xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 49a94b1c7cf661b1d45247ef39e70c7330219045)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48   switch (CGM.getContext().Target.getCXXABI()) {
49   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52   }
53 
54   llvm_unreachable("invalid C++ ABI kind");
55   return *CreateItaniumCXXABI(CGM);
56 }
57 
58 
59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                              llvm::Module &M, const llvm::TargetData &TD,
61                              Diagnostic &diags)
62   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0), DebugInfo(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0),
74     BlockDescriptorType(0), GenericBlockLiteralType(0) {
75   if (Features.ObjC1)
76      createObjCRuntime();
77 
78   // Enable TBAA unless it's suppressed.
79   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                            ABI.getMangleContext());
82 
83   // If debug info or coverage generation is enabled, create the CGDebugInfo
84   // object.
85   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
86       CodeGenOpts.EmitGcovNotes)
87     DebugInfo = new CGDebugInfo(*this);
88 
89   Block.GlobalUniqueCount = 0;
90 
91   // Initialize the type cache.
92   llvm::LLVMContext &LLVMContext = M.getContext();
93   Int8Ty  = llvm::Type::getInt8Ty(LLVMContext);
94   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
95   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
96   PointerWidthInBits = C.Target.getPointerWidth(0);
97   PointerAlignInBytes =
98     C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
99   IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
100   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
101   Int8PtrTy = Int8Ty->getPointerTo(0);
102   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
103 }
104 
105 CodeGenModule::~CodeGenModule() {
106   delete Runtime;
107   delete &ABI;
108   delete TBAA;
109   delete DebugInfo;
110 }
111 
112 void CodeGenModule::createObjCRuntime() {
113   if (!Features.NeXTRuntime)
114     Runtime = CreateGNUObjCRuntime(*this);
115   else
116     Runtime = CreateMacObjCRuntime(*this);
117 }
118 
119 void CodeGenModule::Release() {
120   EmitDeferred();
121   EmitCXXGlobalInitFunc();
122   EmitCXXGlobalDtorFunc();
123   if (Runtime)
124     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
125       AddGlobalCtor(ObjCInitFunction);
126   EmitCtorList(GlobalCtors, "llvm.global_ctors");
127   EmitCtorList(GlobalDtors, "llvm.global_dtors");
128   EmitAnnotations();
129   EmitLLVMUsed();
130 
131   SimplifyPersonality();
132 
133   if (getCodeGenOpts().EmitDeclMetadata)
134     EmitDeclMetadata();
135 
136   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
137     EmitCoverageFile();
138 }
139 
140 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
141   // Make sure that this type is translated.
142   Types.UpdateCompletedType(TD);
143   if (DebugInfo)
144     DebugInfo->UpdateCompletedType(TD);
145 }
146 
147 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
148   if (!TBAA)
149     return 0;
150   return TBAA->getTBAAInfo(QTy);
151 }
152 
153 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
154                                         llvm::MDNode *TBAAInfo) {
155   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
156 }
157 
158 bool CodeGenModule::isTargetDarwin() const {
159   return getContext().Target.getTriple().isOSDarwin();
160 }
161 
162 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
163   unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
164   getDiags().Report(Context.getFullLoc(loc), diagID);
165 }
166 
167 /// ErrorUnsupported - Print out an error that codegen doesn't support the
168 /// specified stmt yet.
169 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
170                                      bool OmitOnError) {
171   if (OmitOnError && getDiags().hasErrorOccurred())
172     return;
173   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
174                                                "cannot compile this %0 yet");
175   std::string Msg = Type;
176   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
177     << Msg << S->getSourceRange();
178 }
179 
180 /// ErrorUnsupported - Print out an error that codegen doesn't support the
181 /// specified decl yet.
182 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
183                                      bool OmitOnError) {
184   if (OmitOnError && getDiags().hasErrorOccurred())
185     return;
186   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
187                                                "cannot compile this %0 yet");
188   std::string Msg = Type;
189   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
190 }
191 
192 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
193                                         const NamedDecl *D) const {
194   // Internal definitions always have default visibility.
195   if (GV->hasLocalLinkage()) {
196     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
197     return;
198   }
199 
200   // Set visibility for definitions.
201   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
202   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
203     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
204 }
205 
206 /// Set the symbol visibility of type information (vtable and RTTI)
207 /// associated with the given type.
208 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
209                                       const CXXRecordDecl *RD,
210                                       TypeVisibilityKind TVK) const {
211   setGlobalVisibility(GV, RD);
212 
213   if (!CodeGenOpts.HiddenWeakVTables)
214     return;
215 
216   // We never want to drop the visibility for RTTI names.
217   if (TVK == TVK_ForRTTIName)
218     return;
219 
220   // We want to drop the visibility to hidden for weak type symbols.
221   // This isn't possible if there might be unresolved references
222   // elsewhere that rely on this symbol being visible.
223 
224   // This should be kept roughly in sync with setThunkVisibility
225   // in CGVTables.cpp.
226 
227   // Preconditions.
228   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
229       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
230     return;
231 
232   // Don't override an explicit visibility attribute.
233   if (RD->getExplicitVisibility())
234     return;
235 
236   switch (RD->getTemplateSpecializationKind()) {
237   // We have to disable the optimization if this is an EI definition
238   // because there might be EI declarations in other shared objects.
239   case TSK_ExplicitInstantiationDefinition:
240   case TSK_ExplicitInstantiationDeclaration:
241     return;
242 
243   // Every use of a non-template class's type information has to emit it.
244   case TSK_Undeclared:
245     break;
246 
247   // In theory, implicit instantiations can ignore the possibility of
248   // an explicit instantiation declaration because there necessarily
249   // must be an EI definition somewhere with default visibility.  In
250   // practice, it's possible to have an explicit instantiation for
251   // an arbitrary template class, and linkers aren't necessarily able
252   // to deal with mixed-visibility symbols.
253   case TSK_ExplicitSpecialization:
254   case TSK_ImplicitInstantiation:
255     if (!CodeGenOpts.HiddenWeakTemplateVTables)
256       return;
257     break;
258   }
259 
260   // If there's a key function, there may be translation units
261   // that don't have the key function's definition.  But ignore
262   // this if we're emitting RTTI under -fno-rtti.
263   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
264     if (Context.getKeyFunction(RD))
265       return;
266   }
267 
268   // Otherwise, drop the visibility to hidden.
269   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
270   GV->setUnnamedAddr(true);
271 }
272 
273 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
274   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
275 
276   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
277   if (!Str.empty())
278     return Str;
279 
280   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
281     IdentifierInfo *II = ND->getIdentifier();
282     assert(II && "Attempt to mangle unnamed decl.");
283 
284     Str = II->getName();
285     return Str;
286   }
287 
288   llvm::SmallString<256> Buffer;
289   llvm::raw_svector_ostream Out(Buffer);
290   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
291     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
292   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
293     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
294   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
295     getCXXABI().getMangleContext().mangleBlock(BD, Out);
296   else
297     getCXXABI().getMangleContext().mangleName(ND, Out);
298 
299   // Allocate space for the mangled name.
300   Out.flush();
301   size_t Length = Buffer.size();
302   char *Name = MangledNamesAllocator.Allocate<char>(Length);
303   std::copy(Buffer.begin(), Buffer.end(), Name);
304 
305   Str = llvm::StringRef(Name, Length);
306 
307   return Str;
308 }
309 
310 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
311                                         const BlockDecl *BD) {
312   MangleContext &MangleCtx = getCXXABI().getMangleContext();
313   const Decl *D = GD.getDecl();
314   llvm::raw_svector_ostream Out(Buffer.getBuffer());
315   if (D == 0)
316     MangleCtx.mangleGlobalBlock(BD, Out);
317   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
318     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
319   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
320     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
321   else
322     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
323 }
324 
325 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
326   return getModule().getNamedValue(Name);
327 }
328 
329 /// AddGlobalCtor - Add a function to the list that will be called before
330 /// main() runs.
331 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
332   // FIXME: Type coercion of void()* types.
333   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
334 }
335 
336 /// AddGlobalDtor - Add a function to the list that will be called
337 /// when the module is unloaded.
338 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
339   // FIXME: Type coercion of void()* types.
340   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
341 }
342 
343 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
344   // Ctor function type is void()*.
345   llvm::FunctionType* CtorFTy =
346     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
347   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
348 
349   // Get the type of a ctor entry, { i32, void ()* }.
350   llvm::StructType* CtorStructTy =
351     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
352                           llvm::PointerType::getUnqual(CtorFTy), NULL);
353 
354   // Construct the constructor and destructor arrays.
355   std::vector<llvm::Constant*> Ctors;
356   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
357     std::vector<llvm::Constant*> S;
358     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
359                 I->second, false));
360     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
361     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
362   }
363 
364   if (!Ctors.empty()) {
365     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
366     new llvm::GlobalVariable(TheModule, AT, false,
367                              llvm::GlobalValue::AppendingLinkage,
368                              llvm::ConstantArray::get(AT, Ctors),
369                              GlobalName);
370   }
371 }
372 
373 void CodeGenModule::EmitAnnotations() {
374   if (Annotations.empty())
375     return;
376 
377   // Create a new global variable for the ConstantStruct in the Module.
