1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenTBAA.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/Mangle.h" 30 #include "clang/AST/RecordLayout.h" 31 #include "clang/AST/RecursiveASTVisitor.h" 32 #include "clang/Basic/Builtins.h" 33 #include "clang/Basic/CharInfo.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/Module.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Frontend/CodeGenOptions.h" 39 #include "llvm/ADT/APSInt.h" 40 #include "llvm/ADT/Triple.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ConvertUTF.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Target/Mangler.h" 50 51 using namespace clang; 52 using namespace CodeGen; 53 54 static const char AnnotationSection[] = "llvm.metadata"; 55 56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 57 switch (CGM.getTarget().getCXXABI().getKind()) { 58 case TargetCXXABI::GenericAArch64: 59 case TargetCXXABI::GenericARM: 60 case TargetCXXABI::iOS: 61 case TargetCXXABI::GenericItanium: 62 return *CreateItaniumCXXABI(CGM); 63 case TargetCXXABI::Microsoft: 64 return *CreateMicrosoftCXXABI(CGM); 65 } 66 67 llvm_unreachable("invalid C++ ABI kind"); 68 } 69 70 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 71 llvm::Module &M, const llvm::DataLayout &TD, 72 DiagnosticsEngine &diags) 73 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 74 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 75 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 76 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 77 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 78 NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0), 79 ConstantStringClassRef(0), NSConstantStringType(0), 80 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 81 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 82 LifetimeStartFn(0), LifetimeEndFn(0), 83 SanitizerBlacklist( 84 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 85 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 86 : LangOpts.Sanitize) { 87 88 // Initialize the type cache. 89 llvm::LLVMContext &LLVMContext = M.getContext(); 90 VoidTy = llvm::Type::getVoidTy(LLVMContext); 91 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 92 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 93 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 94 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 95 FloatTy = llvm::Type::getFloatTy(LLVMContext); 96 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 97 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 98 PointerAlignInBytes = 99 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 100 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 101 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 102 Int8PtrTy = Int8Ty->getPointerTo(0); 103 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 104 105 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 106 107 if (LangOpts.ObjC1) 108 createObjCRuntime(); 109 if (LangOpts.OpenCL) 110 createOpenCLRuntime(); 111 if (LangOpts.CUDA) 112 createCUDARuntime(); 113 114 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 115 if (SanOpts.Thread || 116 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 117 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 118 ABI.getMangleContext()); 119 120 // If debug info or coverage generation is enabled, create the CGDebugInfo 121 // object. 122 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 123 CodeGenOpts.EmitGcovArcs || 124 CodeGenOpts.EmitGcovNotes) 125 DebugInfo = new CGDebugInfo(*this); 126 127 Block.GlobalUniqueCount = 0; 128 129 if (C.getLangOpts().ObjCAutoRefCount) 130 ARCData = new ARCEntrypoints(); 131 RRData = new RREntrypoints(); 132 } 133 134 CodeGenModule::~CodeGenModule() { 135 delete ObjCRuntime; 136 delete OpenCLRuntime; 137 delete CUDARuntime; 138 delete TheTargetCodeGenInfo; 139 delete &ABI; 140 delete TBAA; 141 delete DebugInfo; 142 delete ARCData; 143 delete RRData; 144 } 145 146 void CodeGenModule::createObjCRuntime() { 147 // This is just isGNUFamily(), but we want to force implementors of 148 // new ABIs to decide how best to do this. 149 switch (LangOpts.ObjCRuntime.getKind()) { 150 case ObjCRuntime::GNUstep: 151 case ObjCRuntime::GCC: 152 case ObjCRuntime::ObjFW: 153 ObjCRuntime = CreateGNUObjCRuntime(*this); 154 return; 155 156 case ObjCRuntime::FragileMacOSX: 157 case ObjCRuntime::MacOSX: 158 case ObjCRuntime::iOS: 159 ObjCRuntime = CreateMacObjCRuntime(*this); 160 return; 161 } 162 llvm_unreachable("bad runtime kind"); 163 } 164 165 void CodeGenModule::createOpenCLRuntime() { 166 OpenCLRuntime = new CGOpenCLRuntime(*this); 167 } 168 169 void CodeGenModule::createCUDARuntime() { 170 CUDARuntime = CreateNVCUDARuntime(*this); 171 } 172 173 void CodeGenModule::Release() { 174 EmitDeferred(); 175 EmitCXXGlobalInitFunc(); 176 EmitCXXGlobalDtorFunc(); 177 EmitCXXThreadLocalInitFunc(); 178 if (ObjCRuntime) 179 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 180 AddGlobalCtor(ObjCInitFunction); 181 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 182 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 183 EmitGlobalAnnotations(); 184 EmitStaticExternCAliases(); 185 EmitLLVMUsed(); 186 187 if (CodeGenOpts.Autolink && 188 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 189 EmitModuleLinkOptions(); 190 } 191 if (CodeGenOpts.DwarfVersion) 192 // We actually want the latest version when there are conflicts. 193 // We can change from Warning to Latest if such mode is supported. 194 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 195 CodeGenOpts.DwarfVersion); 196 197 SimplifyPersonality(); 198 199 if (getCodeGenOpts().EmitDeclMetadata) 200 EmitDeclMetadata(); 201 202 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 203 EmitCoverageFile(); 204 205 if (DebugInfo) 206 DebugInfo->finalize(); 207 } 208 209 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 210 // Make sure that this type is translated. 211 Types.UpdateCompletedType(TD); 212 } 213 214 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 215 if (!TBAA) 216 return 0; 217 return TBAA->getTBAAInfo(QTy); 218 } 219 220 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 221 if (!TBAA) 222 return 0; 223 return TBAA->getTBAAInfoForVTablePtr(); 224 } 225 226 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 227 if (!TBAA) 228 return 0; 229 return TBAA->getTBAAStructInfo(QTy); 230 } 231 232 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 233 if (!TBAA) 234 return 0; 235 return TBAA->getTBAAStructTypeInfo(QTy); 236 } 237 238 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 239 llvm::MDNode *AccessN, 240 uint64_t O) { 241 if (!TBAA) 242 return 0; 243 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 244 } 245 246 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag 247 /// is the same as the type. For struct-path aware TBAA, the tag 248 /// is different from the type: base type, access type and offset. 249 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 250 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 251 llvm::MDNode *TBAAInfo, 252 bool ConvertTypeToTag) { 253 if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA) 254 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 255 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 256 else 257 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 258 } 259 260 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 261 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 262 getDiags().Report(Context.getFullLoc(loc), diagID); 263 } 264 265 /// ErrorUnsupported - Print out an error that codegen doesn't support the 266 /// specified stmt yet. 267 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 268 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 269 "cannot compile this %0 yet"); 270 std::string Msg = Type; 271 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 272 << Msg << S->getSourceRange(); 273 } 274 275 /// ErrorUnsupported - Print out an error that codegen doesn't support the 276 /// specified decl yet. 277 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 278 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 279 "cannot compile this %0 yet"); 280 std::string Msg = Type; 281 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 282 } 283 284 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 285 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 286 } 287 288 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 289 const NamedDecl *D) const { 290 // Internal definitions always have default visibility. 291 if (GV->hasLocalLinkage()) { 292 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 293 return; 294 } 295 296 // Set visibility for definitions. 297 LinkageInfo LV = D->getLinkageAndVisibility(); 298 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 299 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 300 } 301 302 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 303 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 304 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 305 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 306 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 307 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 308 } 309 310 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 311 CodeGenOptions::TLSModel M) { 312 switch (M) { 313 case CodeGenOptions::GeneralDynamicTLSModel: 314 return llvm::GlobalVariable::GeneralDynamicTLSModel; 315 case CodeGenOptions::LocalDynamicTLSModel: 316 return llvm::GlobalVariable::LocalDynamicTLSModel; 317 case CodeGenOptions::InitialExecTLSModel: 318 return llvm::GlobalVariable::InitialExecTLSModel; 319 case CodeGenOptions::LocalExecTLSModel: 320 return llvm::GlobalVariable::LocalExecTLSModel; 321 } 322 llvm_unreachable("Invalid TLS model!"); 323 } 324 325 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 326 const VarDecl &D) const { 327 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 328 329 llvm::GlobalVariable::ThreadLocalMode TLM; 330 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 331 332 // Override the TLS model if it is explicitly specified. 333 if (D.hasAttr<TLSModelAttr>()) { 334 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 335 TLM = GetLLVMTLSModel(Attr->getModel()); 336 } 337 338 GV->setThreadLocalMode(TLM); 339 } 340 341 /// Set the symbol visibility of type information (vtable and RTTI) 342 /// associated with the given type. 343 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 344 const CXXRecordDecl *RD, 345 TypeVisibilityKind TVK) const { 346 setGlobalVisibility(GV, RD); 347 348 if (!CodeGenOpts.HiddenWeakVTables) 349 return; 350 351 // We never want to drop the visibility for RTTI names. 352 if (TVK == TVK_ForRTTIName) 353 return; 354 355 // We want to drop the visibility to hidden for weak type symbols. 356 // This isn't possible if there might be unresolved references 357 // elsewhere that rely on this symbol being visible. 358 359 // This should be kept roughly in sync with setThunkVisibility 360 // in CGVTables.cpp. 361 362 // Preconditions. 363 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 364 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 365 return; 366 367 // Don't override an explicit visibility attribute. 368 if (RD->getExplicitVisibility(NamedDecl::VisibilityForType)) 369 return; 370 371 switch (RD->getTemplateSpecializationKind()) { 372 // We have to disable the optimization if this is an EI definition 373 // because there might be EI declarations in other shared objects. 374 case TSK_ExplicitInstantiationDefinition: 375 case TSK_ExplicitInstantiationDeclaration: 376 return; 377 378 // Every use of a non-template class's type information has to emit it. 379 case TSK_Undeclared: 380 break; 381 382 // In theory, implicit instantiations can ignore the possibility of 383 // an explicit instantiation declaration because there necessarily 384 // must be an EI definition somewhere with default visibility. In 385 // practice, it's possible to have an explicit instantiation for 386 // an arbitrary template class, and linkers aren't necessarily able 387 // to deal with mixed-visibility symbols. 388 case TSK_ExplicitSpecialization: 389 case TSK_ImplicitInstantiation: 390 return; 391 } 392 393 // If there's a key function, there may be translation units 394 // that don't have the key function's definition. But ignore 395 // this if we're emitting RTTI under -fno-rtti. 396 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 397 // FIXME: what should we do if we "lose" the key function during 398 // the emission of the file? 399 if (Context.getCurrentKeyFunction(RD)) 400 return; 401 } 402 403 // Otherwise, drop the visibility to hidden. 