1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/Mangler.h" 41 #include "llvm/Target/TargetData.h" 42 #include "llvm/Support/CallSite.h" 43 #include "llvm/Support/ErrorHandling.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 48 switch (CGM.getContext().Target.getCXXABI()) { 49 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 50 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 51 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 52 } 53 54 llvm_unreachable("invalid C++ ABI kind"); 55 return *CreateItaniumCXXABI(CGM); 56 } 57 58 59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 60 llvm::Module &M, const llvm::TargetData &TD, 61 Diagnostic &diags) 62 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), DebugInfo(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0), 74 BlockDescriptorType(0), GenericBlockLiteralType(0) { 75 if (Features.ObjC1) 76 createObjCRuntime(); 77 78 // Enable TBAA unless it's suppressed. 79 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 80 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 81 ABI.getMangleContext()); 82 83 // If debug info or coverage generation is enabled, create the CGDebugInfo 84 // object. 85 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 86 CodeGenOpts.EmitGcovNotes) 87 DebugInfo = new CGDebugInfo(*this); 88 89 Block.GlobalUniqueCount = 0; 90 91 // Initialize the type cache. 92 llvm::LLVMContext &LLVMContext = M.getContext(); 93 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 94 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 95 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 96 PointerWidthInBits = C.Target.getPointerWidth(0); 97 PointerAlignInBytes = 98 C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity(); 99 IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth()); 100 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 101 Int8PtrTy = Int8Ty->getPointerTo(0); 102 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 103 } 104 105 CodeGenModule::~CodeGenModule() { 106 delete Runtime; 107 delete &ABI; 108 delete TBAA; 109 delete DebugInfo; 110 } 111 112 void CodeGenModule::createObjCRuntime() { 113 if (!Features.NeXTRuntime) 114 Runtime = CreateGNUObjCRuntime(*this); 115 else 116 Runtime = CreateMacObjCRuntime(*this); 117 } 118 119 void CodeGenModule::Release() { 120 EmitDeferred(); 121 EmitCXXGlobalInitFunc(); 122 EmitCXXGlobalDtorFunc(); 123 if (Runtime) 124 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 125 AddGlobalCtor(ObjCInitFunction); 126 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 127 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 128 EmitAnnotations(); 129 EmitLLVMUsed(); 130 131 SimplifyPersonality(); 132 133 if (getCodeGenOpts().EmitDeclMetadata) 134 EmitDeclMetadata(); 135 136 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 137 EmitCoverageFile(); 138 } 139 140 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 141 // Make sure that this type is translated. 142 Types.UpdateCompletedType(TD); 143 if (DebugInfo) 144 DebugInfo->UpdateCompletedType(TD); 145 } 146 147 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 148 if (!TBAA) 149 return 0; 150 return TBAA->getTBAAInfo(QTy); 151 } 152 153 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 154 llvm::MDNode *TBAAInfo) { 155 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 156 } 157 158 bool CodeGenModule::isTargetDarwin() const { 159 return getContext().Target.getTriple().isOSDarwin(); 160 } 161 162 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) { 163 unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error); 164 getDiags().Report(Context.getFullLoc(loc), diagID); 165 } 166 167 /// ErrorUnsupported - Print out an error that codegen doesn't support the 168 /// specified stmt yet. 169 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 170 bool OmitOnError) { 171 if (OmitOnError && getDiags().hasErrorOccurred()) 172 return; 173 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 174 "cannot compile this %0 yet"); 175 std::string Msg = Type; 176 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 177 << Msg << S->getSourceRange(); 178 } 179 180 /// ErrorUnsupported - Print out an error that codegen doesn't support the 181 /// specified decl yet. 182 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 183 bool OmitOnError) { 184 if (OmitOnError && getDiags().hasErrorOccurred()) 185 return; 186 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 187 "cannot compile this %0 yet"); 188 std::string Msg = Type; 189 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 190 } 191 192 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 193 const NamedDecl *D) const { 194 // Internal definitions always have default visibility. 195 if (GV->hasLocalLinkage()) { 196 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 197 return; 198 } 199 200 // Set visibility for definitions. 201 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 202 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 203 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 204 } 205 206 /// Set the symbol visibility of type information (vtable and RTTI) 207 /// associated with the given type. 208 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 209 const CXXRecordDecl *RD, 210 TypeVisibilityKind TVK) const { 211 setGlobalVisibility(GV, RD); 212 213 if (!CodeGenOpts.HiddenWeakVTables) 214 return; 215 216 // We never want to drop the visibility for RTTI names. 217 if (TVK == TVK_ForRTTIName) 218 return; 219 220 // We want to drop the visibility to hidden for weak type symbols. 221 // This isn't possible if there might be unresolved references 222 // elsewhere that rely on this symbol being visible. 223 224 // This should be kept roughly in sync with setThunkVisibility 225 // in CGVTables.cpp. 226 227 // Preconditions. 228 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 229 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 230 return; 231 232 // Don't override an explicit visibility attribute. 233 if (RD->getExplicitVisibility()) 234 return; 235 236 switch (RD->getTemplateSpecializationKind()) { 237 // We have to disable the optimization if this is an EI definition 238 // because there might be EI declarations in other shared objects. 239 case TSK_ExplicitInstantiationDefinition: 240 case TSK_ExplicitInstantiationDeclaration: 241 return; 242 243 // Every use of a non-template class's type information has to emit it. 244 case TSK_Undeclared: 245 break; 246 247 // In theory, implicit instantiations can ignore the possibility of 248 // an explicit instantiation declaration because there necessarily 249 // must be an EI definition somewhere with default visibility. In 250 // practice, it's possible to have an explicit instantiation for 251 // an arbitrary template class, and linkers aren't necessarily able 252 // to deal with mixed-visibility symbols. 253 case TSK_ExplicitSpecialization: 254 case TSK_ImplicitInstantiation: 255 if (!CodeGenOpts.HiddenWeakTemplateVTables) 256 return; 257 break; 258 } 259 260 // If there's a key function, there may be translation units 261 // that don't have the key function's definition. But ignore 262 // this if we're emitting RTTI under -fno-rtti. 263 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 264 if (Context.getKeyFunction(RD)) 265 return; 266 } 267 268 // Otherwise, drop the visibility to hidden. 269 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 270 GV->setUnnamedAddr(true); 271 } 272 273 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 274 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 275 276 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 277 if (!Str.empty()) 278 return Str; 279 280 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 281 IdentifierInfo *II = ND->getIdentifier(); 282 assert(II && "Attempt to mangle unnamed decl."); 283 284 Str = II->getName(); 285 return Str; 286 } 287 288 llvm::SmallString<256> Buffer; 289 llvm::raw_svector_ostream Out(Buffer); 290 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 291 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 292 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 293 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 294 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 295 getCXXABI().getMangleContext().mangleBlock(BD, Out); 296 else 297 getCXXABI().getMangleContext().mangleName(ND, Out); 298 299 // Allocate space for the mangled name. 300 Out.flush(); 301 size_t Length = Buffer.size(); 302 char *Name = MangledNamesAllocator.Allocate<char>(Length); 303 std::copy(Buffer.begin(), Buffer.end(), Name); 304 305 Str = llvm::StringRef(Name, Length); 306 307 return Str; 308 } 309 310 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 311 const BlockDecl *BD) { 312 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 313 const Decl *D = GD.getDecl(); 314 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 315 if (D == 0) 316 MangleCtx.mangleGlobalBlock(BD, Out); 317 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 318 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 319 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 320 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 321 else 322 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 323 } 324 325 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 326 return getModule().getNamedValue(Name); 327 } 328 329 /// AddGlobalCtor - Add a function to the list that will be called before 330 /// main() runs. 331 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 332 // FIXME: Type coercion of void()* types. 333 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 334 } 335 336 /// AddGlobalDtor - Add a function to the list that will be called 337 /// when the module is unloaded. 338 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 339 // FIXME: Type coercion of void()* types. 340 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 341 } 342 343 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 344 // Ctor function type is void()*. 