500   LLVMUsed.push_back(GV);
501 }
502 
503 void CodeGenModule::EmitLLVMUsed() {
504   // Don't create llvm.used if there is no need.
505   if (LLVMUsed.empty())
506     return;
507 
508   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
509 
510   // Convert LLVMUsed to what ConstantArray needs.
511   std::vector<llvm::Constant*> UsedArray;
512   UsedArray.resize(LLVMUsed.size());
513   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
514     UsedArray[i] =
515      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
516                                       i8PTy);
517   }
518 
519   if (UsedArray.empty())
520     return;
521   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
522 
523   llvm::GlobalVariable *GV =
524     new llvm::GlobalVariable(getModule(), ATy, false,
525                              llvm::GlobalValue::AppendingLinkage,
526                              llvm::ConstantArray::get(ATy, UsedArray),
527                              "llvm.used");
528 
529   GV->setSection("llvm.metadata");
530 }
531 
532 void CodeGenModule::EmitDeferred() {
533   // Emit code for any potentially referenced deferred decls.  Since a
534   // previously unused static decl may become used during the generation of code
535   // for a static function, iterate until no  changes are made.
536 
537   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
538     if (!DeferredVTables.empty()) {
539       const CXXRecordDecl *RD = DeferredVTables.back();
540       DeferredVTables.pop_back();
541       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
542       continue;
543     }
544 
545     GlobalDecl D = DeferredDeclsToEmit.back();
546     DeferredDeclsToEmit.pop_back();
547 
548     // Check to see if we've already emitted this.  This is necessary
549     // for a couple of reasons: first, decls can end up in the
550     // deferred-decls queue multiple times, and second, decls can end
551     // up with definitions in unusual ways (e.g. by an extern inline
552     // function acquiring a strong function redefinition).  Just
553     // ignore these cases.
554     //
555     // TODO: That said, looking this up multiple times is very wasteful.
556     llvm::StringRef Name = getMangledName(D);
557     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
558     assert(CGRef && "Deferred decl wasn't referenced?");
559 
560     if (!CGRef->isDeclaration())
561       continue;
562 
563     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
564     // purposes an alias counts as a definition.
565     if (isa<llvm::GlobalAlias>(CGRef))
566       continue;
567 
568     // Otherwise, emit the definition and move on to the next one.
569     EmitGlobalDefinition(D);
570   }
571 }
572 
573 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
574 /// annotation information for a given GlobalValue.  The annotation struct is
575 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
576 /// GlobalValue being annotated.  The second field is the constant string
577 /// created from the AnnotateAttr's annotation.  The third field is a constant
578 /// string containing the name of the translation unit.  The fourth field is
579 /// the line number in the file of the annotated value declaration.
580 ///
581 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
582 ///        appears to.
583 ///
584 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
585                                                 const AnnotateAttr *AA,
586                                                 unsigned LineNo) {
587   llvm::Module *M = &getModule();
588 
589   // get [N x i8] constants for the annotation string, and the filename string
590   // which are the 2nd and 3rd elements of the global annotation structure.
591   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
592   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
593                                                   AA->getAnnotation(), true);
594   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
595                                                   M->getModuleIdentifier(),
596                                                   true);
597 
598   // Get the two global values corresponding to the ConstantArrays we just
599   // created to hold the bytes of the strings.
600   llvm::GlobalValue *annoGV =
601     new llvm::GlobalVariable(*M, anno->getType(), false,
602                              llvm::GlobalValue::PrivateLinkage, anno,
603                              GV->getName());
604   // translation unit name string, emitted into the llvm.metadata section.
605   llvm::GlobalValue *unitGV =
606     new llvm::GlobalVariable(*M, unit->getType(), false,
607                              llvm::GlobalValue::PrivateLinkage, unit,
608                              ".str");
609 
610   // Create the ConstantStruct for the global annotation.
611   llvm::Constant *Fields[4] = {
612     llvm::ConstantExpr::getBitCast(GV, SBP),
613     llvm::ConstantExpr::getBitCast(annoGV, SBP),
614     llvm::ConstantExpr::getBitCast(unitGV, SBP),
615     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
616   };
617   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
618 }
619 
620 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
621   // Never defer when EmitAllDecls is specified.
622   if (Features.EmitAllDecls)
623     return false;
624 
625   return !getContext().DeclMustBeEmitted(Global);
626 }
627 
628 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
629   const AliasAttr *AA = VD->getAttr<AliasAttr>();
630   assert(AA && "No alias?");
631 
632   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
633 
634   // See if there is already something with the target's name in the module.
635   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
636 
637   llvm::Constant *Aliasee;
638   if (isa<llvm::FunctionType>(DeclTy))
639     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
640   else
641     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
642                                     llvm::PointerType::getUnqual(DeclTy), 0);
643   if (!Entry) {
644     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
645     F->setLinkage(llvm::Function::ExternalWeakLinkage);
646     WeakRefReferences.insert(F);
647   }
648 
649   return Aliasee;
650 }
651 
652 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
653   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
654 
655   // Weak references don't produce any output by themselves.
656   if (Global->hasAttr<WeakRefAttr>())
657     return;
658 
659   // If this is an alias definition (which otherwise looks like a declaration)
660   // emit it now.
661   if (Global->hasAttr<AliasAttr>())
662     return EmitAliasDefinition(GD);
663 
664   // Ignore declarations, they will be emitted on their first use.
665   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
666     if (FD->getIdentifier()) {
667       llvm::StringRef Name = FD->getName();
668       if (Name == "_Block_object_assign") {
669         BlockObjectAssignDecl = FD;
670       } else if (Name == "_Block_object_dispose") {
671         BlockObjectDisposeDecl = FD;
672       }
673     }
674 
675     // Forward declarations are emitted lazily on first use.
676     if (!FD->isThisDeclarationADefinition())
677       return;
678   } else {
679     const VarDecl *VD = cast<VarDecl>(Global);
680     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
681 
682     if (VD->getIdentifier()) {
683       llvm::StringRef Name = VD->getName();
684       if (Name == "_NSConcreteGlobalBlock") {
685         NSConcreteGlobalBlockDecl = VD;
686       } else if (Name == "_NSConcreteStackBlock") {
687         NSConcreteStackBlockDecl = VD;
688       }
689     }
690 
691 
692     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
693       return;
694   }
695 
696   // Defer code generation when possible if this is a static definition, inline
697   // function etc.  These we only want to emit if they are used.
698   if (!MayDeferGeneration(Global)) {
699     // Emit the definition if it can't be deferred.
700     EmitGlobalDefinition(GD);
701     return;
702   }
703 
704   // If we're deferring emission of a C++ variable with an
705   // initializer, remember the order in which it appeared in the file.