404 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 405 GV->setUnnamedAddr(true); 406 } 407 408 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 409 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 410 411 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 412 if (!Str.empty()) 413 return Str; 414 415 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 416 IdentifierInfo *II = ND->getIdentifier(); 417 assert(II && "Attempt to mangle unnamed decl."); 418 419 Str = II->getName(); 420 return Str; 421 } 422 423 SmallString<256> Buffer; 424 llvm::raw_svector_ostream Out(Buffer); 425 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 426 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 427 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 428 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 429 else 430 getCXXABI().getMangleContext().mangleName(ND, Out); 431 432 // Allocate space for the mangled name. 433 Out.flush(); 434 size_t Length = Buffer.size(); 435 char *Name = MangledNamesAllocator.Allocate<char>(Length); 436 std::copy(Buffer.begin(), Buffer.end(), Name); 437 438 Str = StringRef(Name, Length); 439 440 return Str; 441 } 442 443 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 444 const BlockDecl *BD) { 445 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 446 const Decl *D = GD.getDecl(); 447 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 448 if (D == 0) 449 MangleCtx.mangleGlobalBlock(BD, 450 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 451 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 452 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 453 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 454 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 455 else 456 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 457 } 458 459 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 460 return getModule().getNamedValue(Name); 461 } 462 463 /// AddGlobalCtor - Add a function to the list that will be called before 464 /// main() runs. 465 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 466 // FIXME: Type coercion of void()* types. 467 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 468 } 469 470 /// AddGlobalDtor - Add a function to the list that will be called 471 /// when the module is unloaded. 472 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 473 // FIXME: Type coercion of void()* types. 474 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 475 } 476 477 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 478 // Ctor function type is void()*. 479 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 480 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 481 482 // Get the type of a ctor entry, { i32, void ()* }. 483 llvm::StructType *CtorStructTy = 484 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 485 486 // Construct the constructor and destructor arrays. 487 SmallVector<llvm::Constant*, 8> Ctors; 488 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 489 llvm::Constant *S[] = { 490 llvm::ConstantInt::get(Int32Ty, I->second, false), 491 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 492 }; 493 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 494 } 495 496 if (!Ctors.empty()) { 497 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 498 new llvm::GlobalVariable(TheModule, AT, false, 499 llvm::GlobalValue::AppendingLinkage, 500 llvm::ConstantArray::get(AT, Ctors), 501 GlobalName); 502 } 503 } 504 505 llvm::GlobalValue::LinkageTypes 506 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 507 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 508 509 if (isa<CXXDestructorDecl>(D) && 510 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 511 GD.getDtorType())) 512 return llvm::Function::LinkOnceODRLinkage; 513 514 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 515 516 if (Linkage == GVA_Internal) 517 return llvm::Function::InternalLinkage; 518 519 if (D->hasAttr<DLLExportAttr>()) 520 return llvm::Function::DLLExportLinkage; 521 522 if (D->hasAttr<WeakAttr>()) 523 return llvm::Function::WeakAnyLinkage; 524 525 // In C99 mode, 'inline' functions are guaranteed to have a strong 526 // definition somewhere else, so we can use available_externally linkage. 527 if (Linkage == GVA_C99Inline) 528 return llvm::Function::AvailableExternallyLinkage; 529 530 // Note that Apple's kernel linker doesn't support symbol 531 // coalescing, so we need to avoid linkonce and weak linkages there. 532 // Normally, this means we just map to internal, but for explicit 533 // instantiations we'll map to external. 534 535 // In C++, the compiler has to emit a definition in every translation unit 536 // that references the function. We should use linkonce_odr because 537 // a) if all references in this translation unit are optimized away, we 538 // don't need to codegen it. b) if the function persists, it needs to be 539 // merged with other definitions. c) C++ has the ODR, so we know the 540 // definition is dependable. 541 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 542 return !Context.getLangOpts().AppleKext 543 ? llvm::Function::LinkOnceODRLinkage 544 : llvm::Function::InternalLinkage; 545 546 // An explicit instantiation of a template has weak linkage, since 547 // explicit instantiations can occur in multiple translation units 548 // and must all be equivalent. However, we are not allowed to 549 // throw away these explicit instantiations. 550 if (Linkage == GVA_ExplicitTemplateInstantiation) 551 return !Context.getLangOpts().AppleKext 552 ? llvm::Function::WeakODRLinkage 553 : llvm::Function::ExternalLinkage; 554 555 // Otherwise, we have strong external linkage. 556 assert(Linkage == GVA_StrongExternal); 557 return llvm::Function::ExternalLinkage; 558 } 559 560 561 /// SetFunctionDefinitionAttributes - Set attributes for a global. 562 /// 563 /// FIXME: This is currently only done for aliases and functions, but not for 564 /// variables (these details are set in EmitGlobalVarDefinition for variables). 565 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 566 llvm::GlobalValue *GV) { 567 SetCommonAttributes(D, GV); 568 } 569 570 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 571 const CGFunctionInfo &Info, 572 llvm::Function *F) { 573 unsigned CallingConv; 574 AttributeListType AttributeList; 575 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 576 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 577 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 578 } 579 580 /// Determines whether the language options require us to model 581 /// unwind exceptions. We treat -fexceptions as mandating this 582 /// except under the fragile ObjC ABI with only ObjC exceptions 583 /// enabled. This means, for example, that C with -fexceptions 584 /// enables this. 585 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 586 // If exceptions are completely disabled, obviously this is false. 587 if (!LangOpts.Exceptions) return false; 588 589 // If C++ exceptions are enabled, this is true. 590 if (LangOpts.CXXExceptions) return true; 591 592 // If ObjC exceptions are enabled, this depends on the ABI. 593 if (LangOpts.ObjCExceptions) { 594 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 595 } 596 597 return true; 598 } 599 600 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 601 llvm::Function *F) { 602 llvm::AttrBuilder B; 603 604 if (CodeGenOpts.UnwindTables) 605 B.addAttribute(llvm::Attribute::UWTable); 606 607 if (!hasUnwindExceptions(LangOpts)) 608 B.addAttribute(llvm::Attribute::NoUnwind); 609 610 if (D->hasAttr<NakedAttr>()) { 611 // Naked implies noinline: we should not be inlining such functions. 612 B.addAttribute(llvm::Attribute::Naked); 613 B.addAttribute(llvm::Attribute::NoInline); 614 } else if (D->hasAttr<NoInlineAttr>()) { 615 B.addAttribute(llvm::Attribute::NoInline); 616 } else if ((D->hasAttr<AlwaysInlineAttr>() || 617 D->hasAttr<ForceInlineAttr>()) && 618 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 619 llvm::Attribute::NoInline)) { 620 // (noinline wins over always_inline, and we can't specify both in IR) 621 B.addAttribute(llvm::Attribute::AlwaysInline); 622 } 623 624 if (D->hasAttr<ColdAttr>()) { 625 B.addAttribute(llvm::Attribute::OptimizeForSize); 626 B.addAttribute(llvm::Attribute::Cold); 627 } 628 629 if (D->hasAttr<MinSizeAttr>()) 630 B.addAttribute(llvm::Attribute::MinSize); 631 632 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 633 B.addAttribute(llvm::Attribute::StackProtect); 634 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 635 B.addAttribute(llvm::Attribute::StackProtectReq); 636 637 // Add sanitizer attributes if function is not blacklisted. 638 if (!SanitizerBlacklist->isIn(*F)) { 639 // When AddressSanitizer is enabled, set SanitizeAddress attribute 640 // unless __attribute__((no_sanitize_address)) is used. 641 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 642 B.addAttribute(llvm::Attribute::SanitizeAddress); 643 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 644 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 645 B.addAttribute(llvm::Attribute::SanitizeThread); 646 } 647 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 648 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 649 B.addAttribute(llvm::Attribute::SanitizeMemory); 650 } 651 652 F->addAttributes(llvm::AttributeSet::FunctionIndex, 653 llvm::AttributeSet::get( 654 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 655 656 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 657 F->setUnnamedAddr(true); 658 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 659 if (MD->isVirtual()) 660 F->setUnnamedAddr(true); 661 662 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 663 if (alignment) 664 F->setAlignment(alignment); 665 666 // C++ ABI requires 2-byte alignment for member functions. 667 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 668 F->setAlignment(2); 669 } 670 671 void CodeGenModule::SetCommonAttributes(const Decl *D, 672 llvm::GlobalValue *GV) { 673 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 674 setGlobalVisibility(GV, ND); 675 else 676 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 677 678 if (D->hasAttr<UsedAttr>()) 679 AddUsedGlobal(GV); 680 681 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 682 GV->setSection(SA->getName()); 683 684 // Alias cannot have attributes. Filter them here. 685 if (!isa<llvm::GlobalAlias>(GV)) 686 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 687 } 688 689 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 690 llvm::Function *F, 691 const CGFunctionInfo &FI) { 692 SetLLVMFunctionAttributes(D, FI, F); 693 SetLLVMFunctionAttributesForDefinition(D, F); 694 695 F->setLinkage(llvm::Function::InternalLinkage); 696 697 SetCommonAttributes(D, F); 698 } 699 700 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 701 llvm::Function *F, 702 bool IsIncompleteFunction) { 703 if (unsigned IID = F->getIntrinsicID()) { 704 // If this is an intrinsic function, set the function's attributes 705 // to the intrinsic's attributes. 706 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 707 (llvm::Intrinsic::ID)IID)); 708 return; 709 } 710 711 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 712 713 if (!IsIncompleteFunction) 714 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 715 716 if (getCXXABI().HasThisReturn(GD)) { 717 assert(!F->arg_empty() && 718 F->arg_begin()->getType() 719 ->canLosslesslyBitCastTo(F->getReturnType()) && 720 "unexpected this return"); 721 F->addAttribute(1, llvm::Attribute::Returned); 722 } 723 724 // Only a few attributes are set on declarations; these may later be 725 // overridden by a definition. 726 727 if (FD->hasAttr<DLLImportAttr>()) { 728 F->setLinkage(llvm::Function::DLLImportLinkage); 729 } else if (FD->hasAttr<WeakAttr>() || 730 FD->isWeakImported()) { 731 // "extern_weak" is overloaded in LLVM; we probably should have 732 // separate linkage types for this. 733 F->setLinkage(llvm::Function::ExternalWeakLinkage); 734 } else { 735 F->setLinkage(llvm::Function::ExternalLinkage); 736 737 LinkageInfo LV = FD->getLinkageAndVisibility(); 738 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 739 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 740 } 741 } 742 743 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 744 F->setSection(SA->getName()); 745 746 // A replaceable global allocation function does not act like a builtin by 747 // default, only if it is invoked by a new-expression or delete-expression. 748 if (FD->isReplaceableGlobalAllocationFunction()) 749 F->addAttribute(llvm::AttributeSet::FunctionIndex, 750 llvm::Attribute::NoBuiltin); 751 } 752 753 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 754 assert(!GV->isDeclaration() && 755 "Only globals with definition can force usage."); 756 LLVMUsed.push_back(GV); 757 } 758 759 void CodeGenModule::EmitLLVMUsed() { 760 // Don't create llvm.used if there is no need. 761 if (LLVMUsed.empty()) 762 return; 763 764 // Convert LLVMUsed to what ConstantArray needs. 765 SmallVector<llvm::Constant*, 8> UsedArray; 766 UsedArray.resize(LLVMUsed.size()); 767 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 768 UsedArray[i] = 769 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 770 Int8PtrTy); 771 } 772 773 if (UsedArray.empty()) 774 return; 775 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 776 777 llvm::GlobalVariable *GV = 778 new llvm::GlobalVariable(getModule(), ATy, false, 779 llvm::GlobalValue::AppendingLinkage, 780 llvm::ConstantArray::get(ATy, UsedArray), 781 "llvm.used"); 782 783 GV->setSection("llvm.metadata"); 784 } 785 786 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 787 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 788 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 789 } 790 791 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 792 llvm::SmallString<32> Opt; 793 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 794 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 795 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 796 } 797 798 void CodeGenModule::AddDependentLib(StringRef Lib) { 799 llvm::SmallString<24> Opt; 800 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 801 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 802 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 803 } 804 805 /// \brief Add link options implied by the given module, including modules 806 /// it depends on, using a postorder walk. 807 static void addLinkOptionsPostorder(CodeGenModule &CGM, 808 Module *Mod, 809 SmallVectorImpl<llvm::Value *> &Metadata, 810 llvm::SmallPtrSet<Module *, 16> &Visited) { 811 // Import this module's parent. 