345 llvm::FunctionType* CtorFTy = 346 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 347 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 348 349 // Get the type of a ctor entry, { i32, void ()* }. 350 llvm::StructType* CtorStructTy = 351 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 352 llvm::PointerType::getUnqual(CtorFTy), NULL); 353 354 // Construct the constructor and destructor arrays. 355 std::vector<llvm::Constant*> Ctors; 356 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 357 std::vector<llvm::Constant*> S; 358 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 359 I->second, false)); 360 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 361 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 362 } 363 364 if (!Ctors.empty()) { 365 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 366 new llvm::GlobalVariable(TheModule, AT, false, 367 llvm::GlobalValue::AppendingLinkage, 368 llvm::ConstantArray::get(AT, Ctors), 369 GlobalName); 370 } 371 } 372 373 void CodeGenModule::EmitAnnotations() { 374 if (Annotations.empty()) 375 return; 376 377 // Create a new global variable for the ConstantStruct in the Module. 378 llvm::Constant *Array = 379 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 380 Annotations.size()), 381 Annotations); 382 llvm::GlobalValue *gv = 383 new llvm::GlobalVariable(TheModule, Array->getType(), false, 384 llvm::GlobalValue::AppendingLinkage, Array, 385 "llvm.global.annotations"); 386 gv->setSection("llvm.metadata"); 387 } 388 389 llvm::GlobalValue::LinkageTypes 390 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 391 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 392 393 if (Linkage == GVA_Internal) 394 return llvm::Function::InternalLinkage; 395 396 if (D->hasAttr<DLLExportAttr>()) 397 return llvm::Function::DLLExportLinkage; 398 399 if (D->hasAttr<WeakAttr>()) 400 return llvm::Function::WeakAnyLinkage; 401 402 // In C99 mode, 'inline' functions are guaranteed to have a strong 403 // definition somewhere else, so we can use available_externally linkage. 404 if (Linkage == GVA_C99Inline) 405 return llvm::Function::AvailableExternallyLinkage; 406 407 // In C++, the compiler has to emit a definition in every translation unit 408 // that references the function. We should use linkonce_odr because 409 // a) if all references in this translation unit are optimized away, we 410 // don't need to codegen it. b) if the function persists, it needs to be 411 // merged with other definitions. c) C++ has the ODR, so we know the 412 // definition is dependable. 413 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 414 return !Context.getLangOptions().AppleKext 415 ? llvm::Function::LinkOnceODRLinkage 416 : llvm::Function::InternalLinkage; 417 418 // An explicit instantiation of a template has weak linkage, since 419 // explicit instantiations can occur in multiple translation units 420 // and must all be equivalent. However, we are not allowed to 421 // throw away these explicit instantiations. 422 if (Linkage == GVA_ExplicitTemplateInstantiation) 423 return !Context.getLangOptions().AppleKext 424 ? llvm::Function::WeakODRLinkage 425 : llvm::Function::InternalLinkage; 426 427 // Otherwise, we have strong external linkage. 428 assert(Linkage == GVA_StrongExternal); 429 return llvm::Function::ExternalLinkage; 430 } 431 432 433 /// SetFunctionDefinitionAttributes - Set attributes for a global. 434 /// 435 /// FIXME: This is currently only done for aliases and functions, but not for 436 /// variables (these details are set in EmitGlobalVarDefinition for variables). 437 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 438 llvm::GlobalValue *GV) { 439 SetCommonAttributes(D, GV); 440 } 441 442 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 443 const CGFunctionInfo &Info, 444 llvm::Function *F) { 445 unsigned CallingConv; 446 AttributeListType AttributeList; 447 ConstructAttributeList(Info, D, AttributeList, CallingConv); 448 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 449 AttributeList.size())); 450 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 451 } 452 453 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 454 llvm::Function *F) { 455 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 456 F->addFnAttr(llvm::Attribute::NoUnwind); 457 458 if (D->hasAttr<AlwaysInlineAttr>()) 459 F->addFnAttr(llvm::Attribute::AlwaysInline); 460 461 if (D->hasAttr<NakedAttr>()) 462 F->addFnAttr(llvm::Attribute::Naked); 463 464 if (D->hasAttr<NoInlineAttr>()) 465 F->addFnAttr(llvm::Attribute::NoInline); 466 467 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 468 F->setUnnamedAddr(true); 469 470 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 471 F->addFnAttr(llvm::Attribute::StackProtect); 472 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 473 F->addFnAttr(llvm::Attribute::StackProtectReq); 474 475 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 476 if (alignment) 477 F->setAlignment(alignment); 478 479 // C++ ABI requires 2-byte alignment for member functions. 480 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 481 F->setAlignment(2); 482 } 483 484 void CodeGenModule::SetCommonAttributes(const Decl *D, 485 llvm::GlobalValue *GV) { 486 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 487 setGlobalVisibility(GV, ND); 488 else 489 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 490 491 if (D->hasAttr<UsedAttr>()) 492 AddUsedGlobal(GV); 493 494 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 495 GV->setSection(SA->getName()); 496 497 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 498 } 499 500 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 501 llvm::Function *F, 502 const CGFunctionInfo &FI) { 503 SetLLVMFunctionAttributes(D, FI, F); 504 SetLLVMFunctionAttributesForDefinition(D, F); 505 506 F->setLinkage(llvm::Function::InternalLinkage); 507 508 SetCommonAttributes(D, F); 509 } 510 511 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 512 llvm::Function *F, 513 bool IsIncompleteFunction) { 514 if (unsigned IID = F->getIntrinsicID()) { 515 // If this is an intrinsic function, set the function's attributes 516 // to the intrinsic's attributes. 517 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 518 return; 519 } 520 521 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 522 523 if (!IsIncompleteFunction) 524 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 525 526 // Only a few attributes are set on declarations; these may later be 527 // overridden by a definition. 528 529 if (FD->hasAttr<DLLImportAttr>()) { 530 F->setLinkage(llvm::Function::DLLImportLinkage); 531 } else if (FD->hasAttr<WeakAttr>() || 532 FD->isWeakImported()) { 533 // "extern_weak" is overloaded in LLVM; we probably should have 534 // separate linkage types for this. 535 F->setLinkage(llvm::Function::ExternalWeakLinkage); 536 } else { 537 F->setLinkage(llvm::Function::ExternalLinkage); 538 539 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 540 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 541 F->setVisibility(GetLLVMVisibility(LV.visibility())); 542 } 543 } 544 545 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 546 F->setSection(SA->getName()); 547 } 548 549 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 550 assert(!GV->isDeclaration() && 551 "Only globals with definition can force usage."); 552 LLVMUsed.push_back(GV); 553 } 554 555 void CodeGenModule::EmitLLVMUsed() { 556 // Don't create llvm.used if there is no need. 557 if (LLVMUsed.empty()) 558 return; 559 560 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 561 562 // Convert LLVMUsed to what ConstantArray needs. 563 std::vector<llvm::Constant*> UsedArray; 564 UsedArray.resize(LLVMUsed.size()); 565 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 566 UsedArray[i] = 567 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 568 i8PTy); 569 } 570 571 if (UsedArray.empty()) 572 return; 573 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 574 575 llvm::GlobalVariable *GV = 576 new llvm::GlobalVariable(getModule(), ATy, false, 577 llvm::GlobalValue::AppendingLinkage, 578 llvm::ConstantArray::get(ATy, UsedArray), 579 "llvm.used"); 580 581 GV->setSection("llvm.metadata"); 582 } 583 584 void CodeGenModule::EmitDeferred() { 585 // Emit code for any potentially referenced deferred decls. Since a 586 // previously unused static decl may become used during the generation of code 587 // for a static function, iterate until no changes are made. 588 589 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 590 if (!DeferredVTables.empty()) { 591 const CXXRecordDecl *RD = DeferredVTables.back(); 592 DeferredVTables.pop_back(); 593 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 594 continue; 595 } 596 597 GlobalDecl D = DeferredDeclsToEmit.back(); 598 DeferredDeclsToEmit.pop_back(); 599 600 // Check to see if we've already emitted this. This is necessary 601 // for a couple of reasons: first, decls can end up in the 602 // deferred-decls queue multiple times, and second, decls can end 603 // up with definitions in unusual ways (e.g. by an extern inline 604 // function acquiring a strong function redefinition). Just 605 // ignore these cases. 606 // 607 // TODO: That said, looking this up multiple times is very wasteful. 608 llvm::StringRef Name = getMangledName(D); 609 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 610 assert(CGRef && "Deferred decl wasn't referenced?"); 611 612 if (!CGRef->isDeclaration()) 613 continue; 614 615 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 616 // purposes an alias counts as a definition. 617 if (isa<llvm::GlobalAlias>(CGRef)) 618 continue; 619 620 // Otherwise, emit the definition and move on to the next one. 621 EmitGlobalDefinition(D); 622 } 623 } 624 625 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 626 /// annotation information for a given GlobalValue. The annotation struct is 627 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 628 /// GlobalValue being annotated. The second field is the constant string 629 /// created from the AnnotateAttr's annotation. The third field is a constant 630 /// string containing the name of the translation unit. The fourth field is 631 /// the line number in the file of the annotated value declaration. 