706   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
707       cast<VarDecl>(Global)->hasInit()) {
708     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
709     CXXGlobalInits.push_back(0);
710   }
711 
712   // If the value has already been used, add it directly to the
713   // DeferredDeclsToEmit list.
714   llvm::StringRef MangledName = getMangledName(GD);
715   if (GetGlobalValue(MangledName))
716     DeferredDeclsToEmit.push_back(GD);
717   else {
718     // Otherwise, remember that we saw a deferred decl with this name.  The
719     // first use of the mangled name will cause it to move into
720     // DeferredDeclsToEmit.
721     DeferredDecls[MangledName] = GD;
722   }
723 }
724 
725 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
726   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
727 
728   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
729                                  Context.getSourceManager(),
730                                  "Generating code for declaration");
731 
732   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
733     // At -O0, don't generate IR for functions with available_externally
734     // linkage.
735     if (CodeGenOpts.OptimizationLevel == 0 &&
736         !Function->hasAttr<AlwaysInlineAttr>() &&
737         getFunctionLinkage(Function)
738                                   == llvm::Function::AvailableExternallyLinkage)
739       return;
740 
741     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
742       if (Method->isVirtual())
743         getVTables().EmitThunks(GD);
744 
745       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
746         return EmitCXXConstructor(CD, GD.getCtorType());
747 
748       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
749         return EmitCXXDestructor(DD, GD.getDtorType());
750     }
751 
752     return EmitGlobalFunctionDefinition(GD);
753   }
754 
755   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
756     return EmitGlobalVarDefinition(VD);
757 
758   assert(0 && "Invalid argument to EmitGlobalDefinition()");
759 }
760 
761 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
762 /// module, create and return an llvm Function with the specified type. If there
763 /// is something in the module with the specified name, return it potentially
764 /// bitcasted to the right type.
765 ///
766 /// If D is non-null, it specifies a decl that correspond to this.  This is used
767 /// to set the attributes on the function when it is first created.
768 llvm::Constant *
769 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
770                                        const llvm::Type *Ty,
771                                        GlobalDecl D) {
772   // Lookup the entry, lazily creating it if necessary.
773   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
774   if (Entry) {
775     if (WeakRefReferences.count(Entry)) {
776       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
777       if (FD && !FD->hasAttr<WeakAttr>())
778         Entry->setLinkage(llvm::Function::ExternalLinkage);
779 
780       WeakRefReferences.erase(Entry);
781     }
782 
783     if (Entry->getType()->getElementType() == Ty)
784       return Entry;
785 
786     // Make sure the result is of the correct type.
787     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
788     return llvm::ConstantExpr::getBitCast(Entry, PTy);
789   }
790 
791   // This function doesn't have a complete type (for example, the return
792   // type is an incomplete struct). Use a fake type instead, and make
793   // sure not to try to set attributes.
794   bool IsIncompleteFunction = false;
795 
796   const llvm::FunctionType *FTy;
797   if (isa<llvm::FunctionType>(Ty)) {
798     FTy = cast<llvm::FunctionType>(Ty);
799   } else {
800     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
801                                   std::vector<const llvm::Type*>(), false);
802     IsIncompleteFunction = true;
803   }
804 
805   llvm::Function *F = llvm::Function::Create(FTy,
806                                              llvm::Function::ExternalLinkage,
807                                              MangledName, &getModule());
808   assert(F->getName() == MangledName && "name was uniqued!");
809   if (D.getDecl())
810     SetFunctionAttributes(D, F, IsIncompleteFunction);
811 
812   // This is the first use or definition of a mangled name.  If there is a
813   // deferred decl with this name, remember that we need to emit it at the end
814   // of the file.
815   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
816   if (DDI != DeferredDecls.end()) {
817     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
818     // list, and remove it from DeferredDecls (since we don't need it anymore).
819     DeferredDeclsToEmit.push_back(DDI->second);
820     DeferredDecls.erase(DDI);
821   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
822     // If this the first reference to a C++ inline function in a class, queue up
823     // the deferred function body for emission.  These are not seen as
824     // top-level declarations.
825     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
826       DeferredDeclsToEmit.push_back(D);
827     // A called constructor which has no definition or declaration need be
828     // synthesized.
829     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
830       if (CD->isImplicit()) {
831         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
832         DeferredDeclsToEmit.push_back(D);
833       }
834     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
835       if (DD->isImplicit()) {
836         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
837         DeferredDeclsToEmit.push_back(D);
838       }
839     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
840       if (MD->isImplicit() && MD->isCopyAssignmentOperator()) {
841         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
842         DeferredDeclsToEmit.push_back(D);
843       }
844     }
845   }
846 
847   // Make sure the result is of the requested type.
848   if (!IsIncompleteFunction) {
849     assert(F->getType()->getElementType() == Ty);
850     return F;
851   }
852 
853   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
854   return llvm::ConstantExpr::getBitCast(F, PTy);
855 }
856 
857 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
858 /// non-null, then this function will use the specified type if it has to
859 /// create it (this occurs when we see a definition of the function).
860 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
861                                                  const llvm::Type *Ty) {
862   // If there was no specific requested type, just convert it now.
863   if (!Ty)
864     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
865 
866   llvm::StringRef MangledName = getMangledName(GD);
867   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
868 }
869 
870 /// CreateRuntimeFunction - Create a new runtime function with the specified
871 /// type and name.
872 llvm::Constant *
873 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
874                                      llvm::StringRef Name) {
875   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
876 }
877 
878 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
879   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
880     return false;
881   if (Context.getLangOptions().CPlusPlus &&
882       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
883     // FIXME: We should do something fancier here!
884     return false;
885   }
886   return true;
887 }
888 
889 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
890 /// create and return an llvm GlobalVariable with the specified type.  If there
891 /// is something in the module with the specified name, return it potentially
892 /// bitcasted to the right type.
893 ///
894 /// If D is non-null, it specifies a decl that correspond to this.  This is used
895 /// to set the attributes on the global when it is first created.
896 llvm::Constant *
897 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
898                                      const llvm::PointerType *Ty,
899                                      const VarDecl *D) {
900   // Lookup the entry, lazily creating it if necessary.
901   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
902   if (Entry) {
903     if (WeakRefReferences.count(Entry)) {
904       if (D && !D->hasAttr<WeakAttr>())
905         Entry->setLinkage(llvm::Function::ExternalLinkage);
906 
907       WeakRefReferences.erase(Entry);
908     }
909 
910     if (Entry->getType() == Ty)
911       return Entry;
912 
913     // Make sure the result is of the correct type.