812 if (Mod->Parent && Visited.insert(Mod->Parent)) { 813 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 814 } 815 816 // Import this module's dependencies. 817 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 818 if (Visited.insert(Mod->Imports[I-1])) 819 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 820 } 821 822 // Add linker options to link against the libraries/frameworks 823 // described by this module. 824 llvm::LLVMContext &Context = CGM.getLLVMContext(); 825 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 826 // Link against a framework. Frameworks are currently Darwin only, so we 827 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 828 if (Mod->LinkLibraries[I-1].IsFramework) { 829 llvm::Value *Args[2] = { 830 llvm::MDString::get(Context, "-framework"), 831 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 832 }; 833 834 Metadata.push_back(llvm::MDNode::get(Context, Args)); 835 continue; 836 } 837 838 // Link against a library. 839 llvm::SmallString<24> Opt; 840 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 841 Mod->LinkLibraries[I-1].Library, Opt); 842 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 843 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 844 } 845 } 846 847 void CodeGenModule::EmitModuleLinkOptions() { 848 // Collect the set of all of the modules we want to visit to emit link 849 // options, which is essentially the imported modules and all of their 850 // non-explicit child modules. 851 llvm::SetVector<clang::Module *> LinkModules; 852 llvm::SmallPtrSet<clang::Module *, 16> Visited; 853 SmallVector<clang::Module *, 16> Stack; 854 855 // Seed the stack with imported modules. 856 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 857 MEnd = ImportedModules.end(); 858 M != MEnd; ++M) { 859 if (Visited.insert(*M)) 860 Stack.push_back(*M); 861 } 862 863 // Find all of the modules to import, making a little effort to prune 864 // non-leaf modules. 865 while (!Stack.empty()) { 866 clang::Module *Mod = Stack.back(); 867 Stack.pop_back(); 868 869 bool AnyChildren = false; 870 871 // Visit the submodules of this module. 872 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 873 SubEnd = Mod->submodule_end(); 874 Sub != SubEnd; ++Sub) { 875 // Skip explicit children; they need to be explicitly imported to be 876 // linked against. 877 if ((*Sub)->IsExplicit) 878 continue; 879 880 if (Visited.insert(*Sub)) { 881 Stack.push_back(*Sub); 882 AnyChildren = true; 883 } 884 } 885 886 // We didn't find any children, so add this module to the list of 887 // modules to link against. 888 if (!AnyChildren) { 889 LinkModules.insert(Mod); 890 } 891 } 892 893 // Add link options for all of the imported modules in reverse topological 894 // order. We don't do anything to try to order import link flags with respect 895 // to linker options inserted by things like #pragma comment(). 896 SmallVector<llvm::Value *, 16> MetadataArgs; 897 Visited.clear(); 898 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 899 MEnd = LinkModules.end(); 900 M != MEnd; ++M) { 901 if (Visited.insert(*M)) 902 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 903 } 904 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 905 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 906 907 // Add the linker options metadata flag. 908 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 909 llvm::MDNode::get(getLLVMContext(), 910 LinkerOptionsMetadata)); 911 } 912 913 void CodeGenModule::EmitDeferred() { 914 // Emit code for any potentially referenced deferred decls. Since a 915 // previously unused static decl may become used during the generation of code 916 // for a static function, iterate until no changes are made. 917 918 while (true) { 919 if (!DeferredVTables.empty()) { 920 EmitDeferredVTables(); 921 922 // Emitting a v-table doesn't directly cause more v-tables to 923 // become deferred, although it can cause functions to be 924 // emitted that then need those v-tables. 925 assert(DeferredVTables.empty()); 926 } 927 928 // Stop if we're out of both deferred v-tables and deferred declarations. 929 if (DeferredDeclsToEmit.empty()) break; 930 931 GlobalDecl D = DeferredDeclsToEmit.back(); 932 DeferredDeclsToEmit.pop_back(); 933 934 // Check to see if we've already emitted this. This is necessary 935 // for a couple of reasons: first, decls can end up in the 936 // deferred-decls queue multiple times, and second, decls can end 937 // up with definitions in unusual ways (e.g. by an extern inline 938 // function acquiring a strong function redefinition). Just 939 // ignore these cases. 940 // 941 // TODO: That said, looking this up multiple times is very wasteful. 942 StringRef Name = getMangledName(D); 943 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 944 assert(CGRef && "Deferred decl wasn't referenced?"); 945 946 if (!CGRef->isDeclaration()) 947 continue; 948 949 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 950 // purposes an alias counts as a definition. 951 if (isa<llvm::GlobalAlias>(CGRef)) 952 continue; 953 954 // Otherwise, emit the definition and move on to the next one. 955 EmitGlobalDefinition(D); 956 } 957 } 958 959 void CodeGenModule::EmitGlobalAnnotations() { 960 if (Annotations.empty()) 961 return; 962 963 // Create a new global variable for the ConstantStruct in the Module. 964 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 965 Annotations[0]->getType(), Annotations.size()), Annotations); 966 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 967 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 968 "llvm.global.annotations"); 969 gv->setSection(AnnotationSection); 970 } 971 972 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 973 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 974 if (i != AnnotationStrings.end()) 975 return i->second; 976 977 // Not found yet, create a new global. 978 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 979 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 980 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 981 gv->setSection(AnnotationSection); 982 gv->setUnnamedAddr(true); 983 AnnotationStrings[Str] = gv; 984 return gv; 985 } 986 987 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 988 SourceManager &SM = getContext().getSourceManager(); 989 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 990 if (PLoc.isValid()) 991 return EmitAnnotationString(PLoc.getFilename()); 992 return EmitAnnotationString(SM.getBufferName(Loc)); 993 } 994 995 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 996 SourceManager &SM = getContext().getSourceManager(); 997 PresumedLoc PLoc = SM.getPresumedLoc(L); 998 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 999 SM.getExpansionLineNumber(L); 1000 return llvm::ConstantInt::get(Int32Ty, LineNo); 1001 } 1002 1003 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1004 const AnnotateAttr *AA, 1005 SourceLocation L) { 1006 // Get the globals for file name, annotation, and the line number. 1007 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1008 *UnitGV = EmitAnnotationUnit(L), 1009 *LineNoCst = EmitAnnotationLineNo(L); 1010 1011 // Create the ConstantStruct for the global annotation. 1012 llvm::Constant *Fields[4] = { 1013 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1014 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1015 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1016 LineNoCst 1017 }; 1018 return llvm::ConstantStruct::getAnon(Fields); 1019 } 1020 1021 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1022 llvm::GlobalValue *GV) { 1023 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1024 // Get the struct elements for these annotations. 1025 for (specific_attr_iterator<AnnotateAttr> 1026 ai = D->specific_attr_begin<AnnotateAttr>(), 1027 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1028 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 1029 } 1030 1031 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1032 // Never defer when EmitAllDecls is specified. 1033 if (LangOpts.EmitAllDecls) 1034 return false; 1035 1036 return !getContext().DeclMustBeEmitted(Global); 1037 } 1038 1039 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1040 const CXXUuidofExpr* E) { 1041 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1042 // well-formed. 1043 StringRef Uuid = E->getUuidAsStringRef(Context); 1044 std::string Name = "_GUID_" + Uuid.lower(); 1045 std::replace(Name.begin(), Name.end(), '-', '_'); 1046 1047 // Look for an existing global. 1048 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1049 return GV; 1050 1051 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1052 assert(Init && "failed to initialize as constant"); 1053 1054 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1055 getModule(), Init->getType(), 1056 /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, Init, Name); 1057 return GV; 1058 } 1059 1060 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1061 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1062 assert(AA && "No alias?"); 1063 1064 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1065 1066 // See if there is already something with the target's name in the module. 1067 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1068 if (Entry) { 1069 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1070 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1071 } 1072 1073 llvm::Constant *Aliasee; 1074 if (isa<llvm::FunctionType>(DeclTy)) 1075 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1076 GlobalDecl(cast<FunctionDecl>(VD)), 1077 /*ForVTable=*/false); 1078 else 1079 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1080 llvm::PointerType::getUnqual(DeclTy), 0); 1081 1082 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1083 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1084 WeakRefReferences.insert(F); 1085 1086 return Aliasee; 1087 } 1088 1089 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1090 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1091 1092 // Weak references don't produce any output by themselves. 1093 if (Global->hasAttr<WeakRefAttr>()) 1094 return; 1095 1096 // If this is an alias definition (which otherwise looks like a declaration) 1097 // emit it now. 1098 if (Global->hasAttr<AliasAttr>()) 1099 return EmitAliasDefinition(GD); 1100 1101 // If this is CUDA, be selective about which declarations we emit. 1102 if (LangOpts.CUDA) { 1103 if (CodeGenOpts.CUDAIsDevice) { 1104 if (!Global->hasAttr<CUDADeviceAttr>() && 1105 !Global->hasAttr<CUDAGlobalAttr>() && 1106 !Global->hasAttr<CUDAConstantAttr>() && 1107 !Global->hasAttr<CUDASharedAttr>()) 1108 return; 1109 } else { 1110 if (!Global->hasAttr<CUDAHostAttr>() && ( 1111 Global->hasAttr<CUDADeviceAttr>() || 1112 Global->hasAttr<CUDAConstantAttr>() || 1113 Global->hasAttr<CUDASharedAttr>())) 1114 return; 1115 } 1116 } 1117 1118 // Ignore declarations, they will be emitted on their first use. 1119 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1120 // Forward declarations are emitted lazily on first use. 1121 if (!FD->doesThisDeclarationHaveABody()) { 1122 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1123 return; 1124 1125 const FunctionDecl *InlineDefinition = 0; 1126 FD->getBody(InlineDefinition); 1127 1128 StringRef MangledName = getMangledName(GD); 1129 DeferredDecls.erase(MangledName); 1130 EmitGlobalDefinition(InlineDefinition); 1131 return; 1132 } 1133 } else { 1134 const VarDecl *VD = cast<VarDecl>(Global); 1135 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1136 1137 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1138 return; 1139 } 1140 1141 // Defer code generation when possible if this is a static definition, inline 1142 // function etc. These we only want to emit if they are used. 1143 if (!MayDeferGeneration(Global)) { 1144 // Emit the definition if it can't be deferred. 1145 EmitGlobalDefinition(GD); 1146 return; 1147 } 1148 1149 // If we're deferring emission of a C++ variable with an 1150 // initializer, remember the order in which it appeared in the file. 1151 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1152 cast<VarDecl>(Global)->hasInit()) { 1153 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1154 CXXGlobalInits.push_back(0); 1155 } 1156 1157 // If the value has already been used, add it directly to the 1158 // DeferredDeclsToEmit list. 1159 StringRef MangledName = getMangledName(GD); 1160 if (GetGlobalValue(MangledName)) 1161 DeferredDeclsToEmit.push_back(GD); 1162 else { 1163 // Otherwise, remember that we saw a deferred decl with this name. The 1164 // first use of the mangled name will cause it to move into 1165 // DeferredDeclsToEmit. 1166 DeferredDecls[MangledName] = GD; 1167 } 1168 } 1169 1170 namespace { 1171 struct FunctionIsDirectlyRecursive : 1172 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1173 const StringRef Name; 1174 const Builtin::Context &BI; 1175 bool Result; 1176 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1177 Name(N), BI(C), Result(false) { 1178 } 1179 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1180 1181 bool TraverseCallExpr(CallExpr *E) { 1182 const FunctionDecl *FD = E->getDirectCallee(); 1183 if (!FD) 1184 return true; 1185 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1186 if (Attr && Name == Attr->getLabel()) { 1187 Result = true; 1188 return false; 1189 } 1190 unsigned BuiltinID = FD->getBuiltinID(); 1191 if (!BuiltinID) 1192 return true; 1193 StringRef BuiltinName = BI.GetName(BuiltinID); 1194 if (BuiltinName.startswith("__builtin_") && 1195 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1196 Result = true; 1197 return false; 1198 } 1199 return true; 1200 } 1201 }; 1202 } 1203 1204 // isTriviallyRecursive - Check if this function calls another 1205 // decl that, because of the asm attribute or the other decl being a builtin, 1206 // ends up pointing to itself. 