632 /// 633 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 634 /// appears to. 635 /// 636 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 637 const AnnotateAttr *AA, 638 unsigned LineNo) { 639 llvm::Module *M = &getModule(); 640 641 // get [N x i8] constants for the annotation string, and the filename string 642 // which are the 2nd and 3rd elements of the global annotation structure. 643 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 644 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 645 AA->getAnnotation(), true); 646 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 647 M->getModuleIdentifier(), 648 true); 649 650 // Get the two global values corresponding to the ConstantArrays we just 651 // created to hold the bytes of the strings. 652 llvm::GlobalValue *annoGV = 653 new llvm::GlobalVariable(*M, anno->getType(), false, 654 llvm::GlobalValue::PrivateLinkage, anno, 655 GV->getName()); 656 // translation unit name string, emitted into the llvm.metadata section. 657 llvm::GlobalValue *unitGV = 658 new llvm::GlobalVariable(*M, unit->getType(), false, 659 llvm::GlobalValue::PrivateLinkage, unit, 660 ".str"); 661 unitGV->setUnnamedAddr(true); 662 663 // Create the ConstantStruct for the global annotation. 664 llvm::Constant *Fields[4] = { 665 llvm::ConstantExpr::getBitCast(GV, SBP), 666 llvm::ConstantExpr::getBitCast(annoGV, SBP), 667 llvm::ConstantExpr::getBitCast(unitGV, SBP), 668 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 669 }; 670 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 671 } 672 673 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 674 // Never defer when EmitAllDecls is specified. 675 if (Features.EmitAllDecls) 676 return false; 677 678 return !getContext().DeclMustBeEmitted(Global); 679 } 680 681 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 682 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 683 assert(AA && "No alias?"); 684 685 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 686 687 // See if there is already something with the target's name in the module. 688 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 689 690 llvm::Constant *Aliasee; 691 if (isa<llvm::FunctionType>(DeclTy)) 692 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 693 /*ForVTable=*/false); 694 else 695 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 696 llvm::PointerType::getUnqual(DeclTy), 0); 697 if (!Entry) { 698 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 699 F->setLinkage(llvm::Function::ExternalWeakLinkage); 700 WeakRefReferences.insert(F); 701 } 702 703 return Aliasee; 704 } 705 706 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 707 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 708 709 // Weak references don't produce any output by themselves. 710 if (Global->hasAttr<WeakRefAttr>()) 711 return; 712 713 // If this is an alias definition (which otherwise looks like a declaration) 714 // emit it now. 715 if (Global->hasAttr<AliasAttr>()) 716 return EmitAliasDefinition(GD); 717 718 // Ignore declarations, they will be emitted on their first use. 719 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 720 if (FD->getIdentifier()) { 721 llvm::StringRef Name = FD->getName(); 722 if (Name == "_Block_object_assign") { 723 BlockObjectAssignDecl = FD; 724 } else if (Name == "_Block_object_dispose") { 725 BlockObjectDisposeDecl = FD; 726 } 727 } 728 729 // Forward declarations are emitted lazily on first use. 730 if (!FD->doesThisDeclarationHaveABody()) 731 return; 732 } else { 733 const VarDecl *VD = cast<VarDecl>(Global); 734 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 735 736 if (VD->getIdentifier()) { 737 llvm::StringRef Name = VD->getName(); 738 if (Name == "_NSConcreteGlobalBlock") { 739 NSConcreteGlobalBlockDecl = VD; 740 } else if (Name == "_NSConcreteStackBlock") { 741 NSConcreteStackBlockDecl = VD; 742 } 743 } 744 745 746 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 747 return; 748 } 749 750 // Defer code generation when possible if this is a static definition, inline 751 // function etc. These we only want to emit if they are used. 752 if (!MayDeferGeneration(Global)) { 753 // Emit the definition if it can't be deferred. 754 EmitGlobalDefinition(GD); 755 return; 756 } 757 758 // If we're deferring emission of a C++ variable with an 759 // initializer, remember the order in which it appeared in the file. 760 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 761 cast<VarDecl>(Global)->hasInit()) { 762 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 763 CXXGlobalInits.push_back(0); 764 } 765 766 // If the value has already been used, add it directly to the 767 // DeferredDeclsToEmit list. 768 llvm::StringRef MangledName = getMangledName(GD); 769 if (GetGlobalValue(MangledName)) 770 DeferredDeclsToEmit.push_back(GD); 771 else { 772 // Otherwise, remember that we saw a deferred decl with this name. The 773 // first use of the mangled name will cause it to move into 774 // DeferredDeclsToEmit. 775 DeferredDecls[MangledName] = GD; 776 } 777 } 778 779 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 780 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 781 782 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 783 Context.getSourceManager(), 784 "Generating code for declaration"); 785 786 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 787 // At -O0, don't generate IR for functions with available_externally 788 // linkage. 789 if (CodeGenOpts.OptimizationLevel == 0 && 790 !Function->hasAttr<AlwaysInlineAttr>() && 791 getFunctionLinkage(Function) 792 == llvm::Function::AvailableExternallyLinkage) 793 return; 794 795 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 796 // Make sure to emit the definition(s) before we emit the thunks. 797 // This is necessary for the generation of certain thunks. 798 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 799 EmitCXXConstructor(CD, GD.getCtorType()); 800 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 801 EmitCXXDestructor(DD, GD.getDtorType()); 802 else 803 EmitGlobalFunctionDefinition(GD); 804 805 if (Method->isVirtual()) 806 getVTables().EmitThunks(GD); 807 808 return; 809 } 810 811 return EmitGlobalFunctionDefinition(GD); 812 } 813 814 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 815 return EmitGlobalVarDefinition(VD); 816 817 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 818 } 819 820 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 821 /// module, create and return an llvm Function with the specified type. If there 822 /// is something in the module with the specified name, return it potentially 823 /// bitcasted to the right type. 824 /// 825 /// If D is non-null, it specifies a decl that correspond to this. This is used 826 /// to set the attributes on the function when it is first created. 827 llvm::Constant * 828 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 829 const llvm::Type *Ty, 830 GlobalDecl D, bool ForVTable) { 831 // Lookup the entry, lazily creating it if necessary. 832 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 833 if (Entry) { 834 if (WeakRefReferences.count(Entry)) { 835 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 836 if (FD && !FD->hasAttr<WeakAttr>()) 837 Entry->setLinkage(llvm::Function::ExternalLinkage); 838 839 WeakRefReferences.erase(Entry); 840 } 841 842 if (Entry->getType()->getElementType() == Ty) 843 return Entry; 844 845 // Make sure the result is of the correct type. 846 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 847 return llvm::ConstantExpr::getBitCast(Entry, PTy); 848 } 849 850 // This function doesn't have a complete type (for example, the return 851 // type is an incomplete struct). Use a fake type instead, and make 852 // sure not to try to set attributes. 853 bool IsIncompleteFunction = false; 854 855 const llvm::FunctionType *FTy; 856 if (isa<llvm::FunctionType>(Ty)) { 857 FTy = cast<llvm::FunctionType>(Ty); 858 } else { 859 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false); 860 IsIncompleteFunction = true; 861 } 862 863 llvm::Function *F = llvm::Function::Create(FTy, 864 llvm::Function::ExternalLinkage, 865 MangledName, &getModule()); 866 assert(F->getName() == MangledName && "name was uniqued!"); 867 if (D.getDecl()) 868 SetFunctionAttributes(D, F, IsIncompleteFunction); 869 870 // This is the first use or definition of a mangled name. If there is a 871 // deferred decl with this name, remember that we need to emit it at the end 872 // of the file. 873 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 874 if (DDI != DeferredDecls.end()) { 875 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 876 // list, and remove it from DeferredDecls (since we don't need it anymore). 877 DeferredDeclsToEmit.push_back(DDI->second); 878 DeferredDecls.erase(DDI); 879 880 // Otherwise, there are cases we have to worry about where we're 881 // using a declaration for which we must emit a definition but where 882 // we might not find a top-level definition: 883 // - member functions defined inline in their classes 884 // - friend functions defined inline in some class 885 // - special member functions with implicit definitions 886 // If we ever change our AST traversal to walk into class methods, 887 // this will be unnecessary. 888 // 889 // We also don't emit a definition for a function if it's going to be an entry 890 // in a vtable, unless it's already marked as used. 891 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 892 // Look for a declaration that's lexically in a record. 