914     return llvm::ConstantExpr::getBitCast(Entry, Ty);
915   }
916 
917   // This is the first use or definition of a mangled name.  If there is a
918   // deferred decl with this name, remember that we need to emit it at the end
919   // of the file.
920   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
921   if (DDI != DeferredDecls.end()) {
922     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
923     // list, and remove it from DeferredDecls (since we don't need it anymore).
924     DeferredDeclsToEmit.push_back(DDI->second);
925     DeferredDecls.erase(DDI);
926   }
927 
928   llvm::GlobalVariable *GV =
929     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
930                              llvm::GlobalValue::ExternalLinkage,
931                              0, MangledName, 0,
932                              false, Ty->getAddressSpace());
933 
934   // Handle things which are present even on external declarations.
935   if (D) {
936     // FIXME: This code is overly simple and should be merged with other global
937     // handling.
938     GV->setConstant(DeclIsConstantGlobal(Context, D));
939 
940     // Set linkage and visibility in case we never see a definition.
941     std::pair<Linkage,Visibility> LV = D->getLinkageAndVisibility();
942     if (LV.first != ExternalLinkage) {
943       GV->setLinkage(llvm::GlobalValue::InternalLinkage);
944     } else {
945       if (D->hasAttr<DLLImportAttr>())
946         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
947       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
948         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
949 
950       GV->setVisibility(GetLLVMVisibility(LV.second));
951     }
952 
953     GV->setThreadLocal(D->isThreadSpecified());
954   }
955 
956   return GV;
957 }
958 
959 
960 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
961 /// given global variable.  If Ty is non-null and if the global doesn't exist,
962 /// then it will be greated with the specified type instead of whatever the
963 /// normal requested type would be.
964 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
965                                                   const llvm::Type *Ty) {
966   assert(D->hasGlobalStorage() && "Not a global variable");
967   QualType ASTTy = D->getType();
968   if (Ty == 0)
969     Ty = getTypes().ConvertTypeForMem(ASTTy);
970 
971   const llvm::PointerType *PTy =
972     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
973 
974   llvm::StringRef MangledName = getMangledName(D);
975   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
976 }
977 
978 /// CreateRuntimeVariable - Create a new runtime global variable with the
979 /// specified type and name.
980 llvm::Constant *
981 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
982                                      llvm::StringRef Name) {
983   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
984 }
985 
986 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
987   assert(!D->getInit() && "Cannot emit definite definitions here!");
988 
989   if (MayDeferGeneration(D)) {
990     // If we have not seen a reference to this variable yet, place it
991     // into the deferred declarations table to be emitted if needed
992     // later.
993     llvm::StringRef MangledName = getMangledName(D);
994     if (!GetGlobalValue(MangledName)) {
995       DeferredDecls[MangledName] = D;
996       return;
997     }
998   }
999 
1000   // The tentative definition is the only definition.
1001   EmitGlobalVarDefinition(D);
1002 }
1003 
1004 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1005   if (DefinitionRequired)
1006     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1007 }
1008 
1009 llvm::GlobalVariable::LinkageTypes
1010 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1011   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1012     return llvm::GlobalVariable::InternalLinkage;
1013 
1014   if (const CXXMethodDecl *KeyFunction
1015                                     = RD->getASTContext().getKeyFunction(RD)) {
1016     // If this class has a key function, use that to determine the linkage of
1017     // the vtable.
1018     const FunctionDecl *Def = 0;
1019     if (KeyFunction->hasBody(Def))
1020       KeyFunction = cast<CXXMethodDecl>(Def);
1021 
1022     switch (KeyFunction->getTemplateSpecializationKind()) {
1023       case TSK_Undeclared:
1024       case TSK_ExplicitSpecialization:
1025         if (KeyFunction->isInlined())
1026           return llvm::GlobalVariable::WeakODRLinkage;
1027 
1028         return llvm::GlobalVariable::ExternalLinkage;
1029 
1030       case TSK_ImplicitInstantiation:
1031       case TSK_ExplicitInstantiationDefinition:
1032         return llvm::GlobalVariable::WeakODRLinkage;
1033 
1034       case TSK_ExplicitInstantiationDeclaration:
1035         // FIXME: Use available_externally linkage. However, this currently
1036         // breaks LLVM's build due to undefined symbols.
1037         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1038         return llvm::GlobalVariable::WeakODRLinkage;
1039     }
1040   }
1041 
1042   switch (RD->getTemplateSpecializationKind()) {
1043   case TSK_Undeclared:
1044   case TSK_ExplicitSpecialization:
1045   case TSK_ImplicitInstantiation:
1046   case TSK_ExplicitInstantiationDefinition:
1047     return llvm::GlobalVariable::WeakODRLinkage;
1048 
1049   case TSK_ExplicitInstantiationDeclaration:
1050     // FIXME: Use available_externally linkage. However, this currently
1051     // breaks LLVM's build due to undefined symbols.
1052     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1053     return llvm::GlobalVariable::WeakODRLinkage;
1054   }
1055 
1056   // Silence GCC warning.
1057   return llvm::GlobalVariable::WeakODRLinkage;
1058 }
1059 
1060 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1061     return CharUnits::fromQuantity(
1062       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1063 }
1064 
1065 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1066   llvm::Constant *Init = 0;
1067   QualType ASTTy = D->getType();
1068   bool NonConstInit = false;
1069 
1070   const Expr *InitExpr = D->getAnyInitializer();
1071 
1072   if (!InitExpr) {
1073     // This is a tentative definition; tentative definitions are
1074     // implicitly initialized with { 0 }.
1075     //
1076     // Note that tentative definitions are only emitted at the end of
1077     // a translation unit, so they should never have incomplete
1078     // type. In addition, EmitTentativeDefinition makes sure that we
1079     // never attempt to emit a tentative definition if a real one
1080     // exists. A use may still exists, however, so we still may need
1081     // to do a RAUW.
1082     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1083     Init = EmitNullConstant(D->getType());
1084   } else {
1085     Init = EmitConstantExpr(InitExpr, D->getType());
1086     if (!Init) {
1087       QualType T = InitExpr->getType();
1088       if (D->getType()->isReferenceType())
1089         T = D->getType();
1090 
1091       if (getLangOptions().CPlusPlus) {
1092         EmitCXXGlobalVarDeclInitFunc(D);
1093         Init = EmitNullConstant(T);
1094         NonConstInit = true;
1095       } else {
1096         ErrorUnsupported(D, "static initializer");
1097         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1098       }
1099     } else {
1100       // We don't need an initializer, so remove the entry for the delayed
1101       // initializer position (just in case this entry was delayed).