1207 bool 1208 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1209 StringRef Name; 1210 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1211 // asm labels are a special kind of mangling we have to support. 1212 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1213 if (!Attr) 1214 return false; 1215 Name = Attr->getLabel(); 1216 } else { 1217 Name = FD->getName(); 1218 } 1219 1220 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1221 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1222 return Walker.Result; 1223 } 1224 1225 bool 1226 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1227 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1228 return true; 1229 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1230 if (CodeGenOpts.OptimizationLevel == 0 && 1231 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1232 return false; 1233 // PR9614. Avoid cases where the source code is lying to us. An available 1234 // externally function should have an equivalent function somewhere else, 1235 // but a function that calls itself is clearly not equivalent to the real 1236 // implementation. 1237 // This happens in glibc's btowc and in some configure checks. 1238 return !isTriviallyRecursive(F); 1239 } 1240 1241 /// If the type for the method's class was generated by 1242 /// CGDebugInfo::createContextChain(), the cache contains only a 1243 /// limited DIType without any declarations. Since EmitFunctionStart() 1244 /// needs to find the canonical declaration for each method, we need 1245 /// to construct the complete type prior to emitting the method. 1246 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1247 if (!D->isInstance()) 1248 return; 1249 1250 if (CGDebugInfo *DI = getModuleDebugInfo()) 1251 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1252 const PointerType *ThisPtr = 1253 cast<PointerType>(D->getThisType(getContext())); 1254 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1255 } 1256 } 1257 1258 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1259 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1260 1261 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1262 Context.getSourceManager(), 1263 "Generating code for declaration"); 1264 1265 if (isa<FunctionDecl>(D)) { 1266 // At -O0, don't generate IR for functions with available_externally 1267 // linkage. 1268 if (!shouldEmitFunction(GD)) 1269 return; 1270 1271 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1272 CompleteDIClassType(Method); 1273 // Make sure to emit the definition(s) before we emit the thunks. 1274 // This is necessary for the generation of certain thunks. 1275 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1276 EmitCXXConstructor(CD, GD.getCtorType()); 1277 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1278 EmitCXXDestructor(DD, GD.getDtorType()); 1279 else 1280 EmitGlobalFunctionDefinition(GD); 1281 1282 if (Method->isVirtual()) 1283 getVTables().EmitThunks(GD); 1284 1285 return; 1286 } 1287 1288 return EmitGlobalFunctionDefinition(GD); 1289 } 1290 1291 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1292 return EmitGlobalVarDefinition(VD); 1293 1294 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1295 } 1296 1297 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1298 /// module, create and return an llvm Function with the specified type. If there 1299 /// is something in the module with the specified name, return it potentially 1300 /// bitcasted to the right type. 1301 /// 1302 /// If D is non-null, it specifies a decl that correspond to this. This is used 1303 /// to set the attributes on the function when it is first created. 1304 llvm::Constant * 1305 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1306 llvm::Type *Ty, 1307 GlobalDecl GD, bool ForVTable, 1308 llvm::AttributeSet ExtraAttrs) { 1309 const Decl *D = GD.getDecl(); 1310 1311 // Lookup the entry, lazily creating it if necessary. 1312 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1313 if (Entry) { 1314 if (WeakRefReferences.erase(Entry)) { 1315 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1316 if (FD && !FD->hasAttr<WeakAttr>()) 1317 Entry->setLinkage(llvm::Function::ExternalLinkage); 1318 } 1319 1320 if (Entry->getType()->getElementType() == Ty) 1321 return Entry; 1322 1323 // Make sure the result is of the correct type. 1324 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1325 } 1326 1327 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1328 // each other bottoming out with the base dtor. Therefore we emit non-base 1329 // dtors on usage, even if there is no dtor definition in the TU. 1330 if (D && isa<CXXDestructorDecl>(D) && 1331 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1332 GD.getDtorType())) 1333 DeferredDeclsToEmit.push_back(GD); 1334 1335 // This function doesn't have a complete type (for example, the return 1336 // type is an incomplete struct). Use a fake type instead, and make 1337 // sure not to try to set attributes. 1338 bool IsIncompleteFunction = false; 1339 1340 llvm::FunctionType *FTy; 1341 if (isa<llvm::FunctionType>(Ty)) { 1342 FTy = cast<llvm::FunctionType>(Ty); 1343 } else { 1344 FTy = llvm::FunctionType::get(VoidTy, false); 1345 IsIncompleteFunction = true; 1346 } 1347 1348 llvm::Function *F = llvm::Function::Create(FTy, 1349 llvm::Function::ExternalLinkage, 1350 MangledName, &getModule()); 1351 assert(F->getName() == MangledName && "name was uniqued!"); 1352 if (D) 1353 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1354 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1355 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1356 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1357 llvm::AttributeSet::get(VMContext, 1358 llvm::AttributeSet::FunctionIndex, 1359 B)); 1360 } 1361 1362 // This is the first use or definition of a mangled name. If there is a 1363 // deferred decl with this name, remember that we need to emit it at the end 1364 // of the file. 1365 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1366 if (DDI != DeferredDecls.end()) { 1367 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1368 // list, and remove it from DeferredDecls (since we don't need it anymore). 1369 DeferredDeclsToEmit.push_back(DDI->second); 1370 DeferredDecls.erase(DDI); 1371 1372 // Otherwise, there are cases we have to worry about where we're 1373 // using a declaration for which we must emit a definition but where 1374 // we might not find a top-level definition: 1375 // - member functions defined inline in their classes 1376 // - friend functions defined inline in some class 1377 // - special member functions with implicit definitions 1378 // If we ever change our AST traversal to walk into class methods, 1379 // this will be unnecessary. 1380 // 1381 // We also don't emit a definition for a function if it's going to be an entry 1382 // in a vtable, unless it's already marked as used. 1383 } else if (getLangOpts().CPlusPlus && D) { 1384 // Look for a declaration that's lexically in a record. 1385 const FunctionDecl *FD = cast<FunctionDecl>(D); 1386 FD = FD->getMostRecentDecl(); 1387 do { 1388 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1389 if (FD->isImplicit() && !ForVTable) { 1390 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1391 DeferredDeclsToEmit.push_back(GD.getWithDecl(FD)); 1392 break; 1393 } else if (FD->doesThisDeclarationHaveABody()) { 1394 DeferredDeclsToEmit.push_back(GD.getWithDecl(FD)); 1395 break; 1396 } 1397 } 1398 FD = FD->getPreviousDecl(); 1399 } while (FD); 1400 } 1401 1402 // Make sure the result is of the requested type. 1403 if (!IsIncompleteFunction) { 1404 assert(F->getType()->getElementType() == Ty); 1405 return F; 1406 } 1407 1408 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1409 return llvm::ConstantExpr::getBitCast(F, PTy); 1410 } 1411 1412 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1413 /// non-null, then this function will use the specified type if it has to 1414 /// create it (this occurs when we see a definition of the function). 1415 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1416 llvm::Type *Ty, 1417 bool ForVTable) { 1418 // If there was no specific requested type, just convert it now. 1419 if (!Ty) 1420 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1421 1422 StringRef MangledName = getMangledName(GD); 1423 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1424 } 1425 1426 /// CreateRuntimeFunction - Create a new runtime function with the specified 1427 /// type and name. 1428 llvm::Constant * 1429 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1430 StringRef Name, 1431 llvm::AttributeSet ExtraAttrs) { 1432 llvm::Constant *C 1433 = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1434 ExtraAttrs); 1435 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1436 if (F->empty()) 1437 F->setCallingConv(getRuntimeCC()); 1438 return C; 1439 } 1440 1441 /// isTypeConstant - Determine whether an object of this type can be emitted 1442 /// as a constant. 1443 /// 1444 /// If ExcludeCtor is true, the duration when the object's constructor runs 1445 /// will not be considered. The caller will need to verify that the object is 1446 /// not written to during its construction. 1447 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1448 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1449 return false; 1450 1451 if (Context.getLangOpts().CPlusPlus) { 1452 if (const CXXRecordDecl *Record 1453 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1454 return ExcludeCtor && !Record->hasMutableFields() && 1455 Record->hasTrivialDestructor(); 1456 } 1457 1458 return true; 1459 } 1460 1461 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1462 /// create and return an llvm GlobalVariable with the specified type. If there 1463 /// is something in the module with the specified name, return it potentially 1464 /// bitcasted to the right type. 1465 /// 1466 /// If D is non-null, it specifies a decl that correspond to this. This is used 1467 /// to set the attributes on the global when it is first created. 1468 llvm::Constant * 1469 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1470 llvm::PointerType *Ty, 1471 const VarDecl *D, 1472 bool UnnamedAddr) { 1473 // Lookup the entry, lazily creating it if necessary. 1474 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1475 if (Entry) { 1476 if (WeakRefReferences.erase(Entry)) { 1477 if (D && !D->hasAttr<WeakAttr>()) 1478 Entry->setLinkage(llvm::Function::ExternalLinkage); 1479 } 1480 1481 if (UnnamedAddr) 1482 Entry->setUnnamedAddr(true); 1483 1484 if (Entry->getType() == Ty) 1485 return Entry; 1486 1487 // Make sure the result is of the correct type. 1488 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1489 } 1490 1491 // This is the first use or definition of a mangled name. If there is a 1492 // deferred decl with this name, remember that we need to emit it at the end 1493 // of the file. 1494 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1495 if (DDI != DeferredDecls.end()) { 1496 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1497 // list, and remove it from DeferredDecls (since we don't need it anymore). 1498 DeferredDeclsToEmit.push_back(DDI->second); 1499 DeferredDecls.erase(DDI); 1500 } 1501 1502 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1503 llvm::GlobalVariable *GV = 1504 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1505 llvm::GlobalValue::ExternalLinkage, 1506 0, MangledName, 0, 1507 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1508 1509 // Handle things which are present even on external declarations. 1510 if (D) { 1511 // FIXME: This code is overly simple and should be merged with other global 1512 // handling. 1513 GV->setConstant(isTypeConstant(D->getType(), false)); 1514 1515 // Set linkage and visibility in case we never see a definition. 1516 LinkageInfo LV = D->getLinkageAndVisibility(); 1517 if (LV.getLinkage() != ExternalLinkage) { 1518 // Don't set internal linkage on declarations. 1519 } else { 1520 if (D->hasAttr<DLLImportAttr>()) 1521 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1522 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1523 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1524 1525 // Set visibility on a declaration only if it's explicit. 1526 if (LV.isVisibilityExplicit()) 1527 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1528 } 1529 1530 if (D->getTLSKind()) { 1531 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1532 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1533 setTLSMode(GV, *D); 1534 } 1535 } 1536 1537 if (AddrSpace != Ty->getAddressSpace()) 1538 return llvm::ConstantExpr::getBitCast(GV, Ty); 1539 else 1540 return GV; 1541 } 1542 1543 1544 llvm::GlobalVariable * 1545 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1546 llvm::Type *Ty, 1547 llvm::GlobalValue::LinkageTypes Linkage) { 1548 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1549 llvm::GlobalVariable *OldGV = 0; 1550 1551 1552 if (GV) { 1553 // Check if the variable has the right type. 1554 if (GV->getType()->getElementType() == Ty) 1555 return GV; 1556 1557 // Because C++ name mangling, the only way we can end up with an already 1558 // existing global with the same name is if it has been declared extern "C". 