378   llvm::Constant *Array =
379   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
380                                                 Annotations.size()),
381                            Annotations);
382   llvm::GlobalValue *gv =
383   new llvm::GlobalVariable(TheModule, Array->getType(), false,
384                            llvm::GlobalValue::AppendingLinkage, Array,
385                            "llvm.global.annotations");
386   gv->setSection("llvm.metadata");
387 }
388 
389 llvm::GlobalValue::LinkageTypes
390 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
391   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
392 
393   if (Linkage == GVA_Internal)
394     return llvm::Function::InternalLinkage;
395 
396   if (D->hasAttr<DLLExportAttr>())
397     return llvm::Function::DLLExportLinkage;
398 
399   if (D->hasAttr<WeakAttr>())
400     return llvm::Function::WeakAnyLinkage;
401 
402   // In C99 mode, 'inline' functions are guaranteed to have a strong
403   // definition somewhere else, so we can use available_externally linkage.
404   if (Linkage == GVA_C99Inline)
405     return llvm::Function::AvailableExternallyLinkage;
406 
407   // In C++, the compiler has to emit a definition in every translation unit
408   // that references the function.  We should use linkonce_odr because
409   // a) if all references in this translation unit are optimized away, we
410   // don't need to codegen it.  b) if the function persists, it needs to be
411   // merged with other definitions. c) C++ has the ODR, so we know the
412   // definition is dependable.
413   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
414     return !Context.getLangOptions().AppleKext
415              ? llvm::Function::LinkOnceODRLinkage
416              : llvm::Function::InternalLinkage;
417 
418   // An explicit instantiation of a template has weak linkage, since
419   // explicit instantiations can occur in multiple translation units
420   // and must all be equivalent. However, we are not allowed to
421   // throw away these explicit instantiations.
422   if (Linkage == GVA_ExplicitTemplateInstantiation)
423     return !Context.getLangOptions().AppleKext
424              ? llvm::Function::WeakODRLinkage
425              : llvm::Function::InternalLinkage;
426 
427   // Otherwise, we have strong external linkage.
428   assert(Linkage == GVA_StrongExternal);
429   return llvm::Function::ExternalLinkage;
430 }
431 
432 
433 /// SetFunctionDefinitionAttributes - Set attributes for a global.
434 ///
435 /// FIXME: This is currently only done for aliases and functions, but not for
436 /// variables (these details are set in EmitGlobalVarDefinition for variables).
437 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
438                                                     llvm::GlobalValue *GV) {
439   SetCommonAttributes(D, GV);
440 }
441 
442 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
443                                               const CGFunctionInfo &Info,
444                                               llvm::Function *F) {
445   unsigned CallingConv;
446   AttributeListType AttributeList;
447   ConstructAttributeList(Info, D, AttributeList, CallingConv);
448   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
449                                           AttributeList.size()));
450   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
451 }
452 
453 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
454                                                            llvm::Function *F) {
455   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
456     F->addFnAttr(llvm::Attribute::NoUnwind);
457 
458   if (D->hasAttr<AlwaysInlineAttr>())
459     F->addFnAttr(llvm::Attribute::AlwaysInline);
460 
461   if (D->hasAttr<NakedAttr>())
462     F->addFnAttr(llvm::Attribute::Naked);
463 
464   if (D->hasAttr<NoInlineAttr>())
465     F->addFnAttr(llvm::Attribute::NoInline);
466 
467   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
468     F->setUnnamedAddr(true);
469 
470   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
471     F->addFnAttr(llvm::Attribute::StackProtect);
472   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
473     F->addFnAttr(llvm::Attribute::StackProtectReq);
474 
475   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
476   if (alignment)
477     F->setAlignment(alignment);
478 
479   // C++ ABI requires 2-byte alignment for member functions.
480   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
481     F->setAlignment(2);
482 }
483 
484 void CodeGenModule::SetCommonAttributes(const Decl *D,
485                                         llvm::GlobalValue *GV) {
486   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
487     setGlobalVisibility(GV, ND);
488   else
489     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
490 
491   if (D->hasAttr<UsedAttr>())
492     AddUsedGlobal(GV);
493 
494   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
495     GV->setSection(SA->getName());
496 
497   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
498 }
499 
500 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
501                                                   llvm::Function *F,
502                                                   const CGFunctionInfo &FI) {
503   SetLLVMFunctionAttributes(D, FI, F);
504   SetLLVMFunctionAttributesForDefinition(D, F);
505 
506   F->setLinkage(llvm::Function::InternalLinkage);
507 
508   SetCommonAttributes(D, F);
509 }
510 
511 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
512                                           llvm::Function *F,
513                                           bool IsIncompleteFunction) {
514   if (unsigned IID = F->getIntrinsicID()) {
515     // If this is an intrinsic function, set the function's attributes
516     // to the intrinsic's attributes.
517     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
518     return;
519   }
520 
521   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
522 
523   if (!IsIncompleteFunction)
524     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
525 
526   // Only a few attributes are set on declarations; these may later be
527   // overridden by a definition.
528 
529   if (FD->hasAttr<DLLImportAttr>()) {
530     F->setLinkage(llvm::Function::DLLImportLinkage);
531   } else if (FD->hasAttr<WeakAttr>() ||
532              FD->isWeakImported()) {
533     // "extern_weak" is overloaded in LLVM; we probably should have
534     // separate linkage types for this.
535     F->setLinkage(llvm::Function::ExternalWeakLinkage);
536   } else {
537     F->setLinkage(llvm::Function::ExternalLinkage);
538 
539     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
540     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
541       F->setVisibility(GetLLVMVisibility(LV.visibility()));
542     }
543   }
544 
545   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
546     F->setSection(SA->getName());
547 }
548 
549 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
550   assert(!GV->isDeclaration() &&
551          "Only globals with definition can force usage.");
552   LLVMUsed.push_back(GV);
553 }
554 
555 void CodeGenModule::EmitLLVMUsed() {
556   // Don't create llvm.used if there is no need.
557   if (LLVMUsed.empty())
558     return;
559 
560   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
561 
562   // Convert LLVMUsed to what ConstantArray needs.
563   std::vector<llvm::Constant*> UsedArray;
564   UsedArray.resize(LLVMUsed.size());
565   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
566     UsedArray[i] =
567      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
568                                       i8PTy);
569   }
570 
571   if (UsedArray.empty())
572     return;
573   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
574 
575   llvm::GlobalVariable *GV =
576     new llvm::GlobalVariable(getModule(), ATy, false,
577                              llvm::GlobalValue::AppendingLinkage,
578                              llvm::ConstantArray::get(ATy, UsedArray),
579                              "llvm.used");
580 
581   GV->setSection("llvm.metadata");
582 }
583 
584 void CodeGenModule::EmitDeferred() {
585   // Emit code for any potentially referenced deferred decls.  Since a
586   // previously unused static decl may become used during the generation of code
587   // for a static function, iterate until no  changes are made.
588 
589   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
590     if (!DeferredVTables.empty()) {
591       const CXXRecordDecl *RD = DeferredVTables.back();
592       DeferredVTables.pop_back();
593       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
594       continue;
595     }
596 
597     GlobalDecl D = DeferredDeclsToEmit.back();
598     DeferredDeclsToEmit.pop_back();
599 
600     // Check to see if we've already emitted this.  This is necessary
601     // for a couple of reasons: first, decls can end up in the
602     // deferred-decls queue multiple times, and second, decls can end
603     // up with definitions in unusual ways (e.g. by an extern inline
604     // function acquiring a strong function redefinition).  Just
605     // ignore these cases.
606     //
607     // TODO: That said, looking this up multiple times is very wasteful.
608     llvm::StringRef Name = getMangledName(D);
609     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
610     assert(CGRef && "Deferred decl wasn't referenced?");
611 
612     if (!CGRef->isDeclaration())
613       continue;
614 
615     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
616     // purposes an alias counts as a definition.
617     if (isa<llvm::GlobalAlias>(CGRef))
618       continue;
619 
620     // Otherwise, emit the definition and move on to the next one.
621     EmitGlobalDefinition(D);
622   }
623 }
624 
625 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
626 /// annotation information for a given GlobalValue.  The annotation struct is
627 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
628 /// GlobalValue being annotated.  The second field is the constant string
629 /// created from the AnnotateAttr's annotation.  The third field is a constant
630 /// string containing the name of the translation unit.  The fourth field is
631 /// the line number in the file of the annotated value declaration.
632 ///
633 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
634 ///        appears to.
635 ///
636 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
637                                                 const AnnotateAttr *AA,
638                                                 unsigned LineNo) {
639   llvm::Module *M = &getModule();
640 
641   // get [N x i8] constants for the annotation string, and the filename string
642   // which are the 2nd and 3rd elements of the global annotation structure.