893 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 894 do { 895 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 896 if (FD->isImplicit() && !ForVTable) { 897 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 898 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 899 break; 900 } else if (FD->doesThisDeclarationHaveABody()) { 901 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 902 break; 903 } 904 } 905 FD = FD->getPreviousDeclaration(); 906 } while (FD); 907 } 908 909 // Make sure the result is of the requested type. 910 if (!IsIncompleteFunction) { 911 assert(F->getType()->getElementType() == Ty); 912 return F; 913 } 914 915 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 916 return llvm::ConstantExpr::getBitCast(F, PTy); 917 } 918 919 /// GetAddrOfFunction - Return the address of the given function. If Ty is 920 /// non-null, then this function will use the specified type if it has to 921 /// create it (this occurs when we see a definition of the function). 922 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 923 const llvm::Type *Ty, 924 bool ForVTable) { 925 // If there was no specific requested type, just convert it now. 926 if (!Ty) 927 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 928 929 llvm::StringRef MangledName = getMangledName(GD); 930 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 931 } 932 933 /// CreateRuntimeFunction - Create a new runtime function with the specified 934 /// type and name. 935 llvm::Constant * 936 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 937 llvm::StringRef Name) { 938 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false); 939 } 940 941 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 942 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 943 return false; 944 if (Context.getLangOptions().CPlusPlus && 945 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 946 // FIXME: We should do something fancier here! 947 return false; 948 } 949 return true; 950 } 951 952 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 953 /// create and return an llvm GlobalVariable with the specified type. If there 954 /// is something in the module with the specified name, return it potentially 955 /// bitcasted to the right type. 956 /// 957 /// If D is non-null, it specifies a decl that correspond to this. This is used 958 /// to set the attributes on the global when it is first created. 959 llvm::Constant * 960 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 961 const llvm::PointerType *Ty, 962 const VarDecl *D, 963 bool UnnamedAddr) { 964 // Lookup the entry, lazily creating it if necessary. 965 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 966 if (Entry) { 967 if (WeakRefReferences.count(Entry)) { 968 if (D && !D->hasAttr<WeakAttr>()) 969 Entry->setLinkage(llvm::Function::ExternalLinkage); 970 971 WeakRefReferences.erase(Entry); 972 } 973 974 if (UnnamedAddr) 975 Entry->setUnnamedAddr(true); 976 977 if (Entry->getType() == Ty) 978 return Entry; 979 980 // Make sure the result is of the correct type. 981 return llvm::ConstantExpr::getBitCast(Entry, Ty); 982 } 983 984 // This is the first use or definition of a mangled name. If there is a 985 // deferred decl with this name, remember that we need to emit it at the end 986 // of the file. 987 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 988 if (DDI != DeferredDecls.end()) { 989 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 990 // list, and remove it from DeferredDecls (since we don't need it anymore). 991 DeferredDeclsToEmit.push_back(DDI->second); 992 DeferredDecls.erase(DDI); 993 } 994 995 llvm::GlobalVariable *GV = 996 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 997 llvm::GlobalValue::ExternalLinkage, 998 0, MangledName, 0, 999 false, Ty->getAddressSpace()); 1000 1001 // Handle things which are present even on external declarations. 1002 if (D) { 1003 // FIXME: This code is overly simple and should be merged with other global 1004 // handling. 1005 GV->setConstant(DeclIsConstantGlobal(Context, D)); 1006 1007 // Set linkage and visibility in case we never see a definition. 1008 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1009 if (LV.linkage() != ExternalLinkage) { 1010 // Don't set internal linkage on declarations. 1011 } else { 1012 if (D->hasAttr<DLLImportAttr>()) 1013 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1014 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1015 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1016 1017 // Set visibility on a declaration only if it's explicit. 1018 if (LV.visibilityExplicit()) 1019 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1020 } 1021 1022 GV->setThreadLocal(D->isThreadSpecified()); 1023 } 1024 1025 return GV; 1026 } 1027 1028 1029 llvm::GlobalVariable * 1030 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name, 1031 const llvm::Type *Ty, 1032 llvm::GlobalValue::LinkageTypes Linkage) { 1033 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1034 llvm::GlobalVariable *OldGV = 0; 1035 1036 1037 if (GV) { 1038 // Check if the variable has the right type. 1039 if (GV->getType()->getElementType() == Ty) 1040 return GV; 1041 1042 // Because C++ name mangling, the only way we can end up with an already 1043 // existing global with the same name is if it has been declared extern "C". 1044 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1045 OldGV = GV; 1046 } 1047 1048 // Create a new variable. 1049 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1050 Linkage, 0, Name); 1051 1052 if (OldGV) { 1053 // Replace occurrences of the old variable if needed. 1054 GV->takeName(OldGV); 1055 1056 if (!OldGV->use_empty()) { 1057 llvm::Constant *NewPtrForOldDecl = 1058 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1059 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1060 } 1061 1062 OldGV->eraseFromParent(); 1063 } 1064 1065 return GV; 1066 } 1067 1068 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1069 /// given global variable. If Ty is non-null and if the global doesn't exist, 1070 /// then it will be greated with the specified type instead of whatever the 1071 /// normal requested type would be. 1072 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1073 const llvm::Type *Ty) { 1074 assert(D->hasGlobalStorage() && "Not a global variable"); 1075 QualType ASTTy = D->getType(); 1076 if (Ty == 0) 1077 Ty = getTypes().ConvertTypeForMem(ASTTy); 1078 1079 const llvm::PointerType *PTy = 1080 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1081 1082 llvm::StringRef MangledName = getMangledName(D); 1083 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1084 } 1085 1086 /// CreateRuntimeVariable - Create a new runtime global variable with the 1087 /// specified type and name. 1088 llvm::Constant * 1089 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1090 llvm::StringRef Name) { 1091 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1092 true); 1093 } 1094 1095 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1096 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1097 1098 if (MayDeferGeneration(D)) { 1099 // If we have not seen a reference to this variable yet, place it 1100 // into the deferred declarations table to be emitted if needed 1101 // later. 1102 llvm::StringRef MangledName = getMangledName(D); 1103 if (!GetGlobalValue(MangledName)) { 1104 DeferredDecls[MangledName] = D; 1105 return; 1106 } 1107 } 1108 1109 // The tentative definition is the only definition. 1110 EmitGlobalVarDefinition(D); 1111 } 1112 1113 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1114 if (DefinitionRequired) 1115 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1116 } 1117 1118 llvm::GlobalVariable::LinkageTypes 1119 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1120 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1121 return llvm::GlobalVariable::InternalLinkage; 1122 1123 if (const CXXMethodDecl *KeyFunction 1124 = RD->getASTContext().getKeyFunction(RD)) { 1125 // If this class has a key function, use that to determine the linkage of 1126 // the vtable. 1127 const FunctionDecl *Def = 0; 1128 if (KeyFunction->hasBody(Def)) 1129 KeyFunction = cast<CXXMethodDecl>(Def); 1130 1131 switch (KeyFunction->getTemplateSpecializationKind()) { 1132 case TSK_Undeclared: 1133 case TSK_ExplicitSpecialization: 1134 // When compiling with optimizations turned on, we emit all vtables, 1135 // even if the key function is not defined in the current translation 1136 // unit. If this is the case, use available_externally linkage. 1137 if (!Def && CodeGenOpts.OptimizationLevel) 1138 return llvm::GlobalVariable::AvailableExternallyLinkage; 1139 1140 if (KeyFunction->isInlined()) 1141 return !Context.getLangOptions().AppleKext ? 1142 llvm::GlobalVariable::LinkOnceODRLinkage : 1143 llvm::Function::InternalLinkage; 1144 1145 return llvm::GlobalVariable::ExternalLinkage; 1146 1147 case TSK_ImplicitInstantiation: 1148 return !Context.getLangOptions().AppleKext ? 1149 llvm::GlobalVariable::LinkOnceODRLinkage : 1150 llvm::Function::InternalLinkage; 1151 1152 case TSK_ExplicitInstantiationDefinition: 1153 return !Context.getLangOptions().AppleKext ? 1154 llvm::GlobalVariable::WeakODRLinkage : 1155 llvm::Function::InternalLinkage; 1156 1157 case TSK_ExplicitInstantiationDeclaration: 1158 // FIXME: Use available_externally linkage. However, this currently 1159 // breaks LLVM's build due to undefined symbols. 1160 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1161 return !Context.getLangOptions().AppleKext ? 1162 llvm::GlobalVariable::LinkOnceODRLinkage : 1163 llvm::Function::InternalLinkage; 1164 } 1165 } 1166 1167 if (Context.getLangOptions().AppleKext) 1168 return llvm::Function::InternalLinkage; 1169 1170 switch (RD->getTemplateSpecializationKind()) { 1171 case TSK_Undeclared: 1172 case TSK_ExplicitSpecialization: 1173 case TSK_ImplicitInstantiation: 1174 // FIXME: Use available_externally linkage. However, this currently 1175 // breaks LLVM's build due to undefined symbols. 1176 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1177 case TSK_ExplicitInstantiationDeclaration: 1178 return llvm::GlobalVariable::LinkOnceODRLinkage; 1179 1180 case TSK_ExplicitInstantiationDefinition: 1181 return llvm::GlobalVariable::WeakODRLinkage; 1182 } 1183 1184 // Silence GCC warning. 