1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ProfileSummary.h" 57 #include "llvm/ProfileData/InstrProfReader.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/ConvertUTF.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MD5.h" 63 #include "llvm/Support/TimeProfiler.h" 64 65 using namespace clang; 66 using namespace CodeGen; 67 68 static llvm::cl::opt<bool> LimitedCoverage( 69 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 70 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 71 llvm::cl::init(false)); 72 73 static const char AnnotationSection[] = "llvm.metadata"; 74 75 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 76 switch (CGM.getTarget().getCXXABI().getKind()) { 77 case TargetCXXABI::Fuchsia: 78 case TargetCXXABI::GenericAArch64: 79 case TargetCXXABI::GenericARM: 80 case TargetCXXABI::iOS: 81 case TargetCXXABI::iOS64: 82 case TargetCXXABI::WatchOS: 83 case TargetCXXABI::GenericMIPS: 84 case TargetCXXABI::GenericItanium: 85 case TargetCXXABI::WebAssembly: 86 return CreateItaniumCXXABI(CGM); 87 case TargetCXXABI::Microsoft: 88 return CreateMicrosoftCXXABI(CGM); 89 } 90 91 llvm_unreachable("invalid C++ ABI kind"); 92 } 93 94 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 95 const PreprocessorOptions &PPO, 96 const CodeGenOptions &CGO, llvm::Module &M, 97 DiagnosticsEngine &diags, 98 CoverageSourceInfo *CoverageInfo) 99 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 100 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 101 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 102 VMContext(M.getContext()), Types(*this), VTables(*this), 103 SanitizerMD(new SanitizerMetadata(*this)) { 104 105 // Initialize the type cache. 106 llvm::LLVMContext &LLVMContext = M.getContext(); 107 VoidTy = llvm::Type::getVoidTy(LLVMContext); 108 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 109 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 110 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 111 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 112 HalfTy = llvm::Type::getHalfTy(LLVMContext); 113 FloatTy = llvm::Type::getFloatTy(LLVMContext); 114 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 115 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 116 PointerAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 118 SizeSizeInBytes = 119 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 120 IntAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 122 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 123 IntPtrTy = llvm::IntegerType::get(LLVMContext, 124 C.getTargetInfo().getMaxPointerWidth()); 125 Int8PtrTy = Int8Ty->getPointerTo(0); 126 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 127 AllocaInt8PtrTy = Int8Ty->getPointerTo( 128 M.getDataLayout().getAllocaAddrSpace()); 129 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 130 131 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 132 133 if (LangOpts.ObjC) 134 createObjCRuntime(); 135 if (LangOpts.OpenCL) 136 createOpenCLRuntime(); 137 if (LangOpts.OpenMP) 138 createOpenMPRuntime(); 139 if (LangOpts.CUDA) 140 createCUDARuntime(); 141 142 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 143 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 144 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 145 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 146 getCXXABI().getMangleContext())); 147 148 // If debug info or coverage generation is enabled, create the CGDebugInfo 149 // object. 150 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 151 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 152 DebugInfo.reset(new CGDebugInfo(*this)); 153 154 Block.GlobalUniqueCount = 0; 155 156 if (C.getLangOpts().ObjC) 157 ObjCData.reset(new ObjCEntrypoints()); 158 159 if (CodeGenOpts.hasProfileClangUse()) { 160 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 161 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 162 if (auto E = ReaderOrErr.takeError()) { 163 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 164 "Could not read profile %0: %1"); 165 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 166 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 167 << EI.message(); 168 }); 169 } else 170 PGOReader = std::move(ReaderOrErr.get()); 171 } 172 173 // If coverage mapping generation is enabled, create the 174 // CoverageMappingModuleGen object. 175 if (CodeGenOpts.CoverageMapping) 176 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 177 } 178 179 CodeGenModule::~CodeGenModule() {} 180 181 void CodeGenModule::createObjCRuntime() { 182 // This is just isGNUFamily(), but we want to force implementors of 183 // new ABIs to decide how best to do this. 184 switch (LangOpts.ObjCRuntime.getKind()) { 185 case ObjCRuntime::GNUstep: 186 case ObjCRuntime::GCC: 187 case ObjCRuntime::ObjFW: 188 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 189 return; 190 191 case ObjCRuntime::FragileMacOSX: 192 case ObjCRuntime::MacOSX: 193 case ObjCRuntime::iOS: 194 case ObjCRuntime::WatchOS: 195 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 196 return; 197 } 198 llvm_unreachable("bad runtime kind"); 199 } 200 201 void CodeGenModule::createOpenCLRuntime() { 202 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 203 } 204 205 void CodeGenModule::createOpenMPRuntime() { 206 // Select a specialized code generation class based on the target, if any. 207 // If it does not exist use the default implementation. 208 switch (getTriple().getArch()) { 209 case llvm::Triple::nvptx: 210 case llvm::Triple::nvptx64: 211 assert(getLangOpts().OpenMPIsDevice && 212 "OpenMP NVPTX is only prepared to deal with device code."); 213 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 214 break; 215 default: 216 if (LangOpts.OpenMPSimd) 217 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 218 else 219 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 220 break; 221 } 222 223 // The OpenMP-IR-Builder should eventually replace the above runtime codegens 224 // but we are not there yet so they both reside in CGModule for now and the 225 // OpenMP-IR-Builder is opt-in only. 226 if (LangOpts.OpenMPIRBuilder) { 227 OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule)); 228 OMPBuilder->initialize(); 229 } 230 } 231 232 void CodeGenModule::createCUDARuntime() { 233 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 234 } 235 236 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 237 Replacements[Name] = C; 238 } 239 240 void CodeGenModule::applyReplacements() { 241 for (auto &I : Replacements) { 242 StringRef MangledName = I.first(); 243 llvm::Constant *Replacement = I.second; 244 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 245 if (!Entry) 246 continue; 247 auto *OldF = cast<llvm::Function>(Entry); 248 auto *NewF = dyn_cast<llvm::Function>(Replacement); 249 if (!NewF) { 250 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 251 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 252 } else { 253 auto *CE = cast<llvm::ConstantExpr>(Replacement); 254 assert(CE->getOpcode() == llvm::Instruction::BitCast || 255 CE->getOpcode() == llvm::Instruction::GetElementPtr); 256 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 257 } 258 } 259 260 // Replace old with new, but keep the old order. 261 OldF->replaceAllUsesWith(Replacement); 262 if (NewF) { 263 NewF->removeFromParent(); 264 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 265 NewF); 266 } 267 OldF->eraseFromParent(); 268 } 269 } 270 271 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 272 GlobalValReplacements.push_back(std::make_pair(GV, C)); 273 } 274 275 void CodeGenModule::applyGlobalValReplacements() { 276 for (auto &I : GlobalValReplacements) { 277 llvm::GlobalValue *GV = I.first; 278 llvm::Constant *C = I.second; 279 280 GV->replaceAllUsesWith(C); 281 GV->eraseFromParent(); 282 } 283 } 284 285 // This is only used in aliases that we created and we know they have a 286 // linear structure. 287 static const llvm::GlobalObject *getAliasedGlobal( 288 const llvm::GlobalIndirectSymbol &GIS) { 289 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 290 const llvm::Constant *C = &GIS; 291 for (;;) { 292 C = C->stripPointerCasts(); 293 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 294 return GO; 295 // stripPointerCasts will not walk over weak aliases. 296 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 297 if (!GIS2) 298 return nullptr; 299 if (!Visited.insert(GIS2).second) 300 return nullptr; 301 C = GIS2->getIndirectSymbol(); 302 } 303 } 304 305 void CodeGenModule::checkAliases() { 306 // Check if the constructed aliases are well formed. It is really unfortunate 307 // that we have to do this in CodeGen, but we only construct mangled names 308 // and aliases during codegen. 309 bool Error = false; 310 DiagnosticsEngine &Diags = getDiags(); 311 for (const GlobalDecl &GD : Aliases) { 312 const auto *D = cast<ValueDecl>(GD.getDecl()); 313 SourceLocation Location; 314 bool IsIFunc = D->hasAttr<IFuncAttr>(); 315 if (const Attr *A = D->getDefiningAttr()) 316 Location = A->getLocation(); 317 else 318 llvm_unreachable("Not an alias or ifunc?"); 319 StringRef MangledName = getMangledName(GD); 320 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 321 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 322 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 323 if (!GV) { 324 Error = true; 325 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 326 } else if (GV->isDeclaration()) { 327 Error = true; 328 Diags.Report(Location, diag::err_alias_to_undefined) 329 << IsIFunc << IsIFunc; 330 } else if (IsIFunc) { 331 // Check resolver function type. 332 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 333 GV->getType()->getPointerElementType()); 334 assert(FTy); 335 if (!FTy->getReturnType()->isPointerTy()) 336 Diags.Report(Location, diag::err_ifunc_resolver_return); 337 } 338 339 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 340 llvm::GlobalValue *AliaseeGV; 341 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 342 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 343 else 344 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 345 346 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 347 StringRef AliasSection = SA->getName(); 348 if (AliasSection != AliaseeGV->getSection()) 349 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 350 << AliasSection << IsIFunc << IsIFunc; 351 } 352 353 // We have to handle alias to weak aliases in here. LLVM itself disallows 354 // this since the object semantics would not match the IL one. For 355 // compatibility with gcc we implement it by just pointing the alias 356 // to its aliasee's aliasee. We also warn, since the user is probably 357 // expecting the link to be weak. 358 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 359 if (GA->isInterposable()) { 360 Diags.Report(Location, diag::warn_alias_to_weak_alias) 361 << GV->getName() << GA->getName() << IsIFunc; 362 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 363 GA->getIndirectSymbol(), Alias->getType()); 364 Alias->setIndirectSymbol(Aliasee); 365 } 366 } 367 } 368 if (!Error) 369 return; 370 371 for (const GlobalDecl &GD : Aliases) { 372 StringRef MangledName = getMangledName(GD); 373 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 374 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 375 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 376 Alias->eraseFromParent(); 377 } 378 } 379 380 void CodeGenModule::clear() { 381 DeferredDeclsToEmit.clear(); 382 if (OpenMPRuntime) 383 OpenMPRuntime->clear(); 384 } 385 386 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 387 StringRef MainFile) { 388 if (!hasDiagnostics()) 389 return; 390 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 391 if (MainFile.empty()) 392 MainFile = "<stdin>"; 393 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 394 } else { 395 if (Mismatched > 0) 396 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 397 398 if (Missing > 0) 399 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 400 } 401 } 402 403 void CodeGenModule::Release() { 404 EmitDeferred(); 405 EmitVTablesOpportunistically(); 406 applyGlobalValReplacements(); 407 applyReplacements(); 408 checkAliases(); 409 emitMultiVersionFunctions(); 410 EmitCXXGlobalInitFunc(); 411 EmitCXXGlobalDtorFunc(); 412 registerGlobalDtorsWithAtExit(); 413 EmitCXXThreadLocalInitFunc(); 414 if (ObjCRuntime) 415 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 416 AddGlobalCtor(ObjCInitFunction); 417 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 418 CUDARuntime) { 419 if (llvm::Function *CudaCtorFunction = 420 CUDARuntime->makeModuleCtorFunction()) 421 AddGlobalCtor(CudaCtorFunction); 422 } 423 if (OpenMPRuntime) { 424 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 425 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 426 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 427 } 428 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 429 OpenMPRuntime->clear(); 430 } 431 if (PGOReader) { 432 getModule().setProfileSummary( 433 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 434 llvm::ProfileSummary::PSK_Instr); 435 if (PGOStats.hasDiagnostics()) 436 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 437 } 438 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 439 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 440 EmitGlobalAnnotations(); 441 EmitStaticExternCAliases(); 442 EmitDeferredUnusedCoverageMappings(); 443 if (CoverageMapping) 444 CoverageMapping->emit(); 445 if (CodeGenOpts.SanitizeCfiCrossDso) { 446 CodeGenFunction(*this).EmitCfiCheckFail(); 447 CodeGenFunction(*this).EmitCfiCheckStub(); 448 } 449 emitAtAvailableLinkGuard(); 450 emitLLVMUsed(); 451 if (SanStats) 452 SanStats->finish(); 453 454 if (CodeGenOpts.Autolink && 455 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 456 EmitModuleLinkOptions(); 457 } 458 459 // On ELF we pass the dependent library specifiers directly to the linker 460 // without manipulating them. This is in contrast to other platforms where 461 // they are mapped to a specific linker option by the compiler. This 462 // difference is a result of the greater variety of ELF linkers and the fact 463 // that ELF linkers tend to handle libraries in a more complicated fashion 464 // than on other platforms. This forces us to defer handling the dependent 465 // libs to the linker. 466 // 467 // CUDA/HIP device and host libraries are different. Currently there is no 468 // way to differentiate dependent libraries for host or device. Existing 469 // usage of #pragma comment(lib, *) is intended for host libraries on 470 // Windows. Therefore emit llvm.dependent-libraries only for host. 471 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 472 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 473 for (auto *MD : ELFDependentLibraries) 474 NMD->addOperand(MD); 475 } 476 477 // Record mregparm value now so it is visible through rest of codegen. 478 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 479 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 480 CodeGenOpts.NumRegisterParameters); 481 482 if (CodeGenOpts.DwarfVersion) { 483 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 484 CodeGenOpts.DwarfVersion); 485 } 486 487 if (Context.getLangOpts().SemanticInterposition) 488 // Require various optimization to respect semantic interposition. 489 getModule().setSemanticInterposition(1); 490 491 if (CodeGenOpts.EmitCodeView) { 492 // Indicate that we want CodeView in the metadata. 493 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 494 } 495 if (CodeGenOpts.CodeViewGHash) { 496 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 497 } 498 if (CodeGenOpts.ControlFlowGuard) { 499 // Function ID tables and checks for Control Flow Guard (cfguard=2). 500 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 501 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 502 // Function ID tables for Control Flow Guard (cfguard=1). 503 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 504 } 505 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 506 // We don't support LTO with 2 with different StrictVTablePointers 507 // FIXME: we could support it by stripping all the information introduced 508 // by StrictVTablePointers. 509 510 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 511 512 llvm::Metadata *Ops[2] = { 513 llvm::MDString::get(VMContext, "StrictVTablePointers"), 514 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 515 llvm::Type::getInt32Ty(VMContext), 1))}; 516 517 getModule().addModuleFlag(llvm::Module::Require, 518 "StrictVTablePointersRequirement", 519 llvm::MDNode::get(VMContext, Ops)); 520 } 521 if (DebugInfo) 522 // We support a single version in the linked module. The LLVM 523 // parser will drop debug info with a different version number 524 // (and warn about it, too). 525 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 526 llvm::DEBUG_METADATA_VERSION); 527 528 // We need to record the widths of enums and wchar_t, so that we can generate 529 // the correct build attributes in the ARM backend. wchar_size is also used by 530 // TargetLibraryInfo. 531 uint64_t WCharWidth = 532 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 533 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 534 535 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 536 if ( Arch == llvm::Triple::arm 537 || Arch == llvm::Triple::armeb 538 || Arch == llvm::Triple::thumb 539 || Arch == llvm::Triple::thumbeb) { 540 // The minimum width of an enum in bytes 541 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 542 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 543 } 544 545 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 546 StringRef ABIStr = Target.getABI(); 547 llvm::LLVMContext &Ctx = TheModule.getContext(); 548 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 549 llvm::MDString::get(Ctx, ABIStr)); 550 } 551 552 if (CodeGenOpts.SanitizeCfiCrossDso) { 553 // Indicate that we want cross-DSO control flow integrity checks. 554 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 555 } 556 557 if (CodeGenOpts.WholeProgramVTables) { 558 // Indicate whether VFE was enabled for this module, so that the 559 // vcall_visibility metadata added under whole program vtables is handled 560 // appropriately in the optimizer. 561 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 562 CodeGenOpts.VirtualFunctionElimination); 563 } 564 565 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 566 getModule().addModuleFlag(llvm::Module::Override, 567 "CFI Canonical Jump Tables", 568 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 569 } 570 571 if (CodeGenOpts.CFProtectionReturn && 572 Target.checkCFProtectionReturnSupported(getDiags())) { 573 // Indicate that we want to instrument return control flow protection. 574 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 575 1); 576 } 577 578 if (CodeGenOpts.CFProtectionBranch && 579 Target.checkCFProtectionBranchSupported(getDiags())) { 580 // Indicate that we want to instrument branch control flow protection. 581 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 582 1); 583 } 584 585 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 586 // Indicate whether __nvvm_reflect should be configured to flush denormal 587 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 588 // property.) 589 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 590 CodeGenOpts.FP32DenormalMode.Output != 591 llvm::DenormalMode::IEEE); 592 } 593 594 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 595 if (LangOpts.OpenCL) { 596 EmitOpenCLMetadata(); 597 // Emit SPIR version. 598 if (getTriple().isSPIR()) { 599 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 600 // opencl.spir.version named metadata. 601 // C++ is backwards compatible with OpenCL v2.0. 602 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 603 llvm::Metadata *SPIRVerElts[] = { 604 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 605 Int32Ty, Version / 100)), 606 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 607 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 608 llvm::NamedMDNode *SPIRVerMD = 609 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 610 llvm::LLVMContext &Ctx = TheModule.getContext(); 611 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 612 } 613 } 614 615 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 616 assert(PLevel < 3 && "Invalid PIC Level"); 617 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 618 if (Context.getLangOpts().PIE) 619 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 620 } 621 622 if (getCodeGenOpts().CodeModel.size() > 0) { 623 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 624 .Case("tiny", llvm::CodeModel::Tiny) 625 .Case("small", llvm::CodeModel::Small) 626 .Case("kernel", llvm::CodeModel::Kernel) 627 .Case("medium", llvm::CodeModel::Medium) 628 .Case("large", llvm::CodeModel::Large) 629 .Default(~0u); 630 if (CM != ~0u) { 631 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 632 getModule().setCodeModel(codeModel); 633 } 634 } 635 636 if (CodeGenOpts.NoPLT) 637 getModule().setRtLibUseGOT(); 638 639 SimplifyPersonality(); 640 641 if (getCodeGenOpts().EmitDeclMetadata) 642 EmitDeclMetadata(); 643 644 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 645 EmitCoverageFile(); 646 647 if (DebugInfo) 648 DebugInfo->finalize(); 649 650 if (getCodeGenOpts().EmitVersionIdentMetadata) 651 EmitVersionIdentMetadata(); 652 653 if (!getCodeGenOpts().RecordCommandLine.empty()) 654 EmitCommandLineMetadata(); 655 656 EmitTargetMetadata(); 657 } 658 659 void CodeGenModule::EmitOpenCLMetadata() { 660 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 661 // opencl.ocl.version named metadata node. 662 // C++ is backwards compatible with OpenCL v2.0. 663 // FIXME: We might need to add CXX version at some point too? 664 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 665 llvm::Metadata *OCLVerElts[] = { 666 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 667 Int32Ty, Version / 100)), 668 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 669 Int32Ty, (Version % 100) / 10))}; 670 llvm::NamedMDNode *OCLVerMD = 671 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 672 llvm::LLVMContext &Ctx = TheModule.getContext(); 673 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 674 } 675 676 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 677 // Make sure that this type is translated. 678 Types.UpdateCompletedType(TD); 679 } 680 681 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 682 // Make sure that this type is translated. 683 Types.RefreshTypeCacheForClass(RD); 684 } 685 686 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 687 if (!TBAA) 688 return nullptr; 689 return TBAA->getTypeInfo(QTy); 690 } 691 692 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 693 if (!TBAA) 694 return TBAAAccessInfo(); 695 return TBAA->getAccessInfo(AccessType); 696 } 697 698 TBAAAccessInfo 699 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 700 if (!TBAA) 701 return TBAAAccessInfo(); 702 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 703 } 704 705 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 706 if (!TBAA) 707 return nullptr; 708 return TBAA->getTBAAStructInfo(QTy); 709 } 710 711 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 712 if (!TBAA) 713 return nullptr; 714 return TBAA->getBaseTypeInfo(QTy); 715 } 716 717 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 718 if (!TBAA) 719 return nullptr; 720 return TBAA->getAccessTagInfo(Info); 721 } 722 723 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 724 TBAAAccessInfo TargetInfo) { 725 if (!TBAA) 726 return TBAAAccessInfo(); 727 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 728 } 729 730 TBAAAccessInfo 731 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 732 TBAAAccessInfo InfoB) { 733 if (!TBAA) 734 return TBAAAccessInfo(); 735 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 736 } 737 738 TBAAAccessInfo 739 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 740 TBAAAccessInfo SrcInfo) { 741 if (!TBAA) 742 return TBAAAccessInfo(); 743 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 744 } 745 746 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 747 TBAAAccessInfo TBAAInfo) { 748 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 749 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 750 } 751 752 void CodeGenModule::DecorateInstructionWithInvariantGroup( 753 llvm::Instruction *I, const CXXRecordDecl *RD) { 754 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 755 llvm::MDNode::get(getLLVMContext(), {})); 756 } 757 758 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 759 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 760 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 761 } 762 763 /// ErrorUnsupported - Print out an error that codegen doesn't support the 764 /// specified stmt yet. 765 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 766 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 767 "cannot compile this %0 yet"); 768 std::string Msg = Type; 769 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 770 << Msg << S->getSourceRange(); 771 } 772 773 /// ErrorUnsupported - Print out an error that codegen doesn't support the 774 /// specified decl yet. 775 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 776 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 777 "cannot compile this %0 yet"); 778 std::string Msg = Type; 779 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 780 } 781 782 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 783 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 784 } 785 786 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 787 const NamedDecl *D) const { 788 if (GV->hasDLLImportStorageClass()) 789 return; 790 // Internal definitions always have default visibility. 791 if (GV->hasLocalLinkage()) { 792 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 793 return; 794 } 795 if (!D) 796 return; 797 // Set visibility for definitions, and for declarations if requested globally 798 // or set explicitly. 799 LinkageInfo LV = D->getLinkageAndVisibility(); 800 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 801 !GV->isDeclarationForLinker()) 802 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 803 } 804 805 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 806 llvm::GlobalValue *GV) { 807 if (GV->hasLocalLinkage()) 808 return true; 809 810 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 811 return true; 812 813 // DLLImport explicitly marks the GV as external. 814 if (GV->hasDLLImportStorageClass()) 815 return false; 816 817 const llvm::Triple &TT = CGM.getTriple(); 818 if (TT.isWindowsGNUEnvironment()) { 819 // In MinGW, variables without DLLImport can still be automatically 820 // imported from a DLL by the linker; don't mark variables that 821 // potentially could come from another DLL as DSO local. 