643   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
644   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
645                                                   AA->getAnnotation(), true);
646   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
647                                                   M->getModuleIdentifier(),
648                                                   true);
649 
650   // Get the two global values corresponding to the ConstantArrays we just
651   // created to hold the bytes of the strings.
652   llvm::GlobalValue *annoGV =
653     new llvm::GlobalVariable(*M, anno->getType(), false,
654                              llvm::GlobalValue::PrivateLinkage, anno,
655                              GV->getName());
656   // translation unit name string, emitted into the llvm.metadata section.
657   llvm::GlobalValue *unitGV =
658     new llvm::GlobalVariable(*M, unit->getType(), false,
659                              llvm::GlobalValue::PrivateLinkage, unit,
660                              ".str");
661   unitGV->setUnnamedAddr(true);
662 
663   // Create the ConstantStruct for the global annotation.
664   llvm::Constant *Fields[4] = {
665     llvm::ConstantExpr::getBitCast(GV, SBP),
666     llvm::ConstantExpr::getBitCast(annoGV, SBP),
667     llvm::ConstantExpr::getBitCast(unitGV, SBP),
668     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
669   };
670   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
671 }
672 
673 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
674   // Never defer when EmitAllDecls is specified.
675   if (Features.EmitAllDecls)
676     return false;
677 
678   return !getContext().DeclMustBeEmitted(Global);
679 }
680 
681 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
682   const AliasAttr *AA = VD->getAttr<AliasAttr>();
683   assert(AA && "No alias?");
684 
685   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
686 
687   // See if there is already something with the target's name in the module.
688   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
689 
690   llvm::Constant *Aliasee;
691   if (isa<llvm::FunctionType>(DeclTy))
692     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
693                                       /*ForVTable=*/false);
694   else
695     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
696                                     llvm::PointerType::getUnqual(DeclTy), 0);
697   if (!Entry) {
698     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
699     F->setLinkage(llvm::Function::ExternalWeakLinkage);
700     WeakRefReferences.insert(F);
701   }
702 
703   return Aliasee;
704 }
705 
706 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
707   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
708 
709   // Weak references don't produce any output by themselves.
710   if (Global->hasAttr<WeakRefAttr>())
711     return;
712 
713   // If this is an alias definition (which otherwise looks like a declaration)
714   // emit it now.
715   if (Global->hasAttr<AliasAttr>())
716     return EmitAliasDefinition(GD);
717 
718   // Ignore declarations, they will be emitted on their first use.
719   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
720     if (FD->getIdentifier()) {
721       llvm::StringRef Name = FD->getName();
722       if (Name == "_Block_object_assign") {
723         BlockObjectAssignDecl = FD;
724       } else if (Name == "_Block_object_dispose") {
725         BlockObjectDisposeDecl = FD;
726       }
727     }
728 
729     // Forward declarations are emitted lazily on first use.
730     if (!FD->isThisDeclarationADefinition())
731       return;
732   } else {
733     const VarDecl *VD = cast<VarDecl>(Global);
734     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
735 
736     if (VD->getIdentifier()) {
737       llvm::StringRef Name = VD->getName();
738       if (Name == "_NSConcreteGlobalBlock") {
739         NSConcreteGlobalBlockDecl = VD;
740       } else if (Name == "_NSConcreteStackBlock") {
741         NSConcreteStackBlockDecl = VD;
742       }
743     }
744 
745 
746     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
747       return;
748   }
749 
750   // Defer code generation when possible if this is a static definition, inline
751   // function etc.  These we only want to emit if they are used.
752   if (!MayDeferGeneration(Global)) {
753     // Emit the definition if it can't be deferred.
754     EmitGlobalDefinition(GD);
755     return;
756   }
757 
758   // If we're deferring emission of a C++ variable with an
759   // initializer, remember the order in which it appeared in the file.
760   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
761       cast<VarDecl>(Global)->hasInit()) {
762     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
763     CXXGlobalInits.push_back(0);
764   }
765 
766   // If the value has already been used, add it directly to the
767   // DeferredDeclsToEmit list.
768   llvm::StringRef MangledName = getMangledName(GD);
769   if (GetGlobalValue(MangledName))
770     DeferredDeclsToEmit.push_back(GD);
771   else {
772     // Otherwise, remember that we saw a deferred decl with this name.  The
773     // first use of the mangled name will cause it to move into
774     // DeferredDeclsToEmit.
775     DeferredDecls[MangledName] = GD;
776   }
777 }
778 
779 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
780   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
781 
782   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
783                                  Context.getSourceManager(),
784                                  "Generating code for declaration");
785 
786   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
787     // At -O0, don't generate IR for functions with available_externally
788     // linkage.
789     if (CodeGenOpts.OptimizationLevel == 0 &&
790         !Function->hasAttr<AlwaysInlineAttr>() &&
791         getFunctionLinkage(Function)
792                                   == llvm::Function::AvailableExternallyLinkage)
793       return;
794 
795     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
796       // Make sure to emit the definition(s) before we emit the thunks.
797       // This is necessary for the generation of certain thunks.
798       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
799         EmitCXXConstructor(CD, GD.getCtorType());
800       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
801         EmitCXXDestructor(DD, GD.getDtorType());
802       else
803         EmitGlobalFunctionDefinition(GD);
804 
805       if (Method->isVirtual())
806         getVTables().EmitThunks(GD);
807 
808       return;
809     }
810 
811     return EmitGlobalFunctionDefinition(GD);
812   }
813 
814   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
815     return EmitGlobalVarDefinition(VD);
816 
817   assert(0 && "Invalid argument to EmitGlobalDefinition()");
818 }
819 
820 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
821 /// module, create and return an llvm Function with the specified type. If there
822 /// is something in the module with the specified name, return it potentially
823 /// bitcasted to the right type.
824 ///
825 /// If D is non-null, it specifies a decl that correspond to this.  This is used
826 /// to set the attributes on the function when it is first created.
827 llvm::Constant *
828 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
829                                        const llvm::Type *Ty,
830                                        GlobalDecl D, bool ForVTable) {
831   // Lookup the entry, lazily creating it if necessary.
832   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
833   if (Entry) {
834     if (WeakRefReferences.count(Entry)) {
835       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
836       if (FD && !FD->hasAttr<WeakAttr>())
837         Entry->setLinkage(llvm::Function::ExternalLinkage);
838 
839       WeakRefReferences.erase(Entry);
840     }
841 
842     if (Entry->getType()->getElementType() == Ty)
843       return Entry;
844 
845     // Make sure the result is of the correct type.
846     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
847     return llvm::ConstantExpr::getBitCast(Entry, PTy);
848   }
849 
850   // This function doesn't have a complete type (for example, the return
851   // type is an incomplete struct). Use a fake type instead, and make
852   // sure not to try to set attributes.
853   bool IsIncompleteFunction = false;
854 
855   const llvm::FunctionType *FTy;
856   if (isa<llvm::FunctionType>(Ty)) {
857     FTy = cast<llvm::FunctionType>(Ty);
858   } else {
859     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
860     IsIncompleteFunction = true;
861   }
862 
863   llvm::Function *F = llvm::Function::Create(FTy,
864                                              llvm::Function::ExternalLinkage,
865                                              MangledName, &getModule());
866   assert(F->getName() == MangledName && "name was uniqued!");
867   if (D.getDecl())
868     SetFunctionAttributes(D, F, IsIncompleteFunction);
869 
870   // This is the first use or definition of a mangled name.  If there is a
871   // deferred decl with this name, remember that we need to emit it at the end
872   // of the file.
873   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
874   if (DDI != DeferredDecls.end()) {
875     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
876     // list, and remove it from DeferredDecls (since we don't need it anymore).
877     DeferredDeclsToEmit.push_back(DDI->second);
878     DeferredDecls.erase(DDI);
879 
880   // Otherwise, there are cases we have to worry about where we're
881   // using a declaration for which we must emit a definition but where
882   // we might not find a top-level definition:
883   //   - member functions defined inline in their classes
884   //   - friend functions defined inline in some class
885   //   - special member functions with implicit definitions
886   // If we ever change our AST traversal to walk into class methods,
887   // this will be unnecessary.
888   //
889   // We also don't emit a definition for a function if it's going to be an entry
890   // in a vtable, unless it's already marked as used.
891   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
892     // Look for a declaration that's lexically in a record.
893     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
894     do {
895       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
896         if (FD->isImplicit() && !ForVTable) {
897           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
898           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
899           break;
900         } else if (FD->isThisDeclarationADefinition()) {
901           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
902           break;
903         }
904       }
905       FD = FD->getPreviousDeclaration();
906     } while (FD);
907   }
908 
909   // Make sure the result is of the requested type.
910   if (!IsIncompleteFunction) {
911     assert(F->getType()->getElementType() == Ty);
912     return F;
913   }
914 
915   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
916   return llvm::ConstantExpr::getBitCast(F, PTy);
917 }
918 
919 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
920 /// non-null, then this function will use the specified type if it has to
921 /// create it (this occurs when we see a definition of the function).
922 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
923                                                  const llvm::Type *Ty,
924                                                  bool ForVTable) {
925   // If there was no specific requested type, just convert it now.