1185 return llvm::GlobalVariable::LinkOnceODRLinkage; 1186 } 1187 1188 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1189 return Context.toCharUnitsFromBits( 1190 TheTargetData.getTypeStoreSizeInBits(Ty)); 1191 } 1192 1193 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1194 llvm::Constant *Init = 0; 1195 QualType ASTTy = D->getType(); 1196 bool NonConstInit = false; 1197 1198 const Expr *InitExpr = D->getAnyInitializer(); 1199 1200 if (!InitExpr) { 1201 // This is a tentative definition; tentative definitions are 1202 // implicitly initialized with { 0 }. 1203 // 1204 // Note that tentative definitions are only emitted at the end of 1205 // a translation unit, so they should never have incomplete 1206 // type. In addition, EmitTentativeDefinition makes sure that we 1207 // never attempt to emit a tentative definition if a real one 1208 // exists. A use may still exists, however, so we still may need 1209 // to do a RAUW. 1210 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1211 Init = EmitNullConstant(D->getType()); 1212 } else { 1213 Init = EmitConstantExpr(InitExpr, D->getType()); 1214 if (!Init) { 1215 QualType T = InitExpr->getType(); 1216 if (D->getType()->isReferenceType()) 1217 T = D->getType(); 1218 1219 if (getLangOptions().CPlusPlus) { 1220 Init = EmitNullConstant(T); 1221 NonConstInit = true; 1222 } else { 1223 ErrorUnsupported(D, "static initializer"); 1224 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1225 } 1226 } else { 1227 // We don't need an initializer, so remove the entry for the delayed 1228 // initializer position (just in case this entry was delayed). 1229 if (getLangOptions().CPlusPlus) 1230 DelayedCXXInitPosition.erase(D); 1231 } 1232 } 1233 1234 const llvm::Type* InitType = Init->getType(); 1235 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1236 1237 // Strip off a bitcast if we got one back. 1238 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1239 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1240 // all zero index gep. 1241 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1242 Entry = CE->getOperand(0); 1243 } 1244 1245 // Entry is now either a Function or GlobalVariable. 1246 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1247 1248 // We have a definition after a declaration with the wrong type. 1249 // We must make a new GlobalVariable* and update everything that used OldGV 1250 // (a declaration or tentative definition) with the new GlobalVariable* 1251 // (which will be a definition). 1252 // 1253 // This happens if there is a prototype for a global (e.g. 1254 // "extern int x[];") and then a definition of a different type (e.g. 1255 // "int x[10];"). This also happens when an initializer has a different type 1256 // from the type of the global (this happens with unions). 1257 if (GV == 0 || 1258 GV->getType()->getElementType() != InitType || 1259 GV->getType()->getAddressSpace() != 1260 getContext().getTargetAddressSpace(ASTTy)) { 1261 1262 // Move the old entry aside so that we'll create a new one. 1263 Entry->setName(llvm::StringRef()); 1264 1265 // Make a new global with the correct type, this is now guaranteed to work. 1266 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1267 1268 // Replace all uses of the old global with the new global 1269 llvm::Constant *NewPtrForOldDecl = 1270 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1271 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1272 1273 // Erase the old global, since it is no longer used. 1274 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1275 } 1276 1277 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1278 SourceManager &SM = Context.getSourceManager(); 1279 AddAnnotation(EmitAnnotateAttr(GV, AA, 1280 SM.getInstantiationLineNumber(D->getLocation()))); 1281 } 1282 1283 GV->setInitializer(Init); 1284 1285 // If it is safe to mark the global 'constant', do so now. 1286 GV->setConstant(false); 1287 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1288 GV->setConstant(true); 1289 1290 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1291 1292 // Set the llvm linkage type as appropriate. 1293 llvm::GlobalValue::LinkageTypes Linkage = 1294 GetLLVMLinkageVarDefinition(D, GV); 1295 GV->setLinkage(Linkage); 1296 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1297 // common vars aren't constant even if declared const. 1298 GV->setConstant(false); 1299 1300 SetCommonAttributes(D, GV); 1301 1302 // Emit the initializer function if necessary. 1303 if (NonConstInit) 1304 EmitCXXGlobalVarDeclInitFunc(D, GV); 1305 1306 // Emit global variable debug information. 1307 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1308 DI->setLocation(D->getLocation()); 1309 DI->EmitGlobalVariable(GV, D); 1310 } 1311 } 1312 1313 llvm::GlobalValue::LinkageTypes 1314 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1315 llvm::GlobalVariable *GV) { 1316 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1317 if (Linkage == GVA_Internal) 1318 return llvm::Function::InternalLinkage; 1319 else if (D->hasAttr<DLLImportAttr>()) 1320 return llvm::Function::DLLImportLinkage; 1321 else if (D->hasAttr<DLLExportAttr>()) 1322 return llvm::Function::DLLExportLinkage; 1323 else if (D->hasAttr<WeakAttr>()) { 1324 if (GV->isConstant()) 1325 return llvm::GlobalVariable::WeakODRLinkage; 1326 else 1327 return llvm::GlobalVariable::WeakAnyLinkage; 1328 } else if (Linkage == GVA_TemplateInstantiation || 1329 Linkage == GVA_ExplicitTemplateInstantiation) 1330 return llvm::GlobalVariable::WeakODRLinkage; 1331 else if (!getLangOptions().CPlusPlus && 1332 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1333 D->getAttr<CommonAttr>()) && 1334 !D->hasExternalStorage() && !D->getInit() && 1335 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1336 // Thread local vars aren't considered common linkage. 1337 return llvm::GlobalVariable::CommonLinkage; 1338 } 1339 return llvm::GlobalVariable::ExternalLinkage; 1340 } 1341 1342 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1343 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1344 /// existing call uses of the old function in the module, this adjusts them to 1345 /// call the new function directly. 1346 /// 1347 /// This is not just a cleanup: the always_inline pass requires direct calls to 1348 /// functions to be able to inline them. If there is a bitcast in the way, it 1349 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1350 /// run at -O0. 1351 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1352 llvm::Function *NewFn) { 1353 // If we're redefining a global as a function, don't transform it. 1354 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1355 if (OldFn == 0) return; 1356 1357 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1358 llvm::SmallVector<llvm::Value*, 4> ArgList; 1359 1360 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1361 UI != E; ) { 1362 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1363 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1364 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1365 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1366 llvm::CallSite CS(CI); 1367 if (!CI || !CS.isCallee(I)) continue; 1368 1369 // If the return types don't match exactly, and if the call isn't dead, then 1370 // we can't transform this call. 1371 if (CI->getType() != NewRetTy && !CI->use_empty()) 1372 continue; 1373 1374 // If the function was passed too few arguments, don't transform. If extra 1375 // arguments were passed, we silently drop them. If any of the types 1376 // mismatch, we don't transform. 1377 unsigned ArgNo = 0; 1378 bool DontTransform = false; 1379 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1380 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1381 if (CS.arg_size() == ArgNo || 1382 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1383 DontTransform = true; 1384 break; 1385 } 1386 } 1387 if (DontTransform) 1388 continue; 1389 1390 // Okay, we can transform this. Create the new call instruction and copy 1391 // over the required information. 1392 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1393 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1394 ArgList.end(), "", CI); 1395 ArgList.clear(); 1396 if (!NewCall->getType()->isVoidTy()) 1397 NewCall->takeName(CI); 1398 NewCall->setAttributes(CI->getAttributes()); 1399 NewCall->setCallingConv(CI->getCallingConv()); 1400 1401 // Finally, remove the old call, replacing any uses with the new one. 1402 if (!CI->use_empty()) 1403 CI->replaceAllUsesWith(NewCall); 1404 1405 // Copy debug location attached to CI. 1406 if (!CI->getDebugLoc().isUnknown()) 1407 NewCall->setDebugLoc(CI->getDebugLoc()); 1408 CI->eraseFromParent(); 1409 } 1410 } 1411 1412 1413 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1414 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1415 1416 // Compute the function info and LLVM type. 1417 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1418 bool variadic = false; 1419 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1420 variadic = fpt->isVariadic(); 1421 const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false); 1422 1423 // Get or create the prototype for the function. 1424 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1425 1426 // Strip off a bitcast if we got one back. 1427 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1428 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1429 Entry = CE->getOperand(0); 1430 } 1431 1432 1433 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1434 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1435 1436 // If the types mismatch then we have to rewrite the definition. 1437 assert(OldFn->isDeclaration() && 1438 "Shouldn't replace non-declaration"); 1439 1440 // F is the Function* for the one with the wrong type, we must make a new 1441 // Function* and update everything that used F (a declaration) with the new 1442 // Function* (which will be a definition). 1443 // 1444 // This happens if there is a prototype for a function 1445 // (e.g. "int f()") and then a definition of a different type 1446 // (e.g. "int f(int x)"). Move the old function aside so that it 1447 // doesn't interfere with GetAddrOfFunction. 