822 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 823 !GV->isThreadLocal()) 824 return false; 825 } 826 827 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 828 // remain unresolved in the link, they can be resolved to zero, which is 829 // outside the current DSO. 830 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 831 return false; 832 833 // Every other GV is local on COFF. 834 // Make an exception for windows OS in the triple: Some firmware builds use 835 // *-win32-macho triples. This (accidentally?) produced windows relocations 836 // without GOT tables in older clang versions; Keep this behaviour. 837 // FIXME: even thread local variables? 838 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 839 return true; 840 841 // Only handle COFF and ELF for now. 842 if (!TT.isOSBinFormatELF()) 843 return false; 844 845 // If this is not an executable, don't assume anything is local. 846 const auto &CGOpts = CGM.getCodeGenOpts(); 847 llvm::Reloc::Model RM = CGOpts.RelocationModel; 848 const auto &LOpts = CGM.getLangOpts(); 849 if (RM != llvm::Reloc::Static && !LOpts.PIE) 850 return false; 851 852 // A definition cannot be preempted from an executable. 853 if (!GV->isDeclarationForLinker()) 854 return true; 855 856 // Most PIC code sequences that assume that a symbol is local cannot produce a 857 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 858 // depended, it seems worth it to handle it here. 859 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 860 return false; 861 862 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 863 llvm::Triple::ArchType Arch = TT.getArch(); 864 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 865 Arch == llvm::Triple::ppc64le) 866 return false; 867 868 // If we can use copy relocations we can assume it is local. 869 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 870 if (!Var->isThreadLocal() && 871 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 872 return true; 873 874 // If we can use a plt entry as the symbol address we can assume it 875 // is local. 876 // FIXME: This should work for PIE, but the gold linker doesn't support it. 877 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 878 return true; 879 880 // Otherwise don't assume it is local. 881 return false; 882 } 883 884 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 885 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 886 } 887 888 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 889 GlobalDecl GD) const { 890 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 891 // C++ destructors have a few C++ ABI specific special cases. 892 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 893 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 894 return; 895 } 896 setDLLImportDLLExport(GV, D); 897 } 898 899 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 900 const NamedDecl *D) const { 901 if (D && D->isExternallyVisible()) { 902 if (D->hasAttr<DLLImportAttr>()) 903 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 904 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 905 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 906 } 907 } 908 909 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 910 GlobalDecl GD) const { 911 setDLLImportDLLExport(GV, GD); 912 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 913 } 914 915 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 916 const NamedDecl *D) const { 917 setDLLImportDLLExport(GV, D); 918 setGVPropertiesAux(GV, D); 919 } 920 921 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 922 const NamedDecl *D) const { 923 setGlobalVisibility(GV, D); 924 setDSOLocal(GV); 925 GV->setPartition(CodeGenOpts.SymbolPartition); 926 } 927 928 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 929 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 930 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 931 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 932 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 933 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 934 } 935 936 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 937 CodeGenOptions::TLSModel M) { 938 switch (M) { 939 case CodeGenOptions::GeneralDynamicTLSModel: 940 return llvm::GlobalVariable::GeneralDynamicTLSModel; 941 case CodeGenOptions::LocalDynamicTLSModel: 942 return llvm::GlobalVariable::LocalDynamicTLSModel; 943 case CodeGenOptions::InitialExecTLSModel: 944 return llvm::GlobalVariable::InitialExecTLSModel; 945 case CodeGenOptions::LocalExecTLSModel: 946 return llvm::GlobalVariable::LocalExecTLSModel; 947 } 948 llvm_unreachable("Invalid TLS model!"); 949 } 950 951 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 952 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 953 954 llvm::GlobalValue::ThreadLocalMode TLM; 955 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 956 957 // Override the TLS model if it is explicitly specified. 958 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 959 TLM = GetLLVMTLSModel(Attr->getModel()); 960 } 961 962 GV->setThreadLocalMode(TLM); 963 } 964 965 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 966 StringRef Name) { 967 const TargetInfo &Target = CGM.getTarget(); 968 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 969 } 970 971 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 972 const CPUSpecificAttr *Attr, 973 unsigned CPUIndex, 974 raw_ostream &Out) { 975 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 976 // supported. 977 if (Attr) 978 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 979 else if (CGM.getTarget().supportsIFunc()) 980 Out << ".resolver"; 981 } 982 983 static void AppendTargetMangling(const CodeGenModule &CGM, 984 const TargetAttr *Attr, raw_ostream &Out) { 985 if (Attr->isDefaultVersion()) 986 return; 987 988 Out << '.'; 989 const TargetInfo &Target = CGM.getTarget(); 990 ParsedTargetAttr Info = 991 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 992 // Multiversioning doesn't allow "no-${feature}", so we can 993 // only have "+" prefixes here. 994 assert(LHS.startswith("+") && RHS.startswith("+") && 995 "Features should always have a prefix."); 996 return Target.multiVersionSortPriority(LHS.substr(1)) > 997 Target.multiVersionSortPriority(RHS.substr(1)); 998 }); 999 1000 bool IsFirst = true; 1001 1002 if (!Info.Architecture.empty()) { 1003 IsFirst = false; 1004 Out << "arch_" << Info.Architecture; 1005 } 1006 1007 for (StringRef Feat : Info.Features) { 1008 if (!IsFirst) 1009 Out << '_'; 1010 IsFirst = false; 1011 Out << Feat.substr(1); 1012 } 1013 } 1014 1015 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1016 const NamedDecl *ND, 1017 bool OmitMultiVersionMangling = false) { 1018 SmallString<256> Buffer; 1019 llvm::raw_svector_ostream Out(Buffer); 1020 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1021 if (MC.shouldMangleDeclName(ND)) { 1022 llvm::raw_svector_ostream Out(Buffer); 1023 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 1024 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 1025 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 1026 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 1027 else 1028 MC.mangleName(ND, Out); 1029 } else { 1030 IdentifierInfo *II = ND->getIdentifier(); 1031 assert(II && "Attempt to mangle unnamed decl."); 1032 const auto *FD = dyn_cast<FunctionDecl>(ND); 1033 1034 if (FD && 1035 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1036 llvm::raw_svector_ostream Out(Buffer); 1037 Out << "__regcall3__" << II->getName(); 1038 } else { 1039 Out << II->getName(); 1040 } 1041 } 1042 1043 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1044 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1045 switch (FD->getMultiVersionKind()) { 1046 case MultiVersionKind::CPUDispatch: 1047 case MultiVersionKind::CPUSpecific: 1048 AppendCPUSpecificCPUDispatchMangling(CGM, 1049 FD->getAttr<CPUSpecificAttr>(), 1050 GD.getMultiVersionIndex(), Out); 1051 break; 1052 case MultiVersionKind::Target: 1053 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1054 break; 1055 case MultiVersionKind::None: 1056 llvm_unreachable("None multiversion type isn't valid here"); 1057 } 1058 } 1059 1060 return std::string(Out.str()); 1061 } 1062 1063 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1064 const FunctionDecl *FD) { 1065 if (!FD->isMultiVersion()) 1066 return; 1067 1068 // Get the name of what this would be without the 'target' attribute. This 1069 // allows us to lookup the version that was emitted when this wasn't a 1070 // multiversion function. 1071 std::string NonTargetName = 1072 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1073 GlobalDecl OtherGD; 1074 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1075 assert(OtherGD.getCanonicalDecl() 1076 .getDecl() 1077 ->getAsFunction() 1078 ->isMultiVersion() && 1079 "Other GD should now be a multiversioned function"); 1080 // OtherFD is the version of this function that was mangled BEFORE 1081 // becoming a MultiVersion function. It potentially needs to be updated. 1082 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1083 .getDecl() 1084 ->getAsFunction() 1085 ->getMostRecentDecl(); 1086 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1087 // This is so that if the initial version was already the 'default' 1088 // version, we don't try to update it. 1089 if (OtherName != NonTargetName) { 1090 // Remove instead of erase, since others may have stored the StringRef 1091 // to this. 1092 const auto ExistingRecord = Manglings.find(NonTargetName); 1093 if (ExistingRecord != std::end(Manglings)) 1094 Manglings.remove(&(*ExistingRecord)); 1095 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1096 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1097 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1098 Entry->setName(OtherName); 1099 } 1100 } 1101 } 1102 1103 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1104 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1105 1106 // Some ABIs don't have constructor variants. Make sure that base and 1107 // complete constructors get mangled the same. 1108 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1109 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1110 CXXCtorType OrigCtorType = GD.getCtorType(); 1111 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1112 if (OrigCtorType == Ctor_Base) 1113 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1114 } 1115 } 1116 1117 auto FoundName = MangledDeclNames.find(CanonicalGD); 1118 if (FoundName != MangledDeclNames.end()) 1119 return FoundName->second; 1120 1121 // Keep the first result in the case of a mangling collision. 1122 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1123 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1124 1125 // Adjust kernel stub mangling as we may need to be able to differentiate 1126 // them from the kernel itself (e.g., for HIP). 1127 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1128 if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>()) 1129 MangledName = getCUDARuntime().getDeviceStubName(MangledName); 1130 1131 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1132 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1133 } 1134 1135 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1136 const BlockDecl *BD) { 1137 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1138 const Decl *D = GD.getDecl(); 1139 1140 SmallString<256> Buffer; 1141 llvm::raw_svector_ostream Out(Buffer); 1142 if (!D) 1143 MangleCtx.mangleGlobalBlock(BD, 1144 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1145 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1146 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1147 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1148 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1149 else 1150 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1151 1152 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1153 return Result.first->first(); 1154 } 1155 1156 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1157 return getModule().getNamedValue(Name); 1158 } 1159 1160 /// AddGlobalCtor - Add a function to the list that will be called before 1161 /// main() runs. 1162 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1163 llvm::Constant *AssociatedData) { 1164 // FIXME: Type coercion of void()* types. 1165 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1166 } 1167 1168 /// AddGlobalDtor - Add a function to the list that will be called 1169 /// when the module is unloaded. 1170 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1171 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1172 DtorsUsingAtExit[Priority].push_back(Dtor); 1173 return; 1174 } 1175 1176 // FIXME: Type coercion of void()* types. 1177 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1178 } 1179 1180 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1181 if (Fns.empty()) return; 1182 1183 // Ctor function type is void()*. 1184 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1185 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1186 TheModule.getDataLayout().getProgramAddressSpace()); 1187 1188 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1189 llvm::StructType *CtorStructTy = llvm::StructType::get( 1190 Int32Ty, CtorPFTy, VoidPtrTy); 1191 1192 // Construct the constructor and destructor arrays. 1193 ConstantInitBuilder builder(*this); 1194 auto ctors = builder.beginArray(CtorStructTy); 1195 for (const auto &I : Fns) { 1196 auto ctor = ctors.beginStruct(CtorStructTy); 1197 ctor.addInt(Int32Ty, I.Priority); 1198 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1199 if (I.AssociatedData) 1200 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1201 else 1202 ctor.addNullPointer(VoidPtrTy); 1203 ctor.finishAndAddTo(ctors); 1204 } 1205 1206 auto list = 1207 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1208 /*constant*/ false, 1209 llvm::GlobalValue::AppendingLinkage); 1210 1211 // The LTO linker doesn't seem to like it when we set an alignment 1212 // on appending variables. Take it off as a workaround. 1213 list->setAlignment(llvm::None); 1214 1215 Fns.clear(); 1216 } 1217 1218 llvm::GlobalValue::LinkageTypes 1219 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1220 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1221 1222 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1223 1224 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1225 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1226 1227 if (isa<CXXConstructorDecl>(D) && 1228 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1229 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1230 // Our approach to inheriting constructors is fundamentally different from 1231 // that used by the MS ABI, so keep our inheriting constructor thunks 1232 // internal rather than trying to pick an unambiguous mangling for them. 1233 return llvm::GlobalValue::InternalLinkage; 1234 } 1235 1236 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1237 } 1238 1239 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1240 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1241 if (!MDS) return nullptr; 1242 1243 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1244 } 1245 1246 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1247 const CGFunctionInfo &Info, 1248 llvm::Function *F) { 1249 unsigned CallingConv; 1250 llvm::AttributeList PAL; 1251 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1252 F->setAttributes(PAL); 1253 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1254 } 1255 1256 static void removeImageAccessQualifier(std::string& TyName) { 1257 std::string ReadOnlyQual("__read_only"); 1258 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1259 if (ReadOnlyPos != std::string::npos) 1260 // "+ 1" for the space after access qualifier. 1261 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1262 else { 1263 std::string WriteOnlyQual("__write_only"); 1264 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1265 if (WriteOnlyPos != std::string::npos) 1266 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1267 else { 1268 std::string ReadWriteQual("__read_write"); 1269 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1270 if (ReadWritePos != std::string::npos) 1271 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1272 } 1273 } 1274 } 1275 1276 // Returns the address space id that should be produced to the 1277 // kernel_arg_addr_space metadata. This is always fixed to the ids 1278 // as specified in the SPIR 2.0 specification in order to differentiate 1279 // for example in clGetKernelArgInfo() implementation between the address 1280 // spaces with targets without unique mapping to the OpenCL address spaces 1281 // (basically all single AS CPUs). 1282 static unsigned ArgInfoAddressSpace(LangAS AS) { 1283 switch (AS) { 1284 case LangAS::opencl_global: return 1; 1285 case LangAS::opencl_constant: return 2; 1286 case LangAS::opencl_local: return 3; 1287 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1288 default: 1289 return 0; // Assume private. 1290 } 1291 } 1292 1293 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1294 const FunctionDecl *FD, 1295 CodeGenFunction *CGF) { 1296 assert(((FD && CGF) || (!FD && !CGF)) && 1297 "Incorrect use - FD and CGF should either be both null or not!"); 1298 // Create MDNodes that represent the kernel arg metadata. 1299 // Each MDNode is a list in the form of "key", N number of values which is 1300 // the same number of values as their are kernel arguments. 1301 1302 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1303 1304 // MDNode for the kernel argument address space qualifiers. 1305 SmallVector<llvm::Metadata *, 8> addressQuals; 1306 1307 // MDNode for the kernel argument access qualifiers (images only). 1308 SmallVector<llvm::Metadata *, 8> accessQuals; 1309 1310 // MDNode for the kernel argument type names. 1311 SmallVector<llvm::Metadata *, 8> argTypeNames; 1312 1313 // MDNode for the kernel argument base type names. 1314 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1315 1316 // MDNode for the kernel argument type qualifiers. 1317 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1318 1319 // MDNode for the kernel argument names. 1320 SmallVector<llvm::Metadata *, 8> argNames; 1321 1322 if (FD && CGF) 1323 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1324 const ParmVarDecl *parm = FD->getParamDecl(i); 1325 QualType ty = parm->getType(); 1326 std::string typeQuals; 1327 1328 if (ty->isPointerType()) { 1329 QualType pointeeTy = ty->getPointeeType(); 1330 1331 // Get address qualifier. 1332 addressQuals.push_back( 1333 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1334 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1335 1336 // Get argument type name. 1337 std::string typeName = 1338 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1339 1340 // Turn "unsigned type" to "utype" 1341 std::string::size_type pos = typeName.find("unsigned"); 1342 if (pointeeTy.isCanonical() && pos != std::string::npos) 1343 typeName.erase(pos + 1, 8); 1344 1345 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1346 1347 std::string baseTypeName = 1348 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1349 Policy) + 1350 "*"; 1351 1352 // Turn "unsigned type" to "utype" 1353 pos = baseTypeName.find("unsigned"); 1354 if (pos != std::string::npos) 1355 baseTypeName.erase(pos + 1, 8); 1356 1357 argBaseTypeNames.push_back( 1358 llvm::MDString::get(VMContext, baseTypeName)); 1359 1360 // Get argument type qualifiers: 1361 if (ty.isRestrictQualified()) 1362 typeQuals = "restrict"; 1363 if (pointeeTy.isConstQualified() || 1364 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1365 typeQuals += typeQuals.empty() ? "const" : " const"; 1366 if (pointeeTy.isVolatileQualified()) 1367 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1368 } else { 1369 uint32_t AddrSpc = 0; 1370 bool isPipe = ty->isPipeType(); 1371 if (ty->isImageType() || isPipe) 1372 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1373 1374 addressQuals.push_back( 1375 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1376 1377 // Get argument type name. 1378 std::string typeName; 1379 if (isPipe) 1380 typeName = ty.getCanonicalType() 1381 ->castAs<PipeType>() 1382 ->getElementType() 1383 .getAsString(Policy); 1384 else 1385 typeName = ty.getUnqualifiedType().getAsString(Policy); 1386 1387 // Turn "unsigned type" to "utype" 1388 std::string::size_type pos = typeName.find("unsigned"); 1389 if (ty.isCanonical() && pos != std::string::npos) 1390 typeName.erase(pos + 1, 8); 1391 1392 std::string baseTypeName; 1393 if (isPipe) 1394 baseTypeName = ty.getCanonicalType() 1395 ->castAs<PipeType>() 1396 ->getElementType() 1397 .getCanonicalType() 1398 .getAsString(Policy); 1399 else 1400 baseTypeName = 1401 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1402 1403 // Remove access qualifiers on images 1404 // (as they are inseparable from type in clang implementation, 1405 // but OpenCL spec provides a special query to get access qualifier 1406 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1407 if (ty->isImageType()) { 1408 removeImageAccessQualifier(typeName); 1409 removeImageAccessQualifier(baseTypeName); 1410 } 1411 1412 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1413 1414 // Turn "unsigned type" to "utype" 1415 pos = baseTypeName.find("unsigned"); 1416 if (pos != std::string::npos) 1417 baseTypeName.erase(pos + 1, 8); 1418 1419 argBaseTypeNames.push_back( 1420 llvm::MDString::get(VMContext, baseTypeName)); 1421 1422 if (isPipe) 1423 typeQuals = "pipe"; 1424 } 1425 1426 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1427 1428 // Get image and pipe access qualifier: 1429 if (ty->isImageType() || ty->isPipeType()) { 1430 const Decl *PDecl = parm; 1431 if (auto *TD = dyn_cast<TypedefType>(ty)) 1432 PDecl = TD->getDecl(); 1433 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1434 if (A && A->isWriteOnly()) 1435 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1436 else if (A && A->isReadWrite()) 1437 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1438 else 1439 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1440 } else 1441 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1442 1443 // Get argument name. 1444 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1445 } 1446 1447 Fn->setMetadata("kernel_arg_addr_space", 1448 llvm::MDNode::get(VMContext, addressQuals)); 1449 Fn->setMetadata("kernel_arg_access_qual", 1450 llvm::MDNode::get(VMContext, accessQuals)); 1451 Fn->setMetadata("kernel_arg_type", 1452 llvm::MDNode::get(VMContext, argTypeNames)); 1453 Fn->setMetadata("kernel_arg_base_type", 1454 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1455 Fn->setMetadata("kernel_arg_type_qual", 1456 llvm::MDNode::get(VMContext, argTypeQuals)); 1457 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1458 Fn->setMetadata("kernel_arg_name", 1459 llvm::MDNode::get(VMContext, argNames)); 1460 } 1461 1462 /// Determines whether the language options require us to model 1463 /// unwind exceptions. We treat -fexceptions as mandating this 1464 /// except under the fragile ObjC ABI with only ObjC exceptions 1465 /// enabled. This means, for example, that C with -fexceptions 1466 /// enables this. 1467 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1468 // If exceptions are completely disabled, obviously this is false. 1469 if (!LangOpts.Exceptions) return false; 1470 1471 // If C++ exceptions are enabled, this is true. 1472 if (LangOpts.CXXExceptions) return true; 1473 1474 // If ObjC exceptions are enabled, this depends on the ABI. 1475 if (LangOpts.ObjCExceptions) { 1476 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1477 } 1478 1479 return true; 1480 } 1481 1482 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1483 const CXXMethodDecl *MD) { 1484 // Check that the type metadata can ever actually be used by a call. 1485 if (!CGM.getCodeGenOpts().LTOUnit || 1486 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1487 return false; 1488 1489 // Only functions whose address can be taken with a member function pointer 1490 // need this sort of type metadata. 1491 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1492 !isa<CXXDestructorDecl>(MD); 1493 } 1494 1495 std::vector<const CXXRecordDecl *> 1496 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1497 llvm::SetVector<const CXXRecordDecl *> MostBases; 1498 1499 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1500 CollectMostBases = [&](const CXXRecordDecl *RD) { 1501 if (RD->getNumBases() == 0) 1502 MostBases.insert(RD); 1503 for (const CXXBaseSpecifier &B : RD->bases()) 1504 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1505 }; 1506 CollectMostBases(RD); 1507 return MostBases.takeVector(); 1508 } 1509 1510 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1511 llvm::Function *F) { 1512 llvm::AttrBuilder B; 1513 1514 if (CodeGenOpts.UnwindTables) 1515 B.addAttribute(llvm::Attribute::UWTable); 1516 1517 if (CodeGenOpts.StackClashProtector) 1518 B.addAttribute("probe-stack", "inline-asm"); 1519 1520 if (!hasUnwindExceptions(LangOpts)) 1521 B.addAttribute(llvm::Attribute::NoUnwind); 1522 1523 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1524 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1525 B.addAttribute(llvm::Attribute::StackProtect); 1526 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1527 B.addAttribute(llvm::Attribute::StackProtectStrong); 1528 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1529 B.addAttribute(llvm::Attribute::StackProtectReq); 1530 } 1531 1532 if (!D) { 1533 // If we don't have a declaration to control inlining, the function isn't 1534 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1535 // disabled, mark the function as noinline. 1536 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1537 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1538 B.addAttribute(llvm::Attribute::NoInline); 1539 1540 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1541 return; 1542 } 1543 1544 // Track whether we need to add the optnone LLVM attribute, 1545 // starting with the default for this optimization level. 1546 bool ShouldAddOptNone = 1547 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1548 // We can't add optnone in the following cases, it won't pass the verifier. 1549 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1550 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1551 1552 // Add optnone, but do so only if the function isn't always_inline. 1553 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1554 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1555 B.addAttribute(llvm::Attribute::OptimizeNone); 1556 1557 // OptimizeNone implies noinline; we should not be inlining such functions. 