926   if (!Ty)
927     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
928 
929   llvm::StringRef MangledName = getMangledName(GD);
930   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
931 }
932 
933 /// CreateRuntimeFunction - Create a new runtime function with the specified
934 /// type and name.
935 llvm::Constant *
936 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
937                                      llvm::StringRef Name) {
938   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
939 }
940 
941 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
942   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
943     return false;
944   if (Context.getLangOptions().CPlusPlus &&
945       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
946     // FIXME: We should do something fancier here!
947     return false;
948   }
949   return true;
950 }
951 
952 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
953 /// create and return an llvm GlobalVariable with the specified type.  If there
954 /// is something in the module with the specified name, return it potentially
955 /// bitcasted to the right type.
956 ///
957 /// If D is non-null, it specifies a decl that correspond to this.  This is used
958 /// to set the attributes on the global when it is first created.
959 llvm::Constant *
960 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
961                                      const llvm::PointerType *Ty,
962                                      const VarDecl *D,
963                                      bool UnnamedAddr) {
964   // Lookup the entry, lazily creating it if necessary.
965   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
966   if (Entry) {
967     if (WeakRefReferences.count(Entry)) {
968       if (D && !D->hasAttr<WeakAttr>())
969         Entry->setLinkage(llvm::Function::ExternalLinkage);
970 
971       WeakRefReferences.erase(Entry);
972     }
973 
974     if (UnnamedAddr)
975       Entry->setUnnamedAddr(true);
976 
977     if (Entry->getType() == Ty)
978       return Entry;
979 
980     // Make sure the result is of the correct type.
981     return llvm::ConstantExpr::getBitCast(Entry, Ty);
982   }
983 
984   // This is the first use or definition of a mangled name.  If there is a
985   // deferred decl with this name, remember that we need to emit it at the end
986   // of the file.
987   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
988   if (DDI != DeferredDecls.end()) {
989     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
990     // list, and remove it from DeferredDecls (since we don't need it anymore).
991     DeferredDeclsToEmit.push_back(DDI->second);
992     DeferredDecls.erase(DDI);
993   }
994 
995   llvm::GlobalVariable *GV =
996     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
997                              llvm::GlobalValue::ExternalLinkage,
998                              0, MangledName, 0,
999                              false, Ty->getAddressSpace());
1000 
1001   // Handle things which are present even on external declarations.
1002   if (D) {
1003     // FIXME: This code is overly simple and should be merged with other global
1004     // handling.
1005     GV->setConstant(DeclIsConstantGlobal(Context, D));
1006 
1007     // Set linkage and visibility in case we never see a definition.
1008     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1009     if (LV.linkage() != ExternalLinkage) {
1010       // Don't set internal linkage on declarations.
1011     } else {
1012       if (D->hasAttr<DLLImportAttr>())
1013         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1014       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1015         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1016 
1017       // Set visibility on a declaration only if it's explicit.
1018       if (LV.visibilityExplicit())
1019         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1020     }
1021 
1022     GV->setThreadLocal(D->isThreadSpecified());
1023   }
1024 
1025   return GV;
1026 }
1027 
1028 
1029 llvm::GlobalVariable *
1030 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1031                                       const llvm::Type *Ty,
1032                                       llvm::GlobalValue::LinkageTypes Linkage) {
1033   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1034   llvm::GlobalVariable *OldGV = 0;
1035 
1036 
1037   if (GV) {
1038     // Check if the variable has the right type.
1039     if (GV->getType()->getElementType() == Ty)
1040       return GV;
1041 
1042     // Because C++ name mangling, the only way we can end up with an already
1043     // existing global with the same name is if it has been declared extern "C".
1044       assert(GV->isDeclaration() && "Declaration has wrong type!");
1045     OldGV = GV;
1046   }
1047 
1048   // Create a new variable.
1049   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1050                                 Linkage, 0, Name);
1051 
1052   if (OldGV) {
1053     // Replace occurrences of the old variable if needed.
1054     GV->takeName(OldGV);
1055 
1056     if (!OldGV->use_empty()) {
1057       llvm::Constant *NewPtrForOldDecl =
1058       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1059       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1060     }
1061 
1062     OldGV->eraseFromParent();
1063   }
1064 
1065   return GV;
1066 }
1067 
1068 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1069 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1070 /// then it will be greated with the specified type instead of whatever the
1071 /// normal requested type would be.
1072 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1073                                                   const llvm::Type *Ty) {
1074   assert(D->hasGlobalStorage() && "Not a global variable");
1075   QualType ASTTy = D->getType();
1076   if (Ty == 0)
1077     Ty = getTypes().ConvertTypeForMem(ASTTy);
1078 
1079   const llvm::PointerType *PTy =
1080     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1081 
1082   llvm::StringRef MangledName = getMangledName(D);
1083   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1084 }
1085 
1086 /// CreateRuntimeVariable - Create a new runtime global variable with the
1087 /// specified type and name.
1088 llvm::Constant *
1089 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1090                                      llvm::StringRef Name) {
1091   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1092                                true);
1093 }
1094 
1095 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1096   assert(!D->getInit() && "Cannot emit definite definitions here!");
1097 
1098   if (MayDeferGeneration(D)) {
1099     // If we have not seen a reference to this variable yet, place it
1100     // into the deferred declarations table to be emitted if needed
1101     // later.
1102     llvm::StringRef MangledName = getMangledName(D);
1103     if (!GetGlobalValue(MangledName)) {
1104       DeferredDecls[MangledName] = D;
1105       return;
1106     }
1107   }
1108 
1109   // The tentative definition is the only definition.
1110   EmitGlobalVarDefinition(D);
1111 }
1112 
1113 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1114   if (DefinitionRequired)
1115     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1116 }
1117 
1118 llvm::GlobalVariable::LinkageTypes
1119 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1120   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1121     return llvm::GlobalVariable::InternalLinkage;
1122 
1123   if (const CXXMethodDecl *KeyFunction
1124                                     = RD->getASTContext().getKeyFunction(RD)) {
1125     // If this class has a key function, use that to determine the linkage of
1126     // the vtable.
1127     const FunctionDecl *Def = 0;
1128     if (KeyFunction->hasBody(Def))
1129       KeyFunction = cast<CXXMethodDecl>(Def);
1130 
1131     switch (KeyFunction->getTemplateSpecializationKind()) {
1132       case TSK_Undeclared:
1133       case TSK_ExplicitSpecialization:
1134         // When compiling with optimizations turned on, we emit all vtables,
1135         // even if the key function is not defined in the current translation
1136         // unit. If this is the case, use available_externally linkage.
1137         if (!Def && CodeGenOpts.OptimizationLevel)
1138           return llvm::GlobalVariable::AvailableExternallyLinkage;
1139 
1140         if (KeyFunction->isInlined())
1141           return !Context.getLangOptions().AppleKext ?
1142                    llvm::GlobalVariable::LinkOnceODRLinkage :
1143                    llvm::Function::InternalLinkage;
1144 
1145         return llvm::GlobalVariable::ExternalLinkage;
1146 
1147       case TSK_ImplicitInstantiation:
1148         return !Context.getLangOptions().AppleKext ?
1149                  llvm::GlobalVariable::LinkOnceODRLinkage :
1150                  llvm::Function::InternalLinkage;
1151 
1152       case TSK_ExplicitInstantiationDefinition:
1153         return !Context.getLangOptions().AppleKext ?
1154                  llvm::GlobalVariable::WeakODRLinkage :
1155                  llvm::Function::InternalLinkage;
1156 
1157       case TSK_ExplicitInstantiationDeclaration:
1158         // FIXME: Use available_externally linkage. However, this currently
1159         // breaks LLVM's build due to undefined symbols.
1160         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1161         return !Context.getLangOptions().AppleKext ?
1162                  llvm::GlobalVariable::LinkOnceODRLinkage :
1163                  llvm::Function::InternalLinkage;
1164     }
1165   }
1166 
1167   if (Context.getLangOptions().AppleKext)
1168     return llvm::Function::InternalLinkage;
1169 
1170   switch (RD->getTemplateSpecializationKind()) {
1171   case TSK_Undeclared:
1172   case TSK_ExplicitSpecialization:
1173   case TSK_ImplicitInstantiation:
1174     // FIXME: Use available_externally linkage. However, this currently
1175     // breaks LLVM's build due to undefined symbols.
1176     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1177   case TSK_ExplicitInstantiationDeclaration:
1178     return llvm::GlobalVariable::LinkOnceODRLinkage;
1179 
1180   case TSK_ExplicitInstantiationDefinition:
1181       return llvm::GlobalVariable::WeakODRLinkage;
1182   }
1183 
1184   // Silence GCC warning.
1185   return llvm::GlobalVariable::LinkOnceODRLinkage;
1186 }
1187 
1188 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1189     return Context.toCharUnitsFromBits(
1190       TheTargetData.getTypeStoreSizeInBits(Ty));
1191 }
1192 
1193 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1194   llvm::Constant *Init = 0;
1195   QualType ASTTy = D->getType();
1196   bool NonConstInit = false;
1197 
1198   const Expr *InitExpr = D->getAnyInitializer();
1199 
1200   if (!InitExpr) {
1201     // This is a tentative definition; tentative definitions are
1202     // implicitly initialized with { 0 }.