1448 OldFn->setName(llvm::StringRef()); 1449 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1450 1451 // If this is an implementation of a function without a prototype, try to 1452 // replace any existing uses of the function (which may be calls) with uses 1453 // of the new function 1454 if (D->getType()->isFunctionNoProtoType()) { 1455 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1456 OldFn->removeDeadConstantUsers(); 1457 } 1458 1459 // Replace uses of F with the Function we will endow with a body. 1460 if (!Entry->use_empty()) { 1461 llvm::Constant *NewPtrForOldDecl = 1462 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1463 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1464 } 1465 1466 // Ok, delete the old function now, which is dead. 1467 OldFn->eraseFromParent(); 1468 1469 Entry = NewFn; 1470 } 1471 1472 // We need to set linkage and visibility on the function before 1473 // generating code for it because various parts of IR generation 1474 // want to propagate this information down (e.g. to local static 1475 // declarations). 1476 llvm::Function *Fn = cast<llvm::Function>(Entry); 1477 setFunctionLinkage(D, Fn); 1478 1479 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1480 setGlobalVisibility(Fn, D); 1481 1482 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1483 1484 SetFunctionDefinitionAttributes(D, Fn); 1485 SetLLVMFunctionAttributesForDefinition(D, Fn); 1486 1487 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1488 AddGlobalCtor(Fn, CA->getPriority()); 1489 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1490 AddGlobalDtor(Fn, DA->getPriority()); 1491 } 1492 1493 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1494 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1495 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1496 assert(AA && "Not an alias?"); 1497 1498 llvm::StringRef MangledName = getMangledName(GD); 1499 1500 // If there is a definition in the module, then it wins over the alias. 1501 // This is dubious, but allow it to be safe. Just ignore the alias. 1502 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1503 if (Entry && !Entry->isDeclaration()) 1504 return; 1505 1506 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1507 1508 // Create a reference to the named value. This ensures that it is emitted 1509 // if a deferred decl. 1510 llvm::Constant *Aliasee; 1511 if (isa<llvm::FunctionType>(DeclTy)) 1512 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1513 /*ForVTable=*/false); 1514 else 1515 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1516 llvm::PointerType::getUnqual(DeclTy), 0); 1517 1518 // Create the new alias itself, but don't set a name yet. 1519 llvm::GlobalValue *GA = 1520 new llvm::GlobalAlias(Aliasee->getType(), 1521 llvm::Function::ExternalLinkage, 1522 "", Aliasee, &getModule()); 1523 1524 if (Entry) { 1525 assert(Entry->isDeclaration()); 1526 1527 // If there is a declaration in the module, then we had an extern followed 1528 // by the alias, as in: 1529 // extern int test6(); 1530 // ... 1531 // int test6() __attribute__((alias("test7"))); 1532 // 1533 // Remove it and replace uses of it with the alias. 1534 GA->takeName(Entry); 1535 1536 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1537 Entry->getType())); 1538 Entry->eraseFromParent(); 1539 } else { 1540 GA->setName(MangledName); 1541 } 1542 1543 // Set attributes which are particular to an alias; this is a 1544 // specialization of the attributes which may be set on a global 1545 // variable/function. 1546 if (D->hasAttr<DLLExportAttr>()) { 1547 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1548 // The dllexport attribute is ignored for undefined symbols. 1549 if (FD->hasBody()) 1550 GA->setLinkage(llvm::Function::DLLExportLinkage); 1551 } else { 1552 GA->setLinkage(llvm::Function::DLLExportLinkage); 1553 } 1554 } else if (D->hasAttr<WeakAttr>() || 1555 D->hasAttr<WeakRefAttr>() || 1556 D->isWeakImported()) { 1557 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1558 } 1559 1560 SetCommonAttributes(D, GA); 1561 } 1562 1563 /// getBuiltinLibFunction - Given a builtin id for a function like 1564 /// "__builtin_fabsf", return a Function* for "fabsf". 1565 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1566 unsigned BuiltinID) { 1567 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1568 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1569 "isn't a lib fn"); 1570 1571 // Get the name, skip over the __builtin_ prefix (if necessary). 1572 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1573 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1574 Name += 10; 1575 1576 const llvm::FunctionType *Ty = 1577 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1578 1579 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false); 1580 } 1581 1582 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1583 unsigned NumTys) { 1584 return llvm::Intrinsic::getDeclaration(&getModule(), 1585 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1586 } 1587 1588 static llvm::StringMapEntry<llvm::Constant*> & 1589 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1590 const StringLiteral *Literal, 1591 bool TargetIsLSB, 1592 bool &IsUTF16, 1593 unsigned &StringLength) { 1594 llvm::StringRef String = Literal->getString(); 1595 unsigned NumBytes = String.size(); 1596 1597 // Check for simple case. 1598 if (!Literal->containsNonAsciiOrNull()) { 1599 StringLength = NumBytes; 1600 return Map.GetOrCreateValue(String); 1601 } 1602 1603 // Otherwise, convert the UTF8 literals into a byte string. 1604 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1605 const UTF8 *FromPtr = (UTF8 *)String.data(); 1606 UTF16 *ToPtr = &ToBuf[0]; 1607 1608 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1609 &ToPtr, ToPtr + NumBytes, 1610 strictConversion); 1611 1612 // ConvertUTF8toUTF16 returns the length in ToPtr. 1613 StringLength = ToPtr - &ToBuf[0]; 1614 1615 // Render the UTF-16 string into a byte array and convert to the target byte 1616 // order. 1617 // 1618 // FIXME: This isn't something we should need to do here. 1619 llvm::SmallString<128> AsBytes; 1620 AsBytes.reserve(StringLength * 2); 1621 for (unsigned i = 0; i != StringLength; ++i) { 1622 unsigned short Val = ToBuf[i]; 1623 if (TargetIsLSB) { 1624 AsBytes.push_back(Val & 0xFF); 1625 AsBytes.push_back(Val >> 8); 1626 } else { 1627 AsBytes.push_back(Val >> 8); 1628 AsBytes.push_back(Val & 0xFF); 1629 } 1630 } 1631 // Append one extra null character, the second is automatically added by our 1632 // caller. 1633 AsBytes.push_back(0); 1634 1635 IsUTF16 = true; 1636 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1637 } 1638 1639 llvm::Constant * 1640 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1641 unsigned StringLength = 0; 1642 bool isUTF16 = false; 1643 llvm::StringMapEntry<llvm::Constant*> &Entry = 1644 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1645 getTargetData().isLittleEndian(), 1646 isUTF16, StringLength); 1647 1648 if (llvm::Constant *C = Entry.getValue()) 1649 return C; 1650 1651 llvm::Constant *Zero = 1652 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1653 llvm::Constant *Zeros[] = { Zero, Zero }; 1654 1655 // If we don't already have it, get __CFConstantStringClassReference. 1656 if (!CFConstantStringClassRef) { 1657 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1658 Ty = llvm::ArrayType::get(Ty, 0); 1659 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1660 "__CFConstantStringClassReference"); 1661 // Decay array -> ptr 1662 CFConstantStringClassRef = 1663 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1664 } 1665 1666 QualType CFTy = getContext().getCFConstantStringType(); 1667 1668 const llvm::StructType *STy = 1669 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1670 1671 std::vector<llvm::Constant*> Fields(4); 1672 1673 // Class pointer. 1674 Fields[0] = CFConstantStringClassRef; 1675 1676 // Flags. 1677 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1678 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1679 llvm::ConstantInt::get(Ty, 0x07C8); 1680 1681 // String pointer. 1682 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1683 1684 llvm::GlobalValue::LinkageTypes Linkage; 1685 bool isConstant; 1686 if (isUTF16) { 1687 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1688 Linkage = llvm::GlobalValue::InternalLinkage; 1689 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1690 // does make plain ascii ones writable. 1691 isConstant = true; 1692 } else { 1693 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1694 // when using private linkage. It is not clear if this is a bug in ld 1695 // or a reasonable new restriction. 1696 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1697 isConstant = !Features.WritableStrings; 1698 } 1699 1700 llvm::GlobalVariable *GV = 1701 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1702 ".str"); 1703 GV->setUnnamedAddr(true); 1704 if (isUTF16) { 1705 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1706 GV->setAlignment(Align.getQuantity()); 1707 } else { 1708 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1709 GV->setAlignment(Align.getQuantity()); 1710 } 1711 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1712 1713 // String length. 1714 Ty = getTypes().ConvertType(getContext().LongTy); 1715 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1716 1717 // The struct. 1718 C = llvm::ConstantStruct::get(STy, Fields); 1719 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1720 llvm::GlobalVariable::PrivateLinkage, C, 1721 "_unnamed_cfstring_"); 1722 if (const char *Sect = getContext().Target.getCFStringSection()) 1723 GV->setSection(Sect); 1724 Entry.setValue(GV); 1725 1726 return GV; 1727 } 1728 1729 llvm::Constant * 1730 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1731 unsigned StringLength = 0; 1732 bool isUTF16 = false; 1733 llvm::StringMapEntry<llvm::Constant*> &Entry = 1734 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1735 getTargetData().isLittleEndian(), 1736 isUTF16, StringLength); 1737 1738 if (llvm::Constant *C = Entry.getValue()) 1739 return C; 1740 1741 llvm::Constant *Zero = 1742 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1743 llvm::Constant *Zeros[] = { Zero, Zero }; 1744 1745 // If we don't already have it, get _NSConstantStringClassReference. 