1102       if (getLangOptions().CPlusPlus)
1103         DelayedCXXInitPosition.erase(D);
1104     }
1105   }
1106 
1107   const llvm::Type* InitType = Init->getType();
1108   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1109 
1110   // Strip off a bitcast if we got one back.
1111   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1112     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1113            // all zero index gep.
1114            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1115     Entry = CE->getOperand(0);
1116   }
1117 
1118   // Entry is now either a Function or GlobalVariable.
1119   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1120 
1121   // We have a definition after a declaration with the wrong type.
1122   // We must make a new GlobalVariable* and update everything that used OldGV
1123   // (a declaration or tentative definition) with the new GlobalVariable*
1124   // (which will be a definition).
1125   //
1126   // This happens if there is a prototype for a global (e.g.
1127   // "extern int x[];") and then a definition of a different type (e.g.
1128   // "int x[10];"). This also happens when an initializer has a different type
1129   // from the type of the global (this happens with unions).
1130   if (GV == 0 ||
1131       GV->getType()->getElementType() != InitType ||
1132       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1133 
1134     // Move the old entry aside so that we'll create a new one.
1135     Entry->setName(llvm::StringRef());
1136 
1137     // Make a new global with the correct type, this is now guaranteed to work.
1138     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1139 
1140     // Replace all uses of the old global with the new global
1141     llvm::Constant *NewPtrForOldDecl =
1142         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1143     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1144 
1145     // Erase the old global, since it is no longer used.
1146     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1147   }
1148 
1149   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1150     SourceManager &SM = Context.getSourceManager();
1151     AddAnnotation(EmitAnnotateAttr(GV, AA,
1152                               SM.getInstantiationLineNumber(D->getLocation())));
1153   }
1154 
1155   GV->setInitializer(Init);
1156 
1157   // If it is safe to mark the global 'constant', do so now.
1158   GV->setConstant(false);
1159   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1160     GV->setConstant(true);
1161 
1162   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1163 
1164   // Set the llvm linkage type as appropriate.
1165   llvm::GlobalValue::LinkageTypes Linkage =
1166     GetLLVMLinkageVarDefinition(D, GV);
1167   GV->setLinkage(Linkage);
1168   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1169     // common vars aren't constant even if declared const.
1170     GV->setConstant(false);
1171 
1172   SetCommonAttributes(D, GV);
1173 
1174   // Emit global variable debug information.
1175   if (CGDebugInfo *DI = getDebugInfo()) {
1176     DI->setLocation(D->getLocation());
1177     DI->EmitGlobalVariable(GV, D);
1178   }
1179 }
1180 
1181 llvm::GlobalValue::LinkageTypes
1182 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1183                                            llvm::GlobalVariable *GV) {
1184   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1185   if (Linkage == GVA_Internal)
1186     return llvm::Function::InternalLinkage;
1187   else if (D->hasAttr<DLLImportAttr>())
1188     return llvm::Function::DLLImportLinkage;
1189   else if (D->hasAttr<DLLExportAttr>())
1190     return llvm::Function::DLLExportLinkage;
1191   else if (D->hasAttr<WeakAttr>()) {
1192     if (GV->isConstant())
1193       return llvm::GlobalVariable::WeakODRLinkage;
1194     else
1195       return llvm::GlobalVariable::WeakAnyLinkage;
1196   } else if (Linkage == GVA_TemplateInstantiation ||
1197              Linkage == GVA_ExplicitTemplateInstantiation)
1198     // FIXME: It seems like we can provide more specific linkage here
1199     // (LinkOnceODR, WeakODR).
1200     return llvm::GlobalVariable::WeakAnyLinkage;
1201   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1202            !D->hasExternalStorage() && !D->getInit() &&
1203            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1204     // Thread local vars aren't considered common linkage.
1205     return llvm::GlobalVariable::CommonLinkage;
1206   }
1207   return llvm::GlobalVariable::ExternalLinkage;
1208 }
1209 
1210 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1211 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1212 /// existing call uses of the old function in the module, this adjusts them to
1213 /// call the new function directly.
1214 ///
1215 /// This is not just a cleanup: the always_inline pass requires direct calls to
1216 /// functions to be able to inline them.  If there is a bitcast in the way, it
1217 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1218 /// run at -O0.
1219 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1220                                                       llvm::Function *NewFn) {
1221   // If we're redefining a global as a function, don't transform it.
1222   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1223   if (OldFn == 0) return;
1224 
1225   const llvm::Type *NewRetTy = NewFn->getReturnType();
1226   llvm::SmallVector<llvm::Value*, 4> ArgList;
1227 
1228   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1229        UI != E; ) {
1230     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1231     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1232     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1233     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1234     llvm::CallSite CS(CI);
1235     if (!CI || !CS.isCallee(I)) continue;
1236 
1237     // If the return types don't match exactly, and if the call isn't dead, then
1238     // we can't transform this call.
1239     if (CI->getType() != NewRetTy && !CI->use_empty())
1240       continue;
1241 
1242     // If the function was passed too few arguments, don't transform.  If extra
1243     // arguments were passed, we silently drop them.  If any of the types
1244     // mismatch, we don't transform.
1245     unsigned ArgNo = 0;
1246     bool DontTransform = false;
1247     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1248          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1249       if (CS.arg_size() == ArgNo ||
1250           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1251         DontTransform = true;
1252         break;
1253       }
1254     }
1255     if (DontTransform)
1256       continue;
1257 
1258     // Okay, we can transform this.  Create the new call instruction and copy
1259     // over the required information.
1260     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1261     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1262                                                      ArgList.end(), "", CI);
1263     ArgList.clear();
1264     if (!NewCall->getType()->isVoidTy())
1265       NewCall->takeName(CI);
1266     NewCall->setAttributes(CI->getAttributes());
1267     NewCall->setCallingConv(CI->getCallingConv());
1268 
1269     // Finally, remove the old call, replacing any uses with the new one.
1270     if (!CI->use_empty())
1271       CI->replaceAllUsesWith(NewCall);
1272 
1273     // Copy debug location attached to CI.
1274     if (!CI->getDebugLoc().isUnknown())
1275       NewCall->setDebugLoc(CI->getDebugLoc());
1276     CI->eraseFromParent();
1277   }
1278 }
1279 
1280 
1281 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1282   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1283   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1284   getCXXABI().getMangleContext().mangleInitDiscriminator();
1285   // Get or create the prototype for the function.
1286   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1287 
1288   // Strip off a bitcast if we got one back.
1289   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1290     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1291     Entry = CE->getOperand(0);
1292   }
1293 
1294 
1295   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1296     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1297 
1298     // If the types mismatch then we have to rewrite the definition.