1203     //
1204     // Note that tentative definitions are only emitted at the end of
1205     // a translation unit, so they should never have incomplete
1206     // type. In addition, EmitTentativeDefinition makes sure that we
1207     // never attempt to emit a tentative definition if a real one
1208     // exists. A use may still exists, however, so we still may need
1209     // to do a RAUW.
1210     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1211     Init = EmitNullConstant(D->getType());
1212   } else {
1213     Init = EmitConstantExpr(InitExpr, D->getType());
1214     if (!Init) {
1215       QualType T = InitExpr->getType();
1216       if (D->getType()->isReferenceType())
1217         T = D->getType();
1218 
1219       if (getLangOptions().CPlusPlus) {
1220         Init = EmitNullConstant(T);
1221         NonConstInit = true;
1222       } else {
1223         ErrorUnsupported(D, "static initializer");
1224         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1225       }
1226     } else {
1227       // We don't need an initializer, so remove the entry for the delayed
1228       // initializer position (just in case this entry was delayed).
1229       if (getLangOptions().CPlusPlus)
1230         DelayedCXXInitPosition.erase(D);
1231     }
1232   }
1233 
1234   const llvm::Type* InitType = Init->getType();
1235   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1236 
1237   // Strip off a bitcast if we got one back.
1238   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1239     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1240            // all zero index gep.
1241            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1242     Entry = CE->getOperand(0);
1243   }
1244 
1245   // Entry is now either a Function or GlobalVariable.
1246   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1247 
1248   // We have a definition after a declaration with the wrong type.
1249   // We must make a new GlobalVariable* and update everything that used OldGV
1250   // (a declaration or tentative definition) with the new GlobalVariable*
1251   // (which will be a definition).
1252   //
1253   // This happens if there is a prototype for a global (e.g.
1254   // "extern int x[];") and then a definition of a different type (e.g.
1255   // "int x[10];"). This also happens when an initializer has a different type
1256   // from the type of the global (this happens with unions).
1257   if (GV == 0 ||
1258       GV->getType()->getElementType() != InitType ||
1259       GV->getType()->getAddressSpace() !=
1260         getContext().getTargetAddressSpace(ASTTy)) {
1261 
1262     // Move the old entry aside so that we'll create a new one.
1263     Entry->setName(llvm::StringRef());
1264 
1265     // Make a new global with the correct type, this is now guaranteed to work.
1266     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1267 
1268     // Replace all uses of the old global with the new global
1269     llvm::Constant *NewPtrForOldDecl =
1270         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1271     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1272 
1273     // Erase the old global, since it is no longer used.
1274     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1275   }
1276 
1277   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1278     SourceManager &SM = Context.getSourceManager();
1279     AddAnnotation(EmitAnnotateAttr(GV, AA,
1280                               SM.getInstantiationLineNumber(D->getLocation())));
1281   }
1282 
1283   GV->setInitializer(Init);
1284 
1285   // If it is safe to mark the global 'constant', do so now.
1286   GV->setConstant(false);
1287   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1288     GV->setConstant(true);
1289 
1290   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1291 
1292   // Set the llvm linkage type as appropriate.
1293   llvm::GlobalValue::LinkageTypes Linkage =
1294     GetLLVMLinkageVarDefinition(D, GV);
1295   GV->setLinkage(Linkage);
1296   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1297     // common vars aren't constant even if declared const.
1298     GV->setConstant(false);
1299 
1300   SetCommonAttributes(D, GV);
1301 
1302   // Emit the initializer function if necessary.
1303   if (NonConstInit)
1304     EmitCXXGlobalVarDeclInitFunc(D, GV);
1305 
1306   // Emit global variable debug information.
1307   if (CGDebugInfo *DI = getModuleDebugInfo()) {
1308     DI->setLocation(D->getLocation());
1309     DI->EmitGlobalVariable(GV, D);
1310   }
1311 }
1312 
1313 llvm::GlobalValue::LinkageTypes
1314 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1315                                            llvm::GlobalVariable *GV) {
1316   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1317   if (Linkage == GVA_Internal)
1318     return llvm::Function::InternalLinkage;
1319   else if (D->hasAttr<DLLImportAttr>())
1320     return llvm::Function::DLLImportLinkage;
1321   else if (D->hasAttr<DLLExportAttr>())
1322     return llvm::Function::DLLExportLinkage;
1323   else if (D->hasAttr<WeakAttr>()) {
1324     if (GV->isConstant())
1325       return llvm::GlobalVariable::WeakODRLinkage;
1326     else
1327       return llvm::GlobalVariable::WeakAnyLinkage;
1328   } else if (Linkage == GVA_TemplateInstantiation ||
1329              Linkage == GVA_ExplicitTemplateInstantiation)
1330     return llvm::GlobalVariable::WeakODRLinkage;
1331   else if (!getLangOptions().CPlusPlus &&
1332            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1333              D->getAttr<CommonAttr>()) &&
1334            !D->hasExternalStorage() && !D->getInit() &&
1335            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1336     // Thread local vars aren't considered common linkage.
1337     return llvm::GlobalVariable::CommonLinkage;
1338   }
1339   return llvm::GlobalVariable::ExternalLinkage;
1340 }
1341 
1342 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1343 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1344 /// existing call uses of the old function in the module, this adjusts them to
1345 /// call the new function directly.
1346 ///
1347 /// This is not just a cleanup: the always_inline pass requires direct calls to
1348 /// functions to be able to inline them.  If there is a bitcast in the way, it
1349 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1350 /// run at -O0.
1351 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1352                                                       llvm::Function *NewFn) {
1353   // If we're redefining a global as a function, don't transform it.
1354   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1355   if (OldFn == 0) return;
1356 
1357   const llvm::Type *NewRetTy = NewFn->getReturnType();
1358   llvm::SmallVector<llvm::Value*, 4> ArgList;
1359 
1360   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1361        UI != E; ) {
1362     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1363     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1364     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1365     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1366     llvm::CallSite CS(CI);
1367     if (!CI || !CS.isCallee(I)) continue;
1368 
1369     // If the return types don't match exactly, and if the call isn't dead, then
1370     // we can't transform this call.
1371     if (CI->getType() != NewRetTy && !CI->use_empty())
1372       continue;
1373 
1374     // If the function was passed too few arguments, don't transform.  If extra
1375     // arguments were passed, we silently drop them.  If any of the types
1376     // mismatch, we don't transform.
1377     unsigned ArgNo = 0;
1378     bool DontTransform = false;
1379     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1380          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1381       if (CS.arg_size() == ArgNo ||
1382           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1383         DontTransform = true;
1384         break;
1385       }
1386     }
1387     if (DontTransform)
1388       continue;
1389 
1390     // Okay, we can transform this.  Create the new call instruction and copy
1391     // over the required information.
1392     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1393     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1394                                                      ArgList.end(), "", CI);
1395     ArgList.clear();
1396     if (!NewCall->getType()->isVoidTy())
1397       NewCall->takeName(CI);
1398     NewCall->setAttributes(CI->getAttributes());
1399     NewCall->setCallingConv(CI->getCallingConv());
1400 
1401     // Finally, remove the old call, replacing any uses with the new one.
1402     if (!CI->use_empty())
1403       CI->replaceAllUsesWith(NewCall);
1404 
1405     // Copy debug location attached to CI.
1406     if (!CI->getDebugLoc().isUnknown())
1407       NewCall->setDebugLoc(CI->getDebugLoc());
1408     CI->eraseFromParent();
1409   }
1410 }
1411 
1412 
1413 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1414   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1415 
1416   // Compute the function info and LLVM type.
1417   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1418   bool variadic = false;
1419   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1420     variadic = fpt->isVariadic();
1421   const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1422 
1423   // Get or create the prototype for the function.
1424   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1425 
1426   // Strip off a bitcast if we got one back.
1427   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1428     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1429     Entry = CE->getOperand(0);
1430   }
1431 
1432 
1433   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1434     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1435 
1436     // If the types mismatch then we have to rewrite the definition.
1437     assert(OldFn->isDeclaration() &&
1438            "Shouldn't replace non-declaration");
1439 
1440     // F is the Function* for the one with the wrong type, we must make a new
1441     // Function* and update everything that used F (a declaration) with the new
1442     // Function* (which will be a definition).
1443     //
1444     // This happens if there is a prototype for a function
1445     // (e.g. "int f()") and then a definition of a different type
1446     // (e.g. "int f(int x)").  Move the old function aside so that it
1447     // doesn't interfere with GetAddrOfFunction.
1448     OldFn->setName(llvm::StringRef());
1449     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1450 
1451     // If this is an implementation of a function without a prototype, try to
1452     // replace any existing uses of the function (which may be calls) with uses
1453     // of the new function
1454     if (D->getType()->isFunctionNoProtoType()) {
1455       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1456       OldFn->removeDeadConstantUsers();
1457     }
1458 
1459     // Replace uses of F with the Function we will endow with a body.