1746 if (!ConstantStringClassRef) { 1747 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1748 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1749 Ty = llvm::ArrayType::get(Ty, 0); 1750 llvm::Constant *GV; 1751 if (StringClass.empty()) 1752 GV = CreateRuntimeVariable(Ty, 1753 Features.ObjCNonFragileABI ? 1754 "OBJC_CLASS_$_NSConstantString" : 1755 "_NSConstantStringClassReference"); 1756 else { 1757 std::string str; 1758 if (Features.ObjCNonFragileABI) 1759 str = "OBJC_CLASS_$_" + StringClass; 1760 else 1761 str = "_" + StringClass + "ClassReference"; 1762 GV = CreateRuntimeVariable(Ty, str); 1763 } 1764 // Decay array -> ptr 1765 ConstantStringClassRef = 1766 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1767 } 1768 1769 QualType NSTy = getContext().getNSConstantStringType(); 1770 1771 const llvm::StructType *STy = 1772 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1773 1774 std::vector<llvm::Constant*> Fields(3); 1775 1776 // Class pointer. 1777 Fields[0] = ConstantStringClassRef; 1778 1779 // String pointer. 1780 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1781 1782 llvm::GlobalValue::LinkageTypes Linkage; 1783 bool isConstant; 1784 if (isUTF16) { 1785 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1786 Linkage = llvm::GlobalValue::InternalLinkage; 1787 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1788 // does make plain ascii ones writable. 1789 isConstant = true; 1790 } else { 1791 Linkage = llvm::GlobalValue::PrivateLinkage; 1792 isConstant = !Features.WritableStrings; 1793 } 1794 1795 llvm::GlobalVariable *GV = 1796 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1797 ".str"); 1798 GV->setUnnamedAddr(true); 1799 if (isUTF16) { 1800 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1801 GV->setAlignment(Align.getQuantity()); 1802 } else { 1803 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1804 GV->setAlignment(Align.getQuantity()); 1805 } 1806 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1807 1808 // String length. 1809 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1810 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1811 1812 // The struct. 1813 C = llvm::ConstantStruct::get(STy, Fields); 1814 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1815 llvm::GlobalVariable::PrivateLinkage, C, 1816 "_unnamed_nsstring_"); 1817 // FIXME. Fix section. 1818 if (const char *Sect = 1819 Features.ObjCNonFragileABI 1820 ? getContext().Target.getNSStringNonFragileABISection() 1821 : getContext().Target.getNSStringSection()) 1822 GV->setSection(Sect); 1823 Entry.setValue(GV); 1824 1825 return GV; 1826 } 1827 1828 /// GetStringForStringLiteral - Return the appropriate bytes for a 1829 /// string literal, properly padded to match the literal type. 1830 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1831 const ASTContext &Context = getContext(); 1832 const ConstantArrayType *CAT = 1833 Context.getAsConstantArrayType(E->getType()); 1834 assert(CAT && "String isn't pointer or array!"); 1835 1836 // Resize the string to the right size. 1837 uint64_t RealLen = CAT->getSize().getZExtValue(); 1838 1839 if (E->isWide()) 1840 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1841 1842 std::string Str = E->getString().str(); 1843 Str.resize(RealLen, '\0'); 1844 1845 return Str; 1846 } 1847 1848 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1849 /// constant array for the given string literal. 1850 llvm::Constant * 1851 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1852 // FIXME: This can be more efficient. 1853 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1854 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1855 if (S->isWide()) { 1856 llvm::Type *DestTy = 1857 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1858 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1859 } 1860 return C; 1861 } 1862 1863 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1864 /// array for the given ObjCEncodeExpr node. 1865 llvm::Constant * 1866 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1867 std::string Str; 1868 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1869 1870 return GetAddrOfConstantCString(Str); 1871 } 1872 1873 1874 /// GenerateWritableString -- Creates storage for a string literal. 1875 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str, 1876 bool constant, 1877 CodeGenModule &CGM, 1878 const char *GlobalName) { 1879 // Create Constant for this string literal. Don't add a '\0'. 1880 llvm::Constant *C = 1881 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1882 1883 // Create a global variable for this string 1884 llvm::GlobalVariable *GV = 1885 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1886 llvm::GlobalValue::PrivateLinkage, 1887 C, GlobalName); 1888 GV->setUnnamedAddr(true); 1889 return GV; 1890 } 1891 1892 /// GetAddrOfConstantString - Returns a pointer to a character array 1893 /// containing the literal. This contents are exactly that of the 1894 /// given string, i.e. it will not be null terminated automatically; 1895 /// see GetAddrOfConstantCString. Note that whether the result is 1896 /// actually a pointer to an LLVM constant depends on 1897 /// Feature.WriteableStrings. 1898 /// 1899 /// The result has pointer to array type. 1900 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str, 1901 const char *GlobalName) { 1902 bool IsConstant = !Features.WritableStrings; 1903 1904 // Get the default prefix if a name wasn't specified. 1905 if (!GlobalName) 1906 GlobalName = ".str"; 1907 1908 // Don't share any string literals if strings aren't constant. 1909 if (!IsConstant) 1910 return GenerateStringLiteral(Str, false, *this, GlobalName); 1911 1912 llvm::StringMapEntry<llvm::Constant *> &Entry = 1913 ConstantStringMap.GetOrCreateValue(Str); 1914 1915 if (Entry.getValue()) 1916 return Entry.getValue(); 1917 1918 // Create a global variable for this. 1919 llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName); 1920 Entry.setValue(C); 1921 return C; 1922 } 1923 1924 /// GetAddrOfConstantCString - Returns a pointer to a character 1925 /// array containing the literal and a terminating '\0' 1926 /// character. The result has pointer to array type. 1927 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 1928 const char *GlobalName){ 1929 llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1); 1930 return GetAddrOfConstantString(StrWithNull, GlobalName); 1931 } 1932 1933 /// EmitObjCPropertyImplementations - Emit information for synthesized 1934 /// properties for an implementation. 1935 void CodeGenModule::EmitObjCPropertyImplementations(const 1936 ObjCImplementationDecl *D) { 1937 for (ObjCImplementationDecl::propimpl_iterator 1938 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1939 ObjCPropertyImplDecl *PID = *i; 1940 1941 // Dynamic is just for type-checking. 1942 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1943 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1944 1945 // Determine which methods need to be implemented, some may have 1946 // been overridden. Note that ::isSynthesized is not the method 1947 // we want, that just indicates if the decl came from a 1948 // property. What we want to know is if the method is defined in 1949 // this implementation. 1950 if (!D->getInstanceMethod(PD->getGetterName())) 1951 CodeGenFunction(*this).GenerateObjCGetter( 1952 const_cast<ObjCImplementationDecl *>(D), PID); 1953 if (!PD->isReadOnly() && 1954 !D->getInstanceMethod(PD->getSetterName())) 1955 CodeGenFunction(*this).GenerateObjCSetter( 1956 const_cast<ObjCImplementationDecl *>(D), PID); 1957 } 1958 } 1959 } 1960 1961 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 1962 ObjCInterfaceDecl *iface 1963 = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface()); 1964 for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1965 ivar; ivar = ivar->getNextIvar()) 1966 if (ivar->getType().isDestructedType()) 1967 return true; 1968 1969 return false; 1970 } 1971 1972 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1973 /// for an implementation. 1974 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1975 // We might need a .cxx_destruct even if we don't have any ivar initializers. 1976 if (needsDestructMethod(D)) { 1977 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1978 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1979 ObjCMethodDecl *DTORMethod = 1980 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 1981 cxxSelector, getContext().VoidTy, 0, D, true, 1982 false, true, false, ObjCMethodDecl::Required); 1983 D->addInstanceMethod(DTORMethod); 1984 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1985 } 1986 1987 // If the implementation doesn't have any ivar initializers, we don't need 1988 // a .cxx_construct. 1989 if (D->getNumIvarInitializers() == 0) 1990 return; 1991 1992 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 1993 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1994 // The constructor returns 'self'. 1995 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1996 D->getLocation(), 1997 D->getLocation(), cxxSelector, 1998 getContext().getObjCIdType(), 0, 1999 D, true, false, true, false, 2000 ObjCMethodDecl::Required); 2001 D->addInstanceMethod(CTORMethod); 2002 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2003 } 2004 2005 /// EmitNamespace - Emit all declarations in a namespace. 2006 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2007 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2008 I != E; ++I) 2009 EmitTopLevelDecl(*I); 2010 } 2011 2012 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2013 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2014 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2015 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2016 ErrorUnsupported(LSD, "linkage spec"); 2017 return; 2018 } 2019 2020 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2021 I != E; ++I) 2022 EmitTopLevelDecl(*I); 2023 } 2024 2025 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2026 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2027 // If an error has occurred, stop code generation, but continue 2028 // parsing and semantic analysis (to ensure all warnings and errors 2029 // are emitted). 