1299     assert(OldFn->isDeclaration() &&
1300            "Shouldn't replace non-declaration");
1301 
1302     // F is the Function* for the one with the wrong type, we must make a new
1303     // Function* and update everything that used F (a declaration) with the new
1304     // Function* (which will be a definition).
1305     //
1306     // This happens if there is a prototype for a function
1307     // (e.g. "int f()") and then a definition of a different type
1308     // (e.g. "int f(int x)").  Move the old function aside so that it
1309     // doesn't interfere with GetAddrOfFunction.
1310     OldFn->setName(llvm::StringRef());
1311     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1312 
1313     // If this is an implementation of a function without a prototype, try to
1314     // replace any existing uses of the function (which may be calls) with uses
1315     // of the new function
1316     if (D->getType()->isFunctionNoProtoType()) {
1317       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1318       OldFn->removeDeadConstantUsers();
1319     }
1320 
1321     // Replace uses of F with the Function we will endow with a body.
1322     if (!Entry->use_empty()) {
1323       llvm::Constant *NewPtrForOldDecl =
1324         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1325       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1326     }
1327 
1328     // Ok, delete the old function now, which is dead.
1329     OldFn->eraseFromParent();
1330 
1331     Entry = NewFn;
1332   }
1333 
1334   llvm::Function *Fn = cast<llvm::Function>(Entry);
1335   setFunctionLinkage(D, Fn);
1336 
1337   CodeGenFunction(*this).GenerateCode(D, Fn);
1338 
1339   SetFunctionDefinitionAttributes(D, Fn);
1340   SetLLVMFunctionAttributesForDefinition(D, Fn);
1341 
1342   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1343     AddGlobalCtor(Fn, CA->getPriority());
1344   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1345     AddGlobalDtor(Fn, DA->getPriority());
1346 }
1347 
1348 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1349   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1350   const AliasAttr *AA = D->getAttr<AliasAttr>();
1351   assert(AA && "Not an alias?");
1352 
1353   llvm::StringRef MangledName = getMangledName(GD);
1354 
1355   // If there is a definition in the module, then it wins over the alias.
1356   // This is dubious, but allow it to be safe.  Just ignore the alias.
1357   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1358   if (Entry && !Entry->isDeclaration())
1359     return;
1360 
1361   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1362 
1363   // Create a reference to the named value.  This ensures that it is emitted
1364   // if a deferred decl.
1365   llvm::Constant *Aliasee;
1366   if (isa<llvm::FunctionType>(DeclTy))
1367     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1368   else
1369     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1370                                     llvm::PointerType::getUnqual(DeclTy), 0);
1371 
1372   // Create the new alias itself, but don't set a name yet.
1373   llvm::GlobalValue *GA =
1374     new llvm::GlobalAlias(Aliasee->getType(),
1375                           llvm::Function::ExternalLinkage,
1376                           "", Aliasee, &getModule());
1377 
1378   if (Entry) {
1379     assert(Entry->isDeclaration());
1380 
1381     // If there is a declaration in the module, then we had an extern followed
1382     // by the alias, as in:
1383     //   extern int test6();
1384     //   ...
1385     //   int test6() __attribute__((alias("test7")));
1386     //
1387     // Remove it and replace uses of it with the alias.
1388     GA->takeName(Entry);
1389 
1390     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1391                                                           Entry->getType()));
1392     Entry->eraseFromParent();
1393   } else {
1394     GA->setName(MangledName);
1395   }
1396 
1397   // Set attributes which are particular to an alias; this is a
1398   // specialization of the attributes which may be set on a global
1399   // variable/function.
1400   if (D->hasAttr<DLLExportAttr>()) {
1401     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1402       // The dllexport attribute is ignored for undefined symbols.
1403       if (FD->hasBody())
1404         GA->setLinkage(llvm::Function::DLLExportLinkage);
1405     } else {
1406       GA->setLinkage(llvm::Function::DLLExportLinkage);
1407     }
1408   } else if (D->hasAttr<WeakAttr>() ||
1409              D->hasAttr<WeakRefAttr>() ||
1410              D->hasAttr<WeakImportAttr>()) {
1411     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1412   }
1413 
1414   SetCommonAttributes(D, GA);
1415 }
1416 
1417 /// getBuiltinLibFunction - Given a builtin id for a function like
1418 /// "__builtin_fabsf", return a Function* for "fabsf".
1419 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1420                                                   unsigned BuiltinID) {
1421   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1422           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1423          "isn't a lib fn");
1424 
1425   // Get the name, skip over the __builtin_ prefix (if necessary).
1426   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1427   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1428     Name += 10;
1429 
1430   const llvm::FunctionType *Ty =
1431     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1432 
1433   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1434 }
1435 
1436 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1437                                             unsigned NumTys) {
1438   return llvm::Intrinsic::getDeclaration(&getModule(),
1439                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1440 }
1441 
1442 
1443 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1444                                            const llvm::Type *SrcType,
1445                                            const llvm::Type *SizeType) {
1446   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1447   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1448 }
1449 
1450 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1451                                             const llvm::Type *SrcType,
1452                                             const llvm::Type *SizeType) {
1453   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1454   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1455 }
1456 
1457 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1458                                            const llvm::Type *SizeType) {
1459   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1460   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1461 }
1462 
1463 static llvm::StringMapEntry<llvm::Constant*> &
1464 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1465                          const StringLiteral *Literal,
1466                          bool TargetIsLSB,
1467                          bool &IsUTF16,
1468                          unsigned &StringLength) {
1469   llvm::StringRef String = Literal->getString();
1470   unsigned NumBytes = String.size();
1471 
1472   // Check for simple case.
1473   if (!Literal->containsNonAsciiOrNull()) {
1474     StringLength = NumBytes;
1475     return Map.GetOrCreateValue(String);
1476   }
1477 
1478   // Otherwise, convert the UTF8 literals into a byte string.
1479   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1480   const UTF8 *FromPtr = (UTF8 *)String.data();
1481   UTF16 *ToPtr = &ToBuf[0];
1482 
1483   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1484                            &ToPtr, ToPtr + NumBytes,
1485                            strictConversion);
1486 
1487   // ConvertUTF8toUTF16 returns the length in ToPtr.
1488   StringLength = ToPtr - &ToBuf[0];
1489 
1490   // Render the UTF-16 string into a byte array and convert to the target byte
1491   // order.
1492   //
1493   // FIXME: This isn't something we should need to do here.