1460     if (!Entry->use_empty()) {
1461       llvm::Constant *NewPtrForOldDecl =
1462         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1463       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1464     }
1465 
1466     // Ok, delete the old function now, which is dead.
1467     OldFn->eraseFromParent();
1468 
1469     Entry = NewFn;
1470   }
1471 
1472   // We need to set linkage and visibility on the function before
1473   // generating code for it because various parts of IR generation
1474   // want to propagate this information down (e.g. to local static
1475   // declarations).
1476   llvm::Function *Fn = cast<llvm::Function>(Entry);
1477   setFunctionLinkage(D, Fn);
1478 
1479   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1480   setGlobalVisibility(Fn, D);
1481 
1482   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1483 
1484   SetFunctionDefinitionAttributes(D, Fn);
1485   SetLLVMFunctionAttributesForDefinition(D, Fn);
1486 
1487   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1488     AddGlobalCtor(Fn, CA->getPriority());
1489   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1490     AddGlobalDtor(Fn, DA->getPriority());
1491 }
1492 
1493 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1494   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1495   const AliasAttr *AA = D->getAttr<AliasAttr>();
1496   assert(AA && "Not an alias?");
1497 
1498   llvm::StringRef MangledName = getMangledName(GD);
1499 
1500   // If there is a definition in the module, then it wins over the alias.
1501   // This is dubious, but allow it to be safe.  Just ignore the alias.
1502   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1503   if (Entry && !Entry->isDeclaration())
1504     return;
1505 
1506   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1507 
1508   // Create a reference to the named value.  This ensures that it is emitted
1509   // if a deferred decl.
1510   llvm::Constant *Aliasee;
1511   if (isa<llvm::FunctionType>(DeclTy))
1512     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1513                                       /*ForVTable=*/false);
1514   else
1515     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1516                                     llvm::PointerType::getUnqual(DeclTy), 0);
1517 
1518   // Create the new alias itself, but don't set a name yet.
1519   llvm::GlobalValue *GA =
1520     new llvm::GlobalAlias(Aliasee->getType(),
1521                           llvm::Function::ExternalLinkage,
1522                           "", Aliasee, &getModule());
1523 
1524   if (Entry) {
1525     assert(Entry->isDeclaration());
1526 
1527     // If there is a declaration in the module, then we had an extern followed
1528     // by the alias, as in:
1529     //   extern int test6();
1530     //   ...
1531     //   int test6() __attribute__((alias("test7")));
1532     //
1533     // Remove it and replace uses of it with the alias.
1534     GA->takeName(Entry);
1535 
1536     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1537                                                           Entry->getType()));
1538     Entry->eraseFromParent();
1539   } else {
1540     GA->setName(MangledName);
1541   }
1542 
1543   // Set attributes which are particular to an alias; this is a
1544   // specialization of the attributes which may be set on a global
1545   // variable/function.
1546   if (D->hasAttr<DLLExportAttr>()) {
1547     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1548       // The dllexport attribute is ignored for undefined symbols.
1549       if (FD->hasBody())
1550         GA->setLinkage(llvm::Function::DLLExportLinkage);
1551     } else {
1552       GA->setLinkage(llvm::Function::DLLExportLinkage);
1553     }
1554   } else if (D->hasAttr<WeakAttr>() ||
1555              D->hasAttr<WeakRefAttr>() ||
1556              D->isWeakImported()) {
1557     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1558   }
1559 
1560   SetCommonAttributes(D, GA);
1561 }
1562 
1563 /// getBuiltinLibFunction - Given a builtin id for a function like
1564 /// "__builtin_fabsf", return a Function* for "fabsf".
1565 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1566                                                   unsigned BuiltinID) {
1567   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1568           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1569          "isn't a lib fn");
1570 
1571   // Get the name, skip over the __builtin_ prefix (if necessary).
1572   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1573   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1574     Name += 10;
1575 
1576   const llvm::FunctionType *Ty =
1577     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1578 
1579   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1580 }
1581 
1582 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1583                                             unsigned NumTys) {
1584   return llvm::Intrinsic::getDeclaration(&getModule(),
1585                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1586 }
1587 
1588 static llvm::StringMapEntry<llvm::Constant*> &
1589 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1590                          const StringLiteral *Literal,
1591                          bool TargetIsLSB,
1592                          bool &IsUTF16,
1593                          unsigned &StringLength) {
1594   llvm::StringRef String = Literal->getString();
1595   unsigned NumBytes = String.size();
1596 
1597   // Check for simple case.
1598   if (!Literal->containsNonAsciiOrNull()) {
1599     StringLength = NumBytes;
1600     return Map.GetOrCreateValue(String);
1601   }
1602 
1603   // Otherwise, convert the UTF8 literals into a byte string.
1604   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1605   const UTF8 *FromPtr = (UTF8 *)String.data();
1606   UTF16 *ToPtr = &ToBuf[0];
1607 
1608   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1609                            &ToPtr, ToPtr + NumBytes,
1610                            strictConversion);
1611 
1612   // ConvertUTF8toUTF16 returns the length in ToPtr.
1613   StringLength = ToPtr - &ToBuf[0];
1614 
1615   // Render the UTF-16 string into a byte array and convert to the target byte
1616   // order.
1617   //
1618   // FIXME: This isn't something we should need to do here.
1619   llvm::SmallString<128> AsBytes;
1620   AsBytes.reserve(StringLength * 2);
1621   for (unsigned i = 0; i != StringLength; ++i) {
1622     unsigned short Val = ToBuf[i];
1623     if (TargetIsLSB) {
1624       AsBytes.push_back(Val & 0xFF);
1625       AsBytes.push_back(Val >> 8);
1626     } else {
1627       AsBytes.push_back(Val >> 8);
1628       AsBytes.push_back(Val & 0xFF);
1629     }
1630   }
1631   // Append one extra null character, the second is automatically added by our
1632   // caller.
1633   AsBytes.push_back(0);
1634 
1635   IsUTF16 = true;
1636   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1637 }
1638 
1639 llvm::Constant *
1640 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1641   unsigned StringLength = 0;
1642   bool isUTF16 = false;
1643   llvm::StringMapEntry<llvm::Constant*> &Entry =
1644     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1645                              getTargetData().isLittleEndian(),
1646                              isUTF16, StringLength);
1647 
1648   if (llvm::Constant *C = Entry.getValue())
1649     return C;
1650 
1651   llvm::Constant *Zero =
1652       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1653   llvm::Constant *Zeros[] = { Zero, Zero };
1654 
1655   // If we don't already have it, get __CFConstantStringClassReference.
1656   if (!CFConstantStringClassRef) {
1657     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1658     Ty = llvm::ArrayType::get(Ty, 0);
1659     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1660                                            "__CFConstantStringClassReference");
1661     // Decay array -> ptr
1662     CFConstantStringClassRef =
1663       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1664   }
1665 
1666   QualType CFTy = getContext().getCFConstantStringType();
1667 
1668   const llvm::StructType *STy =
1669     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1670 
1671   std::vector<llvm::Constant*> Fields(4);
1672 
1673   // Class pointer.
1674   Fields[0] = CFConstantStringClassRef;
1675 
1676   // Flags.
1677   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1678   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1679     llvm::ConstantInt::get(Ty, 0x07C8);
1680 
1681   // String pointer.
1682   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1683 
1684   llvm::GlobalValue::LinkageTypes Linkage;
1685   bool isConstant;
1686   if (isUTF16) {
1687     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1688     Linkage = llvm::GlobalValue::InternalLinkage;
1689     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1690     // does make plain ascii ones writable.
1691     isConstant = true;
1692   } else {
1693     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1694     // when using private linkage. It is not clear if this is a bug in ld
1695     // or a reasonable new restriction.
1696     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1697     isConstant = !Features.WritableStrings;
1698   }
1699 
1700   llvm::GlobalVariable *GV =
1701     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1702                              ".str");
1703   GV->setUnnamedAddr(true);
1704   if (isUTF16) {
1705     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1706     GV->setAlignment(Align.getQuantity());
1707   } else {
1708     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1709     GV->setAlignment(Align.getQuantity());
1710   }
1711   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1712 
1713   // String length.
1714   Ty = getTypes().ConvertType(getContext().LongTy);
1715   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1716 
1717   // The struct.
1718   C = llvm::ConstantStruct::get(STy, Fields);
1719   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1720                                 llvm::GlobalVariable::PrivateLinkage, C,
1721                                 "_unnamed_cfstring_");
1722   if (const char *Sect = getContext().Target.getCFStringSection())
1723     GV->setSection(Sect);
1724   Entry.setValue(GV);
1725 
1726   return GV;
1727 }
1728 
1729 llvm::Constant *
1730 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1731   unsigned StringLength = 0;
1732   bool isUTF16 = false;
1733   llvm::StringMapEntry<llvm::Constant*> &Entry =
1734     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1735                              getTargetData().isLittleEndian(),
1736                              isUTF16, StringLength);
1737 
1738   if (llvm::Constant *C = Entry.getValue())
1739     return C;
1740 
1741   llvm::Constant *Zero =
1742   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1743   llvm::Constant *Zeros[] = { Zero, Zero };
1744 
1745   // If we don't already have it, get _NSConstantStringClassReference.