1558 B.addAttribute(llvm::Attribute::NoInline); 1559 1560 // We still need to handle naked functions even though optnone subsumes 1561 // much of their semantics. 1562 if (D->hasAttr<NakedAttr>()) 1563 B.addAttribute(llvm::Attribute::Naked); 1564 1565 // OptimizeNone wins over OptimizeForSize and MinSize. 1566 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1567 F->removeFnAttr(llvm::Attribute::MinSize); 1568 } else if (D->hasAttr<NakedAttr>()) { 1569 // Naked implies noinline: we should not be inlining such functions. 1570 B.addAttribute(llvm::Attribute::Naked); 1571 B.addAttribute(llvm::Attribute::NoInline); 1572 } else if (D->hasAttr<NoDuplicateAttr>()) { 1573 B.addAttribute(llvm::Attribute::NoDuplicate); 1574 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1575 // Add noinline if the function isn't always_inline. 1576 B.addAttribute(llvm::Attribute::NoInline); 1577 } else if (D->hasAttr<AlwaysInlineAttr>() && 1578 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1579 // (noinline wins over always_inline, and we can't specify both in IR) 1580 B.addAttribute(llvm::Attribute::AlwaysInline); 1581 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1582 // If we're not inlining, then force everything that isn't always_inline to 1583 // carry an explicit noinline attribute. 1584 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1585 B.addAttribute(llvm::Attribute::NoInline); 1586 } else { 1587 // Otherwise, propagate the inline hint attribute and potentially use its 1588 // absence to mark things as noinline. 1589 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1590 // Search function and template pattern redeclarations for inline. 1591 auto CheckForInline = [](const FunctionDecl *FD) { 1592 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1593 return Redecl->isInlineSpecified(); 1594 }; 1595 if (any_of(FD->redecls(), CheckRedeclForInline)) 1596 return true; 1597 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1598 if (!Pattern) 1599 return false; 1600 return any_of(Pattern->redecls(), CheckRedeclForInline); 1601 }; 1602 if (CheckForInline(FD)) { 1603 B.addAttribute(llvm::Attribute::InlineHint); 1604 } else if (CodeGenOpts.getInlining() == 1605 CodeGenOptions::OnlyHintInlining && 1606 !FD->isInlined() && 1607 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1608 B.addAttribute(llvm::Attribute::NoInline); 1609 } 1610 } 1611 } 1612 1613 // Add other optimization related attributes if we are optimizing this 1614 // function. 1615 if (!D->hasAttr<OptimizeNoneAttr>()) { 1616 if (D->hasAttr<ColdAttr>()) { 1617 if (!ShouldAddOptNone) 1618 B.addAttribute(llvm::Attribute::OptimizeForSize); 1619 B.addAttribute(llvm::Attribute::Cold); 1620 } 1621 1622 if (D->hasAttr<MinSizeAttr>()) 1623 B.addAttribute(llvm::Attribute::MinSize); 1624 } 1625 1626 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1627 1628 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1629 if (alignment) 1630 F->setAlignment(llvm::Align(alignment)); 1631 1632 if (!D->hasAttr<AlignedAttr>()) 1633 if (LangOpts.FunctionAlignment) 1634 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1635 1636 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1637 // reserve a bit for differentiating between virtual and non-virtual member 1638 // functions. If the current target's C++ ABI requires this and this is a 1639 // member function, set its alignment accordingly. 1640 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1641 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1642 F->setAlignment(llvm::Align(2)); 1643 } 1644 1645 // In the cross-dso CFI mode with canonical jump tables, we want !type 1646 // attributes on definitions only. 1647 if (CodeGenOpts.SanitizeCfiCrossDso && 1648 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1649 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1650 // Skip available_externally functions. They won't be codegen'ed in the 1651 // current module anyway. 1652 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1653 CreateFunctionTypeMetadataForIcall(FD, F); 1654 } 1655 } 1656 1657 // Emit type metadata on member functions for member function pointer checks. 1658 // These are only ever necessary on definitions; we're guaranteed that the 1659 // definition will be present in the LTO unit as a result of LTO visibility. 1660 auto *MD = dyn_cast<CXXMethodDecl>(D); 1661 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1662 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1663 llvm::Metadata *Id = 1664 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1665 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1666 F->addTypeMetadata(0, Id); 1667 } 1668 } 1669 } 1670 1671 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1672 const Decl *D = GD.getDecl(); 1673 if (dyn_cast_or_null<NamedDecl>(D)) 1674 setGVProperties(GV, GD); 1675 else 1676 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1677 1678 if (D && D->hasAttr<UsedAttr>()) 1679 addUsedGlobal(GV); 1680 1681 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1682 const auto *VD = cast<VarDecl>(D); 1683 if (VD->getType().isConstQualified() && 1684 VD->getStorageDuration() == SD_Static) 1685 addUsedGlobal(GV); 1686 } 1687 } 1688 1689 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1690 llvm::AttrBuilder &Attrs) { 1691 // Add target-cpu and target-features attributes to functions. If 1692 // we have a decl for the function and it has a target attribute then 1693 // parse that and add it to the feature set. 1694 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1695 std::vector<std::string> Features; 1696 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1697 FD = FD ? FD->getMostRecentDecl() : FD; 1698 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1699 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1700 bool AddedAttr = false; 1701 if (TD || SD) { 1702 llvm::StringMap<bool> FeatureMap; 1703 getContext().getFunctionFeatureMap(FeatureMap, GD); 1704 1705 // Produce the canonical string for this set of features. 1706 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1707 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1708 1709 // Now add the target-cpu and target-features to the function. 1710 // While we populated the feature map above, we still need to 1711 // get and parse the target attribute so we can get the cpu for 1712 // the function. 1713 if (TD) { 1714 ParsedTargetAttr ParsedAttr = TD->parse(); 1715 if (ParsedAttr.Architecture != "" && 1716 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1717 TargetCPU = ParsedAttr.Architecture; 1718 } 1719 } else { 1720 // Otherwise just add the existing target cpu and target features to the 1721 // function. 1722 Features = getTarget().getTargetOpts().Features; 1723 } 1724 1725 if (TargetCPU != "") { 1726 Attrs.addAttribute("target-cpu", TargetCPU); 1727 AddedAttr = true; 1728 } 1729 if (!Features.empty()) { 1730 llvm::sort(Features); 1731 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1732 AddedAttr = true; 1733 } 1734 1735 return AddedAttr; 1736 } 1737 1738 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1739 llvm::GlobalObject *GO) { 1740 const Decl *D = GD.getDecl(); 1741 SetCommonAttributes(GD, GO); 1742 1743 if (D) { 1744 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1745 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1746 GV->addAttribute("bss-section", SA->getName()); 1747 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1748 GV->addAttribute("data-section", SA->getName()); 1749 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1750 GV->addAttribute("rodata-section", SA->getName()); 1751 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1752 GV->addAttribute("relro-section", SA->getName()); 1753 } 1754 1755 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1756 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1757 if (!D->getAttr<SectionAttr>()) 1758 F->addFnAttr("implicit-section-name", SA->getName()); 1759 1760 llvm::AttrBuilder Attrs; 1761 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1762 // We know that GetCPUAndFeaturesAttributes will always have the 1763 // newest set, since it has the newest possible FunctionDecl, so the 1764 // new ones should replace the old. 1765 F->removeFnAttr("target-cpu"); 1766 F->removeFnAttr("target-features"); 1767 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1768 } 1769 } 1770 1771 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1772 GO->setSection(CSA->getName()); 1773 else if (const auto *SA = D->getAttr<SectionAttr>()) 1774 GO->setSection(SA->getName()); 1775 } 1776 1777 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1778 } 1779 1780 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1781 llvm::Function *F, 1782 const CGFunctionInfo &FI) { 1783 const Decl *D = GD.getDecl(); 1784 SetLLVMFunctionAttributes(GD, FI, F); 1785 SetLLVMFunctionAttributesForDefinition(D, F); 1786 1787 F->setLinkage(llvm::Function::InternalLinkage); 1788 1789 setNonAliasAttributes(GD, F); 1790 } 1791 1792 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1793 // Set linkage and visibility in case we never see a definition. 1794 LinkageInfo LV = ND->getLinkageAndVisibility(); 1795 // Don't set internal linkage on declarations. 1796 // "extern_weak" is overloaded in LLVM; we probably should have 1797 // separate linkage types for this. 1798 if (isExternallyVisible(LV.getLinkage()) && 1799 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1800 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1801 } 1802 1803 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1804 llvm::Function *F) { 1805 // Only if we are checking indirect calls. 1806 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1807 return; 1808 1809 // Non-static class methods are handled via vtable or member function pointer 1810 // checks elsewhere. 1811 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1812 return; 1813 1814 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1815 F->addTypeMetadata(0, MD); 1816 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1817 1818 // Emit a hash-based bit set entry for cross-DSO calls. 1819 if (CodeGenOpts.SanitizeCfiCrossDso) 1820 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1821 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1822 } 1823 1824 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1825 bool IsIncompleteFunction, 1826 bool IsThunk) { 1827 1828 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1829 // If this is an intrinsic function, set the function's attributes 1830 // to the intrinsic's attributes. 1831 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1832 return; 1833 } 1834 1835 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1836 1837 if (!IsIncompleteFunction) 1838 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1839 1840 // Add the Returned attribute for "this", except for iOS 5 and earlier 1841 // where substantial code, including the libstdc++ dylib, was compiled with 1842 // GCC and does not actually return "this". 1843 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1844 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1845 assert(!F->arg_empty() && 1846 F->arg_begin()->getType() 1847 ->canLosslesslyBitCastTo(F->getReturnType()) && 1848 "unexpected this return"); 1849 F->addAttribute(1, llvm::Attribute::Returned); 1850 } 1851 1852 // Only a few attributes are set on declarations; these may later be 1853 // overridden by a definition. 1854 1855 setLinkageForGV(F, FD); 1856 setGVProperties(F, FD); 1857 1858 // Setup target-specific attributes. 1859 if (!IsIncompleteFunction && F->isDeclaration()) 1860 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1861 1862 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1863 F->setSection(CSA->getName()); 1864 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1865 F->setSection(SA->getName()); 1866 1867 if (FD->isInlineBuiltinDeclaration()) { 1868 F->addAttribute(llvm::AttributeList::FunctionIndex, 1869 llvm::Attribute::NoBuiltin); 1870 } 1871 1872 if (FD->isReplaceableGlobalAllocationFunction()) { 1873 // A replaceable global allocation function does not act like a builtin by 1874 // default, only if it is invoked by a new-expression or delete-expression. 1875 F->addAttribute(llvm::AttributeList::FunctionIndex, 1876 llvm::Attribute::NoBuiltin); 1877 1878 // A sane operator new returns a non-aliasing pointer. 1879 // FIXME: Also add NonNull attribute to the return value 1880 // for the non-nothrow forms? 1881 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1882 if (getCodeGenOpts().AssumeSaneOperatorNew && 1883 (Kind == OO_New || Kind == OO_Array_New)) 1884 F->addAttribute(llvm::AttributeList::ReturnIndex, 1885 llvm::Attribute::NoAlias); 1886 } 1887 1888 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1889 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1890 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1891 if (MD->isVirtual()) 1892 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1893 1894 // Don't emit entries for function declarations in the cross-DSO mode. This 1895 // is handled with better precision by the receiving DSO. But if jump tables 1896 // are non-canonical then we need type metadata in order to produce the local 1897 // jump table. 1898 if (!CodeGenOpts.SanitizeCfiCrossDso || 1899 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1900 CreateFunctionTypeMetadataForIcall(FD, F); 1901 1902 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1903 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1904 1905 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1906 // Annotate the callback behavior as metadata: 1907 // - The callback callee (as argument number). 1908 // - The callback payloads (as argument numbers). 1909 llvm::LLVMContext &Ctx = F->getContext(); 1910 llvm::MDBuilder MDB(Ctx); 1911 1912 // The payload indices are all but the first one in the encoding. The first 1913 // identifies the callback callee. 1914 int CalleeIdx = *CB->encoding_begin(); 1915 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1916 F->addMetadata(llvm::LLVMContext::MD_callback, 1917 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1918 CalleeIdx, PayloadIndices, 1919 /* VarArgsArePassed */ false)})); 1920 } 1921 } 1922 1923 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1924 assert(!GV->isDeclaration() && 1925 "Only globals with definition can force usage."); 1926 LLVMUsed.emplace_back(GV); 1927 } 1928 1929 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1930 assert(!GV->isDeclaration() && 1931 "Only globals with definition can force usage."); 1932 LLVMCompilerUsed.emplace_back(GV); 1933 } 1934 1935 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1936 std::vector<llvm::WeakTrackingVH> &List) { 1937 // Don't create llvm.used if there is no need. 1938 if (List.empty()) 1939 return; 1940 1941 // Convert List to what ConstantArray needs. 1942 SmallVector<llvm::Constant*, 8> UsedArray; 1943 UsedArray.resize(List.size()); 1944 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1945 UsedArray[i] = 1946 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1947 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1948 } 1949 1950 if (UsedArray.empty()) 1951 return; 1952 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1953 1954 auto *GV = new llvm::GlobalVariable( 1955 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1956 llvm::ConstantArray::get(ATy, UsedArray), Name); 1957 1958 GV->setSection("llvm.metadata"); 1959 } 1960 1961 void CodeGenModule::emitLLVMUsed() { 1962 emitUsed(*this, "llvm.used", LLVMUsed); 1963 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1964 } 1965 1966 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1967 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1968 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1969 } 1970 1971 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1972 llvm::SmallString<32> Opt; 1973 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1974 if (Opt.empty()) 1975 return; 1976 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1977 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1978 } 1979 1980 void CodeGenModule::AddDependentLib(StringRef Lib) { 1981 auto &C = getLLVMContext(); 1982 if (getTarget().getTriple().isOSBinFormatELF()) { 1983 ELFDependentLibraries.push_back( 1984 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 1985 return; 1986 } 1987 1988 llvm::SmallString<24> Opt; 1989 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1990 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1991 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 1992 } 1993 1994 /// Add link options implied by the given module, including modules 1995 /// it depends on, using a postorder walk. 1996 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1997 SmallVectorImpl<llvm::MDNode *> &Metadata, 1998 llvm::SmallPtrSet<Module *, 16> &Visited) { 1999 // Import this module's parent. 2000 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2001 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2002 } 2003 2004 // Import this module's dependencies. 2005 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2006 if (Visited.insert(Mod->Imports[I - 1]).second) 2007 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2008 } 2009 2010 // Add linker options to link against the libraries/frameworks 2011 // described by this module. 2012 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2013 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2014 2015 // For modules that use export_as for linking, use that module 2016 // name instead. 2017 if (Mod->UseExportAsModuleLinkName) 2018 return; 2019 2020 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2021 // Link against a framework. Frameworks are currently Darwin only, so we 2022 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2023 if (Mod->LinkLibraries[I-1].IsFramework) { 2024 llvm::Metadata *Args[2] = { 2025 llvm::MDString::get(Context, "-framework"), 2026 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2027 2028 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2029 continue; 2030 } 2031 2032 // Link against a library. 2033 if (IsELF) { 2034 llvm::Metadata *Args[2] = { 2035 llvm::MDString::get(Context, "lib"), 2036 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2037 }; 2038 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2039 } else { 2040 llvm::SmallString<24> Opt; 2041 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2042 Mod->LinkLibraries[I - 1].Library, Opt); 2043 auto *OptString = llvm::MDString::get(Context, Opt); 2044 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2045 } 2046 } 2047 } 2048 2049 void CodeGenModule::EmitModuleLinkOptions() { 2050 // Collect the set of all of the modules we want to visit to emit link 2051 // options, which is essentially the imported modules and all of their 2052 // non-explicit child modules. 2053 llvm::SetVector<clang::Module *> LinkModules; 2054 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2055 SmallVector<clang::Module *, 16> Stack; 2056 2057 // Seed the stack with imported modules. 2058 for (Module *M : ImportedModules) { 2059 // Do not add any link flags when an implementation TU of a module imports 2060 // a header of that same module. 2061 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2062 !getLangOpts().isCompilingModule()) 2063 continue; 2064 if (Visited.insert(M).second) 2065 Stack.push_back(M); 2066 } 2067 2068 // Find all of the modules to import, making a little effort to prune 2069 // non-leaf modules. 2070 while (!Stack.empty()) { 2071 clang::Module *Mod = Stack.pop_back_val(); 2072 2073 bool AnyChildren = false; 2074 2075 // Visit the submodules of this module. 2076 for (const auto &SM : Mod->submodules()) { 2077 // Skip explicit children; they need to be explicitly imported to be 2078 // linked against. 2079 if (SM->IsExplicit) 2080 continue; 2081 2082 if (Visited.insert(SM).second) { 2083 Stack.push_back(SM); 2084 AnyChildren = true; 2085 } 2086 } 2087 2088 // We didn't find any children, so add this module to the list of 2089 // modules to link against. 2090 if (!AnyChildren) { 2091 LinkModules.insert(Mod); 2092 } 2093 } 2094 2095 // Add link options for all of the imported modules in reverse topological 2096 // order. We don't do anything to try to order import link flags with respect 2097 // to linker options inserted by things like #pragma comment(). 2098 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2099 Visited.clear(); 2100 for (Module *M : LinkModules) 2101 if (Visited.insert(M).second) 2102 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2103 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2104 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2105 2106 // Add the linker options metadata flag. 2107 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2108 for (auto *MD : LinkerOptionsMetadata) 2109 NMD->addOperand(MD); 2110 } 2111 2112 void CodeGenModule::EmitDeferred() { 2113 // Emit deferred declare target declarations. 2114 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2115 getOpenMPRuntime().emitDeferredTargetDecls(); 2116 2117 // Emit code for any potentially referenced deferred decls. Since a 2118 // previously unused static decl may become used during the generation of code 2119 // for a static function, iterate until no changes are made. 2120 2121 if (!DeferredVTables.empty()) { 2122 EmitDeferredVTables(); 2123 2124 // Emitting a vtable doesn't directly cause more vtables to 2125 // become deferred, although it can cause functions to be 2126 // emitted that then need those vtables. 2127 assert(DeferredVTables.empty()); 2128 } 2129 2130 // Stop if we're out of both deferred vtables and deferred declarations. 2131 if (DeferredDeclsToEmit.empty()) 2132 return; 2133 2134 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2135 // work, it will not interfere with this. 2136 std::vector<GlobalDecl> CurDeclsToEmit; 2137 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2138 2139 for (GlobalDecl &D : CurDeclsToEmit) { 2140 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2141 // to get GlobalValue with exactly the type we need, not something that 2142 // might had been created for another decl with the same mangled name but 2143 // different type. 2144 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2145 GetAddrOfGlobal(D, ForDefinition)); 2146 2147 // In case of different address spaces, we may still get a cast, even with 2148 // IsForDefinition equal to true. Query mangled names table to get 2149 // GlobalValue. 2150 if (!GV) 2151 GV = GetGlobalValue(getMangledName(D)); 2152 2153 // Make sure GetGlobalValue returned non-null. 2154 assert(GV); 2155 2156 // Check to see if we've already emitted this. This is necessary 2157 // for a couple of reasons: first, decls can end up in the 2158 // deferred-decls queue multiple times, and second, decls can end 2159 // up with definitions in unusual ways (e.g. by an extern inline 2160 // function acquiring a strong function redefinition). Just 2161 // ignore these cases. 2162 if (!GV->isDeclaration()) 2163 continue; 2164 2165 // If this is OpenMP, check if it is legal to emit this global normally. 2166 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2167 continue; 2168 2169 // Otherwise, emit the definition and move on to the next one. 2170 EmitGlobalDefinition(D, GV); 2171 2172 // If we found out that we need to emit more decls, do that recursively. 2173 // This has the advantage that the decls are emitted in a DFS and related 2174 // ones are close together, which is convenient for testing. 2175 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2176 EmitDeferred(); 2177 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2178 } 2179 } 2180 } 2181 2182 void CodeGenModule::EmitVTablesOpportunistically() { 2183 // Try to emit external vtables as available_externally if they have emitted 2184 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2185 // is not allowed to create new references to things that need to be emitted 2186 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2187 2188 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2189 && "Only emit opportunistic vtables with optimizations"); 2190 2191 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2192 assert(getVTables().isVTableExternal(RD) && 2193 "This queue should only contain external vtables"); 2194 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2195 VTables.GenerateClassData(RD); 2196 } 2197 OpportunisticVTables.clear(); 2198 } 2199 2200 void CodeGenModule::EmitGlobalAnnotations() { 2201 if (Annotations.empty()) 2202 return; 2203 2204 // Create a new global variable for the ConstantStruct in the Module. 2205 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2206 Annotations[0]->getType(), Annotations.size()), Annotations); 2207 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2208 llvm::GlobalValue::AppendingLinkage, 2209 Array, "llvm.global.annotations"); 2210 gv->setSection(AnnotationSection); 2211 } 2212 2213 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2214 llvm::Constant *&AStr = AnnotationStrings[Str]; 2215 if (AStr) 2216 return AStr; 2217 2218 // Not found yet, create a new global. 2219 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2220 auto *gv = 2221 new llvm::GlobalVariable(getModule(), s->getType(), true, 2222 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2223 gv->setSection(AnnotationSection); 2224 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2225 AStr = gv; 2226 return gv; 2227 } 2228 2229 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2230 SourceManager &SM = getContext().getSourceManager(); 2231 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2232 if (PLoc.isValid()) 2233 return EmitAnnotationString(PLoc.getFilename()); 2234 return EmitAnnotationString(SM.getBufferName(Loc)); 2235 } 2236 2237 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2238 SourceManager &SM = getContext().getSourceManager(); 2239 PresumedLoc PLoc = SM.getPresumedLoc(L); 2240 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2241 SM.getExpansionLineNumber(L); 2242 return llvm::ConstantInt::get(Int32Ty, LineNo); 2243 } 2244 2245 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2246 const AnnotateAttr *AA, 2247 SourceLocation L) { 2248 // Get the globals for file name, annotation, and the line number. 2249 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2250 *UnitGV = EmitAnnotationUnit(L), 2251 *LineNoCst = EmitAnnotationLineNo(L); 2252 2253 llvm::Constant *ASZeroGV = GV; 2254 if (GV->getAddressSpace() != 0) { 2255 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2256 GV, GV->getValueType()->getPointerTo(0)); 2257 } 2258 2259 // Create the ConstantStruct for the global annotation. 