1559 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1560 OldGV = GV; 1561 } 1562 1563 // Create a new variable. 1564 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1565 Linkage, 0, Name); 1566 1567 if (OldGV) { 1568 // Replace occurrences of the old variable if needed. 1569 GV->takeName(OldGV); 1570 1571 if (!OldGV->use_empty()) { 1572 llvm::Constant *NewPtrForOldDecl = 1573 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1574 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1575 } 1576 1577 OldGV->eraseFromParent(); 1578 } 1579 1580 return GV; 1581 } 1582 1583 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1584 /// given global variable. If Ty is non-null and if the global doesn't exist, 1585 /// then it will be created with the specified type instead of whatever the 1586 /// normal requested type would be. 1587 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1588 llvm::Type *Ty) { 1589 assert(D->hasGlobalStorage() && "Not a global variable"); 1590 QualType ASTTy = D->getType(); 1591 if (Ty == 0) 1592 Ty = getTypes().ConvertTypeForMem(ASTTy); 1593 1594 llvm::PointerType *PTy = 1595 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1596 1597 StringRef MangledName = getMangledName(D); 1598 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1599 } 1600 1601 /// CreateRuntimeVariable - Create a new runtime global variable with the 1602 /// specified type and name. 1603 llvm::Constant * 1604 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1605 StringRef Name) { 1606 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1607 true); 1608 } 1609 1610 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1611 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1612 1613 if (MayDeferGeneration(D)) { 1614 // If we have not seen a reference to this variable yet, place it 1615 // into the deferred declarations table to be emitted if needed 1616 // later. 1617 StringRef MangledName = getMangledName(D); 1618 if (!GetGlobalValue(MangledName)) { 1619 DeferredDecls[MangledName] = D; 1620 return; 1621 } 1622 } 1623 1624 // The tentative definition is the only definition. 1625 EmitGlobalVarDefinition(D); 1626 } 1627 1628 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1629 return Context.toCharUnitsFromBits( 1630 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1631 } 1632 1633 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1634 unsigned AddrSpace) { 1635 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1636 if (D->hasAttr<CUDAConstantAttr>()) 1637 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1638 else if (D->hasAttr<CUDASharedAttr>()) 1639 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1640 else 1641 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1642 } 1643 1644 return AddrSpace; 1645 } 1646 1647 template<typename SomeDecl> 1648 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1649 llvm::GlobalValue *GV) { 1650 if (!getLangOpts().CPlusPlus) 1651 return; 1652 1653 // Must have 'used' attribute, or else inline assembly can't rely on 1654 // the name existing. 1655 if (!D->template hasAttr<UsedAttr>()) 1656 return; 1657 1658 // Must have internal linkage and an ordinary name. 1659 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1660 return; 1661 1662 // Must be in an extern "C" context. Entities declared directly within 1663 // a record are not extern "C" even if the record is in such a context. 1664 const SomeDecl *First = D->getFirstDeclaration(); 1665 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1666 return; 1667 1668 // OK, this is an internal linkage entity inside an extern "C" linkage 1669 // specification. Make a note of that so we can give it the "expected" 1670 // mangled name if nothing else is using that name. 1671 std::pair<StaticExternCMap::iterator, bool> R = 1672 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1673 1674 // If we have multiple internal linkage entities with the same name 1675 // in extern "C" regions, none of them gets that name. 1676 if (!R.second) 1677 R.first->second = 0; 1678 } 1679 1680 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1681 llvm::Constant *Init = 0; 1682 QualType ASTTy = D->getType(); 1683 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1684 bool NeedsGlobalCtor = false; 1685 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1686 1687 const VarDecl *InitDecl; 1688 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1689 1690 if (!InitExpr) { 1691 // This is a tentative definition; tentative definitions are 1692 // implicitly initialized with { 0 }. 1693 // 1694 // Note that tentative definitions are only emitted at the end of 1695 // a translation unit, so they should never have incomplete 1696 // type. In addition, EmitTentativeDefinition makes sure that we 1697 // never attempt to emit a tentative definition if a real one 1698 // exists. A use may still exists, however, so we still may need 1699 // to do a RAUW. 1700 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1701 Init = EmitNullConstant(D->getType()); 1702 } else { 1703 initializedGlobalDecl = GlobalDecl(D); 1704 Init = EmitConstantInit(*InitDecl); 1705 1706 if (!Init) { 1707 QualType T = InitExpr->getType(); 1708 if (D->getType()->isReferenceType()) 1709 T = D->getType(); 1710 1711 if (getLangOpts().CPlusPlus) { 1712 Init = EmitNullConstant(T); 1713 NeedsGlobalCtor = true; 1714 } else { 1715 ErrorUnsupported(D, "static initializer"); 1716 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1717 } 1718 } else { 1719 // We don't need an initializer, so remove the entry for the delayed 1720 // initializer position (just in case this entry was delayed) if we 1721 // also don't need to register a destructor. 1722 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1723 DelayedCXXInitPosition.erase(D); 1724 } 1725 } 1726 1727 llvm::Type* InitType = Init->getType(); 1728 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1729 1730 // Strip off a bitcast if we got one back. 1731 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1732 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1733 // all zero index gep. 1734 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1735 Entry = CE->getOperand(0); 1736 } 1737 1738 // Entry is now either a Function or GlobalVariable. 1739 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1740 1741 // We have a definition after a declaration with the wrong type. 1742 // We must make a new GlobalVariable* and update everything that used OldGV 1743 // (a declaration or tentative definition) with the new GlobalVariable* 1744 // (which will be a definition). 1745 // 1746 // This happens if there is a prototype for a global (e.g. 1747 // "extern int x[];") and then a definition of a different type (e.g. 1748 // "int x[10];"). This also happens when an initializer has a different type 1749 // from the type of the global (this happens with unions). 1750 if (GV == 0 || 1751 GV->getType()->getElementType() != InitType || 1752 GV->getType()->getAddressSpace() != 1753 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1754 1755 // Move the old entry aside so that we'll create a new one. 1756 Entry->setName(StringRef()); 1757 1758 // Make a new global with the correct type, this is now guaranteed to work. 1759 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1760 1761 // Replace all uses of the old global with the new global 1762 llvm::Constant *NewPtrForOldDecl = 1763 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1764 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1765 1766 // Erase the old global, since it is no longer used. 1767 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1768 } 1769 1770 MaybeHandleStaticInExternC(D, GV); 1771 1772 if (D->hasAttr<AnnotateAttr>()) 1773 AddGlobalAnnotations(D, GV); 1774 1775 GV->setInitializer(Init); 1776 1777 // If it is safe to mark the global 'constant', do so now. 1778 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1779 isTypeConstant(D->getType(), true)); 1780 1781 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1782 1783 // Set the llvm linkage type as appropriate. 1784 llvm::GlobalValue::LinkageTypes Linkage = 1785 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1786 GV->setLinkage(Linkage); 1787 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1788 // common vars aren't constant even if declared const. 1789 GV->setConstant(false); 1790 1791 SetCommonAttributes(D, GV); 1792 1793 // Emit the initializer function if necessary. 1794 if (NeedsGlobalCtor || NeedsGlobalDtor) 1795 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1796 1797 // If we are compiling with ASan, add metadata indicating dynamically 1798 // initialized globals. 1799 if (SanOpts.Address && NeedsGlobalCtor) { 1800 llvm::Module &M = getModule(); 1801 1802 llvm::NamedMDNode *DynamicInitializers = 1803 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1804 llvm::Value *GlobalToAdd[] = { GV }; 1805 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1806 DynamicInitializers->addOperand(ThisGlobal); 1807 } 1808 1809 // Emit global variable debug information. 1810 if (CGDebugInfo *DI = getModuleDebugInfo()) 1811 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1812 DI->EmitGlobalVariable(GV, D); 1813 } 1814 1815 llvm::GlobalValue::LinkageTypes 1816 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1817 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1818 if (Linkage == GVA_Internal) 1819 return llvm::Function::InternalLinkage; 1820 else if (D->hasAttr<DLLImportAttr>()) 1821 return llvm::Function::DLLImportLinkage; 1822 else if (D->hasAttr<DLLExportAttr>()) 1823 return llvm::Function::DLLExportLinkage; 1824 else if (D->hasAttr<SelectAnyAttr>()) { 1825 // selectany symbols are externally visible, so use weak instead of 1826 // linkonce. MSVC optimizes away references to const selectany globals, so 1827 // all definitions should be the same and ODR linkage should be used. 1828 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1829 return llvm::GlobalVariable::WeakODRLinkage; 1830 } else if (D->hasAttr<WeakAttr>()) { 1831 if (isConstant) 1832 return llvm::GlobalVariable::WeakODRLinkage; 1833 else 1834 return llvm::GlobalVariable::WeakAnyLinkage; 1835 } else if (Linkage == GVA_TemplateInstantiation || 1836 Linkage == GVA_ExplicitTemplateInstantiation) 1837 return llvm::GlobalVariable::WeakODRLinkage; 1838 else if (!getLangOpts().CPlusPlus && 1839 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1840 D->getAttr<CommonAttr>()) && 1841 !D->hasExternalStorage() && !D->getInit() && 1842 !D->getAttr<SectionAttr>() && !D->getTLSKind() && 1843 !D->getAttr<WeakImportAttr>()) { 1844 // Thread local vars aren't considered common linkage. 1845 return llvm::GlobalVariable::CommonLinkage; 1846 } else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1847 getTarget().getTriple().isMacOSX()) 1848 // On Darwin, the backing variable for a C++11 thread_local variable always 1849 // has internal linkage; all accesses should just be calls to the 1850 // Itanium-specified entry point, which has the normal linkage of the 1851 // variable. 1852 return llvm::GlobalValue::InternalLinkage; 1853 return llvm::GlobalVariable::ExternalLinkage; 1854 } 1855 1856 /// Replace the uses of a function that was declared with a non-proto type. 1857 /// We want to silently drop extra arguments from call sites 1858 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 1859 llvm::Function *newFn) { 1860 // Fast path. 1861 if (old->use_empty()) return; 1862 1863 llvm::Type *newRetTy = newFn->getReturnType(); 1864 SmallVector<llvm::Value*, 4> newArgs; 1865 1866 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 1867 ui != ue; ) { 1868 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 1869 llvm::User *user = *use; 1870 1871 // Recognize and replace uses of bitcasts. Most calls to 1872 // unprototyped functions will use bitcasts. 1873 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 1874 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 1875 replaceUsesOfNonProtoConstant(bitcast, newFn); 1876 continue; 1877 } 1878 1879 // Recognize calls to the function. 1880 llvm::CallSite callSite(user); 1881 if (!callSite) continue; 1882 if (!callSite.isCallee(use)) continue; 1883 1884 // If the return types don't match exactly, then we can't 1885 // transform this call unless it's dead. 1886 if (callSite->getType() != newRetTy && !callSite->use_empty()) 1887 continue; 1888 1889 // Get the call site's attribute list. 1890 SmallVector<llvm::AttributeSet, 8> newAttrs; 1891 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 1892 1893 // Collect any return attributes from the call. 1894 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 1895 newAttrs.push_back( 1896 llvm::AttributeSet::get(newFn->getContext(), 1897 oldAttrs.getRetAttributes())); 1898 1899 // If the function was passed too few arguments, don't transform. 1900 unsigned newNumArgs = newFn->arg_size(); 1901 if (callSite.arg_size() < newNumArgs) continue; 1902 1903 // If extra arguments were passed, we silently drop them. 1904 // If any of the types mismatch, we don't transform. 1905 unsigned argNo = 0; 1906 bool dontTransform = false; 1907 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 1908 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 1909 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 1910 dontTransform = true; 1911 break; 1912 } 1913 1914 // Add any parameter attributes. 1915 if (oldAttrs.hasAttributes(argNo + 1)) 1916 newAttrs. 