1746   if (!ConstantStringClassRef) {
1747     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1748     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1749     Ty = llvm::ArrayType::get(Ty, 0);
1750     llvm::Constant *GV;
1751     if (StringClass.empty())
1752       GV = CreateRuntimeVariable(Ty,
1753                                  Features.ObjCNonFragileABI ?
1754                                  "OBJC_CLASS_$_NSConstantString" :
1755                                  "_NSConstantStringClassReference");
1756     else {
1757       std::string str;
1758       if (Features.ObjCNonFragileABI)
1759         str = "OBJC_CLASS_$_" + StringClass;
1760       else
1761         str = "_" + StringClass + "ClassReference";
1762       GV = CreateRuntimeVariable(Ty, str);
1763     }
1764     // Decay array -> ptr
1765     ConstantStringClassRef =
1766     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1767   }
1768 
1769   QualType NSTy = getContext().getNSConstantStringType();
1770 
1771   const llvm::StructType *STy =
1772   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1773 
1774   std::vector<llvm::Constant*> Fields(3);
1775 
1776   // Class pointer.
1777   Fields[0] = ConstantStringClassRef;
1778 
1779   // String pointer.
1780   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1781 
1782   llvm::GlobalValue::LinkageTypes Linkage;
1783   bool isConstant;
1784   if (isUTF16) {
1785     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1786     Linkage = llvm::GlobalValue::InternalLinkage;
1787     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1788     // does make plain ascii ones writable.
1789     isConstant = true;
1790   } else {
1791     Linkage = llvm::GlobalValue::PrivateLinkage;
1792     isConstant = !Features.WritableStrings;
1793   }
1794 
1795   llvm::GlobalVariable *GV =
1796   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1797                            ".str");
1798   GV->setUnnamedAddr(true);
1799   if (isUTF16) {
1800     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1801     GV->setAlignment(Align.getQuantity());
1802   } else {
1803     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1804     GV->setAlignment(Align.getQuantity());
1805   }
1806   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1807 
1808   // String length.
1809   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1810   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1811 
1812   // The struct.
1813   C = llvm::ConstantStruct::get(STy, Fields);
1814   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1815                                 llvm::GlobalVariable::PrivateLinkage, C,
1816                                 "_unnamed_nsstring_");
1817   // FIXME. Fix section.
1818   if (const char *Sect =
1819         Features.ObjCNonFragileABI
1820           ? getContext().Target.getNSStringNonFragileABISection()
1821           : getContext().Target.getNSStringSection())
1822     GV->setSection(Sect);
1823   Entry.setValue(GV);
1824 
1825   return GV;
1826 }
1827 
1828 /// GetStringForStringLiteral - Return the appropriate bytes for a
1829 /// string literal, properly padded to match the literal type.
1830 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1831   const ASTContext &Context = getContext();
1832   const ConstantArrayType *CAT =
1833     Context.getAsConstantArrayType(E->getType());
1834   assert(CAT && "String isn't pointer or array!");
1835 
1836   // Resize the string to the right size.
1837   uint64_t RealLen = CAT->getSize().getZExtValue();
1838 
1839   if (E->isWide())
1840     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1841 
1842   std::string Str = E->getString().str();
1843   Str.resize(RealLen, '\0');
1844 
1845   return Str;
1846 }
1847 
1848 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1849 /// constant array for the given string literal.
1850 llvm::Constant *
1851 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1852   // FIXME: This can be more efficient.
1853   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1854   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1855   if (S->isWide()) {
1856     llvm::Type *DestTy =
1857         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1858     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1859   }
1860   return C;
1861 }
1862 
1863 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1864 /// array for the given ObjCEncodeExpr node.
1865 llvm::Constant *
1866 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1867   std::string Str;
1868   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1869 
1870   return GetAddrOfConstantCString(Str);
1871 }
1872 
1873 
1874 /// GenerateWritableString -- Creates storage for a string literal.
1875 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1876                                              bool constant,
1877                                              CodeGenModule &CGM,
1878                                              const char *GlobalName) {
1879   // Create Constant for this string literal. Don't add a '\0'.
1880   llvm::Constant *C =
1881       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1882 
1883   // Create a global variable for this string
1884   llvm::GlobalVariable *GV =
1885     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1886                              llvm::GlobalValue::PrivateLinkage,
1887                              C, GlobalName);
1888   GV->setUnnamedAddr(true);
1889   return GV;
1890 }
1891 
1892 /// GetAddrOfConstantString - Returns a pointer to a character array
1893 /// containing the literal. This contents are exactly that of the
1894 /// given string, i.e. it will not be null terminated automatically;
1895 /// see GetAddrOfConstantCString. Note that whether the result is
1896 /// actually a pointer to an LLVM constant depends on
1897 /// Feature.WriteableStrings.
1898 ///
1899 /// The result has pointer to array type.
1900 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1901                                                        const char *GlobalName) {
1902   bool IsConstant = !Features.WritableStrings;
1903 
1904   // Get the default prefix if a name wasn't specified.
1905   if (!GlobalName)
1906     GlobalName = ".str";
1907 
1908   // Don't share any string literals if strings aren't constant.
1909   if (!IsConstant)
1910     return GenerateStringLiteral(Str, false, *this, GlobalName);
1911 
1912   llvm::StringMapEntry<llvm::Constant *> &Entry =
1913     ConstantStringMap.GetOrCreateValue(Str);
1914 
1915   if (Entry.getValue())
1916     return Entry.getValue();
1917 
1918   // Create a global variable for this.
1919   llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1920   Entry.setValue(C);
1921   return C;
1922 }
1923 
1924 /// GetAddrOfConstantCString - Returns a pointer to a character
1925 /// array containing the literal and a terminating '\0'
1926 /// character. The result has pointer to array type.
1927 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1928                                                         const char *GlobalName){
1929   llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1930   return GetAddrOfConstantString(StrWithNull, GlobalName);
1931 }
1932 
1933 /// EmitObjCPropertyImplementations - Emit information for synthesized
1934 /// properties for an implementation.
1935 void CodeGenModule::EmitObjCPropertyImplementations(const
1936                                                     ObjCImplementationDecl *D) {
1937   for (ObjCImplementationDecl::propimpl_iterator
1938          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1939     ObjCPropertyImplDecl *PID = *i;
1940 
1941     // Dynamic is just for type-checking.
1942     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1943       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1944 
1945       // Determine which methods need to be implemented, some may have
1946       // been overridden. Note that ::isSynthesized is not the method
1947       // we want, that just indicates if the decl came from a
1948       // property. What we want to know is if the method is defined in
1949       // this implementation.
1950       if (!D->getInstanceMethod(PD->getGetterName()))
1951         CodeGenFunction(*this).GenerateObjCGetter(
1952                                  const_cast<ObjCImplementationDecl *>(D), PID);
1953       if (!PD->isReadOnly() &&
1954           !D->getInstanceMethod(PD->getSetterName()))
1955         CodeGenFunction(*this).GenerateObjCSetter(
1956                                  const_cast<ObjCImplementationDecl *>(D), PID);
1957     }
1958   }
1959 }
1960 
1961 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
1962   ObjCInterfaceDecl *iface
1963     = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
1964   for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1965        ivar; ivar = ivar->getNextIvar())
1966     if (ivar->getType().isDestructedType())
1967       return true;
1968 
1969   return false;
1970 }
1971 
1972 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1973 /// for an implementation.
1974 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1975   // We might need a .cxx_destruct even if we don't have any ivar initializers.
1976   if (needsDestructMethod(D)) {
1977     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1978     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1979     ObjCMethodDecl *DTORMethod =
1980       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
1981                              cxxSelector, getContext().VoidTy, 0, D, true,
1982                              false, true, false, ObjCMethodDecl::Required);
1983     D->addInstanceMethod(DTORMethod);
1984     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1985   }
1986 
1987   // If the implementation doesn't have any ivar initializers, we don't need
1988   // a .cxx_construct.
1989   if (D->getNumIvarInitializers() == 0)
1990     return;
1991 
1992   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
1993   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1994   // The constructor returns 'self'.
1995   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1996                                                 D->getLocation(),
1997                                                 D->getLocation(), cxxSelector,
1998                                                 getContext().getObjCIdType(), 0,
1999                                                 D, true, false, true, false,
2000                                                 ObjCMethodDecl::Required);
2001   D->addInstanceMethod(CTORMethod);
2002   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2003 }
2004 
2005 /// EmitNamespace - Emit all declarations in a namespace.