2260 llvm::Constant *Fields[4] = { 2261 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2262 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2263 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2264 LineNoCst 2265 }; 2266 return llvm::ConstantStruct::getAnon(Fields); 2267 } 2268 2269 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2270 llvm::GlobalValue *GV) { 2271 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2272 // Get the struct elements for these annotations. 2273 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2274 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2275 } 2276 2277 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2278 llvm::Function *Fn, 2279 SourceLocation Loc) const { 2280 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2281 // Blacklist by function name. 2282 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2283 return true; 2284 // Blacklist by location. 2285 if (Loc.isValid()) 2286 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2287 // If location is unknown, this may be a compiler-generated function. Assume 2288 // it's located in the main file. 2289 auto &SM = Context.getSourceManager(); 2290 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2291 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2292 } 2293 return false; 2294 } 2295 2296 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2297 SourceLocation Loc, QualType Ty, 2298 StringRef Category) const { 2299 // For now globals can be blacklisted only in ASan and KASan. 2300 const SanitizerMask EnabledAsanMask = 2301 LangOpts.Sanitize.Mask & 2302 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2303 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2304 SanitizerKind::MemTag); 2305 if (!EnabledAsanMask) 2306 return false; 2307 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2308 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2309 return true; 2310 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2311 return true; 2312 // Check global type. 2313 if (!Ty.isNull()) { 2314 // Drill down the array types: if global variable of a fixed type is 2315 // blacklisted, we also don't instrument arrays of them. 2316 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2317 Ty = AT->getElementType(); 2318 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2319 // We allow to blacklist only record types (classes, structs etc.) 2320 if (Ty->isRecordType()) { 2321 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2322 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2323 return true; 2324 } 2325 } 2326 return false; 2327 } 2328 2329 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2330 StringRef Category) const { 2331 const auto &XRayFilter = getContext().getXRayFilter(); 2332 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2333 auto Attr = ImbueAttr::NONE; 2334 if (Loc.isValid()) 2335 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2336 if (Attr == ImbueAttr::NONE) 2337 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2338 switch (Attr) { 2339 case ImbueAttr::NONE: 2340 return false; 2341 case ImbueAttr::ALWAYS: 2342 Fn->addFnAttr("function-instrument", "xray-always"); 2343 break; 2344 case ImbueAttr::ALWAYS_ARG1: 2345 Fn->addFnAttr("function-instrument", "xray-always"); 2346 Fn->addFnAttr("xray-log-args", "1"); 2347 break; 2348 case ImbueAttr::NEVER: 2349 Fn->addFnAttr("function-instrument", "xray-never"); 2350 break; 2351 } 2352 return true; 2353 } 2354 2355 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2356 // Never defer when EmitAllDecls is specified. 2357 if (LangOpts.EmitAllDecls) 2358 return true; 2359 2360 if (CodeGenOpts.KeepStaticConsts) { 2361 const auto *VD = dyn_cast<VarDecl>(Global); 2362 if (VD && VD->getType().isConstQualified() && 2363 VD->getStorageDuration() == SD_Static) 2364 return true; 2365 } 2366 2367 return getContext().DeclMustBeEmitted(Global); 2368 } 2369 2370 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2371 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2372 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2373 // Implicit template instantiations may change linkage if they are later 2374 // explicitly instantiated, so they should not be emitted eagerly. 2375 return false; 2376 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2377 // not emit them eagerly unless we sure that the function must be emitted on 2378 // the host. 2379 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2380 !LangOpts.OpenMPIsDevice && 2381 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2382 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2383 return false; 2384 } 2385 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2386 if (Context.getInlineVariableDefinitionKind(VD) == 2387 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2388 // A definition of an inline constexpr static data member may change 2389 // linkage later if it's redeclared outside the class. 2390 return false; 2391 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2392 // codegen for global variables, because they may be marked as threadprivate. 2393 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2394 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2395 !isTypeConstant(Global->getType(), false) && 2396 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2397 return false; 2398 2399 return true; 2400 } 2401 2402 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2403 const CXXUuidofExpr* E) { 2404 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2405 // well-formed. 2406 StringRef Uuid = E->getUuidStr(); 2407 std::string Name = "_GUID_" + Uuid.lower(); 2408 std::replace(Name.begin(), Name.end(), '-', '_'); 2409 2410 // The UUID descriptor should be pointer aligned. 2411 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2412 2413 // Look for an existing global. 2414 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2415 return ConstantAddress(GV, Alignment); 2416 2417 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2418 assert(Init && "failed to initialize as constant"); 2419 2420 auto *GV = new llvm::GlobalVariable( 2421 getModule(), Init->getType(), 2422 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2423 if (supportsCOMDAT()) 2424 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2425 setDSOLocal(GV); 2426 return ConstantAddress(GV, Alignment); 2427 } 2428 2429 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2430 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2431 assert(AA && "No alias?"); 2432 2433 CharUnits Alignment = getContext().getDeclAlign(VD); 2434 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2435 2436 // See if there is already something with the target's name in the module. 2437 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2438 if (Entry) { 2439 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2440 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2441 return ConstantAddress(Ptr, Alignment); 2442 } 2443 2444 llvm::Constant *Aliasee; 2445 if (isa<llvm::FunctionType>(DeclTy)) 2446 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2447 GlobalDecl(cast<FunctionDecl>(VD)), 2448 /*ForVTable=*/false); 2449 else 2450 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2451 llvm::PointerType::getUnqual(DeclTy), 2452 nullptr); 2453 2454 auto *F = cast<llvm::GlobalValue>(Aliasee); 2455 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2456 WeakRefReferences.insert(F); 2457 2458 return ConstantAddress(Aliasee, Alignment); 2459 } 2460 2461 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2462 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2463 2464 // Weak references don't produce any output by themselves. 2465 if (Global->hasAttr<WeakRefAttr>()) 2466 return; 2467 2468 // If this is an alias definition (which otherwise looks like a declaration) 2469 // emit it now. 2470 if (Global->hasAttr<AliasAttr>()) 2471 return EmitAliasDefinition(GD); 2472 2473 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2474 if (Global->hasAttr<IFuncAttr>()) 2475 return emitIFuncDefinition(GD); 2476 2477 // If this is a cpu_dispatch multiversion function, emit the resolver. 2478 if (Global->hasAttr<CPUDispatchAttr>()) 2479 return emitCPUDispatchDefinition(GD); 2480 2481 // If this is CUDA, be selective about which declarations we emit. 2482 if (LangOpts.CUDA) { 2483 if (LangOpts.CUDAIsDevice) { 2484 if (!Global->hasAttr<CUDADeviceAttr>() && 2485 !Global->hasAttr<CUDAGlobalAttr>() && 2486 !Global->hasAttr<CUDAConstantAttr>() && 2487 !Global->hasAttr<CUDASharedAttr>() && 2488 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>())) 2489 return; 2490 } else { 2491 // We need to emit host-side 'shadows' for all global 2492 // device-side variables because the CUDA runtime needs their 2493 // size and host-side address in order to provide access to 2494 // their device-side incarnations. 2495 2496 // So device-only functions are the only things we skip. 2497 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2498 Global->hasAttr<CUDADeviceAttr>()) 2499 return; 2500 2501 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2502 "Expected Variable or Function"); 2503 } 2504 } 2505 2506 if (LangOpts.OpenMP) { 2507 // If this is OpenMP, check if it is legal to emit this global normally. 2508 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2509 return; 2510 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2511 if (MustBeEmitted(Global)) 2512 EmitOMPDeclareReduction(DRD); 2513 return; 2514 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2515 if (MustBeEmitted(Global)) 2516 EmitOMPDeclareMapper(DMD); 2517 return; 2518 } 2519 } 2520 2521 // Ignore declarations, they will be emitted on their first use. 2522 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2523 // Forward declarations are emitted lazily on first use. 2524 if (!FD->doesThisDeclarationHaveABody()) { 2525 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2526 return; 2527 2528 StringRef MangledName = getMangledName(GD); 2529 2530 // Compute the function info and LLVM type. 2531 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2532 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2533 2534 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2535 /*DontDefer=*/false); 2536 return; 2537 } 2538 } else { 2539 const auto *VD = cast<VarDecl>(Global); 2540 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2541 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2542 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2543 if (LangOpts.OpenMP) { 2544 // Emit declaration of the must-be-emitted declare target variable. 2545 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2546 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2547 bool UnifiedMemoryEnabled = 2548 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2549 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2550 !UnifiedMemoryEnabled) { 2551 (void)GetAddrOfGlobalVar(VD); 2552 } else { 2553 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2554 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2555 UnifiedMemoryEnabled)) && 2556 "Link clause or to clause with unified memory expected."); 2557 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2558 } 2559 2560 return; 2561 } 2562 } 2563 // If this declaration may have caused an inline variable definition to 2564 // change linkage, make sure that it's emitted. 2565 if (Context.getInlineVariableDefinitionKind(VD) == 2566 ASTContext::InlineVariableDefinitionKind::Strong) 2567 GetAddrOfGlobalVar(VD); 2568 return; 2569 } 2570 } 2571 2572 // Defer code generation to first use when possible, e.g. if this is an inline 2573 // function. If the global must always be emitted, do it eagerly if possible 2574 // to benefit from cache locality. 2575 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2576 // Emit the definition if it can't be deferred. 2577 EmitGlobalDefinition(GD); 2578 return; 2579 } 2580 2581 // Check if this must be emitted as declare variant. 2582 if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime && 2583 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false)) 2584 return; 2585 2586 // If we're deferring emission of a C++ variable with an 2587 // initializer, remember the order in which it appeared in the file. 2588 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2589 cast<VarDecl>(Global)->hasInit()) { 2590 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2591 CXXGlobalInits.push_back(nullptr); 2592 } 2593 2594 StringRef MangledName = getMangledName(GD); 2595 if (GetGlobalValue(MangledName) != nullptr) { 2596 // The value has already been used and should therefore be emitted. 2597 addDeferredDeclToEmit(GD); 2598 } else if (MustBeEmitted(Global)) { 2599 // The value must be emitted, but cannot be emitted eagerly. 2600 assert(!MayBeEmittedEagerly(Global)); 2601 addDeferredDeclToEmit(GD); 2602 } else { 2603 // Otherwise, remember that we saw a deferred decl with this name. The 2604 // first use of the mangled name will cause it to move into 2605 // DeferredDeclsToEmit. 2606 DeferredDecls[MangledName] = GD; 2607 } 2608 } 2609 2610 // Check if T is a class type with a destructor that's not dllimport. 2611 static bool HasNonDllImportDtor(QualType T) { 2612 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2613 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2614 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2615 return true; 2616 2617 return false; 2618 } 2619 2620 namespace { 2621 struct FunctionIsDirectlyRecursive 2622 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2623 const StringRef Name; 2624 const Builtin::Context &BI; 2625 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2626 : Name(N), BI(C) {} 2627 2628 bool VisitCallExpr(const CallExpr *E) { 2629 const FunctionDecl *FD = E->getDirectCallee(); 2630 if (!FD) 2631 return false; 2632 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2633 if (Attr && Name == Attr->getLabel()) 2634 return true; 2635 unsigned BuiltinID = FD->getBuiltinID(); 2636 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2637 return false; 2638 StringRef BuiltinName = BI.getName(BuiltinID); 2639 if (BuiltinName.startswith("__builtin_") && 2640 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2641 return true; 2642 } 2643 return false; 2644 } 2645 2646 bool VisitStmt(const Stmt *S) { 2647 for (const Stmt *Child : S->children()) 2648 if (Child && this->Visit(Child)) 2649 return true; 2650 return false; 2651 } 2652 }; 2653 2654 // Make sure we're not referencing non-imported vars or functions. 2655 struct DLLImportFunctionVisitor 2656 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2657 bool SafeToInline = true; 2658 2659 bool shouldVisitImplicitCode() const { return true; } 2660 2661 bool VisitVarDecl(VarDecl *VD) { 2662 if (VD->getTLSKind()) { 2663 // A thread-local variable cannot be imported. 2664 SafeToInline = false; 2665 return SafeToInline; 2666 } 2667 2668 // A variable definition might imply a destructor call. 2669 if (VD->isThisDeclarationADefinition()) 2670 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2671 2672 return SafeToInline; 2673 } 2674 2675 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2676 if (const auto *D = E->getTemporary()->getDestructor()) 2677 SafeToInline = D->hasAttr<DLLImportAttr>(); 2678 return SafeToInline; 2679 } 2680 2681 bool VisitDeclRefExpr(DeclRefExpr *E) { 2682 ValueDecl *VD = E->getDecl(); 2683 if (isa<FunctionDecl>(VD)) 2684 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2685 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2686 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2687 return SafeToInline; 2688 } 2689 2690 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2691 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2692 return SafeToInline; 2693 } 2694 2695 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2696 CXXMethodDecl *M = E->getMethodDecl(); 2697 if (!M) { 2698 // Call through a pointer to member function. This is safe to inline. 2699 SafeToInline = true; 2700 } else { 2701 SafeToInline = M->hasAttr<DLLImportAttr>(); 2702 } 2703 return SafeToInline; 2704 } 2705 2706 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2707 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2708 return SafeToInline; 2709 } 2710 2711 bool VisitCXXNewExpr(CXXNewExpr *E) { 2712 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2713 return SafeToInline; 2714 } 2715 }; 2716 } 2717 2718 // isTriviallyRecursive - Check if this function calls another 2719 // decl that, because of the asm attribute or the other decl being a builtin, 2720 // ends up pointing to itself. 2721 bool 2722 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2723 StringRef Name; 2724 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2725 // asm labels are a special kind of mangling we have to support. 2726 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2727 if (!Attr) 2728 return false; 2729 Name = Attr->getLabel(); 2730 } else { 2731 Name = FD->getName(); 2732 } 2733 2734 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2735 const Stmt *Body = FD->getBody(); 2736 return Body ? Walker.Visit(Body) : false; 2737 } 2738 2739 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2740 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2741 return true; 2742 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2743 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2744 return false; 2745 2746 if (F->hasAttr<DLLImportAttr>()) { 2747 // Check whether it would be safe to inline this dllimport function. 2748 DLLImportFunctionVisitor Visitor; 2749 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2750 if (!Visitor.SafeToInline) 2751 return false; 2752 2753 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2754 // Implicit destructor invocations aren't captured in the AST, so the 2755 // check above can't see them. Check for them manually here. 2756 for (const Decl *Member : Dtor->getParent()->decls()) 2757 if (isa<FieldDecl>(Member)) 2758 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2759 return false; 2760 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2761 if (HasNonDllImportDtor(B.getType())) 2762 return false; 2763 } 2764 } 2765 2766 // PR9614. Avoid cases where the source code is lying to us. An available 2767 // externally function should have an equivalent function somewhere else, 2768 // but a function that calls itself is clearly not equivalent to the real 2769 // implementation. 2770 // This happens in glibc's btowc and in some configure checks. 2771 return !isTriviallyRecursive(F); 2772 } 2773 2774 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2775 return CodeGenOpts.OptimizationLevel > 0; 2776 } 2777 2778 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2779 llvm::GlobalValue *GV) { 2780 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2781 2782 if (FD->isCPUSpecificMultiVersion()) { 2783 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2784 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2785 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2786 // Requires multiple emits. 2787 } else 2788 EmitGlobalFunctionDefinition(GD, GV); 2789 } 2790 2791 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition( 2792 GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) { 2793 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2794 OpenMPRuntime && "Expected OpenMP device mode."); 2795 const auto *D = cast<FunctionDecl>(OldGD.getDecl()); 2796 2797 // Compute the function info and LLVM type. 2798 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD); 2799 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2800 2801 // Get or create the prototype for the function. 2802 if (!GV || (GV->getType()->getElementType() != Ty)) { 2803 GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction( 2804 getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false, 2805 /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(), 2806 ForDefinition)); 2807 SetFunctionAttributes(OldGD, cast<llvm::Function>(GV), 2808 /*IsIncompleteFunction=*/false, 2809 /*IsThunk=*/false); 2810 } 2811 // We need to set linkage and visibility on the function before 2812 // generating code for it because various parts of IR generation 2813 // want to propagate this information down (e.g. to local static 2814 // declarations). 2815 auto *Fn = cast<llvm::Function>(GV); 2816 setFunctionLinkage(OldGD, Fn); 2817 2818 // FIXME: this is redundant with part of 2819 // setFunctionDefinitionAttributes 2820 setGVProperties(Fn, OldGD); 2821 2822 MaybeHandleStaticInExternC(D, Fn); 2823 2824 maybeSetTrivialComdat(*D, *Fn); 2825 2826 CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI); 2827 2828 setNonAliasAttributes(OldGD, Fn); 2829 SetLLVMFunctionAttributesForDefinition(D, Fn); 2830 2831 if (D->hasAttr<AnnotateAttr>()) 2832 AddGlobalAnnotations(D, Fn); 2833 } 2834 2835 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2836 const auto *D = cast<ValueDecl>(GD.getDecl()); 2837 2838 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2839 Context.getSourceManager(), 2840 "Generating code for declaration"); 2841 2842 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2843 // At -O0, don't generate IR for functions with available_externally 2844 // linkage. 2845 if (!shouldEmitFunction(GD)) 2846 return; 2847 2848 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2849 std::string Name; 2850 llvm::raw_string_ostream OS(Name); 2851 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2852 /*Qualified=*/true); 2853 return Name; 2854 }); 2855 2856 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2857 // Make sure to emit the definition(s) before we emit the thunks. 2858 // This is necessary for the generation of certain thunks. 2859 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2860 ABI->emitCXXStructor(GD); 2861 else if (FD->isMultiVersion()) 2862 EmitMultiVersionFunctionDefinition(GD, GV); 2863 else 2864 EmitGlobalFunctionDefinition(GD, GV); 2865 2866 if (Method->isVirtual()) 2867 getVTables().EmitThunks(GD); 2868 2869 return; 2870 } 2871 2872 if (FD->isMultiVersion()) 2873 return EmitMultiVersionFunctionDefinition(GD, GV); 2874 return EmitGlobalFunctionDefinition(GD, GV); 2875 } 2876 2877 if (const auto *VD = dyn_cast<VarDecl>(D)) 2878 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2879 2880 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2881 } 2882 2883 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2884 llvm::Function *NewFn); 2885 2886 static unsigned 2887 TargetMVPriority(const TargetInfo &TI, 2888 const CodeGenFunction::MultiVersionResolverOption &RO) { 2889 unsigned Priority = 0; 2890 for (StringRef Feat : RO.Conditions.Features) 2891 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2892 2893 if (!RO.Conditions.Architecture.empty()) 2894 Priority = std::max( 2895 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2896 return Priority; 2897 } 2898 2899 void CodeGenModule::emitMultiVersionFunctions() { 2900 for (GlobalDecl GD : MultiVersionFuncs) { 2901 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2902 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2903 getContext().forEachMultiversionedFunctionVersion( 2904 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2905 GlobalDecl CurGD{ 2906 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2907 StringRef MangledName = getMangledName(CurGD); 2908 llvm::Constant *Func = GetGlobalValue(MangledName); 2909 if (!Func) { 2910 if (CurFD->isDefined()) { 2911 EmitGlobalFunctionDefinition(CurGD, nullptr); 2912 Func = GetGlobalValue(MangledName); 2913 } else { 2914 const CGFunctionInfo &FI = 2915 getTypes().arrangeGlobalDeclaration(GD); 2916 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2917 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2918 /*DontDefer=*/false, ForDefinition); 2919 } 2920 assert(Func && "This should have just been created"); 2921 } 2922 2923 const auto *TA = CurFD->getAttr<TargetAttr>(); 2924 llvm::SmallVector<StringRef, 8> Feats; 2925 TA->getAddedFeatures(Feats); 2926 2927 Options.emplace_back(cast<llvm::Function>(Func), 2928 TA->getArchitecture(), Feats); 2929 }); 2930 2931 llvm::Function *ResolverFunc; 2932 const TargetInfo &TI = getTarget(); 2933 2934 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 2935 ResolverFunc = cast<llvm::Function>( 2936 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2937 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2938 } else { 2939 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2940 } 2941 2942 if (supportsCOMDAT()) 2943 ResolverFunc->setComdat( 2944 getModule().getOrInsertComdat(ResolverFunc->getName())); 2945 2946 llvm::stable_sort( 2947 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2948 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2949 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2950 }); 2951 CodeGenFunction CGF(*this); 2952 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2953 } 2954 } 2955 2956 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2957 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2958 assert(FD && "Not a FunctionDecl?"); 2959 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2960 assert(DD && "Not a cpu_dispatch Function?"); 2961 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2962 2963 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2964 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2965 DeclTy = getTypes().GetFunctionType(FInfo); 2966 } 2967 2968 StringRef ResolverName = getMangledName(GD); 2969 2970 llvm::Type *ResolverType; 2971 GlobalDecl ResolverGD; 2972 if (getTarget().supportsIFunc()) 2973 ResolverType = llvm::FunctionType::get( 2974 llvm::PointerType::get(DeclTy, 2975 Context.getTargetAddressSpace(FD->getType())), 2976 false); 2977 else { 2978 ResolverType = DeclTy; 2979 ResolverGD = GD; 2980 } 2981 2982 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2983 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2984 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2985 if (supportsCOMDAT()) 2986 ResolverFunc->setComdat( 2987 getModule().getOrInsertComdat(ResolverFunc->getName())); 2988 2989 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2990 const TargetInfo &Target = getTarget(); 2991 unsigned Index = 0; 2992 for (const IdentifierInfo *II : DD->cpus()) { 2993 // Get the name of the target function so we can look it up/create it. 2994 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2995 getCPUSpecificMangling(*this, II->getName()); 2996 2997 llvm::Constant *Func = GetGlobalValue(MangledName); 2998 2999 if (!Func) { 3000 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3001 if (ExistingDecl.getDecl() && 3002 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3003 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3004 Func = GetGlobalValue(MangledName); 3005 } else { 3006 if (!ExistingDecl.getDecl()) 3007 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3008 3009 Func = GetOrCreateLLVMFunction( 3010 MangledName, DeclTy, ExistingDecl, 3011 /*ForVTable=*/false, /*DontDefer=*/true, 3012 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3013 } 3014 } 3015 3016 llvm::SmallVector<StringRef, 32> Features; 3017 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3018 llvm::transform(Features, Features.begin(), 3019 [](StringRef Str) { return Str.substr(1); }); 3020 Features.erase(std::remove_if( 3021 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3022 return !Target.validateCpuSupports(Feat); 3023 }), Features.end()); 3024 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3025 ++Index; 3026 } 3027 3028 llvm::sort( 3029 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3030 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3031 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3032 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3033 }); 3034 3035 // If the list contains multiple 'default' versions, such as when it contains 3036 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3037 // always run on at least a 'pentium'). We do this by deleting the 'least 3038 // advanced' (read, lowest mangling letter). 