1494   llvm::SmallString<128> AsBytes;
1495   AsBytes.reserve(StringLength * 2);
1496   for (unsigned i = 0; i != StringLength; ++i) {
1497     unsigned short Val = ToBuf[i];
1498     if (TargetIsLSB) {
1499       AsBytes.push_back(Val & 0xFF);
1500       AsBytes.push_back(Val >> 8);
1501     } else {
1502       AsBytes.push_back(Val >> 8);
1503       AsBytes.push_back(Val & 0xFF);
1504     }
1505   }
1506   // Append one extra null character, the second is automatically added by our
1507   // caller.
1508   AsBytes.push_back(0);
1509 
1510   IsUTF16 = true;
1511   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1512 }
1513 
1514 llvm::Constant *
1515 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1516   unsigned StringLength = 0;
1517   bool isUTF16 = false;
1518   llvm::StringMapEntry<llvm::Constant*> &Entry =
1519     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1520                              getTargetData().isLittleEndian(),
1521                              isUTF16, StringLength);
1522 
1523   if (llvm::Constant *C = Entry.getValue())
1524     return C;
1525 
1526   llvm::Constant *Zero =
1527       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1528   llvm::Constant *Zeros[] = { Zero, Zero };
1529 
1530   // If we don't already have it, get __CFConstantStringClassReference.
1531   if (!CFConstantStringClassRef) {
1532     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1533     Ty = llvm::ArrayType::get(Ty, 0);
1534     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1535                                            "__CFConstantStringClassReference");
1536     // Decay array -> ptr
1537     CFConstantStringClassRef =
1538       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1539   }
1540 
1541   QualType CFTy = getContext().getCFConstantStringType();
1542 
1543   const llvm::StructType *STy =
1544     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1545 
1546   std::vector<llvm::Constant*> Fields(4);
1547 
1548   // Class pointer.
1549   Fields[0] = CFConstantStringClassRef;
1550 
1551   // Flags.
1552   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1553   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1554     llvm::ConstantInt::get(Ty, 0x07C8);
1555 
1556   // String pointer.
1557   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1558 
1559   llvm::GlobalValue::LinkageTypes Linkage;
1560   bool isConstant;
1561   if (isUTF16) {
1562     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1563     Linkage = llvm::GlobalValue::InternalLinkage;
1564     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1565     // does make plain ascii ones writable.
1566     isConstant = true;
1567   } else {
1568     Linkage = llvm::GlobalValue::PrivateLinkage;
1569     isConstant = !Features.WritableStrings;
1570   }
1571 
1572   llvm::GlobalVariable *GV =
1573     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1574                              ".str");
1575   if (isUTF16) {
1576     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1577     GV->setAlignment(Align.getQuantity());
1578   }
1579   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1580 
1581   // String length.
1582   Ty = getTypes().ConvertType(getContext().LongTy);
1583   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1584 
1585   // The struct.
1586   C = llvm::ConstantStruct::get(STy, Fields);
1587   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1588                                 llvm::GlobalVariable::PrivateLinkage, C,
1589                                 "_unnamed_cfstring_");
1590   if (const char *Sect = getContext().Target.getCFStringSection())
1591     GV->setSection(Sect);
1592   Entry.setValue(GV);
1593 
1594   return GV;
1595 }
1596 
1597 llvm::Constant *
1598 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1599   unsigned StringLength = 0;
1600   bool isUTF16 = false;
1601   llvm::StringMapEntry<llvm::Constant*> &Entry =
1602     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1603                              getTargetData().isLittleEndian(),
1604                              isUTF16, StringLength);
1605 
1606   if (llvm::Constant *C = Entry.getValue())
1607     return C;
1608 
1609   llvm::Constant *Zero =
1610   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1611   llvm::Constant *Zeros[] = { Zero, Zero };
1612 
1613   // If we don't already have it, get _NSConstantStringClassReference.
1614   if (!ConstantStringClassRef) {
1615     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1616     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1617     Ty = llvm::ArrayType::get(Ty, 0);
1618     llvm::Constant *GV;
1619     if (StringClass.empty())
1620       GV = CreateRuntimeVariable(Ty,
1621                                  Features.ObjCNonFragileABI ?
1622                                  "OBJC_CLASS_$_NSConstantString" :
1623                                  "_NSConstantStringClassReference");
1624     else {
1625       std::string str;
1626       if (Features.ObjCNonFragileABI)
1627         str = "OBJC_CLASS_$_" + StringClass;
1628       else
1629         str = "_" + StringClass + "ClassReference";
1630       GV = CreateRuntimeVariable(Ty, str);
1631     }
1632     // Decay array -> ptr
1633     ConstantStringClassRef =
1634     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1635   }
1636 
1637   QualType NSTy = getContext().getNSConstantStringType();
1638 
1639   const llvm::StructType *STy =
1640   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1641 
1642   std::vector<llvm::Constant*> Fields(3);
1643 
1644   // Class pointer.
1645   Fields[0] = ConstantStringClassRef;
1646 
1647   // String pointer.
1648   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1649 
1650   llvm::GlobalValue::LinkageTypes Linkage;
1651   bool isConstant;
1652   if (isUTF16) {
1653     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1654     Linkage = llvm::GlobalValue::InternalLinkage;
1655     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1656     // does make plain ascii ones writable.
1657     isConstant = true;
1658   } else {
1659     Linkage = llvm::GlobalValue::PrivateLinkage;
1660     isConstant = !Features.WritableStrings;
1661   }
1662 
1663   llvm::GlobalVariable *GV =
1664   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1665                            ".str");
1666   if (isUTF16) {
1667     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1668     GV->setAlignment(Align.getQuantity());
1669   }
1670   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1671 
1672   // String length.
1673   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1674   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1675 
1676   // The struct.
1677   C = llvm::ConstantStruct::get(STy, Fields);
1678   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1679                                 llvm::GlobalVariable::PrivateLinkage, C,
1680                                 "_unnamed_nsstring_");
1681   // FIXME. Fix section.
1682   if (const char *Sect =
1683         Features.ObjCNonFragileABI
1684           ? getContext().Target.getNSStringNonFragileABISection()
1685           : getContext().Target.getNSStringSection())
1686     GV->setSection(Sect);
1687   Entry.setValue(GV);
1688 
1689   return GV;
1690 }
1691 
1692 /// GetStringForStringLiteral - Return the appropriate bytes for a
1693 /// string literal, properly padded to match the literal type.
1694 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1695   const ConstantArrayType *CAT =
1696     getContext().getAsConstantArrayType(E->getType());
1697   assert(CAT && "String isn't pointer or array!");
1698 
1699   // Resize the string to the right size.
1700   uint64_t RealLen = CAT->getSize().getZExtValue();
1701 
1702   if (E->isWide())
1703     RealLen *= getContext().Target.getWCharWidth()/8;
1704 
1705   std::string Str = E->getString().str();
1706   Str.resize(RealLen, '\0');
1707 
1708   return Str;
1709 }
1710 
1711 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1712 /// constant array for the given string literal.