2030 if (Diags.hasErrorOccurred()) 2031 return; 2032 2033 // Ignore dependent declarations. 2034 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2035 return; 2036 2037 switch (D->getKind()) { 2038 case Decl::CXXConversion: 2039 case Decl::CXXMethod: 2040 case Decl::Function: 2041 // Skip function templates 2042 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2043 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2044 return; 2045 2046 EmitGlobal(cast<FunctionDecl>(D)); 2047 break; 2048 2049 case Decl::Var: 2050 EmitGlobal(cast<VarDecl>(D)); 2051 break; 2052 2053 // Indirect fields from global anonymous structs and unions can be 2054 // ignored; only the actual variable requires IR gen support. 2055 case Decl::IndirectField: 2056 break; 2057 2058 // C++ Decls 2059 case Decl::Namespace: 2060 EmitNamespace(cast<NamespaceDecl>(D)); 2061 break; 2062 // No code generation needed. 2063 case Decl::UsingShadow: 2064 case Decl::Using: 2065 case Decl::UsingDirective: 2066 case Decl::ClassTemplate: 2067 case Decl::FunctionTemplate: 2068 case Decl::TypeAliasTemplate: 2069 case Decl::NamespaceAlias: 2070 break; 2071 case Decl::CXXConstructor: 2072 // Skip function templates 2073 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2074 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2075 return; 2076 2077 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2078 break; 2079 case Decl::CXXDestructor: 2080 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2081 return; 2082 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2083 break; 2084 2085 case Decl::StaticAssert: 2086 // Nothing to do. 2087 break; 2088 2089 // Objective-C Decls 2090 2091 // Forward declarations, no (immediate) code generation. 2092 case Decl::ObjCClass: 2093 case Decl::ObjCForwardProtocol: 2094 case Decl::ObjCInterface: 2095 break; 2096 2097 case Decl::ObjCCategory: { 2098 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2099 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2100 Context.ResetObjCLayout(CD->getClassInterface()); 2101 break; 2102 } 2103 2104 case Decl::ObjCProtocol: 2105 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2106 break; 2107 2108 case Decl::ObjCCategoryImpl: 2109 // Categories have properties but don't support synthesize so we 2110 // can ignore them here. 2111 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2112 break; 2113 2114 case Decl::ObjCImplementation: { 2115 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2116 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2117 Context.ResetObjCLayout(OMD->getClassInterface()); 2118 EmitObjCPropertyImplementations(OMD); 2119 EmitObjCIvarInitializations(OMD); 2120 Runtime->GenerateClass(OMD); 2121 break; 2122 } 2123 case Decl::ObjCMethod: { 2124 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2125 // If this is not a prototype, emit the body. 2126 if (OMD->getBody()) 2127 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2128 break; 2129 } 2130 case Decl::ObjCCompatibleAlias: 2131 // compatibility-alias is a directive and has no code gen. 2132 break; 2133 2134 case Decl::LinkageSpec: 2135 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2136 break; 2137 2138 case Decl::FileScopeAsm: { 2139 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2140 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2141 2142 const std::string &S = getModule().getModuleInlineAsm(); 2143 if (S.empty()) 2144 getModule().setModuleInlineAsm(AsmString); 2145 else 2146 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2147 break; 2148 } 2149 2150 default: 2151 // Make sure we handled everything we should, every other kind is a 2152 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2153 // function. Need to recode Decl::Kind to do that easily. 2154 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2155 } 2156 } 2157 2158 /// Turns the given pointer into a constant. 2159 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2160 const void *Ptr) { 2161 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2162 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2163 return llvm::ConstantInt::get(i64, PtrInt); 2164 } 2165 2166 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2167 llvm::NamedMDNode *&GlobalMetadata, 2168 GlobalDecl D, 2169 llvm::GlobalValue *Addr) { 2170 if (!GlobalMetadata) 2171 GlobalMetadata = 2172 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2173 2174 // TODO: should we report variant information for ctors/dtors? 2175 llvm::Value *Ops[] = { 2176 Addr, 2177 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2178 }; 2179 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2180 } 2181 2182 /// Emits metadata nodes associating all the global values in the 2183 /// current module with the Decls they came from. This is useful for 2184 /// projects using IR gen as a subroutine. 2185 /// 2186 /// Since there's currently no way to associate an MDNode directly 2187 /// with an llvm::GlobalValue, we create a global named metadata 2188 /// with the name 'clang.global.decl.ptrs'. 2189 void CodeGenModule::EmitDeclMetadata() { 2190 llvm::NamedMDNode *GlobalMetadata = 0; 2191 2192 // StaticLocalDeclMap 2193 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2194 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2195 I != E; ++I) { 2196 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2197 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2198 } 2199 } 2200 2201 /// Emits metadata nodes for all the local variables in the current 2202 /// function. 2203 void CodeGenFunction::EmitDeclMetadata() { 2204 if (LocalDeclMap.empty()) return; 2205 2206 llvm::LLVMContext &Context = getLLVMContext(); 2207 2208 // Find the unique metadata ID for this name. 2209 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2210 2211 llvm::NamedMDNode *GlobalMetadata = 0; 2212 2213 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2214 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2215 const Decl *D = I->first; 2216 llvm::Value *Addr = I->second; 2217 2218 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2219 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2220 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2221 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2222 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2223 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2224 } 2225 } 2226 } 2227 2228 void CodeGenModule::EmitCoverageFile() { 2229 if (!getCodeGenOpts().CoverageFile.empty()) { 2230 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2231 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2232 llvm::LLVMContext &Ctx = TheModule.getContext(); 2233 llvm::MDString *CoverageFile = 2234 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2235 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2236 llvm::MDNode *CU = CUNode->getOperand(i); 2237 llvm::Value *node[] = { CoverageFile, CU }; 2238 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2239 GCov->addOperand(N); 2240 } 2241 } 2242 } 2243 } 2244 2245 ///@name Custom Runtime Function Interfaces 2246 ///@{ 2247 // 2248 // FIXME: These can be eliminated once we can have clients just get the required 2249 // AST nodes from the builtin tables. 2250 2251 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2252 if (BlockObjectDispose) 2253 return BlockObjectDispose; 2254 2255 // If we saw an explicit decl, use that. 2256 if (BlockObjectDisposeDecl) { 2257 return BlockObjectDispose = GetAddrOfFunction( 2258 BlockObjectDisposeDecl, 2259 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2260 } 2261 2262 // Otherwise construct the function by hand. 2263 const llvm::FunctionType *FTy; 2264 std::vector<const llvm::Type*> ArgTys; 2265 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2266 ArgTys.push_back(Int8PtrTy); 2267 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2268 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2269 return BlockObjectDispose = 2270 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2271 } 2272 2273 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2274 if (BlockObjectAssign) 2275 return BlockObjectAssign; 2276 2277 // If we saw an explicit decl, use that. 2278 if (BlockObjectAssignDecl) { 2279 return BlockObjectAssign = GetAddrOfFunction( 2280 BlockObjectAssignDecl, 2281 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2282 } 2283 2284 // Otherwise construct the function by hand. 2285 const llvm::FunctionType *FTy; 2286 std::vector<const llvm::Type*> ArgTys; 2287 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2288 ArgTys.push_back(Int8PtrTy); 2289 ArgTys.push_back(Int8PtrTy); 2290 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2291 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2292 return BlockObjectAssign = 2293 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2294 } 2295 2296 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2297 if (NSConcreteGlobalBlock) 2298 return NSConcreteGlobalBlock; 2299 2300 // If we saw an explicit decl, use that. 2301 if (NSConcreteGlobalBlockDecl) { 2302 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2303 NSConcreteGlobalBlockDecl, 2304 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2305 } 2306 2307 // Otherwise construct the variable by hand. 2308 return NSConcreteGlobalBlock = 2309 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock"); 2310 } 2311 2312 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2313 if (NSConcreteStackBlock) 2314 return NSConcreteStackBlock; 2315 2316 // If we saw an explicit decl, use that. 2317 if (NSConcreteStackBlockDecl) { 2318 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2319 NSConcreteStackBlockDecl, 2320 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2321 } 2322 2323 // Otherwise construct the variable by hand. 2324 return NSConcreteStackBlock = 2325 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock"); 2326 } 2327 2328 ///@} 2329