3039 while (Options.size() > 1 && 3040 CodeGenFunction::GetX86CpuSupportsMask( 3041 (Options.end() - 2)->Conditions.Features) == 0) { 3042 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3043 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3044 if (LHSName.compare(RHSName) < 0) 3045 Options.erase(Options.end() - 2); 3046 else 3047 Options.erase(Options.end() - 1); 3048 } 3049 3050 CodeGenFunction CGF(*this); 3051 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3052 3053 if (getTarget().supportsIFunc()) { 3054 std::string AliasName = getMangledNameImpl( 3055 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3056 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3057 if (!AliasFunc) { 3058 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3059 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3060 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3061 auto *GA = llvm::GlobalAlias::create( 3062 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3063 GA->setLinkage(llvm::Function::WeakODRLinkage); 3064 SetCommonAttributes(GD, GA); 3065 } 3066 } 3067 } 3068 3069 /// If a dispatcher for the specified mangled name is not in the module, create 3070 /// and return an llvm Function with the specified type. 3071 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3072 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3073 std::string MangledName = 3074 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3075 3076 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3077 // a separate resolver). 3078 std::string ResolverName = MangledName; 3079 if (getTarget().supportsIFunc()) 3080 ResolverName += ".ifunc"; 3081 else if (FD->isTargetMultiVersion()) 3082 ResolverName += ".resolver"; 3083 3084 // If this already exists, just return that one. 3085 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3086 return ResolverGV; 3087 3088 // Since this is the first time we've created this IFunc, make sure 3089 // that we put this multiversioned function into the list to be 3090 // replaced later if necessary (target multiversioning only). 3091 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3092 MultiVersionFuncs.push_back(GD); 3093 3094 if (getTarget().supportsIFunc()) { 3095 llvm::Type *ResolverType = llvm::FunctionType::get( 3096 llvm::PointerType::get( 3097 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3098 false); 3099 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3100 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3101 /*ForVTable=*/false); 3102 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3103 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3104 GIF->setName(ResolverName); 3105 SetCommonAttributes(FD, GIF); 3106 3107 return GIF; 3108 } 3109 3110 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3111 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3112 assert(isa<llvm::GlobalValue>(Resolver) && 3113 "Resolver should be created for the first time"); 3114 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3115 return Resolver; 3116 } 3117 3118 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3119 /// module, create and return an llvm Function with the specified type. If there 3120 /// is something in the module with the specified name, return it potentially 3121 /// bitcasted to the right type. 3122 /// 3123 /// If D is non-null, it specifies a decl that correspond to this. This is used 3124 /// to set the attributes on the function when it is first created. 3125 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3126 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3127 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3128 ForDefinition_t IsForDefinition) { 3129 const Decl *D = GD.getDecl(); 3130 3131 // Any attempts to use a MultiVersion function should result in retrieving 3132 // the iFunc instead. Name Mangling will handle the rest of the changes. 3133 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3134 // For the device mark the function as one that should be emitted. 3135 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3136 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3137 !DontDefer && !IsForDefinition) { 3138 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3139 GlobalDecl GDDef; 3140 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3141 GDDef = GlobalDecl(CD, GD.getCtorType()); 3142 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3143 GDDef = GlobalDecl(DD, GD.getDtorType()); 3144 else 3145 GDDef = GlobalDecl(FDDef); 3146 EmitGlobal(GDDef); 3147 } 3148 } 3149 // Check if this must be emitted as declare variant and emit reference to 3150 // the the declare variant function. 3151 if (LangOpts.OpenMP && OpenMPRuntime) 3152 (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true); 3153 3154 if (FD->isMultiVersion()) { 3155 const auto *TA = FD->getAttr<TargetAttr>(); 3156 if (TA && TA->isDefaultVersion()) 3157 UpdateMultiVersionNames(GD, FD); 3158 if (!IsForDefinition) 3159 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3160 } 3161 } 3162 3163 // Lookup the entry, lazily creating it if necessary. 3164 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3165 if (Entry) { 3166 if (WeakRefReferences.erase(Entry)) { 3167 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3168 if (FD && !FD->hasAttr<WeakAttr>()) 3169 Entry->setLinkage(llvm::Function::ExternalLinkage); 3170 } 3171 3172 // Handle dropped DLL attributes. 3173 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3174 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3175 setDSOLocal(Entry); 3176 } 3177 3178 // If there are two attempts to define the same mangled name, issue an 3179 // error. 3180 if (IsForDefinition && !Entry->isDeclaration()) { 3181 GlobalDecl OtherGD; 3182 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3183 // to make sure that we issue an error only once. 3184 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3185 (GD.getCanonicalDecl().getDecl() != 3186 OtherGD.getCanonicalDecl().getDecl()) && 3187 DiagnosedConflictingDefinitions.insert(GD).second) { 3188 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3189 << MangledName; 3190 getDiags().Report(OtherGD.getDecl()->getLocation(), 3191 diag::note_previous_definition); 3192 } 3193 } 3194 3195 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3196 (Entry->getType()->getElementType() == Ty)) { 3197 return Entry; 3198 } 3199 3200 // Make sure the result is of the correct type. 3201 // (If function is requested for a definition, we always need to create a new 3202 // function, not just return a bitcast.) 3203 if (!IsForDefinition) 3204 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3205 } 3206 3207 // This function doesn't have a complete type (for example, the return 3208 // type is an incomplete struct). Use a fake type instead, and make 3209 // sure not to try to set attributes. 3210 bool IsIncompleteFunction = false; 3211 3212 llvm::FunctionType *FTy; 3213 if (isa<llvm::FunctionType>(Ty)) { 3214 FTy = cast<llvm::FunctionType>(Ty); 3215 } else { 3216 FTy = llvm::FunctionType::get(VoidTy, false); 3217 IsIncompleteFunction = true; 3218 } 3219 3220 llvm::Function *F = 3221 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3222 Entry ? StringRef() : MangledName, &getModule()); 3223 3224 // If we already created a function with the same mangled name (but different 3225 // type) before, take its name and add it to the list of functions to be 3226 // replaced with F at the end of CodeGen. 3227 // 3228 // This happens if there is a prototype for a function (e.g. "int f()") and 3229 // then a definition of a different type (e.g. "int f(int x)"). 3230 if (Entry) { 3231 F->takeName(Entry); 3232 3233 // This might be an implementation of a function without a prototype, in 3234 // which case, try to do special replacement of calls which match the new 3235 // prototype. The really key thing here is that we also potentially drop 3236 // arguments from the call site so as to make a direct call, which makes the 3237 // inliner happier and suppresses a number of optimizer warnings (!) about 3238 // dropping arguments. 3239 if (!Entry->use_empty()) { 3240 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3241 Entry->removeDeadConstantUsers(); 3242 } 3243 3244 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3245 F, Entry->getType()->getElementType()->getPointerTo()); 3246 addGlobalValReplacement(Entry, BC); 3247 } 3248 3249 assert(F->getName() == MangledName && "name was uniqued!"); 3250 if (D) 3251 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3252 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3253 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3254 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3255 } 3256 3257 if (!DontDefer) { 3258 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3259 // each other bottoming out with the base dtor. Therefore we emit non-base 3260 // dtors on usage, even if there is no dtor definition in the TU. 3261 if (D && isa<CXXDestructorDecl>(D) && 3262 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3263 GD.getDtorType())) 3264 addDeferredDeclToEmit(GD); 3265 3266 // This is the first use or definition of a mangled name. If there is a 3267 // deferred decl with this name, remember that we need to emit it at the end 3268 // of the file. 3269 auto DDI = DeferredDecls.find(MangledName); 3270 if (DDI != DeferredDecls.end()) { 3271 // Move the potentially referenced deferred decl to the 3272 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3273 // don't need it anymore). 3274 addDeferredDeclToEmit(DDI->second); 3275 DeferredDecls.erase(DDI); 3276 3277 // Otherwise, there are cases we have to worry about where we're 3278 // using a declaration for which we must emit a definition but where 3279 // we might not find a top-level definition: 3280 // - member functions defined inline in their classes 3281 // - friend functions defined inline in some class 3282 // - special member functions with implicit definitions 3283 // If we ever change our AST traversal to walk into class methods, 3284 // this will be unnecessary. 3285 // 3286 // We also don't emit a definition for a function if it's going to be an 3287 // entry in a vtable, unless it's already marked as used. 3288 } else if (getLangOpts().CPlusPlus && D) { 3289 // Look for a declaration that's lexically in a record. 3290 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3291 FD = FD->getPreviousDecl()) { 3292 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3293 if (FD->doesThisDeclarationHaveABody()) { 3294 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3295 break; 3296 } 3297 } 3298 } 3299 } 3300 } 3301 3302 // Make sure the result is of the requested type. 3303 if (!IsIncompleteFunction) { 3304 assert(F->getType()->getElementType() == Ty); 3305 return F; 3306 } 3307 3308 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3309 return llvm::ConstantExpr::getBitCast(F, PTy); 3310 } 3311 3312 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3313 /// non-null, then this function will use the specified type if it has to 3314 /// create it (this occurs when we see a definition of the function). 3315 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3316 llvm::Type *Ty, 3317 bool ForVTable, 3318 bool DontDefer, 3319 ForDefinition_t IsForDefinition) { 3320 // If there was no specific requested type, just convert it now. 3321 if (!Ty) { 3322 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3323 Ty = getTypes().ConvertType(FD->getType()); 3324 } 3325 3326 // Devirtualized destructor calls may come through here instead of via 3327 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3328 // of the complete destructor when necessary. 3329 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3330 if (getTarget().getCXXABI().isMicrosoft() && 3331 GD.getDtorType() == Dtor_Complete && 3332 DD->getParent()->getNumVBases() == 0) 3333 GD = GlobalDecl(DD, Dtor_Base); 3334 } 3335 3336 StringRef MangledName = getMangledName(GD); 3337 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3338 /*IsThunk=*/false, llvm::AttributeList(), 3339 IsForDefinition); 3340 } 3341 3342 static const FunctionDecl * 3343 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3344 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3345 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3346 3347 IdentifierInfo &CII = C.Idents.get(Name); 3348 for (const auto &Result : DC->lookup(&CII)) 3349 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3350 return FD; 3351 3352 if (!C.getLangOpts().CPlusPlus) 3353 return nullptr; 3354 3355 // Demangle the premangled name from getTerminateFn() 3356 IdentifierInfo &CXXII = 3357 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3358 ? C.Idents.get("terminate") 3359 : C.Idents.get(Name); 3360 3361 for (const auto &N : {"__cxxabiv1", "std"}) { 3362 IdentifierInfo &NS = C.Idents.get(N); 3363 for (const auto &Result : DC->lookup(&NS)) { 3364 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3365 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3366 for (const auto &Result : LSD->lookup(&NS)) 3367 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3368 break; 3369 3370 if (ND) 3371 for (const auto &Result : ND->lookup(&CXXII)) 3372 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3373 return FD; 3374 } 3375 } 3376 3377 return nullptr; 3378 } 3379 3380 /// CreateRuntimeFunction - Create a new runtime function with the specified 3381 /// type and name. 3382 llvm::FunctionCallee 3383 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3384 llvm::AttributeList ExtraAttrs, bool Local, 3385 bool AssumeConvergent) { 3386 if (AssumeConvergent) { 3387 ExtraAttrs = 3388 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3389 llvm::Attribute::Convergent); 3390 } 3391 3392 llvm::Constant *C = 3393 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3394 /*DontDefer=*/false, /*IsThunk=*/false, 3395 ExtraAttrs); 3396 3397 if (auto *F = dyn_cast<llvm::Function>(C)) { 3398 if (F->empty()) { 3399 F->setCallingConv(getRuntimeCC()); 3400 3401 // In Windows Itanium environments, try to mark runtime functions 3402 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3403 // will link their standard library statically or dynamically. Marking 3404 // functions imported when they are not imported can cause linker errors 3405 // and warnings. 3406 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3407 !getCodeGenOpts().LTOVisibilityPublicStd) { 3408 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3409 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3410 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3411 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3412 } 3413 } 3414 setDSOLocal(F); 3415 } 3416 } 3417 3418 return {FTy, C}; 3419 } 3420 3421 /// isTypeConstant - Determine whether an object of this type can be emitted 3422 /// as a constant. 3423 /// 3424 /// If ExcludeCtor is true, the duration when the object's constructor runs 3425 /// will not be considered. The caller will need to verify that the object is 3426 /// not written to during its construction. 3427 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3428 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3429 return false; 3430 3431 if (Context.getLangOpts().CPlusPlus) { 3432 if (const CXXRecordDecl *Record 3433 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3434 return ExcludeCtor && !Record->hasMutableFields() && 3435 Record->hasTrivialDestructor(); 3436 } 3437 3438 return true; 3439 } 3440 3441 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3442 /// create and return an llvm GlobalVariable with the specified type. If there 3443 /// is something in the module with the specified name, return it potentially 3444 /// bitcasted to the right type. 3445 /// 3446 /// If D is non-null, it specifies a decl that correspond to this. This is used 3447 /// to set the attributes on the global when it is first created. 3448 /// 3449 /// If IsForDefinition is true, it is guaranteed that an actual global with 3450 /// type Ty will be returned, not conversion of a variable with the same 3451 /// mangled name but some other type. 3452 llvm::Constant * 3453 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3454 llvm::PointerType *Ty, 3455 const VarDecl *D, 3456 ForDefinition_t IsForDefinition) { 3457 // Lookup the entry, lazily creating it if necessary. 3458 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3459 if (Entry) { 3460 if (WeakRefReferences.erase(Entry)) { 3461 if (D && !D->hasAttr<WeakAttr>()) 3462 Entry->setLinkage(llvm::Function::ExternalLinkage); 3463 } 3464 3465 // Handle dropped DLL attributes. 3466 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3467 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3468 3469 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3470 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3471 3472 if (Entry->getType() == Ty) 3473 return Entry; 3474 3475 // If there are two attempts to define the same mangled name, issue an 3476 // error. 3477 if (IsForDefinition && !Entry->isDeclaration()) { 3478 GlobalDecl OtherGD; 3479 const VarDecl *OtherD; 3480 3481 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3482 // to make sure that we issue an error only once. 3483 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3484 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3485 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3486 OtherD->hasInit() && 3487 DiagnosedConflictingDefinitions.insert(D).second) { 3488 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3489 << MangledName; 3490 getDiags().Report(OtherGD.getDecl()->getLocation(), 3491 diag::note_previous_definition); 3492 } 3493 } 3494 3495 // Make sure the result is of the correct type. 3496 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3497 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3498 3499 // (If global is requested for a definition, we always need to create a new 3500 // global, not just return a bitcast.) 3501 if (!IsForDefinition) 3502 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3503 } 3504 3505 auto AddrSpace = GetGlobalVarAddressSpace(D); 3506 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3507 3508 auto *GV = new llvm::GlobalVariable( 3509 getModule(), Ty->getElementType(), false, 3510 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3511 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3512 3513 // If we already created a global with the same mangled name (but different 3514 // type) before, take its name and remove it from its parent. 3515 if (Entry) { 3516 GV->takeName(Entry); 3517 3518 if (!Entry->use_empty()) { 3519 llvm::Constant *NewPtrForOldDecl = 3520 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3521 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3522 } 3523 3524 Entry->eraseFromParent(); 3525 } 3526 3527 // This is the first use or definition of a mangled name. If there is a 3528 // deferred decl with this name, remember that we need to emit it at the end 3529 // of the file. 3530 auto DDI = DeferredDecls.find(MangledName); 3531 if (DDI != DeferredDecls.end()) { 3532 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3533 // list, and remove it from DeferredDecls (since we don't need it anymore). 3534 addDeferredDeclToEmit(DDI->second); 3535 DeferredDecls.erase(DDI); 3536 } 3537 3538 // Handle things which are present even on external declarations. 3539 if (D) { 3540 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3541 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3542 3543 // FIXME: This code is overly simple and should be merged with other global 3544 // handling. 3545 GV->setConstant(isTypeConstant(D->getType(), false)); 3546 3547 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3548 3549 setLinkageForGV(GV, D); 3550 3551 if (D->getTLSKind()) { 3552 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3553 CXXThreadLocals.push_back(D); 3554 setTLSMode(GV, *D); 3555 } 3556 3557 setGVProperties(GV, D); 3558 3559 // If required by the ABI, treat declarations of static data members with 3560 // inline initializers as definitions. 3561 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3562 EmitGlobalVarDefinition(D); 3563 } 3564 3565 // Emit section information for extern variables. 3566 if (D->hasExternalStorage()) { 3567 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3568 GV->setSection(SA->getName()); 3569 } 3570 3571 // Handle XCore specific ABI requirements. 3572 if (getTriple().getArch() == llvm::Triple::xcore && 3573 D->getLanguageLinkage() == CLanguageLinkage && 3574 D->getType().isConstant(Context) && 3575 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3576 GV->setSection(".cp.rodata"); 3577 3578 // Check if we a have a const declaration with an initializer, we may be 3579 // able to emit it as available_externally to expose it's value to the 3580 // optimizer. 3581 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3582 D->getType().isConstQualified() && !GV->hasInitializer() && 3583 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3584 const auto *Record = 3585 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3586 bool HasMutableFields = Record && Record->hasMutableFields(); 3587 if (!HasMutableFields) { 3588 const VarDecl *InitDecl; 3589 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3590 if (InitExpr) { 3591 ConstantEmitter emitter(*this); 3592 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3593 if (Init) { 3594 auto *InitType = Init->getType(); 3595 if (GV->getType()->getElementType() != InitType) { 3596 // The type of the initializer does not match the definition. 3597 // This happens when an initializer has a different type from 3598 // the type of the global (because of padding at the end of a 3599 // structure for instance). 3600 GV->setName(StringRef()); 3601 // Make a new global with the correct type, this is now guaranteed 3602 // to work. 3603 auto *NewGV = cast<llvm::GlobalVariable>( 3604 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3605 ->stripPointerCasts()); 3606 3607 // Erase the old global, since it is no longer used. 3608 GV->eraseFromParent(); 3609 GV = NewGV; 3610 } else { 3611 GV->setInitializer(Init); 3612 GV->setConstant(true); 3613 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3614 } 3615 emitter.finalize(GV); 3616 } 3617 } 3618 } 3619 } 3620 } 3621 3622 if (GV->isDeclaration()) 3623 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3624 3625 LangAS ExpectedAS = 3626 D ? D->getType().getAddressSpace() 3627 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3628 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3629 Ty->getPointerAddressSpace()); 3630 if (AddrSpace != ExpectedAS) 3631 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3632 ExpectedAS, Ty); 3633 3634 return GV; 3635 } 3636 3637 llvm::Constant * 3638 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3639 ForDefinition_t IsForDefinition) { 3640 const Decl *D = GD.getDecl(); 3641 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3642 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3643 /*DontDefer=*/false, IsForDefinition); 3644 else if (isa<CXXMethodDecl>(D)) { 3645 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3646 cast<CXXMethodDecl>(D)); 3647 auto Ty = getTypes().GetFunctionType(*FInfo); 3648 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3649 IsForDefinition); 3650 } else if (isa<FunctionDecl>(D)) { 3651 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3652 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3653 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3654 IsForDefinition); 3655 } else 3656 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3657 IsForDefinition); 3658 } 3659 3660 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3661 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3662 unsigned Alignment) { 3663 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3664 llvm::GlobalVariable *OldGV = nullptr; 3665 3666 if (GV) { 3667 // Check if the variable has the right type. 3668 if (GV->getType()->getElementType() == Ty) 3669 return GV; 3670 3671 // Because C++ name mangling, the only way we can end up with an already 3672 // existing global with the same name is if it has been declared extern "C". 3673 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3674 OldGV = GV; 3675 } 3676 3677 // Create a new variable. 3678 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3679 Linkage, nullptr, Name); 3680 3681 if (OldGV) { 3682 // Replace occurrences of the old variable if needed. 3683 GV->takeName(OldGV); 3684 3685 if (!OldGV->use_empty()) { 3686 llvm::Constant *NewPtrForOldDecl = 3687 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3688 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3689 } 3690 3691 OldGV->eraseFromParent(); 3692 } 3693 3694 if (supportsCOMDAT() && GV->isWeakForLinker() && 3695 !GV->hasAvailableExternallyLinkage()) 3696 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3697 3698 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3699 3700 return GV; 3701 } 3702 3703 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3704 /// given global variable. If Ty is non-null and if the global doesn't exist, 3705 /// then it will be created with the specified type instead of whatever the 3706 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3707 /// that an actual global with type Ty will be returned, not conversion of a 3708 /// variable with the same mangled name but some other type. 3709 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3710 llvm::Type *Ty, 3711 ForDefinition_t IsForDefinition) { 3712 assert(D->hasGlobalStorage() && "Not a global variable"); 3713 QualType ASTTy = D->getType(); 3714 if (!Ty) 3715 Ty = getTypes().ConvertTypeForMem(ASTTy); 3716 3717 llvm::PointerType *PTy = 3718 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3719 3720 StringRef MangledName = getMangledName(D); 3721 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3722 } 3723 3724 /// CreateRuntimeVariable - Create a new runtime global variable with the 3725 /// specified type and name. 3726 llvm::Constant * 3727 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3728 StringRef Name) { 3729 auto PtrTy = 3730 getContext().getLangOpts().OpenCL 3731 ? llvm::PointerType::get( 3732 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3733 : llvm::PointerType::getUnqual(Ty); 3734 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3735 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3736 return Ret; 3737 } 3738 3739 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3740 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3741 3742 StringRef MangledName = getMangledName(D); 3743 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3744 3745 // We already have a definition, not declaration, with the same mangled name. 3746 // Emitting of declaration is not required (and actually overwrites emitted 3747 // definition). 