1917 push_back(llvm:: 1918 AttributeSet::get(newFn->getContext(), 1919 oldAttrs.getParamAttributes(argNo + 1))); 1920 } 1921 if (dontTransform) 1922 continue; 1923 1924 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 1925 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 1926 oldAttrs.getFnAttributes())); 1927 1928 // Okay, we can transform this. Create the new call instruction and copy 1929 // over the required information. 1930 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 1931 1932 llvm::CallSite newCall; 1933 if (callSite.isCall()) { 1934 newCall = llvm::CallInst::Create(newFn, newArgs, "", 1935 callSite.getInstruction()); 1936 } else { 1937 llvm::InvokeInst *oldInvoke = 1938 cast<llvm::InvokeInst>(callSite.getInstruction()); 1939 newCall = llvm::InvokeInst::Create(newFn, 1940 oldInvoke->getNormalDest(), 1941 oldInvoke->getUnwindDest(), 1942 newArgs, "", 1943 callSite.getInstruction()); 1944 } 1945 newArgs.clear(); // for the next iteration 1946 1947 if (!newCall->getType()->isVoidTy()) 1948 newCall->takeName(callSite.getInstruction()); 1949 newCall.setAttributes( 1950 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 1951 newCall.setCallingConv(callSite.getCallingConv()); 1952 1953 // Finally, remove the old call, replacing any uses with the new one. 1954 if (!callSite->use_empty()) 1955 callSite->replaceAllUsesWith(newCall.getInstruction()); 1956 1957 // Copy debug location attached to CI. 1958 if (!callSite->getDebugLoc().isUnknown()) 1959 newCall->setDebugLoc(callSite->getDebugLoc()); 1960 callSite->eraseFromParent(); 1961 } 1962 } 1963 1964 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1965 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1966 /// existing call uses of the old function in the module, this adjusts them to 1967 /// call the new function directly. 1968 /// 1969 /// This is not just a cleanup: the always_inline pass requires direct calls to 1970 /// functions to be able to inline them. If there is a bitcast in the way, it 1971 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1972 /// run at -O0. 1973 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1974 llvm::Function *NewFn) { 1975 // If we're redefining a global as a function, don't transform it. 1976 if (!isa<llvm::Function>(Old)) return; 1977 1978 replaceUsesOfNonProtoConstant(Old, NewFn); 1979 } 1980 1981 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1982 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1983 // If we have a definition, this might be a deferred decl. If the 1984 // instantiation is explicit, make sure we emit it at the end. 1985 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1986 GetAddrOfGlobalVar(VD); 1987 1988 EmitTopLevelDecl(VD); 1989 } 1990 1991 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1992 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1993 1994 // Compute the function info and LLVM type. 1995 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1996 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1997 1998 // Get or create the prototype for the function. 1999 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 2000 2001 // Strip off a bitcast if we got one back. 2002 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2003 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2004 Entry = CE->getOperand(0); 2005 } 2006 2007 2008 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2009 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2010 2011 // If the types mismatch then we have to rewrite the definition. 2012 assert(OldFn->isDeclaration() && 2013 "Shouldn't replace non-declaration"); 2014 2015 // F is the Function* for the one with the wrong type, we must make a new 2016 // Function* and update everything that used F (a declaration) with the new 2017 // Function* (which will be a definition). 2018 // 2019 // This happens if there is a prototype for a function 2020 // (e.g. "int f()") and then a definition of a different type 2021 // (e.g. "int f(int x)"). Move the old function aside so that it 2022 // doesn't interfere with GetAddrOfFunction. 2023 OldFn->setName(StringRef()); 2024 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2025 2026 // This might be an implementation of a function without a 2027 // prototype, in which case, try to do special replacement of 2028 // calls which match the new prototype. The really key thing here 2029 // is that we also potentially drop arguments from the call site 2030 // so as to make a direct call, which makes the inliner happier 2031 // and suppresses a number of optimizer warnings (!) about 2032 // dropping arguments. 2033 if (!OldFn->use_empty()) { 2034 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2035 OldFn->removeDeadConstantUsers(); 2036 } 2037 2038 // Replace uses of F with the Function we will endow with a body. 2039 if (!Entry->use_empty()) { 2040 llvm::Constant *NewPtrForOldDecl = 2041 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2042 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2043 } 2044 2045 // Ok, delete the old function now, which is dead. 2046 OldFn->eraseFromParent(); 2047 2048 Entry = NewFn; 2049 } 2050 2051 // We need to set linkage and visibility on the function before 2052 // generating code for it because various parts of IR generation 2053 // want to propagate this information down (e.g. to local static 2054 // declarations). 2055 llvm::Function *Fn = cast<llvm::Function>(Entry); 2056 setFunctionLinkage(GD, Fn); 2057 2058 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2059 setGlobalVisibility(Fn, D); 2060 2061 MaybeHandleStaticInExternC(D, Fn); 2062 2063 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2064 2065 SetFunctionDefinitionAttributes(D, Fn); 2066 SetLLVMFunctionAttributesForDefinition(D, Fn); 2067 2068 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2069 AddGlobalCtor(Fn, CA->getPriority()); 2070 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2071 AddGlobalDtor(Fn, DA->getPriority()); 2072 if (D->hasAttr<AnnotateAttr>()) 2073 AddGlobalAnnotations(D, Fn); 2074 } 2075 2076 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2077 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2078 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2079 assert(AA && "Not an alias?"); 2080 2081 StringRef MangledName = getMangledName(GD); 2082 2083 // If there is a definition in the module, then it wins over the alias. 2084 // This is dubious, but allow it to be safe. Just ignore the alias. 2085 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2086 if (Entry && !Entry->isDeclaration()) 2087 return; 2088 2089 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2090 2091 // Create a reference to the named value. This ensures that it is emitted 2092 // if a deferred decl. 2093 llvm::Constant *Aliasee; 2094 if (isa<llvm::FunctionType>(DeclTy)) 2095 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2096 /*ForVTable=*/false); 2097 else 2098 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2099 llvm::PointerType::getUnqual(DeclTy), 0); 2100 2101 // Create the new alias itself, but don't set a name yet. 2102 llvm::GlobalValue *GA = 2103 new llvm::GlobalAlias(Aliasee->getType(), 2104 llvm::Function::ExternalLinkage, 2105 "", Aliasee, &getModule()); 2106 2107 if (Entry) { 2108 assert(Entry->isDeclaration()); 2109 2110 // If there is a declaration in the module, then we had an extern followed 2111 // by the alias, as in: 2112 // extern int test6(); 2113 // ... 2114 // int test6() __attribute__((alias("test7"))); 2115 // 2116 // Remove it and replace uses of it with the alias. 2117 GA->takeName(Entry); 2118 2119 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2120 Entry->getType())); 2121 Entry->eraseFromParent(); 2122 } else { 2123 GA->setName(MangledName); 2124 } 2125 2126 // Set attributes which are particular to an alias; this is a 2127 // specialization of the attributes which may be set on a global 2128 // variable/function. 2129 if (D->hasAttr<DLLExportAttr>()) { 2130 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2131 // The dllexport attribute is ignored for undefined symbols. 2132 if (FD->hasBody()) 2133 GA->setLinkage(llvm::Function::DLLExportLinkage); 2134 } else { 2135 GA->setLinkage(llvm::Function::DLLExportLinkage); 2136 } 2137 } else if (D->hasAttr<WeakAttr>() || 2138 D->hasAttr<WeakRefAttr>() || 2139 D->isWeakImported()) { 2140 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2141 } 2142 2143 SetCommonAttributes(D, GA); 2144 } 2145 2146 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2147 ArrayRef<llvm::Type*> Tys) { 2148 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2149 Tys); 2150 } 2151 2152 static llvm::StringMapEntry<llvm::Constant*> & 2153 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2154 const StringLiteral *Literal, 2155 bool TargetIsLSB, 2156 bool &IsUTF16, 2157 unsigned &StringLength) { 2158 StringRef String = Literal->getString(); 2159 unsigned NumBytes = String.size(); 2160 2161 // Check for simple case. 2162 if (!Literal->containsNonAsciiOrNull()) { 2163 StringLength = NumBytes; 2164 return Map.GetOrCreateValue(String); 2165 } 2166 2167 // Otherwise, convert the UTF8 literals into a string of shorts. 2168 IsUTF16 = true; 2169 2170 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2171 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2172 UTF16 *ToPtr = &ToBuf[0]; 2173 2174 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2175 &ToPtr, ToPtr + NumBytes, 2176 strictConversion); 2177 2178 // ConvertUTF8toUTF16 returns the length in ToPtr. 2179 StringLength = ToPtr - &ToBuf[0]; 2180 2181 // Add an explicit null. 2182 *ToPtr = 0; 2183 return Map. 2184 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2185 (StringLength + 1) * 2)); 2186 } 2187 2188 static llvm::StringMapEntry<llvm::Constant*> & 2189 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2190 const StringLiteral *Literal, 2191 unsigned &StringLength) { 2192 StringRef String = Literal->getString(); 2193 StringLength = String.size(); 2194 return Map.GetOrCreateValue(String); 2195 } 2196 2197 llvm::Constant * 2198 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2199 unsigned StringLength = 0; 2200 bool isUTF16 = false; 2201 llvm::StringMapEntry<llvm::Constant*> &Entry = 2202 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2203 getDataLayout().isLittleEndian(), 2204 isUTF16, StringLength); 2205 2206 if (llvm::Constant *C = Entry.getValue()) 2207 return C; 2208 2209 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2210 llvm::Constant *Zeros[] = { Zero, Zero }; 2211 llvm::Value *V; 2212 2213 // If we don't already have it, get __CFConstantStringClassReference. 2214 if (!CFConstantStringClassRef) { 2215 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2216 Ty = llvm::ArrayType::get(Ty, 0); 2217 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2218 "__CFConstantStringClassReference"); 2219 // Decay array -> ptr 2220 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2221 CFConstantStringClassRef = V; 2222 } 2223 else 2224 V = CFConstantStringClassRef; 2225 2226 QualType CFTy = getContext().getCFConstantStringType(); 2227 2228 llvm::StructType *STy = 2229 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2230 2231 llvm::Constant *Fields[4]; 2232 2233 // Class pointer. 2234 Fields[0] = cast<llvm::ConstantExpr>(V); 2235 2236 // Flags. 2237 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2238 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2239 llvm::ConstantInt::get(Ty, 0x07C8); 2240 2241 // String pointer. 2242 llvm::Constant *C = 0; 2243 if (isUTF16) { 2244 ArrayRef<uint16_t> Arr = 2245 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2246 const_cast<char *>(Entry.getKey().data())), 2247 Entry.getKey().size() / 2); 2248 C = llvm::ConstantDataArray::get(VMContext, Arr); 2249 } else { 2250 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2251 } 2252 2253 llvm::GlobalValue::LinkageTypes Linkage; 2254 if (isUTF16) 2255 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2256 Linkage = llvm::GlobalValue::InternalLinkage; 2257 else 2258 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2259 // when using private linkage. It is not clear if this is a bug in ld 2260 // or a reasonable new restriction. 2261 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2262 2263 // Note: -fwritable-strings doesn't make the backing store strings of 2264 // CFStrings writable. (See <rdar://problem/10657500>) 2265 llvm::GlobalVariable *GV = 2266 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2267 Linkage, C, ".str"); 2268 GV->setUnnamedAddr(true); 2269 // Don't enforce the target's minimum global alignment, since the only use 2270 // of the string is via this class initializer. 2271 if (isUTF16) { 2272 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2273 GV->setAlignment(Align.getQuantity()); 2274 } else { 2275 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2276 GV->setAlignment(Align.getQuantity()); 2277 } 2278 2279 // String. 2280 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2281 2282 if (isUTF16) 2283 // Cast the UTF16 string to the correct type. 2284 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2285 2286 // String length. 2287 Ty = getTypes().ConvertType(getContext().LongTy); 2288 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2289 2290 // The struct. 