2006 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2007   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2008        I != E; ++I)
2009     EmitTopLevelDecl(*I);
2010 }
2011 
2012 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2013 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2014   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2015       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2016     ErrorUnsupported(LSD, "linkage spec");
2017     return;
2018   }
2019 
2020   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2021        I != E; ++I)
2022     EmitTopLevelDecl(*I);
2023 }
2024 
2025 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2026 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2027   // If an error has occurred, stop code generation, but continue
2028   // parsing and semantic analysis (to ensure all warnings and errors
2029   // are emitted).
2030   if (Diags.hasErrorOccurred())
2031     return;
2032 
2033   // Ignore dependent declarations.
2034   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2035     return;
2036 
2037   switch (D->getKind()) {
2038   case Decl::CXXConversion:
2039   case Decl::CXXMethod:
2040   case Decl::Function:
2041     // Skip function templates
2042     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2043         cast<FunctionDecl>(D)->isLateTemplateParsed())
2044       return;
2045 
2046     EmitGlobal(cast<FunctionDecl>(D));
2047     break;
2048 
2049   case Decl::Var:
2050     EmitGlobal(cast<VarDecl>(D));
2051     break;
2052 
2053   // Indirect fields from global anonymous structs and unions can be
2054   // ignored; only the actual variable requires IR gen support.
2055   case Decl::IndirectField:
2056     break;
2057 
2058   // C++ Decls
2059   case Decl::Namespace:
2060     EmitNamespace(cast<NamespaceDecl>(D));
2061     break;
2062     // No code generation needed.
2063   case Decl::UsingShadow:
2064   case Decl::Using:
2065   case Decl::UsingDirective:
2066   case Decl::ClassTemplate:
2067   case Decl::FunctionTemplate:
2068   case Decl::TypeAliasTemplate:
2069   case Decl::NamespaceAlias:
2070     break;
2071   case Decl::CXXConstructor:
2072     // Skip function templates
2073     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2074         cast<FunctionDecl>(D)->isLateTemplateParsed())
2075       return;
2076 
2077     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2078     break;
2079   case Decl::CXXDestructor:
2080     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2081       return;
2082     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2083     break;
2084 
2085   case Decl::StaticAssert:
2086     // Nothing to do.
2087     break;
2088 
2089   // Objective-C Decls
2090 
2091   // Forward declarations, no (immediate) code generation.
2092   case Decl::ObjCClass:
2093   case Decl::ObjCForwardProtocol:
2094   case Decl::ObjCInterface:
2095     break;
2096 
2097   case Decl::ObjCCategory: {
2098     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2099     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2100       Context.ResetObjCLayout(CD->getClassInterface());
2101     break;
2102   }
2103 
2104   case Decl::ObjCProtocol:
2105     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2106     break;
2107 
2108   case Decl::ObjCCategoryImpl:
2109     // Categories have properties but don't support synthesize so we
2110     // can ignore them here.
2111     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2112     break;
2113 
2114   case Decl::ObjCImplementation: {
2115     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2116     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2117       Context.ResetObjCLayout(OMD->getClassInterface());
2118     EmitObjCPropertyImplementations(OMD);
2119     EmitObjCIvarInitializations(OMD);
2120     Runtime->GenerateClass(OMD);
2121     break;
2122   }
2123   case Decl::ObjCMethod: {
2124     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2125     // If this is not a prototype, emit the body.
2126     if (OMD->getBody())
2127       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2128     break;
2129   }
2130   case Decl::ObjCCompatibleAlias:
2131     // compatibility-alias is a directive and has no code gen.
2132     break;
2133 
2134   case Decl::LinkageSpec:
2135     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2136     break;
2137 
2138   case Decl::FileScopeAsm: {
2139     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2140     llvm::StringRef AsmString = AD->getAsmString()->getString();
2141 
2142     const std::string &S = getModule().getModuleInlineAsm();
2143     if (S.empty())
2144       getModule().setModuleInlineAsm(AsmString);
2145     else
2146       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2147     break;
2148   }
2149 
2150   default:
2151     // Make sure we handled everything we should, every other kind is a
2152     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2153     // function. Need to recode Decl::Kind to do that easily.
2154     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2155   }
2156 }
2157 
2158 /// Turns the given pointer into a constant.
2159 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2160                                           const void *Ptr) {
2161   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2162   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2163   return llvm::ConstantInt::get(i64, PtrInt);
2164 }
2165 
2166 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2167                                    llvm::NamedMDNode *&GlobalMetadata,
2168                                    GlobalDecl D,
2169                                    llvm::GlobalValue *Addr) {
2170   if (!GlobalMetadata)
2171     GlobalMetadata =
2172       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2173 
2174   // TODO: should we report variant information for ctors/dtors?
2175   llvm::Value *Ops[] = {
2176     Addr,
2177     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2178   };
2179   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2180 }
2181 
2182 /// Emits metadata nodes associating all the global values in the
2183 /// current module with the Decls they came from.  This is useful for
2184 /// projects using IR gen as a subroutine.
2185 ///
2186 /// Since there's currently no way to associate an MDNode directly
2187 /// with an llvm::GlobalValue, we create a global named metadata
2188 /// with the name 'clang.global.decl.ptrs'.
2189 void CodeGenModule::EmitDeclMetadata() {
2190   llvm::NamedMDNode *GlobalMetadata = 0;
2191 
2192   // StaticLocalDeclMap
2193   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2194          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2195        I != E; ++I) {
2196     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2197     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2198   }
2199 }
2200 
2201 /// Emits metadata nodes for all the local variables in the current
2202 /// function.
2203 void CodeGenFunction::EmitDeclMetadata() {
2204   if (LocalDeclMap.empty()) return;
2205 
2206   llvm::LLVMContext &Context = getLLVMContext();
2207 
2208   // Find the unique metadata ID for this name.
2209   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2210 
2211   llvm::NamedMDNode *GlobalMetadata = 0;
2212 
2213   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2214          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2215     const Decl *D = I->first;
2216     llvm::Value *Addr = I->second;
2217 
2218     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2219       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2220       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2221     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2222       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2223       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2224     }
2225   }
2226 }
2227 
2228 void CodeGenModule::EmitCoverageFile() {
2229   if (!getCodeGenOpts().CoverageFile.empty()) {
2230     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2231       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2232       llvm::LLVMContext &Ctx = TheModule.getContext();
2233       llvm::MDString *CoverageFile =
2234           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2235       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2236         llvm::MDNode *CU = CUNode->getOperand(i);
2237         llvm::Value *node[] = { CoverageFile, CU };
2238         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2239         GCov->addOperand(N);
2240       }
2241     }
2242   }
2243 }
2244 
2245 ///@name Custom Runtime Function Interfaces
2246 ///@{
2247 //
2248 // FIXME: These can be eliminated once we can have clients just get the required
2249 // AST nodes from the builtin tables.
2250 
2251 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2252   if (BlockObjectDispose)
2253     return BlockObjectDispose;
2254 
2255   // If we saw an explicit decl, use that.
2256   if (BlockObjectDisposeDecl) {
2257     return BlockObjectDispose = GetAddrOfFunction(
2258       BlockObjectDisposeDecl,
2259       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2260   }
2261 
2262   // Otherwise construct the function by hand.
2263   const llvm::FunctionType *FTy;
2264   std::vector<const llvm::Type*> ArgTys;
2265   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2266   ArgTys.push_back(Int8PtrTy);
2267   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2268   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2269   return BlockObjectDispose =
2270     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2271 }
2272 
2273 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2274   if (BlockObjectAssign)
2275     return BlockObjectAssign;
2276 
2277   // If we saw an explicit decl, use that.
2278   if (BlockObjectAssignDecl) {
2279     return BlockObjectAssign = GetAddrOfFunction(
2280       BlockObjectAssignDecl,
2281       getTypes().GetFunctionType(BlockObjectAssignDecl));
2282   }
2283 
2284   // Otherwise construct the function by hand.
2285   const llvm::FunctionType *FTy;
2286   std::vector<const llvm::Type*> ArgTys;
2287   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2288   ArgTys.push_back(Int8PtrTy);
2289   ArgTys.push_back(Int8PtrTy);
2290   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2291   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2292   return BlockObjectAssign =
2293     CreateRuntimeFunction(FTy, "_Block_object_assign");
2294 }
2295 
2296 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2297   if (NSConcreteGlobalBlock)
2298     return NSConcreteGlobalBlock;
2299 
2300   // If we saw an explicit decl, use that.
2301   if (NSConcreteGlobalBlockDecl) {
2302     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2303       NSConcreteGlobalBlockDecl,
2304       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2305   }
2306 
2307   // Otherwise construct the variable by hand.
2308   return NSConcreteGlobalBlock =
2309     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2310 }
2311 
2312 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2313   if (NSConcreteStackBlock)
2314     return NSConcreteStackBlock;
2315 
2316   // If we saw an explicit decl, use that.
2317   if (NSConcreteStackBlockDecl) {
2318     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2319       NSConcreteStackBlockDecl,
2320       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2321   }
2322 
2323   // Otherwise construct the variable by hand.
2324   return NSConcreteStackBlock =
2325     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2326 }
2327 
2328 ///@}
2329