3748 if (GV && !GV->isDeclaration()) 3749 return; 3750 3751 // If we have not seen a reference to this variable yet, place it into the 3752 // deferred declarations table to be emitted if needed later. 3753 if (!MustBeEmitted(D) && !GV) { 3754 DeferredDecls[MangledName] = D; 3755 return; 3756 } 3757 3758 // The tentative definition is the only definition. 3759 EmitGlobalVarDefinition(D); 3760 } 3761 3762 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3763 EmitExternalVarDeclaration(D); 3764 } 3765 3766 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3767 return Context.toCharUnitsFromBits( 3768 getDataLayout().getTypeStoreSizeInBits(Ty)); 3769 } 3770 3771 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3772 LangAS AddrSpace = LangAS::Default; 3773 if (LangOpts.OpenCL) { 3774 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3775 assert(AddrSpace == LangAS::opencl_global || 3776 AddrSpace == LangAS::opencl_constant || 3777 AddrSpace == LangAS::opencl_local || 3778 AddrSpace >= LangAS::FirstTargetAddressSpace); 3779 return AddrSpace; 3780 } 3781 3782 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3783 if (D && D->hasAttr<CUDAConstantAttr>()) 3784 return LangAS::cuda_constant; 3785 else if (D && D->hasAttr<CUDASharedAttr>()) 3786 return LangAS::cuda_shared; 3787 else if (D && D->hasAttr<CUDADeviceAttr>()) 3788 return LangAS::cuda_device; 3789 else if (D && D->getType().isConstQualified()) 3790 return LangAS::cuda_constant; 3791 else 3792 return LangAS::cuda_device; 3793 } 3794 3795 if (LangOpts.OpenMP) { 3796 LangAS AS; 3797 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3798 return AS; 3799 } 3800 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3801 } 3802 3803 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3804 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3805 if (LangOpts.OpenCL) 3806 return LangAS::opencl_constant; 3807 if (auto AS = getTarget().getConstantAddressSpace()) 3808 return AS.getValue(); 3809 return LangAS::Default; 3810 } 3811 3812 // In address space agnostic languages, string literals are in default address 3813 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3814 // emitted in constant address space in LLVM IR. To be consistent with other 3815 // parts of AST, string literal global variables in constant address space 3816 // need to be casted to default address space before being put into address 3817 // map and referenced by other part of CodeGen. 3818 // In OpenCL, string literals are in constant address space in AST, therefore 3819 // they should not be casted to default address space. 3820 static llvm::Constant * 3821 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3822 llvm::GlobalVariable *GV) { 3823 llvm::Constant *Cast = GV; 3824 if (!CGM.getLangOpts().OpenCL) { 3825 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3826 if (AS != LangAS::Default) 3827 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3828 CGM, GV, AS.getValue(), LangAS::Default, 3829 GV->getValueType()->getPointerTo( 3830 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3831 } 3832 } 3833 return Cast; 3834 } 3835 3836 template<typename SomeDecl> 3837 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3838 llvm::GlobalValue *GV) { 3839 if (!getLangOpts().CPlusPlus) 3840 return; 3841 3842 // Must have 'used' attribute, or else inline assembly can't rely on 3843 // the name existing. 3844 if (!D->template hasAttr<UsedAttr>()) 3845 return; 3846 3847 // Must have internal linkage and an ordinary name. 3848 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3849 return; 3850 3851 // Must be in an extern "C" context. Entities declared directly within 3852 // a record are not extern "C" even if the record is in such a context. 3853 const SomeDecl *First = D->getFirstDecl(); 3854 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3855 return; 3856 3857 // OK, this is an internal linkage entity inside an extern "C" linkage 3858 // specification. Make a note of that so we can give it the "expected" 3859 // mangled name if nothing else is using that name. 3860 std::pair<StaticExternCMap::iterator, bool> R = 3861 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3862 3863 // If we have multiple internal linkage entities with the same name 3864 // in extern "C" regions, none of them gets that name. 3865 if (!R.second) 3866 R.first->second = nullptr; 3867 } 3868 3869 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3870 if (!CGM.supportsCOMDAT()) 3871 return false; 3872 3873 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3874 // them being "merged" by the COMDAT Folding linker optimization. 3875 if (D.hasAttr<CUDAGlobalAttr>()) 3876 return false; 3877 3878 if (D.hasAttr<SelectAnyAttr>()) 3879 return true; 3880 3881 GVALinkage Linkage; 3882 if (auto *VD = dyn_cast<VarDecl>(&D)) 3883 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3884 else 3885 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3886 3887 switch (Linkage) { 3888 case GVA_Internal: 3889 case GVA_AvailableExternally: 3890 case GVA_StrongExternal: 3891 return false; 3892 case GVA_DiscardableODR: 3893 case GVA_StrongODR: 3894 return true; 3895 } 3896 llvm_unreachable("No such linkage"); 3897 } 3898 3899 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3900 llvm::GlobalObject &GO) { 3901 if (!shouldBeInCOMDAT(*this, D)) 3902 return; 3903 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3904 } 3905 3906 /// Pass IsTentative as true if you want to create a tentative definition. 3907 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3908 bool IsTentative) { 3909 // OpenCL global variables of sampler type are translated to function calls, 3910 // therefore no need to be translated. 3911 QualType ASTTy = D->getType(); 3912 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3913 return; 3914 3915 // If this is OpenMP device, check if it is legal to emit this global 3916 // normally. 3917 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3918 OpenMPRuntime->emitTargetGlobalVariable(D)) 3919 return; 3920 3921 llvm::Constant *Init = nullptr; 3922 bool NeedsGlobalCtor = false; 3923 bool NeedsGlobalDtor = 3924 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 3925 3926 const VarDecl *InitDecl; 3927 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3928 3929 Optional<ConstantEmitter> emitter; 3930 3931 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3932 // as part of their declaration." Sema has already checked for 3933 // error cases, so we just need to set Init to UndefValue. 3934 bool IsCUDASharedVar = 3935 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3936 // Shadows of initialized device-side global variables are also left 3937 // undefined. 3938 bool IsCUDAShadowVar = 3939 !getLangOpts().CUDAIsDevice && 3940 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3941 D->hasAttr<CUDASharedAttr>()); 3942 // HIP pinned shadow of initialized host-side global variables are also 3943 // left undefined. 3944 bool IsHIPPinnedShadowVar = 3945 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>(); 3946 if (getLangOpts().CUDA && 3947 (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar)) 3948 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3949 else if (!InitExpr) { 3950 // This is a tentative definition; tentative definitions are 3951 // implicitly initialized with { 0 }. 3952 // 3953 // Note that tentative definitions are only emitted at the end of 3954 // a translation unit, so they should never have incomplete 3955 // type. In addition, EmitTentativeDefinition makes sure that we 3956 // never attempt to emit a tentative definition if a real one 3957 // exists. A use may still exists, however, so we still may need 3958 // to do a RAUW. 3959 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3960 Init = EmitNullConstant(D->getType()); 3961 } else { 3962 initializedGlobalDecl = GlobalDecl(D); 3963 emitter.emplace(*this); 3964 Init = emitter->tryEmitForInitializer(*InitDecl); 3965 3966 if (!Init) { 3967 QualType T = InitExpr->getType(); 3968 if (D->getType()->isReferenceType()) 3969 T = D->getType(); 3970 3971 if (getLangOpts().CPlusPlus) { 3972 Init = EmitNullConstant(T); 3973 NeedsGlobalCtor = true; 3974 } else { 3975 ErrorUnsupported(D, "static initializer"); 3976 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3977 } 3978 } else { 3979 // We don't need an initializer, so remove the entry for the delayed 3980 // initializer position (just in case this entry was delayed) if we 3981 // also don't need to register a destructor. 3982 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3983 DelayedCXXInitPosition.erase(D); 3984 } 3985 } 3986 3987 llvm::Type* InitType = Init->getType(); 3988 llvm::Constant *Entry = 3989 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3990 3991 // Strip off pointer casts if we got them. 3992 Entry = Entry->stripPointerCasts(); 3993 3994 // Entry is now either a Function or GlobalVariable. 3995 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3996 3997 // We have a definition after a declaration with the wrong type. 3998 // We must make a new GlobalVariable* and update everything that used OldGV 3999 // (a declaration or tentative definition) with the new GlobalVariable* 4000 // (which will be a definition). 4001 // 4002 // This happens if there is a prototype for a global (e.g. 4003 // "extern int x[];") and then a definition of a different type (e.g. 4004 // "int x[10];"). This also happens when an initializer has a different type 4005 // from the type of the global (this happens with unions). 4006 if (!GV || GV->getType()->getElementType() != InitType || 4007 GV->getType()->getAddressSpace() != 4008 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4009 4010 // Move the old entry aside so that we'll create a new one. 4011 Entry->setName(StringRef()); 4012 4013 // Make a new global with the correct type, this is now guaranteed to work. 4014 GV = cast<llvm::GlobalVariable>( 4015 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4016 ->stripPointerCasts()); 4017 4018 // Replace all uses of the old global with the new global 4019 llvm::Constant *NewPtrForOldDecl = 4020 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4021 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4022 4023 // Erase the old global, since it is no longer used. 4024 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4025 } 4026 4027 MaybeHandleStaticInExternC(D, GV); 4028 4029 if (D->hasAttr<AnnotateAttr>()) 4030 AddGlobalAnnotations(D, GV); 4031 4032 // Set the llvm linkage type as appropriate. 4033 llvm::GlobalValue::LinkageTypes Linkage = 4034 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4035 4036 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4037 // the device. [...]" 4038 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4039 // __device__, declares a variable that: [...] 4040 // Is accessible from all the threads within the grid and from the host 4041 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4042 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4043 if (GV && LangOpts.CUDA) { 4044 if (LangOpts.CUDAIsDevice) { 4045 if (Linkage != llvm::GlobalValue::InternalLinkage && 4046 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4047 GV->setExternallyInitialized(true); 4048 } else { 4049 // Host-side shadows of external declarations of device-side 4050 // global variables become internal definitions. These have to 4051 // be internal in order to prevent name conflicts with global 4052 // host variables with the same name in a different TUs. 4053 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4054 D->hasAttr<HIPPinnedShadowAttr>()) { 4055 Linkage = llvm::GlobalValue::InternalLinkage; 4056 4057 // Shadow variables and their properties must be registered 4058 // with CUDA runtime. 4059 unsigned Flags = 0; 4060 if (!D->hasDefinition()) 4061 Flags |= CGCUDARuntime::ExternDeviceVar; 4062 if (D->hasAttr<CUDAConstantAttr>()) 4063 Flags |= CGCUDARuntime::ConstantDeviceVar; 4064 // Extern global variables will be registered in the TU where they are 4065 // defined. 4066 if (!D->hasExternalStorage()) 4067 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 4068 } else if (D->hasAttr<CUDASharedAttr>()) 4069 // __shared__ variables are odd. Shadows do get created, but 4070 // they are not registered with the CUDA runtime, so they 4071 // can't really be used to access their device-side 4072 // counterparts. It's not clear yet whether it's nvcc's bug or 4073 // a feature, but we've got to do the same for compatibility. 4074 Linkage = llvm::GlobalValue::InternalLinkage; 4075 } 4076 } 4077 4078 if (!IsHIPPinnedShadowVar) 4079 GV->setInitializer(Init); 4080 if (emitter) emitter->finalize(GV); 4081 4082 // If it is safe to mark the global 'constant', do so now. 4083 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4084 isTypeConstant(D->getType(), true)); 4085 4086 // If it is in a read-only section, mark it 'constant'. 4087 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4088 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4089 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4090 GV->setConstant(true); 4091 } 4092 4093 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4094 4095 // On Darwin, if the normal linkage of a C++ thread_local variable is 4096 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 4097 // copies within a linkage unit; otherwise, the backing variable has 4098 // internal linkage and all accesses should just be calls to the 4099 // Itanium-specified entry point, which has the normal linkage of the 4100 // variable. This is to preserve the ability to change the implementation 4101 // behind the scenes. 4102 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 4103 Context.getTargetInfo().getTriple().isOSDarwin() && 4104 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 4105 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 4106 Linkage = llvm::GlobalValue::InternalLinkage; 4107 4108 GV->setLinkage(Linkage); 4109 if (D->hasAttr<DLLImportAttr>()) 4110 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4111 else if (D->hasAttr<DLLExportAttr>()) 4112 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4113 else 4114 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4115 4116 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4117 // common vars aren't constant even if declared const. 4118 GV->setConstant(false); 4119 // Tentative definition of global variables may be initialized with 4120 // non-zero null pointers. In this case they should have weak linkage 4121 // since common linkage must have zero initializer and must not have 4122 // explicit section therefore cannot have non-zero initial value. 4123 if (!GV->getInitializer()->isNullValue()) 4124 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4125 } 4126 4127 setNonAliasAttributes(D, GV); 4128 4129 if (D->getTLSKind() && !GV->isThreadLocal()) { 4130 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4131 CXXThreadLocals.push_back(D); 4132 setTLSMode(GV, *D); 4133 } 4134 4135 maybeSetTrivialComdat(*D, *GV); 4136 4137 // Emit the initializer function if necessary. 4138 if (NeedsGlobalCtor || NeedsGlobalDtor) 4139 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4140 4141 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4142 4143 // Emit global variable debug information. 4144 if (CGDebugInfo *DI = getModuleDebugInfo()) 4145 if (getCodeGenOpts().hasReducedDebugInfo()) 4146 DI->EmitGlobalVariable(GV, D); 4147 } 4148 4149 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4150 if (CGDebugInfo *DI = getModuleDebugInfo()) 4151 if (getCodeGenOpts().hasReducedDebugInfo()) { 4152 QualType ASTTy = D->getType(); 4153 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4154 llvm::PointerType *PTy = 4155 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4156 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4157 DI->EmitExternalVariable( 4158 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4159 } 4160 } 4161 4162 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4163 CodeGenModule &CGM, const VarDecl *D, 4164 bool NoCommon) { 4165 // Don't give variables common linkage if -fno-common was specified unless it 4166 // was overridden by a NoCommon attribute. 4167 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4168 return true; 4169 4170 // C11 6.9.2/2: 4171 // A declaration of an identifier for an object that has file scope without 4172 // an initializer, and without a storage-class specifier or with the 4173 // storage-class specifier static, constitutes a tentative definition. 4174 if (D->getInit() || D->hasExternalStorage()) 4175 return true; 4176 4177 // A variable cannot be both common and exist in a section. 4178 if (D->hasAttr<SectionAttr>()) 4179 return true; 4180 4181 // A variable cannot be both common and exist in a section. 4182 // We don't try to determine which is the right section in the front-end. 4183 // If no specialized section name is applicable, it will resort to default. 4184 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4185 D->hasAttr<PragmaClangDataSectionAttr>() || 4186 D->hasAttr<PragmaClangRelroSectionAttr>() || 4187 D->hasAttr<PragmaClangRodataSectionAttr>()) 4188 return true; 4189 4190 // Thread local vars aren't considered common linkage. 4191 if (D->getTLSKind()) 4192 return true; 4193 4194 // Tentative definitions marked with WeakImportAttr are true definitions. 4195 if (D->hasAttr<WeakImportAttr>()) 4196 return true; 4197 4198 // A variable cannot be both common and exist in a comdat. 4199 if (shouldBeInCOMDAT(CGM, *D)) 4200 return true; 4201 4202 // Declarations with a required alignment do not have common linkage in MSVC 4203 // mode. 4204 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4205 if (D->hasAttr<AlignedAttr>()) 4206 return true; 4207 QualType VarType = D->getType(); 4208 if (Context.isAlignmentRequired(VarType)) 4209 return true; 4210 4211 if (const auto *RT = VarType->getAs<RecordType>()) { 4212 const RecordDecl *RD = RT->getDecl(); 4213 for (const FieldDecl *FD : RD->fields()) { 4214 if (FD->isBitField()) 4215 continue; 4216 if (FD->hasAttr<AlignedAttr>()) 4217 return true; 4218 if (Context.isAlignmentRequired(FD->getType())) 4219 return true; 4220 } 4221 } 4222 } 4223 4224 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4225 // common symbols, so symbols with greater alignment requirements cannot be 4226 // common. 4227 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4228 // alignments for common symbols via the aligncomm directive, so this 4229 // restriction only applies to MSVC environments. 4230 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4231 Context.getTypeAlignIfKnown(D->getType()) > 4232 Context.toBits(CharUnits::fromQuantity(32))) 4233 return true; 4234 4235 return false; 4236 } 4237 4238 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4239 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4240 if (Linkage == GVA_Internal) 4241 return llvm::Function::InternalLinkage; 4242 4243 if (D->hasAttr<WeakAttr>()) { 4244 if (IsConstantVariable) 4245 return llvm::GlobalVariable::WeakODRLinkage; 4246 else 4247 return llvm::GlobalVariable::WeakAnyLinkage; 4248 } 4249 4250 if (const auto *FD = D->getAsFunction()) 4251 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4252 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4253 4254 // We are guaranteed to have a strong definition somewhere else, 4255 // so we can use available_externally linkage. 4256 if (Linkage == GVA_AvailableExternally) 4257 return llvm::GlobalValue::AvailableExternallyLinkage; 4258 4259 // Note that Apple's kernel linker doesn't support symbol 4260 // coalescing, so we need to avoid linkonce and weak linkages there. 4261 // Normally, this means we just map to internal, but for explicit 4262 // instantiations we'll map to external. 4263 4264 // In C++, the compiler has to emit a definition in every translation unit 4265 // that references the function. We should use linkonce_odr because 4266 // a) if all references in this translation unit are optimized away, we 4267 // don't need to codegen it. b) if the function persists, it needs to be 4268 // merged with other definitions. c) C++ has the ODR, so we know the 4269 // definition is dependable. 4270 if (Linkage == GVA_DiscardableODR) 4271 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4272 : llvm::Function::InternalLinkage; 4273 4274 // An explicit instantiation of a template has weak linkage, since 4275 // explicit instantiations can occur in multiple translation units 4276 // and must all be equivalent. However, we are not allowed to 4277 // throw away these explicit instantiations. 4278 // 4279 // We don't currently support CUDA device code spread out across multiple TUs, 4280 // so say that CUDA templates are either external (for kernels) or internal. 4281 // This lets llvm perform aggressive inter-procedural optimizations. 4282 if (Linkage == GVA_StrongODR) { 4283 if (Context.getLangOpts().AppleKext) 4284 return llvm::Function::ExternalLinkage; 4285 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4286 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4287 : llvm::Function::InternalLinkage; 4288 return llvm::Function::WeakODRLinkage; 4289 } 4290 4291 // C++ doesn't have tentative definitions and thus cannot have common 4292 // linkage. 4293 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4294 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4295 CodeGenOpts.NoCommon)) 4296 return llvm::GlobalVariable::CommonLinkage; 4297 4298 // selectany symbols are externally visible, so use weak instead of 4299 // linkonce. MSVC optimizes away references to const selectany globals, so 4300 // all definitions should be the same and ODR linkage should be used. 4301 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4302 if (D->hasAttr<SelectAnyAttr>()) 4303 return llvm::GlobalVariable::WeakODRLinkage; 4304 4305 // Otherwise, we have strong external linkage. 4306 assert(Linkage == GVA_StrongExternal); 4307 return llvm::GlobalVariable::ExternalLinkage; 4308 } 4309 4310 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4311 const VarDecl *VD, bool IsConstant) { 4312 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4313 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4314 } 4315 4316 /// Replace the uses of a function that was declared with a non-proto type. 4317 /// We want to silently drop extra arguments from call sites 4318 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4319 llvm::Function *newFn) { 4320 // Fast path. 4321 if (old->use_empty()) return; 4322 4323 llvm::Type *newRetTy = newFn->getReturnType(); 4324 SmallVector<llvm::Value*, 4> newArgs; 4325 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4326 4327 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4328 ui != ue; ) { 4329 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4330 llvm::User *user = use->getUser(); 4331 4332 // Recognize and replace uses of bitcasts. Most calls to 4333 // unprototyped functions will use bitcasts. 4334 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4335 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4336 replaceUsesOfNonProtoConstant(bitcast, newFn); 4337 continue; 4338 } 4339 4340 // Recognize calls to the function. 4341 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4342 if (!callSite) continue; 4343 if (!callSite->isCallee(&*use)) 4344 continue; 4345 4346 // If the return types don't match exactly, then we can't 4347 // transform this call unless it's dead. 4348 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4349 continue; 4350 4351 // Get the call site's attribute list. 4352 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4353 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4354 4355 // If the function was passed too few arguments, don't transform. 4356 unsigned newNumArgs = newFn->arg_size(); 4357 if (callSite->arg_size() < newNumArgs) 4358 continue; 4359 4360 // If extra arguments were passed, we silently drop them. 4361 // If any of the types mismatch, we don't transform. 4362 unsigned argNo = 0; 4363 bool dontTransform = false; 4364 for (llvm::Argument &A : newFn->args()) { 4365 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4366 dontTransform = true; 4367 break; 4368 } 4369 4370 // Add any parameter attributes. 4371 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4372 argNo++; 4373 } 4374 if (dontTransform) 4375 continue; 4376 4377 // Okay, we can transform this. Create the new call instruction and copy 4378 // over the required information. 4379 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4380 4381 // Copy over any operand bundles. 4382 callSite->getOperandBundlesAsDefs(newBundles); 4383 4384 llvm::CallBase *newCall; 4385 if (dyn_cast<llvm::CallInst>(callSite)) { 4386 newCall = 4387 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4388 } else { 4389 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4390 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4391 oldInvoke->getUnwindDest(), newArgs, 4392 newBundles, "", callSite); 4393 } 4394 newArgs.clear(); // for the next iteration 4395 4396 if (!newCall->getType()->isVoidTy()) 4397 newCall->takeName(callSite); 4398 newCall->setAttributes(llvm::AttributeList::get( 4399 newFn->getContext(), oldAttrs.getFnAttributes(), 4400 oldAttrs.getRetAttributes(), newArgAttrs)); 4401 newCall->setCallingConv(callSite->getCallingConv()); 4402 4403 // Finally, remove the old call, replacing any uses with the new one. 4404 if (!callSite->use_empty()) 4405 callSite->replaceAllUsesWith(newCall); 4406 4407 // Copy debug location attached to CI. 4408 if (callSite->getDebugLoc()) 4409 newCall->setDebugLoc(callSite->getDebugLoc()); 4410 4411 callSite->eraseFromParent(); 4412 } 4413 } 4414 4415 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4416 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4417 /// existing call uses of the old function in the module, this adjusts them to 4418 /// call the new function directly. 