2291 C = llvm::ConstantStruct::get(STy, Fields); 2292 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2293 llvm::GlobalVariable::PrivateLinkage, C, 2294 "_unnamed_cfstring_"); 2295 if (const char *Sect = getTarget().getCFStringSection()) 2296 GV->setSection(Sect); 2297 Entry.setValue(GV); 2298 2299 return GV; 2300 } 2301 2302 static RecordDecl * 2303 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2304 DeclContext *DC, IdentifierInfo *Id) { 2305 SourceLocation Loc; 2306 if (Ctx.getLangOpts().CPlusPlus) 2307 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2308 else 2309 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2310 } 2311 2312 llvm::Constant * 2313 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2314 unsigned StringLength = 0; 2315 llvm::StringMapEntry<llvm::Constant*> &Entry = 2316 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2317 2318 if (llvm::Constant *C = Entry.getValue()) 2319 return C; 2320 2321 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2322 llvm::Constant *Zeros[] = { Zero, Zero }; 2323 llvm::Value *V; 2324 // If we don't already have it, get _NSConstantStringClassReference. 2325 if (!ConstantStringClassRef) { 2326 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2327 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2328 llvm::Constant *GV; 2329 if (LangOpts.ObjCRuntime.isNonFragile()) { 2330 std::string str = 2331 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2332 : "OBJC_CLASS_$_" + StringClass; 2333 GV = getObjCRuntime().GetClassGlobal(str); 2334 // Make sure the result is of the correct type. 2335 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2336 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2337 ConstantStringClassRef = V; 2338 } else { 2339 std::string str = 2340 StringClass.empty() ? "_NSConstantStringClassReference" 2341 : "_" + StringClass + "ClassReference"; 2342 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2343 GV = CreateRuntimeVariable(PTy, str); 2344 // Decay array -> ptr 2345 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2346 ConstantStringClassRef = V; 2347 } 2348 } 2349 else 2350 V = ConstantStringClassRef; 2351 2352 if (!NSConstantStringType) { 2353 // Construct the type for a constant NSString. 2354 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2355 Context.getTranslationUnitDecl(), 2356 &Context.Idents.get("__builtin_NSString")); 2357 D->startDefinition(); 2358 2359 QualType FieldTypes[3]; 2360 2361 // const int *isa; 2362 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2363 // const char *str; 2364 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2365 // unsigned int length; 2366 FieldTypes[2] = Context.UnsignedIntTy; 2367 2368 // Create fields 2369 for (unsigned i = 0; i < 3; ++i) { 2370 FieldDecl *Field = FieldDecl::Create(Context, D, 2371 SourceLocation(), 2372 SourceLocation(), 0, 2373 FieldTypes[i], /*TInfo=*/0, 2374 /*BitWidth=*/0, 2375 /*Mutable=*/false, 2376 ICIS_NoInit); 2377 Field->setAccess(AS_public); 2378 D->addDecl(Field); 2379 } 2380 2381 D->completeDefinition(); 2382 QualType NSTy = Context.getTagDeclType(D); 2383 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2384 } 2385 2386 llvm::Constant *Fields[3]; 2387 2388 // Class pointer. 2389 Fields[0] = cast<llvm::ConstantExpr>(V); 2390 2391 // String pointer. 2392 llvm::Constant *C = 2393 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2394 2395 llvm::GlobalValue::LinkageTypes Linkage; 2396 bool isConstant; 2397 Linkage = llvm::GlobalValue::PrivateLinkage; 2398 isConstant = !LangOpts.WritableStrings; 2399 2400 llvm::GlobalVariable *GV = 2401 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2402 ".str"); 2403 GV->setUnnamedAddr(true); 2404 // Don't enforce the target's minimum global alignment, since the only use 2405 // of the string is via this class initializer. 2406 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2407 GV->setAlignment(Align.getQuantity()); 2408 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2409 2410 // String length. 2411 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2412 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2413 2414 // The struct. 2415 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2416 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2417 llvm::GlobalVariable::PrivateLinkage, C, 2418 "_unnamed_nsstring_"); 2419 // FIXME. Fix section. 2420 if (const char *Sect = 2421 LangOpts.ObjCRuntime.isNonFragile() 2422 ? getTarget().getNSStringNonFragileABISection() 2423 : getTarget().getNSStringSection()) 2424 GV->setSection(Sect); 2425 Entry.setValue(GV); 2426 2427 return GV; 2428 } 2429 2430 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2431 if (ObjCFastEnumerationStateType.isNull()) { 2432 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2433 Context.getTranslationUnitDecl(), 2434 &Context.Idents.get("__objcFastEnumerationState")); 2435 D->startDefinition(); 2436 2437 QualType FieldTypes[] = { 2438 Context.UnsignedLongTy, 2439 Context.getPointerType(Context.getObjCIdType()), 2440 Context.getPointerType(Context.UnsignedLongTy), 2441 Context.getConstantArrayType(Context.UnsignedLongTy, 2442 llvm::APInt(32, 5), ArrayType::Normal, 0) 2443 }; 2444 2445 for (size_t i = 0; i < 4; ++i) { 2446 FieldDecl *Field = FieldDecl::Create(Context, 2447 D, 2448 SourceLocation(), 2449 SourceLocation(), 0, 2450 FieldTypes[i], /*TInfo=*/0, 2451 /*BitWidth=*/0, 2452 /*Mutable=*/false, 2453 ICIS_NoInit); 2454 Field->setAccess(AS_public); 2455 D->addDecl(Field); 2456 } 2457 2458 D->completeDefinition(); 2459 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2460 } 2461 2462 return ObjCFastEnumerationStateType; 2463 } 2464 2465 llvm::Constant * 2466 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2467 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2468 2469 // Don't emit it as the address of the string, emit the string data itself 2470 // as an inline array. 2471 if (E->getCharByteWidth() == 1) { 2472 SmallString<64> Str(E->getString()); 2473 2474 // Resize the string to the right size, which is indicated by its type. 2475 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2476 Str.resize(CAT->getSize().getZExtValue()); 2477 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2478 } 2479 2480 llvm::ArrayType *AType = 2481 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2482 llvm::Type *ElemTy = AType->getElementType(); 2483 unsigned NumElements = AType->getNumElements(); 2484 2485 // Wide strings have either 2-byte or 4-byte elements. 2486 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2487 SmallVector<uint16_t, 32> Elements; 2488 Elements.reserve(NumElements); 2489 2490 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2491 Elements.push_back(E->getCodeUnit(i)); 2492 Elements.resize(NumElements); 2493 return llvm::ConstantDataArray::get(VMContext, Elements); 2494 } 2495 2496 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2497 SmallVector<uint32_t, 32> Elements; 2498 Elements.reserve(NumElements); 2499 2500 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2501 Elements.push_back(E->getCodeUnit(i)); 2502 Elements.resize(NumElements); 2503 return llvm::ConstantDataArray::get(VMContext, Elements); 2504 } 2505 2506 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2507 /// constant array for the given string literal. 2508 llvm::Constant * 2509 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2510 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2511 if (S->isAscii() || S->isUTF8()) { 2512 SmallString<64> Str(S->getString()); 2513 2514 // Resize the string to the right size, which is indicated by its type. 2515 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2516 Str.resize(CAT->getSize().getZExtValue()); 2517 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2518 } 2519 2520 // FIXME: the following does not memoize wide strings. 2521 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2522 llvm::GlobalVariable *GV = 2523 new llvm::GlobalVariable(getModule(),C->getType(), 2524 !LangOpts.WritableStrings, 2525 llvm::GlobalValue::PrivateLinkage, 2526 C,".str"); 2527 2528 GV->setAlignment(Align.getQuantity()); 2529 GV->setUnnamedAddr(true); 2530 return GV; 2531 } 2532 2533 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2534 /// array for the given ObjCEncodeExpr node. 2535 llvm::Constant * 2536 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2537 std::string Str; 2538 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2539 2540 return GetAddrOfConstantCString(Str); 2541 } 2542 2543 2544 /// GenerateWritableString -- Creates storage for a string literal. 2545 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2546 bool constant, 2547 CodeGenModule &CGM, 2548 const char *GlobalName, 2549 unsigned Alignment) { 2550 // Create Constant for this string literal. Don't add a '\0'. 2551 llvm::Constant *C = 2552 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2553 2554 // Create a global variable for this string 2555 llvm::GlobalVariable *GV = 2556 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2557 llvm::GlobalValue::PrivateLinkage, 2558 C, GlobalName); 2559 GV->setAlignment(Alignment); 2560 GV->setUnnamedAddr(true); 2561 return GV; 2562 } 2563 2564 /// GetAddrOfConstantString - Returns a pointer to a character array 2565 /// containing the literal. This contents are exactly that of the 2566 /// given string, i.e. it will not be null terminated automatically; 2567 /// see GetAddrOfConstantCString. Note that whether the result is 2568 /// actually a pointer to an LLVM constant depends on 2569 /// Feature.WriteableStrings. 2570 /// 2571 /// The result has pointer to array type. 2572 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2573 const char *GlobalName, 2574 unsigned Alignment) { 2575 // Get the default prefix if a name wasn't specified. 2576 if (!GlobalName) 2577 GlobalName = ".str"; 2578 2579 if (Alignment == 0) 2580 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2581 .getQuantity(); 2582 2583 // Don't share any string literals if strings aren't constant. 2584 if (LangOpts.WritableStrings) 2585 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2586 2587 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2588 ConstantStringMap.GetOrCreateValue(Str); 2589 2590 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2591 if (Alignment > GV->getAlignment()) { 2592 GV->setAlignment(Alignment); 2593 } 2594 return GV; 2595 } 2596 2597 // Create a global variable for this. 2598 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2599 Alignment); 2600 Entry.setValue(GV); 2601 return GV; 2602 } 2603 2604 /// GetAddrOfConstantCString - Returns a pointer to a character 2605 /// array containing the literal and a terminating '\0' 2606 /// character. The result has pointer to array type. 2607 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2608 const char *GlobalName, 2609 unsigned Alignment) { 2610 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2611 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2612 } 2613 2614 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2615 const MaterializeTemporaryExpr *E, const Expr *Init) { 2616 assert((E->getStorageDuration() == SD_Static || 2617 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2618 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2619 2620 // If we're not materializing a subobject of the temporary, keep the 2621 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2622 QualType MaterializedType = Init->getType(); 2623 if (Init == E->GetTemporaryExpr()) 2624 MaterializedType = E->getType(); 2625 2626 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2627 if (Slot) 2628 return Slot; 2629 2630 // FIXME: If an externally-visible declaration extends multiple temporaries, 2631 // we need to give each temporary the same name in every translation unit (and 2632 // we also need to make the temporaries externally-visible). 2633 SmallString<256> Name; 2634 llvm::raw_svector_ostream Out(Name); 2635 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2636 Out.flush(); 2637 2638 APValue *Value = 0; 2639 if (E->getStorageDuration() == SD_Static) { 2640 // We might have a cached constant initializer for this temporary. Note 2641 // that this might have a different value from the value computed by 2642 // evaluating the initializer if the surrounding constant expression 2643 // modifies the temporary. 2644 Value = getContext().getMaterializedTemporaryValue(E, false); 2645 if (Value && Value->isUninit()) 2646 Value = 0; 2647 } 2648 2649 // Try evaluating it now, it might have a constant initializer. 2650 Expr::EvalResult EvalResult; 2651 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2652 !EvalResult.hasSideEffects()) 2653 Value = &EvalResult.Val; 2654 2655 llvm::Constant *InitialValue = 0; 2656 bool Constant = false; 2657 llvm::Type *Type; 2658 if (Value) { 2659 // The temporary has a constant initializer, use it. 2660 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2661 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2662 Type = InitialValue->getType(); 2663 } else { 2664 // No initializer, the initialization will be provided when we 2665 // initialize the declaration which performed lifetime extension. 2666 Type = getTypes().ConvertTypeForMem(MaterializedType); 2667 } 2668 2669 // Create a global variable for this lifetime-extended temporary. 2670 llvm::GlobalVariable *GV = 2671 new llvm::GlobalVariable(getModule(), Type, Constant, 2672 llvm::GlobalValue::PrivateLinkage, 2673 InitialValue, Name.c_str()); 2674 GV->setAlignment( 2675 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2676 if (VD->getTLSKind()) 2677 setTLSMode(GV, *VD); 2678 Slot = GV; 2679 return GV; 2680 } 2681 2682 /// EmitObjCPropertyImplementations - Emit information for synthesized 2683 /// properties for an implementation. 2684 void CodeGenModule::EmitObjCPropertyImplementations(const 2685 ObjCImplementationDecl *D) { 2686 for (ObjCImplementationDecl::propimpl_iterator 2687 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2688 ObjCPropertyImplDecl *PID = *i; 2689 2690 // Dynamic is just for type-checking. 