1713 llvm::Constant *
1714 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1715   // FIXME: This can be more efficient.
1716   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1717   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1718   if (S->isWide()) {
1719     llvm::Type *DestTy =
1720         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1721     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1722   }
1723   return C;
1724 }
1725 
1726 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1727 /// array for the given ObjCEncodeExpr node.
1728 llvm::Constant *
1729 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1730   std::string Str;
1731   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1732 
1733   return GetAddrOfConstantCString(Str);
1734 }
1735 
1736 
1737 /// GenerateWritableString -- Creates storage for a string literal.
1738 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1739                                              bool constant,
1740                                              CodeGenModule &CGM,
1741                                              const char *GlobalName) {
1742   // Create Constant for this string literal. Don't add a '\0'.
1743   llvm::Constant *C =
1744       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1745 
1746   // Create a global variable for this string
1747   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1748                                   llvm::GlobalValue::PrivateLinkage,
1749                                   C, GlobalName);
1750 }
1751 
1752 /// GetAddrOfConstantString - Returns a pointer to a character array
1753 /// containing the literal. This contents are exactly that of the
1754 /// given string, i.e. it will not be null terminated automatically;
1755 /// see GetAddrOfConstantCString. Note that whether the result is
1756 /// actually a pointer to an LLVM constant depends on
1757 /// Feature.WriteableStrings.
1758 ///
1759 /// The result has pointer to array type.
1760 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1761                                                        const char *GlobalName) {
1762   bool IsConstant = !Features.WritableStrings;
1763 
1764   // Get the default prefix if a name wasn't specified.
1765   if (!GlobalName)
1766     GlobalName = ".str";
1767 
1768   // Don't share any string literals if strings aren't constant.
1769   if (!IsConstant)
1770     return GenerateStringLiteral(str, false, *this, GlobalName);
1771 
1772   llvm::StringMapEntry<llvm::Constant *> &Entry =
1773     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1774 
1775   if (Entry.getValue())
1776     return Entry.getValue();
1777 
1778   // Create a global variable for this.
1779   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1780   Entry.setValue(C);
1781   return C;
1782 }
1783 
1784 /// GetAddrOfConstantCString - Returns a pointer to a character
1785 /// array containing the literal and a terminating '\-'
1786 /// character. The result has pointer to array type.
1787 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1788                                                         const char *GlobalName){
1789   return GetAddrOfConstantString(str + '\0', GlobalName);
1790 }
1791 
1792 /// EmitObjCPropertyImplementations - Emit information for synthesized
1793 /// properties for an implementation.
1794 void CodeGenModule::EmitObjCPropertyImplementations(const
1795                                                     ObjCImplementationDecl *D) {
1796   for (ObjCImplementationDecl::propimpl_iterator
1797          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1798     ObjCPropertyImplDecl *PID = *i;
1799 
1800     // Dynamic is just for type-checking.
1801     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1802       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1803 
1804       // Determine which methods need to be implemented, some may have
1805       // been overridden. Note that ::isSynthesized is not the method
1806       // we want, that just indicates if the decl came from a
1807       // property. What we want to know is if the method is defined in
1808       // this implementation.
1809       if (!D->getInstanceMethod(PD->getGetterName()))
1810         CodeGenFunction(*this).GenerateObjCGetter(
1811                                  const_cast<ObjCImplementationDecl *>(D), PID);
1812       if (!PD->isReadOnly() &&
1813           !D->getInstanceMethod(PD->getSetterName()))
1814         CodeGenFunction(*this).GenerateObjCSetter(
1815                                  const_cast<ObjCImplementationDecl *>(D), PID);
1816     }
1817   }
1818 }
1819 
1820 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1821 /// for an implementation.
1822 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1823   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1824     return;
1825   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1826   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1827   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1828   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1829   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1830                                                   D->getLocation(),
1831                                                   D->getLocation(), cxxSelector,
1832                                                   getContext().VoidTy, 0,
1833                                                   DC, true, false, true, false,
1834                                                   ObjCMethodDecl::Required);
1835   D->addInstanceMethod(DTORMethod);
1836   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1837 
1838   II = &getContext().Idents.get(".cxx_construct");
1839   cxxSelector = getContext().Selectors.getSelector(0, &II);
1840   // The constructor returns 'self'.
1841   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1842                                                 D->getLocation(),
1843                                                 D->getLocation(), cxxSelector,
1844                                                 getContext().getObjCIdType(), 0,
1845                                                 DC, true, false, true, false,
1846                                                 ObjCMethodDecl::Required);
1847   D->addInstanceMethod(CTORMethod);
1848   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1849 
1850 
1851 }
1852 
1853 /// EmitNamespace - Emit all declarations in a namespace.
1854 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1855   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1856        I != E; ++I)
1857     EmitTopLevelDecl(*I);
1858 }
1859 
1860 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1861 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1862   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1863       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1864     ErrorUnsupported(LSD, "linkage spec");
1865     return;
1866   }
1867 
1868   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1869        I != E; ++I)
1870     EmitTopLevelDecl(*I);
1871 }
1872 
1873 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1874 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1875   // If an error has occurred, stop code generation, but continue
1876   // parsing and semantic analysis (to ensure all warnings and errors
1877   // are emitted).
1878   if (Diags.hasErrorOccurred())
1879     return;
1880 
1881   // Ignore dependent declarations.
1882   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1883     return;
1884 
1885   switch (D->getKind()) {
1886   case Decl::CXXConversion:
1887   case Decl::CXXMethod:
1888   case Decl::Function:
1889     // Skip function templates
1890     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1891       return;
1892 
1893     EmitGlobal(cast<FunctionDecl>(D));
1894     break;
1895 
1896   case Decl::Var:
1897     EmitGlobal(cast<VarDecl>(D));
1898     break;
1899 
1900   // C++ Decls
1901   case Decl::Namespace:
1902     EmitNamespace(cast<NamespaceDecl>(D));
1903     break;
1904     // No code generation needed.
1905   case Decl::UsingShadow:
1906   case Decl::Using:
1907   case Decl::UsingDirective:
1908   case Decl::ClassTemplate:
1909   case Decl::FunctionTemplate:
1910   case Decl::NamespaceAlias:
1911     break;
1912   case Decl::CXXConstructor:
1913     // Skip function templates
1914     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1915       return;
1916 
1917     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1918     break;
1919   case Decl::CXXDestructor:
1920     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1921     break;
1922 
1923   case Decl::StaticAssert:
1924     // Nothing to do.