4419 /// 4420 /// This is not just a cleanup: the always_inline pass requires direct calls to 4421 /// functions to be able to inline them. If there is a bitcast in the way, it 4422 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4423 /// run at -O0. 4424 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4425 llvm::Function *NewFn) { 4426 // If we're redefining a global as a function, don't transform it. 4427 if (!isa<llvm::Function>(Old)) return; 4428 4429 replaceUsesOfNonProtoConstant(Old, NewFn); 4430 } 4431 4432 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4433 auto DK = VD->isThisDeclarationADefinition(); 4434 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4435 return; 4436 4437 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4438 // If we have a definition, this might be a deferred decl. If the 4439 // instantiation is explicit, make sure we emit it at the end. 4440 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4441 GetAddrOfGlobalVar(VD); 4442 4443 EmitTopLevelDecl(VD); 4444 } 4445 4446 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4447 llvm::GlobalValue *GV) { 4448 // Check if this must be emitted as declare variant. 4449 if (LangOpts.OpenMP && OpenMPRuntime && 4450 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true)) 4451 return; 4452 4453 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4454 4455 // Compute the function info and LLVM type. 4456 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4457 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4458 4459 // Get or create the prototype for the function. 4460 if (!GV || (GV->getType()->getElementType() != Ty)) 4461 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4462 /*DontDefer=*/true, 4463 ForDefinition)); 4464 4465 // Already emitted. 4466 if (!GV->isDeclaration()) 4467 return; 4468 4469 // We need to set linkage and visibility on the function before 4470 // generating code for it because various parts of IR generation 4471 // want to propagate this information down (e.g. to local static 4472 // declarations). 4473 auto *Fn = cast<llvm::Function>(GV); 4474 setFunctionLinkage(GD, Fn); 4475 4476 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4477 setGVProperties(Fn, GD); 4478 4479 MaybeHandleStaticInExternC(D, Fn); 4480 4481 4482 maybeSetTrivialComdat(*D, *Fn); 4483 4484 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4485 4486 setNonAliasAttributes(GD, Fn); 4487 SetLLVMFunctionAttributesForDefinition(D, Fn); 4488 4489 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4490 AddGlobalCtor(Fn, CA->getPriority()); 4491 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4492 AddGlobalDtor(Fn, DA->getPriority()); 4493 if (D->hasAttr<AnnotateAttr>()) 4494 AddGlobalAnnotations(D, Fn); 4495 } 4496 4497 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4498 const auto *D = cast<ValueDecl>(GD.getDecl()); 4499 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4500 assert(AA && "Not an alias?"); 4501 4502 StringRef MangledName = getMangledName(GD); 4503 4504 if (AA->getAliasee() == MangledName) { 4505 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4506 return; 4507 } 4508 4509 // If there is a definition in the module, then it wins over the alias. 4510 // This is dubious, but allow it to be safe. Just ignore the alias. 4511 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4512 if (Entry && !Entry->isDeclaration()) 4513 return; 4514 4515 Aliases.push_back(GD); 4516 4517 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4518 4519 // Create a reference to the named value. This ensures that it is emitted 4520 // if a deferred decl. 4521 llvm::Constant *Aliasee; 4522 llvm::GlobalValue::LinkageTypes LT; 4523 if (isa<llvm::FunctionType>(DeclTy)) { 4524 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4525 /*ForVTable=*/false); 4526 LT = getFunctionLinkage(GD); 4527 } else { 4528 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4529 llvm::PointerType::getUnqual(DeclTy), 4530 /*D=*/nullptr); 4531 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4532 D->getType().isConstQualified()); 4533 } 4534 4535 // Create the new alias itself, but don't set a name yet. 4536 auto *GA = 4537 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule()); 4538 4539 if (Entry) { 4540 if (GA->getAliasee() == Entry) { 4541 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4542 return; 4543 } 4544 4545 assert(Entry->isDeclaration()); 4546 4547 // If there is a declaration in the module, then we had an extern followed 4548 // by the alias, as in: 4549 // extern int test6(); 4550 // ... 4551 // int test6() __attribute__((alias("test7"))); 4552 // 4553 // Remove it and replace uses of it with the alias. 4554 GA->takeName(Entry); 4555 4556 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4557 Entry->getType())); 4558 Entry->eraseFromParent(); 4559 } else { 4560 GA->setName(MangledName); 4561 } 4562 4563 // Set attributes which are particular to an alias; this is a 4564 // specialization of the attributes which may be set on a global 4565 // variable/function. 4566 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4567 D->isWeakImported()) { 4568 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4569 } 4570 4571 if (const auto *VD = dyn_cast<VarDecl>(D)) 4572 if (VD->getTLSKind()) 4573 setTLSMode(GA, *VD); 4574 4575 SetCommonAttributes(GD, GA); 4576 } 4577 4578 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4579 const auto *D = cast<ValueDecl>(GD.getDecl()); 4580 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4581 assert(IFA && "Not an ifunc?"); 4582 4583 StringRef MangledName = getMangledName(GD); 4584 4585 if (IFA->getResolver() == MangledName) { 4586 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4587 return; 4588 } 4589 4590 // Report an error if some definition overrides ifunc. 4591 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4592 if (Entry && !Entry->isDeclaration()) { 4593 GlobalDecl OtherGD; 4594 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4595 DiagnosedConflictingDefinitions.insert(GD).second) { 4596 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4597 << MangledName; 4598 Diags.Report(OtherGD.getDecl()->getLocation(), 4599 diag::note_previous_definition); 4600 } 4601 return; 4602 } 4603 4604 Aliases.push_back(GD); 4605 4606 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4607 llvm::Constant *Resolver = 4608 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4609 /*ForVTable=*/false); 4610 llvm::GlobalIFunc *GIF = 4611 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4612 "", Resolver, &getModule()); 4613 if (Entry) { 4614 if (GIF->getResolver() == Entry) { 4615 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4616 return; 4617 } 4618 assert(Entry->isDeclaration()); 4619 4620 // If there is a declaration in the module, then we had an extern followed 4621 // by the ifunc, as in: 4622 // extern int test(); 4623 // ... 4624 // int test() __attribute__((ifunc("resolver"))); 4625 // 4626 // Remove it and replace uses of it with the ifunc. 4627 GIF->takeName(Entry); 4628 4629 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4630 Entry->getType())); 4631 Entry->eraseFromParent(); 4632 } else 4633 GIF->setName(MangledName); 4634 4635 SetCommonAttributes(GD, GIF); 4636 } 4637 4638 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4639 ArrayRef<llvm::Type*> Tys) { 4640 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4641 Tys); 4642 } 4643 4644 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4645 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4646 const StringLiteral *Literal, bool TargetIsLSB, 4647 bool &IsUTF16, unsigned &StringLength) { 4648 StringRef String = Literal->getString(); 4649 unsigned NumBytes = String.size(); 4650 4651 // Check for simple case. 4652 if (!Literal->containsNonAsciiOrNull()) { 4653 StringLength = NumBytes; 4654 return *Map.insert(std::make_pair(String, nullptr)).first; 4655 } 4656 4657 // Otherwise, convert the UTF8 literals into a string of shorts. 4658 IsUTF16 = true; 4659 4660 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4661 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4662 llvm::UTF16 *ToPtr = &ToBuf[0]; 4663 4664 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4665 ToPtr + NumBytes, llvm::strictConversion); 4666 4667 // ConvertUTF8toUTF16 returns the length in ToPtr. 4668 StringLength = ToPtr - &ToBuf[0]; 4669 4670 // Add an explicit null. 4671 *ToPtr = 0; 4672 return *Map.insert(std::make_pair( 4673 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4674 (StringLength + 1) * 2), 4675 nullptr)).first; 4676 } 4677 4678 ConstantAddress 4679 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4680 unsigned StringLength = 0; 4681 bool isUTF16 = false; 4682 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4683 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4684 getDataLayout().isLittleEndian(), isUTF16, 4685 StringLength); 4686 4687 if (auto *C = Entry.second) 4688 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4689 4690 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4691 llvm::Constant *Zeros[] = { Zero, Zero }; 4692 4693 const ASTContext &Context = getContext(); 4694 const llvm::Triple &Triple = getTriple(); 4695 4696 const auto CFRuntime = getLangOpts().CFRuntime; 4697 const bool IsSwiftABI = 4698 static_cast<unsigned>(CFRuntime) >= 4699 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4700 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4701 4702 // If we don't already have it, get __CFConstantStringClassReference. 4703 if (!CFConstantStringClassRef) { 4704 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4705 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4706 Ty = llvm::ArrayType::get(Ty, 0); 4707 4708 switch (CFRuntime) { 4709 default: break; 4710 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4711 case LangOptions::CoreFoundationABI::Swift5_0: 4712 CFConstantStringClassName = 4713 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4714 : "$s10Foundation19_NSCFConstantStringCN"; 4715 Ty = IntPtrTy; 4716 break; 4717 case LangOptions::CoreFoundationABI::Swift4_2: 4718 CFConstantStringClassName = 4719 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4720 : "$S10Foundation19_NSCFConstantStringCN"; 4721 Ty = IntPtrTy; 4722 break; 4723 case LangOptions::CoreFoundationABI::Swift4_1: 4724 CFConstantStringClassName = 4725 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4726 : "__T010Foundation19_NSCFConstantStringCN"; 4727 Ty = IntPtrTy; 4728 break; 4729 } 4730 4731 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4732 4733 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4734 llvm::GlobalValue *GV = nullptr; 4735 4736 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4737 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4738 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4739 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4740 4741 const VarDecl *VD = nullptr; 4742 for (const auto &Result : DC->lookup(&II)) 4743 if ((VD = dyn_cast<VarDecl>(Result))) 4744 break; 4745 4746 if (Triple.isOSBinFormatELF()) { 4747 if (!VD) 4748 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4749 } else { 4750 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4751 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4752 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4753 else 4754 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4755 } 4756 4757 setDSOLocal(GV); 4758 } 4759 } 4760 4761 // Decay array -> ptr 4762 CFConstantStringClassRef = 4763 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4764 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4765 } 4766 4767 QualType CFTy = Context.getCFConstantStringType(); 4768 4769 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4770 4771 ConstantInitBuilder Builder(*this); 4772 auto Fields = Builder.beginStruct(STy); 4773 4774 // Class pointer. 4775 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4776 4777 // Flags. 4778 if (IsSwiftABI) { 4779 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4780 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4781 } else { 4782 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4783 } 4784 4785 // String pointer. 4786 llvm::Constant *C = nullptr; 4787 if (isUTF16) { 4788 auto Arr = llvm::makeArrayRef( 4789 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4790 Entry.first().size() / 2); 4791 C = llvm::ConstantDataArray::get(VMContext, Arr); 4792 } else { 4793 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4794 } 4795 4796 // Note: -fwritable-strings doesn't make the backing store strings of 4797 // CFStrings writable. (See <rdar://problem/10657500>) 4798 auto *GV = 4799 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4800 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4801 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4802 // Don't enforce the target's minimum global alignment, since the only use 4803 // of the string is via this class initializer. 4804 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4805 : Context.getTypeAlignInChars(Context.CharTy); 4806 GV->setAlignment(Align.getAsAlign()); 4807 4808 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4809 // Without it LLVM can merge the string with a non unnamed_addr one during 4810 // LTO. Doing that changes the section it ends in, which surprises ld64. 4811 if (Triple.isOSBinFormatMachO()) 4812 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4813 : "__TEXT,__cstring,cstring_literals"); 4814 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4815 // the static linker to adjust permissions to read-only later on. 4816 else if (Triple.isOSBinFormatELF()) 4817 GV->setSection(".rodata"); 4818 4819 // String. 4820 llvm::Constant *Str = 4821 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4822 4823 if (isUTF16) 4824 // Cast the UTF16 string to the correct type. 4825 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4826 Fields.add(Str); 4827 4828 // String length. 4829 llvm::IntegerType *LengthTy = 4830 llvm::IntegerType::get(getModule().getContext(), 4831 Context.getTargetInfo().getLongWidth()); 4832 if (IsSwiftABI) { 4833 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4834 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4835 LengthTy = Int32Ty; 4836 else 4837 LengthTy = IntPtrTy; 4838 } 4839 Fields.addInt(LengthTy, StringLength); 4840 4841 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4842 // properly aligned on 32-bit platforms. 4843 CharUnits Alignment = 4844 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 4845 4846 // The struct. 4847 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4848 /*isConstant=*/false, 4849 llvm::GlobalVariable::PrivateLinkage); 4850 GV->addAttribute("objc_arc_inert"); 4851 switch (Triple.getObjectFormat()) { 4852 case llvm::Triple::UnknownObjectFormat: 4853 llvm_unreachable("unknown file format"); 4854 case llvm::Triple::XCOFF: 4855 llvm_unreachable("XCOFF is not yet implemented"); 4856 case llvm::Triple::COFF: 4857 case llvm::Triple::ELF: 4858 case llvm::Triple::Wasm: 4859 GV->setSection("cfstring"); 4860 break; 4861 case llvm::Triple::MachO: 4862 GV->setSection("__DATA,__cfstring"); 4863 break; 4864 } 4865 Entry.second = GV; 4866 4867 return ConstantAddress(GV, Alignment); 4868 } 4869 4870 bool CodeGenModule::getExpressionLocationsEnabled() const { 4871 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4872 } 4873 4874 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4875 if (ObjCFastEnumerationStateType.isNull()) { 4876 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4877 D->startDefinition(); 4878 4879 QualType FieldTypes[] = { 4880 Context.UnsignedLongTy, 4881 Context.getPointerType(Context.getObjCIdType()), 4882 Context.getPointerType(Context.UnsignedLongTy), 4883 Context.getConstantArrayType(Context.UnsignedLongTy, 4884 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 4885 }; 4886 4887 for (size_t i = 0; i < 4; ++i) { 4888 FieldDecl *Field = FieldDecl::Create(Context, 4889 D, 4890 SourceLocation(), 4891 SourceLocation(), nullptr, 4892 FieldTypes[i], /*TInfo=*/nullptr, 4893 /*BitWidth=*/nullptr, 4894 /*Mutable=*/false, 4895 ICIS_NoInit); 4896 Field->setAccess(AS_public); 4897 D->addDecl(Field); 4898 } 4899 4900 D->completeDefinition(); 4901 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4902 } 4903 4904 return ObjCFastEnumerationStateType; 4905 } 4906 4907 llvm::Constant * 4908 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4909 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4910 4911 // Don't emit it as the address of the string, emit the string data itself 4912 // as an inline array. 4913 if (E->getCharByteWidth() == 1) { 4914 SmallString<64> Str(E->getString()); 4915 4916 // Resize the string to the right size, which is indicated by its type. 4917 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4918 Str.resize(CAT->getSize().getZExtValue()); 4919 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4920 } 4921 4922 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4923 llvm::Type *ElemTy = AType->getElementType(); 4924 unsigned NumElements = AType->getNumElements(); 4925 4926 // Wide strings have either 2-byte or 4-byte elements. 4927 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4928 SmallVector<uint16_t, 32> Elements; 4929 Elements.reserve(NumElements); 4930 4931 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4932 Elements.push_back(E->getCodeUnit(i)); 4933 Elements.resize(NumElements); 4934 return llvm::ConstantDataArray::get(VMContext, Elements); 4935 } 4936 4937 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4938 SmallVector<uint32_t, 32> Elements; 4939 Elements.reserve(NumElements); 4940 4941 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4942 Elements.push_back(E->getCodeUnit(i)); 4943 Elements.resize(NumElements); 4944 return llvm::ConstantDataArray::get(VMContext, Elements); 4945 } 4946 4947 static llvm::GlobalVariable * 4948 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4949 CodeGenModule &CGM, StringRef GlobalName, 4950 CharUnits Alignment) { 4951 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4952 CGM.getStringLiteralAddressSpace()); 4953 4954 llvm::Module &M = CGM.getModule(); 4955 // Create a global variable for this string 4956 auto *GV = new llvm::GlobalVariable( 4957 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4958 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4959 GV->setAlignment(Alignment.getAsAlign()); 4960 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4961 if (GV->isWeakForLinker()) { 4962 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4963 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4964 } 4965 CGM.setDSOLocal(GV); 4966 4967 return GV; 4968 } 4969 4970 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4971 /// constant array for the given string literal. 4972 ConstantAddress 4973 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4974 StringRef Name) { 4975 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4976 4977 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4978 llvm::GlobalVariable **Entry = nullptr; 4979 if (!LangOpts.WritableStrings) { 4980 Entry = &ConstantStringMap[C]; 4981 if (auto GV = *Entry) { 4982 if (Alignment.getQuantity() > GV->getAlignment()) 4983 GV->setAlignment(Alignment.getAsAlign()); 4984 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4985 Alignment); 4986 } 4987 } 4988 4989 SmallString<256> MangledNameBuffer; 4990 StringRef GlobalVariableName; 4991 llvm::GlobalValue::LinkageTypes LT; 4992 4993 // Mangle the string literal if that's how the ABI merges duplicate strings. 4994 // Don't do it if they are writable, since we don't want writes in one TU to 4995 // affect strings in another. 4996 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4997 !LangOpts.WritableStrings) { 4998 llvm::raw_svector_ostream Out(MangledNameBuffer); 4999 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5000 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5001 GlobalVariableName = MangledNameBuffer; 5002 } else { 5003 LT = llvm::GlobalValue::PrivateLinkage; 5004 GlobalVariableName = Name; 5005 } 5006 5007 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5008 if (Entry) 5009 *Entry = GV; 5010 5011 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5012 QualType()); 5013 5014 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5015 Alignment); 5016 } 5017 5018 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5019 /// array for the given ObjCEncodeExpr node. 5020 ConstantAddress 5021 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5022 std::string Str; 5023 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5024 5025 return GetAddrOfConstantCString(Str); 5026 } 5027 5028 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5029 /// the literal and a terminating '\0' character. 5030 /// The result has pointer to array type. 5031 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5032 const std::string &Str, const char *GlobalName) { 5033 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5034 CharUnits Alignment = 5035 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5036 5037 llvm::Constant *C = 5038 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5039 5040 // Don't share any string literals if strings aren't constant. 5041 llvm::GlobalVariable **Entry = nullptr; 5042 if (!LangOpts.WritableStrings) { 5043 Entry = &ConstantStringMap[C]; 5044 if (auto GV = *Entry) { 5045 if (Alignment.getQuantity() > GV->getAlignment()) 5046 GV->setAlignment(Alignment.getAsAlign()); 5047 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5048 Alignment); 5049 } 5050 } 5051 5052 // Get the default prefix if a name wasn't specified. 5053 if (!GlobalName) 5054 GlobalName = ".str"; 5055 // Create a global variable for this. 5056 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5057 GlobalName, Alignment); 5058 if (Entry) 5059 *Entry = GV; 5060 5061 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5062 Alignment); 5063 } 5064 5065 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5066 const MaterializeTemporaryExpr *E, const Expr *Init) { 5067 assert((E->getStorageDuration() == SD_Static || 5068 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5069 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5070 5071 // If we're not materializing a subobject of the temporary, keep the 5072 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5073 QualType MaterializedType = Init->getType(); 5074 if (Init == E->getSubExpr()) 5075 MaterializedType = E->getType(); 5076 5077 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5078 5079 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5080 return ConstantAddress(Slot, Align); 5081 5082 // FIXME: If an externally-visible declaration extends multiple temporaries, 5083 // we need to give each temporary the same name in every translation unit (and 5084 // we also need to make the temporaries externally-visible). 5085 SmallString<256> Name; 5086 llvm::raw_svector_ostream Out(Name); 5087 getCXXABI().getMangleContext().mangleReferenceTemporary( 5088 VD, E->getManglingNumber(), Out); 5089 5090 APValue *Value = nullptr; 5091 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5092 // If the initializer of the extending declaration is a constant 5093 // initializer, we should have a cached constant initializer for this 5094 // temporary. Note that this might have a different value from the value 5095 // computed by evaluating the initializer if the surrounding constant 5096 // expression modifies the temporary. 5097 Value = E->getOrCreateValue(false); 5098 } 5099 5100 // Try evaluating it now, it might have a constant initializer. 5101 Expr::EvalResult EvalResult; 5102 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5103 !EvalResult.hasSideEffects()) 5104 Value = &EvalResult.Val; 5105 5106 LangAS AddrSpace = 5107 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5108 5109 Optional<ConstantEmitter> emitter; 5110 llvm::Constant *InitialValue = nullptr; 5111 bool Constant = false; 5112 llvm::Type *Type; 5113 if (Value) { 5114 // The temporary has a constant initializer, use it. 5115 emitter.emplace(*this); 5116 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5117 MaterializedType); 5118 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5119 Type = InitialValue->getType(); 5120 } else { 5121 // No initializer, the initialization will be provided when we 5122 // initialize the declaration which performed lifetime extension. 5123 Type = getTypes().ConvertTypeForMem(MaterializedType); 5124 } 5125 5126 // Create a global variable for this lifetime-extended temporary. 5127 llvm::GlobalValue::LinkageTypes Linkage = 5128 getLLVMLinkageVarDefinition(VD, Constant); 5129 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5130 const VarDecl *InitVD; 5131 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5132 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5133 // Temporaries defined inside a class get linkonce_odr linkage because the 5134 // class can be defined in multiple translation units. 5135 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5136 } else { 5137 // There is no need for this temporary to have external linkage if the 5138 // VarDecl has external linkage. 5139 Linkage = llvm::GlobalVariable::InternalLinkage; 5140 } 5141 } 5142 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5143 auto *GV = new llvm::GlobalVariable( 5144 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5145 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5146 if (emitter) emitter->finalize(GV); 5147 setGVProperties(GV, VD); 5148 GV->setAlignment(Align.getAsAlign()); 5149 if (supportsCOMDAT() && GV->isWeakForLinker()) 5150 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5151 if (VD->getTLSKind()) 5152 setTLSMode(GV, *VD); 5153 llvm::Constant *CV = GV; 5154 if (AddrSpace != LangAS::Default) 5155 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5156 *this, GV, AddrSpace, LangAS::Default, 5157 Type->getPointerTo( 5158 getContext().getTargetAddressSpace(LangAS::Default))); 5159 MaterializedGlobalTemporaryMap[E] = CV; 5160 return ConstantAddress(CV, Align); 5161 } 5162 5163 /// EmitObjCPropertyImplementations - Emit information for synthesized 5164 /// properties for an implementation. 5165 void CodeGenModule::EmitObjCPropertyImplementations(const 5166 ObjCImplementationDecl *D) { 5167 for (const auto *PID : D->property_impls()) { 5168 // Dynamic is just for type-checking. 