2691 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2692 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2693 2694 // Determine which methods need to be implemented, some may have 2695 // been overridden. Note that ::isPropertyAccessor is not the method 2696 // we want, that just indicates if the decl came from a 2697 // property. What we want to know is if the method is defined in 2698 // this implementation. 2699 if (!D->getInstanceMethod(PD->getGetterName())) 2700 CodeGenFunction(*this).GenerateObjCGetter( 2701 const_cast<ObjCImplementationDecl *>(D), PID); 2702 if (!PD->isReadOnly() && 2703 !D->getInstanceMethod(PD->getSetterName())) 2704 CodeGenFunction(*this).GenerateObjCSetter( 2705 const_cast<ObjCImplementationDecl *>(D), PID); 2706 } 2707 } 2708 } 2709 2710 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2711 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2712 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2713 ivar; ivar = ivar->getNextIvar()) 2714 if (ivar->getType().isDestructedType()) 2715 return true; 2716 2717 return false; 2718 } 2719 2720 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2721 /// for an implementation. 2722 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2723 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2724 if (needsDestructMethod(D)) { 2725 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2726 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2727 ObjCMethodDecl *DTORMethod = 2728 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2729 cxxSelector, getContext().VoidTy, 0, D, 2730 /*isInstance=*/true, /*isVariadic=*/false, 2731 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2732 /*isDefined=*/false, ObjCMethodDecl::Required); 2733 D->addInstanceMethod(DTORMethod); 2734 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2735 D->setHasDestructors(true); 2736 } 2737 2738 // If the implementation doesn't have any ivar initializers, we don't need 2739 // a .cxx_construct. 2740 if (D->getNumIvarInitializers() == 0) 2741 return; 2742 2743 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2744 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2745 // The constructor returns 'self'. 2746 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2747 D->getLocation(), 2748 D->getLocation(), 2749 cxxSelector, 2750 getContext().getObjCIdType(), 0, 2751 D, /*isInstance=*/true, 2752 /*isVariadic=*/false, 2753 /*isPropertyAccessor=*/true, 2754 /*isImplicitlyDeclared=*/true, 2755 /*isDefined=*/false, 2756 ObjCMethodDecl::Required); 2757 D->addInstanceMethod(CTORMethod); 2758 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2759 D->setHasNonZeroConstructors(true); 2760 } 2761 2762 /// EmitNamespace - Emit all declarations in a namespace. 2763 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2764 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2765 I != E; ++I) 2766 EmitTopLevelDecl(*I); 2767 } 2768 2769 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2770 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2771 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2772 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2773 ErrorUnsupported(LSD, "linkage spec"); 2774 return; 2775 } 2776 2777 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2778 I != E; ++I) { 2779 // Meta-data for ObjC class includes references to implemented methods. 2780 // Generate class's method definitions first. 2781 if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) { 2782 for (ObjCContainerDecl::method_iterator M = OID->meth_begin(), 2783 MEnd = OID->meth_end(); 2784 M != MEnd; ++M) 2785 EmitTopLevelDecl(*M); 2786 } 2787 EmitTopLevelDecl(*I); 2788 } 2789 } 2790 2791 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2792 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2793 // Ignore dependent declarations. 2794 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2795 return; 2796 2797 switch (D->getKind()) { 2798 case Decl::CXXConversion: 2799 case Decl::CXXMethod: 2800 case Decl::Function: 2801 // Skip function templates 2802 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2803 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2804 return; 2805 2806 EmitGlobal(cast<FunctionDecl>(D)); 2807 break; 2808 2809 case Decl::Var: 2810 // Skip variable templates 2811 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2812 return; 2813 case Decl::VarTemplateSpecialization: 2814 EmitGlobal(cast<VarDecl>(D)); 2815 break; 2816 2817 // Indirect fields from global anonymous structs and unions can be 2818 // ignored; only the actual variable requires IR gen support. 2819 case Decl::IndirectField: 2820 break; 2821 2822 // C++ Decls 2823 case Decl::Namespace: 2824 EmitNamespace(cast<NamespaceDecl>(D)); 2825 break; 2826 // No code generation needed. 2827 case Decl::UsingShadow: 2828 case Decl::Using: 2829 case Decl::ClassTemplate: 2830 case Decl::VarTemplate: 2831 case Decl::VarTemplatePartialSpecialization: 2832 case Decl::FunctionTemplate: 2833 case Decl::TypeAliasTemplate: 2834 case Decl::Block: 2835 case Decl::Empty: 2836 break; 2837 case Decl::NamespaceAlias: 2838 if (CGDebugInfo *DI = getModuleDebugInfo()) 2839 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 2840 return; 2841 case Decl::UsingDirective: // using namespace X; [C++] 2842 if (CGDebugInfo *DI = getModuleDebugInfo()) 2843 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 2844 return; 2845 case Decl::CXXConstructor: 2846 // Skip function templates 2847 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2848 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2849 return; 2850 2851 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2852 break; 2853 case Decl::CXXDestructor: 2854 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2855 return; 2856 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2857 break; 2858 2859 case Decl::StaticAssert: 2860 // Nothing to do. 2861 break; 2862 2863 // Objective-C Decls 2864 2865 // Forward declarations, no (immediate) code generation. 2866 case Decl::ObjCInterface: 2867 case Decl::ObjCCategory: 2868 break; 2869 2870 case Decl::ObjCProtocol: { 2871 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2872 if (Proto->isThisDeclarationADefinition()) 2873 ObjCRuntime->GenerateProtocol(Proto); 2874 break; 2875 } 2876 2877 case Decl::ObjCCategoryImpl: 2878 // Categories have properties but don't support synthesize so we 2879 // can ignore them here. 2880 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2881 break; 2882 2883 case Decl::ObjCImplementation: { 2884 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2885 EmitObjCPropertyImplementations(OMD); 2886 EmitObjCIvarInitializations(OMD); 2887 ObjCRuntime->GenerateClass(OMD); 2888 // Emit global variable debug information. 2889 if (CGDebugInfo *DI = getModuleDebugInfo()) 2890 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2891 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 2892 OMD->getClassInterface()), OMD->getLocation()); 2893 break; 2894 } 2895 case Decl::ObjCMethod: { 2896 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2897 // If this is not a prototype, emit the body. 2898 if (OMD->getBody()) 2899 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2900 break; 2901 } 2902 case Decl::ObjCCompatibleAlias: 2903 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2904 break; 2905 2906 case Decl::LinkageSpec: 2907 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2908 break; 2909 2910 case Decl::FileScopeAsm: { 2911 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2912 StringRef AsmString = AD->getAsmString()->getString(); 2913 2914 const std::string &S = getModule().getModuleInlineAsm(); 2915 if (S.empty()) 2916 getModule().setModuleInlineAsm(AsmString); 2917 else if (S.end()[-1] == '\n') 2918 getModule().setModuleInlineAsm(S + AsmString.str()); 2919 else 2920 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2921 break; 2922 } 2923 2924 case Decl::Import: { 2925 ImportDecl *Import = cast<ImportDecl>(D); 2926 2927 // Ignore import declarations that come from imported modules. 2928 if (clang::Module *Owner = Import->getOwningModule()) { 2929 if (getLangOpts().CurrentModule.empty() || 2930 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 2931 break; 2932 } 2933 2934 ImportedModules.insert(Import->getImportedModule()); 2935 break; 2936 } 2937 2938 default: 2939 // Make sure we handled everything we should, every other kind is a 2940 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2941 // function. Need to recode Decl::Kind to do that easily. 2942 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2943 } 2944 } 2945 2946 /// Turns the given pointer into a constant. 2947 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2948 const void *Ptr) { 2949 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2950 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2951 return llvm::ConstantInt::get(i64, PtrInt); 2952 } 2953 2954 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2955 llvm::NamedMDNode *&GlobalMetadata, 2956 GlobalDecl D, 2957 llvm::GlobalValue *Addr) { 2958 if (!GlobalMetadata) 2959 GlobalMetadata = 2960 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2961 2962 // TODO: should we report variant information for ctors/dtors? 2963 llvm::Value *Ops[] = { 2964 Addr, 2965 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2966 }; 2967 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2968 } 2969 2970 /// For each function which is declared within an extern "C" region and marked 2971 /// as 'used', but has internal linkage, create an alias from the unmangled 2972 /// name to the mangled name if possible. People expect to be able to refer 2973 /// to such functions with an unmangled name from inline assembly within the 2974 /// same translation unit. 2975 void CodeGenModule::EmitStaticExternCAliases() { 2976 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 2977 E = StaticExternCValues.end(); 2978 I != E; ++I) { 2979 IdentifierInfo *Name = I->first; 2980 llvm::GlobalValue *Val = I->second; 2981 if (Val && !getModule().getNamedValue(Name->getName())) 2982 AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 2983 Name->getName(), Val, &getModule())); 2984 } 2985 } 2986 2987 /// Emits metadata nodes associating all the global values in the 2988 /// current module with the Decls they came from. This is useful for 2989 /// projects using IR gen as a subroutine. 2990 /// 2991 /// Since there's currently no way to associate an MDNode directly 2992 /// with an llvm::GlobalValue, we create a global named metadata 2993 /// with the name 'clang.global.decl.ptrs'. 2994 void CodeGenModule::EmitDeclMetadata() { 2995 llvm::NamedMDNode *GlobalMetadata = 0; 2996 2997 // StaticLocalDeclMap 2998 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2999 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3000 I != E; ++I) { 3001 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3002 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3003 } 3004 } 3005 3006 /// Emits metadata nodes for all the local variables in the current 3007 /// function. 3008 void CodeGenFunction::EmitDeclMetadata() { 3009 if (LocalDeclMap.empty()) return; 3010 3011 llvm::LLVMContext &Context = getLLVMContext(); 3012 3013 // Find the unique metadata ID for this name. 3014 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3015 3016 llvm::NamedMDNode *GlobalMetadata = 0; 3017 3018 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3019 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3020 const Decl *D = I->first; 3021 llvm::Value *Addr = I->second; 3022 3023 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3024 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3025 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3026 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3027 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3028 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3029 } 3030 } 3031 } 3032 3033 void CodeGenModule::EmitCoverageFile() { 3034 if (!getCodeGenOpts().CoverageFile.empty()) { 3035 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3036 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3037 llvm::LLVMContext &Ctx = TheModule.getContext(); 3038 llvm::MDString *CoverageFile = 3039 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3040 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3041 llvm::MDNode *CU = CUNode->getOperand(i); 3042 llvm::Value *node[] = { CoverageFile, CU }; 3043 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3044 GCov->addOperand(N); 3045 } 3046 } 3047 } 3048 } 3049 3050 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3051 QualType GuidType) { 3052 // Sema has checked that all uuid strings are of the form 3053 // "12345678-1234-1234-1234-1234567890ab". 3054 assert(Uuid.size() == 36); 3055 for (unsigned i = 0; i < 36; ++i) { 3056 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3057 else assert(isHexDigit(Uuid[i])); 3058 } 3059 3060 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3061 3062 llvm::Constant *Field3[8]; 3063 for (unsigned Idx = 0; Idx < 8; ++Idx) 3064 Field3[Idx] = llvm::ConstantInt::get( 3065 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3066 3067 llvm::Constant *Fields[4] = { 3068 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3069 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3070 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3071 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3072 }; 3073 3074 return llvm::ConstantStruct::getAnon(Fields); 3075 } 3076