1925     break;
1926 
1927   // Objective-C Decls
1928 
1929   // Forward declarations, no (immediate) code generation.
1930   case Decl::ObjCClass:
1931   case Decl::ObjCForwardProtocol:
1932   case Decl::ObjCInterface:
1933     break;
1934 
1935     case Decl::ObjCCategory: {
1936       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
1937       if (CD->IsClassExtension() && CD->hasSynthBitfield())
1938         Context.ResetObjCLayout(CD->getClassInterface());
1939       break;
1940     }
1941 
1942 
1943   case Decl::ObjCProtocol:
1944     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1945     break;
1946 
1947   case Decl::ObjCCategoryImpl:
1948     // Categories have properties but don't support synthesize so we
1949     // can ignore them here.
1950     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1951     break;
1952 
1953   case Decl::ObjCImplementation: {
1954     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1955     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
1956       Context.ResetObjCLayout(OMD->getClassInterface());
1957     EmitObjCPropertyImplementations(OMD);
1958     EmitObjCIvarInitializations(OMD);
1959     Runtime->GenerateClass(OMD);
1960     break;
1961   }
1962   case Decl::ObjCMethod: {
1963     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1964     // If this is not a prototype, emit the body.
1965     if (OMD->getBody())
1966       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1967     break;
1968   }
1969   case Decl::ObjCCompatibleAlias:
1970     // compatibility-alias is a directive and has no code gen.
1971     break;
1972 
1973   case Decl::LinkageSpec:
1974     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1975     break;
1976 
1977   case Decl::FileScopeAsm: {
1978     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1979     llvm::StringRef AsmString = AD->getAsmString()->getString();
1980 
1981     const std::string &S = getModule().getModuleInlineAsm();
1982     if (S.empty())
1983       getModule().setModuleInlineAsm(AsmString);
1984     else
1985       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1986     break;
1987   }
1988 
1989   default:
1990     // Make sure we handled everything we should, every other kind is a
1991     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1992     // function. Need to recode Decl::Kind to do that easily.
1993     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1994   }
1995 }
1996 
1997 /// Turns the given pointer into a constant.
1998 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
1999                                           const void *Ptr) {
2000   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2001   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2002   return llvm::ConstantInt::get(i64, PtrInt);
2003 }
2004 
2005 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2006                                    llvm::NamedMDNode *&GlobalMetadata,
2007                                    GlobalDecl D,
2008                                    llvm::GlobalValue *Addr) {
2009   if (!GlobalMetadata)
2010     GlobalMetadata =
2011       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2012 
2013   // TODO: should we report variant information for ctors/dtors?
2014   llvm::Value *Ops[] = {
2015     Addr,
2016     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2017   };
2018   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2019 }
2020 
2021 /// Emits metadata nodes associating all the global values in the
2022 /// current module with the Decls they came from.  This is useful for
2023 /// projects using IR gen as a subroutine.
2024 ///
2025 /// Since there's currently no way to associate an MDNode directly
2026 /// with an llvm::GlobalValue, we create a global named metadata
2027 /// with the name 'clang.global.decl.ptrs'.
2028 void CodeGenModule::EmitDeclMetadata() {
2029   llvm::NamedMDNode *GlobalMetadata = 0;
2030 
2031   // StaticLocalDeclMap
2032   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2033          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2034        I != E; ++I) {
2035     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2036     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2037   }
2038 }
2039 
2040 /// Emits metadata nodes for all the local variables in the current
2041 /// function.
2042 void CodeGenFunction::EmitDeclMetadata() {
2043   if (LocalDeclMap.empty()) return;
2044 
2045   llvm::LLVMContext &Context = getLLVMContext();
2046 
2047   // Find the unique metadata ID for this name.
2048   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2049 
2050   llvm::NamedMDNode *GlobalMetadata = 0;
2051 
2052   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2053          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2054     const Decl *D = I->first;
2055     llvm::Value *Addr = I->second;
2056 
2057     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2058       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2059       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2060     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2061       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2062       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2063     }
2064   }
2065 }
2066 
2067 ///@name Custom Runtime Function Interfaces
2068 ///@{
2069 //
2070 // FIXME: These can be eliminated once we can have clients just get the required
2071 // AST nodes from the builtin tables.
2072 
2073 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2074   if (BlockObjectDispose)
2075     return BlockObjectDispose;
2076 
2077   // If we saw an explicit decl, use that.
2078   if (BlockObjectDisposeDecl) {
2079     return BlockObjectDispose = GetAddrOfFunction(
2080       BlockObjectDisposeDecl,
2081       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2082   }
2083 
2084   // Otherwise construct the function by hand.
2085   const llvm::FunctionType *FTy;
2086   std::vector<const llvm::Type*> ArgTys;
2087   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2088   ArgTys.push_back(PtrToInt8Ty);
2089   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2090   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2091   return BlockObjectDispose =
2092     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2093 }
2094 
2095 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2096   if (BlockObjectAssign)
2097     return BlockObjectAssign;
2098 
2099   // If we saw an explicit decl, use that.
2100   if (BlockObjectAssignDecl) {
2101     return BlockObjectAssign = GetAddrOfFunction(
2102       BlockObjectAssignDecl,
2103       getTypes().GetFunctionType(BlockObjectAssignDecl));
2104   }
2105 
2106   // Otherwise construct the function by hand.
2107   const llvm::FunctionType *FTy;
2108   std::vector<const llvm::Type*> ArgTys;
2109   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2110   ArgTys.push_back(PtrToInt8Ty);
2111   ArgTys.push_back(PtrToInt8Ty);
2112   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2113   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2114   return BlockObjectAssign =
2115     CreateRuntimeFunction(FTy, "_Block_object_assign");
2116 }
2117 
2118 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2119   if (NSConcreteGlobalBlock)
2120     return NSConcreteGlobalBlock;
2121 
2122   // If we saw an explicit decl, use that.
2123   if (NSConcreteGlobalBlockDecl) {
2124     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2125       NSConcreteGlobalBlockDecl,
2126       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2127   }
2128 
2129   // Otherwise construct the variable by hand.
2130   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2131     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2132 }
2133 
2134 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2135   if (NSConcreteStackBlock)
2136     return NSConcreteStackBlock;
2137 
2138   // If we saw an explicit decl, use that.
2139   if (NSConcreteStackBlockDecl) {
2140     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2141       NSConcreteStackBlockDecl,
2142       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2143   }
2144 
2145   // Otherwise construct the variable by hand.
2146   return NSConcreteStackBlock = CreateRuntimeVariable(
2147     PtrToInt8Ty, "_NSConcreteStackBlock");
2148 }
2149 
2150 ///@}
2151