5169 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5170 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5171 5172 // Determine which methods need to be implemented, some may have 5173 // been overridden. Note that ::isPropertyAccessor is not the method 5174 // we want, that just indicates if the decl came from a 5175 // property. What we want to know is if the method is defined in 5176 // this implementation. 5177 auto *Getter = PID->getGetterMethodDecl(); 5178 if (!Getter || Getter->isSynthesizedAccessorStub()) 5179 CodeGenFunction(*this).GenerateObjCGetter( 5180 const_cast<ObjCImplementationDecl *>(D), PID); 5181 auto *Setter = PID->getSetterMethodDecl(); 5182 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5183 CodeGenFunction(*this).GenerateObjCSetter( 5184 const_cast<ObjCImplementationDecl *>(D), PID); 5185 } 5186 } 5187 } 5188 5189 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5190 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5191 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5192 ivar; ivar = ivar->getNextIvar()) 5193 if (ivar->getType().isDestructedType()) 5194 return true; 5195 5196 return false; 5197 } 5198 5199 static bool AllTrivialInitializers(CodeGenModule &CGM, 5200 ObjCImplementationDecl *D) { 5201 CodeGenFunction CGF(CGM); 5202 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5203 E = D->init_end(); B != E; ++B) { 5204 CXXCtorInitializer *CtorInitExp = *B; 5205 Expr *Init = CtorInitExp->getInit(); 5206 if (!CGF.isTrivialInitializer(Init)) 5207 return false; 5208 } 5209 return true; 5210 } 5211 5212 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5213 /// for an implementation. 5214 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5215 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5216 if (needsDestructMethod(D)) { 5217 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5218 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5219 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5220 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5221 getContext().VoidTy, nullptr, D, 5222 /*isInstance=*/true, /*isVariadic=*/false, 5223 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5224 /*isImplicitlyDeclared=*/true, 5225 /*isDefined=*/false, ObjCMethodDecl::Required); 5226 D->addInstanceMethod(DTORMethod); 5227 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5228 D->setHasDestructors(true); 5229 } 5230 5231 // If the implementation doesn't have any ivar initializers, we don't need 5232 // a .cxx_construct. 5233 if (D->getNumIvarInitializers() == 0 || 5234 AllTrivialInitializers(*this, D)) 5235 return; 5236 5237 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5238 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5239 // The constructor returns 'self'. 5240 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5241 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5242 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5243 /*isVariadic=*/false, 5244 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5245 /*isImplicitlyDeclared=*/true, 5246 /*isDefined=*/false, ObjCMethodDecl::Required); 5247 D->addInstanceMethod(CTORMethod); 5248 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5249 D->setHasNonZeroConstructors(true); 5250 } 5251 5252 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5253 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5254 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5255 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5256 ErrorUnsupported(LSD, "linkage spec"); 5257 return; 5258 } 5259 5260 EmitDeclContext(LSD); 5261 } 5262 5263 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5264 for (auto *I : DC->decls()) { 5265 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5266 // are themselves considered "top-level", so EmitTopLevelDecl on an 5267 // ObjCImplDecl does not recursively visit them. We need to do that in 5268 // case they're nested inside another construct (LinkageSpecDecl / 5269 // ExportDecl) that does stop them from being considered "top-level". 5270 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5271 for (auto *M : OID->methods()) 5272 EmitTopLevelDecl(M); 5273 } 5274 5275 EmitTopLevelDecl(I); 5276 } 5277 } 5278 5279 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5280 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5281 // Ignore dependent declarations. 5282 if (D->isTemplated()) 5283 return; 5284 5285 switch (D->getKind()) { 5286 case Decl::CXXConversion: 5287 case Decl::CXXMethod: 5288 case Decl::Function: 5289 EmitGlobal(cast<FunctionDecl>(D)); 5290 // Always provide some coverage mapping 5291 // even for the functions that aren't emitted. 5292 AddDeferredUnusedCoverageMapping(D); 5293 break; 5294 5295 case Decl::CXXDeductionGuide: 5296 // Function-like, but does not result in code emission. 5297 break; 5298 5299 case Decl::Var: 5300 case Decl::Decomposition: 5301 case Decl::VarTemplateSpecialization: 5302 EmitGlobal(cast<VarDecl>(D)); 5303 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5304 for (auto *B : DD->bindings()) 5305 if (auto *HD = B->getHoldingVar()) 5306 EmitGlobal(HD); 5307 break; 5308 5309 // Indirect fields from global anonymous structs and unions can be 5310 // ignored; only the actual variable requires IR gen support. 5311 case Decl::IndirectField: 5312 break; 5313 5314 // C++ Decls 5315 case Decl::Namespace: 5316 EmitDeclContext(cast<NamespaceDecl>(D)); 5317 break; 5318 case Decl::ClassTemplateSpecialization: { 5319 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5320 if (DebugInfo && 5321 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5322 Spec->hasDefinition()) 5323 DebugInfo->completeTemplateDefinition(*Spec); 5324 } LLVM_FALLTHROUGH; 5325 case Decl::CXXRecord: 5326 if (DebugInfo) { 5327 if (auto *ES = D->getASTContext().getExternalSource()) 5328 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5329 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5330 } 5331 // Emit any static data members, they may be definitions. 5332 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5333 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5334 EmitTopLevelDecl(I); 5335 break; 5336 // No code generation needed. 5337 case Decl::UsingShadow: 5338 case Decl::ClassTemplate: 5339 case Decl::VarTemplate: 5340 case Decl::Concept: 5341 case Decl::VarTemplatePartialSpecialization: 5342 case Decl::FunctionTemplate: 5343 case Decl::TypeAliasTemplate: 5344 case Decl::Block: 5345 case Decl::Empty: 5346 case Decl::Binding: 5347 break; 5348 case Decl::Using: // using X; [C++] 5349 if (CGDebugInfo *DI = getModuleDebugInfo()) 5350 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5351 return; 5352 case Decl::NamespaceAlias: 5353 if (CGDebugInfo *DI = getModuleDebugInfo()) 5354 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5355 return; 5356 case Decl::UsingDirective: // using namespace X; [C++] 5357 if (CGDebugInfo *DI = getModuleDebugInfo()) 5358 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5359 return; 5360 case Decl::CXXConstructor: 5361 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5362 break; 5363 case Decl::CXXDestructor: 5364 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5365 break; 5366 5367 case Decl::StaticAssert: 5368 // Nothing to do. 5369 break; 5370 5371 // Objective-C Decls 5372 5373 // Forward declarations, no (immediate) code generation. 5374 case Decl::ObjCInterface: 5375 case Decl::ObjCCategory: 5376 break; 5377 5378 case Decl::ObjCProtocol: { 5379 auto *Proto = cast<ObjCProtocolDecl>(D); 5380 if (Proto->isThisDeclarationADefinition()) 5381 ObjCRuntime->GenerateProtocol(Proto); 5382 break; 5383 } 5384 5385 case Decl::ObjCCategoryImpl: 5386 // Categories have properties but don't support synthesize so we 5387 // can ignore them here. 5388 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5389 break; 5390 5391 case Decl::ObjCImplementation: { 5392 auto *OMD = cast<ObjCImplementationDecl>(D); 5393 EmitObjCPropertyImplementations(OMD); 5394 EmitObjCIvarInitializations(OMD); 5395 ObjCRuntime->GenerateClass(OMD); 5396 // Emit global variable debug information. 5397 if (CGDebugInfo *DI = getModuleDebugInfo()) 5398 if (getCodeGenOpts().hasReducedDebugInfo()) 5399 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5400 OMD->getClassInterface()), OMD->getLocation()); 5401 break; 5402 } 5403 case Decl::ObjCMethod: { 5404 auto *OMD = cast<ObjCMethodDecl>(D); 5405 // If this is not a prototype, emit the body. 5406 if (OMD->getBody()) 5407 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5408 break; 5409 } 5410 case Decl::ObjCCompatibleAlias: 5411 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5412 break; 5413 5414 case Decl::PragmaComment: { 5415 const auto *PCD = cast<PragmaCommentDecl>(D); 5416 switch (PCD->getCommentKind()) { 5417 case PCK_Unknown: 5418 llvm_unreachable("unexpected pragma comment kind"); 5419 case PCK_Linker: 5420 AppendLinkerOptions(PCD->getArg()); 5421 break; 5422 case PCK_Lib: 5423 AddDependentLib(PCD->getArg()); 5424 break; 5425 case PCK_Compiler: 5426 case PCK_ExeStr: 5427 case PCK_User: 5428 break; // We ignore all of these. 5429 } 5430 break; 5431 } 5432 5433 case Decl::PragmaDetectMismatch: { 5434 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5435 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5436 break; 5437 } 5438 5439 case Decl::LinkageSpec: 5440 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5441 break; 5442 5443 case Decl::FileScopeAsm: { 5444 // File-scope asm is ignored during device-side CUDA compilation. 5445 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5446 break; 5447 // File-scope asm is ignored during device-side OpenMP compilation. 5448 if (LangOpts.OpenMPIsDevice) 5449 break; 5450 auto *AD = cast<FileScopeAsmDecl>(D); 5451 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5452 break; 5453 } 5454 5455 case Decl::Import: { 5456 auto *Import = cast<ImportDecl>(D); 5457 5458 // If we've already imported this module, we're done. 5459 if (!ImportedModules.insert(Import->getImportedModule())) 5460 break; 5461 5462 // Emit debug information for direct imports. 5463 if (!Import->getImportedOwningModule()) { 5464 if (CGDebugInfo *DI = getModuleDebugInfo()) 5465 DI->EmitImportDecl(*Import); 5466 } 5467 5468 // Find all of the submodules and emit the module initializers. 5469 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5470 SmallVector<clang::Module *, 16> Stack; 5471 Visited.insert(Import->getImportedModule()); 5472 Stack.push_back(Import->getImportedModule()); 5473 5474 while (!Stack.empty()) { 5475 clang::Module *Mod = Stack.pop_back_val(); 5476 if (!EmittedModuleInitializers.insert(Mod).second) 5477 continue; 5478 5479 for (auto *D : Context.getModuleInitializers(Mod)) 5480 EmitTopLevelDecl(D); 5481 5482 // Visit the submodules of this module. 5483 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5484 SubEnd = Mod->submodule_end(); 5485 Sub != SubEnd; ++Sub) { 5486 // Skip explicit children; they need to be explicitly imported to emit 5487 // the initializers. 5488 if ((*Sub)->IsExplicit) 5489 continue; 5490 5491 if (Visited.insert(*Sub).second) 5492 Stack.push_back(*Sub); 5493 } 5494 } 5495 break; 5496 } 5497 5498 case Decl::Export: 5499 EmitDeclContext(cast<ExportDecl>(D)); 5500 break; 5501 5502 case Decl::OMPThreadPrivate: 5503 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5504 break; 5505 5506 case Decl::OMPAllocate: 5507 break; 5508 5509 case Decl::OMPDeclareReduction: 5510 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5511 break; 5512 5513 case Decl::OMPDeclareMapper: 5514 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5515 break; 5516 5517 case Decl::OMPRequires: 5518 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5519 break; 5520 5521 default: 5522 // Make sure we handled everything we should, every other kind is a 5523 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5524 // function. Need to recode Decl::Kind to do that easily. 5525 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5526 break; 5527 } 5528 } 5529 5530 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5531 // Do we need to generate coverage mapping? 5532 if (!CodeGenOpts.CoverageMapping) 5533 return; 5534 switch (D->getKind()) { 5535 case Decl::CXXConversion: 5536 case Decl::CXXMethod: 5537 case Decl::Function: 5538 case Decl::ObjCMethod: 5539 case Decl::CXXConstructor: 5540 case Decl::CXXDestructor: { 5541 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5542 return; 5543 SourceManager &SM = getContext().getSourceManager(); 5544 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5545 return; 5546 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5547 if (I == DeferredEmptyCoverageMappingDecls.end()) 5548 DeferredEmptyCoverageMappingDecls[D] = true; 5549 break; 5550 } 5551 default: 5552 break; 5553 }; 5554 } 5555 5556 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5557 // Do we need to generate coverage mapping? 5558 if (!CodeGenOpts.CoverageMapping) 5559 return; 5560 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5561 if (Fn->isTemplateInstantiation()) 5562 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5563 } 5564 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5565 if (I == DeferredEmptyCoverageMappingDecls.end()) 5566 DeferredEmptyCoverageMappingDecls[D] = false; 5567 else 5568 I->second = false; 5569 } 5570 5571 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5572 // We call takeVector() here to avoid use-after-free. 5573 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5574 // we deserialize function bodies to emit coverage info for them, and that 5575 // deserializes more declarations. How should we handle that case? 5576 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5577 if (!Entry.second) 5578 continue; 5579 const Decl *D = Entry.first; 5580 switch (D->getKind()) { 5581 case Decl::CXXConversion: 5582 case Decl::CXXMethod: 5583 case Decl::Function: 5584 case Decl::ObjCMethod: { 5585 CodeGenPGO PGO(*this); 5586 GlobalDecl GD(cast<FunctionDecl>(D)); 5587 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5588 getFunctionLinkage(GD)); 5589 break; 5590 } 5591 case Decl::CXXConstructor: { 5592 CodeGenPGO PGO(*this); 5593 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5594 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5595 getFunctionLinkage(GD)); 5596 break; 5597 } 5598 case Decl::CXXDestructor: { 5599 CodeGenPGO PGO(*this); 5600 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5601 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5602 getFunctionLinkage(GD)); 5603 break; 5604 } 5605 default: 5606 break; 5607 }; 5608 } 5609 } 5610 5611 /// Turns the given pointer into a constant. 5612 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5613 const void *Ptr) { 5614 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5615 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5616 return llvm::ConstantInt::get(i64, PtrInt); 5617 } 5618 5619 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5620 llvm::NamedMDNode *&GlobalMetadata, 5621 GlobalDecl D, 5622 llvm::GlobalValue *Addr) { 5623 if (!GlobalMetadata) 5624 GlobalMetadata = 5625 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5626 5627 // TODO: should we report variant information for ctors/dtors? 5628 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5629 llvm::ConstantAsMetadata::get(GetPointerConstant( 5630 CGM.getLLVMContext(), D.getDecl()))}; 5631 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5632 } 5633 5634 /// For each function which is declared within an extern "C" region and marked 5635 /// as 'used', but has internal linkage, create an alias from the unmangled 5636 /// name to the mangled name if possible. People expect to be able to refer 5637 /// to such functions with an unmangled name from inline assembly within the 5638 /// same translation unit. 5639 void CodeGenModule::EmitStaticExternCAliases() { 5640 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5641 return; 5642 for (auto &I : StaticExternCValues) { 5643 IdentifierInfo *Name = I.first; 5644 llvm::GlobalValue *Val = I.second; 5645 if (Val && !getModule().getNamedValue(Name->getName())) 5646 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5647 } 5648 } 5649 5650 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5651 GlobalDecl &Result) const { 5652 auto Res = Manglings.find(MangledName); 5653 if (Res == Manglings.end()) 5654 return false; 5655 Result = Res->getValue(); 5656 return true; 5657 } 5658 5659 /// Emits metadata nodes associating all the global values in the 5660 /// current module with the Decls they came from. This is useful for 5661 /// projects using IR gen as a subroutine. 5662 /// 5663 /// Since there's currently no way to associate an MDNode directly 5664 /// with an llvm::GlobalValue, we create a global named metadata 5665 /// with the name 'clang.global.decl.ptrs'. 5666 void CodeGenModule::EmitDeclMetadata() { 5667 llvm::NamedMDNode *GlobalMetadata = nullptr; 5668 5669 for (auto &I : MangledDeclNames) { 5670 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5671 // Some mangled names don't necessarily have an associated GlobalValue 5672 // in this module, e.g. if we mangled it for DebugInfo. 5673 if (Addr) 5674 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5675 } 5676 } 5677 5678 /// Emits metadata nodes for all the local variables in the current 5679 /// function. 5680 void CodeGenFunction::EmitDeclMetadata() { 5681 if (LocalDeclMap.empty()) return; 5682 5683 llvm::LLVMContext &Context = getLLVMContext(); 5684 5685 // Find the unique metadata ID for this name. 5686 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5687 5688 llvm::NamedMDNode *GlobalMetadata = nullptr; 5689 5690 for (auto &I : LocalDeclMap) { 5691 const Decl *D = I.first; 5692 llvm::Value *Addr = I.second.getPointer(); 5693 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5694 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5695 Alloca->setMetadata( 5696 DeclPtrKind, llvm::MDNode::get( 5697 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5698 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5699 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5700 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5701 } 5702 } 5703 } 5704 5705 void CodeGenModule::EmitVersionIdentMetadata() { 5706 llvm::NamedMDNode *IdentMetadata = 5707 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5708 std::string Version = getClangFullVersion(); 5709 llvm::LLVMContext &Ctx = TheModule.getContext(); 5710 5711 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5712 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5713 } 5714 5715 void CodeGenModule::EmitCommandLineMetadata() { 5716 llvm::NamedMDNode *CommandLineMetadata = 5717 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5718 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5719 llvm::LLVMContext &Ctx = TheModule.getContext(); 5720 5721 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5722 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5723 } 5724 5725 void CodeGenModule::EmitTargetMetadata() { 5726 // Warning, new MangledDeclNames may be appended within this loop. 5727 // We rely on MapVector insertions adding new elements to the end 5728 // of the container. 5729 // FIXME: Move this loop into the one target that needs it, and only 5730 // loop over those declarations for which we couldn't emit the target 5731 // metadata when we emitted the declaration. 5732 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5733 auto Val = *(MangledDeclNames.begin() + I); 5734 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5735 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5736 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5737 } 5738 } 5739 5740 void CodeGenModule::EmitCoverageFile() { 5741 if (getCodeGenOpts().CoverageDataFile.empty() && 5742 getCodeGenOpts().CoverageNotesFile.empty()) 5743 return; 5744 5745 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5746 if (!CUNode) 5747 return; 5748 5749 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5750 llvm::LLVMContext &Ctx = TheModule.getContext(); 5751 auto *CoverageDataFile = 5752 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5753 auto *CoverageNotesFile = 5754 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5755 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5756 llvm::MDNode *CU = CUNode->getOperand(i); 5757 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5758 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5759 } 5760 } 5761 5762 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5763 // Sema has checked that all uuid strings are of the form 5764 // "12345678-1234-1234-1234-1234567890ab". 5765 assert(Uuid.size() == 36); 5766 for (unsigned i = 0; i < 36; ++i) { 5767 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5768 else assert(isHexDigit(Uuid[i])); 5769 } 5770 5771 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5772 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5773 5774 llvm::Constant *Field3[8]; 5775 for (unsigned Idx = 0; Idx < 8; ++Idx) 5776 Field3[Idx] = llvm::ConstantInt::get( 5777 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5778 5779 llvm::Constant *Fields[4] = { 5780 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5781 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5782 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5783 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5784 }; 5785 5786 return llvm::ConstantStruct::getAnon(Fields); 5787 } 5788 5789 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5790 bool ForEH) { 5791 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5792 // FIXME: should we even be calling this method if RTTI is disabled 5793 // and it's not for EH? 5794 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 5795 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 5796 getTriple().isNVPTX())) 5797 return llvm::Constant::getNullValue(Int8PtrTy); 5798 5799 if (ForEH && Ty->isObjCObjectPointerType() && 5800 LangOpts.ObjCRuntime.isGNUFamily()) 5801 return ObjCRuntime->GetEHType(Ty); 5802 5803 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5804 } 5805 5806 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5807 // Do not emit threadprivates in simd-only mode. 5808 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5809 return; 5810 for (auto RefExpr : D->varlists()) { 5811 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5812 bool PerformInit = 5813 VD->getAnyInitializer() && 5814 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5815 /*ForRef=*/false); 5816 5817 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5818 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5819 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5820 CXXGlobalInits.push_back(InitFunction); 5821 } 5822 } 5823 5824 llvm::Metadata * 5825 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5826 StringRef Suffix) { 5827 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5828 if (InternalId) 5829 return InternalId; 5830 5831 if (isExternallyVisible(T->getLinkage())) { 5832 std::string OutName; 5833 llvm::raw_string_ostream Out(OutName); 5834 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5835 Out << Suffix; 5836 5837 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5838 } else { 5839 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5840 llvm::ArrayRef<llvm::Metadata *>()); 5841 } 5842 5843 return InternalId; 5844 } 5845 5846 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5847 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5848 } 5849 5850 llvm::Metadata * 5851 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5852 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5853 } 5854 5855 // Generalize pointer types to a void pointer with the qualifiers of the 5856 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5857 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5858 // 'void *'. 5859 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5860 if (!Ty->isPointerType()) 5861 return Ty; 5862 5863 return Ctx.getPointerType( 5864 QualType(Ctx.VoidTy).withCVRQualifiers( 5865 Ty->getPointeeType().getCVRQualifiers())); 5866 } 5867 5868 // Apply type generalization to a FunctionType's return and argument types 5869 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5870 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5871 SmallVector<QualType, 8> GeneralizedParams; 5872 for (auto &Param : FnType->param_types()) 5873 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5874 5875 return Ctx.getFunctionType( 5876 GeneralizeType(Ctx, FnType->getReturnType()), 5877 GeneralizedParams, FnType->getExtProtoInfo()); 5878 } 5879 5880 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5881 return Ctx.getFunctionNoProtoType( 5882 GeneralizeType(Ctx, FnType->getReturnType())); 5883 5884 llvm_unreachable("Encountered unknown FunctionType"); 5885 } 5886 5887 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5888 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5889 GeneralizedMetadataIdMap, ".generalized"); 5890 } 5891 5892 /// Returns whether this module needs the "all-vtables" type identifier. 5893 bool CodeGenModule::NeedAllVtablesTypeId() const { 5894 // Returns true if at least one of vtable-based CFI checkers is enabled and 5895 // is not in the trapping mode. 5896 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5897 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5898 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5899 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5900 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5901 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5902 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5903 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5904 } 5905 5906 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5907 CharUnits Offset, 5908 const CXXRecordDecl *RD) { 5909 llvm::Metadata *MD = 5910 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5911 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5912 5913 if (CodeGenOpts.SanitizeCfiCrossDso) 5914 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5915 VTable->addTypeMetadata(Offset.getQuantity(), 5916 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5917 5918 if (NeedAllVtablesTypeId()) { 5919 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5920 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5921 } 5922 } 5923 5924 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5925 if (!SanStats) 5926 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 5927 5928 return *SanStats; 5929 } 5930 llvm::Value * 5931 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5932 CodeGenFunction &CGF) { 5933 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5934 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5935 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5936 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5937 "__translate_sampler_initializer"), 5938 {C}); 5939 } 5940